WO2021094824A1 - Système de déclenchement selon la phase cardiaque pour radiothérapie - Google Patents
Système de déclenchement selon la phase cardiaque pour radiothérapie Download PDFInfo
- Publication number
- WO2021094824A1 WO2021094824A1 PCT/IB2020/000930 IB2020000930W WO2021094824A1 WO 2021094824 A1 WO2021094824 A1 WO 2021094824A1 IB 2020000930 W IB2020000930 W IB 2020000930W WO 2021094824 A1 WO2021094824 A1 WO 2021094824A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cardiac
- time
- motion
- phase
- real
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room
- A61B5/0036—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room including treatment, e.g., using an implantable medical device, ablating, ventilating
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Clinical applications
- A61B8/0883—Clinical applications for diagnosis of the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room
- A61B5/004—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
- A61B5/0044—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the heart
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Measuring devices for evaluating the respiratory organs
- A61B5/0816—Measuring devices for examining respiratory frequency
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1126—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb using a particular sensing technique
- A61B5/1127—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb using a particular sensing technique using markers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/113—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb occurring during breathing
- A61B5/1135—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb occurring during breathing by monitoring thoracic expansion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/352—Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
- A61B5/7207—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
- A61B5/721—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts using a separate sensor to detect motion or using motion information derived from signals other than the physiological signal to be measured
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7285—Specific aspects of physiological measurement analysis for synchronizing or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
- A61B5/7289—Retrospective gating, i.e. associating measured signals or images with a physiological event after the actual measurement or image acquisition, e.g. by simultaneously recording an additional physiological signal during the measurement or image acquisition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7285—Specific aspects of physiological measurement analysis for synchronizing or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
- A61B5/7292—Prospective gating, i.e. predicting the occurrence of a physiological event for use as a synchronisation signal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5223—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1064—Monitoring, verifying, controlling systems and methods for adjusting radiation treatment in response to monitoring
- A61N5/1068—Gating the beam as a function of a physiological signal
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/40—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to mechanical, radiation or invasive therapies, e.g. surgery, laser therapy, dialysis or acupuncture
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00681—Aspects not otherwise provided for
- A61B2017/00694—Aspects not otherwise provided for with means correcting for movement of or for synchronisation with the body
- A61B2017/00703—Aspects not otherwise provided for with means correcting for movement of or for synchronisation with the body correcting for movement of heart, e.g. ECG-triggered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0233—Special features of optical sensors or probes classified in A61B5/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/032—Transmission computed tomography [CT]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/037—Emission tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/54—Control of apparatus or devices for radiation diagnosis
- A61B6/541—Control of apparatus or devices for radiation diagnosis involving acquisition triggered by a physiological signal
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/02—Measuring pulse or heart rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/42—Details of probe positioning or probe attachment to the patient
- A61B8/4245—Details of probe positioning or probe attachment to the patient involving determining the position of the probe, e.g. with respect to an external reference frame or to the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/483—Diagnostic techniques involving the acquisition of a 3D volume of data
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N5/00—Radiation therapy
- A61N5/10—X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
- A61N5/1048—Monitoring, verifying, controlling systems and methods
- A61N5/1049—Monitoring, verifying, controlling systems and methods for verifying the position of the patient with respect to the radiation beam
Definitions
- This disclosure is directed generally to devices and techniques for particle irradiation therapy, and more specifically to non-invasive treatment of cardiac arrhythmias.
- Cardiac arrhythmias are disruptions in the normal heartbeat. They affect more than two percent of the general population in Europe and are expected to at least double in the next 50 years as the population ages. Their occurrence is strongly linked to an increased risk of heart attacks and strokes.
- heart arrhythmia is a problem with the rate or rhythm of the heartbeat.
- the heart beats too quickly, too slowly, or with an irregular pattern.
- the heart beating faster than normal, above 100 beats per minute in adults is called tachycardia.
- the heart beating too slowly, below 60 beats per minute is called bradycardia.
- a common type of arrhythmia is atrial fibrillation, which causes an irregular and fast heartbeat.
- Many factors can affect the rhythm of the heart such as having had a heart attack, smoking, congenital heart defects, and stress. Some substances or medicines may also cause arrhythmias.
- Treatments may include medications, medical procedures such as ablation therapy or implantation of a pacemaker or defibrillator, and surgery.
- Medications for a fast heart rate may include beta-blockers or agents that attempt to restore a normal heart rhythm such as procainamide. Medications may have more significant side effects especially if taken for a long period of time.
- Pacemakers are often used for slow heart rates. Those with an irregular heartbeat are often treated with blood thinners to reduce the risk of complications. Those who have severe symptoms from an arrhythmia may receive urgent treatment with a controlled electric shock in the form of cardioversion or defibrillation.
- Ablation therapies are often used to treat arrhythmias.
- Ablation therapies include burning or freezing specific heart tissues with invasive tools such as catheters, to stop the conduction of the disrupted electrical signals in these specific tissues.
- Invasive catheter ablation procedures are surgical interventions performed manually and the treatment efficacy varies largely from 50% to 80% depending on the technology used and skill of the surgeon. Moreover, the procedures can involve several medical staff members and can require many hours, during which patients are at risk of serious complications like tissue perforation, vein stenosis, or creation of a blood clot. The nature of the lesions created by catheter ablation results in procedures which are often repeated successive times, with increasing complexity for the medical staff and risk for the patient.
- Various embodiments of the disclosure relate to systems and techniques for reliably predicting a motion phase for enabling a particle beam (e.g., photons, electrons, carbon ions, protons, heavy ions) to irradiate a targeted tissue for non-invasive treatment of the heart.
- the disclosed system and methods utilize live two-dimensional (2D) or three-dimensional (3D) image streams (e.g., sequence of images in time, such as live ultrasound, live x-ray, MRI, or electrocardiographic imaging (ECGI) streams) of the heart.
- 2D+time imaging and 3D+time imaging are herein referred to as live ultrasound, live x-ray, MRI, or electrocardiographic imaging (ECGI) streams.
- the 2D+time and 3D+time imaging is used to identify the phase of the cardiac cycle and use this phase information to prospectively predict the cardiac motion in the future part of the cardiac cycle, thereby interpreting the real time (RT)-images of their respective image streams as relative time measurements. Accordingly, the live image stream effectively serves as time marker of the cardiac cycle for the prospective prediction.
- the system and techniques do not require a defined regular number of input signals. Indeed, imaging systems (and ultrasound systems in particular) often operate at irregular acquisition time intervals. In some embodiments, the system is configured to discard any cardiac phase estimate that is considered too inaccurate for processing. In some embodiments, the motion phase predicted by the disclosed system is reliably generated even where the imaging does not provide real-time images at uniform time intervals. In some embodiments, spatial motion due to respiration as detected by optical markers on the imaging probe is monitored to provide a respiratory motion phase. In some embodiments, the system and methods account for both respiratory and cardiac cycles in characterizing the motion of the heart relative to the irradiation source.
