WO2021038362A1 - 特性予測システム - Google Patents
特性予測システム Download PDFInfo
- Publication number
- WO2021038362A1 WO2021038362A1 PCT/IB2020/057715 IB2020057715W WO2021038362A1 WO 2021038362 A1 WO2021038362 A1 WO 2021038362A1 IB 2020057715 W IB2020057715 W IB 2020057715W WO 2021038362 A1 WO2021038362 A1 WO 2021038362A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light emitting
- emitting device
- data
- layer
- learning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
- H05B33/145—Arrangements of the electroluminescent material
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/27—Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/0895—Weakly supervised learning, e.g. semi-supervised or self-supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computing arrangements using knowledge-based models
- G06N5/04—Inference or reasoning models
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/10—OLEDs or polymer light-emitting diodes [PLED]
- H10K50/11—OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/048—Activation functions
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/30—Prediction of properties of chemical compounds, compositions or mixtures
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/70—Machine learning, data mining or chemometrics
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/70—Testing, e.g. accelerated lifetime tests
Definitions
- One aspect of the present invention relates to a method of predicting the characteristics of a light emitting device. Further, one aspect of the present invention relates to a characteristic prediction system for predicting the characteristics of a light emitting device.
- a light emitting device also called a light emitting element formed by sandwiching an EL (Electro Luminescence) layer between a pair of electrodes has characteristics such as thinness and light weight, high-speed response to an input signal, and low power consumption.
- the display is attracting attention as a next-generation flat panel display.
- a light emitting device (also referred to as an organic EL device or an organic EL element) using an organic compound in an EL layer exhibits various characteristics by laminating various organic compounds.
- organic compounds there are more than one million known organic compounds.
- the film thickness of each laminated layer, the concentration ratio of the organic compound, and the like also affect the characteristics of the light emitting device. Therefore, a great deal of effort is required to optimize the structure of the light emitting device (also simply referred to as the element structure).
- Patent Document 1 discloses a novel substance search method using machine learning and an apparatus therefor.
- organic EL device In order to optimize the structure of the organic EL device, it depends largely on the expert.
- the technology of organic EL devices spans multiple academic fields and requires knowledge of organic chemistry, semiconductor physics, electrical engineering, etc., so high skill is required. In addition, it takes a long time to optimize, so it is necessary to remember the process.
- one aspect of the present invention predicts the characteristics of the light emitting device from the information about the light emitting device by using the information about the plurality of light emitting devices and the characteristics of the plurality of light emitting devices for machine learning. Provide a system.
- the characteristic prediction system has an input unit, a processing unit, a calculation unit, and an output unit.
- the input unit has a function of supplying the structure of the light emitting device or the characteristics of the light emitting device.
- the processing unit has a function of generating a data set for learning or data used for predicting characteristics, and a function of quantifying the molecular structure of an organic compound.
- the arithmetic unit has a function of performing supervised learning based on the learning data set and a function of inferring the characteristics of the light emitting device from the data based on the learning result of supervised learning.
- the output unit has a function of providing the result of inference.
- the light emitting device has a plurality of layers, one or more of the plurality of layers has one or a plurality of organic compounds, and the training data set has a plurality of training data.
- Each of the plurality of training data has an input data and a teacher data for the input data, and the input data includes the stacking order of the plurality of layers and one or more organics possessed by one or more of the plurality of layers. It has the molecular structure of the compound, the film thickness of each of the plurality of layers, and the concentration ratio of the plurality of organic compounds in the layer having the plurality of organic compounds, and the teacher data has the characteristics of the light emitting device with respect to the input data. Is preferable.
- the characteristics of the light emitting device are brightness-current density characteristic, current efficiency-luminance characteristic, brightness-voltage characteristic, current-voltage characteristic, external quantum efficiency-luminance characteristic, chromaticity-luminance characteristic, and light emission. It is preferably one or more of the spectrum and the reliability.
- the characteristic prediction system has an input unit, a processing unit, a calculation unit, and an output unit.
- a data set for learning and data used for predicting characteristics are input to the input unit.
- the processing unit has a function of quantifying the molecular structure of the organic compound.
- the arithmetic unit has a function of performing supervised learning based on the learning data set and a function of inferring the reliability of the light emitting device from the data based on the learning result of supervised learning.
- the output unit has a function of providing the result of inference.
- the training data set has a plurality of training data, and each of the plurality of training data has an input data and a plurality of teacher data for the input data.
- the input data includes the stacking order of the plurality of layers, the molecular structure of one or more organic compounds possessed by each of the plurality of layers, the thickness of each of the plurality of layers, and the plurality of layers having the plurality of organic compounds. It has a concentration ratio of organic compounds and an external quantum efficiency-brightness characteristic of the light emitting device.
- the teacher data has the reliability of the light emitting device with respect to the input data.
- the molecular structure of the organic compound is quantified by using a quantitative structure-activity relationship or a fingerprint method.
- the neural network for supervised learning, and the neural network has two or more hidden layers between an input layer and an output layer.
- the storage unit has a storage unit, and the learned model generated by supervised learning is stored in the storage unit.
- the effect of one aspect of the present invention is not limited to the effects listed above.
- the effects listed above do not preclude the existence of other effects.
- the other effects are the effects not mentioned in this item, which are described below. Effects not mentioned in this item can be derived from those described in the description, drawings, etc. by those skilled in the art, and can be appropriately extracted from these descriptions.
- one aspect of the present invention has at least one of the above-listed effects and / or other effects. Therefore, one aspect of the present invention may not have the effects listed above in some cases.
- FIG. 1A and 1B are diagrams for explaining the characteristic prediction system.
- FIG. 2 is a flow showing a method of predicting the characteristics of a light emitting device.
- FIG. 3 is a flow showing a method of predicting the characteristics of the light emitting device.
- 4A and 4B are diagrams for explaining the configuration of the neural network.
- FIG. 5 is a diagram showing the structure of the light emitting device.
- 6A to 6D are diagrams illustrating a learning data set.
- FIG. 7 is a diagram showing a method of converting a molecular structure by a fingerprint method.
- 8A to 8D are diagrams illustrating the types of fingerprinting methods.
- FIG. 9 is a diagram illustrating the conversion from the SMILES notation to the notation by the fingerprint method.
- FIG. 10 is a diagram illustrating the types of fingerprinting methods and duplication of notation.
- 11A and 11B are diagrams for explaining an example in which the molecular structure is represented by using a plurality of
- FIG. 1A is a diagram showing a configuration example of the characteristic prediction system 100.
- the characteristic prediction system 100 includes an input unit 101, a processing unit 102, a calculation unit 103, and an output unit 104.
- the input unit 101 and the processing unit 102 are connected via a transmission line. Further, the processing unit 102 and the calculation unit 103 are connected via a transmission line. Further, the calculation unit 103 and the output unit 104 are connected via a transmission line. The input unit 101, the processing unit 102, the calculation unit 103, and the output unit 104 may be connected to each other via a transmission line.
- the above transmission line includes a local area network (LAN) and a network such as the Internet.
- LAN local area network
- the network can use either wired or wireless communication, or both.
- 3G third generation mobile communication system
- LTE Various means such as a communication means compliant with (sometimes called 3.9G), a communication means compliant with the 4th generation mobile communication system (4G), or a communication means compliant with the 5th generation mobile communication system (5G).
- Communication means can be used.
- the input unit 101 has a function of supplying data IN1 and data IN2 to the processing unit 102.
- Each of the data IN1 and the data IN2 includes data such as information about the light emitting device and characteristics of the light emitting device.
- the data IN2 includes at least information about the light emitting device.
- the data IN2 may include data such as characteristics of the light emitting device.
- the data IN1 and the data IN2 may be supplied to the processing unit 102 at the same timing or at different timings.
- the data IN1 is supplied at different timings, it is preferable that the data IN1 is supplied to the processing unit 102 and then the data IN2 is supplied to the processing unit 102.
- the processing unit 102 has a function of generating a learning data set DS from the data IN1. Further, the processing unit 102 has a function of generating data DI used for predicting characteristics from the data IN2. Further, the processing unit 102 has a function of quantifying the molecular structure of the organic compound. The processing unit 102 may have a function of quantifying the structure of the inorganic compound.
- the calculation unit 103 has a function of performing machine learning.
- the arithmetic unit 103 preferably has a function of performing supervised learning based on the learning data set DS. Further, it is preferable that the arithmetic unit 103 has a function of inferring the characteristics of the light emitting device from the data DI used for predicting the characteristics based on the learning result of the supervised learning. By performing supervised learning, the accuracy of inference of the characteristics of the light emitting device can be improved.
- a trained model may be generated by performing the supervised learning.
- a neural network for the above supervised learning.
- deep learning for example, a convolutional neural network (CNN: Convolutional Neural Network), a recurrent neural network (RNN: Recurrent Neural Network), an autoencoder (AE: Autoencoder), a variable autoencoder (VAE: Variational Forest) Autoencoder (Random Forest), support vector machine (Support Vector Machine), gradient boosting (Gradient Boosting), hostile generation network (GAN: Generative Adversarial Networks), and the like are preferably used.
- the product-sum operation is performed.
- the calculation unit 103 preferably has a product-sum calculation circuit.
- the product-sum calculation circuit a digital circuit or an analog circuit may be used.
- the product-sum calculation may be performed on the software using a program.
- the calculation unit 103 may have a function of performing semi-supervised learning as machine learning.
- the training data is given data on the characteristics of the light emitting device as teacher data (also called a teacher signal, correct answer label, etc.), but in order to prepare the teacher data, the light emitting device is actually manufactured and the characteristics of the light emitting device are prepared. Need to be measured.
- semi-supervised learning requires less learning data to be included in the learning data set, so it is possible to make inferences while reducing the time spent creating learning data. it can.
- the output unit 104 has a function of providing data OUT.
- the data OUT includes the result of the above inference.
- a characteristic prediction system that predicts the characteristics of the light emitting device is configured.
- the characteristic prediction system 100 is not limited to the above configuration.
- a storage unit 105 may be provided in addition to the input unit 101, the processing unit 102, the calculation unit 103, and the output unit 104.
- the storage unit 105 has a function of storing the trained model generated by the calculation unit 103. Since the characteristic prediction system 100 has the storage unit 105, it is possible to predict the characteristics of the light emitting device based on the trained model. Therefore, by generating the trained model in advance, it is not necessary to perform supervised learning when predicting the characteristics of the light emitting device. Therefore, the time required to predict the characteristics of the light emitting device can be shortened.
- the storage unit 105 is connected to the calculation unit 103 via a transmission line.
- the storage unit 105 may be connected to each of the input unit 101, the processing unit 102, the calculation unit 103, and the output unit 104 via a transmission line.
- FIG. 2 is a flow chart showing an example of a method for predicting the characteristics of a light emitting device.
- the method of predicting the characteristics of the light emitting device includes steps S001 to S007.
- Steps S001 to 003 are steps for performing supervised learning
- steps S004 to S007 are steps for inferring the characteristics of the light emitting device.
- Step S001 is a step of inputting the first data. Step S001 is performed by the input unit 101 shown in FIGS. 1A and 1B. Further, the first data corresponds to the data IN1 shown in FIGS. 1A and 1B. That is, the first data includes data such as information on the light emitting device and characteristics of the light emitting device.
- Step S002 is a step of creating a learning data set from the first data. Step S002 is performed by the processing unit 102 shown in FIGS. 1A and 1B.
- the learning data set corresponds to the learning data set DS shown in FIGS. 1A and 1B.
- step S002 includes a step of quantifying the molecular structure of the organic compound.
- the quantified molecular structure of the organic compound is included in the above-mentioned learning data set.
- step S002 may include a step of quantifying the structure of the inorganic compound.
- the quantified structure of the inorganic compound may be included in the above-mentioned learning data set.
- Step S003 is a step of performing supervised learning based on the above learning data set. Step S003 is performed by the calculation unit 103 shown in FIGS. 1A and 1B. It is preferable to use a neural network (particularly deep learning) for the supervised learning. In addition, the trained model for predicting the characteristics of the light emitting device may be generated by the supervised learning.
- Step S004 is a step of inputting the second data. Step S004 is performed by the input unit 101 shown in FIGS. 1A and 1B.
- the second data corresponds to the data IN2 shown in FIGS. 1A and 1B. That is, the second data includes at least information about the light emitting device.
- the second data may include data such as characteristics of the light emitting device.
- step S004 may be carried out at the same time as step S001, may be carried out during the execution of steps S001 to S003, or may be carried out after being carried out up to step S003.
- Step S005 is a step of creating data used for predicting characteristics from the second data. Step S005 is performed by the processing unit 102 shown in FIGS. 1A and 1B. That is, the data corresponds to the data DI used for predicting the characteristics shown in FIGS. 1A and 1B.
- step S005 includes a step of quantifying the molecular structure of the organic compound.
- the quantified molecular structure of the organic compound is included in the above data.
- step S005 may include a step of quantifying the structure of the inorganic compound.
- the structure of the quantified inorganic compound may be included in the above data.
- Step S006 is a step of inferring the characteristics of the light emitting device from the above data based on the learning result of the above supervised learning. Step S006 is performed by the calculation unit 103 shown in FIGS. 1A and 1B.
- Step S007 is a step of outputting the third data. Step S007 is performed by the output unit 104 shown in FIGS. 1A and 1B.
- the third data corresponds to the data OUT shown in FIGS. 1A and 1B. That is, the third data includes the result of the above inference.
- the characteristics of the light emitting device can be predicted.
- the method of predicting the characteristics of the light emitting device is not limited to the above.
- the method of predicting the characteristics of the light emitting device may include step S008 after step S003.
- Step S008 is a step of storing the trained model generated in step S003.
- the trained model is stored in the storage unit 105 shown in FIG. 1B.
- Neural network ⁇ Neural network
- the neural network NN can be composed of an input layer IL, an output layer OL, and a hidden layer HL.
- the input layer IL, the output layer OL, and the hidden layer HL each have one or more neurons (units).
- the hidden layer HL may be one layer or two or more layers.
- a neural network having two or more hidden layers HL can also be called a deep neural network (DNN).
