WO2021095519A1 - Information processing device - Google Patents
Information processing device Download PDFInfo
- Publication number
- WO2021095519A1 WO2021095519A1 PCT/JP2020/040345 JP2020040345W WO2021095519A1 WO 2021095519 A1 WO2021095519 A1 WO 2021095519A1 JP 2020040345 W JP2020040345 W JP 2020040345W WO 2021095519 A1 WO2021095519 A1 WO 2021095519A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- model
- data
- encoder
- information processing
- learning
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
- G06N3/0455—Auto-encoder networks; Encoder-decoder networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0475—Generative networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/094—Adversarial learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Definitions
- This disclosure relates to an information processing device.
- Non-Patent Document 1 discloses a multi-task adversarial network (MTAN).
- MTAN multi-task adversarial network
- feature representations of images labeled with content and style are generalized with respect to style factors through hostile learning in style identification of the image.
- MTAN it is possible to generalize the feature representation of an image without causing confusion in the content identification of the image containing an unknown style factor.
- the present disclosure has been made to solve the above-mentioned problems, and the purpose of the present disclosure is to determine whether or not the trained model can exhibit the performance obtained by machine learning. The judgment is based on the input data.
- the information processing device includes an encoder and a determination unit.
- the encoder includes an encoder model that outputs features of a plurality of dimensions from training data contained in at least one data set.
- the determination unit receives the specific feature amount of at least one input data from the encoder model, and outputs the goodness of fit of the at least one input data to the at least one data set.
- the encoder model is adapted by machine learning to distribute features in specific subspaces of the feature space defined by multiple dimensions.
- the determination unit calculates the goodness of fit of at least one input data to at least one data set from the positional relationship between the specific feature amount and the specific subspace.
- the input data is suitable for at least one environment (known environment) from which the training data is acquired by referring to the goodness of fit calculated by the determination unit. it can.
- the trained model adapted by machine learning using the training data acquired in the known environment functions normally with respect to the input data. That is, it is possible to determine whether or not the trained model can exhibit the performance obtained by machine learning based on the input data to the trained model.
- the determination unit back-calculates the difference between the specific feature amount and the feature amount extracted from the training data by the encoder model as the change amount of at least one input data via the encoder model, and the change amount.
- the method of changing the condition from which at least one input data for reducing the absolute value of is acquired may be output.
- the conditions of the environment in which the input data is acquired can be adapted to the conditions of the known environment.
- the trained model can exhibit the performance obtained in machine learning even for the input data acquired in the unknown environment.
- the information processing device may further include a storage unit and a learning unit. At least one data set may be stored in the storage unit.
- the learning unit may adapt the encoder model so that the features are distributed in a specific subspace by machine learning using at least one data set.
- an encoder model that has not been machine-learned can be adapted to an encoder model that has been learned by the learning unit.
- the information processing device includes a storage unit, an encoder, and a learning unit. At least one data set is stored in the storage unit.
- the encoder includes an encoder model that extracts features of multiple dimensions from the training data contained in the dataset.
- the learning unit adapts the encoder model so that the features are distributed in a specific subspace of the feature space defined by a plurality of dimensions by machine learning using a data set.
- an encoder model that has not been machine-learned can be adapted to an encoder model that has been learned by the learning unit.
- the information processing device may further include a decoder.
- the decoder may include a decoder model that decodes the features from the encoder.
- the learning unit may adapt the encoder model and the decoder model so that the features follow a standard normal distribution by machine learning using at least one data set.
- the decoder model is adapted to a variational auto-encoder (VAE) by machine learning, and the features extracted from the training data by the encoder model are uniform in a specific subspace.
- VAE variational auto-encoder
- the encoder model is adapted to be distributed in.
- the information processing device may further include a classifier.
- the classifier may include a discriminative model that identifies which of the at least one environment the training data is contained in.
- Machine learning may be hostile learning performed between the discriminative model and the encoder model.
- hostile learning the discriminative model is optimized to maximize the probability that the discriminative model will succeed in identifying the correct environment from which the training data was acquired, and the probability that the discriminative model will fail in identifying the correct environment.
- the encoder model may be optimized for maximization.
- hostile learning removes the bias peculiar to the environment in which the data contained in each of at least one data set is acquired from the features extracted from the training data by the encoder model. Since the features output from the encoder model emphasize the features common to known environments, it is determined to the trained model whether or not the trained model can exhibit the performance obtained by machine learning. It becomes easy to judge based on the input data of.
- the specific subspace may be a spherical surface centered on the origin of the feature space.
- the distance from the origin of the features of the data acquired in an environment compatible with the known environment through machine learning for the encoder and the incompatibility with the known environment. It is easy to make a clear difference in the distance from the origin of the feature amount of the data acquired in the environment. As a result, it is possible to more clearly determine whether or not the trained model can exhibit the performance obtained by machine learning based on the input data to the trained model.
- the distribution of features output from the encoder model of FIG. 5 is shown when the inference processing performed by the main object model is logistic regression of two-class classification using a sigmoid function. It is a flowchart which shows the flow of another example of the conformity determination process performed by the determination part of FIG. It is a block diagram which shows the structure of the information processing apparatus which concerns on modification 1 of embodiment. It is a block diagram which shows the structure of the information processing apparatus which concerns on modification 2 of embodiment. It is the schematic which shows an example of the whole structure of the appearance inspection system including the information processing apparatus of FIG. It is a schematic diagram for demonstrating the image example of the work acquired by the image pickup part of FIG. It is a schematic block diagram of the information processing apparatus of FIG.
- FIG. 1 is a block diagram showing a configuration of an information processing device 100 according to an embodiment.
- the information processing device 100 includes a storage unit Stg, a learning unit Ln, an encoder Enc, a decoder Dec, a discriminator Dsc, a main purpose processor Mpr, and a determination unit Jdg. ..
- Data sets E1 to En are stored in the storage unit Stg.
- the encoder Enc includes an encoder model Mc.
- the decoder Dec includes a decoder model Md.
- the classifier Dsc includes a discriminative model Me.
- the main purpose processor Mpr includes a main purpose model Mm.
- Each of the encoder model Mc, the decoder model Md, the discriminative model Me, and the main purpose model Mm includes a neural network.
- the decoder Dec may not be included in the information processing device 100.
- the data sets E1 to En include training data dt1 to dtn.
- the training data dt1 to dtn are labeled with each of the data sets E1 to En, and include correct answer data corresponding to the output of the main purpose processor Mpr.
- the labels attached to each of the data sets E1 to En correspond to the environment in which the data included in each data set was acquired.
- the environment also called a domain, is determined by the conditions under which the data is retrieved.
- the difference in the conditions can be a factor (bias) that makes the distribution of the features of the learning data of the same attribute different.
- the condition includes, for example, the date and time when the learning data was acquired, the place where the learning data was acquired, the set value of the device from which the learning data was acquired, the model of the device, and the like.
- the "n" in the datasets En and dtn is a natural number of 2 or more.
- the encoder model Mc extracts features of a plurality of dimensions from the training data included in the data set Ds.
- the decoder model Md receives a feature amount from the encoder model Mc and decodes the feature amount.
- the discriminative model Me receives the feature amount from the encoder model Mc and identifies the data set including the data from which the feature amount is extracted.
- the main object model Mm receives a feature amount from the encoder model Mc and makes an inference such as pattern recognition for the data from which the feature amount is extracted. Functions of the main purpose model Mm include, for example, image recognition, natural language processing, and voice recognition.
- the learning unit Ln uses the encoder model Mc and the decoder to distribute the features in a specific subspace of the feature space defined by the dimension of the features output from the encoder model Mc by machine learning using the data set Ds. Fit the model Md to the variant self-encoder.
- a ring loss is used as a loss function in the optimization of the encoder model Mc, and the specific subspace can be made spherical by adapting the encoder model Mc and the decoder model Md to the self-encoder.
- the radius of the spherical surface may use a predetermined value, or may be learned in the process of optimizing the encoder model Mc.
- Cross entropy may be used as the loss function to make the specific subspace a hyperplane.
- the learning unit Ln performs machine learning on the encoder model Mc and the decoder model Md as shown in FIG.
- the encoder model Mc receives the learning data dtz and outputs the feature amount fz to the decoder model Md.
- the decoder model Md decodes the feature amount fz into data dcz.
- the learning unit Ln minimizes the error Ls1 between the data dcz and the learning data dtz, backpropagates the feature fz so that it follows a standard normal distribution, and performs neurals included in each of the encoder model Mc and the decoder model Md. Update network weights and biases.
- the encoder model Mc and the decoder model Md are adapted to the trained self-encoder.
- the learning unit Ln performs hostile learning as shown in FIG. 3 between the encoder model Mc and the discriminative model Me.
- the probability Ps is the probability that the discriminative model Me succeeds in identifying the correct data set Ex from which the training data dtx has been acquired.
- the probability Pf is the probability that the discriminative model Me fails to identify the correct data set Ex.
- the learning unit Ln optimizes the discriminative model Me so that the probability Ps is maximized. That is, the learning unit Ln performs backpropagation so as to minimize the error between the correct answer data corresponding to the label of the correct answer data set Ex and the output of the discriminative model Me, and the weight of the neural network included in the discriminative model Me. And update the bias.
- the learning unit Ln optimizes the encoder model Mc so that the probability Pf is maximized. That is, the learning unit Ln performs backpropagation so as to maximize the error between the correct answer data corresponding to the label of the correct answer data set Ex and the output of the discriminative model Me, and the weight of the neural network included in the encoder model Mc. And update the bias.
- the encoder model Mc is optimized to reduce the discriminative accuracy of the dataset containing the training data by the discriminative model Me, and the discriminative model Me is optimized to improve the discriminative accuracy of the dataset containing the training data. Optimized for.
- the environment-specific bias in which the data contained in each of the datasets E1 to En is acquired is removed from the features output from the encoder model Mc.
- the learning unit Ln performs machine learning as shown in FIG. 4 on the main object model Mm using the data set Ds.
- the encoder model Mc receives the learning data dty and outputs the feature amount fy to the main object model Mm.
- the main object model Mm receives the feature quantity fy and outputs the inference result dcy.
- the learning unit Ln performs backpropagation so as to minimize the error Ls2 between the inference result dcy and the correct answer data day, and updates the weight and bias of the neural network included in the main object model Mm.
- the main purpose model Mm becomes a trained model fitted to the datasets E1 to En.
- FIG. 5 is a block diagram showing the flow of inference processing by the trained encoder model Mc and the trained main purpose model Mm.
- the feature amount f_un of the data dt_un acquired in the data set E_un including the data acquired in the unknown environment is converted into the trained main object model Mm via the trained encoder model Mc.
- the main purpose model Mm functions normally for the feature amount depending on the degree of deviation between the condition from which the datasets E1 to En are acquired and the condition from which the data contained in the dataset E_un is acquired. May not.
- the data dt_un is adapted to the data sets E1 to En from the positional relationship between the feature amount f_un and the specific subspace in the feature amount space with respect to the feature amount f_un derived from the data set E_un. Output the degree ad_un.
- the goodness of fit ad_un it is possible to clearly identify whether or not the data dt_un conforms to the datasets E1 to En.
- the trained main object model Mm As a mode of output of the determination result, it may be output whether or not the trained main object model Mm can exhibit the performance for the data dtdt_un, and a plurality of data sets E_un included in the data set E_un. From the goodness of fit of the data, it may be output whether or not the trained main object model Mm can exhibit the performance for the environment determined by the condition in which the data included in the data set E_un is acquired. From the goodness of fit of the data dtdt_un, the reliability of the output result of the trained main purpose model Mm may be output.
- FIG. 6 shows the distribution of the features output from the encoder model Mc of FIG. 5 when the inference processing performed by the main object model Mm is a logistic regression of multi-class classification using the softmax function.
- the feature space is drawn as a two-dimensional plane defined by the dimensions x1 and x2 for convenience of explanation, but the feature output from the encoder model Mc has three or more dimensions. In some cases.
- the features output from the encoder model Mc are plotted as points.
- the specific subspace Sb1 is drawn as a circle with a radius R1. The same applies to FIG. 8 which will be described later.
- the features of the data matching the datasets E1 to En are reflected in the distribution of the features extracted from the data, and the norm of the features (distance from the origin in the feature space) is It often has a certain size. Therefore, the feature quantities of the data acquired in the environment conforming to the datasets E1 to En are often distributed in the vicinity of the specific subspace Sb1. On the other hand, the features of the data acquired in the environment incompatible with the datasets E1 to En are often not reflected in the distribution of the features extracted from the data, and the norm of the features is often relatively small. .. Therefore, the feature quantities of the data acquired in the environment incompatible with the datasets E1 to En are distributed near the origin.