- the system also includes a heartbeat sensor that provides an independent reference indication of the cardiac phase.
- the heartbeat sensor provides real-time or near real-time quality assurance of a current predicted phase indication.
- An example of a heartbeat sensor is an electrocardiogram, or ECG.
- An ECG monitors the electrical signals associated with the electrical activity of the heart and presents a characteristic R-wave peak. The R-wave peak provides one independent reference indication per cardiac cycle. While the ECG is frequently used throughout this disclosure as the heartbeat sensor, other heartbeat sensors are contemplated, including but not limited to acoustic sensors and blood pressure sensors.
- the disclosed system may take into consideration some or all of the following: (a) the cardiac phase as determined by the most recent acquired real-time image(s); (b) optionally, the time of the last heartbeat sensor trigger pulse, corresponding to the beginning of a new cardiac cycle; (c) the time latency between the real-time image acquisition and the cardiac phase identification due to the time required to acquire and process the real-time image; and (d) the time latency needed to effectively switch the therapeutic beam on/off following a gating signal when in a beam-gating mode, or the time latency needed to effectively change beam parameters following a change of motion phase when in a beam-tracking mode. Processing of information (a) through (d) is initiated whenever a new real-time image or heartbeat sensor trigger pulse is acquired, and continuously updated and extrapolated to predict the cardiac phase at a time subsequent to the time of the most recent data acquisition.
- the disclosed system can be used in one of two modes: “beam gating” and “beam- tracking”.
- beam-gating the predicted cardiac phase is compared to the desired gating window, based on a patient- specific treatment plan, to determine if a gate ON or gate OFF signal should be set.
- the beam parameters are dynamically adapted to a monitored motion of a target by sending the a predicted cardiac phase to a beam controller which loads an appropriate set of beam parameters (if not already loaded) for the actual motion state (as prescribed by the treatment plan for this motion state) based on the patient-specific and motion phase-dependent treatment plans.
- cardiac cycles have been characterized with an ECG signal 30, depicted in FIG. 1.
- the ECG is inadequate.
- the ECG can reliably send only one data point per cardiac cycle 32 (i.e., at an R-peak 34 of the ECG signal).
- the period of the cardiac cycle can suddenly change from one heartbeat to the next one.
- Clinical data show that the period length can change by, for example, a factor two from one heartbeat to the next, as depicted at FIG.
- an ECG monitor will typically incorrectly estimate cardiac phases for irregular heartbeats, which are ubiquitous for patients having cardiac arrhythmias.
- the most suitable treatment time would most realistically be placed during the heart diastole, when heart motion is most slow and smooth.
- the signal from the T-wave (which correlates with the start of diastole) is typically small, round and very patient- and heart pathology-dependent, such that the real-time identification of diastole via, for example, electronic fast edge detection using the ECG signal is at least tenuous and impractical, perhaps impossible.
- ECG gating does not provide real-time information on cardiac motion with the time resolution required for accurate prediction of the targeted tissue motion.
- an ECG signal 40 that includes extra- systoles 42, as depicted in FIG. 2. While the extra-systoles 42 are in this case not detected by the R-wave trigger detection, the extra- systoles 42 nevertheless distort the regular mechanical motion of the heart. This potentially results in the treatment target assuming a different position or orientation than expected, which can lead to ineffective treatment of the target and potential damage to healthy tissue surrounding the target.
- Charged particle beams are presently used for the treatment of tumors, which occurs in 20-30 sessions in separate days. These charged particle beams have the physical characteristic of depositing most of their energy in the last few millimeters of their path (so-called Bragg peak). By adjusting the transverse position and energy of the beam, any target volume can be precisely covered, sparing surrounding healthy tissues.
- Such off-line 3D+time systems include 4D computed tomography (“4D-CT”), such as the Siemens SOMATOM FORCE®, and magnetic resonance imaging (MRI) systems.
- 4D-CT computed tomography
- Siemens SOMATOM FORCE® Siemens SOMATOM FORCE®
- MRI magnetic resonance imaging
- a technical consideration for an ultrasound system is that the speed of sound of the tissues that the ultrasound waves travel through is assumed to be constant (1540 m/s), regardless of the medium. Because the various body tissues in the imaging path can have significantly different speed of sound coefficients, the constant speed assumption can cause so-called “speed of sound aberrations,” by which a given anatomical structure appears to be located closer or further away from the ultrasound probe than in actuality. If these ultrasound images are then co-registered to off-line images, a misalignment of the anatomical structures may result.
- Various embodiments of the disclosure utilize a regime that uses real-time imaging to infer the three-dimensional orientation of the target in real-time, without need for direct correlation of real-time imaging and off-line data. Instead, correlation between the off-line images and the real-time imaging during treatment stages utilizes the modeling of bodily motion cycles as a succession of motion phases.
- the technical solution is based on modeling the heart motion as the superposition of two distinct periodic motion patterns: respiratory motion and cardiac motion.
- the cycles of each of these motion patterns can be subdivided into successive discrete bins.
- a cycle can be determined by the motion of the thorax or flux of air intake.
- a cycle may be determined by the duration between two consecutive R-wave peaks in the cardiac cycle.
- the bins may be uniformly divided in time along their respective cycle so that each bin represents a fixed segment of the respective motion phase.
- the motion phase information is provided to the ablation therapy system for modification of treatment parameters, such as beam position/size/energy according to the treatment plan corresponding to this motion bin (beam-tracking) or such as beam interruption (beam-gating).
- treatment parameters such as beam position/size/energy according to the treatment plan corresponding to this motion bin (beam-tracking) or such as beam interruption (beam-gating).
- a system is used to monitor both the cardiac motion (heartbeat) and respiratory motion in parallel, and to enable/disable (i.e., beam-gating: to selectively “gate” the beam) the therapy particle beam accordingly, or to change beam parameters according to the motion phase (i.e., beam-tracking).
- the system and techniques herein disclosed ensure a consistent and robust beam gating/tracking mechanism irrespective of the motion sensor type (ultrasound, ECG, optical, or other) and irrespective of the frequency and regularity of the motion sensor.
- the real-time imaging enable the detection of multiple motion phases during the cardiac cycle.
- the real-time images enable monitoring of the actual mechanical motion of the heart, instead of just electrical signals therefrom, thereby enabling a more precise beam-gating or beam- tracking.
- a quasi-realtime quality assurance method for determining how accurate the real-time imaging-based cardiac phase identification was for the immediately preceeding cardiac cycle.
- the quality assurance is provided by using a heartbeat sensor acquired simultaneously with the real-time imaging to precisely measure the time duration of the previous cardiac cycle, from which the precise occurrence in time of the cardiac phases can be inferred.
- Motion binning is already used in medical imaging, for example, to reconstruct a 4D- CT acquisition of the thorax. See, e.g., Dieterich, et al., “Respiratory Motion Management for External Beam Radiotherapy", Practical Radiation Oncology Physics, Chapter 19, pp. 252-263, Elsevier Inc., 2016 (available at https://www.sciencedirect.com/science/article/pii/ B9780323262095000195, last visited November 10, 2020).