- DNN deep neural network
- learning using a deep neural network can also be called deep learning.
- Input data is input to each neuron in the input layer IL.
- the output signals of the neurons in the anterior layer or the posterior layer are input to each neuron in the hidden layer HL.
- the output signal of the presheaf neuron is input to each neuron in the output layer OL.
- each neuron may be connected to all neurons in the anterior-posterior layer (fully connected), or may be connected to some neurons.
- FIG. 4B shows an example of calculation by neurons.
- two neurons in the presheaf layer that output a signal to the neuron N are shown.
- the output x 1 of the presheaf neuron and the output x 2 of the presheaf neuron are input to the neuron N.
- the sum of the multiplication result of the output x 1 and the weight w 1 (x 1 w 1 ) and the multiplication result of the output x 2 and the weight w 2 (x 2 w 2 ) x 1 w 1 + x 2 w 2 Is calculated, then the bias b is added as needed to give the value a x 1 w 1 + x 2 w 2 + b.
- the activation function h for example, a sigmoid function, a tanh function, a softmax function, a ReLU function, a threshold function, and the like can be used.
- the operation by the neuron includes the operation of adding the product of the output of the neuron in the previous layer and the weight, that is, the product-sum operation (x 1 w 1 + x 2 w 2 above ).
- This product-sum operation may be performed by software using a program or by hardware.
- a product-sum calculation circuit can be used.
- the product-sum calculation circuit a digital circuit or an analog circuit may be used.
- the processing speed can be improved and the power consumption can be reduced by reducing the circuit scale of the product-sum calculation circuit or reducing the number of times the memory is accessed.
- the product-sum calculation circuit may be composed of a transistor (hereinafter, also referred to as Si transistor) containing silicon (single crystal silicon or the like) in the channel forming region, or a transistor (hereinafter, OS) containing an oxide semiconductor in the channel forming region. It may be configured by a transistor). In particular, since the OS transistor has an extremely small off-current, it is suitable as a transistor constituting an analog memory of a product-sum calculation circuit.
- the product-sum calculation circuit may be configured by using both the Si transistor and the OS transistor.
- the product-sum calculation circuit may be included in the calculation unit 103 of the characteristic prediction system 100.
- the neural network In one aspect of the present invention, it is preferable to use deep learning. That is, it is preferable to use a neural network having two or more hidden layers HL.
- the above is an explanation of an example of a method for predicting the characteristics of a light emitting device.
- a light emitting device is basically a device in which a layer containing a light emitting material (also referred to as a light emitting layer) is sandwiched between a pair of electrodes. By applying a voltage to the device, luminescence can be obtained from the luminescent material.
- An organic compound or an inorganic compound can be used as the luminescent material.
- the light emitting layer may be provided by using one organic compound or one inorganic compound, may be provided by mixing or laminating a plurality of organic compounds, or may be provided by mixing or stacking a plurality of inorganic compounds. It may be provided in a laminated manner, or may be provided by mixing or laminating an organic compound and an inorganic compound.
- a light emitting device using an organic compound as a light emitting material will be described as an example.
- FIG. 5 is a schematic diagram showing the structure of the light emitting device 10.
- the light emitting device 10 has a structure in which a plurality of layers are laminated.
- the light emitting device 10 has a layer 20 in which n layers (n is an integer of 3 or more) are laminated. That is, the layer 20 is composed of the layers 20 (1) to the layers 20 (n). Note that the substrate is not shown in FIG.
- the light emitting device has a structure in which a layer containing a light emitting material is sandwiched between a pair of electrodes.
- layer 20 (1) functions as one of the anode and cathode of the light emitting device 10
- layer 20 (n) functions as the other of the anode and cathode of the light emitting device.
- the anode and / or cathode of the light emitting device 10 is not limited to a single layer, but may be laminated.
- one of the anode and the cathode of the light emitting device 10 is composed of layers 20 (1) to 20 (j) (j is an integer of 1 or more (n-2) or less), and the light emitting device 10 is composed of layers 20 (1) to 20 (j).
- the other side of the anode and the cathode is composed of a layer 20 (k) to a layer 20 (n) (k is an integer of (j + 2) or more and n or less).
- k is an integer of (j + 2) or more and n or less.
- a part or all of the layers 20 (2) to 20 (n-1) is a layer containing an organic compound. Further, any one or more of layers 20 (2) to 20 (n-1) has a luminescent material.
- all of layers 20 (2) to 20 (n-1) are regarded as layers containing an organic compound.
- the layers (layers 20 (2) to 20 (n-1)) located between the pair of electrodes may be collectively referred to as an intermediate layer 25.
- the intermediate layer 25 is composed of a single layer. That is, the intermediate layer 25 is composed of only the layer 20 (2).
- the structure of the light emitting device 10 in which n is 3 may be referred to as a single structure.
- the intermediate layer 25 is composed of a plurality of layers. That is, the intermediate layer 25 has a laminated structure.
- the intermediate layer 25 has a three-layer laminated structure.
- the intermediate layer 25 can have a laminated structure of a hole transport layer, a light emitting layer, and an electron transport layer. This makes it possible to increase the current efficiency and the external quantum efficiency of the light emitting device 10.
- the intermediate layer 25 has a structure in which 4 or more layers are laminated. Therefore, any one or more of the hole transport layer, the light emitting layer, and the electron transport layer can have a laminated structure.
- the intermediate layer 25 has a structure in which a hole transport layer, a light emitting layer, and an electron transport layer are sequentially laminated.
- the stacking order is reversed.
- the characteristics of the light emitting device are influenced by the film thickness of each of the layers 20 (1) to 20 (n).
- the intermediate layer 25 has a laminated structure of 5 layers.
- the intermediate layer 25 can have a laminated structure of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
- the current efficiency and the external quantum efficiency of the light emitting device 10 can be further improved.
- the intermediate layer 25 has a structure in which 6 or more layers are laminated. Therefore, any one or more of the hole injection layer, the hole transport layer, the light emitting layer, the electron transport layer, and the electron injection layer can have a laminated structure.
- the intermediate layer 25 has a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer in that order. It has a laminated structure.
- the stacking order is reversed.
- the light emitting layer has a light emitting material or a plurality of materials in an appropriate combination, and can be configured to obtain fluorescent light emission or phosphorescent light emission exhibiting a desired light emitting color. Further, the light emitting layer may have a laminated structure having different light emitting colors. In this case, different materials may be used for the luminescent substance and other substances used for the laminated light emitting layers.
- the layer 20 (1) is a reflective electrode
- the layer 20 (n) is a semi-transmissive / semi-reflective electrode
- a micro-optical resonator (microcavity) structure is formed, so that the intermediate layer 25 is included.
- the light emitted from the light emitting layer can be resonated between both electrodes to enhance the light emitted through the layer 20 (n).
- the transparent conductive film is used.
- Optical adjustment can be performed by controlling the film thickness.
- the distance between the electrodes of the layer 20 (1) and the layer 20 (n) is m 1 ⁇ / 2 (where m 1 is a natural number) with respect to the wavelength ⁇ of the light obtained from the light emitting layer. .) It is preferable to adjust so that it is in the vicinity.
- the optical distance from n) to the region (light emitting region) where the desired light of the light emitting layer is obtained is adjusted to be close to (2 m 2 + 1) ⁇ / 4 (where m 2 is a natural number). It is preferable to do so.
- the light emitting region referred to here refers to a recombination region of holes and electrons in the light emitting layer.
- the spectrum of a specific monochromatic light obtained from the light emitting layer can be narrowed, and light emission with good color purity can be obtained.
- the distance between the electrodes of the layer 20 (1) and the layer 20 (n) can be said to be strictly the total thickness from the reflection region in the layer 20 (1) to the reflection region in the layer 20 (n). ..
- the optical distance between the layer 20 (1) or the layer 20 (n) and the light emitting layer from which the desired light can be obtained is, strictly speaking, the reflection region in the layer 20 (1) or the layer 20 (n) and the desired optical distance.
- the layer 20 (1) or the layer 20 (n) is the optical distance from the light emitting region in the light emitting layer from which light is obtained.
- the layer 20 (1) or the layer 20 (n) is the reflection region and an arbitrary position of a light emitting layer from which desired light can be obtained is a light emitting region.
- the light emitting device 10 since the light emitting device 10 has a microcavity structure, light of different wavelengths (monochromatic light) can be extracted even if the light emitting device 10 has the same intermediate layer 25. Therefore, when the light emitting device 10 is used as the display element of the display device, it is not necessary to separately paint (for example, RGB) to obtain different light emitting colors. Therefore, it is easy to realize high definition. It can also be combined with a colored layer. Further, since it is possible to increase the emission intensity in the front direction of a specific wavelength, it is possible to reduce the power consumption.
- the light emitting device 10 does not have to have a microcavity structure.
- the light emitting layer has a structure that emits white light, and by providing the colored layer, light of a predetermined color (for example, RGB) can be extracted. Further, when forming the intermediate layer 25, if different coatings are performed to obtain different emission colors, light of a predetermined color can be taken out without providing a colored layer.
- a predetermined color for example, RGB
- At least one of the layer 20 (1) and the layer 20 (n) can be a translucent electrode (transparent electrode, semi-transmissive / semi-reflective electrode, etc.).
- the electrode having translucency is a transparent electrode
- the transmittance of visible light of the transparent electrode is 40% or more.
- the reflectance of visible light of the semi-transmissive / semi-reflective electrode is 20% or more and 80% or less, preferably 40% or more and 70% or less.
- the resistivity of these electrodes is preferably 1 ⁇ 10 -2 ⁇ cm or less.
- the visible light reflectance of the reflective electrode is 40% or more and 100% or less, preferably 70%. It shall be 100% or less.
- the resistivity of this electrode is preferably 1 ⁇ 10 -2 ⁇ cm or less.
- the intermediate layer 25 has a three-layer laminated structure.
- the intermediate layer 25 can have a laminated structure of the first light emitting layer, the charge generating layer, and the second light emitting layer. That is, the light emitting device 10 can have a tandem structure. By forming the light emitting device 10 in a tandem structure, the current efficiency and the external quantum efficiency of the light emitting device 10 can be improved.
- the intermediate layer 25 has a structure in which 4 or more layers are laminated.
- a layer sandwiched between the layer 20 (1) and the charge generation layer (sometimes referred to as a first intermediate layer), a charge generation layer, and between the charge generation layer and the layer 20 (n).
- Any one or more of the layers sandwiched between the layers (sometimes referred to as a second intermediate layer) can have a laminated structure.
- each of the first intermediate layer and the second intermediate layer can have the same configuration as the intermediate layer 25 having the above-mentioned five-layer laminated structure.
- the charge generation layer When a voltage is supplied between the layers 20 (1) and the layers 20 (n), the charge generation layer injects electrons into one of the first intermediate layer and the second intermediate layer, and injects electrons into the other. It has a function of injecting holes. Therefore, when a voltage is supplied so that the potential of the layer 20 (1) is higher than the potential of the layer 20 (n), electrons are injected from the charge generation layer into the first intermediate layer, and electrons are injected from the charge generation layer to the second intermediate layer. Holes will be injected into the layer.
- the charge generation layer preferably transmits visible light from the viewpoint of light extraction efficiency. Specifically, the transmittance of visible light in the charge generation layer is preferably 40% or more. Further, the conductivity of the charge generation layer may be lower than the conductivity of the layer 20 (1) or the conductivity of the layer 20 (n).
- the intermediate layer 25 has a laminated structure of 5 layers.
- the intermediate layer 25 has a laminated structure of a first light emitting layer, a first charge generating layer, a second light emitting layer, a second charge generating layer, and a third light emitting layer. be able to. That is, the light emitting device 10 can have a tandem structure. By forming the light emitting device 10 in a tandem structure, the current efficiency and the external quantum efficiency of the light emitting device 10 can be further improved.
- the intermediate layer 25 has a structure in which 6 or more layers are laminated.
- a layer sandwiched between the layer 20 (1) and the first charge generation layer (sometimes referred to as a first intermediate layer), a first charge generation layer, a first charge generation layer and a second
- a layer sandwiched between the charge generation layer (sometimes referred to as a second intermediate layer), a second charge generation layer, and a layer sandwiched between the second charge generation layer and the layer 20 (n).
- Any one or more of the layers (sometimes referred to as a third intermediate layer) can have a laminated structure.
- each of the first intermediate layer, the second intermediate layer, and the third intermediate layer has the same configuration as the intermediate layer 25 having the above-mentioned five-layer laminated structure. Can be done.
- the intermediate layer 25 may have a configuration having three or more charge generation layers and four or more intermediate layers. By increasing the number of charge generation layers and the number of intermediate layers, the current efficiency and external quantum efficiency of the light emitting device 10 can be increased. It is preferable that n is appropriately adjusted according to the number of layers of the charge generation layer.
- the layer contained in the intermediate layer 25 may be formed by co-depositing a plurality of organic compounds.
- the layer formed by co-deposition has a plurality of organic compounds. Therefore, the intermediate layer 25 may include a layer having a plurality of organic compounds.
- the concentration ratio of the plurality of organic compounds affects the characteristics of the light emitting device.
- Characteristics of light emitting device include, for example, the initial characteristics of the light emitting device, the result of the reliability test of the light emitting device (sometimes referred to as the reliability of the light emitting device), and the like.
- the initial characteristics of the light emitting device include, for example, brightness-current density characteristic, current efficiency-luminance characteristic, brightness-voltage characteristic, current-voltage characteristic, external quantum efficiency-luminance characteristic, chromaticity-luminance characteristic, and emission spectrum.
- the initial brightness is set to a certain value
- the light emitting device is driven under a constant current density condition, and the change in brightness with the driving time is measured.
- the brightness may be a standardized brightness with the initial brightness as 100%. It can be said that the smaller the decrease in brightness with the driving time, the better the reliability of the light emitting device.
- Data on the characteristics of the light emitting device are two-variable data and are often quantified.
- the learning data set 50 has learning data 51_1 to learning data 51_m (m is an integer of 2 or more).
- the learning data 51_1 to the learning data 51_m have input data 52_1 to input data 52_m and teacher data 53_1 to teacher data 53_m, respectively.