- the distance ⁇ between the feature amount f_un of the data dt_un and the specific subspace Sb1 represents the proximity of the data dt_un to the data sets E1 to En. Therefore, the determination unit Jdg outputs the goodness of fit ad_un of the data dt_un to the data sets E1 to En based on the distance ⁇ .
- the distance ⁇ is the distance between the point P_un corresponding to the feature amount f_un and the intersection Psb of the straight line passing through the point P_un and the origin and the specific subspace Sb1.
- FIG. 7 is a flowchart showing the flow of conformity determination processing performed by the determination unit Jdg of FIG. In the following, the step is simply referred to as S. As shown in FIG. 7, the determination unit Jdg determines whether or not the distance ⁇ is shorter than the threshold value ⁇ th in S11. The threshold value ⁇ th can be appropriately determined by an actual machine experiment or a simulation.
- the determination unit Jdg sets a value (for example, TRUE) indicating that the data dt_un conforms to the data sets E1 to En in S12 to the goodness of fit ad_un. And the process proceeds to S14.
- the determination unit Jdg sets a value (for example, FALSE) indicating that the data dt_un is incompatible with the datasets E1 to En in S13 in the goodness of fit ad_un. The process proceeds to S14.
- the determination unit Jdg outputs the goodness of fit ad_un in S15 and ends the process.
- the goodness of fit ad_un is set to either of the binary values indicating conformity or nonconformity has been described, but the goodness of fit ad_un is set to a continuous value (for example, a percentage) according to the distance ⁇ . May be done.
- the determination unit Jdg may output a method of changing the condition in which the data dt_un for adapting the data dt_un to the data sets E1 to En is acquired.
- the determination unit Jdg inputs the difference between the feature amount f_un and the feature amount extracted by the encoder model Mc from the training data acquired in the data sets E1 to En into the encoder model Mc by backpropagation. Calculate back as the amount of data change.
- the determination unit Jdg outputs a method of changing the condition necessary for reducing the absolute value of the change amount. By executing the change method, the user can acquire data that fits the data sets E1 to En and that the trained main purpose model Mm can exhibit its performance.
- FIG. 8 shows the distribution of the features output from the encoder model Mc of FIG. 5 when the inference processing performed by the main object model Mm is a logistic regression of two-class classification using a sigmoid function.
- the sphere in which the features of the data conforming to the datasets E1 to En are distributed and the sphere in which the features of the data not conforming to the datasets E1 to En are distributed are Clear separation is possible in the optimization of the encoder model Mc using ring loss.
- the feature amounts of the data conforming to the datasets E1 to En are distributed near the spherical surface Sb1 having the radius R1, and the feature amounts of the data not conforming to the datasets E1 to En are distributed near the spherical surface Sb2 having the radius R2. ing.
- the goodness of fit ad_un of the data dt_un to the datasets E1 to En can be calculated depending on whether the norm R of the feature amount f_un of the data dt_un is larger than the threshold value Rth larger than the radius R2.
- the threshold value Rth can be appropriately determined by an actual machine experiment or a simulation.
- FIG. 9 is a flowchart showing the flow of another example of the conformity determination process performed by the determination unit Jdg of FIG.
- the flowchart shown in FIG. 9 is a flowchart in which S11 in FIG. 7 is replaced with S21.
- the determination unit Jdg determines in S21 whether or not the norm R is larger than the threshold value Rth.
- the determination unit Jdg determines that the data dt_un conforms to the data sets E1 to En, performs S12 and S14, and ends the process.
- the determination unit Jdg determines that the data dt_un is incompatible with the data sets E1 to En, performs S13 and S14, and ends the process.
- the conformity determination process by the determination unit Jdg is not limited to the rule-based determination method as shown in FIGS. 7 and 9, and may be a determination method using a trained model optimized by machine learning. ..
- the feature amount distributed in the specific subspace Sb1 and the invalid data in which noise is added to the feature amount can be used as learning data used for machine learning of the determination unit Jdg.
- FIG. 10 is a block diagram showing the configuration of the information processing device 100A according to the first modification of the embodiment.
- the determination unit Jdg is removed from the information processing device 100 of FIG. 1, and the encoder Enc, the decoder Dec, the discriminator Dsc, and the main purpose processor Mpr are the encoder EncA, the decoder DecA, and the discriminating unit. It is a configuration replaced by the vessel DscA and the main purpose processor MprA.
- the information processing apparatus 100A performs learning processing as shown in FIGS. 2 to 4 on the encoder model Mc, the decoder model Md, the identification model Me, and the main object model Mm.
- FIG. 11 is a block diagram showing the configuration of the information processing device 100B according to the second modification of the embodiment.
- the storage unit Stg, the decoder Dec, and the classifier Dsc are removed from the information processing device 100 of FIG. 1, and the encoder Enc and the main purpose processor Mpr are the encoder EncB and the main purpose processor. It is a configuration in which each is replaced with MprB.
- the encoder EncB and the main purpose processor MprB include an encoder model Mc and a main purpose model Mm adapted by the information processing apparatus 100A, respectively.
- inference processing using the encoder model Mc and the main purpose model Mm, and conformity determination processing as shown in FIG. 7 or FIG. 9 are performed.
- FIG. 12 is a schematic view showing an example of the overall configuration of the visual inspection system 1 including the information processing apparatus 100 of FIG.
- the information processing device 100 functions as an image processing device.
- the visual inspection system 1 detects defects in the work 2 based on an image obtained by incorporating an inspection target 2 (hereinafter, also referred to as “work 2”) into a production line or the like. Classify. That is, the main purpose processor Mpr of the information processing device 100 functions as an image classifier in the visual inspection system 1.
- the work 2 is conveyed in a predetermined direction by a conveying mechanism 6 such as a belt conveyor.
- the imaging unit 8 is arranged at a fixed position with respect to the work 2.
- the illumination light source 9 is arranged at a fixed relative position with respect to the image pickup unit 8.
- the illumination light source 9 illuminates at least the field of view of the imaging unit 8 (the range in which the work 2 can be located).
- the imaging unit 8 images the moving work 2.
- the image data obtained by the imaging unit 8 is transmitted to the information processing device 100.
- the orientation of the image pickup unit 8, the amount of light of the illumination light source 9, the number of installations, and the arrangement position can be conditions for determining the environment in which the learning data is acquired. It is preferable that the amount of light, the number of installations, the arrangement position, etc. are optimized so as not to be disturbed by the surrounding lighting environment.
- the detection sensor 4 includes a light receiving unit 4a and a light projecting unit 4b arranged on the same optical axis, and receives light that the light emitted from the light projecting unit 4b is shielded by the work 2. By detecting in the part 4a, the arrival of the work 2 is detected.
- the detection signal of the detection sensor 4 (hereinafter, also referred to as “trigger signal”) is output to the PLC (Programmable Logic Controller) 5.
- the PLC 5 receives a trigger signal from the detection sensor 4 and the like, and controls the transport mechanism 6 itself.
- the visual inspection system 1 further includes an information processing device 100, a display 102, and a mouse 104.
- the information processing device 100 is connected to the PLC 5, the imaging unit 8, the display 102, and the mouse 104.
- the image pickup unit 8 includes an image sensor divided into a plurality of pixels, such as a CCD (Coupled Charged Device) and a CMOS (Complementary Metal Oxide Semiconductor) sensor, in addition to an optical system such as a lens.
- a CCD Coupled Charged Device
- CMOS Complementary Metal Oxide Semiconductor
- the information processing device 100 is a computer having a general-purpose architecture.
- the information processing device 100 realizes various functions such as machine learning and defect classification by executing a pre-installed program.
- an OS Operating System
- the program that realizes the function of the information processing apparatus 100 calls the necessary modules in a predetermined array at a predetermined timing among the program modules provided as a part of the OS to execute the process.
- the program itself does not include the above-mentioned module, and the process is executed in cooperation with the OS.
- the program may be in a form that does not include such a part of modules.
- the program that realizes the function of the information processing apparatus 100 may be provided by being incorporated into a part of another program. Even in that case, the program itself does not include the modules included in the other programs to be combined as described above, and the processing is executed in cooperation with the other programs. That is, the program that realizes the function of the information processing device 100 may be in a form incorporated in such another program. Note that some or all of the functions provided by executing the program may be implemented as a dedicated hardware circuit.
- FIG. 13 is a schematic diagram for explaining an image example of the work 2 acquired by the imaging unit 8 of FIG.
- FIG. 13A is an image of the work 2 having no defects.
- FIG. 13B is an image of the work 2 having the chipped D1.
- FIG. 13C is an image of the work 2 having the scratch D2.
- Defects that can occur in the work 2 are not limited to chips and scratches, but also include, for example, dents and deformations.
- the information processing apparatus 100 classifies the images of the work 2 according to the types of defects occurring in the work 2 (no defects, chips, scratches, dents, deformations, etc.).
- FIG. 14 is a schematic configuration diagram of the information processing device 100 of FIG.
- the information processing apparatus 100 includes a processor 110 as an arithmetic processing unit, a main memory 112 and a hard disk 114 as a storage unit, a camera interface 116, an input interface 118, a display controller 120, and the like. It includes a PLC interface 122, a communication interface 124, and a data reader / writer 126. Each of these parts is connected to each other via a bus 128 so as to be capable of data communication.
- the processor 110 includes a CPU (Central Processing Unit).
- the processor 110 may further include a GPU (Graphics Processing Unit).
- the processor 110 expands the programs (codes) stored in the hard disk 114 into the main memory 112 and executes them in a predetermined order to perform various operations.
- the main memory 112 is typically a volatile storage device such as a DRAM (Dynamic Random Access Memory). In addition to the program read from the hard disk 114, the main memory 112 holds image data acquired by the imaging unit 8, data indicating the processing result of the image data, work data, and the like.
- DRAM Dynamic Random Access Memory
- the hard disk 114 is a non-volatile magnetic storage device.
- the hard disk 114 stores data sets E1 to En, a main purpose model Mm, an encoder model Mc, a decoder model Md, and an identification model Me, a machine learning program Pg1, and a defect identification program Pg2.
- the main object model Mm functions as an image identification model.
- Various setting values and the like may be stored in the hard disk 114.
- the program installed on the hard disk 114 is distributed in a state of being stored in a memory card 106 or the like, as will be described later.
- a semiconductor storage device such as a flash memory may be adopted.
- Each of the plurality of training data included in the data set Ds is an image of the work 2 labeled for each defect type.
- each of the plurality of learning data is also labeled according to the environment in which each learning data was acquired.
- the image of the work 2 may be an image taken by the image pickup unit 8 of FIG. 12 or an image taken by another image pickup device.
- the conditions under which the learning data is acquired include, for example, the orientation of the imaging unit 8, the amount of light of the illumination light source 9, the number of installations, and the arrangement position.
- the data set Ds, the encoder model Mc, the decoder model Md, the discriminative model Me, and the main purpose model Mm are referred to.
- the processor 110 that executes the machine learning program Pg1 realizes the encoder Enc and decoder Dec of FIG. 2, the encoder Enc and discriminator Dsc of FIG. 3, and the main purpose processor Mpr of FIG.
- the processor 110 fits each of the encoder model Mc, the decoder model Md, the discriminative model Me, and the main purpose model Mm into the trained model by executing the machine learning program Pg1.
- the processor 110 that executes the defect identification program Pg2 realizes the encoder Enc of FIG. 5, the main purpose processor Mpr, and the determination unit Jdg.
- the processor 110 identifies defects in the image acquired by the imaging unit 8 by executing the defect identification program Pg2, and outputs the identification result to the display 102.
- the processor 110 outputs to the display 102 the goodness of fit of the environment in which the image is acquired to the data sets E1 to En.
- the goodness of fit is calculated by the determination unit Jdg according to the degree of similarity between the condition from which the training data is acquired and the condition from which the data input to the main purpose processor Mpr in the inference process is acquired.
- the determination unit Jdg displays on the display 102 whether or not the input data is suitable for the environment determined by the conditions under which the learning data is acquired. It may be output.
- the processor 110 determines the conditions under which the input data is acquired in order to adapt the input data to the datasets E1 to En.
- the change method is output to the display 102.
- the change method includes, for example, changing the amount of light of the illumination light source 9, the number of installations, the arrangement, or the orientation of the imaging unit 8.
- the camera interface 116 mediates data transmission between the processor 110 and the imaging unit 8. That is, the camera interface 116 connects the imaging unit 8 that images the work 2 and generates image data. More specifically, the camera interface 116 can be connected to one or more image pickup units 8 and includes an image buffer 116a for temporarily accumulating a plurality of image data from the image pickup unit 8. Then, when the image data for at least one frame is accumulated in the image buffer 116a, the camera interface 116 transfers the accumulated data to the main memory 112. Further, the camera interface 116 gives an imaging command to the imaging unit 8 according to an internal command generated by the CPU 110.