- a treatment system including an accelerator and beamline, which create the required beam with given properties (intensity, position, angle and/or energy).
- a control system controls the accelerator and beamline for timely creation and delivery of the beam with desired properties.
- a patient position imaging system (based on, for example, double X-rays or Cone-beam Computed Tomography (CBCT)) verifies the patient positioning relative to the beam.
- patient positioning is accomplished with a system including a robotic apparatus upon which the patient is immobilized.
- the disclosed system is able to monitor in real-time the motion of the patient inner tissues, to infer the motion of the treatment target and to adapt in consequence the beam delivery based on a pre-established treatment plan.
- the treatment plan provides information regarding the beam properties for one or more allowed motion phases.
- the motion phases may correspond to a combination of phases of the respiratory and cardiac cycles. This can involve beam-gating the beam when the motion phase is not within the allowed motion phases of the treatment plan, and beam-tracking, i.e., adapting the beam transverse and longitudinal characteristics based on the identified motion phase as prescribed by the treatment plan for this motion phase.
- the system includes hardware and software structures.
- the imaging is performed fully non-invasively. That is, the system does not require fiducial markers to be implanted in the patient, and does not require insertion of the imaging system inside body cavities.
- one or more real-time imaging systems are placed externally on the patient body in order to image the heart region from the abdominal or thoracic viewing windows. Imaging can be performed using one or more linear arrays, phased arrays, multi-plane (phased) arrays (also called T-shaped or X-plane), mechanically swept probes and matrix array imaging probes to acquire 2D or 3D images at frame rates that are faster than the cardiac cycle.
- the imaging devices may be used to simultaneously image parts of the heart.
- each imaging system inside the treatment room (using, for example, optical markers on each imaging device and optical cameras, or electromagnetic sensors), one can relate the position in space of an image with that of the other images.
- the imaging devices are coupled with respiratory and cardiac motion sensors for determining the phase of the motion of the target.
- treatment planning relies on performing 3D+time system scans, possibly in combination with respiratory and cardiac sensors. Objectives of the planning include determining an ablation target for one or more phases of respiratory and cardiac cycles and the required beam properties (angle, energy, position, intensity) to effectively ablate the target while sparing sensitive surrounding healthy tissues during each of these motion phases or combination of these motion phases.
- the treatment plan includes information on all motion phases for which treatment is allowed, by defining a “gating window,” a condition in which all motion under consideration are in phases that allow safe treatment.
- each treatment plan being applicable for only a subset of all the motion phases, such that for each combination of motion phases, there is only one applicable treatment plan.
- a cardiac motion subsystem that provides a novel and effective method for monitoring and characterizing the cardiac motion.
- the purpose of the cardiac motion subsystem is to provide a cardiac phase to the radiation therapy control system that either enables or disables particle beam generation depending on the combination of the respiratory and cardiac phases (beam-gating) or loads the appropriate beam properties (treatment plan) corresponding to that combination of respiratory and cardiac phase (beam-tracking).
- the cardiac motion subsystem generates a cardiac gating signal while a separate respiratory gating signal is provided by a separate device. The cardiac gating signal enables the treatment beam to irradiate the target when the heart is in a predefined cardiac motion phase.
- the cardiac motion is inferred from the real-time imaging of the heart using software that estimates the cardiac phase.
- the cardiac phase software provides a predicted current cardiac phase based on the most recently acquired real-time images and known latencies of the device, and outputs either a gating signal based on the personalized treatment plan (beam-gating) or the predicted cardiac phase for potentially adapting the beam characteristics (beam-tracking).
- the real-time imaging of the cardiac motion is acquired with an imaging probe placed on the patient thorax, such that its position on the thorax is stable irrespective of patient movements and such that constant pressure can be applied by the probe on the skin for proper imaging throughout the respiration cycle.
- an imaging probe placed on the patient thorax, such that its position on the thorax is stable irrespective of patient movements and such that constant pressure can be applied by the probe on the skin for proper imaging throughout the respiration cycle.
- a holder is available commercially, for example, the PROBEFIX, available from Usono (Netherlands) for cardiac ultrasound probes. See https://www.usono.com/probefix/, last visited November 10, 2020.
- the real-time imaging provides a better method for monitoring the cardiac motion than does a cardiac electrical signal alone, because the ECG signal is reliable for only one trigger or reference point per cardiac cycle (the R-peak marking the start of cardiac systole), whereas the real-time imaging can provide multiple references per cardiac cycle for better time resolution for the extrapolated prediction.
- the cardiac motion subsystem can thus compute an appropriate cardiac gating signal and overlay it with an independent respiration gating signal to determine when the therapy beam should be enabled to irradiate the target.
- the disclosed device and the system are convenient for the patient because they consist of a non-invasive procedure lasting less than two hours without anesthesia, typically in a single or at most a few out-patient sessions.
- the deep ablation of both the inner and the outer cardiac muscle tissue results in continuous 3D volumes instead of the ablation points or lines performed by conventional invasive ablation systems.
- the risk of infection due to surgery is eliminated.
- unlike conventional radiotherapy for the treatment of tumors performed with X-ray, gamma-ray, or photon beams there is no deposition of large doses of radiation to surrounding normal tissues.
- the cardiac ablation system disclosed herein has been used with 2D+time ultrasound data from animals and humans with cardiac ultrasound probes for Trans-Thoracic Echocardiography (TTE) and Intra-Cardiac Echocardiography (ICE).
- TTE Trans-Thoracic Echocardiography
- ICE Intra-Cardiac Echocardiography
- the cardiac ablation system could be used with Transesophageal Echocardiography (TEE), with multiple non-coplanar 2D+time ultrasound images and with 3D+time ultrasound images, or with other imaging modalities (e.g., ultrasound elastography, computed tomography, magnetic resonance imaging, positron emission tomography, single-photon emission computerized tomography).
- TEE Transesophageal Echocardiography
- other imaging modalities e.g., ultrasound elastography, computed tomography, magnetic resonance imaging, positron emission tomography, single-photon emission computerized tomography.
- FIG. 1 is a plot of an electrocardiogram (ECG) signal depicting irregular cardiac cycles
- FIG. 2 is a plot of an ECG depicting electrical signals from irregular internal cardiac motion (extra-systoles);
- FIG. 3 is a perspective view of a cardiac ablation system according to an embodiment of the disclosure.
- FIG. 4 is a schematic representation of the cardiac ablation system of FIG. 3 according to an embodiment of the disclosure.
- FIG. 5 is a block diagram depicting control of the cardiac ablation system of FIG. 3 according to an embodiment of the disclosure
- FIG. 6 schematically represents a cardiac treatment method according to an embodiment of the disclosure
- FIG. 7 is a flow chart of the simulation stage of FIG. 6 according to an embodiment of the disclosure.