- the learning data 51_1 to the learning data 51_m include information on the light emitting device 10_1 to the light emitting device 10_m and data on the characteristics of the light emitting device 10_1 to the light emitting device 10_m, respectively.
- the target to be predicted in this embodiment is the characteristics of the light emitting device.
- the characteristics of the light emitting device include the type of organic compound used for the intermediate layer 25, the type of conductive material used for the layers 20 (1) and 20 (n) functioning as electrodes, and the layers 20 (1) to It is affected by the thickness of each of the layers 20 (n), the concentration ratio of the plurality of organic compounds in the layer having the plurality of organic compounds, and the like. Therefore, it is preferable to include these data in the training data set.
- the learning data set 50 is generated by the processing unit 102 shown in FIGS. 1A and 1B.
- the data IN1 input to the processing unit 102 includes information on the above-mentioned light emitting device, data on the characteristics of the above-mentioned light emitting device, and the like. Therefore, the learning data set is generated by extracting and processing or converting the data included in the data IN1.
- the data included in the learning data set used for supervised learning is quantified. Compared with the case where the training data set contains non-numerical data, the data included in the training data set is quantified, so that it is possible to prevent the machine learning model from becoming complicated.
- the input data 52_1 to the input data 52_m include information about the light emitting device 10_1 to the light emitting device 10_m, respectively.
- the teacher data 53_1 to the teacher data 53_m include data on the characteristics of the light emitting device 10_1 to the light emitting device 10_m, respectively.
- the characteristic data of the light emitting device 10_1 to the light emitting device 10_m are digitized data, they can be included in the teacher data 53_1 to the teacher data 53_m without any particular conversion.
- the characteristic data of the light emitting device 10_1 to the light emitting device 10_m may be included in the teacher data 53_1 to the teacher data 53_m, respectively, by extracting characteristic points. Further, points may be extracted so that the values of the control variables are evenly spaced and included in the teacher data 53_1 to the teacher data 53_m, respectively.
- Information about the light emitting device includes the structure of the light emitting device, the manufacturing conditions (process conditions) of the light emitting device, and the like.
- Information on the structure of the light emitting device includes, for example, the film thickness of each layer, the material contained in each layer, and the concentration ratio of the material contained in each layer.
- the type of the vapor deposition source shape, etc.
- the vapor deposition rate the film formation temperature
- the state of the vapor deposition chamber vacuum degree, etc.
- the atmosphere in which the light emitting device is exposed in the film formation process Purity of the organic compound of the vapor deposition source (type of impurities contained, etc.), type of measuring device, type of film forming device, film forming method, etc.
- the input data 52_1 includes information on the structure of the light emitting device 10_1 as information on the light emitting device 10_1.
- the film thicknesses of the layers 20 (1) to 20 (n) (film thickness 22 (1) to film thickness 22 (n)) and the layers 20 (1) to 20 (n) are respectively.
- the film thickness 22 (1) to the film thickness 22 (n) may be collectively referred to as the film thickness 22.
- the material 21 (1) to the material 21 (n) may be collectively referred to as the material 21.
- the concentration ratio 23 (1) to the concentration ratio 23 (n) may be collectively referred to as the concentration ratio 23.
- the concentration ratio 23 included in the input data is preferably described by the weight ratio in the layer.
- the concentration ratio 23 included in the input data may be described as p: q.
- the concentration ratio 23 included in the input data may be described as 1: 0 or 0: 0.
- the concentration ratio 23 included in the input data may be described as p: q: r (r is a real number of 0 or more).
- the concentration ratio 23 included in the input data is not limited to the case where it is described by the weight ratio, and may be described by the molar concentration ratio. Further, the concentration ratio 23 included in the input data is not limited to the case where it is described by the concentration ratio in the layer, and may be described by the concentration ratio at the time of co-deposition. Further, the concentration ratio 23 included in the input data is not limited to the case where it is described by a ratio such as p: q, and may be described by a ratio such as q / p.
- the unit of the film thickness is unified in the film thickness 22 (1) to the film thickness 22 (n).
- the amount of data included in the learning data set 50 can be reduced. Therefore, the time spent on data transmission / reception, supervised learning, reasoning, etc. can be reduced.
- the data included in the learning data set used for supervised learning is quantified. Since the film thickness 22 and the concentration ratio 23 are input as numerical values, they can be included in the input data 52_1 without any particular conversion.
- the information regarding the organic compound possessed by the light emitting device is the molecular structure described in the structural formula, SMILES (Simplified molecular input line entry specialization syntax) (may be simply referred to as molecular structure). It is often input as non-numerical data such as the name by the compound nomenclature determined by IUPAC. Therefore, it is preferable to quantify the information (for example, molecular structure) about the organic compound that is input as non-numerical data.
- Physical properties of organic compounds include, for example, emission spectrum, absorption spectrum, transmission spectrum, reflection spectrum, S1 level, T1 level, oxidation potential, reduction potential, HOMO level, LUMO level, glass transition point, melting point, and crystallization. Examples include temperature and carrier mobility. Although these physical properties can be treated as numerical values, it takes a lot of labor to generate a learning data set because it is necessary to perform measurements and simulations.
- the molecular structure that identifies the material 21 is converted by a certain method.
- the certain method only needs to be able to express a molecular similarity.
- Quantitative structure-activity relationships (QSAR), fingerprints, graph structures, and the like are well known as methods for expressing molecular similarity.
- QSAR Quantitative structure-activity relationships
- fingerprints For example, it is preferable to quantify the molecular structure using linear or matrix notation. It can be used as learning data by quantifying the molecular structure that specifies the material 21.
- RDF radial distribution function
- OFM Orbital Field Matrix
- SMILES notation When information about organic compounds is input as non-numerical data other than SMILES notation, it is preferable to first convert it to SMILES notation.
- the SMILES notation is preferable as data handled by a computer because the organic compound is expressed as a continuous character string. Further, the SMILES notation and the fingerprint method described later are both classified into the linear notation and are preferable because they are easily converted to each other.
- RDKit an open source chemoinformatics toolkit, can be used to quantify the molecular structure.
- SMILES notation of the input molecular structure can be converted (quantified) into mathematical data by the fingerprint method.
- the molecular structure is represented by allocating a partial structure (fragment) of the molecular structure to each bit, and if the corresponding partial structure exists in the molecule, it must be "1". If so, "0" is set in the bit. That is, by using the fingerprint method, it is possible to obtain a mathematical formula that extracts the characteristics of the molecular structure.
- the formula of the molecular structure generally expressed by the fingerprint method has a bit length of several hundreds to tens of thousands, and is a size that is easy to handle. Further, by using the fingerprint method in order to express the molecular structure by the mathematical formulas of 0 and 1, it is possible to realize a very high-speed calculation process.
- FIG. 8A to 8D show an example of the types of fingerprint methods.
- Typical types of fingerprinting methods are the Circular type shown in FIG. 8A (a partial structure is composed of peripheral atoms up to a specified radius centered on the starting atom) and the Path-based type shown in FIG. 8B (starting point). The atom from the atom to the specified path length (path radius) is the partial structure), the Substructure keys type shown in FIG. 8C (the partial structure is defined for each bit), and the Atom pile shown in FIG. 8D.
- There are types (partial structures are atomic pairs generated for all atoms in the molecule). RDKit is equipped with each of these types of fingerprints.
- FIG. 9 is an example in which the molecular structure of a certain organic compound is actually expressed as a mathematical formula by the fingerprint method. In this way, the molecular structure can be converted to the SMILES notation and then to the fingerprint.
- the obtained mathematical formulas may be the same between different organic compounds having similar structures.
- fingerprint methods there are several types of fingerprint methods depending on the notation method, but the tendency of compounds to be the same is the Circular type (Morgan Fingerprint) and Path-based type (RDK Fingerprint) in FIG. , Substructure keys type (Avalon Fingerprint), Atom pair type (Hash atom pair), it differs depending on the notation method.
- Substructure keys type Align Fingerprint
- Atom pair type Haash atom pair
- the fingerprint method used for learning it is preferable to use a fingerprint method in which the notation of each organic compound is different when the molecular structure of each organic compound to be learned is described using at least one of them.
- FIG. 10 it can be seen that compounds having different Atom pair types can be represented without duplication, but there are cases where other notation methods can be used without duplication depending on the population of organic compounds to be trained.
- the fingerprint method when describing the molecular structure of an organic compound by the fingerprint method, it is preferable to use a plurality of different types of fingerprint methods. Any number of types may be used, but two or three types are preferable because they are easy to handle in terms of data volume.
- identify the molecular structure of the organic compound by connecting the formulas written by one type of fingerprinting method to the formulas written by another type of fingerprinting method.
- 11A and 11B show an example of a method of describing the molecular structure of an organic compound using a plurality of fingerprints of different types.
- the fingerprint method is a method of describing the presence or absence of a partial structure, and information on the entire molecular structure is lost.
- the molecular structure is mathematically expressed using multiple fingerprints of different types, different partial structures are generated for each fingerprint type, and information related to the entire molecular structure is complemented from the information on the presence or absence of these partial structures. Can be done. If a feature that cannot be expressed by one fingerprint has a large effect on the characteristics of the light emitting device, it is complemented by another fingerprint, so it is effective to describe the molecular structure using multiple fingerprints of different types. Is.
- the radius r is preferably 3 or more, and more preferably 5 or more.
- the radius r is the number of atoms that are connected and counted from the atom, with a certain atom as the starting point as 0.
- the fingerprint can reduce the possibility that a description that completely matches the notation is generated between each organic compound, but the bit length is made too large. If this happens, there will be a trade-off that the calculation cost and database management cost will increase.
- the notation is completely matched as a whole. May not occur. As a result, it is possible to generate a state in which a plurality of organic compounds whose fingerprint notations are exactly the same are not generated with a bit length as small as possible.
- the bit length of the fingerprint to be generated is not particularly limited, but considering the calculation cost and the management cost of the database, if each molecule has a molecular weight of up to about 2000, the bit length is 4096 or less for each fingerprint type. Even if it is preferably 2048 or less, and in some cases 1024 or less, it is possible to generate a fingerprint in which the notation does not completely match between the organic compounds.
- bit length of the fingerprint generated by each fingerprint type may be appropriately adjusted in consideration of the characteristics of the type and the entire molecular structure, and does not need to be unified.
- the bit length may be represented by 1024 bits in the Atom Pair type and 2048 bits in the Circular type, and they may be concatenated.
- the learning data 51_2 to the learning data 51_m including the digitized data have the same configuration as the learning data 51_1.
- the material 21 (k + 1) is included in the learning data. It is preferable to input zero (fill in zero) for the material 21 (n), the film thickness 22 (k + 1) to the film thickness 22 (n), and the concentration ratio 23 (k + 1) to the concentration ratio 23 (n). ..
- n it is preferable to specify the value of n in the learning data set. By fixing the value of n, the number of neurons (units) possessed by the input layer IL can be determined.
- N is preferably 5 or more, and more preferably 7 or more.
- the upper limit of n is not particularly limited, but if the value of n is too large, the number of neurons in the input layer IL increases, and the time spent on supervised learning and inference may increase. Therefore, for example, n may be 30 or less.
- each of the input data 52_1 to the input data 52_m may not include information about the layers 20 (1) and 20 (n), which are the anodes or cathodes of the light emitting device 10.
- the amount of data included in the learning data set 50 is reduced. Therefore, the time spent on data transmission / reception, supervised learning, and inference can be reduced.
- FIG. 6A shows a case where the input data 52_1 to the input data 52_m include information about the light emitting device 10_1 to the light emitting device 10_m, respectively, but the present invention is not limited to this.
- the input data 52_1 to the input data 52_m include information about the light emitting device 10_1 to the light emitting device 10_m and data of the first characteristic of the light emitting device 10_1 to the light emitting device 10_m, respectively.
- the teacher data 53_1 to the teacher data 53_m may include data of the second characteristic of the light emitting device 10_1 to the light emitting device 10_m, respectively.
- the first characteristic of the light emitting device 10_1 to the light emitting device 10_m and the second characteristic of the light emitting device 10_1 to the light emitting device 10_m are made different from each other.
- the initial characteristic of the light emitting device 10 may be used for the first characteristic of the light emitting device 10
- the reliability of the light emitting device 10 may be used for the second characteristic of the light emitting device 10.
- the reliability of the light emitting device has many factors that affect the reliability, and since each factor is complicatedly involved, it is difficult to predict by experience, and it is suitable as a target for guessing.
- the initial characteristics of the light emitting device 10 indirectly include information such as manufacturing conditions and measurement conditions of the light emitting device. Therefore, by adding the first characteristic of the light emitting device 10 to the input data, the information is given to the supervised learning, and the accuracy of predicting the reliability of the light emitting device can be improved.
- FIG. 6C shows a case where the input data 52_1 to the input data 52_m include information about the structure of the light emitting device 10_1 to the light emitting device 10_m, respectively, but the present invention is not limited to this.
- the input data 52_1 to the input data 52_m may include information on the structure of the light emitting device 10_1 to the light emitting device 10_m and information on the manufacturing conditions of the light emitting device, respectively.
- the input data 52_1 includes the material 21 (1), the film thickness 22 (1), the concentration ratio 23 (1), the vapor deposition rate 31 (1) of the material 21 (1), and the film formation temperature of the material 21 (1). It is preferable that 32 (1) and the like are included.
- the learning data set 50 may be composed only of data of light emitting devices having the same or similar light emitting colors. In other words, the learning data set 50 may be created for each emission color. This makes it possible to improve the accuracy of predicting the characteristics of the light emitting device. Further, the learning data set 50 may be composed of data of a light emitting device regardless of the light emitting color. This makes it possible to predict the characteristics of a light emitting device, which is highly versatile.
- the characteristics of the light emitting device can be predicted.
- the data used for predicting the characteristics is generated by the processing unit 102 shown in FIGS. 1A and 1B.
- the data IN2 input to the processing unit 102 includes at least information regarding the structure of the light emitting device.
- the data IN2 may include data such as characteristics of the light emitting device.
- the data used for predicting the characteristics should have the same structure as the input data of the learning data described above.
