[go: up one dir, main page]

WO2021153753A1 - Examination method, examination device, and examination program - Google Patents

Examination method, examination device, and examination program Download PDF

Info

Publication number
WO2021153753A1
WO2021153753A1 PCT/JP2021/003311 JP2021003311W WO2021153753A1 WO 2021153753 A1 WO2021153753 A1 WO 2021153753A1 JP 2021003311 W JP2021003311 W JP 2021003311W WO 2021153753 A1 WO2021153753 A1 WO 2021153753A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
body fluid
fluid sample
disease
marker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2021/003311
Other languages
French (fr)
Japanese (ja)
Inventor
真紀子 吉本
淳 渥美
敦子 宮野
千絵 岩▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2021507533A priority Critical patent/JP7652066B2/en
Publication of WO2021153753A1 publication Critical patent/WO2021153753A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/40ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis

Definitions

  • the present invention relates to a test method, a test device, and a test program for testing a disease using a disease marker.
  • Patent Document 1 discloses that after storing a sample in a serum state at 4 ° C. for 72 hours or 168 hours, the abundance of a part of miRNA in the sample fluctuates significantly. Therefore, it is common practice to unify the protocol, such as by aligning the test conditions including the collection of samples.
  • the present invention has been made in view of the above problems, and an object of the present invention is to allow a wide range of feasible sample collection conditions without imposing an excessive burden on the medical field, and to have high accuracy.
  • the purpose is to provide a method for testing a disease.
  • the test method according to the present invention is a test method for testing a disease using a disease marker in order to solve the above problems, and shows a measurement result obtained by measuring a disease marker in a body fluid sample collected from a subject.
  • the determination step of determining the presence or absence of disease in the subject based on the corrected marker data, the corrected marker data is a predetermined preparation condition of the same type as the index in the acquired preparation data. The value of the above marker data in the above is estimated.
  • the testing device is a testing device that tests for a disease using a disease marker in order to solve the above problems, and is a marker showing the result of measuring a disease marker in a body fluid sample collected from a subject.
  • a data acquisition unit that acquires data and preparation data indicating the preparation conditions of the body fluid sample, and a correction unit that corrects the acquired marker data using the acquired preparation data and acquires the corrected marker data.
  • the corrected marker data is an estimate of the value of the marker data under predetermined preparation conditions of the same type as the index in the acquired preparation data.
  • the medical field is not overloaded. It is possible to carry out highly accurate disease inspections.
  • the test method in the present embodiment is a method for testing a disease using a disease marker, and indicates the result of measuring the disease marker in the body fluid sample using the preparation data showing the preparation conditions of the body fluid sample. This is a test method for determining the presence or absence of a disease after correcting the above.
  • body fluid sample refers to a body fluid collected from a subject used for an examination.
  • the body fluid is not particularly limited as long as it can be used for a test for measuring a disease marker, and examples thereof include blood, serum, plasma, cerebrospinal fluid, urine, saliva, tears, tissue fluid, and lymph fluid. Among these, blood, serum and plasma are preferably used.
  • Disease marker refers to a biomolecule whose presence or abundance is related to a specific disease. As used herein, “disease marker” refers to a disease marker in the disease being tested. Therefore, the term “disease marker” as used herein refers to a biomolecule whose presence or abundance is known to be related to the disease to be tested. Disease markers include, for example, DNA, RNA and proteins. Among these, RNA is preferably used, and non-coding RNA (ncRNA) is more preferably used. NcRNAs are roughly classified into small molecule ncRNAs having a length of about 20 to 200 bases and long-chain ncRNAs having a total length of several hundred bases to several hundred thousand bases.
  • ncRNA examples include translocated RNA, ribosome RNA, nuclear small RNA, nuclear body small RNA, signal recognition complex RNA, miRNA, piRNA, long non-coding RNA, circular RNA, and untranslated region of mRNA.
  • MiRNA is particularly preferably used.
  • the disease is not particularly limited as long as the presence of a disease marker is known, and examples thereof include cancer, dementia, hypertension, heart disease, brain disease, hepatitis, infectious disease, and allergy.
  • cancer include pancreatic cancer, biliary tract cancer, breast cancer, lung cancer, colon cancer, esophageal cancer, gastric cancer, liver cancer, prostate cancer, bladder cancer, brain cancer, hematological cancer, ovarian cancer, uterine cancer and the like. It can be pancreatic cancer and biliary tract cancer.
  • the "marker data” is data indicating the presence or absence or abundance of one or more disease markers obtained by measuring the disease markers in the body fluid sample.
  • the "abundance amount” can be rephrased as the "expression level”.
  • “measuring” can be paraphrased as "detecting.”
  • the marker data in the present embodiment is not limited to the result obtained by measuring one specific disease marker, but a plurality of measurement results or numerical values corresponding to each disease marker obtained by measuring a plurality of disease markers. It may include data.
  • the measurement results of the plurality of disease markers may be the results of simultaneous measurement of each disease marker or the results of independent measurement.
  • the number is not limited and may be, for example, 2 or more, 3 or more, 4 or more, 5 or more, 10 or more, 15 or more, 20 or more, 30 or more or 40 or more.
  • the measuring means for obtaining the marker data can be appropriately selected depending on the biomolecule to be measured and the necessary data. Examples of the measuring means include microarrays, various PCRs including qRT-PCR, various sequencings including next-generation sequencing, ELISA and the like. Among them, it is preferable to use a microarray from the viewpoint that a plurality of disease markers can be measured at the same time and a highly accurate test can be performed by using the plurality of disease markers.
  • the conversion method is not particularly limited as long as there is a correlation between the measurement result and the numerical data.
  • the term "subject” refers to primates including humans and chimpanzees, pet animals such as dogs and cats, domestic animals such as cows, horses, sheep and goats, rodents such as mice and rats, and zoos. Means mammals such as animals bred in. A preferred subject is human.
  • a "healthy person” is an individual of the same species as the target subject and is not affected by the target disease.
  • the "preparation data” is data indicating the preparation conditions of the body fluid sample, and includes one or more information regarding the body fluid sample other than the measurement result of the disease marker obtained by the measurement. Specifically, as an example of the information contained in the preparation data, the information on the subject from which the body fluid sample was collected, the information indicating the collection conditions of the body fluid sample, and the information applied to the body fluid sample before the measurement of the disease marker in the body fluid sample are applied. Information on the processing conditions can be mentioned. If the subject or the condition of the subject is different, or if the collection conditions or processing conditions of the body fluid sample are different, the profile of the disease marker in the body fluid sample may fluctuate to some extent.
  • Information on the subject is information about the subject itself or information about the physical condition of the subject at the time of collecting the body fluid, which is not directly related to the collection of the body fluid sample.
  • Such information includes, for example, the race of the subject, biomolecular information that can be obtained from the blood of the subject and is not related to the disease to be tested, the dietary content and feeding time on the day or the day before the sample collection, and the subject.
  • Information on the physical condition such as the time from the final eating and drinking of the sample to the collection of body fluid, and the time from taking the drug type or drug to the collection when the subject was taking the drug. Can be mentioned.
  • biomolecules such as blood cells, proteins, lipids, and sugars.
  • information on biomolecules whose correlation with the disease to be tested is unknown may be used.
  • the biomolecular information that can be obtained from the blood of the subject, whose correlation with the presence or absence of these diseases is unknown is the amount of blood cells (erythrocyte amount, red blood cell amount, etc.).
  • the amount of white blood cells or platelets), the amount of proteins such as PSA and CYFRA, and the test values such as the amount of HDL cholesterol and the amount of LDL cholesterol can be mentioned.
  • Information indicating the conditions for collecting body fluid samples is information on the conditions for collecting body fluids and the equipment used. Such information includes the type of blood collection needle used when a needle was used to collect body fluid, and the blood collection tube used to collect blood when the body fluid was blood or a component derived from blood. Examples include the type, the type of coagulation promoter or coagulation inhibitor added to the blood collection tube, and the type of blood vessel (capillary blood or venous blood) at the time of blood collection.
  • the “conditions for the treatment applied to the body fluid sample” are the conditions for various treatments and operations applied to the body fluid sample before the measurement of the disease marker, and include the conditions for the storage of the body fluid sample.
  • Preservation conditions include, for example, the time and temperature until freezing or transfer to a freezer, and the temperature at the time of cryopreservation, when the body fluid is collected and then cryopreserved without immediately analyzing the disease marker.
  • Time to cryopreserve time to inactivate degrading enzymes in body fluid specimens, such as RNase, DNase or Protease, material of specimen storage container during cryopreservation, and temperature at the start of cryopreservation. Whether or not packing materials are used to soften the impact of changes can be mentioned.
  • the conditions for various treatments and operations that can be applied to the body fluid sample include, when the body fluid is centrifuged, or when the collected blood is centrifuged to obtain serum which is an actual body fluid sample.
  • the time from collecting the body fluid from the subject to performing the centrifugation operation, the centrifugal acceleration, and the like can be mentioned.
  • an actual body fluid sample can be obtained by performing a centrifugation operation on the collected body fluid
  • the time until the body fluid sample is frozen or transferred to the freezer after the centrifugation operation is also the time of the treatment applied to the body fluid sample. It is given as an example of the condition.
  • the time from the frozen state to the thawing of the body fluid sample, the temperature for thawing, and the like can be mentioned.
  • preparation conditions are conditions other than numerical values, such as race, type of blood collection tube, and type of drug to be taken, different numerical values are given to each of the assumed specific candidates, and the regression equation is performed using the numerical values. Should be created.
  • the preparation data may include at least one of the above information, and may include 2 or more, 3 or more, or 4 or more.
  • the test method includes a step of acquiring marker data indicating the measurement result of measuring a disease marker in a body fluid sample collected from a subject, and preparation data indicating the preparation conditions of the body fluid sample, and the acquired preparation. It includes a step of correcting the acquired marker data by using the data to acquire the corrected marker data, and a step of determining whether or not the subject has a disease based on the corrected marker data.
  • the corrected marker data is an estimate of the value of the marker data under a predetermined preparation condition of the same type as the index in the acquired preparation data.
  • the "predetermined preparation condition of the same type as the index in the preparation data” is the same type of preparation condition as the preparation condition used in the acquired preparation data, and is a specific condition arbitrarily set in advance. means. For example, when the preparation data using "the time from collecting the body fluid from the subject to performing the centrifugation operation" as the preparation condition is acquired, “the body fluid is collected from the subject and then centrifuged” which is arbitrarily set in advance. It means “time until the separation operation is performed", for example, 0.5 hour.
  • the marker data correction method is not particularly limited as long as the value of the marker data under the same type of predetermined preparation conditions as the index in the acquired preparation data can be estimated.
  • a regression equation is prepared in advance by regression analysis using a plurality of preparation data of the same index and a plurality of marker data corresponding to each preparation data, and the regression equation is used.
  • the use of the regression equation is not limited to the case of using the obtained regression equation itself, but also the case of using a numerical value such as a coefficient obtained by creating the regression equation.
  • the regression analysis is typically a linear regression analysis, which may be either a simple regression analysis or a multiple regression analysis, preferably a simple regression analysis.
  • the method of creating a regression equation in this embodiment includes the following steps: (A) Obtain the signal intensity of miRNA using a plurality of body fluid samples derived from healthy subjects with various time to centrifugation.
  • step (a) in order to suppress fluctuations in marker data due to other factors, it is desirable that the conditions other than the time until centrifugation are the same for each body fluid sample as much as possible. Therefore, in the above example, a plurality of body fluid samples differing only in the time until centrifugation are prepared from the same body fluid before centrifugation, and the conditions after preparation (for example, the time until storage at -80 ° C) are the same. It is preferable to prepare a plurality of body fluid samples.
  • the signal intensity is corrected by substituting a predetermined standard time into x of the regression equation peculiar to each obtained body fluid sample. That is, the numerical value obtained from the regression equation by substituting the standard time for x of the unique regression equation becomes the estimated value of the signal intensity in the standard time, that is, the corrected signal intensity.
  • the marker data is corrected by using an estimation model using only a part of the coefficients of the regression equation obtained in the above-mentioned specific aspect 1.
  • SI s SI i -a 0 ⁇ (T i -T s) That is, the equation is an estimation model, and the estimated value of the signal intensity in the standard time obtained by this is the corrected signal intensity.
  • the method of making corrections for one type of preparation condition has been described, but the correction is not limited to the correction of one type of preparation condition, and may be used for making corrections for a plurality of types of preparation conditions.
  • corrections are made step by step by making corrections for the first preparation condition and then making corrections based on the second preparation condition for the corrected marker data. Just do it.
  • the regression equation obtained by performing the multiple regression analysis may be used to perform the correction only once.
  • the state of fluctuation of the marker data depending on the preparation conditions differs for each disease marker. Therefore, the above-mentioned correction may be performed for each disease marker, and the correction may be performed using the corrected marker data obtained for each.
  • the examination of the disease using a plurality of disease markers that is, the determination of the presence or absence of morbidity may be performed according to a conventionally known method.
  • the presence or absence of morbidity is determined by using the corrected signal intensity obtained as described above. Specifically, if the corrected signal intensity exceeds a threshold value specified in advance, it is determined that the sample to be tested is positive (affected). On the other hand, if it is equal to or less than the threshold value, it is determined that the sample is negative (not affected).
  • a plurality of predetermined threshold values may be provided stepwise. In this case, for example, the degree of morbidity risk of the sample to be tested is determined in a plurality of stages depending on which of the plurality of thresholds the corrected signal intensity exceeds.
  • a first threshold value and a second threshold value lower than the first threshold value are set as threshold values, and if the threshold value exceeds the first threshold value, it is determined that the risk is high, and the threshold value is equal to or less than the first threshold value and is the first. If it exceeds the threshold value of 2, it may be determined that the risk is in progress, and if it is equal to or less than the second threshold value, it may be determined that the risk is low.
  • the marker data under the predetermined preparation conditions is estimated even if there are variations for each sample with respect to the specific preparation conditions. Based on the estimated values, the presence or absence of disease is determined. As a result, it is possible to improve the accuracy of the discrimination result indicating the presence or absence of disease even in the body fluid sample prepared under the conditions deviating from the originally intended preparation conditions. In particular, when the difference between the originally intended preparation conditions and the actual preparation conditions is large, a greater improvement in accuracy is expected.
  • the change in the disease markers that may occur due to the difference in the parameters corresponding to the prepared data may differ for each disease marker. Therefore, when the test accuracy is improved by using a plurality of disease markers, it is necessary to reduce the fluctuation of the disease markers, and stricter adherence to the protocol is required.
  • it since it is only necessary to record the information, it can be more preferably applied to the examination using a plurality of disease markers.
  • FIG. 1 is a functional block diagram showing a schematic configuration of an inspection device and a terminal device according to the present embodiment.
  • the inspection device 100 is configured to communicate with a terminal device 200 including a display unit, an input device, and the like.
  • the inspection device 100 is not limited to the configuration of the present embodiment, and for example, the inspection device 100 may include a display unit, an input device, and the like by itself without communicating with the terminal device 200.
  • the inspection device 100 includes a control unit 110, a storage unit 120, and a communication unit 130.
  • the control unit 110 includes an acquisition unit (data acquisition unit) 140, a correction unit 150, and a discrimination unit 160. Further, the acquisition unit 140 includes a marker data acquisition unit 141 and a preparation data acquisition unit 142.
  • the control unit 110 comprehensively controls the inspection device 100.
  • the storage unit 120 is a storage device that stores data necessary for processing of the inspection device 100. Further, the storage unit 120 stores the estimation model 121.
  • the storage unit 120 may be an external device of the inspection device 100.
  • the storage unit 120 may be a storage device such as a server that is communicably connected to the inspection device 100.
  • the marker data acquisition unit 141 acquires marker data indicating the result of measuring the disease marker in the body fluid sample.
  • the preparation data acquisition unit 142 acquires preparation data indicating the preparation conditions of the body fluid sample.
  • the acquisition unit 140 stores the marker data and the preparation data for the same body fluid sample in the storage unit 120 in association with each other.
  • the correction unit 150 corrects the marker data using the estimation model 121 stored in the storage unit 120, and calculates an estimated value of the marker data under a predetermined preparation condition. The calculated value is output as corrected marker data.
  • the discrimination unit 160 uses the corrected marker data created by the correction unit 150 to determine whether or not the subject on which the input marker data is based suffers from the target disease. Specifically, if the numerical value indicated by the corrected marker data exceeds a threshold value specified in advance, the discriminating unit 160 determines that the sample to be tested is positive (affected). On the other hand, if it is equal to or less than the threshold value, it is determined that the sample is negative (not affected). Then, the discriminating unit 160 transmits the result to the terminal device 200.
  • a plurality of predetermined threshold values may be provided stepwise. Further, the inspection device 100 does not have to be provided with the discrimination unit 160. In this case, the corrected marker data created by the correction unit 150 may be transmitted to the terminal device 200 as it is, and the user may determine whether the sample is positive or negative based on a predetermined criterion.
  • the inspection device 100 having the correction unit 150 in the control unit 110 is described.
  • the inspection device 100 does not have to be provided with the correction unit 150.
  • the above-mentioned estimation model 121 is constructed by an apparatus including at least an acquisition unit 140 having a marker data acquisition unit 141 and a preparation data acquisition unit 142 and a correction unit 150, which exist independently of the inspection device 100. It may be.
  • the inspection device 100 can use the estimation model 121 by reading the estimation model 121 stored in the storage medium.
  • the inspection device 100 receives the estimation model 121 from another device via a wired or wireless network, so that the estimation model 121 can be used in the inspection device 100.
  • the terminal device 200 includes a communication unit 210, a control unit 220, an input device 230, and a display unit 240.
  • the communication unit 210 is a communication interface for transmitting / receiving data to / from the inspection device 100 by wire or wirelessly.
  • the control unit 220 controls the terminal device 200 in an integrated manner.
  • the display unit 240 is a display capable of displaying images, characters, and the like.
  • the input device 230 accepts user input, and is realized by, for example, a touch panel, a mouse, a keyboard, or the like. When the input device 230 is a touch panel, the touch panel is provided on the display unit 240. The user can use the function of the inspection device 100 via the terminal device 200.
  • the inspection device 100 is a device suitable for carrying out the inspection method according to the present embodiment described above.
  • control block control unit 110, particularly acquisition unit 140, correction unit 150, and discrimination unit 160 of the inspection device 100 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. , May be realized by software.
  • the inspection device 100 includes a computer that executes a program instruction, which is software that realizes each function.
  • This computer includes, for example, at least one processor (control device) and at least one computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes it, thereby achieving the object of the present invention.
  • the processor for example, a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit) can be used.
  • the recording medium in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used.
  • a RAM RandomAccessMemory
  • the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program.
  • a transmission medium communication network, broadcast wave, etc.
  • one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.
  • the test method according to the present invention is a test method for testing a disease using a disease marker, and is marker data showing a measurement result of measuring a disease marker in a body fluid sample collected from a subject, and marker data of the body fluid sample.
  • the correction step of correcting the acquired marker data using the acquired preparation data and acquiring the corrected marker data, and the corrected marker data is a test method for testing a disease using a disease marker, and is marker data showing a measurement result of measuring a disease marker in a body fluid sample collected from a subject, and marker data of the body fluid sample.
  • the correction step of correcting the acquired marker data using the acquired preparation data and acquiring the corrected marker data, and the corrected marker data Based on this, the corrected marker data estimates the value of the marker data under predetermined preparation conditions of the same type as the index in the acquired preparation data, including a discrimination step of determining the presence or absence of disease in the subject. It was done.
  • the correction step uses a regression equation created by regression analysis using a plurality of the above-mentioned preparation data of the same index and a plurality of the above-mentioned marker data corresponding to each preparation data. It is used to correct the above marker data.
  • the prepared data is the information of the subject, the information indicating the collection conditions of the body fluid sample, and the treatment applied to the body fluid sample before the measurement of the disease marker. Contains at least one piece of information selected from the conditional information of.
  • the treatment conditions applied to the body fluid sample are the time until the body fluid sample is cryopreserved, the temperature at the time of cryopreservation, the time during which the body fluid sample is cryopreserved, and. It is at least one condition selected from the time until the body fluid sample is centrifuged.
  • the above information indicating the collection conditions of the body fluid sample is the thickness of the needle used for collecting the body fluid sample, and the blood collection tube used for collecting the body fluid sample. And at least one piece of information selected from the time from the final eating and drinking in the subject to the collection of the body fluid sample.
  • the prepared data includes information on the subject, and the information is information on the blood cell volume of the subject.
  • the above information of the subject is information regarding the race of the subject.
  • the body fluid sample is blood, serum, plasma, cerebrospinal fluid, urine, saliva, tears, interstitial fluid or lymph.
  • the body fluid sample is blood, serum or plasma.
  • the disease marker is miRNA.
  • the marker data is data obtained from microarray, PCR or sequencing.
  • the testing device is a testing device that tests for a disease using a disease marker, and marker data showing the result of measuring a disease marker in a body fluid sample collected from a subject, and preparation of the body fluid sample.
  • the data acquisition unit for acquiring the preparation data indicating the conditions and the correction unit for correcting the acquired marker data using the acquired preparation data and acquiring the corrected marker data are provided, and the corrected marker data is provided. Is an estimate of the value of the marker data under predetermined preparation conditions of the same type as the index in the acquired preparation data.
  • a discriminating unit for determining whether or not a disease is present in the subject is further provided based on the corrected marker data.
  • the inspection device may be realized by a computer.
  • the inspection device is realized by the computer by operating the computer as each part (software element) included in the inspection device. Inspection programs and computer-readable recording media on which they are recorded also fall within the scope of the present invention.
  • sample group 1 As a sample, 300 ⁇ L of each serum obtained from each of the above 84 persons was used. Total RNA was obtained from each serum using a reagent for RNA extraction in 3D-Gene (registered trademark) RNA extraction reagent from liquid sample kit (Toray Co., Ltd. (Japan)) according to the protocol specified by the company.
  • 3D-Gene registered trademark
  • RNA extraction reagent from liquid sample kit (Toray Co., Ltd. (Japan)
  • RNA obtained from each of the above 84 sera was fluorescently labeled with 3D-Gene (registered trademark) miRNA Labeling kit (Toray Industries, Inc.) based on the protocol defined by the company. ..
  • 3D-Gene registered trademark
  • Human miRNA Oligo chip equipped with a probe having a sequence complementary to miRNA registered in miRBase release 21 is used, and is based on a protocol defined by the company. Hybridization and washing after hybridization were performed under stringent conditions.
  • the DNA chip was scanned using a 3D-Gene (registered trademark) scanner (Toray Industries, Inc.), images were acquired, and the fluorescence intensity was quantified by 3D-Gene (registered trademark) Extension (Toray Industries, Inc.).
  • the expression level of the gene detected as follows was calculated using the quantified fluorescence intensity. First, excluding 5% each of the maximum and minimum signal intensities of multiple negative control spots, the [mean value + 2 x standard deviation] was calculated, and genes showing signal intensities greater than this value were considered to have been detected. rice field. In addition, the average value of the signal intensity of the negative control spot excluding 5% each of the maximum rank and the minimum rank is subtracted from the signal intensity of the detected gene, and the value after the subtraction is converted to a logarithmic value having a base of 2. The gene expression level was used.
  • sample group 2 As a sample, 300 ⁇ L of each serum obtained from each of the above 41 persons was used, and total RNA was obtained in the same manner as in Reference Example 1. Hereinafter, the sample group in Reference Example 2 will be referred to as sample group 2.
  • sample group 3 As a sample, 300 ⁇ L of each serum obtained from the above was used, and total RNA was obtained in the same manner as in Reference Example 1. Hereinafter, the sample group in Reference Example 3 will be referred to as sample group 3.
  • Example 1 ⁇ Regression analysis of time required from blood collection to frozen storage and miRNA gene expression level>
  • linear regression analysis was performed as an example of regression analysis.
  • a linear regression analysis was performed using the time required from blood collection to storage at -80 ° C and the gene expression level of miRNA of the serum obtained in Reference Example 3, and changes in the gene expression level of miRNA per unit time. Obtained the coefficient.
  • y is the gene expression level of miRNA
  • x is the time (h) required from blood collection to storage at ⁇ 80 ° C.
  • Example 2 ⁇ Verification of pancreatic cancer and biliary tract cancer discrimination performance 1>
  • correction was made using the coefficient of variation of the gene expression level of miR-4678-3p obtained in Example 1, and the time required for the sample group 1 from blood collection to storage at -80 ° C was 0.
  • the estimated gene expression level in 5 hours was determined, and the discrimination performance between cancer patients and healthy subjects was confirmed.
  • an ROC curve was created from the calculated estimated gene expression level, and the discrimination performance was confirmed based on the area under the ROC curve (AUC).
  • the following step-by-step procedure was taken to distinguish between pancreatic cancer and biliary tract cancer. That is, for each sample in the sample group 1, the gene expression level of miR-4678-3p, the time required from blood collection to storage at -80 ° C, and the change coefficient (-0.5050) obtained in Example 1 were used.
  • the estimated gene expression level was calculated when the time required from blood collection to storage at -80 ° C was 0.5 hours.
  • An ROC curve was created based on the calculated estimated gene expression level and information on the presence or absence of morbidity, and the area under the ROC curve (AUC) was calculated. As a result, the AUC was 0.9041.
  • the created ROC curve is shown in FIG. In FIG. 2 and FIG. 3 described later, the "true positive rate” represents the ratio of those correctly judged to be positive by the test, that is, the sensitivity.
  • the "false positive rate” is the percentage of those who are mistakenly judged to be positive by the test, and is calculated as 1- (specificity). The specificity refers to the rate at which a negative test is correctly judged to be negative.
  • Example 3 ⁇ Verification of pancreatic cancer and biliary tract cancer discrimination performance 2>
  • correction was made using the coefficient of variation of the gene expression level of miR-4678-3p obtained in Example 1, and the time required for the sample group 2 from blood collection to storage at -80 ° C was 0.
  • the estimated gene expression level in the case of 5 hours was obtained, and the discrimination performance between the cancer patient and the healthy subject was confirmed in the same manner as in Example 2.
  • the following step-by-step procedure was taken to distinguish between pancreatic cancer and biliary tract cancer. That is, for each sample in the sample group 2, the gene expression level of miR-4678-3p, the time required from blood collection to storage at ⁇ 80 ° C., and the change coefficient ( ⁇ 0.5050) obtained in Example 1 were used. The gene expression level of each sample was calculated in the same manner as in Example 2 when the time required from blood collection to storage at ⁇ 80 ° C. was 0.5 hour. An ROC curve was created based on the calculated estimated gene expression level and information on the presence or absence of morbidity, and the AUC was calculated. As a result, the AUC was 0.8720. The created ROC curve is shown in FIG.
  • the ROC curve was created using the gene expression level of each miR-4678-3p in the sample group 1, and the AUC was obtained. As a result, the AUC was 0.9117.
  • the created ROC curve is shown in FIG.
  • Example 4 ⁇ Regression analysis of white blood cell count and miRNA gene expression>
  • linear regression analysis was performed as an example of regression analysis.
  • a linear regression analysis was performed using the white blood cell count (logarithmic value of the base 2) and the gene expression level of miRNA in the serum obtained in Reference Example 4, and the change coefficient of the gene expression level of miRNA per unit time was obtained. ..
  • y is the gene expression level of miRNA
  • x is the white blood cell count.
  • Example 5 ⁇ Verification of pancreatic cancer and biliary tract cancer discrimination performance 3>
  • correction was performed using the coefficient of variation of the gene expression level of miR-6778-5p obtained in Example 4, and the white blood cell count (log of base 2) of the sample group 5 was 12.4.
  • the estimated gene expression level in the case was determined, and the discrimination performance between cancer patients and healthy subjects was confirmed. Specifically, for the calculated estimated gene expression level, the average value of 3 cancer patients and the average value of 3 healthy subjects were obtained and tested by Welch's t-test.
  • the estimated gene expression level was calculated when the white blood cell count (radix of the base 2) was 12.4.
  • the average value of the estimated gene expression level in the group of cancer patients and the average value of the estimated gene expression level in the group of healthy subjects were obtained, and the difference was calculated. ..
  • the difference in the average value of the estimated gene expression levels was 0.71.
  • Welch's t-test showed that p ⁇ 0.01, indicating that there was a significant difference.
  • the difference in the average value of gene expression in each group before the correction was 0.47.
  • FIG. 4 Each graph (box plot) comparing the average values is shown in FIG. In FIG. 4, the left side is a graph before the correction is performed, and the right side is a graph after the correction is performed.
  • the present invention can be used for a disease test using a disease marker.
  • Inspection device 100 Inspection device 110 Control unit 120 Storage unit 121 Estimated model 130 Communication unit 140 Acquisition unit 141 Marker data acquisition unit 142 Preparation data acquisition unit 150 Correction unit 160 Discrimination unit