- FIG. 8 is a flow chart of the patient positioning, verification, and target ablation stages of FIG. 6 according to an embodiment of the disclosure
- FIG. 9 is a time flow diagram of a cardiac binning process according to an embodiment of the disclosure.
- FIG. 10 illustrates binning of a respiratory signal according to an embodiment of the disclosure
- FIG. 11 is a flow chart depicting a phase prediction process according to an embodiment of the disclosure.
- FIG. 12 is a block diagram depicting a neural network for determining the cardiac phase according to an embodiment of the disclosure.
- FIG. 13 is a flow chart depicting a three-dimensional convolutional neural network (3D CNN) used in the neural network of FIG. 12 according to an embodiment of the disclosure;
- 3D CNN three-dimensional convolutional neural network
- FIG. 14 is a flow chart depicting a one-dimensional temporal convolutional neural network (ID TCN) used in the neural network of FIG. 12 according to an embodiment of the disclosure.
- ID TCN one-dimensional temporal convolutional neural network
- FIG. 15 is a workflow and interface diagram of the neural network of FIG. 12 according to an embodiment of the disclosure.
- the non-invasive cardiac ablation system 100 includes a charged particle emitting system 102, a patient positioning system 104, an online/real-time (RT) imaging system 106, an optional respiratory motion subsystem 108, and a target motion management system 110.
- RT real-time
- the charged particle emitting system 102 includes a particle emitter 111 and a beam controller 116 for selectively generating a particle beam 118.
- the particle emitter 111 may include an accelerator 112 and a beamline 114 operatively coupled to the beam controller 116.
- the patient positioning system 104 includes a patient support 122 and a positioner system 126.
- the patient support 122 is a device, such as a table or chair, upon which a patient 124 is positioned.
- the patient support 122 may include immobilization devices (not depicted) to help the patient 124 remain stationary during the ablation process.
- the positioner system 126 is for adjusting the position of a target region 128 within the patient 124 in a selected orientation in space (axial position, frontal position, median position, and the three respective rotation angles) relative to the treatment room coordinate system, to which the propagation axis 132 of the particle beam 118 is calibrated.
- the positioner system 126 may be robotized in order to hold a specific position and, on command, to perform translations and/or rotations of the patient 124 in space.
- components of the charged particle emitting system 102 may be mounted on a positioning system such as a robotic arm (not depicted) or a rotating mechanical frame or gantry 140 (depicted) to change the angle between the target region 128 and the propagation axis 132 to achieve the selected orientation imposed by the treatment plan.
- a positioning system such as a robotic arm (not depicted) or a rotating mechanical frame or gantry 140 (depicted) to change the angle between the target region 128 and the propagation axis 132 to achieve the selected orientation imposed by the treatment plan.
- the real-time imaging system 106 is coupled to the patient 124 and configured to provide real-time images 142 that either include resolution of the target region 128 or is used to infer the target region 128 position.
- the role of the real-time imaging system 106 is to acquire the real-time images 142 and send them to the target motion management system 110.
- the real-time imaging system 106 includes at least one imaging probe 144 that is proximate the patient 124 for generation of real-time images 142 and may include a monitoring screen 146 for display of the real-time images 142.
- the imaging probe 144 may include any device (optical, electrical, magnetic, acoustic, among others) from which the present cardiac cycle phase can be identified. In some embodiments, such a device may include a simple time counter, which can determine in a predictive manner a current phase of the cardiac cycle based on established regular patterns for the specific patient and the most recently available cardiac phase information, as discussed below attendant to FIG. 11.
- the imaging probe(s) 144 and/or probe holder 148 may include optical or magnetic markers so as to be able to localize and continuously monitor their position in the room coordinate system and to fuse or co-register their image to planning off-line images. Thus, the probe position in space can be measured and tracked in order to associate the registered localization markers with the anatomical structures in an off-line image.
- the real-time imaging system 106 may be configured to withstand some level of radiation exposure, such as indirect emission of neutrons and gamma rays from the incoming particle beam. Alternatively, some components of the real-time imaging system 106 (e.g., data processor) can be remote and signals transmitted via analog or digital data transmission cables.
- An example, non-limiting sampling rate for the real-time imaging system 106 is 10-30 Hz inclusive.
- a range that is said to be “inclusive” includes the end point values of the stated range.
- the real-time imaging system 106 is an ultrasound cardiac imaging system, and the imaging probe 144 is an ultrasound probe mounted on the patient 124. Such depictions and descriptions are non-limiting.
- Other real time imaging systems 106 are contemplated, for example x-rays, MRI, and ECGI.
- Ultrasound systems when utilized, may include one or multiple 2D or 3D ultrasound transducers for continuous visualization of the heart trans-abdominahy (through the diaphragm or the liver) or trans-thoracicahy (between the ribs).
- the real-time imaging system 106 may be non-parallel, placed in apical position or parasternal position, and/or image long-axis or short-axis heart structures affected by heart motion. Positioning and tuning of the devices may be made by an operator, but a probe holder 148 enables fixing the position for long continuous acquisition times (e.g., about 1 to 2 hours), with only remote supervision and control.
- the target motion management system 110 includes hardware control and signal capabilities that are coupled to a central target motion controller 162.
- the target motion management system 110 may include a control console 164 for user interface with the central target motion controller 162.
- the central target motion controller 162 is operatively coupled to receive input from and/or send output to the charged particle emitting system 102, the patient positioning system 104, the real-time imaging system 106.
- the non-invasive cardiac ablation system 100 includes a patient position verification system 166 for verification of the patient positioning (FIG. 4).
- the position verification system 166 ensures that the patient position in the room coordinate system is acceptably close to the patient position during simulation off-line data acquisition.
- the patient position verification system 166 may be, for example, a double X-ray or a cone-beam computed tomography (CBCT) imaging system.
- CBCT cone-beam computed tomography
- the position of the target region 128 may be inferred with the patient position verification system 166 from readily identified anatomical features (e.g. bone structures) that are near to and have a known spatial relationship with the target region 128.
- features within the target region 128 itself may be identified directly with the patient position verification system 166, for enhanced accuracy in identifying the target region 128 relative to the particle beam 118.
- An example of a suitable patient position verification system 166 is the IMAGINGRING® System developed by medPhoton GmbH (Salzburg, Austria).
- the patient position verification system 166 may be coupled to the positioner system 126, the target motion management system 110, or both.
- the non-invasive cardiac ablation system 100 includes a heartbeat sensing system 172 that generates cardiac cycle data 174, such as an ECG measuring the electrical activity generated by the heart.
- the role of the heartbeat sensing system 172 is to acquire and send the cardiac cycle data 174 to the target motion management system 110.
- the non-invasive cardiac ablation system 100 may also include a respiratory monitor (not depicted).
- the heartbeat sensing system 172 and respiratory monitor may be coupled to the target motion management system 110.
- the target motion management system 110 is located on a workstation 176.
- the workstation 176 may also house the monitoring screen 146 and the heartbeat sensing system 172.
- the respiratory motion subsystem 108 includes a respiratory sensor 178 that monitors the respiratory motion of the patient 124.