- the data used for predicting the characteristics may include information on the structure of the light emitting device.
- the data used for predicting the characteristics includes information on the structure of the light emitting device and light emission. It is desirable to include data on the characteristics of the device.
- the film thickness 22 (1) to the film thickness 22 (n), the material 21 (1) to the material 21 (n), and the concentration ratio 23 (1) to the concentration ratio 23 ( n) and so on are the data used for predicting the characteristics.
- one aspect of the present invention can provide a method for predicting the characteristics of a light emitting device. Moreover, one aspect of the present invention can provide a characteristic prediction system for predicting the characteristics of a light emitting device.
- the characteristics of the light emitting device can be predicted without using the physical properties of the organic compound contained in the light emitting device.
- optimization of the structure of the light emitting device can be accelerated by virtual screening. This can be interpolated by the non-linear or higher-order representation of the machine learning model, even if the person views the data and is not interpolated.
- cutting out the expressions obtained by the machine learning model in fragments and examining them it is possible to know the rules that were not noticed in the past.
- This embodiment can be implemented by appropriately combining some of them.
- DI data, DS: learning dataset, HL: hidden layer, IL: input layer, IN1: data, IN2: data, OL: output layer, OUT: data, 10: light emitting device, 10_1: light emitting device, 10_m: Light emitting device, 20: layer, 21: material, 22: film thickness, 23: concentration ratio, 25: intermediate layer, 31: vapor deposition rate, 32: deposition temperature, 50: learning data set, 51_1: learning data, 51_2: Learning data, 51_m: Learning data, 52_1: Input data, 52_m: Input data, 53_1: Teacher data, 53_m: Teacher data, 100: Characteristic prediction system, 101: Input unit, 102: Processing unit, 103: Calculation unit, 104: Output unit, 105: Storage unit
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Data Mining & Analysis (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Geometry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Computer Hardware Design (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Optics & Photonics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Databases & Information Systems (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
特性予測システムを提供する。 入力部と、処理部と、演算部と、出力部と、を有し、入力部は、発光デバイスの構造、または、発光デバイスの特性を供給する機能を有し、処理部は、学習用データセット、または、特性の予測に用いるデータを生成する機能と、有機化合物の分子構造を数値化する機能と、を有し、演算部は、学習用データセットに基づいて、教師あり学習を行う機能と、教師あり学習の学習結果を基にして、データから、発光デバイスの特性の推論を行う機能と、を有し、出力部は、推論の結果を提供する機能を有することで、有機化合物を含む層を有する発光デバイスの特性を予測する。
Description
本発明の一態様は、発光デバイスの特性を予測する方法に関する。また、本発明の一態様は、発光デバイスの特性を予測する特性予測システムに関する。
一対の電極間にEL(Electro Luminescence)層を挟んでなる発光デバイス(発光素子ともいう)は、薄型軽量、入力信号に対する高速な応答性、低消費電力などの特性を有することから、これらを適用したディスプレイは、次世代のフラットパネルディスプレイとして注目されている。
EL層に有機化合物を用いた発光デバイス(有機ELデバイス、有機EL素子ともいう)は、様々な有機化合物を積層することによって様々な特性を示す。しかしながら、有機化合物は、知られているだけでも100万種類を超える。更に、発光デバイスが積層構造で構成される場合、積層した各層の膜厚、有機化合物の濃度比なども、発光デバイスの特性に影響を与える。したがって、発光デバイスの構造(単に素子構造ともいう)の最適化に大きな労力を要する。
近年、機械学習などの方法を利用して分類、推定、予測などを行う方法が大きな進化を遂げている。ニューラルネットワーク(特に、ディープラーニング)による選別や予測の性能は大きく向上しており、様々な分野において優れた成果を上げている。特許文献1では、機械学習を用いた新規物質探索方法およびその装置について開示されている。
有機ELデバイスの構造を最適化するためには、熟練者によるところが大きい。有機ELデバイスの技術は複数の学問領域にまたがっており、有機化学、半導体物理、電気工学などの知識を要するため、高い熟練が必要とされる。また、最適化に長い年月が必要となるため、その過程を記憶する必要がある。
そこで、本発明の一態様は、発光デバイスの特性を予測する方法を提供することを課題の一とする。また、本発明の一態様は、発光デバイスの特性を予測するシステムを提供することを課題の一とする。また、本発明の一態様は、学習用データセットの生成方法を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
上記問題を鑑み、本発明の一態様は、複数の発光デバイスに関する情報と、当該複数の発光デバイスの特性とを機械学習に用いることで、発光デバイスに関する情報から、当該発光デバイスの特性を予測するシステムを提供する。
本発明の一態様は、有機化合物を含む層を有する発光デバイスの特性を予測する、特性予測システムである。特性予測システムは、入力部と、処理部と、演算部と、出力部と、を有する。入力部は、発光デバイスの構造、または、発光デバイスの特性を供給する機能を有する。処理部は、学習用データセット、または、特性の予測に用いるデータを生成する機能と、有機化合物の分子構造を数値化する機能と、を有する。演算部は、学習用データセットに基づいて、教師あり学習を行う機能と、教師あり学習の学習結果を基にして、データから、発光デバイスの特性の推論を行う機能と、を有する。出力部は、推論の結果を提供する機能を有する。
上記特性予測システムにおいて、発光デバイスは、複数の層を有し、複数の層のうち一以上は、一または複数の有機化合物を有し、学習用データセットは、複数の学習用データを有し、複数の学習用データのそれぞれは、入力データ、および入力データに対する教師データを有し、入力データは、複数の層の積層順と、複数の層のうち一以上が有する、一または複数の有機化合物の分子構造と、複数の層それぞれの膜厚と、複数の有機化合物を有する層における、複数の有機化合物の濃度比と、を有し、教師データは、入力データに対する発光デバイスの特性を有することが好ましい。
また、上記特性予測システムにおいて、発光デバイスの特性は、輝度−電流密度特性、電流効率−輝度特性、輝度−電圧特性、電流−電圧特性、外部量子効率−輝度特性、色度−輝度特性、発光スペクトル、および信頼性のいずれか一または複数であることが好ましい。
本発明の他の一態様は、有機化合物を含む層を有する発光デバイスの特性を予測する、特性予測システムである。特性予測システムは、入力部と、処理部と、演算部と、出力部と、を有する。入力部には、学習用データセットと、特性の予測に用いられるデータと、が入力される。処理部は、有機化合物の分子構造を数値化する機能を有する。演算部は、学習用データセットに基づいて、教師あり学習を行う機能と、教師あり学習の学習結果を基にして、データから、発光デバイスの信頼性の推論を行う機能と、を有する。出力部は、推論の結果を提供する機能を有する。学習用データセットは、複数の学習用データを有し、複数の学習用データのそれぞれは、入力データ、および入力データに対する教師データを複数有する。入力データは、複数の層の積層順と、複数の層それぞれが有する、一または複数の有機化合物の分子構造と、複数の層それぞれの膜厚と、複数の有機化合物を有する層における、複数の有機化合物の濃度比と、発光デバイスの外部量子効率−輝度特性と、を有する。教師データは、入力データに対する発光デバイスの信頼性を有する。
上記特性予測システムにおいて、有機化合物の分子構造の数値化は、定量的構造活性相関またはフィンガープリント法を用いて行われることが好ましい。
また、上記特性予測システムにおいて、教師あり学習に、ニューラルネットワークを用い、ニューラルネットワークは、入力層と、出力層との間に、2以上の隠れ層を有することが好ましい。
また、上記特性予測システムにおいて、記憶部を有し、記憶部には、教師あり学習により生成された学習済みモデルが記憶されることが好ましい。
本発明の一態様により、発光デバイスの特性を予測する方法を提供することができる。また、本発明の一態様により、発光デバイスの特性を予測するシステムを提供することができる。また、本発明の一態様により、学習用データセットの生成方法を提供することができる。
なお、本発明の一態様の効果は、上記列挙した効果に限定されない。上記列挙した効果は、他の効果の存在を妨げるものではない。なお、他の効果は、以下の記載で述べる、本項目で言及していない効果である。本項目で言及していない効果は、当業者であれば、明細書、図面などの記載から導き出せるものであり、これらの記載から適宜抽出することができる。なお、本発明の一態様は、上記列挙した効果、及び/又は他の効果のうち、少なくとも一つの効果を有するものである。したがって本発明の一態様は、場合によっては、上記列挙した効果を有さない場合もある。
図1A、図1Bは、特性予測システムを説明する図である。
図2は、発光デバイスの特性を予測する方法を示すフローである。
図3は、発光デバイスの特性を予測する方法を示すフローである。
図4A、図4Bは、ニューラルネットワークの構成を説明する図である。
図5は、発光デバイスの構造を示す図である。
図6A乃至図6Dは、学習用データセットを説明する図である。
図7は、フィンガープリント法による分子構造の変換方法を表す図である。
図8A乃至図8Dは、フィンガープリント法の種類について説明する図である。
図9は、SMILES表記からフィンガープリント法による表記への変換を説明する図である。
図10は、フィンガープリント法の種類と表記の重複について説明する図である。
図11A、図11Bは、複数のフィンガープリント法を用いて分子構造を表記した例を説明する図である。
図2は、発光デバイスの特性を予測する方法を示すフローである。
図3は、発光デバイスの特性を予測する方法を示すフローである。
図4A、図4Bは、ニューラルネットワークの構成を説明する図である。
図5は、発光デバイスの構造を示す図である。
図6A乃至図6Dは、学習用データセットを説明する図である。
図7は、フィンガープリント法による分子構造の変換方法を表す図である。
図8A乃至図8Dは、フィンガープリント法の種類について説明する図である。
図9は、SMILES表記からフィンガープリント法による表記への変換を説明する図である。
図10は、フィンガープリント法の種類と表記の重複について説明する図である。
図11A、図11Bは、複数のフィンガープリント法を用いて分子構造を表記した例を説明する図である。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨およびその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。したがって、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
なお、以下に説明する発明の構成において、同一部分または同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
また、図面において示す各構成の、位置、大きさ、範囲などは、理解の簡単のため、実際の位置、大きさ、範囲などを表していない場合がある。このため、開示する発明は、必ずしも、図面に開示された位置、大きさ、範囲などに限定されない。
また、本明細書にて用いる「第1」、「第2」、「第3」という序数詞は、構成要素の混同を避けるために付したものであり、数的に限定するものではないことを付記する。
(実施の形態1)
本実施の形態では、発光デバイスの特性を予測する特性予測システム、および発光デバイスの特性を予測する方法について説明する。
本実施の形態では、発光デバイスの特性を予測する特性予測システム、および発光デバイスの特性を予測する方法について説明する。
<特性予測システムの構成例>
特性予測システムの構成例について、図1A、および図1Bを用いて説明する。
特性予測システムの構成例について、図1A、および図1Bを用いて説明する。
図1Aは、特性予測システム100の構成例を示す図である。特性予測システム100は、入力部101と、処理部102と、演算部103と、出力部104と、を有する。
入力部101と、処理部102とは、伝送路を介して接続されている。また、処理部102と、演算部103とは、伝送路を介して接続されている。また、演算部103と、出力部104とは、伝送路を介して接続されている。なお、入力部101と、処理部102と、演算部103と、出力部104と、のそれぞれは、伝送路を介して接続されていてもよい。
上記伝送路には、ローカルエリアネットワーク(LAN)や、インターネットなどのネットワークが含まれる。また、当該ネットワークは、有線、および無線のいずれか一方、または両方による通信を用いることができる。
また、上記ネットワークにおいて無線通信を用いる場合、Wi−Fi(登録商標)、Bluetooth(登録商標)などの近距離通信手段の他に、第3世代移動通信システム(3G)に準拠した通信手段、LTE(3.9Gと呼ぶ場合もある)に準拠した通信手段、第4世代移動通信システム(4G)に準拠した通信手段、または第5世代移動通信システム(5G)に準拠した通信手段などの様々な通信手段を用いることができる。