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Primary Health Care (AREA)
  • Medical Informatics (AREA)
  • General Physics & Mathematics (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Public Health (AREA)
  • Plant Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided is a highly accurate method for examining a disease without imposing an excessive burden in a medical setting. The method for conducting examination of a disease using disease markers includes a step for acquiring marker data showing the measurement results of disease markers measured in a body fluid sample collected from a subject and preparation data showing the preparation conditions of the body fluid sample; a step for correcting the marker data using the preparation data; and a step for assessing whether or not the subject has contracted the disease based on the corrected marker data.

Description

検査方法、検査装置および検査プログラムInspection method, inspection equipment and inspection program

 本発明は、疾患マーカーを用いて疾患の検査を行う検査方法、検査装置および検査プログラムに関する。 The present invention relates to a test method, a test device, and a test program for testing a disease using a disease marker.

 疾患等の検査を目的とした、血液中に含まれるタンパク質、DNAおよびRNAの解析が、1960年代から行われている。特に2007年頃からは、miRNAを対象とした解析も盛んに行われるようになっている。近年、血清中miRNAの発現プロファイルからがん等の罹患有無を判定する取り組みが、世界中で実施されている。 Analysis of proteins, DNA and RNA contained in blood has been carried out since the 1960s for the purpose of testing for diseases and the like. In particular, since around 2007, analysis targeting miRNA has been actively performed. In recent years, efforts to determine the presence or absence of cancer or the like from the expression profile of serum miRNA have been carried out all over the world.