- the respiratory sensor 178 may include any device (optical, electrical, magnetic, acoustic, among others) from which the present respiratory cycle phase may be inferred.
- a device may include a simple time counter, which in a predictive manner can determine the current phase of the respiratory cycle based on established regular patterns for the specific patient.
- the respiratory motion subsystem 108 may include optical markers placed on the imaging probe 144 or the probe holder 148 that is attached to the chest of the patient 124, and the optical markers are viewed with an optical camera (depicted).
- Optical cameras suitable for this purpose include include the FUSIONTRACK® 500 manufactured by Atracsys FFC (Puidoux, Switzerland).
- the respiratory motion subsystem 108 may also include surface tracking capabilities, for example using lasers or thermal imaging.
- the respiratory motion subsystem 108 is coupled to the target motion management system 110.
- the respiratory motion subsystem 108 may be a standalone system that includes a respiratory control module 182, the respiratory control module 182 being external to the central target motion controller 162 (depicted).
- the respiratory control module 182 resides within the central target motion controller 162 (not depicted).
- the respiratory motion subsystem 108 may output a respiratory motion signal 184 or respiratory motion phase signal that is based on the phase of the respiratory cycle. Determining the status of the respiratory motion signal 184 is described attendant to FIG. 10 below.
- a cardiac motion subsystem 188 is interfaced with the target motion management system 110 (FIG. 5).
- the cardiac motion subsystem 188 includes the real-time imaging system 106, the heartbeat sensing system 172, and a cardiac phase gating module 192.
- the cardiac phase gating module 192 may reside within the central target motion controller 162 (depicted).
- the target motion management system 110 imports and timestamps the data stream of real time images 142, the cardiac cycle data 174, the R-wave trigger pulse 264 (FIG. 9), and, in some embodiments, stores the data on a tangible, non-transitory storage medium 194.
- the cardiac phase gating module 192 executes cardiac motion phase identification in real-time (discussed below attendant to FIG.
- the output of the cardiac motion subsystem 188 is a cardiac motion signal or cardiac phase signal 196, which may be based on the phase of the cardiac cycle and prescribed by an ablation treatment plan 186.
- the ablation treatment plan may be stored on the storage medium 194 or accessed from elsewhere.
- the ablation treatment plan 186 is a comprehensive plan that forms the basis of control, execution, and performance verification of the non-invasive cardiac ablation system 100 during the target ablation and judgment stages S204 and S205 (FIG. 6).
- the ablation treatment plan 186 includes a patient-specific list of treatment properties in order to irradiate the appropriate volume in the patient body with the required therapeutic radiation dose.
- the treatment properties may include treatment target volume, treatment target motion boundaries, motion landmark positions, personalized parameters for cardiac phase identification, personalized parameters for respiratory phase identification, beam species, irradiation angles, beam sizes, beam positions, beam energies, beam intensities, dose for each irradiation voxel and treatment field, patient position in room, applicable motion phases or gated motion phases, among others.
- a treatment plan is specific for a given set of motion phases (not excluding all motion phases). These properties are computed based on off-line image scans (static or time- resolved), where the medical staff has defined the clinical target which should receive a given dose, the margins around the clinical target that consider the possible errors related to patient positioning and motion during the delivery), the critical healthy tissues that should be irradiated in the least possible fashion and the gating windows within which irradiation is allowed (beam gating) or motion phases for which the treatment plan applies (beam- tracking).
- the ablation treatment plan 186 may include, but is not limited to, the following: contouring the target region in off-line images for one or more motion phases; determining the beam properties for each of the chosen motion phases based on the target region and surrounding healthy tissues; and determining, for each of the chosen motion phases, boundaries for the target region outside of which irradiation should be stopped because it is unsafe.
- the contouring step may be performed by medical staff.
- a given motion phase may combine various motion phases (e.g., respiratory and cardiac cycle phases).
- the ablation treatment plan 186 involves defining a volume of the target region 128, defining the motion of the target region 128, prescribing a therapeutic dose and irradiation angle(s), and identifying critical tissues in the path of the particle beam 118 and their dose limits.
- the ablation treatment plan 186 may also specify the gating of the charged particle emitting system 102 as a function of various motion phases in a process referred to herein as “binning.”
- binning An example of the binning process for determining the status of the cardiac motion signal 196 is described attendant to FIG. 9 below.
- the gating window may also be adapted by the responsible clinical staff on treatment day based on experience and patient status (e.g., difficulty to hold the breath, faster respiration rate).
- the target motion management system 110 outputs two signals to the beam controller 116: a gating signal 197 and a digital communication signal 198.
- the target motion management system 110 In the beam-gating mode, the target motion management system 110 outputs the gating signal 197.
- the target motion management system 110 In the beam-tracking mode, the target motion management system 110 outputs values via the digital communication signal 198 corresponding to the respiratory motion signal 184 and the cardiac motion signal 196.
- the signals 184 and 196 represent the current predicted phases of the respective respiratory and cardiac cycles.
- the signals 184 and 196 may each represent a value between zero and 0.999999 indicative of the current predicted fraction of the respective total cycle normalized to 1.
- the signals 184 and 196 are sent to a processor m of the central target motion controller 162.
- the central target motion controller 162 determines the gating status of the combined signals 184 and 196 and sends the gating signal 197 to the beam controller 116. In some embodiments (beam- tracking), the central target motion controller 162 instead processes and relays the information about the respiratory and cardiac phases to the beam controller 116 via the digital communication signal 198.
- the charged particle emitting system 102 produces the particle beam 118 with the required properties for ablation of the target region 128. These properties include the intensity, convergence position, approach angle, and total energy of the particle beam 118.
- the beam controller 116 configures the required properties of the beam 118 from relevant aspects of the ablation treatment plan(s) 186, to which the beam controller 116 has access.
- the configuration of the beam 118 may be based on information received from the target motion management system 110 via the digital communication signal 198, such as the monitored motion of the target region 128 (current motion phase).
- the beam controller 116 may also set an on/off switch 199 to enable or to gate the charged particle emitting system 102 based on the gating signal 197 sent by the central target motion controller 162.
- the charged particle emitting system 102 is to cause the particle beam 118 to irradiate the patient 124, while to “gate” the system 102 is to prevent the particle beam 118 from irradiating the patient.
- beam-gating refers to sending a signal to the beam controller 116 to either pause the irradiation or resume the irradiation as planned. The way such enablement and gating is achieved is system specific. Some systems enable the particle beam 118 by activating the accelerator 112 and gate the particle beam 118 by deactivating the accelerator. Other systems leave the accelerator activated and gate the charged particle emitting system 102 by blocking or diverting the particle beam 118 so that the patient 124 is not irradiated.
- the non-invasive cardiac ablation system 100 also delivers the particle beam 118 to the target region 128 at predetermined phases of certain bodily motion cycles. Such bodily motion cycles may include respiratory and cardiac cycles.
- the real-time imaging system 106 provides the real-time images 142 from the real-time imaging to the target motion management system 110.