- the input interface 118 mediates data transmission between the processor 110 and input units such as a mouse 104, a keyboard, and a touch panel. That is, the input interface 118 receives an operation command given by the user operating the input unit.
- the display controller 120 is connected to a display 102, which is a typical example of a display device, and notifies the user of the result of image processing in the processor 110 and the like. That is, the display controller 120 is connected to the display 102 and controls the display on the display 102.
- the display 102 is, for example, a liquid crystal display, an organic EL (Electro Luminescence) display, or other display device.
- the PLC interface 122 mediates data transmission between the processor 110 and the PLC 5. More specifically, the PLC interface 122 transmits information related to the state of the production line controlled by the PLC 5 and information related to the work to the processor 110.
- the communication interface 124 mediates data transmission between the processor 110 and a console (or a personal computer or server device).
- the communication interface 124 typically comprises Ethernet (registered trademark), USB (Universal Serial Bus), or the like.
- Ethernet registered trademark
- USB Universal Serial Bus
- the program downloaded from the distribution server or the like is installed in the information processing device 100 via the communication interface 124. You may.
- the data reader / writer 126 mediates data transmission between the processor 110 and the memory card 106, which is a recording medium. That is, the memory card 106 is distributed in a state in which a program or the like executed by the information processing device 100 is stored, and the data reader / writer 126 reads the program from the memory card 106. Further, the data reader / writer 126 writes the image data acquired by the imaging unit 8 and / or the processing result in the information processing apparatus 100 to the memory card 106 in response to the internal command of the processor 110.
- the memory card 106 is a general-purpose semiconductor storage device such as CF (Compact Flash) or SD (Secure Digital), a magnetic storage medium such as a flexible disk (Flexible Disk), or a CD-ROM (Compact Disk Read Only Memory). ) And other optical storage media.
- CF Compact Flash
- SD Secure Digital
- magnetic storage medium such as a flexible disk (Flexible Disk)
- CD-ROM Compact Disk Read Only Memory
- Another output device such as a printer may be connected to the information processing device 100, if necessary.
- the system to which the information processing device according to the embodiment can be applied is not limited to the visual inspection system.
- Examples of the system include an automatic driving system that detects objects such as pedestrians and vehicles, and a medical diagnosis system.
- the presence or absence of an obstacle such as a person or another automobile is identified in the image data taken from the driver's seat of the automobile.
- the time zone, the weather, the season, etc. in which the image was acquired can be mentioned.
- the medical diagnosis system for example, daily photographs of patients, X-rays, and CT (Computed Tomography) are input to identify the illness and physical condition of the patient.
- Conditions that determine the environment in which the data was obtained include, for example, the device from which the data was obtained, the patient's age, gender, physique, constitution, nationality, and medical history.
- the medical diagnosis system it is determined whether or not the diagnosis for the patient is possible.
- a face recognition system a person is identified by a face image, and the device that acquired the face image, the age, gender, nationality, etc. of the person are included in the conditions for determining the environment in which the face image is acquired. ..
- a voice recognition system a person is identified by voice, and the device that acquired the voice, the age, gender, nationality, etc. of the person who made the voice are included in the conditions for determining the environment in which the voice was acquired. Is done.
- the meaning of a character string is identified, and the environment is the language from which the character string is derived, the age, gender, nationality of the person who described the character string, and the field of the content that the character string means.
- the conditions for determining are included in the conditions for determining.
- the traffic condition monitoring system the presence or absence of traffic congestion is identified based on the road image, and the location of the road, the season when the road image was acquired, the time zone, the weather, the road surface condition, etc. determine the environment in which the road image was acquired. It is included in the conditions to be used.
- actions are identified based on image and voice recognition, and the location where the robot is placed, the performance and type of sensors provided by the robot, etc. determine the environment in which the image and sound are acquired. include.
- the information processing apparatus According to the information processing apparatus according to the embodiment, it is possible to identify an environment in which it is difficult for the trained model to exhibit the performance obtained by machine learning.
- An encoder including an encoder model (Mc) that outputs features (fx) of a plurality of dimensions (x1, x2) from training data (dtx) included in at least one data set (E1 to En).
- a specific feature amount (f_un) of at least one input data (dt_un) is received from the encoder model (Mc), and the goodness of fit (ad_un) of the at least one input data to the at least one data set (E1 to En).
- the encoder model (Mc) is adapted by machine learning so that the feature amount (fx) is distributed in a specific subspace (Sb1) of the feature amount space defined by the plurality of dimensions (x1, x2).
- the determination unit (Jdg) is an information processing device (100, 100B) that calculates the goodness of fit (ad_un) from the positional relationship ( ⁇ ) between the specific feature amount (f_un) and the specific subspace (Sb1).
- the determination unit (Jdg) determines the difference between the specific feature amount (f_un) and the feature amount (fx) extracted from the training data (dtx) by the encoder model (Me). Is calculated back as the change amount of the at least one input data (dt_un), and the method of changing the condition in which the at least one input data (dt_un) is acquired for reducing the absolute value of the change amount is output.
- the information processing apparatus (100, 100B) according to the configuration 1.
- the information processing apparatus (100) according to configuration 1 or 2, further comprising.
- a decoder (Dec) including a decoder model (Md) for decoding the feature amount (fz) is further provided.
- the learning unit (Ln) uses the encoder model (Mc) and the decoder model (Mc) so that the feature quantity (fz) follows a standard normal distribution by machine learning using the at least one data set (E1 to En).
- the information processing apparatus (100, 100A) according to configuration 3 or 4, which is adapted to Md).
- a classifier (Dsc) including a discriminative model (Me) for discriminating which of the at least one data set (E1 to En) the training data (dty) is included in is further provided.
- the machine learning is hostile learning performed between the discriminative model (Me) and the encoder model (Mc).
- the discriminative model (Me) is optimal so as to maximize the probability Ps that the discriminative model (Me) succeeds in discriminating the correct data set (Ey) including the learning data (dty).
- Equipment (100,100A) is the information processing according to the configuration 5, wherein the encoder model (Mc) is optimized so as to maximize the probability that the discriminative model (Me) fails to identify the correct data set (Ey).
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Biomedical Technology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Image Analysis (AREA)
Abstract
Description
本開示は、情報処理装置に関する。 This disclosure relates to an information processing device.
従来、学習済みモデルに入力される特徴量を入力データから抽出する構成が知られている。たとえば、非特許文献1には、マルチタスク敵対的ネットワーク(MTAN:multi-task adversarial network)が開示されている。MTANにおいては、内容のラベルとスタイルのラベルとが付された画像の特徴表現が、当該画像のスタイル識別における敵対的学習を通して、スタイル因子に関して一般化される。MTANによれば、未知のスタイル因子を含む画像の内容識別の混同を生じさせることなく、当該画像の特徴表現を一般化することができる。
Conventionally, a configuration is known in which the feature amount input to the trained model is extracted from the input data. For example, Non-Patent
学習済みモデルには、学習データが取得された条件とは異なる条件で取得されたデータが入力され得る。データの特徴量は当該データの属性が同じであっても当該データが取得された条件によって大きく異なり得る。両条件の乖離の程度によっては、入力データに対する学習済みモデルの性能が大幅に低下し得る。しかし、非特許文献1に開示されているMTANにおいては、両条件の乖離による学習済みモデルの性能低下について考慮されていない。
Data acquired under conditions different from the conditions under which the training data was acquired can be input to the trained model. Even if the attributes of the data are the same, the feature amount of the data may differ greatly depending on the conditions under which the data is acquired. Depending on the degree of divergence between the two conditions, the performance of the trained model for the input data can be significantly reduced. However, in MTAN disclosed in Non-Patent
本開示は上記のような課題を解決するためになされたものであり、その目的は、学習済みモデルが機械学習によって得られた性能を発揮することが可能か否かを、学習済みモデルへの入力データに基づいて判定することである。 The present disclosure has been made to solve the above-mentioned problems, and the purpose of the present disclosure is to determine whether or not the trained model can exhibit the performance obtained by machine learning. The judgment is based on the input data.
本開示の一例によれば、情報処理装置は、エンコーダと、判定部とを備える。エンコーダは、少なくとも1つのデータセットに含まれる学習データから複数の次元の特徴量を出力するエンコーダモデルを含む。判定部は、少なくとも1つの入力データの特定特徴量をエンコーダモデルから受けて、少なくとも1つのデータセットへの前記少なくとも1つの入力データの適合度を出力する。エンコーダモデルは、複数の次元によって規定される特徴量空間の特定部分空間に特徴量を分布させるように機械学習によって適合されている。判定部は、特定特徴量と特定部分空間との位置関係から少なくとも1つのデータセットへの少なくとも1つの入力データの適合度を算出する。 According to an example of the present disclosure, the information processing device includes an encoder and a determination unit. The encoder includes an encoder model that outputs features of a plurality of dimensions from training data contained in at least one data set. The determination unit receives the specific feature amount of at least one input data from the encoder model, and outputs the goodness of fit of the at least one input data to the at least one data set. The encoder model is adapted by machine learning to distribute features in specific subspaces of the feature space defined by multiple dimensions. The determination unit calculates the goodness of fit of at least one input data to at least one data set from the positional relationship between the specific feature amount and the specific subspace.
この開示によれば、判定部によって算出される適合度を参照することにより、学習データが取得された少なくとも1つの環境(既知の環境)に入力データが適合しているか否かを識別することができる。その結果、既知の環境において取得された学習データを用いる機械学習によって適合された学習済みモデルが、入力データに対して正常に機能するか否かを識別することができる。すなわち、学習済みモデルが機械学習によって得られた性能を発揮することが可能か否かを、学習済みモデルへの入力データに基づいて判定することができる。 According to this disclosure, it is possible to identify whether or not the input data is suitable for at least one environment (known environment) from which the training data is acquired by referring to the goodness of fit calculated by the determination unit. it can. As a result, it is possible to identify whether or not the trained model adapted by machine learning using the training data acquired in the known environment functions normally with respect to the input data. That is, it is possible to determine whether or not the trained model can exhibit the performance obtained by machine learning based on the input data to the trained model.
上述の開示において、判定部は、特定特徴量と、学習データからエンコーダモデルによって抽出された特徴量との差を、エンコーダモデルを介して少なくとも1つの入力データの変更量として逆算し、当該変更量の絶対値を減少させるための少なくとも1つの入力データが取得された条件の変更方法を出力してもよい。 In the above disclosure, the determination unit back-calculates the difference between the specific feature amount and the feature amount extracted from the training data by the encoder model as the change amount of at least one input data via the encoder model, and the change amount. The method of changing the condition from which at least one input data for reducing the absolute value of is acquired may be output.
この開示によれば、入力データが既知の環境に適合していない場合でも、入力データが取得される環境の条件を既知の環境の条件に適合させることができる。その結果、学習済みモデルは、未知に環境において取得された入力データに対しても機械学習において得られた性能を発揮することができる。 According to this disclosure, even if the input data does not conform to the known environment, the conditions of the environment in which the input data is acquired can be adapted to the conditions of the known environment. As a result, the trained model can exhibit the performance obtained in machine learning even for the input data acquired in the unknown environment.
上述の開示において、情報処理装置は、記憶部と、学習部とをさらに備えてもよい。記憶部には、少なくとも1つのデータセットが保存されてもよい。学習部は、少なくとも1つのデータセットを用いる機械学習により、特定部分空間に特徴量を分布させるようにエンコーダモデルを適合させてもよい。 In the above disclosure, the information processing device may further include a storage unit and a learning unit. At least one data set may be stored in the storage unit. The learning unit may adapt the encoder model so that the features are distributed in a specific subspace by machine learning using at least one data set.
この開示によれば、機械学習が行われていないエンコーダモデルを、学習部によって学習済みのエンコーダモデルに適合することができる。 According to this disclosure, an encoder model that has not been machine-learned can be adapted to an encoder model that has been learned by the learning unit.
本開示の一例によれば、情報処理装置は、記憶部と、エンコーダと、学習部とを備える。記憶部には、少なくとも1つのデータセットが保存されている。エンコーダは、データセットに含まれる学習データから複数の次元の特徴量を抽出するエンコーダモデルを含む。学習部は、データセットを用いる機械学習により、複数の次元によって規定される特徴量空間の特定部分空間に特徴量を分布させるようにエンコーダモデルを適合させる。 According to an example of the present disclosure, the information processing device includes a storage unit, an encoder, and a learning unit. At least one data set is stored in the storage unit. The encoder includes an encoder model that extracts features of multiple dimensions from the training data contained in the dataset. The learning unit adapts the encoder model so that the features are distributed in a specific subspace of the feature space defined by a plurality of dimensions by machine learning using a data set.
