WO2021033619A1 - Food bolus forming device, chewing state assessment method, food texture assessment method, and food bolus manufacturing method - Google Patents
Food bolus forming device, chewing state assessment method, food texture assessment method, and food bolus manufacturing method Download PDFInfo
- Publication number
- WO2021033619A1 WO2021033619A1 PCT/JP2020/030772 JP2020030772W WO2021033619A1 WO 2021033619 A1 WO2021033619 A1 WO 2021033619A1 JP 2020030772 W JP2020030772 W JP 2020030772W WO 2021033619 A1 WO2021033619 A1 WO 2021033619A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bolus
- food
- artificial
- forming apparatus
- artificial tooth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/02—Devices for withdrawing samples
- G01N1/04—Devices for withdrawing samples in the solid state, e.g. by cutting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/02—Food
Definitions
- the present invention relates to a bolus forming device for forming a bolus by chewing food in an artificial oral space, a chewing state evaluation method, a texture evaluation method, and a bolus production method.
- the texture evaluation system of Patent Document 1 is a pressing device for pressing a sample whose texture is to be evaluated, and a measuring device (pressure) for measuring a change over time in the pressure distribution received from the sample when the sample is pressed. It is provided with a texture evaluation means (control PC) that controls the pressing operation by the pressing device and evaluates the texture of the sample based on the pressure distribution data from the pressure distribution sensor.
- control PC controls the pressing operation by the pressing device and evaluates the texture of the sample based on the pressure distribution data from the pressure distribution sensor.
- This pressing device has a pair of upper and lower plates, a pressure distribution sensor is placed on the upper surface of the lower plate, and a sample is placed on the pressure distribution sensor.
- the upper plate is provided at a position facing the pressure distribution sensor in the vertical direction and is connected to the linear slider. Since the linear slider is driven in the vertical direction with respect to the pressure sensor surface in response to the pressing operation control signal from the control PC, the pressing operation of the sample can be controlled (paragraphs 0022 to 0028, FIG. 1).
- the texture evaluation system of Patent Document 1 is configured to evaluate the texture only based on the feature amount obtained from the change over time of the pressure distribution.
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide a bolus forming apparatus that can be used for evaluating the texture of food by reproducing the chewing of a person.
- the occlusal forming apparatus of the present invention includes a first artificial tooth provided in the artificial oral space, a second artificial tooth arranged at a position facing the first artificial tooth, and the first artificial tooth.
- An artificial tongue arranged in parallel with one artificial tooth or the second artificial tooth, a wall-shaped artificial chew arranged on at least one side of the first artificial tooth and the second artificial tooth, and the first artificial tooth.
- the tooth or the second artificial tooth is provided with a driving means for driving the occlusal motion, and the food arranged in the artificial oral cavity space is chewed by the occlusal motion to form a bolus of the food.
- the first artificial tooth or the second artificial tooth in the artificial oral space is driven by the driving means, and the first artificial tooth and the second artificial tooth occlude the food.
- the bolus forming device has an artificial tongue and an artificial cheek, the food that is occluded like the human oral cavity is pushed back to the center of the artificial oral space by the artificial cheek as a wall, and the artificial tongue Its position is adjusted. As a result, a bolus of the food is formed in the artificial oral space, so that the device can reproduce the chewing of a person.
- the driving means in addition to the occlusal operation, the driving means preferably performs an operation of shifting one artificial tooth in the horizontal direction with respect to the other artificial tooth.
- the driving means of the bolus forming device can be operated so as to shift one artificial tooth (for example, the first artificial tooth) in the horizontal direction with respect to the other artificial tooth (second artificial tooth).
- one artificial tooth for example, the first artificial tooth
- second artificial tooth the present device can form a bolus while grinding food in the same manner as in the human oral cavity.
- the bolus forming apparatus of the present invention is provided with a food collecting means for collecting the foods separated by the occlusal operation at a predetermined position in the artificial oral space.
- a food collecting means is provided in the bolus forming device to collect the separated foods at a predetermined position in the artificial oral space (for example, the upper surface of the artificial tongue). As a result, this device can more faithfully reproduce human mastication and form a bolus.
- the bolus forming apparatus of the present invention is provided with a water supply means for supplying water to the food.
- an imaging means for imaging the food or the bolus in the artificial oral space and an evaluation means for evaluating the chewing state from the image of the bolus imaged by the imaging means. , are preferably provided.
- the food or bolus in the artificial oral space is imaged by the imaging means, and the evaluation means evaluates the chewing state from the image by image analysis or the like.
- the present device can quantitatively evaluate the degree of progress of the masticatory state.
- the evaluation means evaluates the bolus by one or two selected from local changes and overall uniformity.
- the evaluation means of the bolus forming apparatus evaluates the bolus in the artificial oral space by one type (one) or two types (both) of local change and overall uniformity. As a result, the present device can accurately evaluate the degree of progress of the masticatory state.
- the bolus forming apparatus of the present invention is provided with a machine learning means for inputting images of bolus having different chewing states to perform machine learning, and evaluates the bolus by a determination method obtained by the machine learning means. Is preferable.
- the machine learning means learns images of a large number of bolus with different chewing states and establishes a judgment method.
- this device enables the evaluation means to accurately evaluate the state of the bolus.
- the chewing state evaluation method of the present invention is a method of evaluating the chewing state of the food using the bolus forming apparatus according to any one of claims 1 to 7, and the texture evaluation method of the present invention is , Is a method of evaluating the texture of the food using the bolus forming apparatus according to any one of claims 1 to 7.
- the texture method of the present invention is a method for producing a bolus using the bolus forming apparatus according to any one of claims 1 to 4.
- the schematic diagram explaining the bolus formation apparatus of this invention The perspective view of the bolus forming apparatus of this invention.
- the flowchart of the bolus formation process by the bolus forming apparatus The figure explaining the masticatory trajectory of a bolus forming apparatus.
- the figure explaining the experiment of the bolus formation by the bolus forming apparatus The graph which shows the result (Contrast) when the food was evaluated by the bolus forming apparatus.
- the graph which shows the result (normalized Contrast) when the food was evaluated by the bolus forming apparatus The graph which shows the result (normalized Contrast) when the food was evaluated by the bolus forming apparatus.
- FIG. 1 is a schematic view of the bolus forming device 1.
- the bolus forming device 1 is mainly composed of a robot arm 2a, a robot hand 2b, and a chewing mechanism unit 3 that reproduces the inside of a human oral cavity.
- the robot arm 2a and the robot hand 2b correspond to the "driving means" of the present invention.
- the tip of the robot arm 2a corresponds to the lower jaw, and the lower artificial tooth 4 is attached to the robot arm 2a.
- Operation under the artificial tooth 4 is 2 are degrees of freedom (V Ax, V Ay) is, it is possible to perform the ⁇ operation (occlusal operation) and UsuMigaku operation.
- the aluminum frame 11 corresponds to the upper jaw, and the upper artificial tooth 5 is attached to the frame 11.
- the lower artificial tooth 4 and the upper artificial tooth 5 are both made of resin and are manufactured using a 3D printer. As shown in the figure, grooves and protrusions are formed in the central portions of the lower artificial tooth 4 and the upper artificial tooth 5, respectively.
- An artificial tongue 6 is attached to the tip (movable part of the gripper) of the robot hand 2b.
- the movement of the artificial tongue 6 has only one degree of freedom in the vertical movement (V By).
- the artificial tongue 6 is made of silicone, and an elastic sheet is attached to the surface thereof, and the artificial tongue 6 expands and contracts according to the vertical movement of the artificial tongue 6.
- an artificial cheek 7 is attached to the portion adjacent to the lower artificial tooth 4.
- the artificial cheek 7 is made of silicone, and the robot arm 2a performs the same operation as the lower artificial tooth 4.
- the masticatory mechanism unit 3 has each of the above-described configurations, and the food transported to the artificial oral space is crushed and crushed through the masticatory movement, mixed with saliva, and transformed into a bolus.
- FIG. 2 shows an overall perspective view of the bolus forming device 1.
- the frame 11 is arranged above the mastication mechanism portion 3.