 疾患の罹患に関係する、疾患の罹患の指標となるこれらの生体分子(疾患マーカー)を用いた検査では、検体の採取に伴う疾患マーカーの存在量の変動を抑える必要がある。例えば、特許文献1には、血清状態の検体を4℃で72時間または168時間保存した後、検体中の一部のmiRNAの存在量が大きく変動することが開示されている。そのため、検体の採取も含めた検査条件を揃えて実施する等、プロトコールを統一するといった工夫が一般的になされている。 In tests using these biomolecules (disease markers), which are related to disease morbidity and are indicators of disease morbidity, it is necessary to suppress fluctuations in the abundance of disease markers associated with sample collection. For example, Patent Document 1 discloses that after storing a sample in a serum state at 4 ° C. for 72 hours or 168 hours, the abundance of a part of miRNA in the sample fluctuates significantly. Therefore, it is common practice to unify the protocol, such as by aligning the test conditions including the collection of samples.

国際公開WO2017/146033International release WO2017 / 146033

 被検者検体のサンプリングは各医療機関で実施されるため、その条件は各機関により異なり得る。そのため、疾患マーカーの変動をもたらさないように、医療機関に対して条件統一の協力を仰ぐなどの対応を余儀なくされている。 Since sampling of subject samples is performed at each medical institution, the conditions may differ depending on each institution. Therefore, it is unavoidable to ask medical institutions for cooperation in unifying conditions so as not to cause fluctuations in disease markers.

 さらに、本発明者らが検討を進めていく中で、特許文献1に示された比較的長い時間の保存(72時間または168時間)を行った場合のみならず、血清を調整するまでの短い時間(例えば6時間以内)でも、miRNAの発現プロファイルに思いがけず大きな変動が存在し得ることが判明した。そのため、精度高く検査を行うには、変動しやすいmiRNAを解析対象から除外するか、または、変動を少しでも抑えるために、医療機関に対し、統一プロトコールの順守、またはより細かな条件でのサンプリングを依頼する必要性が生じている。しかしながら、一部のmiRNAを解析対象から除外することによるデータの破棄は、精度の高い検査を行ううえで大きな損失である。また厳格なプロトコールの順守、およびより細かな条件でのサンプリングは、医療現場へさらなる負担を強いることになり、検査の実施または普及の妨げとなりかねない。 Furthermore, while the present inventors are proceeding with the study, not only when the storage for a relatively long time (72 hours or 168 hours) shown in Patent Document 1 is performed, but also a short time until the serum is prepared. It has been found that even over time (eg, within 6 hours), there can be unexpectedly large fluctuations in the miRNA expression profile. Therefore, in order to perform a highly accurate test, miRNAs that are liable to fluctuate should be excluded from the analysis target, or in order to suppress fluctuations as much as possible, medical institutions should comply with a unified protocol or sample under more detailed conditions. There is a need to ask for. However, discarding data by excluding some miRNAs from analysis is a significant loss in performing highly accurate tests. Adherence to strict protocols and sampling under more detailed conditions impose an additional burden on medical practice and may hinder the implementation or dissemination of tests.

 そこで、本発明は上記の問題点に鑑みてなされたものであり、その目的は、医療現場に過度の負担をかけることなく、実施可能な検体採取条件の幅を許容したうえで、精度の高い疾患の検査方法を提供することにある。 Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to allow a wide range of feasible sample collection conditions without imposing an excessive burden on the medical field, and to have high accuracy. The purpose is to provide a method for testing a disease.

 本発明に係る検査方法は、上記課題を解決するために、疾患マーカーを用いて疾患の検査を行う検査方法であって、被検体から採取した体液検体中の疾患マーカーを測定した測定結果を示すマーカーデータ、および該体液検体の調製条件を示す調製データを取得するデータ取得工程と、取得した上記調製データを用いて、取得した上記マーカーデータの補正を行って補正後マーカーデータを取得する補正工程と、上記補正後マーカーデータに基づき、上記被検体における疾患の罹患の有無を判別する判別工程とを含み、上記補正後マーカーデータは、取得した上記調製データにおける指標と同じ種類の所定の調製条件における上記マーカーデータの値を推定したものである。 The test method according to the present invention is a test method for testing a disease using a disease marker in order to solve the above problems, and shows a measurement result obtained by measuring a disease marker in a body fluid sample collected from a subject. A data acquisition step of acquiring marker data and preparation data indicating the preparation conditions of the body fluid sample, and a correction step of correcting the acquired marker data using the acquired preparation data and acquiring the corrected marker data. And the determination step of determining the presence or absence of disease in the subject based on the corrected marker data, the corrected marker data is a predetermined preparation condition of the same type as the index in the acquired preparation data. The value of the above marker data in the above is estimated.

 本発明に係る検査装置は、上記課題を解決するために、疾患マーカーを用いて疾患の検査を行う検査装置であって、被検体から採取した体液検体中の疾患マーカーを測定した結果を示すマーカーデータ、および該体液検体の調製条件を示す調製データを取得するデータ取得部と、取得した上記調製データを用いて、取得した上記マーカーデータの補正を行って補正後マーカーデータを取得する補正部とを備え、上記補正後マーカーデータは、取得した上記調製データにおける指標と同じ種類の所定の調製条件における上記マーカーデータの値を推定したものである。 The testing device according to the present invention is a testing device that tests for a disease using a disease marker in order to solve the above problems, and is a marker showing the result of measuring a disease marker in a body fluid sample collected from a subject. A data acquisition unit that acquires data and preparation data indicating the preparation conditions of the body fluid sample, and a correction unit that corrects the acquired marker data using the acquired preparation data and acquires the corrected marker data. The corrected marker data is an estimate of the value of the marker data under predetermined preparation conditions of the same type as the index in the acquired preparation data.

 本発明の一態様によれば、検体中の疾患マーカーを測定した結果を示すマーカーデータに加えて、検体の調製条件を示す調製データも用いることで、医療現場に過度の負担をかけることなく、精度の高い疾患の検査を行うことができる。 According to one aspect of the present invention, by using the preparation data showing the preparation conditions of the sample in addition to the marker data showing the result of measuring the disease marker in the sample, the medical field is not overloaded. It is possible to carry out highly accurate disease inspections.

本発明の一実施形態に係る検査装置および端末装置の概略構成を示す機能ブロック図である。It is a functional block diagram which shows the schematic structure of the inspection apparatus and the terminal apparatus which concerns on one Embodiment of this invention. 検体群1を用いて判別性能を確認したROC曲線を示す図である。It is a figure which shows the ROC curve which confirmed the discrimination performance using the sample group 1. 検体群2を用いて判別性能を確認したROC曲線を示す図である。It is a figure which shows the ROC curve which confirmed the discrimination performance using the sample group 2. 検体群5を用いて得た平均値の比較を示す図である。It is a figure which shows the comparison of the average value obtained using the sample group 5.

 本発明の一実施形態について説明する。本実施形態における検査方法は、疾患マーカーを用いた疾患の検査を行う方法であって、体液検体の調製条件を示す調製データを用いて、体液検体中の疾患マーカーを測定した結果を示マーカーデータの補正を行った上で、疾患の罹患の有無を判別する検査方法である。 An embodiment of the present invention will be described. The test method in the present embodiment is a method for testing a disease using a disease marker, and indicates the result of measuring the disease marker in the body fluid sample using the preparation data showing the preparation conditions of the body fluid sample. This is a test method for determining the presence or absence of a disease after correcting the above.

 〔用語〕
 まず、用語について説明する。本明細書において、「体液検体」とは、検査に用いられる、被検体から採取された体液のことをいう。体液としては、疾患マーカーの測定を目的とした検査に使用可能であれば特に制限はないが、一例として、血液、血清、血漿、髄液、尿、唾液、涙、組織液またはリンパ液が挙げられる。これらの中でも、血液、血清および血漿が好適に用いられる。
〔the term〕
First, the terms will be described. As used herein, the term "body fluid sample" refers to a body fluid collected from a subject used for an examination. The body fluid is not particularly limited as long as it can be used for a test for measuring a disease marker, and examples thereof include blood, serum, plasma, cerebrospinal fluid, urine, saliva, tears, tissue fluid, and lymph fluid. Among these, blood, serum and plasma are preferably used.

 「疾患マーカー」とは、その存在または存在量が特定の疾患との間で関係性のある生体分子のことをいう。本明細書において用いられる場合、「疾患マーカー」は、検査対象とする疾患における疾患マーカーを指す。したがって、本明細書における「疾患マーカー」とは、その存在または存在量が検査対象の疾患との間で関係性のあることが知られている生体分子のことをいう。疾患マーカーとしては、例えば、DNA、RNAおよびタンパク質等が挙げられる。これらの中でもRNAが好適に用いられ、ノンコーディングRNA(ncRNA)がより好適に用いられる。ncRNAは、20塩基長から200塩基長程度の小分子ncRNAと全長が数百塩基長から数十万塩基長の長鎖ncRNAとに大別される。ncRNAとしては、転移RNA、リボソームRNA、核内低分子RNA、核小体低分子RNA、シグナル認識複合体RNA、miRNA、piRNA、長鎖ノンコーディングRNA、環状RNA、およびmRNAの非翻訳領域等が挙げられ、miRNAが特に好適に用いられる。また、疾患は、疾患マーカーの存在が知られている疾患であれば特に制限されず、癌、認知症、高血圧、心臓疾患、脳疾患、肝炎、感染症、およびアレルギー等が挙げられる。癌としては、膵臓癌、胆道癌、乳癌、肺癌、大腸癌、食道癌、胃癌、肝臓癌、前立腺癌、膀胱癌、脳腫瘍、血液癌、卵巣癌、および子宮癌等が挙げられ、一例として、膵臓癌および胆道癌であり得る。 "Disease marker" refers to a biomolecule whose presence or abundance is related to a specific disease. As used herein, "disease marker" refers to a disease marker in the disease being tested. Therefore, the term "disease marker" as used herein refers to a biomolecule whose presence or abundance is known to be related to the disease to be tested. Disease markers include, for example, DNA, RNA and proteins. Among these, RNA is preferably used, and non-coding RNA (ncRNA) is more preferably used. NcRNAs are roughly classified into small molecule ncRNAs having a length of about 20 to 200 bases and long-chain ncRNAs having a total length of several hundred bases to several hundred thousand bases. Examples of ncRNA include translocated RNA, ribosome RNA, nuclear small RNA, nuclear body small RNA, signal recognition complex RNA, miRNA, piRNA, long non-coding RNA, circular RNA, and untranslated region of mRNA. MiRNA is particularly preferably used. The disease is not particularly limited as long as the presence of a disease marker is known, and examples thereof include cancer, dementia, hypertension, heart disease, brain disease, hepatitis, infectious disease, and allergy. Examples of cancer include pancreatic cancer, biliary tract cancer, breast cancer, lung cancer, colon cancer, esophageal cancer, gastric cancer, liver cancer, prostate cancer, bladder cancer, brain cancer, hematological cancer, ovarian cancer, uterine cancer and the like. It can be pancreatic cancer and biliary tract cancer.

 本明細書において、「マーカーデータ」とは、体液検体中の疾患マーカーを測定することにより得られた、1以上の疾患マーカーの存否または存在量をそれぞれ示すデータである。なお、実際の検出対象がDNA、RNAまたはタンパク質である場合には、「存在量」は、「発現量」と言い換えることができる。また、疾患マーカーについて用いられる場合、「測定する」は、「検出する」と言い換えることができる。本実施形態におけるマーカーデータは、特定の一つの疾患マーカーを測定して得られた結果に限らず、複数の疾患マーカーを測定して得られた、各疾患マーカーに対応した複数の測定結果または数値データを含むものでもよい。複数の疾患マーカーの測定結果は、各疾患マーカーを同時に測定した結果であってもよいし、独立に測定を行った結果であってもよい。複数の疾患マーカーを用いる場合、その数は限定されず、例えば、2以上、3以上、4以上、5以上、10以上、15以上、20以上、30以上または40以上であり得る。マーカーデータを得るための測定手段としては、測定の対象となる生体分子および必要なデータに応じて適宜選択することができる。測定手段の一例としては、マイクロアレイ、qRT-PCRを含む各種PCR、次世代シーケンシングを含む各種シーケンシング、およびELISA等が挙げられる。なかでも、複数の疾患マーカーを同時に測定でき、複数の疾患マーカーを用いることで精度の高い検査を行える観点から、マイクロアレイを用いることが好ましい。測定結果を数値データへ変換する場合、変換方法は、測定結果と数値データとの間に相関関係がみられるものであれば、特に制限されない。 In the present specification, the "marker data" is data indicating the presence or absence or abundance of one or more disease markers obtained by measuring the disease markers in the body fluid sample. When the actual detection target is DNA, RNA or protein, the "abundance amount" can be rephrased as the "expression level". Also, when used for disease markers, "measuring" can be paraphrased as "detecting." The marker data in the present embodiment is not limited to the result obtained by measuring one specific disease marker, but a plurality of measurement results or numerical values corresponding to each disease marker obtained by measuring a plurality of disease markers. It may include data. The measurement results of the plurality of disease markers may be the results of simultaneous measurement of each disease marker or the results of independent measurement. When a plurality of disease markers are used, the number is not limited and may be, for example, 2 or more, 3 or more, 4 or more, 5 or more, 10 or more, 15 or more, 20 or more, 30 or more or 40 or more. The measuring means for obtaining the marker data can be appropriately selected depending on the biomolecule to be measured and the necessary data. Examples of the measuring means include microarrays, various PCRs including qRT-PCR, various sequencings including next-generation sequencing, ELISA and the like. Among them, it is preferable to use a microarray from the viewpoint that a plurality of disease markers can be measured at the same time and a highly accurate test can be performed by using the plurality of disease markers. When converting the measurement result into numerical data, the conversion method is not particularly limited as long as there is a correlation between the measurement result and the numerical data.

 本明細書において、「被検体」は、ヒトおよびチンパンジーを含む霊長類、イヌおよびネコ等の愛玩動物、ウシ、ウマ、ヒツジおよびヤギ等の家畜動物、マウスおよびラット等の齧歯類、ならびに動物園で飼育される動物等の哺乳動物を意味する。好ましい被検体は、ヒトである。また、「健常者」は、対象としている被検体と同一種の個体であって、対象としている疾患に罹患していない個体である。 As used herein, the term "subject" refers to primates including humans and chimpanzees, pet animals such as dogs and cats, domestic animals such as cows, horses, sheep and goats, rodents such as mice and rats, and zoos. Means mammals such as animals bred in. A preferred subject is human. In addition, a "healthy person" is an individual of the same species as the target subject and is not affected by the target disease.

 「調製データ」とは、体液検体の調製条件を示すデータであり、測定により得られる疾患マーカーの測定結果以外の、体液検体に関する1以上の情報を含む。詳細には、調製データに含まれる情報の一例としては、体液検体が採取された被検体における情報、体液検体の採取条件を示す情報、および体液検体における疾患マーカーの測定前に体液検体に施された処理の条件の情報が挙げられる。被検体または被検体の状態が相違したり、体液検体の採取条件または処理条件が相違すると、体液検体中の疾患マーカーのプロファイルは少なからず変動し得る。 The "preparation data" is data indicating the preparation conditions of the body fluid sample, and includes one or more information regarding the body fluid sample other than the measurement result of the disease marker obtained by the measurement. Specifically, as an example of the information contained in the preparation data, the information on the subject from which the body fluid sample was collected, the information indicating the collection conditions of the body fluid sample, and the information applied to the body fluid sample before the measurement of the disease marker in the body fluid sample are applied. Information on the processing conditions can be mentioned. If the subject or the condition of the subject is different, or if the collection conditions or processing conditions of the body fluid sample are different, the profile of the disease marker in the body fluid sample may fluctuate to some extent.