- the target motion management system 110 utilizes the real-time images 142 to deliver the particle beam 118 at the predetermined respiratory and cardiac phases.
- the real-time images 142 may also be used to determine the properties required of the particle beam 118.
- the respiratory phase is sensed by measuring a spatial displacement of the abdominal region or thorax of the patient 124, such as the optical markers placed on the imaging probe 144 or probe holder 148 (discussed above).
- respiratory motion subsystems 108 include the VARIAN RPM, manufactured by Varian Medical Systems, Inc. (Palo Alto, California, U.S.A.) and the ANZAI BELT (AZ-733VI), manufactured by Anzai Medical Co., Ltd (Tokyo, Japan).
- the respiratory motion subsystem 108 could utilize images of the real-time imaging system 106 as a surrogate of respiratory motion by identifying an appropriate landmark in the image and following the motion of the landmark in the image along the respiratory cycle.
- the real-time images 142 may be acquired and updated to the target motion management system 110 continuously, providing the operator with a live stream of data.
- the real-time images 142 and cardiac cycle data 174 may also be stored on a storage medium 194.
- the stored real-time images 142 can be later analyzed to assess the accuracy of the phase prediction process (described attendant to FIG. 11 below) and, if needed, to adapt the software parameters specific to the patient 124.
- the general workflow process 200 includes a simulation stage S201, a patient positioning stage S202, a patient position verification stage S203, a target ablation stage S204, and a judgment stage S205.
- the simulation stage S201 is depicted in greater detail at FIG. 7.
- the simulation stage S201 includes a patient setup step s211, a probe setup step s212, a real-time (RT) image acquisition step s213, acquisition of off-line data for respiration motion (step s214) and cardiac motion (step s215), and an ablation treatment planning step s216.
- FIG. 7 depicts steps s213 through s215 as occurring successively. In some embodiments, two or more of steps s213 through s215 may be performed simultaneously.
- the patient setup step s211 includes situating the patient 124 on the patient support 122 in the treatment room and coupling the respiratory motion subsystem 108 and the patient position verification system 166 to the patient 124.
- the probe setup step s212 involves coupling of the real-time imaging system 106 to the patient 124.
- the imaging probe 144 and probe holder 148 are to be positioned in substantially the same manner during both the simulation stage S201 and the target ablation stage S204. Accordingly, during the simulation stage S201, consideration is given so that, during the target ablation stage S204, the imaging probe 144 and probe holder 148 does not encroach the path of the particle beam 118.
- the real-time images 142 may be initially monitored to facilitate adjustment of the imaging probe 144 and probe holder 148 for satisfactory real-time imagery.
- the position of the probe holder 148 may be marked with skin markers on the patient 124.
- the patient position may also be recorded, for example using the patient position verification system 166.
- the phase identification aspect of the cardiac gating module 192 may be used in the simulation stage S201 to customize algorithm parameters and optimize the performance for the specific patient.
- data is acquired from the patient 124 simultaneously with the real-time imaging system 106 and the heartbeat sensing system 172.
- the patient 124 is instructed to hold his or her breath over several cardiac cycles, so that the real-time images 142 are representative of cardiac motion only.
- the off-line data for respiration motion step s214 is acquired to characterize the motion of the target region 128 that is induced by breathing of the patient 124.
- the patient 124 may breathe freely during step s214.
- the patient may be instructed to hold breath in deep-inspiration or deep-expiration, or some forced ventilation system (jet ventilation among others) may be used to impose a respiratory cycle and motion that is known a priori.
- the heartbeat sensing system 172 acquires cardiac cycle data 174 during step s214.
- the data stream of respiratory off-line data and corresponding cardiac cycle data 174 is stored for evaluation and incorporation into the ablation treatment plan 186.
- a probe check may be performed wherein the imaging probe 144 is replaced with a dummy plastic probe to avoid artifacts on the off-line images.
- the quantity of respiratory off-line data acquired during step s214 is sufficient to resolve at least one 3D scan (e.g., CT scan) per designated respiratory bin 282, discussed attendant to FIG. 10 below.
- the off-line data for cardiac motion step s215 is acquired to characterize the motion of the target region 128 that is induced by the cardiac cycle.
- the patient 124 breathes freely during step s215.
- the patient may be instructed to hold the breath in deep-inspiration or deep-expiration or some forced ventilation system (jet ventilation among others) may be used to impose a respiratory cycle and motion that is known a priori.
- the heartbeat sensing system 172 acquires cardiac cycle data 174 during step s215.
- the data stream of cardiac off-line data and corresponding cardiac cycle data 174 is stored for evaluation and incorporation into the ablation treatment plan 186.
- a probe check may be executed.
- the quantity of cardiac off-line data acquired during step s215 is sufficient to resolve at least one 3D scan (e.g., CT scan) per designated cardiac phase bin 254, discussed attendant to FIG. 9 below.
- the ablation treatment planning step s216 of the simulation stage S201 involves developing the ablation treatment plan 186, for example as described above.
- the simulation stage S201 may be performed for one or more respiratory and cardiac cycles.
- the target volume may range from approximately 2 to 200 cubic centimeters (cc) inclusive.
- the therapeutic dose may vary or otherwise be in a range from approximately 20 to 60 Gray (Gy) inclusive.
- Stages S202 through S205 are executed the day of treatment.
- the activity performed for stages S202 through S204 are presented in greater detail in FIG. 8.
- the patient positioning stage S202 may include a patient re-setup step s221, a probe re-setup step s222, and a systems check step s223.
- the respiratory motion subsystem 108 and the patient position verification system 166 is coupled to the patient 124 and the patient 124 positioned on the patient support 122 in the same position as was done for the patient setup step s211 of the simulation stage S201.
- the patient 124 may be secured with immobilization devices.
- anatomical aspects of the positioning of the patient may be verified (e.g., with cone-beam computed tomography).
- the imaging probe 144 and probe holder 148 may be remounted by using the skin markers established at step s212 of the simulation stage S201.
- the heartbeat sensing system 172 is also coupled to the patient 124.
- a systems check step s223 is performed to make sure the real-time imaging system 106, heartbeat sensing system 172, and the respiratory motion subsystem 108 are operatively coupled to the target motion management system 110.
- the real-time images 142 may be monitored over a few cardiac cycles to facilitate fine adjustment of the imaging probe 144 and probe holder 148 and confirm that the real-time imagery is congruent with the real-time imagery of step s213 of the simulation stage S201. Once the real-time imagery is deemed appropriate, the real-time images 142 and corresponding cardiac cycle data 174 are streamed to the target motion management system 110 and may be analyzed by the software of the cardiac motion subsystem 188 in quasi-real time for at least a few cardiac cycles.
- the patient position verification stage S203 is carried out.
- the 3D position verification may involve the placement of the patient 124 on the patient support 122, as well as manipulation of the patient support 122 with the positioner system 126.