- a collecting tongue 8 (“food collecting means” of the present invention) and a camera 9 (“imaging means” of the present invention) for collecting chewed food are mounted on the frame 11.
- a commercially available cotton swab is used as the collecting tongue 8, and the foods dispersed in the artificial oral space S are collected by the occlusal motion and moved to the upper surface of the lower artificial tooth 4 or the artificial tongue 6, for example.
- the camera 9 is preferably a webcam connected to a computer, and the camera 9 can automatically take an image of how food is chewed.
- a computer (“evaluation means” of the present invention) performs image analysis from the image captured by the camera 9 to further evaluate the bolus (progress of mastication).
- the bolus forming apparatus 1 can quantitatively evaluate the chewing state of the food. Each step of chewing, collecting food, and taking an image is automatically controlled by a computer program.
- a saliva supply unit (“water supply means” of the present invention) is required. This time, water (0.6 ml per time) was added to the bolus using a sprayer, but a water storage unit 12 was provided in the upper artificial tooth 5 to supply water to the bolus at predetermined time intervals. You may. As a result, the food separated in the artificial oral space S becomes a small lump with water, which is useful for forming a bolus. With such a configuration, the bolus forming device 1 can faithfully reproduce the mastication of a person in the artificial oral space S.
- step S01 the number of chews n (step S01).
- the number of chews is also referred to as the number of mandibular cycles. After that, the process proceeds to step S02.
- step S02 imaging by the camera 9 is started. Specifically, the camera 9 takes an image of the chewing state of the food that starts after this. After that, the process proceeds to step S03.
- step S03 it is determined whether or not the counter i has reached the upper limit number of cycles N (step S03). If the upper limit number of cycles N has been reached, the process proceeds to step S08, and if it has not yet been reached, the process proceeds to step S04.
- step S04 water supply is executed (step S04). This is a process of supplying water instead of saliva to the artificial oral space S. After that, the process proceeds to step S05.
- step S05 the food is chewed.
- the movement of the lower jaw is executed five times in succession.
- the artificial tongue 6 is moved up and down to stir the bolus.
- the food is chewed in the artificial oral space S, and a bolus is gradually formed. Then, the process proceeds to step S06.
- step S06 food collection is executed. This is a process in which the collecting tongue 8 (cotton swab) collects the separated foods in the artificial oral space S. After that, the process proceeds to step S07.
- step S07 the counter i is added by 1 and the process returns to step S03. Then, if the counter i has not reached the upper limit number of cycles N (“NO” in step S03), the processes of steps S04 to S07 are repeated again.
- the camera 9 stops imaging (step S08). After that, the process of a series of bolus formation processes is completed. As described above, the bolus forming apparatus 1 captures and analyzes the state of bolus formation (the degree of progress of mastication) for each food.
- the mandibular orbit of a person is linearized and given as a parallelogram type orbit.
- the origin O is the position where the upper jaw tooth (upper artificial tooth 5) and the lower jaw tooth (lower artificial tooth 4) mesh with each other, and the x-axis is taken in the horizontal direction and the y-axis is taken in the vertical direction.
- the orbit has the following Fourier series form. Note that f [Hz] is the frequency, X [mm] is the mortar length, Y [mm] is the bite length, and ⁇ (0 ⁇ ⁇ ⁇ 2) defines the ratio of the mortar to the bite length. It is a parameter to be used.
- the image is shown.
- the bolus gradually collapses as the number of chews increases. It can also be seen that the way foods crumble and organize differs depending on the masticatory trajectory.
- GLCM Gray-Level Co-occurrence Matrix
- the simultaneous occurrence matrix is a matrix representing the frequency with which a pair of pixels having a specified spatial relationship occurs in an image (the derivation method is omitted).
- each bolus image in FIG. 5 is 1920 ⁇ 1080px, and a portion of 224 ⁇ 224px is trimmed from the size (region T). Then, after converting the trimmed image into a grayscale image, the simultaneous occurrence matrix is calculated, and f C : Contrast (local change) and f A : Angular Second Moment (overall uniformity) are calculated as image texture features.
- Contrast shows the local change in the gray level of the image
- Angular Second Moment shows the uniformity of the image
- FIG. 6A is a graph showing the result of Contrust (local change) by the above experiment.
- This result includes data on "human bolus” when a person (subject) chews food (doughnut of company A, 10.0 g) for comparison with “artificial bolus” by the bolus forming apparatus 1.
- the "human bolus” is data when the subject naturally chews at a frequency of 1.0 [Hz] according to the metronome.
- the horizontal axis represents the number of times of chewing n [times], and the vertical axis represents the local change f C (average).
- f C mean
- FIG. 6B is a graph showing the results of Angular Second Moment (overall uniformity) by the above experiment.
- the horizontal axis represents the number of times of chewing n [times]
- the vertical axis represents the overall uniformity f A (average).
- f A mean
- f A average
- ⁇ 1.0 of the “artificial bolus” produced by the bolus forming device 1 showed a tendency close to that of the “human bolus”. From the above results, it was suggested that the bolus forming apparatus 1 of the present invention can reproduce a human bolus by giving an appropriate mandibular trajectory.
- Contrast local change
- Angular Second Moment overall uniformity
- the captured image captured by the camera 9 may be judged by a machine learning model to evaluate the bolus. Specifically, about 1000 input images of the same food (doughnut) having different chewing states are prepared. As the input image, images of bolus according to the number of times of chewing (for example, 0 to 30 times) are captured, and these are classified into classes based on the number of times of chewing and used as teacher data.
- model learning of the convolutional neural network is performed, and an estimation model of the mastication class is created.
- an image can be input as it is as two-dimensional data, and an effective feature amount can be automatically extracted in the learning process.
- an effective feature amount can be automatically extracted in the learning process.
- the bolus obtained by the bolus forming apparatus 1 was photographed with a camera 9, and the bolus was evaluated by Contrast (local change) and Angular Second Moment (overall uniformity) from image analysis.
- the second embodiment is the same in that the bolus is image-analyzed, but the bolus is evaluated using improved evaluation values of "standardized Contrast” and "standardized Angular Second Moment”.
- f A (n) (average) of the standardized Angular Second Moment is the average value of all 10 trials of Angular Second Moment minus f A (0) (mean) (difference value), and the maximum value of the absolute value of the difference value. It is a value standardized using.
- FIG. 7A is a graph showing the result of Contrast (local change) when food X (doughnut of company A) is evaluated using the bolus forming apparatus 1.
- ⁇ 1.0, which is close to the “human bolus” formed by humans, was adopted.
- the data of "human bolus” is shown by a broken line for comparison with the “artificial bolus” (solid line) by the bolus forming apparatus 1.
- the “human bolus” is data when the subject naturally chews at a frequency of 1.0 [Hz] according to the metronome.
- the solid line graph shows the result of Contrust (local change) when food X (doughnut of company A) is evaluated by the bolus forming apparatus 1.
- ⁇ 1.0, which is close to the “human bolus”.
- the graph of the broken line shows the result of Contrast when the food Y (doughnut of company B) is evaluated by the bolus forming apparatus 1. Since the parameters and the number of chews n (m) are the same as those of food X, if the two waveforms can be distinguished, the bolus forming apparatus 1 can distinguish the textures of food X and food Y. Here, it can be seen that chewing progresses faster in food Y than in food X.
- the solid line graph shows the result of Angular Second Moment (overall uniformity) when food X (doughnut of company A) is evaluated by the bolus forming apparatus 1.
- ⁇ 1.0, which is close to “human bolus”, was adopted.
- the graph of the broken line shows the result of Angular Second Moment when the food Y (doughnut of company B) is evaluated by the bolus forming apparatus 1. As shown in the figure, it can be seen that the uniformity of food Y is restored faster than that of food X, and the progress of mastication is faster.
- FIG. 9A is a graph in which food X and food Y are evaluated by a texture analyzer (TA.XTplus: manufactured by Stable Micro Systems).
- TA.XTplus manufactured by Stable Micro Systems.
- the horizontal axis represents the number of times of chewing n [times]
- the vertical axis represents the maximum stress during compression [g].