入力部101は、データIN1、およびデータIN2を処理部102へ供給する機能を有する。データIN1、およびデータIN2のそれぞれには、発光デバイスに関する情報、発光デバイスの特性などのデータが含まれる。なお、データIN2には、少なくとも発光デバイスに関する情報が含まれる。また、データIN2には、発光デバイスの特性などのデータが含まれる場合がある。
データIN1、およびデータIN2の、処理部102への供給は、同じタイミングでもよいし、異なるタイミングでもよい。なお、異なるタイミングで供給される場合、データIN1が処理部102へ供給された後、データIN2が処理部102へ供給されるとよい。
処理部102は、データIN1から、学習用データセットDSを生成する機能を有する。また、処理部102は、データIN2から、特性の予測に用いるデータDIを生成する機能を有する。また、処理部102は、有機化合物の分子構造を数値化する機能を有する。なお、処理部102は、無機化合物の構造を数値化する機能を有してもよい。
演算部103は、機械学習を行う機能を有する。例えば、演算部103は、学習用データセットDSに基づいて、教師あり学習を行う機能を有することが好ましい。また、演算部103は、当該教師あり学習の学習結果を基にして、特性の予測に用いるデータDIから、発光デバイスの特性の推論を行う機能を有することが好ましい。教師あり学習を行うことで、発光デバイスの特性の推論の精度を高めることができる。なお、当該教師あり学習を行うことで、学習済みモデルを生成してもよい。
上記教師あり学習には、ニューラルネットワーク(特に、ディープラーニング)を用いることが好ましい。ディープラーニングとして、例えば、畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)、再帰型ニューラルネットワーク(RNN:Recurrent Neural Network)、オートエンコーダ(AE:Autoencoder)、変分オートエンコーダ(VAE:Variational Autoencoder)、ランダムフォレスト(Random Forest)、サポートベクターマシン(Support Vector Machine)、勾配ブースティング(Gradient Boosting)、敵対的生成ネットワーク(GAN:Generative Adversarial Networks)などを用いることが好ましい。
なお、ニューラルネットワークにおいては、積和演算が行われる。当該積和演算をハードウェアによって行う場合、演算部103は、積和演算回路を有することが好ましい。当該積和演算回路としては、デジタル回路を用いてもよいし、アナログ回路を用いてもよい。なお、当該積和演算は、プログラムを用いてソフトウェア上で行ってもよい。
演算部103は、機械学習として、半教師あり学習を行う機能を有してもよい。学習用データには、教師データ(教師信号、正解ラベルなどともいう)として発光デバイスの特性のデータが与えられるが、教師データを用意するには、実際に発光デバイスを作製し、発光デバイスの特性を測定する必要がある。教師あり学習と比べて、半教師あり学習は、学習用データセットに含まれる学習用データの数が少なくてもよいため、学習用データの作成に費やす時間を短縮しつつ、推論を行うことができる。
出力部104は、データOUTを提供する機能を有する。データOUTには、上記推論の結果が含まれる。
以上により、発光デバイスの特性を予測する、特性予測システムが構成される。
なお、特性予測システム100は、上記の構成に限られない。例えば、図1Bに示すように、入力部101、処理部102、演算部103、および出力部104に加えて、記憶部105を有してもよい。
記憶部105は、演算部103が生成した学習済みモデルを格納する機能を有する。特性予測システム100が記憶部105を有することで、学習済みモデルを基にして、発光デバイスの特性の予測を行うことができる。よって、学習済みモデルを予め生成しておくことで、発光デバイスの特性を予測する際、教師あり学習を実施する必要がなくなる。したがって、発光デバイスの特性を予測するのに要する時間を短縮することができる。
記憶部105は、演算部103と伝送路を介して接続されている。なお、記憶部105は、入力部101、処理部102、演算部103、および出力部104のそれぞれと、伝送路を介して接続されていてもよい。
以上が、特性予測システムの構成例についての説明である。
<特性を予測する方法>
次に、発光デバイスの特性を予測する方法の一例について、図2、図3、図4A、および図4Bを用いて説明する。
次に、発光デバイスの特性を予測する方法の一例について、図2、図3、図4A、および図4Bを用いて説明する。
図2は、発光デバイスの特性を予測する方法の一例を示すフロー図である。発光デバイスの特性を予測する方法は、ステップS001乃至ステップS007を有する。ステップS001乃至ステップ003は、教師あり学習を行う工程であり、ステップS004乃至ステップS007は、発光デバイスの特性の推論を行う工程である。
ステップS001は、第1のデータを入力する工程である。ステップS001は、図1Aおよび図1Bに示す入力部101にて行われる。また、当該第1のデータは、図1Aおよび図1Bに示すデータIN1に対応する。つまり、当該第1のデータには、発光デバイスに関する情報、発光デバイスの特性などのデータが含まれる。
ステップS002は、上記第1のデータから、学習用データセットを作成する工程である。ステップS002は、図1Aおよび図1Bに示す処理部102にて行われる。当該学習用データセットは、図1Aおよび図1Bに示す学習用データセットDSに対応する。
また、上記第1のデータに、有機化合物の分子構造が含まれる場合、ステップS002は、当該有機化合物の分子構造を数値化する工程を含む。なお、数値化された有機化合物の分子構造は、上記学習用データセットに含まれる。
また、上記第1のデータに、無機化合物の構造が含まれる場合、ステップS002は、当該無機化合物の構造を数値化する工程を含んでもよい。また、数値化された無機化合物の構造は、上記学習用データセットに含まれてもよい。
ステップS003は、上記学習用データセットに基づいて、教師あり学習を行う工程である。ステップS003は、図1Aおよび図1Bに示す演算部103にて行われる。当該教師あり学習に、ニューラルネットワーク(特に、ディープラーニング)を用いることが好ましい。なお、当該教師あり学習により、発光デバイスの特性を予測するための、学習済みモデルを生成してもよい。
ステップS004は、第2のデータを入力する工程である。ステップS004は、図1Aおよび図1Bに示す入力部101にて行われる。当該第2のデータは、図1Aおよび図1Bに示すデータIN2に対応する。つまり、当該第2のデータには、少なくとも発光デバイスに関する情報が含まれる。なお、当該第2のデータには、発光デバイスの特性などのデータが含まれる場合がある。
なお、ステップS004は、ステップS001と同時に実施してもよいし、ステップS001乃至ステップS003の実施中に実施してもよいし、ステップS003まで実施された後に実施してもよい。
ステップS005は、上記第2のデータから、特性の予測に用いるデータを作成する工程である。ステップS005は、図1Aおよび図1Bに示す処理部102にて行われる。つまり、当該データは、図1Aおよび図1Bに示す、特性の予測に用いるデータDIに対応する。
また、上記第2のデータに、有機化合物の分子構造が含まれる場合、ステップS005は、当該有機化合物の分子構造を数値化する工程を含む。なお、数値化された有機化合物の分子構造は、上記データに含まれる。
また、上記第2のデータに、無機化合物の構造が含まれる場合、ステップS005は、当該無機化合物の構造を数値化する工程を含んでもよい。また、数値化された無機化合物の構造は、上記データに含まれてもよい。
ステップS006は、上記教師あり学習の学習結果を基にして、上記データから、発光デバイスの特性の推論を行う工程である。ステップS006は、図1Aおよび図1Bに示す演算部103にて行われる。
ステップS007は、第3のデータを出力する工程である。ステップS007は、図1Aおよび図1Bに示す出力部104にて行われる。当該第3のデータは、図1Aおよび図1Bに示すデータOUTに対応する。つまり、当該第3のデータには、上記推論の結果が含まれる。
以上により、発光デバイスの特性を予測することができる。
なお、発光デバイスの特性を予測する方法は、上記に限られない。例えば、図3に示すように、発光デバイスの特性を予測する方法は、ステップS003の後に、ステップS008を有してもよい。
ステップS008は、ステップS003で生成された学習済みモデルを記憶する工程である。なお、当該学習済みモデルは、図1Bに示す記憶部105に格納される。学習済みモデルを予め生成しておくことで、発光デバイスの特性を予測する際、ステップS001乃至ステップS003の工程を省略することができる。よって、発光デバイスの特性を予測するのに要する時間を短縮することができる。
<<ニューラルネットワーク>>
ここで、教師あり学習に用いることができるニューラルネットワークについて説明する。
ここで、教師あり学習に用いることができるニューラルネットワークについて説明する。
図4Aに示すように、ニューラルネットワークNNは、入力層IL、出力層OL、および隠れ層HLによって構成することができる。入力層IL、出力層OL、および隠れ層HLはそれぞれ、1または複数のニューロン(ユニット)を有する。なお、隠れ層HLは、1層であってもよいし2層以上であってもよい。2層以上の隠れ層HLを有するニューラルネットワークはディープニューラルネットワーク(DNN)と呼ぶこともできる。また、ディープニューラルネットワークを用いた学習は深層学習(ディープラーニング)と呼ぶこともできる。
入力層ILの各ニューロンには、入力データが入力される。隠れ層HLの各ニューロンには、前層または後層のニューロンの出力信号が入力される。出力層OLの各ニューロンには、前層のニューロンの出力信号が入力される。なお、各ニューロンは、前後の層の全てのニューロンと結合されていてもよいし(全結合)、一部のニューロンと結合されていてもよい。
図4Bに、ニューロンによる演算の例を示す。ここでは、ニューロンNと、ニューロンNに信号を出力する前層の2つのニューロンを示している。ニューロンNには、前層のニューロンの出力x1と、前層のニューロンの出力x2が入力される。そして、ニューロンNにおいて、出力x1と重みw1の乗算結果(x1w1)と、出力x2と重みw2の乗算結果(x2w2)の総和x1w1+x2w2が計算された後、必要に応じてバイアスbが加算され、値a=x1w1+x2w2+bが得られる。そして、値aは活性化関数hによって変換され、ニューロンNから出力信号y=ahが出力される。活性化関数hとして、例えば、シグモイド関数、tanh関数、softmax関数、ReLU関数、しきい値関数などを用いることができる。
このように、ニューロンによる演算には、前層のニューロンの出力と重みの積を足し合わせる演算、すなわち積和演算が含まれる(上記のx1w1+x2w2)。この積和演算は、プログラムを用いてソフトウェア上で行ってもよいし、ハードウェアによって行われてもよい。積和演算をハードウェアによって行う場合は、積和演算回路を用いることができる。この積和演算回路としては、デジタル回路を用いてもよいし、アナログ回路を用いてもよい。積和演算回路にアナログ回路を用いる場合、積和演算回路の回路規模の縮小、または、メモリへのアクセス回数の減少による処理速度の向上および消費電力の低減を図ることができる。
積和演算回路は、チャネル形成領域にシリコン(単結晶シリコンなど)を含むトランジスタ(以下、Siトランジスタともいう)によって構成してもよいし、チャネル形成領域に酸化物半導体を含むトランジスタ(以下、OSトランジスタともいう)によって構成してもよい。特に、OSトランジスタはオフ電流が極めて小さいため、積和演算回路のアナログメモリを構成するトランジスタとして好適である。なお、SiトランジスタとOSトランジスタの両方を用いて積和演算回路を構成してもよい。
積和演算をハードウェアによって行う場合、積和演算回路は、特性予測システム100が有する演算部103に含まれるとよい。
以上が、ニューラルネットワークについての説明である。なお、本発明の一態様においては、ディープラーニングを用いることが好ましい。つまり、2層以上の隠れ層HLを有するニューラルネットワークを用いることが好ましい。
以上が、発光デバイスの特性を予測する方法の一例についての説明である。
<発光デバイスの特性を予測する方法の詳細>
以下では、発光デバイスの特性を予測する方法の詳細について、図5乃至図11Bを用いて説明する。
以下では、発光デバイスの特性を予測する方法の詳細について、図5乃至図11Bを用いて説明する。
<<発光デバイスの構造>>
はじめに、発光デバイスの構造について説明する。
はじめに、発光デバイスの構造について説明する。
発光デバイスは、基本的には、一対の電極間に発光性の材料を含む層(発光層ともいう。)を挟持したデバイスである。当該デバイスに電圧を印加することにより、発光性の材料から発光を得ることができる。発光性の材料として、有機化合物、または無機化合物を用いることができる。なお、発光層は、一の有機化合物または一の無機化合物を用いて設けてられてもよいし、複数の有機化合物を混合または積層して設けられてもよいし、複数の無機化合物を混合または積層して設けられてもよいし、有機化合物および無機化合物を混合または積層して設けられてもよい。以降では、発光性の材料として有機化合物を用いる発光デバイスを例として説明する。
図5は、発光デバイス10の構造を示す模式図である。発光デバイス10は、複数の層が積層した構造を有する。例えば、発光デバイス10は、n個(nは、3以上の整数である。)の層が積層した層20を有する。つまり、層20は、層20(1)乃至層20(n)で構成される。なお、図5では、基板を図示してない。
発光デバイスは、一対の電極間に発光性の材料を含む層を挟持した構造を有する。よって、層20(1)は、発光デバイス10の陽極および陰極の一方として機能し、層20(n)は、発光デバイスの陽極および陰極の他方として機能する。なお、発光デバイス10の陽極および/または陰極は、単層に限られず、積層であってもよい。このとき、発光デバイス10の陽極および陰極の一方は、層20(1)乃至層20(j)(jは1以上(n−2)以下の整数である。)で構成され、発光デバイス10の陽極および陰極の他方は、層20(k)乃至層20(n)(kは(j+2)以上n以下の整数である。)で構成される。以降では、説明を容易にするため、発光デバイス10の陽極および陰極はいずれも単層で構成されるとみなす。
発光デバイス10の陽極および陰極がいずれも単層である場合、層20(2)乃至層20(n−1)の一部または全ては、有機化合物を含む層である。さらに、層20(2)乃至層20(n−1)のいずれか一または複数は、発光性の材料を有する。以降では、層20(2)乃至層20(n−1)の全ては、有機化合物を含む層であるとみなす。また、一対の電極間に位置する層(層20(2)乃至層20(n−1))をまとめて、中間層25と表記する場合がある。
nが3である場合、中間層25は、単層で構成される。つまり、中間層25は層20(2)のみで構成される。nが3である発光デバイス10の構造を、シングル構造と呼ぶ場合がある。また、nが4以上である場合、中間層25は、複数の層で構成される。つまり、中間層25は、積層構造を有する。
[中間層が積層構造で構成される発光デバイス]
以下では、中間層が積層構造で構成される発光デバイス10について説明する。
以下では、中間層が積層構造で構成される発光デバイス10について説明する。
nが5である場合、中間層25は、3層の積層構造を有する。このとき、中間層25は、正孔輸送層と、発光層と、電子輸送層と、の積層構造を有することができる。これにより、発光デバイス10の電流効率および外部量子効率を高めることができる。また、nが6以上である場合、中間層25は4以上の層が積層された構造を有する。よって、正孔輸送層、発光層、および電子輸送層のいずれか一または複数が、積層構造を有することができる。
層20(1)が陽極として機能し、層20(n)が陰極として機能する場合、中間層25は、正孔輸送層、発光層、電子輸送層が順次積層された構造を有する。なお、層20(1)が陰極として機能し、層20(n)が陽極として機能する場合、積層順は逆になる。
なお、陽極、正孔輸送層、発光層、電子輸送層、および陰極の、それぞれの膜厚を適切に調整することで、発光効率、外部量子効率などの、発光デバイスの特性を向上させることができる。別言すると、発光デバイスの特性は、層20(1)乃至層20(n)のそれぞれの膜厚に影響される。
nが7である場合、中間層25は、5層の積層構造を有する。このとき、中間層25は、正孔注入層と、正孔輸送層と、発光層と、電子輸送層と、電子注入層と、の積層構造を有することができる。これにより、発光デバイス10の電流効率および外部量子効率をより高めることができる。また、nが8以上である場合、中間層25は6以上の層が積層された構造を有する。よって、正孔注入層、正孔輸送層、発光層、電子輸送層、および電子注入層のいずれか一または複数が、積層構造を有することができる。