この開示によれば、機械学習が行われていないエンコーダモデルを、学習部によって学習済みのエンコーダモデルに適合することができる。 According to this disclosure, an encoder model that has not been machine-learned can be adapted to an encoder model that has been learned by the learning unit.
上述の開示において、情報処理装置は、デコーダをさらに備えてもよい。デコーダは、エンコーダからの特徴量を復号するデコーダモデルを含んでもよい。学習部は、少なくとも1つのデータセットを用いる機械学習により、当該特徴量が標準正規分布に従うように、エンコーダモデルおよびデコーダモデルを適合させてもよい。 In the above disclosure, the information processing device may further include a decoder. The decoder may include a decoder model that decodes the features from the encoder. The learning unit may adapt the encoder model and the decoder model so that the features follow a standard normal distribution by machine learning using at least one data set.
この開示によれば、機械学習によってデコーダモデルが変分自己符号化器(VAE:Variational Auto-Encoder)に適合されるとともに、エンコーダモデルによって学習データから抽出される特徴量が特定部分空間に一様に分布するようにエンコーダモデルが適合される。その結果、入力データが少なくとも1つのデータセットに適合するか否かによって、入力データから抽出される特徴量の特徴量空間における位置の違いが明確になる。その結果、学習済みモデルが機械学習によって得られた性能を発揮することが可能か否かを、学習済みモデルへの入力データに基づいてより精度よく判定することができる。 According to this disclosure, the decoder model is adapted to a variational auto-encoder (VAE) by machine learning, and the features extracted from the training data by the encoder model are uniform in a specific subspace. The encoder model is adapted to be distributed in. As a result, the difference in the position of the feature amount extracted from the input data in the feature amount space becomes clear depending on whether or not the input data fits at least one data set. As a result, it is possible to more accurately determine whether or not the trained model can exhibit the performance obtained by machine learning based on the input data to the trained model.
上述の開示において、情報処理装置は、識別器をさらに備えてもよい。識別器は、学習データが少なくとも1つの環境のいずれに含まれるかを識別する識別モデルを含んでもよい。機械学習は、識別モデルとエンコーダモデルとの間で行われる敵対的学習であってもよい。敵対的学習においては、学習データが取得された正解環境の識別に識別モデルが成功する確率が最大化するように識別モデルが最適化されるとともに、正解環境の識別に識別モデルが失敗する確率が最大化するようにエンコーダモデルが最適化されてもよい。 In the above disclosure, the information processing device may further include a classifier. The classifier may include a discriminative model that identifies which of the at least one environment the training data is contained in. Machine learning may be hostile learning performed between the discriminative model and the encoder model. In hostile learning, the discriminative model is optimized to maximize the probability that the discriminative model will succeed in identifying the correct environment from which the training data was acquired, and the probability that the discriminative model will fail in identifying the correct environment. The encoder model may be optimized for maximization.
この開示によれば、敵対的学習により、エンコーダモデルによって学習データから抽出される特徴量から少なくとも1つのデータセットの各々に含まれるデータが取得された環境に特有のバイアスが取り除かれる。エンコーダモデルから出力される特徴量においては、既知の環境に共通する特徴が強調されるため、学習済みモデルが機械学習によって得られた性能を発揮することが可能か否かを、学習済みモデルへの入力データに基づいて判定し易くなる。 According to this disclosure, hostile learning removes the bias peculiar to the environment in which the data contained in each of at least one data set is acquired from the features extracted from the training data by the encoder model. Since the features output from the encoder model emphasize the features common to known environments, it is determined to the trained model whether or not the trained model can exhibit the performance obtained by machine learning. It becomes easy to judge based on the input data of.
上述の開示において、特定部分空間は、特徴量空間の原点を中心とする球面であってもよい。 In the above disclosure, the specific subspace may be a spherical surface centered on the origin of the feature space.
この開示によれば、特定部分空間を球面とすることにより、エンコーダに対する機械学習を通して、既知の環境に適合する環境において取得されたデータの特徴量の原点からの距離と、既知の環境に不適合の環境において取得されたデータの特徴量の原点からの距離に明確な差が生じさせ易い。その結果、学習済みモデルが機械学習によって得られた性能を発揮することが可能か否かを、学習済みモデルへの入力データに基づいてより明確に判定することができる。 According to this disclosure, by making a specific subspace spherical, the distance from the origin of the features of the data acquired in an environment compatible with the known environment through machine learning for the encoder and the incompatibility with the known environment. It is easy to make a clear difference in the distance from the origin of the feature amount of the data acquired in the environment. As a result, it is possible to more clearly determine whether or not the trained model can exhibit the performance obtained by machine learning based on the input data to the trained model.
本開示によれば、学習済みモデルが機械学習によって得られた性能を発揮することが困難な環境を識別することができる。 According to the present disclosure, it is possible to identify an environment in which it is difficult for the trained model to exhibit the performance obtained by machine learning.
以下、実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は原則として繰り返さない。 Hereinafter, the embodiment will be described in detail with reference to the drawings. In principle, the same or corresponding parts in the drawings are designated by the same reference numerals and the description is not repeated.
<適用例>
図1は、実施の形態に係る情報処理装置100の構成を示すブロック図である。図1に示されるように、情報処理装置100は、記憶部Stgと、学習部Lnと、エンコーダEncと、デコーダDecと、識別器Dscと、主目的処理器Mprと、判定部Jdgとを備える。記憶部Stgには、データセットE1~Enが保存されている。エンコーダEncは、エンコーダモデルMcを含む。デコーダDecは、デコーダモデルMdを含む。識別器Dscは、識別モデルMeを含む。主目的処理器Mprは、主目的モデルMmを含む。エンコーダモデルMc、デコーダモデルMd、識別モデルMe、および主目的モデルMmの各々は、ニューラルネットワークを含む。なお、デコーダDecは、情報処理装置100に含まれていなくてもよい。
<Application example>
FIG. 1 is a block diagram showing a configuration of an
データセットE1~Enは、学習データdt1~dtnを含む。学習データdt1~dtnには、それぞれデータセットE1~En各々のラベルが付されているとともに、主目的処理器Mprの出力に対応する正解データが含まれる。なお、データセットE1~Enに各々に付されたラベルは各データセットに含まれるデータが取得された環境に対応する。環境とは、ドメインとも呼ばれ、データが取得される条件によって決定される。当該条件の違いは、同属性の学習データの特徴量の分布を異ならせる要因(バイアス)になり得る。たとえば、当該条件には、たとえば、学習データが取得された日時、学習データが取得された場所、学習データを取得した装置の設定値、および当該装置の機種等を含む。なお、データセットEnおよびdtnの「n」は、2以上の自然数である。 The data sets E1 to En include training data dt1 to dtn. The training data dt1 to dtn are labeled with each of the data sets E1 to En, and include correct answer data corresponding to the output of the main purpose processor Mpr. The labels attached to each of the data sets E1 to En correspond to the environment in which the data included in each data set was acquired. The environment, also called a domain, is determined by the conditions under which the data is retrieved. The difference in the conditions can be a factor (bias) that makes the distribution of the features of the learning data of the same attribute different. For example, the condition includes, for example, the date and time when the learning data was acquired, the place where the learning data was acquired, the set value of the device from which the learning data was acquired, the model of the device, and the like. The "n" in the datasets En and dtn is a natural number of 2 or more.
エンコーダモデルMcは、データセットDsに含まれる学習データから複数の次元の特徴量を抽出する。デコーダモデルMdは、エンコーダモデルMcから特徴量を受けて、当該特徴量を復号する。識別モデルMeは、エンコーダモデルMcから特徴量を受けて、当該特徴量が抽出されたデータが含まれるデータセットを識別する。主目的モデルMmは、エンコーダモデルMcから特徴量を受けて、当該特徴量が抽出されたデータに対するパターン認識等の推論を行う。主目的モデルMmの機能としては、たとえば、画像認識、自然言語処理、および音声認識を挙げることができる。 The encoder model Mc extracts features of a plurality of dimensions from the training data included in the data set Ds. The decoder model Md receives a feature amount from the encoder model Mc and decodes the feature amount. The discriminative model Me receives the feature amount from the encoder model Mc and identifies the data set including the data from which the feature amount is extracted. The main object model Mm receives a feature amount from the encoder model Mc and makes an inference such as pattern recognition for the data from which the feature amount is extracted. Functions of the main purpose model Mm include, for example, image recognition, natural language processing, and voice recognition.
学習部Lnは、データセットDsを用いる機械学習により、エンコーダモデルMcから出力される特徴量の次元によって規定される特徴量空間の特定部分空間に、特徴量を分布させるようにエンコーダモデルMcおよびデコーダモデルMdを変分自己符号化器に適合させる。エンコーダモデルMcの最適化における損失関数としてリングロスを用いるとともに、エンコーダモデルMcおよびデコーダモデルMdが自己符号化器に適合されることにより当該特定部分空間を球面とすることができる。当該球面の半径は、予め定められた値を用いてもよいし、エンコーダモデルMcの最適化の過程で学習されてもよい。当該損失関数としてクロスエントロピーを用いて、当該特定部分空間を超平面としてもよい。 The learning unit Ln uses the encoder model Mc and the decoder to distribute the features in a specific subspace of the feature space defined by the dimension of the features output from the encoder model Mc by machine learning using the data set Ds. Fit the model Md to the variant self-encoder. A ring loss is used as a loss function in the optimization of the encoder model Mc, and the specific subspace can be made spherical by adapting the encoder model Mc and the decoder model Md to the self-encoder. The radius of the spherical surface may use a predetermined value, or may be learned in the process of optimizing the encoder model Mc. Cross entropy may be used as the loss function to make the specific subspace a hyperplane.
学習部Lnは、エンコーダモデルMcおよびデコーダモデルMdに対して、図2に示されるような機械学習を行う。エンコーダモデルMcは、学習データdtzを受けて特徴量fzをデコーダモデルMdに出力する。デコーダモデルMdは、特徴量fzをデータdczに復号する。学習部Lnは、データdczと学習データdtzとの誤差Ls1を最小化するとともに特徴量fzが標準正規分布に従うようにバックプロパゲーションを行って、エンコーダモデルMcおよびデコーダモデルMdの各々に含まれるニューラルネットワークの重みおよびバイアスを更新する。当該機械学習により、エンコーダモデルMcおよびデコーダモデルMdは、学習済みの自己符号化器に適合される。 The learning unit Ln performs machine learning on the encoder model Mc and the decoder model Md as shown in FIG. The encoder model Mc receives the learning data dtz and outputs the feature amount fz to the decoder model Md. The decoder model Md decodes the feature amount fz into data dcz. The learning unit Ln minimizes the error Ls1 between the data dcz and the learning data dtz, backpropagates the feature fz so that it follows a standard normal distribution, and performs neurals included in each of the encoder model Mc and the decoder model Md. Update network weights and biases. By the machine learning, the encoder model Mc and the decoder model Md are adapted to the trained self-encoder.
学習部Lnは、エンコーダモデルMcと識別モデルMeとの間での図3に示されるような敵対的学習を行う。図3において確率Psは、学習データdtxが取得された正解データセットExの識別に識別モデルMeが成功する確率である。確率Pfは、正解データセットExの識別に識別モデルMeが失敗する確率である。 The learning unit Ln performs hostile learning as shown in FIG. 3 between the encoder model Mc and the discriminative model Me. In FIG. 3, the probability Ps is the probability that the discriminative model Me succeeds in identifying the correct data set Ex from which the training data dtx has been acquired. The probability Pf is the probability that the discriminative model Me fails to identify the correct data set Ex.
図3に示されるように、学習部Lnは、確率Psが最大化するように識別モデルMeを最適化する。すなわち、学習部Lnは、正解データセットExのラベルに対応する正解データと識別モデルMeの出力との誤差が最小化するようにバックプロパゲーションを行って、識別モデルMeに含まれるニューラルネットワークの重みおよびバイアスを更新する。 As shown in FIG. 3, the learning unit Ln optimizes the discriminative model Me so that the probability Ps is maximized. That is, the learning unit Ln performs backpropagation so as to minimize the error between the correct answer data corresponding to the label of the correct answer data set Ex and the output of the discriminative model Me, and the weight of the neural network included in the discriminative model Me. And update the bias.