- the 5th to 30th chewing bolus was measured by a texture analyzer, and the maximum stress [g] during compression was measured. According to this, it was obtained that the maximum stress of food Y was always smaller than the maximum stress of food X and was soft.
- FIG. 9B is a graph obtained by sensory evaluation of food X and food Y.
- the sensory evaluation was performed by 5 evaluators, and the chewing was performed according to the metronome (set to 100 times / minute).
- the evaluator evaluated on a scale of 0 to 10 by the VAS method, and the average value of 6 repeated evaluations of 5 evaluators was used as the sensory evaluation value.
- the bolus forming device 1 can form a bolus by chewing food in the artificial oral space S like in the oral cavity of a person. Then, by giving an appropriate mandibular trajectory to the bolus forming device 1, the person succeeded in reproducing the process of forming the bolus.
- the bolus forming device 1 for example, it becomes possible to investigate how a newly developed food is chewed by a person.
- the bolus forming apparatus 1 can also compare the textures of a plurality of foods. Although donuts were used as foods this time, the evaluation method is the same for other foods. However, when evaluating the bolus image by the machine learning model, it is necessary to learn the image according to the chewing state of the target food in advance.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Dental Tools And Instruments Or Auxiliary Dental Instruments (AREA)
Abstract
Description
本発明は、人工口腔空間で食品を咀嚼して食塊を形成する食塊形成装置、咀嚼状態評価方法、食感評価方法及び食塊の製造方法に関する。 The present invention relates to a bolus forming device for forming a bolus by chewing food in an artificial oral space, a chewing state evaluation method, a texture evaluation method, and a bolus production method.
従来、食品の食感を評価する際には、評価者が咀嚼した食品を一度吐き出し、これを評価することが行われていた。また、近年では、押圧機構と圧力センサを用いて食品を押圧し、食感を評価する評価システムも知られている。 Conventionally, when evaluating the texture of food, the evaluator has once spit out the chewed food and evaluates it. Further, in recent years, an evaluation system for evaluating the texture by pressing a food using a pressing mechanism and a pressure sensor is also known.
例えば、特許文献1の食感評価システムは、食感の評価対象である試料を押圧するための押圧装置と、試料の押圧時に前記試料から受ける圧力分布の経時的変化を計測する計測装置(圧力分布センサ)と、押圧装置による押圧動作を制御するとともに、圧力分布センサからの圧力分布データに基づいて試料の食感を評価する食感評価手段(制御PC)とを備えている。
For example, the texture evaluation system of
この押圧装置は、上下一対のプレートを有し、下側のプレートの上面に圧力分布センサが載置され、圧力分布センサ上に試料が載置される。上側のプレートは圧力分布センサと上下方向に対向する位置に設けられ、リニアスライダに接続されている。リニアスライダは、制御PCからの押圧動作制御信号に応じて圧力センサ面に対して鉛直方向に駆動されるため、試料の押圧動作を制御することができる(段落0022~0028,図1)。 This pressing device has a pair of upper and lower plates, a pressure distribution sensor is placed on the upper surface of the lower plate, and a sample is placed on the pressure distribution sensor. The upper plate is provided at a position facing the pressure distribution sensor in the vertical direction and is connected to the linear slider. Since the linear slider is driven in the vertical direction with respect to the pressure sensor surface in response to the pressing operation control signal from the control PC, the pressing operation of the sample can be controlled (paragraphs 0022 to 0028, FIG. 1).
特許文献1の食感評価システムは、圧力分布の経時的変化から得られる特徴量に基づいてのみ、食感を評価する構成である。しかしながら、実際の人による咀嚼行動は、噛み方や唾液の浸潤の仕方等、個人差が大きく、精度良く食感を評価することは困難であった。
The texture evaluation system of
本発明は、このような事情に鑑みてなされたものであり、人の咀嚼を再現することで食品の食感評価に利用可能な食塊形成装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object of the present invention is to provide a bolus forming apparatus that can be used for evaluating the texture of food by reproducing the chewing of a person.
上記目的を達成するため、本発明の食塊形成装置は、人工口腔空間に設けられた第1人工歯と、前記第1人工歯に対向する位置に配置された第2人工歯と、前記第1人工歯又は前記第2人工歯と並列配置された人工舌と、前記第1人工歯及び前記第2人工歯の少なくとも一方の側方に配置された壁面状の人工頬と、前記第1人工歯又は前記第2人工歯を駆動させて咬合動作をさせる駆動手段とを備え、前記人工口腔空間に配された食品を前記咬合動作によって咀嚼し、前記食品の食塊を形成することを特徴とする。 In order to achieve the above object, the occlusal forming apparatus of the present invention includes a first artificial tooth provided in the artificial oral space, a second artificial tooth arranged at a position facing the first artificial tooth, and the first artificial tooth. An artificial tongue arranged in parallel with one artificial tooth or the second artificial tooth, a wall-shaped artificial chew arranged on at least one side of the first artificial tooth and the second artificial tooth, and the first artificial tooth. The tooth or the second artificial tooth is provided with a driving means for driving the occlusal motion, and the food arranged in the artificial oral cavity space is chewed by the occlusal motion to form a bolus of the food. To do.
本発明の食塊形成装置では、駆動手段により人工口腔空間の第1人工歯又は第2人工歯を駆動させて、第1人工歯と第2人工歯とが食品を咬合する。食塊形成装置は人工舌及び人工頬を有しているため、人の口腔内と同様に咬合している食品が、人工頬が壁になって人工口腔空間の中央に押し戻され、人工舌によりその位置が調整される。これにより、人工口腔空間で当該食品の食塊が形成されるため、本装置は、人の咀嚼を再現することができる。 In the bolus forming apparatus of the present invention, the first artificial tooth or the second artificial tooth in the artificial oral space is driven by the driving means, and the first artificial tooth and the second artificial tooth occlude the food. Since the bolus forming device has an artificial tongue and an artificial cheek, the food that is occluded like the human oral cavity is pushed back to the center of the artificial oral space by the artificial cheek as a wall, and the artificial tongue Its position is adjusted. As a result, a bolus of the food is formed in the artificial oral space, so that the device can reproduce the chewing of a person.
本発明の食塊形成装置において、前記駆動手段は、前記咬合動作の他に、一方の人工歯を他方の人工歯に対して水平方向にずらす動作をすることが好ましい。 In the bolus forming apparatus of the present invention, in addition to the occlusal operation, the driving means preferably performs an operation of shifting one artificial tooth in the horizontal direction with respect to the other artificial tooth.
食塊形成装置の駆動手段は、一方の人工歯(例えば、第1人工歯)を他方の人工歯(第2人工歯)に対して水平方向にずらすように動作させることができる。これにより、本装置は、人の口腔内と同様に食品をすり潰しながら食塊を形成することができる。 The driving means of the bolus forming device can be operated so as to shift one artificial tooth (for example, the first artificial tooth) in the horizontal direction with respect to the other artificial tooth (second artificial tooth). As a result, the present device can form a bolus while grinding food in the same manner as in the human oral cavity.
また、本発明の食塊形成装置において、前記咬合動作により離散した前記食品を、前記人工口腔空間の所定の位置に集める食品収集手段を備えていることが好ましい。 Further, it is preferable that the bolus forming apparatus of the present invention is provided with a food collecting means for collecting the foods separated by the occlusal operation at a predetermined position in the artificial oral space.
本発明の食塊形成装置では、咬合動作によって食品が人工口腔空間に離散してしまう。このため、食塊形成装置に食品収集手段を設けて、離散した食品を人工口腔空間の所定の位置(例えば、人工舌の上面)に集める。これにより、本装置は、人の咀嚼をより忠実に再現して、食塊を形成することができる。 In the bolus forming apparatus of the present invention, food is dispersed in the artificial oral space due to the occlusal motion. Therefore, a food collecting means is provided in the bolus forming device to collect the separated foods at a predetermined position in the artificial oral space (for example, the upper surface of the artificial tongue). As a result, this device can more faithfully reproduce human mastication and form a bolus.
また、本発明の食塊形成装置において、前記食品に対して水分を供給する水分供給手段を備えていることが好ましい。 Further, it is preferable that the bolus forming apparatus of the present invention is provided with a water supply means for supplying water to the food.