層20(1)が陽極として機能し、層20(n)が陰極として機能する場合、中間層25は、正孔注入層、正孔輸送層、発光層、電子輸送層、電子注入層が順次積層された構造を有する。なお、層20(1)が陰極として機能し、層20(n)が陽極として機能する場合、積層順は逆になる。
発光層は、発光性の材料や複数の材料を適宜組み合わせて有しており、所望の発光色を呈する蛍光発光や燐光発光が得られる構成とすることができる。また、発光層を発光色の異なる積層構造としてもよい。なお、この場合、積層された各発光層に用いる発光物質やその他の物質は、それぞれ異なる材料を用いればよい。
発光デバイス10において、例えば、層20(1)を反射電極とし、層20(n)を半透過・半反射電極とし、微小光共振器(マイクロキャビティ)構造とすることにより、中間層25に含まれる発光層から得られる発光を両電極間で共振させ、層20(n)を透過して射出される発光を強めることができる。
なお、発光デバイス10の層20(1)が、反射性を有する導電性材料と透光性を有する導電性材料(透明導電膜)との積層構造からなる反射電極である場合、透明導電膜の膜厚を制御することにより光学調整を行うことができる。具体的には、発光層から得られる光の波長λに対して、層20(1)と、層20(n)との電極間距離がm1λ/2(ただし、m1は自然数である。)近傍となるように調整するのが好ましい。
また、発光層から得られる所望の光(波長:λ)を増幅させるために、層20(1)から発光層の所望の光が得られる領域(発光領域)までの光学距離と、層20(n)から発光層の所望の光が得られる領域(発光領域)までの光学距離と、をそれぞれ(2m2+1)λ/4(ただし、m2は自然数である。)近傍となるように調節するのが好ましい。なお、ここでいう発光領域とは、発光層における正孔(ホール)と電子との再結合領域を示す。
このような光学調整を行うことにより、発光層から得られる特定の単色光のスペクトルを狭線化させ、色純度のよい発光を得ることができる。
上記の場合、層20(1)と層20(n)との電極間距離は、厳密には層20(1)における反射領域から層20(n)における反射領域までの総厚ということができる。しかし、層20(1)や層20(n)における反射領域を厳密に決定することは困難であるため、層20(1)と層20(n)の任意の位置を反射領域と仮定することで充分に上述の効果を得ることができるものとする。また、層20(1)または層20(n)と、所望の光が得られる発光層との光学距離は、厳密には層20(1)または層20(n)における反射領域と、所望の光が得られる発光層における発光領域との光学距離であるということができる。しかし、層20(1)または層20(n)における反射領域、及び所望の光が得られる発光層における発光領域を厳密に決定することは困難であるため、層20(1)または層20(n)の任意の位置を反射領域、所望の光が得られる発光層の任意の位置を発光領域と仮定することで充分に上述の効果を得ることができるものとする。
上記の場合、発光デバイス10は、マイクロキャビティ構造を有するため、同じ中間層25を有していても、異なる波長の光(単色光)を取り出すことができる。従って、表示装置の表示素子として発光デバイス10を用いる場合、異なる発光色を得るための塗り分け(例えば、RGB)が不要となる。従って、高精細化を実現することが容易である。また、着色層との組み合わせも可能である。さらに、特定波長の正面方向の発光強度を強めることが可能となるため、低消費電力化を図ることができる。
なお、発光デバイス10は、マイクロキャビティ構造を有していなくてもよい。この場合、発光層が白色光を発する構造とし、着色層を設けることにより、所定の色の光(例えば、RGB)を取り出すことができる。また、中間層25を形成する際、異なる発光色を得るための塗り分けを行えば、着色層を設けなくても所定の色の光を取り出すことができる。
層20(1)と層20(n)の少なくとも一方は、透光性を有する電極(透明電極、半透過・半反射電極等)とすることができる。透光性を有する電極が透明電極の場合、透明電極の可視光の透過率は、40%以上とする。また、半透過・半反射電極の場合、半透過・半反射電極の可視光の反射率は、20%以上80%以下、好ましくは40%以上70%以下とする。また、これらの電極の抵抗率は、1×10−2Ωcm以下が好ましい。
層20(1)または層20(n)が、反射性を有する電極(反射電極)である場合、反射性を有する電極の可視光の反射率は、40%以上100%以下、好ましくは70%以上100%以下とする。また、この電極の抵抗率は、1×10−2Ωcm以下が好ましい。
nが5である場合、中間層25は、3層の積層構造を有する。このとき、中間層25は、第1の発光層と、電荷発生層と、第2の発光層と、の積層構造を有することができる。つまり、発光デバイス10は、タンデム構造を有することができる。発光デバイス10をタンデム構造とすることで、発光デバイス10の電流効率および外部量子効率を高めることができる。
また、nが6以上である場合、中間層25は4以上の層が積層された構造を有する。このとき、層20(1)と電荷発生層との間に挟まれた層(第1の中間層と呼ぶ場合がある)、電荷発生層、および電荷発生層と層20(n)との間に挟まれた層(第2の中間層と呼ぶ場合がある)のいずれか一または複数は、積層構造を有することができる。例えば、nが13である場合、第1の中間層および第2の中間層のそれぞれは、上述した5層の積層構造を有する中間層25と同様の構成とすることができる。
電荷発生層は、層20(1)と層20(n)との間に電圧を供給したときに、第1の中間層および第2の中間層のうち、一方に電子を注入し、他方に正孔(ホール)を注入する機能を有する。したがって、層20(1)の電位が層20(n)の電位より高くなるように電圧を供給すると、電荷発生層から第1の中間層に電子が注入され、電荷発生層から第2の中間層に正孔が注入されることになる。
なお、電荷発生層は、光取り出し効率の点から、可視光を透過することが好ましい。具体的には、電荷発生層の可視光の透過率が、40%以上であることが好ましい。また、電荷発生層の導電率は、層20(1)の導電率、または層20(n)の導電率より低くてもよい。
nが7である場合、中間層25は、5層の積層構造を有する。このとき、中間層25は、第1の発光層と、第1の電荷発生層と、第2の発光層と、第2の電荷発生層と、第3の発光層と、の積層構造を有することができる。つまり、発光デバイス10は、タンデム構造を有することができる。発光デバイス10をタンデム構造とすることで、発光デバイス10の電流効率および外部量子効率をさらに高めることができる。
また、nが8以上である場合、中間層25は6以上の層が積層された構造を有する。層20(1)と第1の電荷発生層との間に挟まれた層(第1の中間層と呼ぶ場合がある)、第1の電荷発生層、第1の電荷発生層と第2の電荷発生層との間に挟まれた層(第2の中間層と呼ぶ場合がある。)、第2の電荷発生層、および第2の電荷発生層と層20(n)との間に挟まれた層(第3の中間層と呼ぶ場合がある。)のいずれか一または複数は、積層構造を有することができる。例えば、nが19である場合、第1の中間層、第2の中間層、および第3の中間層のそれぞれは、上述した5層の積層構造を有する中間層25と同様の構成とすることができる。
ここまでは、中間層25が、1つの電荷発生層と2つの中間層とを有する構成、または2つの電荷発生層と3つの中間層とを有する構成について説明したが、これに限られない。中間層25が、3つ以上の電荷発生層と、4つ以上の中間層とを有する構成にしてもよい。電荷発生層の数と中間層の数を増やすことで、発光デバイス10の電流効率および外部量子効率を高めることができる。なお、nは、電荷発生層の層数に合わせて適宜調整されるとよい。
以上が、中間層が積層構造で構成される発光デバイス10についての説明である。
なお、中間層25に含まれる層において、複数の有機化合物を共蒸着することで形成される場合がある。共蒸着により形成された層は、複数の有機化合物を有する。よって、中間層25に、複数の有機化合物を有する層が含まれる場合がある。中間層25に、複数の有機化合物を有する層が含まれる場合、当該複数の有機化合物の濃度比は、発光デバイスの特性に影響する。
以上が、発光デバイスの構造についての説明である。
<<発光デバイスの特性>>
以下では、発光デバイスの特性について説明する。発光デバイスの特性として、例えば、発光デバイスの初期特性、発光デバイスの信頼性試験の結果(発光デバイスの信頼性と表記する場合がある。)などがある。
以下では、発光デバイスの特性について説明する。発光デバイスの特性として、例えば、発光デバイスの初期特性、発光デバイスの信頼性試験の結果(発光デバイスの信頼性と表記する場合がある。)などがある。
発光デバイスの初期特性として、例えば、輝度−電流密度特性、電流効率−輝度特性、輝度−電圧特性、電流−電圧特性、外部量子効率−輝度特性、色度−輝度特性、発光スペクトルなどがある。
発光デバイスの信頼性試験として、例えば、初期輝度をある値に設定し、電流密度一定の条件で発光デバイスを駆動させて、駆動時間に伴う輝度の変化を測定する試験などがある。このとき、輝度は、初期輝度を100%とした規格化輝度としてもよい。駆動時間に伴う輝度低下が小さいほど、良好な信頼性を有する発光デバイスであるといえる。
発光デバイスの初期特性、発光デバイスの信頼性などの、発光デバイスの特性のデータは、2変数データであり、数値化されていることが多い。
以上が、発光デバイスの特性についての説明である。
<<学習用データセット>>
ここでは、教師あり学習に用いる学習用データセットについて説明する。
ここでは、教師あり学習に用いる学習用データセットについて説明する。
図6A、および図6Bは、学習用データセット50の構成を示す図である。学習用データセット50は、学習用データ51_1乃至学習用データ51_m(mは2以上の整数である。)を有する。学習用データ51_1乃至学習用データ51_mはそれぞれ、入力データ52_1乃至入力データ52_mと、教師データ53_1乃至教師データ53_mと、を有する。なお、学習用データ51_1乃至学習用データ51_mにはそれぞれ、発光デバイス10_1乃至発光デバイス10_mに関する情報と、発光デバイス10_1乃至発光デバイス10_mの特性のデータとが含まれる。
本実施の形態で予測する対象は、発光デバイスの特性である。発光デバイスの特性は、上述したように、中間層25に用いる有機化合物の種類、電極として機能する層20(1)および層20(n)に用いる導電性材料の種類、層20(1)乃至層20(n)それぞれの膜厚、複数の有機化合物を有する層における、当該複数の有機化合物の濃度比などに影響される。したがって、これらのデータを、学習用データセットに含むことが好ましい。
学習用データセット50は、図1Aおよび図1Bに示す処理部102により生成される。処理部102に入力されるデータIN1には、上述した発光デバイスに関する情報、上述した発光デバイスの特性のデータなどが含まれる。したがって、学習用データセットは、データIN1に含まれるデータに対して抽出および加工または変換を行うことで、生成される。
なお、教師あり学習に用いる学習用データセットに含まれるデータは、数値化されていることが好ましい。学習用データセットが数値以外のデータを含む場合と比べて、学習用データセットに含まれるデータが数値化されることで、機械学習モデルが複雑になることを防ぐことができる。
図6Aに示す学習用データセット50においては、入力データ52_1乃至入力データ52_mはそれぞれ、発光デバイス10_1乃至発光デバイス10_mに関する情報を含む。また、教師データ53_1乃至教師データ53_mはそれぞれ、発光デバイス10_1乃至発光デバイス10_mの特性のデータを含む。
上述したように、発光デバイス10_1乃至発光デバイス10_mの特性のデータは、数値化されたデータであるため、特に変換することなく、それぞれ教師データ53_1乃至教師データ53_mに含めることができる。なお、発光デバイス10_1乃至発光デバイス10_mの特性のデータは、特徴的な点を抽出して、それぞれ教師データ53_1乃至教師データ53_mに含めてもよい。また、制御変数の値が等間隔となるように点を抽出して、それぞれ教師データ53_1乃至教師データ53_mに含めてもよい。
ここで、発光デバイス10_1乃至発光デバイス10_mに関する情報について説明する。はじめに、入力データ52_1に含まれる発光デバイス10_1に関する情報について、図6Cを用いて説明する。
発光デバイスに関する情報として、発光デバイスの構造、発光デバイスの作製条件(プロセス条件)などがある。発光デバイスの構造に関する情報として、例えば、各層の膜厚、各層に含まれる材料、各層に含まれる材料の濃度比などがある。また、発光デバイスの作製条件に関する情報として、例えば、蒸着源の種類(形状など)、蒸着レート、成膜温度、蒸着チャンバーの状態(真空度など)もしくは成膜過程における発光デバイスが晒された雰囲気、蒸着源の有機化合物の純度(含まれる不純物の種類など)、測定装置の種類、成膜装置の種類、成膜手法などがある。
図6Cに示すように、例えば、入力データ52_1には、発光デバイス10_1に関する情報として、発光デバイス10_1の構造に関する情報が含まれる。具体的には、層20(1)乃至層20(n)それぞれの膜厚(膜厚22(1)乃至膜厚22(n))、層20(1)乃至層20(n)のそれぞれが有する、一または複数の材料(材料21(1)乃至材料21(n))、層20(1)乃至層20(n)のそれぞれが有する、一または複数の材料の濃度比(濃度比23(1)乃至濃度比23(n))などである。以降では、膜厚22(1)乃至膜厚22(n)をまとめて膜厚22と表記する場合がある。また、材料21(1)乃至材料21(n)をまとめて材料21と表記する場合がある。また、濃度比23(1)乃至濃度比23(n)をまとめて濃度比23と表記する場合がある。
入力データに含まれる濃度比23は、層内における重量比で記述されることが好ましい。例えば、材料Aと材料BがA:B=p:q(wt%)(p、およびqは、それぞれ0以上の実数である。)の重量比で混合して、1つの層が形成される場合、入力データに含まれる濃度比23は、p:qと記述するとよい。なお、1つの層が材料Aのみで構成される場合、入力データに含まれる濃度比23は、1:0、または、0:0と記述するとよい。また、例えば、3つの材料が混合する場合を想定して、入力データに含まれる濃度比23は、p:q:r(rは0以上の実数である。)と記述してもよい。
なお、入力データに含まれる濃度比23は、重量比で記述される場合に限られず、モル濃度比で記述されてもよい。また、入力データに含まれる濃度比23は、層内における濃度比で記述される場合に限られず、共蒸着時の濃度比で記述されてもよい。また、入力データに含まれる濃度比23は、p:qのように比で記述する場合に限られず、q/pのように比率で記述されてもよい。
膜厚22(1)乃至膜厚22(n)では、膜厚の単位が統一されていることが好ましい。膜厚の単位を統一することで、学習用データセット50に含まれるデータ量を削減することができる。よって、データの送受信、教師あり学習、推論などに費やす時間を低減することができる。
上述したように、教師あり学習に用いる学習用データセットに含まれるデータは、数値化されていることが好ましい。膜厚22、および濃度比23は数値として入力されるため、特に変換することなく、入力データ52_1に含めることができる。
一方、データIN1では、発光デバイスが有する有機化合物に関する情報は、構造式、SMILES(Simplified molecular input line entry specification syntax)表記で表記された分子構造(単に、分子構造と表記する場合がある。)、IUPACにより決められた化合物命名法による名称など、数値以外のデータとして入力されることが多い。よって、数値以外のデータとして入力される有機化合物に関する情報(例えば、分子構造)を、数値化することが好ましい。
分子構造を数値化する手段として、例えば、当該分子構造で表される有機化合物の物性に置き換える方法がある。有機化合物の物性として、例えば、発光スペクトル、吸収スペクトル、透過スペクトル、反射スペクトル、S1準位、T1準位、酸化電位、還元電位、HOMO準位、LUMO準位、ガラス転移点、融点、結晶化温度、キャリア移動度などを挙げることができる。これらの物性は数値として取り扱うことができるが、測定やシミュレーションを行う必要があるため、学習用データセットを生成するのに大きな労力を要する。
そこで、本発明の一態様では、材料21を特定する分子構造を、一定の方法で変換する。なお、当該一定の方法では、分子類似性を表現できればよい。分子類似性を表現する方法として、定量的構造活性相関(QSAR)、Fingerprints、グラフ構造などがよく知られている。例えば、分子構造を、線形表記法または行列表記法を用いて数値化することが好ましい。材料21を特定する分子構造を数値化することで学習用データとして用いることができる。
なお、無機化合物の構造を数値化する場合、動径分布関数(RDF)、Orbital Field Matrix(OFM)などの記述子などを利用するとよい。