逆に、学習部Lnは、確率Pfが最大化するようにエンコーダモデルMcを最適化する。すなわち、学習部Lnは、正解データセットExのラベルに対応する正解データと識別モデルMeの出力との誤差が最大化するようにバックプロパゲーションを行って、エンコーダモデルMcに含まれるニューラルネットワークの重みおよびバイアスを更新する。 On the contrary, the learning unit Ln optimizes the encoder model Mc so that the probability Pf is maximized. That is, the learning unit Ln performs backpropagation so as to maximize the error between the correct answer data corresponding to the label of the correct answer data set Ex and the output of the discriminative model Me, and the weight of the neural network included in the encoder model Mc. And update the bias.
敵対的学習において、エンコーダモデルMcは識別モデルMeによる学習データが含まれるデータセットの識別精度が低下するように最適化され、識別モデルMeは学習データが含まれるデータセットの識別精度が向上するように最適化される。敵対的学習を通して、データセットE1~Enの各々が有する各データセットに含まれるデータが取得された環境特有のバイアスがエンコーダモデルMcから出力される特徴量から取り除かれる。 In hostile learning, the encoder model Mc is optimized to reduce the discriminative accuracy of the dataset containing the training data by the discriminative model Me, and the discriminative model Me is optimized to improve the discriminative accuracy of the dataset containing the training data. Optimized for. Through hostile learning, the environment-specific bias in which the data contained in each of the datasets E1 to En is acquired is removed from the features output from the encoder model Mc.
学習部Lnは、データセットDsを用いて、主目的モデルMmに対して図4に示されるような機械学習を行う。エンコーダモデルMcは、学習データdtyを受けて特徴量fyを主目的モデルMmに出力する。主目的モデルMmは、特徴量fyを受けて、推論結果dcyを出力する。学習部Lnは、推論結果dcyと正解データdayとの誤差Ls2を最小化するようにバックプロパゲーションを行って、主目的モデルMmに含まれるニューラルネットワークの重みおよびバイアスを更新する。当該機械学習により、主目的モデルMmは、データセットE1~Enに適合された学習済みモデルになる。 The learning unit Ln performs machine learning as shown in FIG. 4 on the main object model Mm using the data set Ds. The encoder model Mc receives the learning data dty and outputs the feature amount fy to the main object model Mm. The main object model Mm receives the feature quantity fy and outputs the inference result dcy. The learning unit Ln performs backpropagation so as to minimize the error Ls2 between the inference result dcy and the correct answer data day, and updates the weight and bias of the neural network included in the main object model Mm. By the machine learning, the main purpose model Mm becomes a trained model fitted to the datasets E1 to En.
図5は、学習済みのエンコーダモデルMcおよび学習済みの主目的モデルMmによる推論処理の流れを示すブロック図である。図5に示されるように、学習済みのエンコーダモデルMcを介して、未知の環境において取得されたデータを含むデータセットE_unにおいて取得されたデータdt_unの特徴量f_unが学習済みの主目的モデルMmに入力される場合、データセットE1~Enが取得された条件とデータセットE_unに含まれるデータが取得された条件との乖離の程度によっては、当該特徴量に対して主目的モデルMmが正常に機能しない可能性がある。 FIG. 5 is a block diagram showing the flow of inference processing by the trained encoder model Mc and the trained main purpose model Mm. As shown in FIG. 5, the feature amount f_un of the data dt_un acquired in the data set E_un including the data acquired in the unknown environment is converted into the trained main object model Mm via the trained encoder model Mc. When input, the main purpose model Mm functions normally for the feature amount depending on the degree of deviation between the condition from which the datasets E1 to En are acquired and the condition from which the data contained in the dataset E_un is acquired. May not.
そこで、情報処理装置100においては、データセットE_unに由来する特徴量f_unに対して、特徴量空間における特徴量f_unと特定部分空間との位置関係から、データセットE1~Enへのデータdt_unの適合度ad_unを出力する。適合度ad_unを参照することにより、データdt_unがデータセットE1~Enに適合しているか否かを明確に識別することができる。情報処理装置100によれば、学習済みの主目的モデルMmが機械学習によって得られた性能を発揮することか否かを、データdt_unに基づいて判定することができる。なお、判定結果の出力の態様としては、データdtdt_unに対して学習済みの主目的モデルMmが性能を発揮することができるか否かを出力してもよいし、データセットE_unに含まれる複数のデータの適合度からデータセットE_unに含まれるデータが取得された条件によって決定される環境に対して学習済みの主目的モデルMmが性能を発揮することができるか否かを出力してもよい。データdtdt_unの適合度から、学習済みの主目的モデルMmの出力結果の信頼度を出力してもよい。
Therefore, in the
図6は、主目的モデルMmによって行われる推論処理がソフトマックス関数を用いた多クラス分類のロジスティック回帰である場合の、図5のエンコーダモデルMcから出力される特徴量の分布を示す。なお、図6においては説明の便宜のために特徴量空間を次元x1および次元x2から規定される2次元平面として描いているが、エンコーダモデルMcから出力される特徴量は3以上の次元を有する場合もある。図6においてエンコーダモデルMcから出力される特徴量は点としてプロットされている。特定部分空間Sb1は、半径R1の円として描かれている。後に説明する図8においても同様である。 FIG. 6 shows the distribution of the features output from the encoder model Mc of FIG. 5 when the inference processing performed by the main object model Mm is a logistic regression of multi-class classification using the softmax function. In FIG. 6, the feature space is drawn as a two-dimensional plane defined by the dimensions x1 and x2 for convenience of explanation, but the feature output from the encoder model Mc has three or more dimensions. In some cases. In FIG. 6, the features output from the encoder model Mc are plotted as points. The specific subspace Sb1 is drawn as a circle with a radius R1. The same applies to FIG. 8 which will be described later.
図6を参照しながら、データセットE1~Enに適合するデータの特徴は、当該データから抽出される特徴量の分布に反映され、当該特徴量のノルム(特徴量空間における原点からの距離)はある程度の大きさを持つ場合が多い。そのため、データセットE1~Enに適合する環境において取得されたデータの特徴量は、特定部分空間Sb1付近に分布することが多い。一方、データセットE1~Enに不適合の環境において取得されたデータの特徴は、当該データから抽出される特徴量の分布に反映されない場合が多く、当該特徴量のノルムは比較的小さくなる場合が多い。そのため、データセットE1~Enに不適合の環境において取得されたデータの特徴量は、原点付近に分布している。 With reference to FIG. 6, the features of the data matching the datasets E1 to En are reflected in the distribution of the features extracted from the data, and the norm of the features (distance from the origin in the feature space) is It often has a certain size. Therefore, the feature quantities of the data acquired in the environment conforming to the datasets E1 to En are often distributed in the vicinity of the specific subspace Sb1. On the other hand, the features of the data acquired in the environment incompatible with the datasets E1 to En are often not reflected in the distribution of the features extracted from the data, and the norm of the features is often relatively small. .. Therefore, the feature quantities of the data acquired in the environment incompatible with the datasets E1 to En are distributed near the origin.
データdt_unの特徴量f_unと特定部分空間Sb1との距離δは、データセットE1~Enへのデータdt_unの近さを表す。そこで判定部Jdgは、距離δに基づいて、データセットE1~Enへのデータdt_unの適合度ad_unを出力する。なお、図6において距離δは、特徴量f_unに対応する点P_unと、点P_unおよび原点を通過する直線と特定部分空間Sb1との交点Psbとの距離である。 The distance δ between the feature amount f_un of the data dt_un and the specific subspace Sb1 represents the proximity of the data dt_un to the data sets E1 to En. Therefore, the determination unit Jdg outputs the goodness of fit ad_un of the data dt_un to the data sets E1 to En based on the distance δ. In FIG. 6, the distance δ is the distance between the point P_un corresponding to the feature amount f_un and the intersection Psb of the straight line passing through the point P_un and the origin and the specific subspace Sb1.
図7は、図5の判定部Jdgによって行われる適合判定処理の流れを示すフローチャートである。以下ではステップを単にSと記載する。図7に示されるように、判定部Jdgは、S11において距離δが閾値δthよりも短いか否かを判定する。閾値δthは、実機実験あるいはシミュレーションによって適宜決定することができる。 FIG. 7 is a flowchart showing the flow of conformity determination processing performed by the determination unit Jdg of FIG. In the following, the step is simply referred to as S. As shown in FIG. 7, the determination unit Jdg determines whether or not the distance δ is shorter than the threshold value δth in S11. The threshold value δth can be appropriately determined by an actual machine experiment or a simulation.
距離δが閾値δthよりも小さい場合(S11においてYES)、判定部Jdgは、S12においてデータdt_unがデータセットE1~Enに適合していることを示す値(たとえばTRUE)を適合度ad_unに設定して処理をS14に進める。距離δが閾値δth以上である場合(S11においてNO)、判定部Jdgは、S13においてデータdt_unがデータセットE1~Enに不適合であることを示す値(たとえばFALSE)を適合度ad_unに設定して処理をS14に進める。 When the distance δ is smaller than the threshold value δth (YES in S11), the determination unit Jdg sets a value (for example, TRUE) indicating that the data dt_un conforms to the data sets E1 to En in S12 to the goodness of fit ad_un. And the process proceeds to S14. When the distance δ is equal to or greater than the threshold value δth (NO in S11), the determination unit Jdg sets a value (for example, FALSE) indicating that the data dt_un is incompatible with the datasets E1 to En in S13 in the goodness of fit ad_un. The process proceeds to S14.
判定部Jdgは、S15において適合度ad_unを出力して処理を終了する。なお、図7においては適合度ad_unが適合か不適合かを表す二値のいずれかに設定される場合について説明したが、適合度ad_unは距離δに応じた連続的な値(たとえば百分率)に設定されてもよい。 The determination unit Jdg outputs the goodness of fit ad_un in S15 and ends the process. In FIG. 7, the case where the goodness of fit ad_un is set to either of the binary values indicating conformity or nonconformity has been described, but the goodness of fit ad_un is set to a continuous value (for example, a percentage) according to the distance δ. May be done.
S11においてNOの場合、判定部Jdgは、データセットE1~Enにデータdt_unを適合させるためのデータdt_unが取得された条件の変更方法を出力してもよい。この場合、判定部Jdgは、特徴量f_unと、データセットE1~Enにおいて取得された学習データからエンコーダモデルMcによって抽出される特徴量との差を、バックプロパゲーションによってエンコーダモデルMcに入力されるデータの変更量として逆算する。判定部Jdgは、当該変更量の絶対値を減少させるために必要な当該条件の変更方法を出力する。ユーザは、当該変更方法を実行することによりデータセットE1~Enに適合し、学習済みの主目的モデルMmが性能を発揮可能なデータを取得可能になる。 If NO in S11, the determination unit Jdg may output a method of changing the condition in which the data dt_un for adapting the data dt_un to the data sets E1 to En is acquired. In this case, the determination unit Jdg inputs the difference between the feature amount f_un and the feature amount extracted by the encoder model Mc from the training data acquired in the data sets E1 to En into the encoder model Mc by backpropagation. Calculate back as the amount of data change. The determination unit Jdg outputs a method of changing the condition necessary for reducing the absolute value of the change amount. By executing the change method, the user can acquire data that fits the data sets E1 to En and that the trained main purpose model Mm can exhibit its performance.
図8は、主目的モデルMmによって行われる推論処理がシグモイド関数を用いた2クラス分類のロジスティック回帰である場合の、図5のエンコーダモデルMcから出力される特徴量の分布を示す。図8を参照しながら、2クラス分類の場合、データセットE1~Enに適合するデータの特徴量が分布する球面と、データセットE1~Enに不適合のデータの特徴量が分布する球面とは、リングロスを用いたエンコーダモデルMcの最適化において明確に分離することが可能である。図8においては、データセットE1~Enに適合するデータの特徴量は半径R1の球面Sb1付近に分布し、データセットE1~Enに不適合のデータの特徴量は半径R2の球面Sb2付近に分布している。このような場合、データdt_unの特徴量f_unのノルムRが、半径R2より大きい閾値Rthより大きいか否かによってデータセットE1~Enへのデータdt_unの適合度ad_unを算出することができる。閾値Rthは、実機実験あるいはシミュレーションによって適宜決定することができる。 FIG. 8 shows the distribution of the features output from the encoder model Mc of FIG. 5 when the inference processing performed by the main object model Mm is a logistic regression of two-class classification using a sigmoid function. With reference to FIG. 8, in the case of two-class classification, the sphere in which the features of the data conforming to the datasets E1 to En are distributed and the sphere in which the features of the data not conforming to the datasets E1 to En are distributed are Clear separation is possible in the optimization of the encoder model Mc using ring loss. In FIG. 8, the feature amounts of the data conforming to the datasets E1 to En are distributed near the spherical surface Sb1 having the radius R1, and the feature amounts of the data not conforming to the datasets E1 to En are distributed near the spherical surface Sb2 having the radius R2. ing. In such a case, the goodness of fit ad_un of the data dt_un to the datasets E1 to En can be calculated depending on whether the norm R of the feature amount f_un of the data dt_un is larger than the threshold value Rth larger than the radius R2. The threshold value Rth can be appropriately determined by an actual machine experiment or a simulation.