食塊形成装置に水分供給手段を設けることで、人工口腔空間に唾液に相当する水分が供給される。これにより、本装置は、水分で食品が塊状になり易く、人の咀嚼状態に近づけることができる。 By providing a water supply means in the bolus forming device, water equivalent to saliva is supplied to the artificial oral space. As a result, in this device, food tends to be lumpy due to moisture, and it is possible to bring the food closer to the state of being chewed by a person.
また、本発明の食塊形成装置において、前記人工口腔空間の前記食品又は前記食塊を撮像する撮像手段と、前記撮像手段が撮像した、前記食塊の画像から咀嚼状態を評価する評価手段と、を備えていることが好ましい。 Further, in the bolus forming apparatus of the present invention, an imaging means for imaging the food or the bolus in the artificial oral space, and an evaluation means for evaluating the chewing state from the image of the bolus imaged by the imaging means. , Are preferably provided.
この構成によれば、人工口腔空間の食品又は食塊を撮像手段で撮像することで、評価手段がその画像から画像解析等によって咀嚼状態を評価する。これにより、本装置は、咀嚼状態の進行度合いを定量的に評価することができる。 According to this configuration, the food or bolus in the artificial oral space is imaged by the imaging means, and the evaluation means evaluates the chewing state from the image by image analysis or the like. As a result, the present device can quantitatively evaluate the degree of progress of the masticatory state.
また、本発明の食塊形成装置において、前記評価手段は、前記食塊を局所変化と全体の均一性とから選ばれる1種又は2種により評価することが好ましい。 Further, in the bolus forming apparatus of the present invention, it is preferable that the evaluation means evaluates the bolus by one or two selected from local changes and overall uniformity.
食塊形成装置の評価手段は、人工口腔空間の食塊を局所変化、全体の均一性の1種(一方)又は2種(両方)で評価する。これにより、本装置は、正確に咀嚼状態の進行度合いを評価することができる。 The evaluation means of the bolus forming apparatus evaluates the bolus in the artificial oral space by one type (one) or two types (both) of local change and overall uniformity. As a result, the present device can accurately evaluate the degree of progress of the masticatory state.
また、本発明の食塊形成装置において、咀嚼状態の異なる食塊の画像を入力して機械学習を行う機械学習手段を備え、前記機械学習手段で得られた判断手法により前記食塊を評価することが好ましい。 Further, the bolus forming apparatus of the present invention is provided with a machine learning means for inputting images of bolus having different chewing states to perform machine learning, and evaluates the bolus by a determination method obtained by the machine learning means. Is preferable.
この構成によれば、機械学習手段が咀嚼状態の異なる多数の食塊の画像を学習して、判断手法を確立する。これにより、本装置は、評価手段が食塊の状態を正確に評価できるようになる。 According to this configuration, the machine learning means learns images of a large number of bolus with different chewing states and establishes a judgment method. As a result, this device enables the evaluation means to accurately evaluate the state of the bolus.
本発明の咀嚼状態評価方法は、請求項1~7のいずれか1項に記載の食塊形成装置を用いて、前記食品の咀嚼状態を評価する方法であり、本発明の食感評価方法は、請求項1~7のいずれか1項に記載の食塊形成装置を用いて、前記食品の食感を評価する方法である。
The chewing state evaluation method of the present invention is a method of evaluating the chewing state of the food using the bolus forming apparatus according to any one of
また、本発明の食感方法は、請求項1~4のいずれか1項に記載の食塊形成装置を用いる食塊の製造方法である。
Further, the texture method of the present invention is a method for producing a bolus using the bolus forming apparatus according to any one of
本発明によれば、様々な食品に対して、精度良く食感の評価を行うことができる。 According to the present invention, it is possible to accurately evaluate the texture of various foods.
[第1実施形態]
以下、図面を参照して、本発明に係る食塊形成装置の第1実施形態について説明する。
[First Embodiment]
Hereinafter, the first embodiment of the bolus forming apparatus according to the present invention will be described with reference to the drawings.
初めに、図1、図2を参照して、本発明に係る食塊形成装置1の概要を説明する。
First, the outline of the
図1は、食塊形成装置1の概略図である。図示するように、食塊形成装置1は、主にロボットアーム2aと、ロボットハンド2bと、人の口腔内を再現する咀嚼機構部3とで構成されている。ロボットアーム2a及びロボットハンド2bは、本発明の「駆動手段」に相当する。
FIG. 1 is a schematic view of the
ロボットアーム2aの先端部は下顎に相当し、下人工歯4が装着されている。下人工歯4の動作は2自由度であり(VAx,VAy)であり、咬断動作(咬合動作)と臼磨動作を行うことができる。また、アルミ製のフレーム11は上顎に相当し、上人工歯5が装着されている。
The tip of the
咬断動作は、ロボットアーム2aを垂直方向(VAx)に駆動させることで、下人工歯4と上人工歯5とにより食品を咬合する動作である。また、臼磨動作は、ロボットアーム2aを水平方向(VAy)に駆動させて下人工歯4と上人工歯5とをずらし、食品をすり潰す動作である。
咬断operation, by driving the
下人工歯4、上人工歯5は何れも樹脂製であり、3Dプリンタを使用して作製される。なお、図示するように、下人工歯4、上人工歯5の中央部には、それぞれ溝、突起が形成されている。
The lower
ロボットハンド2bの先端部(グリッパ可動部)には、人工舌6が装着されている。人工舌6の動作は垂直方向の運動(VBy)のみの1自由度である。人工舌6はシリコーンで作製され、その表面には弾性シートが貼付されており、人工舌6の上下運動に合わせて伸縮する。
An
また、下人工歯4に隣接する部分には、人工頬7が取り付けられている。人工頬7はシリコーン製であり、ロボットアーム2aにより下人工歯4と同じ動作をする。咀嚼機構部3は上述の各構成を有しており、人工口腔空間に運搬された食品は、咀嚼運動を通じて粉砕され、すり潰され、唾液と混じり、食塊に変化していく。
In addition, an
次に、図2に、食塊形成装置1の全体斜視図を示す。図示するように、咀嚼機構部3の上方にフレーム11が配設されている。フレーム11には、上人工歯5の他、咀嚼した食品をかき集める収集舌8(本発明の「食品収集手段」)及びカメラ9(本発明の「撮像手段」)が装着されている。収集舌8として市販の綿棒を用いるが、咬合動作により人工口腔空間Sに離散した食品をかき集め、例えば、下人工歯4や人工舌6の上面に移動させる。
Next, FIG. 2 shows an overall perspective view of the
また、カメラ9は、コンピュータと接続されたウェブカメラが望ましく、カメラ9は食品が咀嚼される様子を自動で撮像することができる。詳細は後述するが、カメラ9で撮像された画像からコンピュータ(本発明の「評価手段」)が画像解析を行って、さらに食塊(咀嚼の進行度合い)を評価する。これにより、食塊形成装置1は、食品の咀嚼状態を定量的に評価することができる。なお、咀嚼、食品の収集、画像撮影の各ステップは、コンピュータのプログラムにより自動制御する。
Further, the
また、下人工歯4及び人工舌6の側面にアクリルプレートを用いて壁面7’を作り、咀嚼された食品がこぼれないようにしている。さらに、人の口腔内を正確に再現するためには、唾液供給部(本発明の「水分供給手段」)が必要となる。今回、霧吹きを用いて食塊に水分(1回当り0.6ml)を投入したが、上人工歯5内に貯水部12を設け、食塊に対して所定時間毎に水分を供給するようにしてもよい。これにより、人工口腔空間Sに離散した食品が水分で小さな塊状になるため、食塊の形成に役立つ。このような構成により、食塊形成装置1は、人工口腔空間Sにおいて人の咀嚼を忠実に再現することができる。
In addition, an acrylic plate is used on the side surfaces of the lower
次に、図3を参照して、食塊形成装置1による食塊形成プロセスを、フローチャートにより説明する。
Next, with reference to FIG. 3, the bolus formation process by the
まず、食塊形成装置1において、カウンタiに「1」、咀嚼回数nに「0」をセットする(ステップS01)。食塊形成装置1においては、下顎が、固定された上顎に向かって動くため、咀嚼回数は下顎サイクル数ともいう。その後、ステップS02に進む。
First, in the
ステップS02では、カメラ9による撮像を開始する。具体的には、カメラ9が、この後開始する食品の咀嚼状態を撮像する。その後、ステップS03に進む。
In step S02, imaging by the
次に、カウンタiが上限サイクル数Nに到達したか否かを判定する(ステップS03)。上限サイクル数Nに到達した場合にはステップS08に進み、未だ到達していない場合にはステップS04に進む。 Next, it is determined whether or not the counter i has reached the upper limit number of cycles N (step S03). If the upper limit number of cycles N has been reached, the process proceeds to step S08, and if it has not yet been reached, the process proceeds to step S04.