 「被検体における情報」とは、体液検体の採取とは直接関係のない、被検体自身についての情報、または体液採取時の被検体の身体の状態に関する情報である。このような情報としては、例えば、被検体の人種、被検体の血液から取得できる検査対象の疾患とは関係のない生体分子情報、検体採取の当日もしくは前日の食餌内容および摂食時間、被検体における最終飲食から体液を採取するまでの時間、ならびに被検体が薬物を服用していた場合の、服用薬物種または薬物を服用してから採取までの時間等の身体または身体の状態に関する情報が挙げられる。 "Information on the subject" is information about the subject itself or information about the physical condition of the subject at the time of collecting the body fluid, which is not directly related to the collection of the body fluid sample. Such information includes, for example, the race of the subject, biomolecular information that can be obtained from the blood of the subject and is not related to the disease to be tested, the dietary content and feeding time on the day or the day before the sample collection, and the subject. Information on the physical condition such as the time from the final eating and drinking of the sample to the collection of body fluid, and the time from taking the drug type or drug to the collection when the subject was taking the drug. Can be mentioned.

 被検体の血液から取得できる生体分子情報としては、血球、タンパク質、脂質および糖質などの各種生体分子の存在、存在量および検査値などが挙げられる。これらのうち、検査対象の疾患との相関が知られていない生体分子の情報を用いればよい。例えば、検査対象となる疾患が膵臓癌または胆道癌である場合、これらの罹患の有無とは相関が知られていない、被検体の血液から取得できる生体分子情報としては、血球量(赤血球量、白血球量または血小板量)、PSAおよびCYFRA等のタンパク質量、ならびにHDLコレステロール量およびLDLコレステロール量等の検査値が挙げられる。 Examples of biomolecule information that can be obtained from the blood of a subject include the presence, abundance, and test values of various biomolecules such as blood cells, proteins, lipids, and sugars. Of these, information on biomolecules whose correlation with the disease to be tested is unknown may be used. For example, when the disease to be tested is pancreatic cancer or biliary tract cancer, the biomolecular information that can be obtained from the blood of the subject, whose correlation with the presence or absence of these diseases is unknown, is the amount of blood cells (erythrocyte amount, red blood cell amount, etc.). The amount of white blood cells or platelets), the amount of proteins such as PSA and CYFRA, and the test values such as the amount of HDL cholesterol and the amount of LDL cholesterol can be mentioned.

 「体液検体の採取条件を示す情報」とは、体液採取時の条件および使用器具に関する情報である。このような情報としては、体液の採取に針を用いた場合の、用いられた採血針の種類、体液が血液または血液由来の成分であった場合の、血液の採取に用いられた採血管の種類、採血管に添加されている凝固促進剤または凝固抑制剤の種類、および採血時の血管の種類(毛細管血か静脈血か)等が挙げられる。 "Information indicating the conditions for collecting body fluid samples" is information on the conditions for collecting body fluids and the equipment used. Such information includes the type of blood collection needle used when a needle was used to collect body fluid, and the blood collection tube used to collect blood when the body fluid was blood or a component derived from blood. Examples include the type, the type of coagulation promoter or coagulation inhibitor added to the blood collection tube, and the type of blood vessel (capillary blood or venous blood) at the time of blood collection.

 「体液検体に施された処理の条件」は、疾患マーカーの測定前に、体液検体に施された各種処理および操作における条件であり、体液検体の保存に関する条件も含むものである。保存に関する条件とは、例えば、体液を採取した後、疾患マーカーの解析をすぐに行わずに凍結保存しておく場合に、凍結させるまでもしくはフリーザーに移すまでの時間および温度、凍結保存時の温度、凍結保存している時間、RNase、DNaseまたはProteaseに代表される、体液検体中の分解酵素を不活化処理するまでの時間、凍結保存中の検体保存容器の材質、および凍結保存の開始時に温度変化の衝撃を和らげるための梱包材の使用有無等が挙げられる。また、体液検体に施され得る各種処理および操作における条件とは、体液に遠心分離操作を施す場合、または採取した血液に遠心分離操作を施し、実際の体液検体となる血清を得る場合等における、被検体から体液を採取してから遠心分離操作を施すまでの時間、および遠心加速度等が挙げられる。なお、採取した体液に遠心分離操作を施すことで実際の体液検体が得られる場合、遠心分離操作後に、体液検体を凍結させるまでもしくはフリーザーに移すまでの時間も、体液検体に施された処理の条件の一例として挙げられる。さらに、保存された体液検体から疾患マーカーを測定するために、体液検体を凍結状態から溶解するまでの時間および溶解させるための温度等が挙げられる。 The "conditions for the treatment applied to the body fluid sample" are the conditions for various treatments and operations applied to the body fluid sample before the measurement of the disease marker, and include the conditions for the storage of the body fluid sample. Preservation conditions include, for example, the time and temperature until freezing or transfer to a freezer, and the temperature at the time of cryopreservation, when the body fluid is collected and then cryopreserved without immediately analyzing the disease marker. , Time to cryopreserve, time to inactivate degrading enzymes in body fluid specimens, such as RNase, DNase or Protease, material of specimen storage container during cryopreservation, and temperature at the start of cryopreservation. Whether or not packing materials are used to soften the impact of changes can be mentioned. The conditions for various treatments and operations that can be applied to the body fluid sample include, when the body fluid is centrifuged, or when the collected blood is centrifuged to obtain serum which is an actual body fluid sample. The time from collecting the body fluid from the subject to performing the centrifugation operation, the centrifugal acceleration, and the like can be mentioned. When an actual body fluid sample can be obtained by performing a centrifugation operation on the collected body fluid, the time until the body fluid sample is frozen or transferred to the freezer after the centrifugation operation is also the time of the treatment applied to the body fluid sample. It is given as an example of the condition. Further, in order to measure the disease marker from the stored body fluid sample, the time from the frozen state to the thawing of the body fluid sample, the temperature for thawing, and the like can be mentioned.

 なお、調製条件が人種、採血管の種類および服用薬物種など、数値以外の条件である場合には、想定される具体的候補それぞれに互いに異なる数値を付与し、当該数値を用いて回帰式を作成すればよい。 If the preparation conditions are conditions other than numerical values, such as race, type of blood collection tube, and type of drug to be taken, different numerical values are given to each of the assumed specific candidates, and the regression equation is performed using the numerical values. Should be created.

 調製データは、上述の情報のうちの少なくとも1つが含まれていればよく、2以上、3以上または4以上が含まれていてもよい。 The preparation data may include at least one of the above information, and may include 2 or more, 3 or more, or 4 or more.

 〔検査方法〕
 本実施形態に係る検査方法は、被検体から採取した体液検体中の疾患マーカーを測定した測定結果を示すマーカーデータ、および該体液検体の調製条件を示す調製データを取得する工程と、取得した調製データを用いて、取得したマーカーデータの補正を行って補正後マーカーデータを取得する工程と、補正後マーカーデータに基づき、被検体における疾患の罹患の有無を判別する工程とを含むものである。
〔Inspection methods〕
The test method according to the present embodiment includes a step of acquiring marker data indicating the measurement result of measuring a disease marker in a body fluid sample collected from a subject, and preparation data indicating the preparation conditions of the body fluid sample, and the acquired preparation. It includes a step of correcting the acquired marker data by using the data to acquire the corrected marker data, and a step of determining whether or not the subject has a disease based on the corrected marker data.

 (マーカーデータの補正)
 補正後マーカーデータは、取得した調製データにおける指標と同じ種類の所定の調製条件におけるマーカーデータの値を推定したものである。ここで、「調製データにおける指標と同じ種類の所定の調製条件」とは、取得した調製データで用いられた調製条件と同じ種類の調製条件であって、予め任意に設定した具体的な条件を意味する。例えば、調製条件として「被検体から体液を採取してから遠心分離操作を施すまでの時間」を用いた調製データを取得した場合、予め任意に設定した「被検体から体液を採取してから遠心分離操作を施すまでの時間」、例えば0.5時間など、を意味する。
(Correction of marker data)
The corrected marker data is an estimate of the value of the marker data under a predetermined preparation condition of the same type as the index in the acquired preparation data. Here, the "predetermined preparation condition of the same type as the index in the preparation data" is the same type of preparation condition as the preparation condition used in the acquired preparation data, and is a specific condition arbitrarily set in advance. means. For example, when the preparation data using "the time from collecting the body fluid from the subject to performing the centrifugation operation" as the preparation condition is acquired, "the body fluid is collected from the subject and then centrifuged" which is arbitrarily set in advance. It means "time until the separation operation is performed", for example, 0.5 hour.

 マーカーデータの補正方法は、取得した調製データにおける指標と同じ種類の所定の調製条件におけるマーカーデータの値を推定できるものであれば特に制限はない。典型的には、同一指標の複数の調製データおよび各調製データに対応する複数のマーカーデータを用いた回帰分析により回帰式を予め作成しておき、当該回帰式を利用する方法が挙げられる。なお、回帰式の利用は、得られた回帰式そのものを利用する場合に限らず、回帰式を作成することにより得られる係数などの数値を利用する場合が挙げられる。 The marker data correction method is not particularly limited as long as the value of the marker data under the same type of predetermined preparation conditions as the index in the acquired preparation data can be estimated. Typically, there is a method in which a regression equation is prepared in advance by regression analysis using a plurality of preparation data of the same index and a plurality of marker data corresponding to each preparation data, and the regression equation is used. The use of the regression equation is not limited to the case of using the obtained regression equation itself, but also the case of using a numerical value such as a coefficient obtained by creating the regression equation.

 回帰分析としては、典型的には線形回帰分析であり、単回帰分析および重回帰分析の何れでもよく、好適には単回帰分析である。 The regression analysis is typically a linear regression analysis, which may be either a simple regression analysis or a multiple regression analysis, preferably a simple regression analysis.

 (マーカーデータの補正の具体的態様1)
 次に、マーカーデータの補正方法の一つの具体的態様について説明する。ここでは一例として、調製条件として被検体から体液を採取してから遠心分離操作を施すまでの時間(以下、単に「遠心までの時間」という)を用い、マーカーデータとしてマイクロアレイを用いて得られた特定のmiRNAのシグナル強度を用いて、推定モデルとしての回帰式を作成する方法について説明する。なお、以下の説明を参照すれば他の調製条件においても同様にして補正が可能であることは、当業者であれば容易に理解できる。
(Specific aspect 1 of correction of marker data)
Next, one specific aspect of the marker data correction method will be described. Here, as an example, the time from collecting the body fluid from the subject to performing the centrifugation operation (hereinafter, simply referred to as “time to centrifuge”) was used as the preparation condition, and the marker data was obtained using a microarray. A method of creating a regression equation as an estimation model using the signal intensity of a specific miRNA will be described. Those skilled in the art can easily understand that the same correction can be made under other preparation conditions by referring to the following description.

 本実施形態における回帰式の作成方法は、次のステップを含む:
 (a)遠心までの時間が様々な健常者由来の複数の体液検体を用いて、miRNAのシグナル強度を取得する。
The method of creating a regression equation in this embodiment includes the following steps:
(A) Obtain the signal intensity of miRNA using a plurality of body fluid samples derived from healthy subjects with various time to centrifugation.

 (b)得られた各シグナル強度、および対応する各体液検体における遠心までの時間から、yをシグナル強度、xを遠心までの時間とする回帰式:y=ax+bを作成する。 (B) From each of the obtained signal intensities and the time to centrifuge in each corresponding body fluid sample, a regression equation: y = a 0 x + b 0 is prepared, where y is the signal intensity and x is the time to centrifuge.

 (c)検査対象となる体液検体から得られたシグナル強度、および当該体液検体における分離までの時間を、回帰式:y=ax+bのyおよびxにそれぞれ代入することで、各体液検体に固有のbを取得する。 (C) the signal intensity obtained from a body fluid specimen to be tested, and the time until separation in the body fluid sample, the regression equation: y = a 0 x + b i by substituting the respective y and x in each body fluid sample to get a unique b i to.

 以上により、各体液検体に固有の回帰式:y=ax+bが作成される。当該回帰式が、特定の体液検体の、所定の調製条件におけるシグナル強度を推定するための推定モデルとなる。 Thus, specific regression equation to each body fluid sample: y = a 0 x + b i is created. The regression equation serves as an estimation model for estimating the signal intensity of a specific body fluid sample under predetermined preparation conditions.

 なお、ステップ(a)では、他の要因に起因するマーカーデータの変動を抑えるために、遠心までの時間以外の条件は各体液検体で極力同じであることが望ましい。したがって、上述の例では、遠心前の同一の体液から、遠心までの時間だけが異なる複数の体液検体を調製し、調製後の条件(例えば-80℃で保存するまでの時間など)を同じにして処理し、複数の体液検体を準備することが好ましい。 In step (a), in order to suppress fluctuations in marker data due to other factors, it is desirable that the conditions other than the time until centrifugation are the same for each body fluid sample as much as possible. Therefore, in the above example, a plurality of body fluid samples differing only in the time until centrifugation are prepared from the same body fluid before centrifugation, and the conditions after preparation (for example, the time until storage at -80 ° C) are the same. It is preferable to prepare a plurality of body fluid samples.

 シグナル強度の補正は、得られたそれぞれの体液検体に固有の回帰式のxに、予め任意に定めた標準時間を代入することで行う。すなわち、固有の回帰式のxに標準時間を代入することで回帰式から得られる数値が、当該標準時間におけるシグナル強度の推定値、すなわち、補正後のシグナル強度となる。 The signal intensity is corrected by substituting a predetermined standard time into x of the regression equation peculiar to each obtained body fluid sample. That is, the numerical value obtained from the regression equation by substituting the standard time for x of the unique regression equation becomes the estimated value of the signal intensity in the standard time, that is, the corrected signal intensity.

 (マーカーデータの補正の具体的態様2)
 次に、マーカーデータの補正方法の別の具体的態様について説明する。本態様では、上述の具体的態様1において得られる回帰式の一部の係数のみを利用した推定モデルを用いて、マーカーデータの補正を行っている。
(Specific aspect 2 of correction of marker data)
Next, another specific aspect of the marker data correction method will be described. In this aspect, the marker data is corrected by using an estimation model using only a part of the coefficients of the regression equation obtained in the above-mentioned specific aspect 1.

 yをシグナル強度、xを遠心までの時間とする回帰式:y=ax+bを作成するまでは、上述の具体的態様1におけるステップ(a)および(b)と同じである。ここで、xは遠心までの時間であるため、aは遠心までに要する時間の単位時間あたりのシグナル強度の変化を表す変化係数となる。そのため、標準時間を「T」、実際の遠心までの時間を「T」、標準時間におけるシグナル強度推定値を「SIs」、および実際のシグナル強度を「SI」とした場合、標準時間におけるシグナル強度の推定値を下記式により算出することができる。 Regression equations in which y is the signal intensity and x is the time to centrifuge: y = a 0 x + b 0 is the same as steps (a) and (b) in the above-described specific embodiment 1 until it is created. Here, x is because it is time to centrifugal, a 0 is the change coefficient representing a change in signal strength per unit time period required until centrifugation. Therefore, if the standard time is "T s ", the time to actual centrifugation is "T i ", the estimated signal intensity in standard time is "SI s ", and the actual signal intensity is "SI i ", it is standard. The estimated value of signal intensity over time can be calculated by the following formula.