図9は、図5の判定部Jdgによって行われる適合判定処理の他の例の流れを示すフローチャートである。図9に示されるフローチャートは、図7のS11がS21に置き換えられたフローチャートである。 FIG. 9 is a flowchart showing the flow of another example of the conformity determination process performed by the determination unit Jdg of FIG. The flowchart shown in FIG. 9 is a flowchart in which S11 in FIG. 7 is replaced with S21.
図9に示されるように、判定部Jdgは、S21においてノルムRが閾値Rthより大きいか否かを判定する。ノルムRが閾値Rthより大きい場合(S21においてYES)、判定部Jdgは、データdt_unがデータセットE1~Enに適合していると判定し、S12,S14を行って処理を終了する。ノルムRが閾値Rth以下である場合(S21においてNO)、判定部Jdgは、データdt_unがデータセットE1~Enに不適合と判定し、S13,S14を行って処理を終了する。 As shown in FIG. 9, the determination unit Jdg determines in S21 whether or not the norm R is larger than the threshold value Rth. When the norm R is larger than the threshold value Rth (YES in S21), the determination unit Jdg determines that the data dt_un conforms to the data sets E1 to En, performs S12 and S14, and ends the process. When the norm R is equal to or less than the threshold value Rth (NO in S21), the determination unit Jdg determines that the data dt_un is incompatible with the data sets E1 to En, performs S13 and S14, and ends the process.
なお、判定部Jdgによる適合判定処理は、図7および図9に示されるようなルールベースの判定方法に限定されず、機械学習によって最適化された学習済みモデルを用いる判定方法であってもよい。この場合、特定部分空間Sb1に分布する特徴量、および当該特徴量にノイズを付加した不正データを判定部Jdgの機械学習に用いられる学習データとして使用することができる。 The conformity determination process by the determination unit Jdg is not limited to the rule-based determination method as shown in FIGS. 7 and 9, and may be a determination method using a trained model optimized by machine learning. .. In this case, the feature amount distributed in the specific subspace Sb1 and the invalid data in which noise is added to the feature amount can be used as learning data used for machine learning of the determination unit Jdg.
[実施の形態に係る情報処理装置の変形例]
情報処理装置100においては、機械学習と、当該機械学習によって適合された学習済みモデルよる推論とが同じ装置において行われる場合について説明した。両者は別個の装置で行われてもよい。
[Modification of the information processing device according to the embodiment]
In the
図10は、実施の形態の変形例1に係る情報処理装置100Aの構成を示すブロック図である。情報処理装置100Aの構成は、図1の情報処理装置100から判定部Jdgが除かれているとともに、エンコーダEnc、デコーダDec、識別器Dsc、および主目的処理器MprがエンコーダEncA、デコーダDecA、識別器DscA、および主目的処理器MprAに置き換えられた構成である。図10を参照しながら、情報処理装置100Aは、エンコーダモデルMc、デコーダモデルMd、識別モデルMe、および主目的モデルMmに対して、図2~図4に示されるような学習処理を行う。
FIG. 10 is a block diagram showing the configuration of the
図11は、実施の形態の変形例2に係る情報処理装置100Bの構成を示すブロック図である。情報処理装置100Bの構成は、図1の情報処理装置100から記憶部Stg、デコーダDec、および識別器Dscが除かれているとともに、エンコーダEncおよび主目的処理器MprがエンコーダEncBおよび主目的処理器MprBにそれぞれ置き換えられた構成である。図10および図11を参照しながら、エンコーダEncBおよび主目的処理器MprBは、情報処理装置100Aによって適合されたエンコーダモデルMcおよび主目的モデルMmをそれぞれ含む。情報処理装置100Bにおいては、エンコーダモデルMcおよび主目的モデルMmを用いた推論処理、および図7または図9に示されるような適合判定処理が行われる。
FIG. 11 is a block diagram showing the configuration of the
[情報処理装置100の具体例]
図12は、図1の情報処理装置100を含む外観検査システム1の全体構成の一例を示す概略図である。外観検査システム1において情報処理装置100は画像処理装置として機能する。図12に示されるように、外観検査システム1は、生産ラインなどに組込まれて検査対象2(以下「ワーク2」とも称す。)を撮像して得られる画像に基づいて、ワーク2の欠陥を分類する。すなわち情報処理装置100の主目的処理器Mprは、外観検査システム1において画像識別器として機能する。
[Specific example of information processing device 100]
FIG. 12 is a schematic view showing an example of the overall configuration of the
外観検査システム1においては、ワーク2はベルトコンベヤなどの搬送機構6によって所定方向に搬送される。これに対して、撮像部8は、ワーク2に対して固定した位置に配置されている。さらに、撮像部8に対して、一定の相対位置に照明光源9が配置される。照明光源9は、少なくとも、撮像部8の視野(ワーク2が位置し得る範囲)を照明する。撮像部8は、移動するワーク2を撮像する。撮像部8によって得られた画像データは、情報処理装置100へ伝送される。撮像部8の向き、ならびに照明光源9の光量、設置数、および配置位置は、学習データが取得される環境を決定する条件になり得る。周囲の照明環境からの外乱を受けないように、光量、設置数、配置位置などが最適化されることが好ましい。
In the
ワーク2が撮像部8の視野内に到達したことは、搬送機構6の両端に配置された検出センサ4によって検出される。具体的には、検出センサ4は、同一の光軸上に配置された受光部4aと投光部4bとを含み、投光部4bから放射される光がワーク2で遮蔽されることを受光部4aで検出することによって、ワーク2の到達を検出する。検出センサ4の検出信号(以下「トリガ信号」とも称す。)は、PLC(Programmable Logic Controller)5へ出力される。
The fact that the
PLC5は、検出センサ4などからのトリガ信号を受信するとともに、搬送機構6の制御自体を司る。
The
外観検査システム1は、さらに、情報処理装置100と、ディスプレイ102と、マウス104とを含む。情報処理装置100は、PLC5と、撮像部8と、ディスプレイ102と、マウス104とに接続される。
The
撮像部8は、一例として、レンズなどの光学系に加えて、CCD(Coupled Charged Device)やCMOS(Complementary Metal Oxide Semiconductor)センサといった、複数の画素に区画された撮像素子を含んで構成される。
As an example, the
情報処理装置100は、汎用的なアーキテクチャを有するコンピュータである。情報処理装置100は、予めインストールされたプログラムを実行することで、機械学習および欠陥分類等の各種機能を実現する。このような汎用的なコンピュータを利用する場合には、情報処理装置100の機能を提供するためのアプリケーションに加えて、コンピュータの基本的な機能を提供するためのOS(Operating System)がインストールされていてもよい。この場合には、情報処理装置100の機能を実現するプログラムは、OSの一部として提供されるプログラムモジュールのうち、必要なモジュールを所定の配列で所定のタイミングで呼出して処理を実行させるものであってもよい。すなわち、当該プログラム自体は、上記のようなモジュールを含んでおらず、OSと協働して処理が実行される。当該プログラムとしては、このような一部のモジュールを含まない形態であってもよい。
The
さらに、情報処理装置100の機能を実現するプログラムは、他のプログラムの一部に組込まれて提供されるものであってもよい。その場合にも、プログラム自体には、上記のような組合せられる他のプログラムに含まれるモジュールを含んでおらず、当該他のプログラムと協働して処理が実行される。すなわち、情報処理装置100の機能を実現するログラムとしては、このような他のプログラムに組込まれた形態であってもよい。なお、プログラムの実行により提供される機能の一部もしくは全部を専用のハードウェア回路として実装してもよい。
Further, the program that realizes the function of the
図13は、図12の撮像部8によって取得されるワーク2の画像例を説明するための模式図である。図13(a)は、欠陥のないワーク2の画像である。図13(b)は、欠けD1を有するワーク2の画像である。図13(c)は、傷D2を有するワーク2の画像である。ワーク2に生じ得る欠陥は、欠けおよび傷に限定されず、たとえば、凹み、および変形も含む。情報処理装置100は、ワーク2の画像を、ワーク2に生じている欠陥の類型(欠陥なし、欠け、傷、凹み、および変形等)に応じて分類する。
FIG. 13 is a schematic diagram for explaining an image example of the
図14は、図12の情報処理装置100の概略構成図である。図14に示されるように、情報処理装置100は、演算処理部であるプロセッサ110と、記憶部としてのメインメモリ112およびハードディスク114と、カメラインターフェイス116と、入力インターフェイス118と、表示コントローラ120と、PLCインターフェイス122と、通信インターフェイス124と、データリーダ/ライタ126とを含む。これらの各部は、バス128を介して、互いにデータ通信可能に接続される。
FIG. 14 is a schematic configuration diagram of the
プロセッサ110は、CPU(Central Processing Unit)を含む。プロセッサ110は、GPU(Graphics Processing Unit)をさらに含んでもよい。プロセッサ110は、ハードディスク114に格納されたプログラム(コード)をメインメモリ112に展開して、これらを所定順序で実行することで、各種の演算を実施する。
The
メインメモリ112は、典型的には、DRAM(Dynamic Random Access Memory)などの揮発性の記憶装置である。メインメモリ112は、ハードディスク114から読み出されたプログラムに加えて、撮像部8によって取得された画像データ、画像データの処理結果を示すデータ、およびワークデータなどを保持する。
The
ハードディスク114は、不揮発性の磁気記憶装置である。ハードディスク114には、データセットE1~En、主目的モデルMm、エンコーダモデルMc、デコーダモデルMd、および、識別モデルMe、機械学習プログラムPg1、および欠陥識別プログラムPg2が保存されている。外観検査システム1において主目的モデルMmは、画像識別モデルとして機能する。ハードディスク114には、各種設定値などが格納されてもよい。ハードディスク114にインストールされるプログラムは、後述するように、メモリカード106などに格納された状態で流通する。なお、ハードディスク114に加えて、あるいは、ハードディスク114に代えて、フラッシュメモリなどの半導体記憶装置を採用してもよい。
The
データセットDsに含まれる複数の学習データの各々は、欠陥の類型毎にラベル付けされたワーク2の画像である。また、当該複数の学習データの各々には、各学習データが取得された環境に対応したラベルも付されている。ワーク2の画像は、図12の撮像部8によって撮影された画像でもよいし、他の撮像装置によって撮影された画像でもよい。学習データが取得された条件には、たとえば、撮像部8の向き、ならびに照明光源9の光量、設置数、および配置位置が含まれる。
Each of the plurality of training data included in the data set Ds is an image of the
機械学習プログラムPg1において、データセットDs、エンコーダモデルMc、デコーダモデルMd、識別モデルMe、および主目的モデルMmが参照される。機械学習プログラムPg1を実行するプロセッサ110によって、図2のエンコーダEncおよびデコーダDec、図3のエンコーダEncおよび識別器Dsc、ならびに図4の主目的処理器Mprが実現される。プロセッサ110は、機械学習プログラムPg1を実行することによって、エンコーダモデルMc、デコーダモデルMd、識別モデルMe、および主目的モデルMmの各々を学習済みモデルに適合する。
In the machine learning program Pg1, the data set Ds, the encoder model Mc, the decoder model Md, the discriminative model Me, and the main purpose model Mm are referred to. The
欠陥識別プログラムPg2において、エンコーダモデルMcおよび主目的モデルMmが参照される。欠陥識別プログラムPg2を実行するプロセッサ110によって、図5のエンコーダEnc、主目的処理器Mpr、および判定部Jdgが実現される。プロセッサ110は、欠陥識別プログラムPg2を実行することによって、撮像部8によって取得された画像の欠陥を識別し、識別結果をディスプレイ102に出力する。プロセッサ110は、データセットE1~Enへの当該画像が取得された環境の適合度をディスプレイ102に出力する。当該適合度は、学習データが取得された条件と推論処理において主目的処理器Mprに入力されるデータが取得された条件との類似度に応じて、判定部Jdgによって算出される。当該適合度が予め定められた閾値を超えているか否かに応じて、判定部Jdgは、学習データが取得された条件によって決定される環境に入力データが適合しているか否かをディスプレイ102に出力してもよい。
In the defect identification program Pg2, the encoder model Mc and the main purpose model Mm are referred to. The
プロセッサ110は、主目的処理器Mprへの入力データがデータセットE1~Enに適合していない場合、データセットE1~Enに当該入力データを適合させるための、当該入力データが取得された条件の変更方法をディスプレイ102に出力する。当該変更方法には、たとえば、照明光源9の光量、設置数、配置、あるいは撮像部8の向きの変更が含まれる。
When the input data to the main purpose processor Mpr does not conform to the data sets E1 to En, the
カメラインターフェイス116は、プロセッサ110と撮像部8との間のデータ伝送を仲介する。すなわち、カメラインターフェイス116は、ワーク2を撮像して画像データを生成する撮像部8を接続する。より具体的には、カメラインターフェイス116は、1つ以上の撮像部8と接続が可能であり、撮像部8からの複数の画像データを一時的に蓄積するための画像バッファ116aを含む。そして、カメラインターフェイス116は、画像バッファ116aに少なくとも1コマ分の画像データが蓄積されると、その蓄積されたデータをメインメモリ112へ転送する。また、カメラインターフェイス116は、CPU110が発生した内部コマンドに従って、撮像部8に対して撮像指令を与える。
The
入力インターフェイス118は、プロセッサ110とマウス104、キーボード、タッチパネルなどの入力部との間のデータ伝送を仲介する。すなわち、入力インターフェイス118は、ユーザが入力部を操作することで与えられる操作指令を受付ける。
The
表示コントローラ120は、表示装置の典型例であるディスプレイ102と接続され、プロセッサ110における画像処理の結果などをユーザに通知する。すなわち、表示コントローラ120は、ディスプレイ102に接続され、ディスプレイ102での表示を制御する。ディスプレイ102は、たとえば液晶ディスプレイ、有機EL(Electro Luminescence)ディスプレイ、またはその他の表示装置である。
The
PLCインターフェイス122は、プロセッサ110とPLC5との間のデータ伝送を仲介する。より具体的には、PLCインターフェイス122は、PLC5によって制御される生産ラインの状態に係る情報やワークに係る情報などをプロセッサ110へ伝送する。
The
通信インターフェイス124は、プロセッサ110とコンソール(あるいは、パーソナルコンピュータやサーバ装置)などとの間のデータ伝送を仲介する。通信インターフェイス124は、典型的には、イーサネット(登録商標)やUSB(Universal Serial Bus)などからなる。なお、後述するように、メモリカード106に格納されたプログラムを情報処理装置100にインストールする形態に代えて、通信インターフェイス124を介して、配信サーバなどからダウンロードしたプログラムを情報処理装置100にインストールしてもよい。
The