カウンタiが上限サイクル数Nに到達していない場合(ステップS03で「NO」)、水分供給を実行する(ステップS04)。これは、人工口腔空間Sに唾液の代わりとなる水分を供給する処理である。その後、ステップS05に進む。 When the counter i has not reached the upper limit number of cycles N (“NO” in step S03), water supply is executed (step S04). This is a process of supplying water instead of saliva to the artificial oral space S. After that, the process proceeds to step S05.
ステップS05では、食品の咀嚼を実行する。ここで、咀嚼回数nに5を加算することから、下顎の動作を5回連続して実行する。5回目の下顎動作の前後で、人工舌6を上下に動作させ、食塊をかき混ぜる。これにより、人工口腔空間Sで食品の咀嚼が進むとともに、徐々に食塊が形成される。その後、ステップS06に進む。
In step S05, the food is chewed. Here, since 5 is added to the number of times of chewing n, the movement of the lower jaw is executed five times in succession. Before and after the fifth mandibular movement, the
ステップS06では、食品の収集を実行する。これは、収集舌8(綿棒)が人工口腔空間S内に離散した食品をかき集める処理である。その後、ステップS07に進む。 In step S06, food collection is executed. This is a process in which the collecting tongue 8 (cotton swab) collects the separated foods in the artificial oral space S. After that, the process proceeds to step S07.
ステップS07では、カウンタiを1加算して、ステップS03にリターンする。そして、カウンタiが上限サイクル数Nに到達していなければ(ステップS03で「NO」)、再度ステップS04~S07の処理を繰り返す。 In step S07, the counter i is added by 1 and the process returns to step S03. Then, if the counter i has not reached the upper limit number of cycles N (“NO” in step S03), the processes of steps S04 to S07 are repeated again.
一方、カウンタiが上限サイクル数Nに到達した場合(ステップS03で「YES」)、カメラ9が撮像を中止する(ステップS08)。その後、一連の食塊形成プロセスの処理を終了する。以上のように、食塊形成装置1は、食品毎に食塊形成の様子(咀嚼の進行度合い)を撮像し、分析する。
On the other hand, when the counter i reaches the upper limit number of cycles N (“YES” in step S03), the
次に、図4A、図4Bを参照して、食塊形成装置1の咀嚼軌道について説明する。
Next, the masticatory trajectory of the
本発明の食塊形成装置1では、人の下顎軌道を線形化し、平行四辺形型軌道として与える。図4Aに示すように、上顎の歯(上人工歯5)と下顎の歯(下人工歯4)とが噛み合う位置を原点Oとし、水平方向にx軸、垂直方向にy軸をとる。そして、x軸方向、y軸方向の運動を時刻tの関数で表すと、その軌道は以下のフーリエ級数の形となる。なお、f[Hz]は周波数、X[mm]は臼磨長、Y[mm]は咬断長であり、α(0≦α≦2)は臼磨と咬断の長さの比を規定するパラメータである。
In the
(1)0≦α<1の場合
x(t)= αXA(t) ・・・(1A)
y(t)= YB(t) ・・・(1B)
(2)1≦α≦2の場合
x(t)= XA(t) ・・・(2A)
y(t)= (2-α)YB(t) ・・・(2B)
ただし、
y (t) = YB (t) ... (1B)
(2) When 1 ≤ α ≤ 2 x (t) = XA (t) ... (2A)
y (t) = (2-α) YB (t) ... (2B)
However,
図4Bは、パラメータを変化させた5種類(α=0,0.5,1.0,1.5,2.0)の軌道を示しており、矢印は動作方向を示している。今回、これら各軌道を採用した場合の食塊(咀嚼状態)を観察した。 FIG. 4B shows five types of trajectories (α = 0, 0.5, 1.0, 1.5, 2.0) with different parameters, and the arrows indicate the operating directions. This time, we observed the bolus (chewing state) when each of these trajectories was adopted.
次に、図5を参照して、食塊形成装置1による食塊形成の実験について説明する。
Next, an experiment of bolus formation by the
今回、上限サイクル数N=6[回]、周波数f=1.0[Hz]、臼磨長X=10.0[mm]、咬断長Y=8.5[mm]に固定して、食塊形成装置1による食塊形成の実験を行った。試料の食品(A社のドーナツ,5.0g)を用いて、上述の各咀嚼軌道に対して10回ずつ実験を行い、咀嚼回数n=[0,5,10,15,20,25,30]の食塊画像を取得した。
This time, the upper limit number of cycles N = 6 [times], frequency f = 1.0 [Hz], mortar length X = 10.0 [mm], and bite length Y = 8.5 [mm] were fixed, and the
図5は、上から(a)α=0、(b)α=0.5、(c)α=1.0、(d)α=1.5、(e)α=2.0の場合の、食品の咀嚼回数に応じた画像を示している。図示するように、咀嚼回数が増加するにつれて次第に食塊が崩れていくことが分かる。また、咀嚼軌道によって、食品の崩れ方、まとまり方が異なっていることも見て取れる。 FIG. 5 shows the number of times the food is chewed when (a) α = 0, (b) α = 0.5, (c) α = 1.0, (d) α = 1.5, and (e) α = 2.0 from the top. The image is shown. As shown in the figure, it can be seen that the bolus gradually collapses as the number of chews increases. It can also be seen that the way foods crumble and organize differs depending on the masticatory trajectory.
次に、これらの食塊画像の相違を定量的に評価するため、同時生起行列(GLCM:Grey-Level Co-occurrence Matrix)を用いて画像テクスチャー解析を行う。ここで、同時生起行列とは、指定された空間関係にあるピクセルのペアが画像に発生する頻度を表す行列である(導出方法は省略する)。 Next, in order to quantitatively evaluate the difference between these bolus images, image texture analysis is performed using a simultaneous occurrence matrix (GLCM: Gray-Level Co-occurrence Matrix). Here, the simultaneous occurrence matrix is a matrix representing the frequency with which a pair of pixels having a specified spatial relationship occurs in an image (the derivation method is omitted).
図5の各食塊画像の大きさは1920×1080pxであり、その中から224×224pxの部分をトリミングする(領域T)。そして、トリミングした画像をグレースケール画像に変換した後に同時生起行列を計算し、画像テクスチャー特徴量としてfC: Contrast(局所変化)及びfA: Angular Second Moment(全体の均一性)を算出する。 The size of each bolus image in FIG. 5 is 1920 × 1080px, and a portion of 224 × 224px is trimmed from the size (region T). Then, after converting the trimmed image into a grayscale image, the simultaneous occurrence matrix is calculated, and f C : Contrast (local change) and f A : Angular Second Moment (overall uniformity) are calculated as image texture features.
Contrastは画像のグレーレベルの局所変化を示しており、Angular Second Momentは画像の均一性を示している。 Contrast shows the local change in the gray level of the image, and Angular Second Moment shows the uniformity of the image.