 SIs=SI-a×(T-T
すなわち、当該式が推定モデルであり、これにより得られる標準時間におけるシグナル強度の推定値が、補正後のシグナル強度となる。
SI s = SI i -a 0 × (T i -T s)
That is, the equation is an estimation model, and the estimated value of the signal intensity in the standard time obtained by this is the corrected signal intensity.

 なお、上記の説明では、一つの調製条件について補正を行う方法について説明したが、1種類の調製条件の補正に限らず、複数種類の調製条件について補正を行うものであってもよい。複数種類の調製条件について補正を行う場合、第1の調製条件について補正を行った後、補正後のマーカーデータに対して第2の調製条件に基づく補正を行うようにして、段階的に補正を行えばよい。または、重回帰分析を行うことにより得られた回帰式を利用して、一回のみの補正を行うものであってもよい。 In the above description, the method of making corrections for one type of preparation condition has been described, but the correction is not limited to the correction of one type of preparation condition, and may be used for making corrections for a plurality of types of preparation conditions. When making corrections for a plurality of types of preparation conditions, corrections are made step by step by making corrections for the first preparation condition and then making corrections based on the second preparation condition for the corrected marker data. Just do it. Alternatively, the regression equation obtained by performing the multiple regression analysis may be used to perform the correction only once.

 また、複数の疾患マーカー(例えば、複数種類のmiRNA)を用いて検査を行う場合、調製条件によるマーカーデータの変動の様子は疾患マーカー毎に異なる。そのため、疾患マーカー毎に上述の補正を行い、それぞれ得られた補正後マーカーデータを用いて判別を行えばよい。なお、複数の疾患マーカーを用いての疾患の検査、すなわち罹患の有無の判断は、従来公知の手法に従えばよい。 Further, when a test is performed using a plurality of disease markers (for example, a plurality of types of miRNA), the state of fluctuation of the marker data depending on the preparation conditions differs for each disease marker. Therefore, the above-mentioned correction may be performed for each disease marker, and the correction may be performed using the corrected marker data obtained for each. In addition, the examination of the disease using a plurality of disease markers, that is, the determination of the presence or absence of morbidity may be performed according to a conventionally known method.

 (罹患の有無の判別)
 本実施形態に係る検査方法では、上記のようにして得られた補正後のシグナル強度を用いて、罹患の有無を判別する。具体的には、補正後のシグナル強度が、予め指定された閾値を超えていれば、検査対象となった検体が陽性である(罹患している)と判別する。一方、閾値以下であれば当該検体は陰性である(罹患していない)と判別する。予め指定された閾値は段階的に複数設けられてもよい。この場合、例えば、補正後のシグナル強度が当該複数の閾値のうちのどの閾値を超えているかにより、検査対象となった検体の罹患リスクの度合いを複数段階で判別する。例えば、閾値として第1の閾値および第1の閾値よりも低い第2の閾値を設定し、第1の閾値を超えている場合にリスク高と判別し、第1の閾値以下であり、かつ第2の閾値を超えている場合にリスク中と判別し、第2の閾値以下の場合にリスク低と判別するものであってもよい。
(Determination of morbidity)
In the test method according to the present embodiment, the presence or absence of morbidity is determined by using the corrected signal intensity obtained as described above. Specifically, if the corrected signal intensity exceeds a threshold value specified in advance, it is determined that the sample to be tested is positive (affected). On the other hand, if it is equal to or less than the threshold value, it is determined that the sample is negative (not affected). A plurality of predetermined threshold values may be provided stepwise. In this case, for example, the degree of morbidity risk of the sample to be tested is determined in a plurality of stages depending on which of the plurality of thresholds the corrected signal intensity exceeds. For example, a first threshold value and a second threshold value lower than the first threshold value are set as threshold values, and if the threshold value exceeds the first threshold value, it is determined that the risk is high, and the threshold value is equal to or less than the first threshold value and is the first. If it exceeds the threshold value of 2, it may be determined that the risk is in progress, and if it is equal to or less than the second threshold value, it may be determined that the risk is low.

 〔本実施形態の効果〕
 以上のように、本実施形態では、マーカーデータを用いた疾患の検査方法において、特定の調製条件に関し、検体毎にバラツキがあっても、所定の調製条件の下でのマーカーデータを推定し、推定後の値に基づき、疾患の罹患の有無の判別を行っている。その結果、本来意図される調製条件から外れた条件のもと調製された体液検体においても、疾患の罹患の有無を示す判別結果の精度を向上させることができる。とりわけ、本来意図される調製条件と実際の調製条件との差異が大きい場合には、より大きな精度の向上が見込まれる。
[Effect of this embodiment]
As described above, in the present embodiment, in the disease testing method using the marker data, the marker data under the predetermined preparation conditions is estimated even if there are variations for each sample with respect to the specific preparation conditions. Based on the estimated values, the presence or absence of disease is determined. As a result, it is possible to improve the accuracy of the discrimination result indicating the presence or absence of disease even in the body fluid sample prepared under the conditions deviating from the originally intended preparation conditions. In particular, when the difference between the originally intended preparation conditions and the actual preparation conditions is large, a greater improvement in accuracy is expected.

 調製データの取得は、細かなプロトコールの厳守等のさらなる負担を、実際に検体のサンプリングを行う医療現場に強いるものではない。すなわち、実施可能な検体採取条件の幅を許容したうえで、単に、どのようなプロトコールまたは条件でサンプリングを行っていたかを記録し、その情報を実際に検査を行うユーザに提供するだけでよい。また、これらの情報は、マーカーデータを取得し終わった後であっても、容易に取得または確認できるものである。よって、本実施形態に係る検査方法の実施においては、医療現場における負担が極めて小さい。また、比較的短い作業時間の間に変動し得る疾患マーカーが解析対象に含まれる場合であっても、それらを除外することなく精度の高い判別結果を得ることができる。 Acquisition of preparation data does not impose an additional burden such as strict adherence to detailed protocols on medical sites that actually sample samples. That is, it is only necessary to allow a range of feasible sample collection conditions, simply record what protocol or condition the sampling was performed on, and provide the information to the user who actually performs the test. Further, such information can be easily acquired or confirmed even after the marker data has been acquired. Therefore, in the implementation of the inspection method according to the present embodiment, the burden on the medical site is extremely small. Further, even when a disease marker that can fluctuate during a relatively short working time is included in the analysis target, a highly accurate discrimination result can be obtained without excluding them.

 とりわけ、複数の疾患マーカーを用いて検査を行う場合、調製データに対応するパラメーターの相違により起こり得る疾患マーカーの変動の様子は、疾患マーカー毎に異なり得る。よって、複数の疾患マーカーを用いて検査精度を高める場合、疾患マーカーの変動をより小さくする必要があり、プロトコールのより厳格な遵守が求められる。しかしながら本実施形態によれば、情報を記録しておくだけでよいので、複数の疾患マーカーを用いての検査により好適に適用できる。 In particular, when a test is performed using a plurality of disease markers, the change in the disease markers that may occur due to the difference in the parameters corresponding to the prepared data may differ for each disease marker. Therefore, when the test accuracy is improved by using a plurality of disease markers, it is necessary to reduce the fluctuation of the disease markers, and stricter adherence to the protocol is required. However, according to the present embodiment, since it is only necessary to record the information, it can be more preferably applied to the examination using a plurality of disease markers.

 〔検査装置の構成〕
 次に、図1に基づいて、本実施形態に係る検査装置について説明する。図1は、本実施形態に係る検査装置および端末装置の概略構成を示す機能ブロック図である。図1に示されるように、検査装置100は、表示部および入力デバイス等を備えた端末装置200と通信する構成である。ただし、検査装置100は本実施形態の構成に限定されず、例えば、検査装置100は、端末装置200と通信せずに、自ら表示部および入力デバイス等を備えていてもよい。
[Configuration of inspection equipment]
Next, the inspection device according to the present embodiment will be described with reference to FIG. FIG. 1 is a functional block diagram showing a schematic configuration of an inspection device and a terminal device according to the present embodiment. As shown in FIG. 1, the inspection device 100 is configured to communicate with a terminal device 200 including a display unit, an input device, and the like. However, the inspection device 100 is not limited to the configuration of the present embodiment, and for example, the inspection device 100 may include a display unit, an input device, and the like by itself without communicating with the terminal device 200.

 検査装置100は、制御部110、記憶部120および通信部130を備えている。制御部110は、取得部(データ取得部)140、補正部150および判別部160を備えている。また、取得部140は、マーカーデータ取得部141および調製データ取得部142を備えている。 The inspection device 100 includes a control unit 110, a storage unit 120, and a communication unit 130. The control unit 110 includes an acquisition unit (data acquisition unit) 140, a correction unit 150, and a discrimination unit 160. Further, the acquisition unit 140 includes a marker data acquisition unit 141 and a preparation data acquisition unit 142.

 制御部110は、検査装置100を統括的に制御するものである。 The control unit 110 comprehensively controls the inspection device 100.

 記憶部120は、検査装置100の処理に必要なデータを記憶する記憶装置である。また、記憶部120は、推定モデル121を記憶する。なお、記憶部120は、検査装置100の外部装置であってもよい。例えば、記憶部120は、検査装置100と通信可能に接続されたサーバ等の記憶装置であってもよい。 The storage unit 120 is a storage device that stores data necessary for processing of the inspection device 100. Further, the storage unit 120 stores the estimation model 121. The storage unit 120 may be an external device of the inspection device 100. For example, the storage unit 120 may be a storage device such as a server that is communicably connected to the inspection device 100.

 マーカーデータ取得部141は、体液検体中の疾患マーカーを測定した結果を示すマーカーデータを取得する。調製データ取得部142は、体液検体の調製条件を示す調製データを取得する。取得部140は、同一の体液検体についてのマーカーデータおよび調製データを互いに対応づけて記憶部120に記憶させる。 The marker data acquisition unit 141 acquires marker data indicating the result of measuring the disease marker in the body fluid sample. The preparation data acquisition unit 142 acquires preparation data indicating the preparation conditions of the body fluid sample. The acquisition unit 140 stores the marker data and the preparation data for the same body fluid sample in the storage unit 120 in association with each other.

 補正部150は、記憶部120に記憶された推定モデル121を用いて、マーカーデータの補正を行い、所定の調製条件におけるマーカーデータの推定値を算出する。算出された値は補正後マーカーデータとして出力される。 The correction unit 150 corrects the marker data using the estimation model 121 stored in the storage unit 120, and calculates an estimated value of the marker data under a predetermined preparation condition. The calculated value is output as corrected marker data.

 判別部160は、補正部150により作成された補正後マーカーデータを用いて、入力されたマーカーデータの基となる被検体が、対象とする疾患に罹患しているか否かを判別する。具体的には、補正後マーカーデータが示す数値が、予め指定された閾値を超えていれば、判別部160は検査対象となった検体が陽性である(罹患している)と判別する。一方、閾値以下であれば当該検体は陰性である(罹患していない)と判別する。そして、判別部160はその結果を端末装置200に送信する。予め指定された閾値は段階的に複数設けられてもよい。また、検査装置100に判別部160を設ける構成でなくてもよい。この場合、補正部150により作成された補正後マーカーデータをそのまま端末装置200に送信し、ユーザが、所定の基準に基づき検体の陽性/陰性を判別するものであってもよい。 The discrimination unit 160 uses the corrected marker data created by the correction unit 150 to determine whether or not the subject on which the input marker data is based suffers from the target disease. Specifically, if the numerical value indicated by the corrected marker data exceeds a threshold value specified in advance, the discriminating unit 160 determines that the sample to be tested is positive (affected). On the other hand, if it is equal to or less than the threshold value, it is determined that the sample is negative (not affected). Then, the discriminating unit 160 transmits the result to the terminal device 200. A plurality of predetermined threshold values may be provided stepwise. Further, the inspection device 100 does not have to be provided with the discrimination unit 160. In this case, the corrected marker data created by the correction unit 150 may be transmitted to the terminal device 200 as it is, and the user may determine whether the sample is positive or negative based on a predetermined criterion.

 なお、本実施形態では、制御部110に補正部150を備えている検査装置100について説明している。しかしながら、検査装置100に補正部150を設ける構成でなくてもよい。すなわち、検査装置100とは独立に存在する、マーカーデータ取得部141および調製データ取得部142を備えた取得部140と、補正部150とを少なくとも含む装置により、上述の推定モデル121を構築するものであってもよい。当該装置が検査装置100とは独立に存在する場合には、検査装置100は、記憶媒体に記憶された推定モデル121を読み込むことで、推定モデル121が利用可能となる。または、検査装置100は、有線または無線のネットワークを介して他の装置から推定モデル121を受信することで、検査装置100において推定モデル121が利用可能となる。 In the present embodiment, the inspection device 100 having the correction unit 150 in the control unit 110 is described. However, the inspection device 100 does not have to be provided with the correction unit 150. That is, the above-mentioned estimation model 121 is constructed by an apparatus including at least an acquisition unit 140 having a marker data acquisition unit 141 and a preparation data acquisition unit 142 and a correction unit 150, which exist independently of the inspection device 100. It may be. When the device exists independently of the inspection device 100, the inspection device 100 can use the estimation model 121 by reading the estimation model 121 stored in the storage medium. Alternatively, the inspection device 100 receives the estimation model 121 from another device via a wired or wireless network, so that the estimation model 121 can be used in the inspection device 100.

 端末装置200は、通信部210、制御部220、入力デバイス230および表示部240を備えている。通信部210は、検査装置100との間で、有線または無線でデータの送受信を行う通信インターフェースである。制御部220は、端末装置200を統括的に制御する。表示部240は、画像、文字等を表示可能なディスプレイである。入力デバイス230は、ユーザの入力を受け付けるものであり、例えばタッチパネル、マウスおよびキーボード等によって実現される。入力デバイス230がタッチパネルの場合、表示部240に当該タッチパネルが設けられる。ユーザは、端末装置200を介して、検査装置100の機能を利用することができる。 The terminal device 200 includes a communication unit 210, a control unit 220, an input device 230, and a display unit 240. The communication unit 210 is a communication interface for transmitting / receiving data to / from the inspection device 100 by wire or wirelessly. The control unit 220 controls the terminal device 200 in an integrated manner. The display unit 240 is a display capable of displaying images, characters, and the like. The input device 230 accepts user input, and is realized by, for example, a touch panel, a mouse, a keyboard, or the like. When the input device 230 is a touch panel, the touch panel is provided on the display unit 240. The user can use the function of the inspection device 100 via the terminal device 200.

 検査装置100は、上述の本実施形態に係る検査方法の実施に適した装置である。 The inspection device 100 is a device suitable for carrying out the inspection method according to the present embodiment described above.

 〔ソフトウェアによる実現例〕
 検査装置100の制御ブロック(制御部110、特に取得部140、補正部150および判別部160)は、集積回路(ICチップ)等に形成された論理回路(ハードウェア)によって実現してもよいし、ソフトウェアによって実現してもよい。
[Example of realization by software]
The control block (control unit 110, particularly acquisition unit 140, correction unit 150, and discrimination unit 160) of the inspection device 100 may be realized by a logic circuit (hardware) formed in an integrated circuit (IC chip) or the like. , May be realized by software.