- the patient positioning and verification stages S202 and S203 may be iteratively performed until the position of the patient 124 is the same as for the off-line imaging of the simulation stage S201, as determined by the patient position verification system 166.
- the ablation treatment plan 186 calls for multiple angles
- irradiation is stopped and the beam controller 116 orients the gantry 140 to the new pre-determined angle. If necessary, the patient positioning and position verification stages S202 and S203 are repeated.
- the target ablation stage S204 commences upon verification of satisfactory patient positioning.
- the target ablation stage S204 includes a start treatment step s225.
- the start treatment step s225 involves readying the non-invasive cardiac ablation system 100 for particle beam emission. Activities may include arming the charged particle emitting system 102, for example by powering up the accelerator 112, and starting the streaming of data from the respiratory and cardiac motion subsystems 108 and 188.
- a beam-gating step s227 or a beam tracking step s228 is executed by the target motion management system 110.
- the target motion management system 110 executes step s227.
- the central target motion controller 162 may search for the position of the landmarks on the live real-time images 142 via manual, semi-automatic or automatic image segmentation and registration.
- the central target motion controller 162 may analyze the real-time images 142 to identify the current cardiac phase (and in some embodiments, the respiratory phase).
- the central target motion controller 162 may determine if cardiac and respiratory cycle phase are within the gating window and send the gating signal 197 (enable/disable) or motion phase information via the digital communication signal 198 to the beam controller 116.
- the beam controller 116 loads the appropriate ablation treatment plan 186 corresponding to the current motion phase (if not already loaded) and configures the particle emitting system 102 accordingly (if not already correctly configured).
- the beam-gating step s227 involves determining whether the anticipated position of the target region 128 relative to the particle beam 118 will be suitable should the particle emitting system 102 be enabled. If so, the particle emitting system 102 is enabled; if not, the particle emitting system 102 is disabled (gated). If enabled, the particle beam 118 is emitted by the particle emitting system 102 at a prescribed angle and directed to the prescribed target region 128 of the heart (as determined during treatment planning).
- non-invasive imaging using the real-time imaging system 106 as well as cardiac cycle monitoring with the heartbeat sensing system 172 may also be acquired.
- the gating determination is based on the data stream of real-time images 142, trigger pulses 264, and the respiratory motion signal 184.
- the system recognizes the relevant motion phase of the off-line data and infers the relevant ablation treatment plan 186 for that motion phase. This can be achieved through image segmentation and registration on the real time images 142 to determine the position of the fiducials (reference points/lines) on the real time images 142.
- the motion control system 110 executes step s228.
- the beam-tracking step s228 involves determining whether the anticipated position of the target region 128 relative to the particle beam 118 will correspond to the beam parameters for the current treatment plan loaded by the particle emitting system 102. If so, the particle emitting system 102 is enabled; if not, the particle emitting system 102 modifies the appropriate beam parameters by loading the appropriate treatment plan before being enabled.
- the particle beam 118 is emitted by the particle emitting system 102 at a prescribed angle and directed to the prescribed target region 128 of the heart (as determined in the loaded treatment plan).
- non-invasive imaging using the real-time imaging system 106 as well as cardiac cycle monitoring with the heartbeat sensing system 172 may also be acquired.
- the motion phase determination is based on the data stream of real-time images 142, trigger pulses 264, and the respiratory motion signal 184.
- beam-tracking provides multiple treatment plans, and each motion phase (combination of cardiac and respiratory phase or phases) has its corresponding treatment plan and beam properties.
- FIG. 9 a time flow diagram of a cardiac binning process 250 is depicted according to an embodiment of the disclosure.
- the heartbeat sensing system 172 (FIG. 4) is used to independently measure a cardiac signal 252 indicative of cardiac phase 251.
- the cardiac phase 251 is a value that ranges from 0 to 0.999999 inclusive, representing a continuum from the beginning to the end (inclusive) of a cardiac cycle 256.
- the cardiac signal 252 is depicted as being subdivided into six cardiac phase bins 254 per cardiac cycle 256 in FIG. 9. In some embodiments, 10-20 cardiac phase bins 254 are used to resolve the cardiac motion.
- the cardiac phase bins 254 may be uniformly divided in time so that each cardiac phase bin 254 represents a time segment 258, each time segment 258 being equal to a time period 262 of the cardiac cycle 256 divided by the total number of cardiac phase bins 254. As such, for a given cardiac cycle 256, each cardiac phase bin 254 represents a fixed segment of the motion phase. Because the time period 262 of the cardiac cycles 256 can vary from heartbeat to heartbeat, as illustrated in FIG. 9, uniformly dividing each time period 262 of each cardiac cycle 256 among the total number of cardiac phase bins 254 effectively normalizes the binning so that a given cardiac phase bin 254 represents a fixed phase segment 266 of the cardiac phase 251 from cycle to cycle.
- the heartbeat sensing system 172 is an ECG monitor that includes three or more ECG electrodes placed on the thorax of the patient 124.
- Commercial ECG monitors can also output a trigger pulse 264 when an R-wave peak 268 is detected, also depicted in FIG. 9.
- the trigger pulse 264 may be used to determine the exact time when a new cardiac cycle 256 starts.
- the R-wave peak 268 of an ECG signal defines the beginning of the cardiac cycle 256.
- the cardiac binning process 250 is performed retrospectively (i.e., after, not during, data acquisition) during the simulation stage S201.
- the retrospective treatment of the data enables accurate identification of the cardiac cycles 256 and better characterization of each cardiac phase bin 254 of the cardiac cycle 256.
- Cardiac cycle data such as the trigger pulses 264, may also be used retrospectively during treatment, for example during the judgment stage S205, as a running check of the accuracy of the predictions of the cardiac phase 251.
- FIG. 10 an example illustration of binning for a respiratory motion signal 280 indicative of respiratory displacement motion is depicted according to an embodiment of the disclosure.
- the respiratory motion signal 280 is subdivided into six bins 282 per respiratory cycle 286 for the illustration. It is noted that the number of cardiac phase bins 254 for the cardiac cycle 256 of FIG. 9 does not have to equal the number of bins 282 for the respiratory cycle 286.
- a period 288 for each respiratory cycle 286 may be determined. Knowing the period 288, fixed phase segments 292 represented by each bin 282 of the respiratory cycle 286 can be determined. For each bin 282, a 3D scan of the thorax provides anatomical information about the patient 124 for that particular respiratory motion state and can be used for a treatment plan specific for the motion phases within this specific bin.
- the patient may be asked to sustain prolonged breath-holds, with the radiation treatment being performed during the prolonged breath-holds.
- a ventilator (not depicted) may be used in some embodiments to ensure that the respiration state is reproducible and constant during treatment. By applying radiation treatment only during the prolonged breath-holds or in synchronization with the ventilator, the need for independent monitoring and characterization of the respiratory cycle can be reduced or eliminated when determining the gating signal.
- delivery of the particle beam 118 may be enabled when both the respiratory motion state and the cardiac motion state are within the designated treatment bins of the treatment plan 186 for the patient 124.