図6Aは、上記実験によるContrast(局所変化)の結果を示すグラフである。この結果には、食塊形成装置1による「人工食塊」と比較するため、人(被験者)が食品(A社のドーナツ,10.0g)を咀嚼したときの「ヒト食塊」のデータが含まれる(Human)。なお、「ヒト食塊」は、被験者がメトロノームに合わせて、周波数1.0[Hz]で自然に咀嚼した場合のデータである。
FIG. 6A is a graph showing the result of Contrust (local change) by the above experiment. This result includes data on "human bolus" when a person (subject) chews food (doughnut of company A, 10.0 g) for comparison with "artificial bolus" by the
図6Aでは、横軸が咀嚼回数n[回]、縦軸が局所変化fC(平均)となっている。fC(平均)は全10回の試行の平均値を用いており、咀嚼回数n=0[回]の値で規格化されている。この結果から、特にα=0.5~2.0のように水平方向の臼磨運動を含む場合に、fC(平均)が一度増加し、その後、徐々に減少していく傾向があることが分かる。この理由としては、咀嚼初期に異質な部分が現れるが、咀嚼が進行すると次第に当該部分が減少していくことが考えられる。 In FIG. 6A, the horizontal axis represents the number of times of chewing n [times], and the vertical axis represents the local change f C (average). For f C (mean), the average value of all 10 trials is used, and the value of the number of chews n = 0 [times] is standardized. From this result, it can be seen that f C (average) tends to increase once and then gradually decrease, especially when horizontal mortar movement is included such as α = 0.5 to 2.0. The reason for this is that a foreign part appears at the initial stage of mastication, but it is considered that the part gradually decreases as mastication progresses.
また、図6A中の(i)、(ii)、(iii)は、それぞれα=1.0の場合の咀嚼回数n=0, 10, 30[回]を示しているが、図5の対応する食塊画像(星マーク)からも、咀嚼による食塊の変遷が読み取れる。「ヒト食塊」のグラフとの比較では、fC(平均)の大きさの違いはあるものの、食塊形成装置1による「人工食塊」のうちα=1.0が「ヒト食塊」に最も近い傾向を示した。
Further, (i), (ii), and (iii) in FIG. 6A show the number of chews n = 0, 10, 30 [times] when α = 1.0, respectively, and the corresponding foods in FIG. 5 are shown. From the mass image (star mark), the transition of the bolus due to mastication can be read. In comparison with the graph of "human bolus", although there is a difference in the size of f C (average), α = 1.0 is the most common "human bolus" among the "artificial bolus" by the
図6Bは、上記実験によるAngular Second Moment(全体の均一性)の結果を示すグラフである。図6Bでは、横軸が咀嚼回数n[回]、縦軸が全体の均一性fA(平均)となっている。fA(平均)は全10回の試行の平均値を用いており、咀嚼回数n=0[回]の値で規格化されている。 FIG. 6B is a graph showing the results of Angular Second Moment (overall uniformity) by the above experiment. In FIG. 6B, the horizontal axis represents the number of times of chewing n [times], and the vertical axis represents the overall uniformity f A (average). For f A (mean), the average value of all 10 trials is used, and the value of the number of chews n = 0 [times] is standardized.
グラフの傾向は、咬断運動に近い軌道のパラメータ(α=0,0.5)、臼磨運動に近い軌道のパラメータ(α=1.5,2.0)、中間的な軌道であるパラメータ(α=1.0)により、3つのグループに分けられる。「ヒト食塊」のグラフに注目すると、fA(平均)は、咀嚼回数n=10[回]までは減少していき、それ以降は単調増加していく傾向があることが分かる。 The tendency of the graph depends on the orbital parameters close to the bite movement (α = 0,0.5), the orbital parameters close to the mortar movement (α = 1.5,2.0), and the intermediate orbital parameters (α = 1.0). It is divided into three groups. When attention is paid to the graph of "human bolus", f A (average), chewing the number of times n = 10 [times] Until continue to decrease, after that it can be seen that there is a tendency to monotonously increase.
ここでも、食塊形成装置1による「人工食塊」のうちα=1.0が「ヒト食塊」に近い傾向を示した。以上の結果から、本発明の食塊形成装置1は、適切な下顎軌道を与えることで、人間の食塊を再現できることが示唆された。
Here, too, α = 1.0 of the “artificial bolus” produced by the
今回、カメラ9が撮像した画像から、特徴量としてContrast(局所変化)及びAngular Second Moment(全体の均一性)を抽出して食塊(咀嚼状態)を評価したが、これらのうち少なくとも1つを用いて食塊を評価することもできる。
This time, Contrast (local change) and Angular Second Moment (overall uniformity) were extracted as feature quantities from the image captured by the
また、カメラ9が撮像した撮像画像を、機械学習モデルで判断させて食塊を評価してもよい。具体的には、同じ食品(ドーナツ)で咀嚼状態の異なる入力画像を1000枚程用意する。入力画像は、咀嚼回数(例えば、0~30回)に応じた食塊画像を撮像して、これらを咀嚼回数に基づくクラスに分類し、教師データとする。
Further, the captured image captured by the
そして、畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)のモデル学習を行い、咀嚼クラスの推定モデルを作成する。特に、畳み込みニューラルネットワークでは、画像を2次元データのまま入力可能で、有効な特徴量を学習の過程において自動で抽出することができる。これにより、新たな食塊画像を入力したとき、食塊の状態から咀嚼がどの程度進行したかを、簡便かつ迅速に判断することができる。 Then, model learning of the convolutional neural network (CNN) is performed, and an estimation model of the mastication class is created. In particular, in a convolutional neural network, an image can be input as it is as two-dimensional data, and an effective feature amount can be automatically extracted in the learning process. As a result, when a new bolus image is input, it is possible to easily and quickly determine how much chewing has progressed from the state of the bolus.
[第2実施形態]
以下では、本発明に係る食塊形成装置の第2実施形態について説明する。
[Second Embodiment]
Hereinafter, a second embodiment of the bolus forming apparatus according to the present invention will be described.
第1実施形態では、食塊形成装置1で得られた食塊をカメラ9で撮影し、画像解析からContrast(局所変化)及びAngular Second Moment(全体の均一性)で食塊を評価した。第2実施形態は、食塊を画像解析する点は同じであるが、「規格化したContrast」及び「規格化したAngular Second Moment」という改良した評価値を用いて、食塊を評価する。
In the first embodiment, the bolus obtained by the
まず、規格化したContrastのfC(n)(平均)の定義を説明する。fC(n)(平均)は、Contrastの全10回の試行の平均値に対して、fC(0)(平均)を差し引き(差分値)、さらに差分値の絶対値の最大値を用いて規格化した値である。 First, the standardized definition of f C (n) (mean) of Contrust will be described. For f C (n) (mean), subtract f C (0) (mean) from the average value of all 10 trials of Contrast (difference value), and use the maximum value of the absolute value of the difference value. It is a standardized value.
fC(n)(平均)は、次式で与えられる。
次に、規格化したAngular Second MomentのfA(n)(平均)の定義を説明する。fA(n)(平均)は、Angular Second Momentの全10回の試行の平均値に対して、fA(0)(平均)を差し引き(差分値)、さらに差分値の絶対値の最大値を用いて規格化した値である。 Next, the definition of f A (n) (average) of the standardized Angular Second Moment will be described. f A (n) (mean) is the average value of all 10 trials of Angular Second Moment minus f A (0) (mean) (difference value), and the maximum value of the absolute value of the difference value. It is a value standardized using.
fA(n)(平均)は、次式で与えられる。
図7Aは、食塊形成装置1を用いて食品X(A社のドーナツ)を評価した場合のContrast(局所変化)の結果を示すグラフである。パラメータは、人が形成する「ヒト食塊」に近いα=1.0を採用した。また、(式6)において、咀嚼回数n=m={0,5,10,15,20,25,30}の場合をプロットし、グラフ化した。
FIG. 7A is a graph showing the result of Contrast (local change) when food X (doughnut of company A) is evaluated using the
食塊形成装置1による「人工食塊」(実線)と比較するため、「ヒト食塊」のデータを破線で示す。なお、「ヒト食塊」は、被験者がメトロノームに合わせて、周波数1.0[Hz]で自然に咀嚼した場合のデータである。
The data of "human bolus" is shown by a broken line for comparison with the "artificial bolus" (solid line) by the
今回、図6Aにおけるα=1.0とほぼ同じ条件であるため、規格化した局所変化fC(n)(平均)は、はじめ単調増加して咀嚼回数n=10~20[回]で最大となり、その後、減少していく傾向が見られた。すなわち、咀嚼初期に異質な部分が現れるが、咀嚼が進行すると次第に当該部分が減少していく。「ヒト食塊」についても、同様である。 This time, since the conditions are almost the same as α = 1.0 in FIG. 6A, the normalized local change f C (n) (average) increases monotonically at first and becomes maximum when the number of chews n = 10 to 20 [times]. After that, there was a tendency to decrease. That is, a foreign portion appears at the initial stage of mastication, but the portion gradually decreases as mastication progresses. The same applies to "human bolus".