 後者の場合、検査装置100は、各機能を実現するソフトウェアであるプログラムの命令を実行するコンピュータを備えている。このコンピュータは、例えば少なくとも1つのプロセッサ(制御装置)を備えていると共に、上記プログラムを記憶したコンピュータ読み取り可能な少なくとも1つの記録媒体を備えている。そして、上記コンピュータにおいて、上記プロセッサが上記プログラムを上記記録媒体から読み取って実行することにより、本発明の目的が達成される。上記プロセッサとしては、例えばCPU(Central Processing Unit)またはGPU(Graphics Processing Unit)を用いることができる。上記記録媒体としては、「一時的でない有形の媒体」、例えば、ROM(Read Only Memory)等の他、テープ、ディスク、カード、半導体メモリ、プログラマブルな論理回路などを用いることができる。また、上記プログラムを展開するRAM(Random Access Memory)などをさらに備えていてもよい。また、上記プログラムは、該プログラムを伝送可能な任意の伝送媒体(通信ネットワークや放送波等)を介して上記コンピュータに供給されてもよい。なお、本発明の一態様は、上記プログラムが電子的な伝送によって具現化された、搬送波に埋め込まれたデータ信号の形態でも実現され得る。 In the latter case, the inspection device 100 includes a computer that executes a program instruction, which is software that realizes each function. This computer includes, for example, at least one processor (control device) and at least one computer-readable recording medium that stores the program. Then, in the computer, the processor reads the program from the recording medium and executes it, thereby achieving the object of the present invention. As the processor, for example, a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit) can be used. As the recording medium, in addition to a “non-temporary tangible medium” such as a ROM (Read Only Memory), a tape, a disk, a card, a semiconductor memory, a programmable logic circuit, or the like can be used. Further, a RAM (RandomAccessMemory) for expanding the above program may be further provided. Further, the program may be supplied to the computer via an arbitrary transmission medium (communication network, broadcast wave, etc.) capable of transmitting the program. It should be noted that one aspect of the present invention can also be realized in the form of a data signal embedded in a carrier wave, in which the above program is embodied by electronic transmission.

 〔まとめ〕
 本発明に係る検査方法は、疾患マーカーを用いて疾患の検査を行う検査方法であって、被検体から採取した体液検体中の疾患マーカーを測定した測定結果を示すマーカーデータ、および該体液検体の調製条件を示す調製データを取得するデータ取得工程と、取得した上記調製データを用いて、取得した上記マーカーデータの補正を行って補正後マーカーデータを取得する補正工程と、上記補正後マーカーデータに基づき、上記被検体における疾患の罹患の有無を判別する判別工程とを含み、上記補正後マーカーデータは、取得した上記調製データにおける指標と同じ種類の所定の調製条件における上記マーカーデータの値を推定したものである。
〔summary〕
The test method according to the present invention is a test method for testing a disease using a disease marker, and is marker data showing a measurement result of measuring a disease marker in a body fluid sample collected from a subject, and marker data of the body fluid sample. In the data acquisition step of acquiring the preparation data indicating the preparation conditions, the correction step of correcting the acquired marker data using the acquired preparation data and acquiring the corrected marker data, and the corrected marker data. Based on this, the corrected marker data estimates the value of the marker data under predetermined preparation conditions of the same type as the index in the acquired preparation data, including a discrimination step of determining the presence or absence of disease in the subject. It was done.

 また、本発明に係る検査方法の一態様では、上記補正工程は、同一指標の複数の上記調製データおよび各調製データに対応する複数の上記マーカーデータを用いた回帰分析により作成された回帰式を利用して、上記マーカーデータの補正を行う。 Further, in one aspect of the inspection method according to the present invention, the correction step uses a regression equation created by regression analysis using a plurality of the above-mentioned preparation data of the same index and a plurality of the above-mentioned marker data corresponding to each preparation data. It is used to correct the above marker data.

 また、本発明に係る検査方法の一態様では、上記調製データが、上記被検体の情報、上記体液検体の採取条件を示す情報、および上記疾患マーカーの測定前に上記体液検体に施された処理の条件情報から選択される少なくとも1つの情報を含む。 Further, in one aspect of the test method according to the present invention, the prepared data is the information of the subject, the information indicating the collection conditions of the body fluid sample, and the treatment applied to the body fluid sample before the measurement of the disease marker. Contains at least one piece of information selected from the conditional information of.

 また、本発明に係る検査方法の一態様では、上記体液検体に施された処理の条件が、上記体液検体を凍結保存するまでの時間、凍結保存時の温度、凍結保存している時間、および上記体液検体を遠心分離するまでの時間から選択される少なくとも1つの条件である。 Further, in one aspect of the test method according to the present invention, the treatment conditions applied to the body fluid sample are the time until the body fluid sample is cryopreserved, the temperature at the time of cryopreservation, the time during which the body fluid sample is cryopreserved, and. It is at least one condition selected from the time until the body fluid sample is centrifuged.

 また、本発明に係る検査方法の一態様では、上記体液検体の採取条件を示す上記情報が、上記体液検体の採取に用いられた針の太さ、上記体液検体の採取に用いられた採血管の種類、および上記被検体における最終飲食から上記体液検体を採取するまでの時間から選択される少なくとも1つの情報である。 Further, in one aspect of the test method according to the present invention, the above information indicating the collection conditions of the body fluid sample is the thickness of the needle used for collecting the body fluid sample, and the blood collection tube used for collecting the body fluid sample. And at least one piece of information selected from the time from the final eating and drinking in the subject to the collection of the body fluid sample.

 また、本発明に係る検査方法の一態様では、上記調製データが、上記被検体の情報を含み、該情報が、上記被検体の血球量に関する情報である。 Further, in one aspect of the test method according to the present invention, the prepared data includes information on the subject, and the information is information on the blood cell volume of the subject.

 また、本発明に係る検査方法の一態様では、上記被検体の上記情報が、上記被検体の人種に関する情報である。 Further, in one aspect of the test method according to the present invention, the above information of the subject is information regarding the race of the subject.

 また、本発明に係る検査方法の一態様では、上記体液検体が、血液、血清、血漿、髄液、尿、唾液、涙、組織液またはリンパ液である。 Further, in one aspect of the test method according to the present invention, the body fluid sample is blood, serum, plasma, cerebrospinal fluid, urine, saliva, tears, interstitial fluid or lymph.

 また、本発明に係る検査方法のさらなる態様では、上記体液検体が、血液、血清または血漿である。 Further, in a further aspect of the test method according to the present invention, the body fluid sample is blood, serum or plasma.

 また、本発明に係る検査方法の一態様では、上記疾患マーカーが、miRNAである。 Further, in one aspect of the test method according to the present invention, the disease marker is miRNA.

 また、本発明に係る検査方法の一態様では、上記マーカーデータが、マイクロアレイ、PCR又はシーケンシングから得られたデータである。 Further, in one aspect of the inspection method according to the present invention, the marker data is data obtained from microarray, PCR or sequencing.

 本発明に係る検査装置は、疾患マーカーを用いて疾患の検査を行う検査装置であって、被検体から採取した体液検体中の疾患マーカーを測定した結果を示すマーカーデータ、および該体液検体の調製条件を示す調製データを取得するデータ取得部と、取得した上記調製データを用いて、取得した上記マーカーデータの補正を行って補正後マーカーデータを取得する補正部とを備え、上記補正後マーカーデータは、取得した上記調製データにおける指標と同じ種類の所定の調製条件における上記マーカーデータの値を推定したものである。 The testing device according to the present invention is a testing device that tests for a disease using a disease marker, and marker data showing the result of measuring a disease marker in a body fluid sample collected from a subject, and preparation of the body fluid sample. The data acquisition unit for acquiring the preparation data indicating the conditions and the correction unit for correcting the acquired marker data using the acquired preparation data and acquiring the corrected marker data are provided, and the corrected marker data is provided. Is an estimate of the value of the marker data under predetermined preparation conditions of the same type as the index in the acquired preparation data.

 また、本発明に係る検査装置の一態様では、上記補正後マーカーデータに基づき、上記被検体における疾患の罹患の有無を判別する判別部をさらに備えている。 Further, in one aspect of the inspection device according to the present invention, a discriminating unit for determining whether or not a disease is present in the subject is further provided based on the corrected marker data.

 本発明の各態様に係る検査装置は、コンピュータによって実現してもよく、この場合には、コンピュータを上記検査装置が備える各部(ソフトウェア要素)として動作させることにより上記検査装置をコンピュータにて実現させる検査プログラム、およびそれを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。 The inspection device according to each aspect of the present invention may be realized by a computer. In this case, the inspection device is realized by the computer by operating the computer as each part (software element) included in the inspection device. Inspection programs and computer-readable recording media on which they are recorded also fall within the scope of the present invention.

 以下に実施例を示し、本発明の実施の形態についてさらに詳しく説明する。もちろん、本発明は以下の実施例に限定されるものではなく、細部については様々な態様が可能であることはいうまでもない。さらに、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、それぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 Examples are shown below, and embodiments of the present invention will be described in more detail. Of course, the present invention is not limited to the following examples, and it goes without saying that various aspects can be used for details. Furthermore, the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the claims, and the present invention also relates to an embodiment obtained by appropriately combining the disclosed technical means. It is included in the technical scope of the invention.

 [参考例1]
 <検体の採取>
 組織病理検査により診断された膵臓癌または胆道癌患者35人、および健常者49人からインフォームドコンセントを得て、それぞれの血液を採取し、遠心分離により血清を取得した。取得した血清は、採血から2時間以内に-80℃のフリーザーに移し、使用するまで-80℃で保存した。なお、採血から-80℃での保存までに要した時間には、検体間で一定のばらつきがあった。
[Reference example 1]
<Collection of samples>
Informed consent was obtained from 35 patients with pancreatic cancer or biliary tract cancer diagnosed by histopathological examination, and 49 healthy subjects, and their blood was collected and serum was obtained by centrifugation. The obtained serum was transferred to a freezer at −80 ° C. within 2 hours after blood collection and stored at −80 ° C. until use. The time required from blood collection to storage at −80 ° C. varied considerably among the samples.

 <total RNAの抽出>
 検体として、上記の84人それぞれから得られた各血清300μLを用いた。3D-Gene(登録商標)RNA extraction reagent from liquid sample kit(東レ株式会社(日本))中のRNA抽出用試薬を用いて、同社の定めるプロトコールに従って、各血清からtotal RNAを得た。以下、参考例1における検体群を検体群1という。
<Extraction of total RNA>
As a sample, 300 μL of each serum obtained from each of the above 84 persons was used. Total RNA was obtained from each serum using a reagent for RNA extraction in 3D-Gene (registered trademark) RNA extraction reagent from liquid sample kit (Toray Co., Ltd. (Japan)) according to the protocol specified by the company. Hereinafter, the sample group in Reference Example 1 will be referred to as sample group 1.

 <遺伝子発現量の測定>
 上記の84人の各血清から得たtotal RNAに対して3D-Gene(登録商標)miRNA Labeling kit(東レ株式会社)を用いて、同社が定めるプロトコールに基づいてtotal RNA中のmiRNAを蛍光標識した。オリゴDNAチップとして、miRBase release 21に登録されているmiRNAと相補的な配列を有するプローブを搭載した3D-Gene(登録商標)Human miRNA Oligo chip(東レ株式会社)を用い、同社が定めるプロトコールに基づいてストリンジェントな条件でハイブリダイゼーションおよびハイブリダイゼーション後の洗浄を行った。DNAチップを3D-Gene(登録商標)スキャナー(東レ株式会社)を用いてスキャンし、画像を取得して3D-Gene(登録商標)Extraction(東レ株式会社)にて蛍光強度を数値化した。
<Measurement of gene expression level>
The total RNA obtained from each of the above 84 sera was fluorescently labeled with 3D-Gene (registered trademark) miRNA Labeling kit (Toray Industries, Inc.) based on the protocol defined by the company. .. As an oligo DNA chip, a 3D-Gene (registered trademark) Human miRNA Oligo chip (Toray Co., Ltd.) equipped with a probe having a sequence complementary to miRNA registered in miRBase release 21 is used, and is based on a protocol defined by the company. Hybridization and washing after hybridization were performed under stringent conditions. The DNA chip was scanned using a 3D-Gene (registered trademark) scanner (Toray Industries, Inc.), images were acquired, and the fluorescence intensity was quantified by 3D-Gene (registered trademark) Extension (Toray Industries, Inc.).

 数値化された蛍光強度を用いて以下のように検出された遺伝子の発現量を計算した。まず、複数あるネガティブコントロールスポットのシグナル強度の最大順位および最小順位各々5%を除き、その[平均値+2×標準偏差]を計算し、この値より大きいシグナル強度を示した遺伝子は検出されたとみなした。また、検出された遺伝子のシグナル強度から、最大順位および最小順位各々5%を除いたネガティブコントロールスポットのシグナル強度の平均値を減算し、減算後の値を底が2の対数値に変換して遺伝子発現量とした。 The expression level of the gene detected as follows was calculated using the quantified fluorescence intensity. First, excluding 5% each of the maximum and minimum signal intensities of multiple negative control spots, the [mean value + 2 x standard deviation] was calculated, and genes showing signal intensities greater than this value were considered to have been detected. rice field. In addition, the average value of the signal intensity of the negative control spot excluding 5% each of the maximum rank and the minimum rank is subtracted from the signal intensity of the detected gene, and the value after the subtraction is converted to a logarithmic value having a base of 2. The gene expression level was used.

 数値化されたmiRNAの遺伝子発現量を用いた計算および統計解析は、「エクセル統計(Bellcurve(登録商標) for Excel)」(株式会社社会情報サービス)を用いて実施した。 Calculations and statistical analysis using the quantified gene expression level of miRNA were performed using "Excel Statistics (Bellcurve (registered trademark) for Excel)" (Social Information Service Co., Ltd.).

 [参考例2]
 <検体の採取>
 膵臓癌または胆道癌患者18人、および健常者23人からインフォームドコンセントを得て、それぞれの血液を採取し、遠心分離により血清を取得した。取得した血清は、採血から6時間以内に-80℃のフリーザーに移し、使用するまで-80℃で保存した。なお、採血から-80℃での保存までに要した時間には、検体間で一定のばらつきがあった。
[Reference example 2]
<Collection of samples>
Informed consent was obtained from 18 patients with pancreatic cancer or biliary tract cancer and 23 healthy subjects, and blood was collected from each of them, and serum was obtained by centrifugation. The obtained serum was transferred to a freezer at −80 ° C. within 6 hours after blood collection and stored at −80 ° C. until use. The time required from blood collection to storage at −80 ° C. varied considerably among the samples.

 <total RNAの抽出>
 検体として、上記の41人それぞれから得られた各血清300μLを用い、参考例1と同様にしてtotal RNAを得た。以下、参考例2における検体群を検体群2という。
<Extraction of total RNA>
As a sample, 300 μL of each serum obtained from each of the above 41 persons was used, and total RNA was obtained in the same manner as in Reference Example 1. Hereinafter, the sample group in Reference Example 2 will be referred to as sample group 2.

 <遺伝子発現量の測定>
 上記の41人の各血清から得たtotal RNAを用いて、参考例1と同様にしてmiRNAの遺伝子発現量を得た。
<Measurement of gene expression level>
Using total RNA obtained from each of the sera of the above 41 persons, the gene expression level of miRNA was obtained in the same manner as in Reference Example 1.