データリーダ/ライタ126は、プロセッサ110と記録媒体であるメモリカード106との間のデータ伝送を仲介する。すなわち、メモリカード106には、情報処理装置100で実行されるプログラムなどが格納された状態で流通し、データリーダ/ライタ126は、このメモリカード106からプログラムを読み出す。また、データリーダ/ライタ126は、プロセッサ110の内部指令に応答して、撮像部8によって取得された画像データおよび/または情報処理装置100における処理結果などをメモリカード106へ書き込む。なお、メモリカード106は、CF(Compact Flash)、SD(Secure Digital)などの汎用的な半導体記憶デバイスや、フレキシブルディスク(Flexible Disk)などの磁気記憶媒体や、CD-ROM(Compact Disk Read Only Memory)などの光学記憶媒体等からなる。
The data reader /
また、情報処理装置100には、必要に応じて、プリンタなどの他の出力装置が接続されてもよい。
Further, another output device such as a printer may be connected to the
なお、実施の形態に係る情報処理装置が適用可能なシステムは、外観検査システムに限定されない。当該システムとしては、たとえば、歩行者および車等の物体検出を行う自動運転システム、および医療診断システムを挙げることができる。 The system to which the information processing device according to the embodiment can be applied is not limited to the visual inspection system. Examples of the system include an automatic driving system that detects objects such as pedestrians and vehicles, and a medical diagnosis system.
自動運転システムにおいては、たとえば、自動車の運転席から撮影された画像データに人または他の自動車等の障害物の有無が識別される。画像データが取得される環境を決定する条件としては、画像が取得された時間帯、天気、あるいは季節等を挙げることができる。自動運転システムにおいては、実際の自動運転時において、運転席から撮像された画像に対する障害物の有無の判定が可能か否かがリアルタイムに判定される。 In the automatic driving system, for example, the presence or absence of an obstacle such as a person or another automobile is identified in the image data taken from the driver's seat of the automobile. As a condition for determining the environment in which the image data is acquired, the time zone, the weather, the season, etc. in which the image was acquired can be mentioned. In the automatic driving system, it is determined in real time whether or not it is possible to determine the presence or absence of an obstacle in the image captured from the driver's seat during actual automatic driving.
医療診断システムにおいては、たとえば、患者の日常の写真、レントゲン写真、およびCT(Computed Tomography)が入力され、当該患者が罹患している病気およぶ体調等が識別される。データが取得された環境を決定する条件には、たとえば当該データを取得した機器、当該患者の年齢、性別、体格、体質、国籍、および既往歴が含まれる。医療診断システムによる実際の診断時には、当該患者に対する診断が可能か否かが判定される。 In the medical diagnosis system, for example, daily photographs of patients, X-rays, and CT (Computed Tomography) are input to identify the illness and physical condition of the patient. Conditions that determine the environment in which the data was obtained include, for example, the device from which the data was obtained, the patient's age, gender, physique, constitution, nationality, and medical history. At the time of actual diagnosis by the medical diagnosis system, it is determined whether or not the diagnosis for the patient is possible.
実施の形態に係る情報処理装置が適用可能なシステムとしては、他にも顔認識システム、音声認識システム、自然言語処理システム、渋滞予測等を行う交通状況監視システム、および強化学習を行うロボットシステムを挙げることができる。顔認識システムにおいては、顔画像による人物の識別が行われ、当該顔画像を取得した機器、当該人物の年齢、性別、および国籍等が当該顔画像が取得された環境を決定する条件に含まれる。音声認識システムにおいては、音声による人物の識別が行われ、当該音声を取得した機器、当該音声を発した人物の年齢、性別、および国籍等が当該音声が取得された環境を決定する条件に含まれる。自然言語処理システムにおいては、文字列の意味の識別が行われ、当該文字列が由来する言語、文字列を記載した人間の年齢、性別、国籍、および文字列が意味する内容の分野等が環境を決定する条件に含まれる。交通状況監視システムにおいては、道路画像に基づいて渋滞の有無が識別され、道路の場所、道路画像が取得された季節、時間帯、天気、および路面状況等が道路画像が取得された環境を決定する条件に含まれる。ロボットシステムにおいては、画像および音声の認識に基づくアクションの識別が行われ、ロボットが置かれた場所、ロボットが備えるセンサの性能、および種類等が、画像および音声が取得された環境を決定する条件に含まれる。 Other systems to which the information processing device according to the embodiment can be applied include a face recognition system, a voice recognition system, a natural language processing system, a traffic condition monitoring system for predicting congestion, and a robot system for enhanced learning. Can be mentioned. In the face recognition system, a person is identified by a face image, and the device that acquired the face image, the age, gender, nationality, etc. of the person are included in the conditions for determining the environment in which the face image is acquired. .. In a voice recognition system, a person is identified by voice, and the device that acquired the voice, the age, gender, nationality, etc. of the person who made the voice are included in the conditions for determining the environment in which the voice was acquired. Is done. In a natural language processing system, the meaning of a character string is identified, and the environment is the language from which the character string is derived, the age, gender, nationality of the person who described the character string, and the field of the content that the character string means. Is included in the conditions for determining. In the traffic condition monitoring system, the presence or absence of traffic congestion is identified based on the road image, and the location of the road, the season when the road image was acquired, the time zone, the weather, the road surface condition, etc. determine the environment in which the road image was acquired. It is included in the conditions to be used. In a robot system, actions are identified based on image and voice recognition, and the location where the robot is placed, the performance and type of sensors provided by the robot, etc. determine the environment in which the image and sound are acquired. include.
以上、実施の形態に係る情報処理装置によれば、学習済みモデルが機械学習によって得られた性能を発揮することが困難な環境を識別することができる。 As described above, according to the information processing apparatus according to the embodiment, it is possible to identify an environment in which it is difficult for the trained model to exhibit the performance obtained by machine learning.
<付記>
上述したような実施の形態は、以下のような技術思想を含む。
<Additional notes>
The above-described embodiments include the following technical ideas.
(構成1)
少なくとも1つのデータセット(E1~En)に含まれる学習データ(dtx)から複数の次元(x1,x2)の特徴量(fx)を出力するエンコーダモデル(Mc)を含むエンコーダ(Enc)と、
少なくとも1つの入力データ(dt_un)の特定特徴量(f_un)を前記エンコーダモデル(Mc)から受けて、前記少なくとも1つのデータセット(E1~En)への前記少なくとも1つの入力データの適合度(ad_un)を出力する判定部(Jdg)とを備え、
前記エンコーダモデル(Mc)は、前記複数の次元(x1,x2)によって規定される特徴量空間の特定部分空間(Sb1)に前記特徴量(fx)を分布させるように機械学習によって適合されており、
前記判定部(Jdg)は、前記特定特徴量(f_un)と前記特定部分空間(Sb1)との位置関係(δ)から前記適合度(ad_un)を算出する、情報処理装置(100,100B)。
(Structure 1)
An encoder (Enc) including an encoder model (Mc) that outputs features (fx) of a plurality of dimensions (x1, x2) from training data (dtx) included in at least one data set (E1 to En).
A specific feature amount (f_un) of at least one input data (dt_un) is received from the encoder model (Mc), and the goodness of fit (ad_un) of the at least one input data to the at least one data set (E1 to En). ) Is provided with a judgment unit (Jdg) that outputs
The encoder model (Mc) is adapted by machine learning so that the feature amount (fx) is distributed in a specific subspace (Sb1) of the feature amount space defined by the plurality of dimensions (x1, x2). ,
The determination unit (Jdg) is an information processing device (100, 100B) that calculates the goodness of fit (ad_un) from the positional relationship (δ) between the specific feature amount (f_un) and the specific subspace (Sb1).
(構成2)
前記判定部(Jdg)は、前記特定特徴量(f_un)と、前記学習データ(dtx)から前記エンコーダモデル(Me)によって抽出された特徴量(fx)との差を、前記エンコーダモデル(Mc)を介して前記少なくとも1つの入力データ(dt_un)の変更量として逆算し、前記変更量の絶対値を減少させるための前記少なくとも1つの入力データ(dt_un)が取得された条件の変更方法を出力する、構成1に記載の情報処理装置(100,100B)。
(Structure 2)
The determination unit (Jdg) determines the difference between the specific feature amount (f_un) and the feature amount (fx) extracted from the training data (dtx) by the encoder model (Me). Is calculated back as the change amount of the at least one input data (dt_un), and the method of changing the condition in which the at least one input data (dt_un) is acquired for reducing the absolute value of the change amount is output. , The information processing apparatus (100, 100B) according to the
(構成3)
前記少なくとも1つの(E1~En)が保存された記憶部(Stg,114)と、
前記少なくとも1つの(E1~En)を用いる機械学習により、前記特定部分空間(Sb1)に前記特徴量(fx)を分布させるように前記エンコーダモデル(Mc)を適合させる学習部(Ln)とをさらに備える、構成1または2に記載の情報処理装置(100)。
(Structure 3)
A storage unit (Stg, 114) in which at least one (E1 to En) is stored, and
By machine learning using at least one (E1 to En), a learning unit (Ln) that adapts the encoder model (Mc) so as to distribute the feature amount (fx) in the specific subspace (Sb1) is provided. The information processing apparatus (100) according to
(構成4)
少なくとも1つのデータセット(E1~En)が保存された記憶部(Stg)と、
前記少なくとも1つのデータセット(E1~En)に含まれる学習データ(dtx)から複数の次元(x1,x2)の特徴量(fx)を抽出するエンコーダモデル(Mc)を含むエンコーダ(Enc)と、
学習部(Ln)とを備え、
前記学習部(Ln)は、前記少なくとも1つのデータセット(E1~En)を用いる機械学習により、前記複数の次元(x1,x2)によって規定される特徴量空間の特定部分空間(Sb1)に前記特徴量(fx)を分布させるように前記エンコーダモデル(Mc)を適合させる、情報処理装置(100A)。
(Structure 4)
A storage unit (Stg) in which at least one data set (E1 to En) is stored, and
An encoder (Enc) including an encoder model (Mc) that extracts features (fx) of a plurality of dimensions (x1, x2) from training data (dtx) included in at least one data set (E1 to En).