[有機化合物の分子構造の数値化の例]
ここでは、有機化合物の分子構造の数値化(数式化)の一例について説明する。
ここでは、有機化合物の分子構造の数値化(数式化)の一例について説明する。
有機化合物に関する情報が、SMILES表記以外の、数値以外のデータとして入力される場合、はじめに、SMILES表記に変換すると好適である。SMILES表記は、有機化合物を連続した文字列として表記するため、コンピュータの扱うデータとして好ましい。また、SMILES表記と、後述するフィンガープリント法は、ともに線形表記法に分類され、相互変換しやすいため好ましい。
分子構造の数値化には、オープンソースのケモインフォマティクスツールキットであるRDKitを利用することができる。RDKitでは、入力した分子構造のSMILES表記をフィンガープリント法によって数式データへ変換する(数値化する)ことができる。
フィンガープリント法では、例えば図7に示すように、分子構造の部分構造(フラグメント)を各ビットに割り振ることで分子構造を表し、対応する部分構造が分子中に存在すれば「1」、しなければ「0」がビットにセットされる。すなわち、フィンガープリント法を用いることで、分子構造の特徴を抽出した数式を得ることができる。また、一般的にフィンガープリント法で表された分子構造の式は数百から数万のビット長であり、扱いやすい大きさである。また、分子構造を0と1の数式で表すために、フィンガープリント法を用いることで、非常に高速な計算処理を実現することが可能となる。
また、フィンガープリント法には多くの種類(ビット生成のアルゴリズムの違い、原子タイプや結合タイプ、芳香族性の条件を考慮したもの、ハッシュ関数を用いて動的にビット長を生成するものなど)が存在しており、各々特徴がある。
図8A乃至図8Dに、フィンガープリント法の種類の一例を示す。代表的なフィンガープリント法の種類としては、図8Aに示すCircular型(起点となる原子を中心に、指定した半径までの周辺原子を部分構造とする)、図8Bに示すPath−based型(起点となる原子から指定したパスの長さ(path length)までの原子を部分構造とする)、図8Cに示すSubstructure keys型(ビット毎に部分構造が規定されている)、図8Dに示すAtom pair型(分子中のすべての原子について生成させた原子ペアを部分構造とする)等がある。RDKitにはこれらの各型のフィンガープリントが実装されている。
図9は実際に、ある有機化合物の分子構造をフィンガープリント法により数式として表した例である。このように、分子構造をいったんSMILES表記に変換してからフィンガープリントに変換することができる。
なお、有機化合物の分子構造をフィンガープリント法で表現する際に、類似する構造を有する異なる有機化合物間で、得られる数式が同一となってしまう場合がある。上述したように、フィンガープリント法は、表記方法によっていくつかの種類が存在するが、同一となってしまう化合物の傾向は、図10のCircular型(Morgan Fingerprint)、Path−based型(RDK Fingerprint)、Substructure keys型(Avalon Fingerprint)、Atom pair型(Hash atom pair)に示したように、表記方法によって異なっている。なお図10では、それぞれの両矢印内の分子同士がそれぞれ同一の数式(表記)を示す。そのため、学習に用いるフィンガープリント法としては、その少なくとも1を用いて学習させる各有機化合物の分子構造を表記した際に、各有機化合物の表記が全て異なるフィンガープリント法を用いることが好ましい。図10では、Atom pair型が異なる化合物間で重複なく表記することができることがわかるが、学習させる有機化合物の母集団によってはその他の表記方法でも重複なく表記可能である場合もある。
そこで、有機化合物の分子構造をフィンガープリント法で記述する際に、複数の異なる種類のフィンガープリント法を用いることが好ましい。用いる種類は何種類でも構わないが、2種類または3種類程度がデータ量的にも扱いやすく好ましい。複数種類のフィンガープリント法を用いる場合、有機化合物の分子構造を、ある種類のフィンガープリント法により表記された数式の後ろに、他の種類のフィンガープリント法により表記された数式を繋げて記述してもよいし、一つの有機化合物に対してそれぞれ複数種類の異なる数式が存在するとして記述してもよい。図11A、および図11Bに、型の異なるフィンガープリントを複数用いて、有機化合物の分子構造を記述する方法の一例を示す。
フィンガープリント法は部分構造の有無を記述する方法であり、分子構造全体の情報は失われる。しかしながら、型の異なるフィンガープリントを複数用いて分子構造を数式化すれば、それぞれのフィンガープリントの型で異なる部分構造が生成され、これらの部分構造の有無の情報から分子構造全体に関わる情報が補完されうる。あるフィンガープリントでは表現しきれない特徴が、発光デバイスの特性に大きく影響する場合、他のフィンガープリントによってそれが補完されるため、型の異なるフィンガープリントを複数用いて分子構造を記述する方法は有効である。
なお、図11Aに示すように、2種類のフィンガープリント法により表記を行う際は、Atom Pair型と、Circular型とを用いることが精度よく物性予測が可能であるため、好ましい構成である。
また、図11Bに示すように、3種類のフィンガープリント法を用いて表記を行う際は、Atom Pair型と、Circular型と、Substructure keys型とを用いることが精度よく物性予測が可能であるため、好ましい構成である。
また、Circular型のフィンガープリント法を用いる場合は、半径rは3以上であることが好ましく、5以上であることがさらに好ましい。なお、半径rとは、起点となるある原子を0として、当該原子から連結して数えた原子の個数である。
なお、用いるフィンガープリント法を選択する際には、先にも述べたように、各有機化合物の分子構造を表記した際に、各有機化合物の表記が全て異なるものを少なくとも一つ選ぶことが好ましい。
フィンガープリントは、表現するビット長(ビット数)を大きくすることで、各有機化合物間で完全に表記が一致する記載が生成される可能性を低くすることができるが、ビット長を大きくしすぎてしまうと、計算コストやデータベースの管理コストが大きくなるというトレードオフが生じる。一方、複数のフィンガープリントを同時に用いて表現することで、あるフィンガープリント型で表記が完全一致となる複数の分子構造があっても、異なるフィンガープリント型を組み合わせることで、全体として表記の完全一致が生じない可能性がある。その結果、なるべく小さなビット長で、フィンガープリントによる表記が完全一致となる複数の有機化合物が生じない状態を生成できる。生成するフィンガープリントのビット長に特に制限はないが、計算コストや、データベースの管理コストを考慮すると、各分子量が2000程度までの分子であれば、フィンガープリントの型毎にビット長は4096以下、好ましくは2048以下、場合によっては1024以下でも、各有機化合物間で表記が完全一致する状態とならないフィンガープリントを生成することができる。
また、それぞれのフィンガープリント型で生成するフィンガープリントのビット長は、その型の特徴や分子構造の全体を考慮して適宜調整すればよく、統一する必要はない。たとえば、ビット長をAtom Pair型では1024ビット、Circular型では2048ビットで表し、それらを連結するなどとしても良い。
以上が、有機化合物の分子構造の数値化についての説明である。
以上により、数値化されたデータを含む学習用データ51_1を生成することができる。数値化されたデータを含む学習用データ51_2乃至学習用データ51_mは、学習用データ51_1と同様の構成を有する。
なお、k個(kは3以上、(n−1)以下の整数である。)の層からなる発光デバイスに関する情報を学習用データに含ませる場合、当該学習用データでは、材料21(k+1)乃至材料21(n)、膜厚22(k+1)乃至膜厚22(n)、および濃度比23(k+1)乃至濃度比23(n)に対して、ゼロを入力する(ゼロ埋めする)とよい。
学習用データセットにおいて、nの値は指定しておくことが好ましい。nの値を固定しておくことで、入力層ILが有するニューロン(ユニット)の数を決定することができる。
nは、5以上が好ましく、7以上がさらに好ましい。なお、nの上限については、特に限定はしないが、nの値が大きすぎると、入力層ILが有するニューロンの数が増え、教師あり学習や推論に費やす時間が増える恐れがある。よって、例えば、nは30以下とするとよい。
また、入力データ52_1乃至入力データ52_mのそれぞれには、発光デバイス10の陽極または陰極である、層20(1)および層20(n)に関する情報を含めなくてもよい場合がある。このとき、学習用データセット50に含まれるデータ量が削減される。よって、データの送受信、教師あり学習、推論に費やす時間を低減することができる。
図6Aでは、入力データ52_1乃至入力データ52_mにはそれぞれ、発光デバイス10_1乃至発光デバイス10_mに関する情報が含まれる場合を示しているが、これに限られない。例えば、図6Bに示すように、入力データ52_1乃至入力データ52_mにはそれぞれ、発光デバイス10_1乃至発光デバイス10_mに関する情報と、発光デバイス10_1乃至発光デバイス10_mの第1の特性のデータと、が含まれ、教師データ53_1乃至教師データ53_mにはそれぞれ、発光デバイス10_1乃至発光デバイス10_mの第2の特性のデータが含まれてもよい。
上記の場合、発光デバイス10_1乃至発光デバイス10_mの第1の特性と、発光デバイス10_1乃至発光デバイス10_mの第2の特性とは、異ならせる。例えば、発光デバイス10の第1の特性には、発光デバイス10の初期特性を用い、発光デバイス10の第2の特性には、発光デバイス10の信頼性を用いるとよい。発光デバイスの信頼性は、信頼性に影響する要因は多く、各要因は複雑に絡んでいるため、経験による予測が難しく、推測する対象として好適である。また、発光デバイス10の初期特性には、発光デバイスの作製条件、測定条件などの情報が間接的に含まれる。よって、入力データに発光デバイス10の第1の特性を追加することで、教師あり学習に当該情報が与えられ、発光デバイスの信頼性の予測の精度を向上させることができる。
また、図6Cでは、入力データ52_1乃至入力データ52_mにはそれぞれ、発光デバイス10_1乃至発光デバイス10_mの構造に関する情報が含まれる場合を示しているが、これに限られない。例えば、図6Dに示すように、入力データ52_1乃至入力データ52_mにはそれぞれ、発光デバイス10_1乃至発光デバイス10_mの構造に関する情報と、発光デバイスの作製条件に関する情報と、が含まれてもよい。例えば、入力データ52_1には、材料21(1)、膜厚22(1)、濃度比23(1)、材料21(1)の蒸着レート31(1)、材料21(1)の成膜温度32(1)などが含まれるとよい。
なお、学習用データセット50は、発光色が同じまたは類似する発光デバイスのデータのみで構成されてもよい。別言すると、学習用データセット50は、発光色別に作成されてもよい。これにより、発光デバイスの特性の予測の精度を向上させることができる。また、学習用データセット50は、発光色に関わらず発光デバイスのデータで構成されてもよい。これにより、汎用性の高い、発光デバイスの特性の予測が可能となる。
以上が、学習用データセットについての説明である。入力データと教師データとを用いて機械学習モデルを訓練することで、発光デバイスの特性を予測することができる。なお、発光デバイスの初期特性を予測する場合は、入力データに発光デバイスの構造に関する情報を含め、教師データとして発光デバイスの初期特性を与えるとよい。
<<特性の予測に用いるデータ>>
ここでは、特性の予測に用いるデータについて説明する。
ここでは、特性の予測に用いるデータについて説明する。
特性の予測に用いるデータは、図1Aおよび図1Bに示す処理部102により生成される。処理部102に入力されるデータIN2には、少なくとも発光デバイスの構造に関する情報が含まれる。また、データIN2には、発光デバイスの特性などのデータが含まれる場合がある。
なお、特性の予測に用いるデータは、上述した学習用データの入力データと同様の構成を有するとよい。例えば、学習用データの入力データに、発光デバイスの構造に関する情報が含まれる場合、特性の予測に用いるデータには、発光デバイスの構造に関する情報が含まれるとよい。また、例えば、学習用データの入力データに、発光デバイスの構造に関する情報と、発光デバイスの特性のデータとが含まれる場合、特性の予測に用いるデータには、発光デバイスの構造に関する情報と、発光デバイスの特性のデータとが含まれるとよい。
特性の予測に用いるデータとして、具体的には、膜厚22(1)乃至膜厚22(n)、材料21(1)乃至材料21(n)、濃度比23(1)乃至濃度比23(n)などである。
以上が、特性の予測に用いるデータについての説明である。
以上より、本発明の一態様は、発光デバイスの特性を予測する方法を提供することができる。また、本発明の一態様は、発光デバイスの特性を予測する特性予測システムを提供することができる。
本発明の一態様により、発光デバイスに含まれる有機化合物の物性などを用いずに、発光デバイスの特性を予測することができる。また、過去の実験データを用いることで、発光デバイスの構造の最適化を仮想スクリーニングによって高速化することができる。これは人がデータを閲覧し内挿的でなかったとしても、機械学習モデルの非線形もしくは高次な表現によって内挿的になる場合がある。また、機械学習モデルが得た表現を断片的に切り出し、調べることで従来では気付かなかった法則性を知ることができる。
本実施の形態は、その一部を適宜組み合わせて実施することができる。
DI:データ、DS:学習用データセット、HL:隠れ層、IL:入力層、IN1:データ、IN2:データ、OL:出力層、OUT:データ、10:発光デバイス、10_1:発光デバイス、10_m:発光デバイス、20:層、21:材料、22:膜厚、23:濃度比、25:中間層、31:蒸着レート、32:成膜温度、50:学習用データセット、51_1:学習用データ、51_2:学習用データ、51_m:学習用データ、52_1:入力データ、52_m:入力データ、53_1:教師データ、53_m:教師データ、100:特性予測システム、101:入力部、102:処理部、103:演算部、104:出力部、105:記憶部
Claims (7)
- 有機化合物を含む層を有する発光デバイスの特性を予測する、特性予測システムであって、
入力部と、処理部と、演算部と、出力部と、を有し、
前記入力部は、前記発光デバイスの構造、または、前記発光デバイスの特性を供給する機能を有し、
前記処理部は、学習用データセット、または、特性の予測に用いるデータを生成する機能と、有機化合物の分子構造を数値化する機能と、を有し、
前記演算部は、前記学習用データセットに基づいて、教師あり学習を行う機能と、前記教師あり学習の学習結果を基にして、前記データから、発光デバイスの特性の推論を行う機能と、を有し、
前記出力部は、前記推論の結果を提供する機能を有する、
特性予測システム。 - 請求項1において、
前記発光デバイスは、複数の層を有し、
前記複数の層のうち一以上は、一または複数の有機化合物を有し、
前記学習用データセットは、複数の学習用データを有し、
前記複数の学習用データのそれぞれは、入力データ、および前記入力データに対する教師データを有し、
前記入力データは、前記複数の層の積層順と、前記複数の層のうち一以上が有する、前記一または複数の有機化合物の分子構造と、前記複数の層それぞれの膜厚と、複数の有機化合物を有する層における、前記複数の有機化合物の濃度比と、を有し、
前記教師データは、前記入力データに対する発光デバイスの特性を有する、
特性予測システム。 - 請求項1または請求項2において、
前記発光デバイスの特性は、輝度−電流密度特性、電流効率−輝度特性、輝度−電圧特性、電流−電圧特性、外部量子効率−輝度特性、色度−輝度特性、発光スペクトル、および信頼性のいずれか一または複数である、
特性予測システム。 - 有機化合物を含む層を有する発光デバイスの特性を予測する、特性予測システムであって、
入力部と、処理部と、演算部と、出力部と、を有し、
前記入力部には、学習用データセットと、特性の予測に用いられるデータと、が入力され、
前記処理部は、有機化合物の分子構造を数値化する機能を有し、
前記演算部は、前記学習用データセットに基づいて、教師あり学習を行う機能と、前記教師あり学習の学習結果を基にして、前記データから、発光デバイスの信頼性の推論を行う機能と、を有し、
前記出力部は、前記推論の結果を提供する機能を有し、
前記学習用データセットは、複数の学習用データを有し、
前記複数の学習用データのそれぞれは、入力データ、および前記入力データに対する教師データを複数有し、
前記入力データは、前記複数の層の積層順と、前記複数の層それぞれが有する、前記一または複数の有機化合物の分子構造と、前記複数の層それぞれの膜厚と、複数の有機化合物を有する層における、前記複数の有機化合物の濃度比と、前記発光デバイスの外部量子効率−輝度特性と、を有し、