 [参考例3]
 <検体の採取>
 健常者からインフォームドコンセントを得て血液を採取し、遠心分離により血清を取得した。取得した血清は、採血から-80℃に保存するまでの時間として等差で時間系列を4点取得し、使用するまで-80℃で保存した。
[Reference example 3]
<Collection of samples>
Informed consent was obtained from healthy subjects, blood was collected, and serum was obtained by centrifugation. The obtained serum was stored at -80 ° C until it was used by acquiring four time series with equal difference as the time from blood collection to storage at -80 ° C.

 <total RNAの抽出>
 検体として、上記から得られた各血清300μLを用い、参考例1と同様にしてtotal RNAを得た。以下、参考例3における検体群を検体群3という。
<Extraction of total RNA>
As a sample, 300 μL of each serum obtained from the above was used, and total RNA was obtained in the same manner as in Reference Example 1. Hereinafter, the sample group in Reference Example 3 will be referred to as sample group 3.

 <遺伝子発現量の測定>
 上記の各血清から得たtotal RNAを用いて、参考例1と同様にしてmiRNAの遺伝子発現量を得た。
<Measurement of gene expression level>
Using total RNA obtained from each of the above sera, the gene expression level of miRNA was obtained in the same manner as in Reference Example 1.

 [実施例1]
<採血から冷凍保存に要する時間とmiRNAの遺伝子発現量の回帰分析>
 本実施例では、回帰分析の一例として線形回帰分析を実施した。参考例3で取得した血清の、採血から-80℃での保存までに要した時間とmiRNAの遺伝子発現量とを用いて線形回帰分析を実施し、単位時間あたりのmiRNAの遺伝子発現量の変化係数を取得した。なお、当該分析により得られた回帰式におけるyはmiRNAの遺伝子発現量、xは採血から-80℃での保存までに要した時間(h)である。
[Example 1]
<Regression analysis of time required from blood collection to frozen storage and miRNA gene expression level>
In this example, linear regression analysis was performed as an example of regression analysis. A linear regression analysis was performed using the time required from blood collection to storage at -80 ° C and the gene expression level of miRNA of the serum obtained in Reference Example 3, and changes in the gene expression level of miRNA per unit time. Obtained the coefficient. In the regression equation obtained by the analysis, y is the gene expression level of miRNA, and x is the time (h) required from blood collection to storage at −80 ° C.

 本実施例では、使用するmiRNAとして任意にmiR-4687-3pを選択し、回帰式y=-0.5050x+11.55を取得した。すなわち、miR-4687-3pの遺伝子発現量の変化係数は-0.5050であり、遺伝子発現量は単位時間あたり0.5050ずつ減少することが示された。 In this example, miR-4487-3p was arbitrarily selected as the miRNA to be used, and the regression equation y = -0.5050x + 11.55 was obtained. That is, the change coefficient of the gene expression level of miR-4678-3p was -0.5050, and it was shown that the gene expression level decreased by 0.5050 per unit time.

 [実施例2]
<膵臓癌および胆道癌判別性能の検証1>
 本実施例では、実施例1で得たmiR-4687-3pの遺伝子発現量の変化係数を用いて補正を行い、検体群1が採血から-80℃での保存までに要した時間が0.5時間であった場合の推定遺伝子発現量を求め、癌患者と健常者との判別性能を確認した。具体的には、算出した推定遺伝子発現量からROC曲線を作成し、ROC曲線下の面積(AUC)に基づき判別性能を確認した。
[Example 2]
<Verification of pancreatic cancer and biliary tract cancer discrimination performance 1>
In this example, correction was made using the coefficient of variation of the gene expression level of miR-4678-3p obtained in Example 1, and the time required for the sample group 1 from blood collection to storage at -80 ° C was 0. The estimated gene expression level in 5 hours was determined, and the discrimination performance between cancer patients and healthy subjects was confirmed. Specifically, an ROC curve was created from the calculated estimated gene expression level, and the discrimination performance was confirmed based on the area under the ROC curve (AUC).

 膵臓癌および胆道癌を判別するために以下のような段階的手順を踏んだ。すなわち、検体群1の各検体について、miR-4687-3pの遺伝子発現量および採血から-80℃での保存までに要した時間と、実施例1で取得した変化係数(-0.5050)とを用いて、採血から-80℃での保存までに要した時間を0.5時間とした場合の各検体の推定遺伝子発現量を取得した。例えばmiR-4687-3pの遺伝子発現量が12.8、採血から-80℃での保存までに要した時間が0.85時間の場合、採血から-80℃での保存までに要した時間が0.5時間の時のmiR-4687-3pの遺伝子発現量の変化は、-0.5050*(0.85-0.5)=-0.1768である。したがって、採血から-80℃での保存までに要した時間が0.5時間であったときのmiR-4687-3pの推定遺伝子発現量は、12.8-(-0.1768)=12.98と求めることができる。 The following step-by-step procedure was taken to distinguish between pancreatic cancer and biliary tract cancer. That is, for each sample in the sample group 1, the gene expression level of miR-4678-3p, the time required from blood collection to storage at -80 ° C, and the change coefficient (-0.5050) obtained in Example 1 were used. Was used to obtain the estimated gene expression level of each sample when the time required from blood collection to storage at −80 ° C. was 0.5 hour. For example, if the gene expression level of miR-4678-3p is 12.8 and the time required from blood collection to storage at -80 ° C is 0.85 hours, the time required from blood collection to storage at -80 ° C is 0.85 hours. The change in the gene expression level of miR-4678-3p at 0.5 hours is -0.5050 * (0.85-0.5) = -0.1768. Therefore, the putative gene expression level of miR-4678-3p when the time required from blood collection to storage at -80 ° C was 0.5 hours was 12.8- (-0.1768) = 12. It can be calculated as 98.

 このようにして、検体群1の各検体について、採血から-80℃での保存までに要した時間を0.5時間としたときの推定遺伝子発現量を算出した。算出した推定遺伝子発現量および罹患の有無の情報に基づきROC曲線を作成し、ROC曲線下の面積(AUC)を算出した。その結果、AUCは0.9041であった。作成したROC曲線を図2に示す。図2および後述する図3中、「真陽性率」は、検査が正しく陽性と判断したものの割合、すなわち感度を表す。また、「偽陽性率」は、検査が誤って陽性と判断したものの割合であり、1-(特異度)として計算される。なお、特異度とは、検査が陰性を正しく陰性と判断した割合を指す。 In this way, for each sample in the sample group 1, the estimated gene expression level was calculated when the time required from blood collection to storage at -80 ° C was 0.5 hours. An ROC curve was created based on the calculated estimated gene expression level and information on the presence or absence of morbidity, and the area under the ROC curve (AUC) was calculated. As a result, the AUC was 0.9041. The created ROC curve is shown in FIG. In FIG. 2 and FIG. 3 described later, the "true positive rate" represents the ratio of those correctly judged to be positive by the test, that is, the sensitivity. The "false positive rate" is the percentage of those who are mistakenly judged to be positive by the test, and is calculated as 1- (specificity). The specificity refers to the rate at which a negative test is correctly judged to be negative.

 [実施例3]
<膵臓癌および胆道癌判別性能の検証2>
 本実施例では、実施例1で得たmiR-4687-3pの遺伝子発現量の変化係数を用いて補正を行い、検体群2が採血から-80℃での保存までに要した時間が0.5時間であった場合の推定遺伝子発現量を求め、実施例2と同様にして癌患者と健常者との判別性能を確認した。
[Example 3]
<Verification of pancreatic cancer and biliary tract cancer discrimination performance 2>
In this example, correction was made using the coefficient of variation of the gene expression level of miR-4678-3p obtained in Example 1, and the time required for the sample group 2 from blood collection to storage at -80 ° C was 0. The estimated gene expression level in the case of 5 hours was obtained, and the discrimination performance between the cancer patient and the healthy subject was confirmed in the same manner as in Example 2.

 膵臓癌および胆道癌を判別するために以下のような段階的手順を踏んだ。すなわち、検体群2の各検体について、miR-4687-3pの遺伝子発現量および採血から-80℃での保存までに要した時間と、実施例1で取得した変化係数(-0.5050)とを用いて、採血から-80℃での保存までに要した時間を0.5時間とした場合の各検体の遺伝子発現量を実施例2と同様に算出した。算出した推定遺伝子発現量および罹患の有無の情報に基づきROC曲線を作成し、AUCを算出した。その結果、AUCは0.8720であった。作成したROC曲線を図3に示す。 The following step-by-step procedure was taken to distinguish between pancreatic cancer and biliary tract cancer. That is, for each sample in the sample group 2, the gene expression level of miR-4678-3p, the time required from blood collection to storage at −80 ° C., and the change coefficient (−0.5050) obtained in Example 1 were used. The gene expression level of each sample was calculated in the same manner as in Example 2 when the time required from blood collection to storage at −80 ° C. was 0.5 hour. An ROC curve was created based on the calculated estimated gene expression level and information on the presence or absence of morbidity, and the AUC was calculated. As a result, the AUC was 0.8720. The created ROC curve is shown in FIG.

 [比較例1]
<膵臓癌および胆道癌判別性能の検証1>
 本比較例では、検体群1のmiRNAの遺伝子発現量および罹患の有無の情報に基づきROC曲線を作成し、AUCを求め、癌患者と健常者との判別性能を確認した。
[Comparative Example 1]
<Verification of pancreatic cancer and biliary tract cancer discrimination performance 1>
In this comparative example, an ROC curve was created based on the information on the gene expression level of miRNA in the sample group 1 and the presence or absence of morbidity, the AUC was obtained, and the discrimination performance between the cancer patient and the healthy subject was confirmed.

 検体群1の各miR-4687-3pの遺伝子発現量を用いてROC曲線を作成し、AUCを求めた結果、AUCは、0.9117であった。作成したROC曲線を図2に示す。実施例2で得られたAUCとの差は0.0076、有意水準を0.05とするカイ二乗検定を実施すると、p=0.0743であり、有意な差はなかった。 The ROC curve was created using the gene expression level of each miR-4678-3p in the sample group 1, and the AUC was obtained. As a result, the AUC was 0.9117. The created ROC curve is shown in FIG. The difference from the AUC obtained in Example 2 was 0.0076, and when a chi-square test with a significance level of 0.05 was performed, p = 0.0743, and there was no significant difference.

 [比較例2]
<膵臓癌および胆道癌判別性能の検証2>
 本比較例では、検体群2のmiRNAの遺伝子発現量および罹患の有無の情報に基づきROC曲線を作成し、AUCを求め、癌患者と健常者との判別性能を確認した。
[Comparative Example 2]
<Verification of pancreatic cancer and biliary tract cancer discrimination performance 2>
In this comparative example, an ROC curve was created based on the information on the gene expression level of miRNA in the sample group 2 and the presence or absence of morbidity, the AUC was obtained, and the discrimination performance between the cancer patient and the healthy subject was confirmed.

 検体群2の各miR-4687-3pの遺伝子発現量を用いてROC曲線を作成し、AUCを求めた結果、AUCは、0.5604であった。作成したROC曲線を図3に示す。また実施例3で得られたAUCとの差は0.3116、有意水準を0.05とするカイ二乗検定を実施すると、p=0.0186であり、有意に差があることが示された。すなわち、推定遺伝子発現量を用いる実施例3の方が、発現量の補正を行なわない比較例2より、判別性能に優れることが示された。 The ROC curve was created using the gene expression level of each miR-4678-3p in the sample group 2, and the AUC was obtained. As a result, the AUC was 0.5604. The created ROC curve is shown in FIG. In addition, the difference from the AUC obtained in Example 3 was 0.3116, and when a chi-square test with a significance level of 0.05 was performed, p = 0.0186, indicating that there was a significant difference. .. That is, it was shown that Example 3 using the estimated gene expression level was superior in discrimination performance to Comparative Example 2 in which the expression level was not corrected.

 [参考例4]
 <検体の採取>
 健常者137人からインフォームドコンセントを得て、それぞれの血液を採取し、遠心分離により血清を取得した。さらにこれとは別に採血して、白血球数の情報を得た。
[Reference example 4]
<Collection of samples>
Informed consent was obtained from 137 healthy subjects, blood was collected from each, and serum was obtained by centrifugation. Furthermore, blood was collected separately from this to obtain information on the white blood cell count.

 <total RNAの抽出>
 検体として、上記の137人それぞれから得られた各血清300μLを用い、参考例1と同様にしてtotal RNAを得た。以下、参考例4における検体群を検体群4という。
<Extraction of total RNA>
As a sample, 300 μL of each serum obtained from each of the above 137 persons was used, and total RNA was obtained in the same manner as in Reference Example 1. Hereinafter, the sample group in Reference Example 4 will be referred to as a sample group 4.

 <遺伝子発現量の測定>
 上記の137人の各血清から得たtotal RNAを用いて、参考例1と同様にしてmiRNAの遺伝子発現量を得た。
<Measurement of gene expression level>
Using total RNA obtained from each of the above 137 sera, the gene expression level of miRNA was obtained in the same manner as in Reference Example 1.

 [実施例4]
<白血球数とmiRNAの遺伝子発現量の回帰分析>
 本実施例では、回帰分析の一例として線形回帰分析を実施した。参考例4で取得した血清の、白血球数(底2の対数値)とmiRNAの遺伝子発現量とを用いて線形回帰分析を実施し、単位時間あたりのmiRNAの遺伝子発現量の変化係数を取得した。なお、当該分析により得られた回帰式におけるyはmiRNAの遺伝子発現量、xは白血球数である。
[Example 4]
<Regression analysis of white blood cell count and miRNA gene expression>
In this example, linear regression analysis was performed as an example of regression analysis. A linear regression analysis was performed using the white blood cell count (logarithmic value of the base 2) and the gene expression level of miRNA in the serum obtained in Reference Example 4, and the change coefficient of the gene expression level of miRNA per unit time was obtained. .. In the regression equation obtained by the analysis, y is the gene expression level of miRNA, and x is the white blood cell count.

 本実施例では、使用するmiRNAとして任意にmiR-6778-5pを選択し、回帰式y=0.8678x-1.4445を取得した。すなわち、miR-6778-5pの遺伝子発現量の変化係数は0.8678であり、遺伝子発現量は単位白血球数あたり0.8678ずつ増加することが示された。なお、白血球数が膵臓癌または胆道癌の罹患の有無と関連があるといった報告は、これまでになされていない。 In this example, miR-6778-5p was arbitrarily selected as the miRNA to be used, and the regression equation y = 0.8678x-1.4445 was obtained. That is, the change coefficient of the gene expression level of miR-6778-5p was 0.8678, and it was shown that the gene expression level increased by 0.8678 per unit leukocyte count. There have been no reports that the white blood cell count is associated with the presence or absence of pancreatic cancer or biliary tract cancer.

 [参考例5]
 <検体の採取>
 膵臓癌または胆道癌に罹患している患者3人、および健常者3人からインフォームドコンセントを得て、それぞれの血液を採取し、遠心分離により血清を取得した。さらにこれとは別に採血して、白血球数の情報を得た。
[Reference example 5]
<Collection of samples>
Informed consent was obtained from 3 patients suffering from pancreatic cancer or biliary tract cancer, and 3 healthy subjects, and blood was collected from each of them, and serum was obtained by centrifugation. Furthermore, blood was collected separately from this to obtain information on the white blood cell count.