図7Bは、食塊形成装置1で食品X(A社のドーナツ)を評価した場合のAngular Second Moment(全体の均一性)を示すグラフである。ここでも、パラメータとして、「ヒト食塊」に近いα=1.0を採用した。また、(式7)において、咀嚼回数n=m={0,5,10,15,20,25,30}の場合をプロットし、グラフ化した(実線)。
FIG. 7B is a graph showing Angular Second Moment (overall uniformity) when food X (doughnut of company A) is evaluated by the
fA(n)(平均)は、はじめ単調減少して咀嚼回数n=10~15[回]で最小となり、それ以降は少しずつ増加していく傾向が見られた。すなわち、咀嚼初期に均一性が一気に崩れるが、咀嚼が進行すると次第に均一性が回復していく。「ヒト食塊」(破線)についても、同様である。以上の結果から、本発明の食塊形成装置1は、適切な下顎軌道を与えることで、局所変化、全体の均一性の定義を変更しても、人間の食塊を再現することが示唆された。
f A (n) (average) decreased monotonically at first, became the minimum when the number of chews n = 10 to 15 [times], and then gradually increased. That is, the uniformity collapses at a stretch at the initial stage of mastication, but the uniformity gradually recovers as mastication progresses. The same applies to the "human bolus" (broken line). From the above results, it is suggested that the
次に、図8A、図8Bを参照して、食塊形成装置1を用いて食感の異なる食品を評価できるか調べた結果について説明する。
Next, with reference to FIGS. 8A and 8B, the results of investigating whether foods having different textures can be evaluated using the
図8Aにおいて、実線のグラフは、食塊形成装置1で食品X(A社のドーナツ)を評価した場合のContrast(局所変化)の結果を示している。今回も、パラメータとして、「ヒト食塊」に近いα=1.0を採用した。また、(式6)において、咀嚼回数n=m={0,5,10,15,20,25,30}の場合をプロットした。
In FIG. 8A, the solid line graph shows the result of Contrust (local change) when food X (doughnut of company A) is evaluated by the
破線のグラフは、食塊形成装置1で食品Y(B社のドーナツ)を評価した場合のContrastの結果を示している。パラメータや咀嚼回数n(m)は食品Xと同じとしたため、2つの波形が区別できれば、食塊形成装置1は、食品Xと食品Yの食感を区別できたことになる。ここでは、食品Xよりも食品Yの方が咀嚼の進行が早いことが見て取れる。
The graph of the broken line shows the result of Contrast when the food Y (doughnut of company B) is evaluated by the
また、図8Bにおいて、実線のグラフは、食塊形成装置1で食品X(A社のドーナツ)を評価した場合のAngular Second Moment(全体の均一性)の結果を示している。ここでも、パラメータとして、「ヒト食塊」に近いα=1.0を採用した。また、(式7)において、咀嚼回数n=m={0,5,10,15,20,25,30}の場合をプロットした。
Further, in FIG. 8B, the solid line graph shows the result of Angular Second Moment (overall uniformity) when food X (doughnut of company A) is evaluated by the
破線のグラフは、食塊形成装置1で食品Y(B社のドーナツ)を評価した場合のAngular Second Momentの結果を示している。図示するように、食品Xよりも食品Yの方が均一性の回復が早く、咀嚼の進行が早いことが分かる。
The graph of the broken line shows the result of Angular Second Moment when the food Y (doughnut of company B) is evaluated by the
最後に、図9A、図9Bを参照して、食品X及び食品Yのテクスチャーアナライザによる評価、官能評価の結果を説明する。 Finally, with reference to FIGS. 9A and 9B, the results of the evaluation and sensory evaluation of food X and food Y by the texture analyzer will be described.
図9Aは、食品X及び食品Yをテクスチャーアナライザ(TA.XTplus:Stable Micro Systems社製)により評価したグラフである。図9Aでは、横軸が咀嚼回数n[回]、縦軸が圧縮時最大応力[g]となっている。 FIG. 9A is a graph in which food X and food Y are evaluated by a texture analyzer (TA.XTplus: manufactured by Stable Micro Systems). In FIG. 9A, the horizontal axis represents the number of times of chewing n [times], and the vertical axis represents the maximum stress during compression [g].
具体的には、食品X、食品Yのそれぞれについて、咀嚼5~30回目の食塊をテクスチャーアナライザによって計測し、圧縮時最大応力[g]を計測した。これによれば、食品Yの最大応力が食品Xの最大応力よりも常に小さく、柔らかいという結果が得られた。 Specifically, for each of food X and food Y, the 5th to 30th chewing bolus was measured by a texture analyzer, and the maximum stress [g] during compression was measured. According to this, it was obtained that the maximum stress of food Y was always smaller than the maximum stress of food X and was soft.
図9Bは、食品X及び食品Yを官能評価したグラフである。官能評価は評価者5名で行い、咀嚼はメトロノームに合わせて行った(100回/分に設定)。評価者は、VAS法にて0~10の尺度で評価し、評価者5名の6回の繰り返し評価の平均値を官能評価値とした。 FIG. 9B is a graph obtained by sensory evaluation of food X and food Y. The sensory evaluation was performed by 5 evaluators, and the chewing was performed according to the metronome (set to 100 times / minute). The evaluator evaluated on a scale of 0 to 10 by the VAS method, and the average value of 6 repeated evaluations of 5 evaluators was used as the sensory evaluation value.
これによれば、官能評価によっても食品Yの方が、2倍以上スコア(口溶け)が高いという結果が得られた(P値は、多重比較検定での有意差を示す)。以上の結果から、同じドーナツであっても、食品Y(B社)の方が口溶けが良いということが実証され、本発明の食塊形成装置1により、食品X、食品Yの食感を区別することができた。
According to this, the result that the score (melting in the mouth) of food Y was more than twice as high was obtained by the sensory evaluation (P value indicates a significant difference in the multiple comparison test). From the above results, it was demonstrated that food Y (Company B) had better melting in the mouth even for the same donut, and the texture of food X and food Y was distinguished by the
このように、本発明に係る食塊形成装置1は、人工口腔空間Sで、人の口腔内のように食品を咀嚼して食塊を形成することができる。そして、食塊形成装置1に適切な下顎軌道を与えることで、人が食塊を形成する工程を再現することに成功した。食塊形成装置1を用いることで、例えば、新たに開発された食品が人にどのように咀嚼されるか等を調べることが可能になる。
As described above, the
また、食塊の画像認識により、容易に咀嚼の進行度合いを評価できるので、食塊形成装置1は、複数の食品の食感を比較することもできる。なお、今回、食品としてドーナツを採用したが、他の食品であっても評価方法は同じである。しかしながら、機械学習モデルで食塊画像を評価する場合には、対象食品の咀嚼状態に応じた画像を予め学習させておく必要がある。
In addition, since the degree of progress of mastication can be easily evaluated by image recognition of the bolus, the
1…食塊形成装置、2a…ロボットアーム、2b…ロボットハンド、3…咀嚼機構部、4…下人工歯、5…上人工歯、6…人工舌、7…人工頬、7’…壁面、8…収集舌、9…カメラ、11…フレーム、12…貯水部、S…人工口腔空間。 1 ... bolus forming device, 2a ... robot arm, 2b ... robot hand, 3 ... masticatory mechanism, 4 ... lower artificial tooth, 5 ... upper artificial tooth, 6 ... artificial tongue, 7 ... artificial cheek, 7'... wall surface, 8 ... Collecting tongue, 9 ... Camera, 11 ... Frame, 12 ... Water storage, S ... Artificial oral space.