前記教師データは、前記入力データに対する発光デバイスの信頼性を有する、
特性予測システム。 - 請求項1乃至請求項4のいずれか一において、
前記有機化合物の分子構造の数値化は、定量的構造活性相関またはフィンガープリント法を用いて行われる、
特性予測システム。 - 請求項1乃至請求項5のいずれか一において、
前記教師あり学習に、ニューラルネットワークを用い、
前記ニューラルネットワークは、入力層と、出力層との間に、2以上の隠れ層を有する、
特性予測システム。 - 請求項1乃至請求項6のいずれか一において、
記憶部を有し、
前記記憶部には、前記教師あり学習により生成された学習済みモデルが記憶される、
特性予測システム。
Priority Applications (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020227006118A KR20220051342A (ko) | 2019-08-29 | 2020-08-17 | 특성 예측 시스템 |
| US17/637,671 US20220277815A1 (en) | 2019-08-29 | 2020-08-17 | Property Prediction System |
| CN202080059885.6A CN114341861A (zh) | 2019-08-29 | 2020-08-17 | 特性预测系统 |
| JP2021541741A JP7577666B2 (ja) | 2019-08-29 | 2020-08-17 | 特性予測システム |
| JP2024186640A JP2025003599A (ja) | 2019-08-29 | 2024-10-23 | 特性予測システム |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019-156559 | 2019-08-29 | ||
| JP2019156559 | 2019-08-29 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2021038362A1 true WO2021038362A1 (ja) | 2021-03-04 |
Family
ID=74683599
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2020/057715 Ceased WO2021038362A1 (ja) | 2019-08-29 | 2020-08-17 | 特性予測システム |
Country Status (5)
| Country | Link |
|---|---|
| US (1) | US20220277815A1 (ja) |
| JP (2) | JP7577666B2 (ja) |
| KR (1) | KR20220051342A (ja) |
| CN (1) | CN114341861A (ja) |
| WO (1) | WO2021038362A1 (ja) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114093438A (zh) * | 2021-10-28 | 2022-02-25 | 北京大学 | 一种基于Bi2O2Se的多模态库网络时序信息处理方法 |
| WO2023060580A1 (zh) * | 2021-10-15 | 2023-04-20 | 厦门大学 | 一种led结构性能的预测方法 |
| WO2023181958A1 (ja) * | 2022-03-22 | 2023-09-28 | 住友化学株式会社 | 発光素子及びその製造方法、発光性化合物及びその製造方法、組成物及びその製造方法、情報処理方法、情報処理装置、プログラム、発光性化合物の提供方法、並びにデータ生成方法 |
| JP2025019190A (ja) * | 2023-05-09 | 2025-02-06 | 日機装株式会社 | 半導体発光素子の製造システム |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12159227B2 (en) * | 2020-03-13 | 2024-12-03 | Korea University Research And Business Foundation | System for predicting optical properties of molecules based on machine learning and method thereof |
| US12499419B2 (en) * | 2020-09-30 | 2025-12-16 | X Development Llc | Techniques for predicting the spectra of materials using molecular metadata |
| US12368503B2 (en) | 2023-12-27 | 2025-07-22 | Quantum Generative Materials Llc | Intent-based satellite transmit management based on preexisting historical location and machine learning |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008139097A (ja) * | 2006-11-30 | 2008-06-19 | Internatl Business Mach Corp <Ibm> | シミュレーション・システム、コンピュータ装置、シミュレーション方法、およびプログラム |
| JP2012004181A (ja) * | 2010-06-14 | 2012-01-05 | Sharp Corp | 特性予測装置、特性予測方法、特性予測プログラムおよびプログラム記録媒体 |
| JP2017091526A (ja) * | 2015-11-04 | 2017-05-25 | 三星電子株式会社Samsung Electronics Co.,Ltd. | 新規物質探索方法および装置 |
| JP2019502988A (ja) * | 2015-12-02 | 2019-01-31 | 株式会社Preferred Networks | 薬物設計のための生成機械学習システム |
| WO2019048965A1 (ja) * | 2017-09-06 | 2019-03-14 | 株式会社半導体エネルギー研究所 | 物性予測方法および物性予測システム |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5599547B2 (ja) * | 2006-12-01 | 2014-10-01 | Mipox株式会社 | 硬質結晶基板研磨方法及び油性研磨スラリー |
-
2020
- 2020-08-17 CN CN202080059885.6A patent/CN114341861A/zh active Pending
- 2020-08-17 KR KR1020227006118A patent/KR20220051342A/ko active Pending
- 2020-08-17 US US17/637,671 patent/US20220277815A1/en active Pending
- 2020-08-17 WO PCT/IB2020/057715 patent/WO2021038362A1/ja not_active Ceased
- 2020-08-17 JP JP2021541741A patent/JP7577666B2/ja active Active
-
2024
- 2024-10-23 JP JP2024186640A patent/JP2025003599A/ja active Pending
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2008139097A (ja) * | 2006-11-30 | 2008-06-19 | Internatl Business Mach Corp <Ibm> | シミュレーション・システム、コンピュータ装置、シミュレーション方法、およびプログラム |
| JP2012004181A (ja) * | 2010-06-14 | 2012-01-05 | Sharp Corp | 特性予測装置、特性予測方法、特性予測プログラムおよびプログラム記録媒体 |
| JP2017091526A (ja) * | 2015-11-04 | 2017-05-25 | 三星電子株式会社Samsung Electronics Co.,Ltd. | 新規物質探索方法および装置 |
| JP2019502988A (ja) * | 2015-12-02 | 2019-01-31 | 株式会社Preferred Networks | 薬物設計のための生成機械学習システム |
| WO2019048965A1 (ja) * | 2017-09-06 | 2019-03-14 | 株式会社半導体エネルギー研究所 | 物性予測方法および物性予測システム |
Cited By (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2023060580A1 (zh) * | 2021-10-15 | 2023-04-20 | 厦门大学 | 一种led结构性能的预测方法 |
| JP2024535118A (ja) * | 2021-10-15 | 2024-09-26 | 厦▲門▼大学 | Led構造性能の予測方法 |
| JP7723202B2 (ja) | 2021-10-15 | 2025-08-13 | 厦▲門▼大学 | Led構造性能の予測方法 |
| CN114093438A (zh) * | 2021-10-28 | 2022-02-25 | 北京大学 | 一种基于Bi2O2Se的多模态库网络时序信息处理方法 |
| WO2023181958A1 (ja) * | 2022-03-22 | 2023-09-28 | 住友化学株式会社 | 発光素子及びその製造方法、発光性化合物及びその製造方法、組成物及びその製造方法、情報処理方法、情報処理装置、プログラム、発光性化合物の提供方法、並びにデータ生成方法 |
| JP2023140012A (ja) * | 2022-03-22 | 2023-10-04 | 住友化学株式会社 | 発光素子及びその製造方法、発光性化合物及びその製造方法、組成物及びその製造方法、情報処理方法、情報処理装置、プログラム、発光性化合物の提供方法、並びにデータ生成方法 |
| JP2025019190A (ja) * | 2023-05-09 | 2025-02-06 | 日機装株式会社 | 半導体発光素子の製造システム |
Also Published As
| Publication number | Publication date |
|---|---|
| CN114341861A (zh) | 2022-04-12 |
| JPWO2021038362A1 (ja) | 2021-03-04 |
| JP2025003599A (ja) | 2025-01-09 |
| JP7577666B2 (ja) | 2024-11-05 |
| KR20220051342A (ko) | 2022-04-26 |
| US20220277815A1 (en) | 2022-09-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7577666B2 (ja) | 特性予測システム | |
| Al-Betar et al. | Novel selection schemes for harmony search | |
| Zhang et al. | Efficient training of very deep neural networks for supervised hashing | |
| CA3091397C (en) | Oled microcavity design and optimization method | |
| JP5184093B2 (ja) | ディスプレイを駆動する方法、保持媒体、システム及び機器 | |
| CN101069228B (zh) | 多线寻址方法和设备 | |
| TWI407412B (zh) | 多線定址方法及裝置(三) | |
| US20240070353A1 (en) | Automatic Design Methods For Optical Structures | |
| Stoop et al. | Beyond scale-free small-world networks: cortical columns for quick brains | |
| Baek et al. | Memristive switching mechanism in colloidal InP/ZnSe/ZnS quantum dot-based synaptic devices for neuromorphic computing | |
| JP4479171B2 (ja) | 表示素子 | |
| Abroshan et al. | Machine learning for the design of novel oled materials | |
| CN112185478A (zh) | 一种tadf发光分子发光性能的高通量预测方法 | |
| Lim et al. | Improving vector evaluated particle swarm optimisation by incorporating nondominated solutions | |
| Jang et al. | Deep-learning-based inverse design of colloidal quantum dots | |
| Barnea et al. | Photo-electro characterization and modeling of organic light-emitting diodes by using a radial basis neural network | |
| JP4160992B2 (ja) | シミュレーション・システム、コンピュータ装置、シミュレーション方法、およびプログラム | |
| Yamaguchi et al. | Multi-target Regression via Target Combinations Using PCA with application to quality prediction in OLED manufacturing process | |
| Duong et al. | Continuous Select-and-Prune Incremental Learning for Encrypted Traffic Classification in Distributed SDN Networks | |
| Oh et al. | A new approach to self-organizing fuzzy polynomial neural networks guided by genetic optimization | |
| CHUNG et al. | A Study on the Generation of Datasets for Applied AI to OLED Life Prediction | |
| Fabbrini et al. | Automatized Platform for Bandgap Optimization in Diarylethene Derivatives via Structural Substitutions | |
| Sakiyama | A game of life shifted toward a critical point. | |
| Yao et al. | Gate‐Tunable Highly Linear Bipolar Photoresponse in Se@ SWCNT Adaptive Neurons for Dynamically Programmable Neuromorphic Computing | |
| KR20240145728A (ko) | Oled 소자 제조 시스템 및 방법 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20856912 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2021541741 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 20856912 Country of ref document: EP Kind code of ref document: A1 |