Equipped with a learning department (Ln)
The learning unit (Ln) is subjected to machine learning using the at least one data set (E1 to En) to the specific subspace (Sb1) of the feature space defined by the plurality of dimensions (x1, x2). An information processing device (100A) that adapts the encoder model (Mc) so as to distribute a feature amount (fx).
(構成5)
前記特徴量(fz)を復号するデコーダモデル(Md)を含むデコーダ(Dec)をさらに備え、
前記学習部(Ln)は、前記少なくとも1つのデータセット(E1~En)を用いる機械学習により、前記特徴量(fz)が標準正規分布に従うように、前記エンコーダモデル(Mc)および前記デコーダモデル(Md)を適合させる、構成3または4に記載の情報処理装置(100,100A)。
(Structure 5)
A decoder (Dec) including a decoder model (Md) for decoding the feature amount (fz) is further provided.
The learning unit (Ln) uses the encoder model (Mc) and the decoder model (Mc) so that the feature quantity (fz) follows a standard normal distribution by machine learning using the at least one data set (E1 to En). The information processing apparatus (100, 100A) according to configuration 3 or 4, which is adapted to Md).
(構成6)
前記学習データ(dty)が前記少なくとも1つのデータセット(E1~En)のいずれに含まれるかを識別する識別モデル(Me)を含む識別器(Dsc)をさらに備え、
前記機械学習は、前記識別モデル(Me)と前記エンコーダモデル(Mc)との間で行われる敵対的学習であり、
前記敵対的学習においては、前記学習データ(dty)が含まれる正解データセット(Ey)の識別に前記識別モデル(Me)が成功する確率Psが最大化するように前記識別モデル(Me)が最適化されるとともに、前記正解データセット(Ey)の識別に前記識別モデル(Me)が失敗する確率が最大化するように前記エンコーダモデル(Mc)が最適化される、構成5に記載の情報処理装置(100,100A)。
(Structure 6)
A classifier (Dsc) including a discriminative model (Me) for discriminating which of the at least one data set (E1 to En) the training data (dty) is included in is further provided.
The machine learning is hostile learning performed between the discriminative model (Me) and the encoder model (Mc).
In the hostile learning, the discriminative model (Me) is optimal so as to maximize the probability Ps that the discriminative model (Me) succeeds in discriminating the correct data set (Ey) including the learning data (dty). The information processing according to the
(構成7)
前記特定部分空間(Sb1)は、前記特徴量空間の原点を中心とする球面である、構成1~6のいずれかに記載の情報処理装置(100,100A,100B)。
(Structure 7)
The information processing apparatus (100, 100A, 100B) according to any one of
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present invention is shown by the claims rather than the above description, and it is intended to include all modifications within the meaning and scope equivalent to the claims.
1 外観検査システム、2 ワーク、4 検出センサ、4a 受光部、4b 投光部、6 搬送機構、8 撮像部、9 照明光源、14,Jdg 判定部、100,100A,100B 情報処理装置、102 ディスプレイ、104 マウス、106 メモリカード、110 プロセッサ、112 メインメモリ、114 ハードディスク、116 カメラインターフェイス、116a 画像バッファ、118 入力インターフェイス、120 表示コントローラ、122 インターフェイス、124 通信インターフェイス、126 ライタ、128 バス、Ds データセット、Dec,DecA デコーダ、Dsc,DscA 識別器、Enc,EncA,EncB エンコーダ、Ln 学習部、Mc エンコーダモデル、Md デコーダモデル、Me 識別モデル、Mm 主目的モデル、Mpr,MprA,MprB 主目的処理器。 1 Visual inspection system, 2 Work, 4 Detection sensor, 4a Light receiving part, 4b Flooding part, 6 Conveying mechanism, 8 Imaging part, 9 Illumination light source, 14, Jdg judgment part, 100, 100A, 100B Information processing device, 102 display , 104 mouse, 106 memory card, 110 processor, 112 main memory, 114 hard disk, 116 camera interface, 116a image buffer, 118 input interface, 120 display controller, 122 interface, 124 communication interface, 126 writer, 128 bus, Ds dataset , Dec, DecA decoder, Dsc, DscA classifier, Enc, EncA, EncB encoder, Ln learning unit, Mc encoder model, Md decoder model, Me identification model, Mm main purpose model, Mpr, MprA, MprB main purpose processor.
Claims (7)
少なくとも1つの入力データの特定特徴量を前記エンコーダモデルから受けて、前記少なくとも1つのデータセットへの前記少なくとも1つの入力データの適合度を出力する判定部とを備え、
前記エンコーダモデルは、前記複数の次元によって規定される特徴量空間の特定部分空間に前記特徴量を分布させるように機械学習によって適合されており、
前記判定部は、前記特定特徴量と前記特定部分空間との位置関係から前記適合度を算出する、情報処理装置。 An encoder that includes an encoder model that outputs features of multiple dimensions from training data contained in at least one data set, and
It includes a determination unit that receives a specific feature amount of at least one input data from the encoder model and outputs the goodness of fit of the at least one input data to the at least one data set.
The encoder model is adapted by machine learning to distribute the features in a specific subspace of the features space defined by the plurality of dimensions.
The determination unit is an information processing device that calculates the goodness of fit from the positional relationship between the specific feature amount and the specific subspace.
前記少なくとも1つのデータセットを用いる機械学習により、前記特定部分空間に前記特徴量を分布させるように前記エンコーダモデルを適合させる学習部とをさらに備える、請求項1または2に記載の情報処理装置。 A storage unit in which at least one data set is stored, and a storage unit.
The information processing apparatus according to claim 1 or 2, further comprising a learning unit that adapts the encoder model so that the feature amount is distributed in the specific subspace by machine learning using the at least one data set.
前記少なくとも1つのデータセットに含まれる学習データから複数の次元の特徴量を抽出するエンコーダモデルを含むエンコーダと、
学習部とを備え、
前記学習部は、前記少なくとも1つのデータセットを用いる機械学習により、前記複数の次元によって規定される特徴量空間の特定部分空間に前記特徴量を分布させるように前記エンコーダモデルを適合させる、情報処理装置。 A storage unit in which at least one data set is stored, and
An encoder including an encoder model that extracts features of a plurality of dimensions from the training data contained in at least one data set, and an encoder.
Equipped with a learning department
The learning unit adapts the encoder model so as to distribute the feature amount in a specific subspace of the feature amount space defined by the plurality of dimensions by machine learning using the at least one data set. apparatus.
前記学習部は、前記少なくとも1つのデータセットを用いる機械学習により、前記特徴量が標準正規分布に従うように、前記エンコーダモデルおよび前記デコーダモデルを適合させる、請求項3または4に記載の情報処理装置。 A decoder including a decoder model that decodes the feature amount is further provided.
The information processing apparatus according to claim 3 or 4, wherein the learning unit adapts the encoder model and the decoder model so that the features follow a standard normal distribution by machine learning using the at least one data set. ..
前記機械学習は、前記識別モデルと前記エンコーダモデルとの間で行われる敵対的学習であり、
前記敵対的学習においては、前記学習データが含まれる正解データセットの識別に前記識別モデルが成功する確率が最大化するように前記識別モデルが最適化されるとともに、前記正解データセットの識別に前記識別モデルが失敗する確率が最大化するように前記エンコーダモデルが最適化される、請求項5に記載の情報処理装置。 Further comprising a classifier including a discriminative model for discriminating which of the at least one dataset the training data is contained in.
The machine learning is hostile learning performed between the discriminative model and the encoder model.
In the hostile learning, the discriminative model is optimized so as to maximize the probability that the discriminative model will succeed in identifying the correct data set containing the training data, and the correct data set is identified. The information processing apparatus according to claim 5, wherein the encoder model is optimized so as to maximize the probability that the discriminative model will fail.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019-206542 | 2019-11-14 | ||
| JP2019206542A JP7409027B2 (en) | 2019-11-14 | 2019-11-14 | information processing equipment |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2021095519A1 true WO2021095519A1 (en) | 2021-05-20 |
Family
ID=75912301
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2020/040345 Ceased WO2021095519A1 (en) | 2019-11-14 | 2020-10-28 | Information processing device |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP7409027B2 (en) |
| WO (1) | WO2021095519A1 (en) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP7485512B2 (en) * | 2019-12-26 | 2024-05-16 | キヤノンメディカルシステムズ株式会社 | Medical information processing device, medical information processing method, and medical information processing program |
| JP2024018792A (en) | 2022-07-29 | 2024-02-08 | 株式会社日立産機システム | Inspection equipment and method |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019073923A1 (en) * | 2017-10-10 | 2019-04-18 | 国立大学法人岐阜大学 | Anomalous item determination method |
| US20190147357A1 (en) * | 2017-11-16 | 2019-05-16 | Red Hat, Inc. | Automatic detection of learning model drift |
| JP2019139277A (en) * | 2018-02-06 | 2019-08-22 | オムロン株式会社 | Evaluation device, motion control device, evaluation method, and evaluation program |
| JP2019159823A (en) * | 2018-03-13 | 2019-09-19 | 富士通株式会社 | Learning program, learning method and learning device |
-
2019
- 2019-11-14 JP JP2019206542A patent/JP7409027B2/en active Active
-
2020
- 2020-10-28 WO PCT/JP2020/040345 patent/WO2021095519A1/en not_active Ceased
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019073923A1 (en) * | 2017-10-10 | 2019-04-18 | 国立大学法人岐阜大学 | Anomalous item determination method |
| US20190147357A1 (en) * | 2017-11-16 | 2019-05-16 | Red Hat, Inc. | Automatic detection of learning model drift |
| JP2019139277A (en) * | 2018-02-06 | 2019-08-22 | オムロン株式会社 | Evaluation device, motion control device, evaluation method, and evaluation program |
| JP2019159823A (en) * | 2018-03-13 | 2019-09-19 | 富士通株式会社 | Learning program, learning method and learning device |
Non-Patent Citations (1)
| Title |
|---|
| KAWACHI, YUTA ET AL.: "Supervised anomaly detection using hyperspherical surface latent space autoencoder", IPSJ SIG TECHNICAL REPORTS: COMPUTER VISION AND IMAGE MEDIA (CVIM, vol. 2018 -CV, no. 1, 19 September 2018 (2018-09-19), pages 1 - 8, ISSN: 2188-8701, Retrieved from the Internet <URL:https://ipsj.ixsq.nii.ac.jp/ej/?action=repository_uri&item_id=191346&file_id=1&file_no=1> * |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2021081814A (en) | 2021-05-27 |
| JP7409027B2 (en) | 2024-01-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12315053B2 (en) | Image classification through label progression | |
| US11455807B2 (en) | Training neural networks for vehicle re-identification | |
| US12456055B2 (en) | Weakly-supervised object detection using one or more neural networks | |
| US12361221B2 (en) | Grammar transfer using one or more neural networks | |
| US12131536B2 (en) | Video surveillance with neural networks | |
| US20170351905A1 (en) | Learning model for salient facial region detection | |
| US10762440B1 (en) | Sensor fusion and deep learning | |
| US9121751B2 (en) | Weighing platform with computer-vision tracking | |
| US20230126842A1 (en) | Model prediction confidence utilizing drift | |
| US10943099B2 (en) | Method and system for classifying an input data set using multiple data representation source modes | |
| WO2021095519A1 (en) | Information processing device | |
| KR102479671B1 (en) | Method for providing parts information of vehicle | |
| US11928011B2 (en) | Enhanced drift remediation with causal methods and online model modification | |
| US20230126294A1 (en) | Multi-observer, consensus-based ground truth | |
| Tang et al. | Image semantic recognition and segmentation algorithm of colorimetric sensor array based on deep convolutional neural network | |
| EP4105893B1 (en) | Dynamic artifical intelligence camera model update | |
| US20250128726A1 (en) | Apparatus and method for providing alarm according to behavior of driver in driving monitoring system | |
| US20210209473A1 (en) | Generalized Activations Function for Machine Learning | |
| KR20250058713A (en) | Apparatus and method for detecting drowsiness of driver in driving monitoring system | |
| US11354793B2 (en) | Object detection with missing annotations in visual inspection | |
| KR102589573B1 (en) | Apparatus and method for deciding of photographing area | |
| US20240193903A1 (en) | Detecting Portions of Images Indicative of the Presence of an Object | |
| US20230128081A1 (en) | Automated identification of training datasets | |
| Meena et al. | Hybrid neural network architecture for multi-label object recognition using feature fusion | |
| US12488282B2 (en) | Unsupervised data characterization utilizing drift |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20887161 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 20887161 Country of ref document: EP Kind code of ref document: A1 |