 <total RNAの抽出>
 検体として、上記の6人それぞれから得られた各血清300μLを用い、参考例1と同様にしてtotal RNAを得た。以下、参考例5における検体群を検体群5という。
<Extraction of total RNA>
As a sample, 300 μL of each serum obtained from each of the above 6 persons was used, and total RNA was obtained in the same manner as in Reference Example 1. Hereinafter, the sample group in Reference Example 5 will be referred to as a sample group 5.

 [実施例5]
<膵臓癌および胆道癌判別性能の検証3>
 本実施例では、実施例4で得たmiR-6778-5pの遺伝子発現量の変化係数を用いて補正を行い、検体群5の白血球数(底2の対数値)が12.4であった場合の推定遺伝子発現量を求め、癌患者と健常者との判別性能を確認した。具体的には、算出した推定遺伝子発現量について、癌患者3人の平均値および健常者3人の平均値を求め、Welch’s t-testで検定した。
[Example 5]
<Verification of pancreatic cancer and biliary tract cancer discrimination performance 3>
In this example, correction was performed using the coefficient of variation of the gene expression level of miR-6778-5p obtained in Example 4, and the white blood cell count (log of base 2) of the sample group 5 was 12.4. The estimated gene expression level in the case was determined, and the discrimination performance between cancer patients and healthy subjects was confirmed. Specifically, for the calculated estimated gene expression level, the average value of 3 cancer patients and the average value of 3 healthy subjects were obtained and tested by Welch's t-test.

 膵臓癌および胆道癌を判別するために以下のような段階的手順を踏んだ。すなわち、検体群5の各検体について、miR-6778-5pの遺伝子発現量および白血球数と、実施例4で取得した変化係数(0.8678)とを用いて、白血球数(底2の対数値)を12.4とした場合の各検体の推定遺伝子発現量を取得した。例えばmiR-6778-5pの遺伝子発現量が9.9、白血球数が12.7の場合、白血球数が12.4である時のmiR-4687-3pの遺伝子発現量の変化は、0.8678*(12.7-12.4)=0.2603である。したがって、白血球数が12.4であったときのmiR-6778-5pの推定遺伝子発現量は、9.9-(0.2603)=9.640と求めることができる。 The following step-by-step procedure was taken to distinguish between pancreatic cancer and biliary tract cancer. That is, for each sample in the sample group 5, the white blood cell count (base 2 logarithmic value) was used using the gene expression level and white blood cell count of miR-6778-5p and the change coefficient (0.8678) obtained in Example 4. ) Was 12.4, and the estimated gene expression level of each sample was obtained. For example, when the gene expression level of miR-6778-5p is 9.9 and the white blood cell count is 12.7, the change in the gene expression level of miR-4678-3p when the white blood cell count is 12.4 is 0.8678. * (12.7-12.4) = 0.2603. Therefore, the estimated gene expression level of miR-6778-5p when the white blood cell count is 12.4 can be determined as 9.9- (0.2603) = 9.640.

 このようにして、検体群5の各検体について、白血球数(底2の対数値)を12.4としたときの推定遺伝子発現量を算出した。次いで、算出した推定遺伝子発現量および罹患の有無の情報に基づき、癌患者の群における推定遺伝子発現量の平均値および健常者の群における推定遺伝子発現量の平均値を求め、その差を算出した。その結果、推定遺伝子発現量の平均値の差は0.71であった。また、Welch’s t-testでp<0.01となり、有意差があることが示された。一方、補正実施前のそれぞれ群における遺伝子発現量の平均値の差は0.47であった。また、Welch’s t-testで有意差はなかった。平均値を比較したそれぞれのグラフ(ボックスプロット)を図4に示す。図4中、左側が補正実施前についてのグラフであり、右側が補正実施後についてのグラフである。 In this way, for each sample in the sample group 5, the estimated gene expression level was calculated when the white blood cell count (radix of the base 2) was 12.4. Next, based on the calculated estimated gene expression level and information on the presence or absence of morbidity, the average value of the estimated gene expression level in the group of cancer patients and the average value of the estimated gene expression level in the group of healthy subjects were obtained, and the difference was calculated. .. As a result, the difference in the average value of the estimated gene expression levels was 0.71. In addition, Welch's t-test showed that p <0.01, indicating that there was a significant difference. On the other hand, the difference in the average value of gene expression in each group before the correction was 0.47. In addition, there was no significant difference in Welch's t-test. Each graph (box plot) comparing the average values is shown in FIG. In FIG. 4, the left side is a graph before the correction is performed, and the right side is a graph after the correction is performed.

 本発明は、疾患マーカーを利用した疾患の検査に利用することができる。 The present invention can be used for a disease test using a disease marker.

100 検査装置
110 制御部
120 記憶部
121 推定モデル
130 通信部
140 取得部
141 マーカーデータ取得部
142 調製データ取得部
150 補正部
160 判別部
100 Inspection device 110 Control unit 120 Storage unit 121 Estimated model 130 Communication unit 140 Acquisition unit 141 Marker data acquisition unit 142 Preparation data acquisition unit 150 Correction unit 160 Discrimination unit

Claims (14)

 疾患マーカーを用いて疾患の検査を行う検査方法であって、
 被検体から採取した体液検体中の疾患マーカーを測定した測定結果を示すマーカーデータ、および該体液検体の調製条件を示す調製データを取得するデータ取得工程と、
 取得した上記調製データを用いて、取得した上記マーカーデータの補正を行って補正後マーカーデータを取得する補正工程と、
 上記補正後マーカーデータに基づき、上記被検体における疾患の罹患の有無を判別する判別工程とを含み、
 上記補正後マーカーデータは、取得した上記調製データにおける指標と同じ種類の所定の調製条件における上記マーカーデータの値を推定したものである、検査方法。
It is a test method that tests for diseases using disease markers.
A data acquisition step of acquiring marker data showing the measurement results of measuring disease markers in a body fluid sample collected from a subject and preparation data showing the preparation conditions of the body fluid sample, and
A correction step of correcting the acquired marker data using the acquired prepared data to acquire the corrected marker data, and a correction step.
Including a discrimination step of determining the presence or absence of disease in the subject based on the corrected marker data.
The corrected marker data is an inspection method in which the value of the marker data under the same type of predetermined preparation conditions as the index in the acquired preparation data is estimated.
 上記補正工程は、同一指標の複数の上記調製データおよび各調製データに対応する複数の上記マーカーデータを用いた回帰分析により作成された回帰式を利用して、上記マーカーデータの補正を行う、請求項1に記載の検査方法。 In the correction step, the marker data is corrected by using the regression equation created by the regression analysis using the plurality of preparation data of the same index and the plurality of marker data corresponding to each preparation data. Item 1. The inspection method according to item 1.  上記調製データが、上記被検体の情報、上記体液検体の採取条件を示す情報、および上記疾患マーカーの測定前に上記体液検体に施された処理の条件情報から選択される少なくとも1つの情報を含む、請求項1または2に記載の検査方法。 The prepared data includes at least one information selected from the information of the subject, the information indicating the collection conditions of the body fluid sample, and the condition information of the treatment applied to the body fluid sample before the measurement of the disease marker. , The inspection method according to claim 1 or 2.  上記体液検体に施された処理の条件が、上記体液検体を凍結保存するまでの時間、凍結保存時の温度、凍結保存している時間、および上記体液検体を遠心分離するまでの時間から選択される少なくとも1つの条件である、請求項3に記載の検査方法。 The treatment conditions applied to the body fluid sample are selected from the time until the body fluid sample is cryopreserved, the temperature at the time of cryopreservation, the time during which the body fluid sample is cryopreserved, and the time until the body fluid sample is centrifuged. The inspection method according to claim 3, which is at least one condition.  上記体液検体の採取条件を示す上記情報が、上記体液検体の採取に用いられた針の太さ、上記体液検体の採取に用いられた採血管の種類、および上記被検体における最終飲食から上記体液検体を採取するまでの時間から選択される少なくとも1つの情報である、請求項3に記載の検査方法。 The above information indicating the collection conditions of the body fluid sample is the thickness of the needle used for collecting the body fluid sample, the type of the blood collection tube used for collecting the body fluid sample, and the body fluid from the final eating and drinking in the subject. The test method according to claim 3, which is at least one piece of information selected from the time until a sample is collected.  上記調製データが、上記被検体の情報を含み、該情報が、上記被検体の血球量に関する情報である、請求項2に記載の検査方法。 The test method according to claim 2, wherein the prepared data includes information on the subject, and the information is information on the blood cell volume of the subject.  上記被検体の上記情報が、上記被検体の人種に関する情報である、請求項3に記載の検査方法。 The test method according to claim 3, wherein the above information of the subject is information regarding the race of the subject.  上記体液検体が、血液、血清、血漿、髄液、尿、唾液、涙、組織液またはリンパ液である、請求項1~7の何れか1項に記載の検査方法。 The test method according to any one of claims 1 to 7, wherein the body fluid sample is blood, serum, plasma, cerebrospinal fluid, urine, saliva, tears, interstitial fluid or lymph.  上記体液検体が、血液、血清または血漿である、請求項1~8の何れか1項に記載の検査方法。 The test method according to any one of claims 1 to 8, wherein the body fluid sample is blood, serum or plasma.  上記疾患マーカーが、miRNAである、請求項1~9の何れか1項に記載の検査方法。 The test method according to any one of claims 1 to 9, wherein the disease marker is miRNA.  上記マーカーデータが、マイクロアレイ、PCR又はシーケンシングから得られたデータである、請求項10に記載の検査方法。 The test method according to claim 10, wherein the marker data is data obtained from microarray, PCR or sequencing.  疾患マーカーを用いて疾患の検査を行う検査装置であって、
 被検体から採取した体液検体中の疾患マーカーを測定した結果を示すマーカーデータ、および該体液検体の調製条件を示す調製データを取得するデータ取得部と、
 取得した上記調製データを用いて、取得した上記マーカーデータの補正を行って補正後マーカーデータを取得する補正部とを備え、
 上記補正後マーカーデータは、取得した上記調製データにおける指標と同じ種類の所定の調製条件における上記マーカーデータの値を推定したものである、検査装置。
A testing device that tests for diseases using disease markers.
A data acquisition unit that acquires marker data indicating the results of measuring disease markers in a body fluid sample collected from a subject and preparation data indicating preparation conditions for the body fluid sample.
It is provided with a correction unit that corrects the acquired marker data using the acquired preparation data and acquires the corrected marker data.
The corrected marker data is an inspection apparatus that estimates the value of the marker data under predetermined preparation conditions of the same type as the index in the acquired preparation data.
 上記補正後マーカーデータに基づき、上記被検体における疾患の罹患の有無を判別する判別部をさらに備えている、請求項12に記載の検査装置。 The testing apparatus according to claim 12, further comprising a discriminating unit for discriminating the presence or absence of disease in the subject based on the corrected marker data.  請求項12に記載の検査装置としてコンピュータを機能させるための検査プログラムであって、上記データ取得部および上記補正部としてコンピュータを機能させるための検査プログラム。 The inspection program for operating a computer as the inspection device according to claim 12, and for operating the computer as the data acquisition unit and the correction unit.
PCT/JP2021/003311 2020-01-30 2021-01-29 Examination method, examination device, and examination program Ceased WO2021153753A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021507533A JP7652066B2 (en) 2020-01-30 2021-01-29 Inspection method, inspection device, and inspection program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020013991 2020-01-30
JP2020-013991 2020-01-30

Publications (1)

Publication Number Publication Date
WO2021153753A1 true WO2021153753A1 (en) 2021-08-05

Family

ID=77079123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003311 Ceased WO2021153753A1 (en) 2020-01-30 2021-01-29 Examination method, examination device, and examination program

Country Status (2)

Country Link
JP (1) JP7652066B2 (en)
WO (1) WO2021153753A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018041726A1 (en) * 2016-08-27 2018-03-08 Academisch Medisch Centrum Biomarkers for determining the presence of an unstable atherosclerotic plaque
WO2018175759A1 (en) * 2017-03-21 2018-09-27 Quadrant Biosciences Inc. Analysis of autism spectrum disorder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018041726A1 (en) * 2016-08-27 2018-03-08 Academisch Medisch Centrum Biomarkers for determining the presence of an unstable atherosclerotic plaque
WO2018175759A1 (en) * 2017-03-21 2018-09-27 Quadrant Biosciences Inc. Analysis of autism spectrum disorder

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GEORGIADIS, PANAGIOTIS ET AL.: "Evolving DNA methylation and gene expression markers of B- cell chronic lymphocytic leukemia are present in pre-diagnostic blood samples more than 10 years prior to diagnosis", GENOMICS, vol. 18, no. 728, 2017, pages 1 - 15, XP021248920, DOI: 10.1186/s12864-017-4117-4 *
GLINGE, CHARLOTTE ET AL.: "Stability of Circulating Blood-Based MicroRNAs - Pre-Analytic Methodological Considerations", PLOS ONE, vol. 12, no. 2, 2017, pages e0167969, 1 - 16, XP055845289 *

Also Published As

Publication number Publication date
JP7652066B2 (en) 2025-03-27
JPWO2021153753A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
JP7661878B2 (en) Inspection method, inspection device, learning method, learning device, inspection program, and learning program
Harpaz et al. Blood biomarkers to detect new-onset atrial fibrillation and cardioembolism in ischemic stroke patients
Blalock et al. Gene expression analysis of urine sediment: evaluation for potential noninvasive markers of interstitial cystitis/bladder pain syndrome
CN113667739A (en) Diagnostic marker combinations for coronary artery disease
CN113481293B (en) Molecular markers for the diagnosis of diabetic nephropathy and their products and applications
WO2021153753A1 (en) Examination method, examination device, and examination program
US20230332235A1 (en) Biomarkers for diagnosing a disease such as heart or cardiovascular disease
CN111354421B (en) Health Risk Assessment Methods
KR102264060B1 (en) Method and system for predicting risk of periodontal disease and Computer readable medium storing a program of the same
JP6257857B2 (en) Method for assessing the likelihood of pancreatic cancer
CN103698531B (en) The purposes of Rv1860, Rv0173 and/or Rv1812c albumen in the phthisical product of preparation diagnostic activities
CN103698530B (en) The purposes of Mycobacterium tuberculosis albumen in the phthisical product of preparation diagnostic activities
WO2025254164A1 (en) Characteristic determination method, device, program, and system
US8969022B2 (en) Method and system for detecting lymphosarcoma in cats using biomarkers
CN114317711A (en) Method and device for predicting non-alcoholic fatty liver disease
Vyberg A commentary: quality assurance in immunohistochemistry
WO2025094604A1 (en) Detection method, detection device, detection system, detection program, and recording medium
CN119068974A (en) Prediction system, device and storage medium for congenital heart disease combined with intellectual disability based on gene prediction
WO2025089035A1 (en) Testing method, testing device, testing system, testing program, recording medium, and method for generating storage condition-trained model
WO2023237529A1 (en) Use of smoc2 as a non-invasive biomarker for developing alcoholic or non-alcoholic steatohepatitis
WO2025089034A1 (en) Disease discerning method, disease discerning device, disease discerning system, program, and recording medium
CN120330313A (en) A marker for predicting acute myocardial infarction and its application
CN113846163A (en) Use of five biomarkers in the preparation or screening of diagnostic reagents for liver cancer
JP2017029058A (en) Method for detecting tyrosine kinase fused gene
WO2025089033A1 (en) Testing method, testing device, testing system, testing program, recording medium, and method for generating processing time-trained model

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021507533

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747941

Country of ref document: EP

Kind code of ref document: A1