Claims (10)
前記第1人工歯に対向する位置に配置された第2人工歯と、
前記第1人工歯又は前記第2人工歯と並列配置された人工舌と、
前記第1人工歯及び前記第2人工歯の少なくとも一方の側方に配置された壁面状の人工頬と、
前記第1人工歯又は前記第2人工歯を駆動させて咬合動作をさせる駆動手段とを備え、
前記人工口腔空間に配された食品を前記咬合動作によって咀嚼し、前記食品の食塊を形成することを特徴とする食塊形成装置。 The first artificial tooth provided in the artificial oral space and
The second artificial tooth arranged at a position facing the first artificial tooth and
An artificial tongue arranged in parallel with the first artificial tooth or the second artificial tooth,
A wall-shaped artificial cheek arranged on at least one side of the first artificial tooth and the second artificial tooth,
A driving means for driving the first artificial tooth or the second artificial tooth to perform an occlusal operation is provided.
A bolus forming apparatus, characterized in that a food arranged in the artificial oral space is chewed by the occlusal motion to form a bolus of the food.
前記撮像手段が撮像した、前記食塊の画像から咀嚼状態を評価する評価手段と、
を備えていることを特徴とする請求項1~4のいずれか1項に記載の食塊形成装置。 An imaging means for imaging the food or the bolus in the artificial oral space,
An evaluation means for evaluating the chewing state from an image of the bolus captured by the imaging means,
The bolus forming apparatus according to any one of claims 1 to 4, wherein the bolus forming apparatus is provided.
前記機械学習手段で得られた判断手法により前記食塊を評価することを特徴とする請求項5又は6に記載の食塊形成装置。 Equipped with a machine learning means that performs machine learning by inputting images of bolus with different chewing states
The bolus forming apparatus according to claim 5 or 6, wherein the bolus is evaluated by a determination method obtained by the machine learning means.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2021540750A JP7649511B2 (en) | 2019-08-21 | 2020-08-13 | Food bolus forming device, chewing state evaluation method, food texture evaluation method, and food bolus manufacturing method |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019-151113 | 2019-08-21 | ||
| JP2019151113 | 2019-08-21 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2021033619A1 true WO2021033619A1 (en) | 2021-02-25 |
Family
ID=74660850
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2020/030772 Ceased WO2021033619A1 (en) | 2019-08-21 | 2020-08-13 | Food bolus forming device, chewing state assessment method, food texture assessment method, and food bolus manufacturing method |
Country Status (3)
| Country | Link |
|---|---|
| JP (1) | JP7649511B2 (en) |
| TW (1) | TW202120904A (en) |
| WO (1) | WO2021033619A1 (en) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2022162274A (en) * | 2021-04-12 | 2022-10-24 | 株式会社エグザマスティカ | Artificial bolus rolling kit, artificial bolus rolling method using the same, and masticatory function evaluation system |
| CN115406706A (en) * | 2022-11-03 | 2022-11-29 | 君华高科集团有限公司 | Full-automatic food material sampling robot based on image recognition |
| JP2023087750A (en) * | 2021-12-14 | 2023-06-26 | 国立大学法人大阪大学 | Mastication simulator, method of reproducing mastication motion |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101915708A (en) * | 2010-08-17 | 2010-12-15 | 江南大学 | Food physical property bionic detection robot and detection method |
| US8671785B2 (en) * | 2011-12-12 | 2014-03-18 | Verizon Patent And Licensing Inc. | Automated animal bite simulator for testing cables |
| CN107063904A (en) * | 2017-03-22 | 2017-08-18 | 吉林大学 | One kind is imitative to chew equipment |
| JP2019514525A (en) * | 2016-04-26 | 2019-06-06 | ブレデント メディカル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトbredent medical GmbH & Co. KG | How to Evaluate Chewing Function Tests |
-
2020
- 2020-08-10 TW TW109127066A patent/TW202120904A/en unknown
- 2020-08-13 JP JP2021540750A patent/JP7649511B2/en active Active
- 2020-08-13 WO PCT/JP2020/030772 patent/WO2021033619A1/en not_active Ceased
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101915708A (en) * | 2010-08-17 | 2010-12-15 | 江南大学 | Food physical property bionic detection robot and detection method |
| US8671785B2 (en) * | 2011-12-12 | 2014-03-18 | Verizon Patent And Licensing Inc. | Automated animal bite simulator for testing cables |
| JP2019514525A (en) * | 2016-04-26 | 2019-06-06 | ブレデント メディカル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフトbredent medical GmbH & Co. KG | How to Evaluate Chewing Function Tests |
| CN107063904A (en) * | 2017-03-22 | 2017-08-18 | 吉林大学 | One kind is imitative to chew equipment |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2022162274A (en) * | 2021-04-12 | 2022-10-24 | 株式会社エグザマスティカ | Artificial bolus rolling kit, artificial bolus rolling method using the same, and masticatory function evaluation system |
| JP7680733B2 (en) | 2021-04-12 | 2025-05-21 | 株式会社エグザマスティカ | Artificial food bolus rolling kit, artificial food bolus rolling method using the same, and masticatory function evaluation system |
| JP2023087750A (en) * | 2021-12-14 | 2023-06-26 | 国立大学法人大阪大学 | Mastication simulator, method of reproducing mastication motion |
| JP7754450B2 (en) | 2021-12-14 | 2025-10-15 | 国立大学法人大阪大学 | Chewing simulator, method for reproducing chewing movements |
| CN115406706A (en) * | 2022-11-03 | 2022-11-29 | 君华高科集团有限公司 | Full-automatic food material sampling robot based on image recognition |
Also Published As
| Publication number | Publication date |
|---|---|
| TW202120904A (en) | 2021-06-01 |
| JPWO2021033619A1 (en) | 2021-02-25 |
| JP7649511B2 (en) | 2025-03-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2021033619A1 (en) | Food bolus forming device, chewing state assessment method, food texture assessment method, and food bolus manufacturing method | |
| US20230310121A1 (en) | Dentition control method | |
| JP4292006B2 (en) | Apparatus for providing orthodontic apparatus and method for designing orthodontic apparatus | |
| CN109091098A (en) | Magnetic control capsule endoscopic diagnostic and examination system | |
| JP6208777B2 (en) | Occlusal mapping using elastic foam modeling | |
| CN108364315A (en) | Occlusive state recognition methods, occlusive state identification equipment and storage medium | |
| EP3010370A1 (en) | Method for determining movement patterns during a dental treatment | |
| JP2019207123A (en) | Machine learning system, texture evaluation model, texture evaluation apparatus, machine learning method, and texture evaluation method | |
| JP7666920B2 (en) | Oral Condition Evaluation System | |
| JP6793843B2 (en) | Occlusal pressure analyzer, occlusal pressure analysis program, and occlusal pressure analysis method | |
| Hamdy | How Artificial Inelegance Is Transforming Aesthetic Dentistry: A Review | |
| CN113362955A (en) | Modeling and evaluating method for dental jaw movement locus | |
| US20220240884A1 (en) | Intra-oral bite device and method of recording an anatomical feature of a patient by using the intra-oral bite device | |
| JPH09253103A (en) | Design method for prosthetic appliance | |
| CN119136726A (en) | Methods for monitoring occlusal changes | |
| EP4183335A1 (en) | Oral care device with tooth mobility detection | |
| CN115024746A (en) | Digital oral intelligent auxiliary diagnosis and treatment system | |
| JP2022173878A (en) | Toothbrush manufacturing method, toothbrush, information processing method, and computer program | |
| JP7773902B2 (en) | Information processing method, information processing device, and control program | |
| JP7725099B1 (en) | Dental X-ray system | |
| JP7742681B1 (en) | Program, computer and information processing method | |
| Sun | Modelling and compliance control of a linkage chewing robot and its application in food evaluation | |
| CN121003505A (en) | System and method for measuring tooth biting force | |
| JP7716759B2 (en) | Quantitative evaluation method based on the amount of movement of facial soft tissue | |
| DE102019112800A1 (en) | Method and device for monitoring an orthodontic measure |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20853814 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2021540750 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 20853814 Country of ref document: EP Kind code of ref document: A1 |