- the allowed treatment bins are defined during treatment planning based on 3D+time data (one scan per respiratory motion state and one scan per cardiac motion state).
- the cardiac phase gating module 192 utilizes the latest real-time image 142 streamed from the real-time imaging system 106 and outputs the estimated cardiac phase for that real-time image 142. Internally, the cardiac phase gating module 192 can store multiple images to obtain a sequence of the cardiac motion and estimates the cardiac phase 251 of the last real-time image 142 of the sequence. In some embodiments, the cardiac phase identification utilizes a deep neural network (i.e., artificial intelligence) such as the neural network 400 disclosed attendant to FIGS. 12-15.
- a deep neural network i.e., artificial intelligence
- the deep neural network provides robust characterizations independent of the image acquisition parameters (e.g., contrast, orientation, quality), and the specifics of the patient heart cycle (e.g., change in cardiac cycle length, extra-systole indications, among others).
- the neural network 400 disclosed herein may be trained on large datasets of synchronized real-time images 142 and cardiac cycle data 174.
- the cardiac cycle data 174 is retrospectively processed to determine the R-wave peaks and thus estimate a value of the cardiac phase 251 for each real-time image 142.
- phase prediction process 300 embodied by the cardiac phase gating module 192 for predictively determining the gating of the charged particle emitting system 102 is depicted according to an embodiment of the disclosure.
- the phase prediction process 300 includes four subroutines: (1) a real-time (RT) image processing subroutine 302; (2) a heartbeat sensor processing subroutine 304; (3) a cardiac phase prediction subroutine 306; and (4) a cardiac phase update subroutine 308.
- RT real-time
- the real-time image processing subroutine 302 monitors, receives, and processes real time images 142 from the real-time imaging system 106.
- the steps include receiving the real time image 142 taken at a marked time h (s320), identifying the cardiac phase Pi corresponding to the received real-time image 142 (s322), and estimating the cardiac phase gradient (dP/dt) RT from the real-time information (s324), given by
- the real-time image processing subroutine 302 measures the time required to perform steps s320 through s324, referred to as the real-time imaging time latency dtim (s326).
- the real-time image processing subroutine 302 passes the cardiac phase Pi, the cardiac phase gradient (dP/dt) RT and the cardiac phase latency dP R n of the image acquisition and processing to the cardiac phase prediction subroutine 306 and returns to step s320 to wait for further input from the real-time imaging system 106.
- the heartbeat sensor processing subroutine 304 monitors, receives, and processes cardiac cycle data 174 from the heartbeat sensing system 172.
- the ECG which is understood to be a non-limiting example of a heartbeat sensing system 172. That is, the heartbeat sensor processing subroutine 304 is representative of any calculation routine that is triggered by a characteristic of the cardiac cycle data 174 (e.g., as with the R-wave peaks of the ECG), but is not limited to an ECG.
- the steps of the heartbeat sensor processing subroutine 304 include receiving the trigger pulse 264 taken at a marked time t j (s340), calculating the cardiac phase gradient (dP/dt) ECG (s344), and estimating the corresponding cardiac phase latency dP ECG (s346) from the cardiac cycle data 174.
- the heartbeat sensing system 172 delivers only one trigger pulse per cardiac cycle 256.
- the trigger pulse is generated at the R-peak of the ECG signal or may correspond to a QRS complex of the cardiac electrical signal.
- the R-peak is designated as the beginning of the cardiac cycle 256.
- the cardiac phase P j is set at zero (s342) and the heartbeat sensor phase gradient (dP/dt) ECG reduces to the inverse of the cycle period (s344) given by dP] _ 1
- a heartbeat sensor time latency At ECG for receiving the pulse trigger (s340), setting the cardiac phase P j to zero (s342), and calculating the period (s344) is repeatable to within a small uncertainty.
- the heartbeat sensor processing subroutine 304 passes the cardiac phase P j , the cardiac phase gradient (dP/dt) ECG , and the cardiac phase latency d p ECG to the cardiac phase prediction subroutine 306, and returns to step s340 to wait for further input from the heartbeat sensing system 172.
- the cardiac phase prediction subroutine 306 receives input from the real-time image or heartbeat sensor processing subroutines 302 and 304, and predicts the current cardiac phase P + (s360) as follows:
- P + Px + dP x Eq. (5)
- Px is the most recent cardiac phase Pi or P j
- dPx is the most recent cardiac phase latency dPi or d p ECG received by the cardiac phase prediction subroutine 306.
- the cardiac phase prediction subroutine 306 passes the prediction P + and the cardiac phase latency dPx on to the cardiac phase update subroutine 308.
- cardiac phase prediction subroutine 306 accounts for the time lapse, so that the current cardiac phase is predicted based on the most recently available information before being passed on to the cardiac phase update subroutine 308.
- Such “predicted current” cardiac phase P + provides enhanced accuracy in the millisecond or sub-millisecond time frame in which gating of the charged particle emitting system 102 is determined.
- the cardiac phase prediction subroutine 306 also converts a switch on/off time latency Ats of the on/off switch 199 of the beam controller 116 to a corresponding switch on/off phase latency APS.
- RT or APS ECG (S362 or s364).
- the switch on/off phase latencies APs , RT or APS , ECG are given by
- Ats is the switch on/off time latency for the charged particle emitting system 102.
- the switch on/off time latency Ats may also account for differences in the switch on latency versus the switch off latency.
- the switch on/off time latency Ats is repeatable to within a small uncertainty and specific to a given irradiation system. Accordingly, Ats may be determined a priori and entered as a fixed variable (s366 and s368). In the case of beam-tracking, the same calculation holds although Ats represents the time required to load the beam parameters.
- the cardiac phase update subroutine 308 receives the predicted current cardiac phase P + and the most recently calculated cardiac phase gradient dPx from the cardiac phase prediction subroutine 306. In some embodiments, the cardiac phase update subroutine 308 also receives an updated switch on/off phase latency APs , x, which is the most recent switch on/off phase latency APS , RT or APS , ECG received from the respective processing subroutines 302 or 304.
- the cardiac phase update subroutine 308 takes the predicted current cardiac phase P + and calculates an updated cardiac phase P k as follows: where (dP/dt)x is the most recent cardiac phase gradient (dP/dt) RT or (dP/dt) ECG provided by the processing subroutines 302 and 304, and k is the number of update cycles since the cardiac phase update subroutine 308 last received the predicted cardiac phase P + from the cardiac phase prediction subroutine 306.
- the updated cardiac phase P k is an extrapolation that predicts the cardiac phase at the end of a given update cycle k (i.e., at the output of step s392) by going forward in time from the last predicted current cardiac phase P + .
- the extrapolation may be linear and is made for every update cycle k until a new predicted current cardiac phase P + is received from the cardiac phase prediction subroutine 306.
- the update cycle k is reset to zero.
- phase update is continually recalculated using the most recent current cardiac phase P + and the most recent cardiac phase gradient (dP/dt)x at a steady update rate of HZCON (S384), for example, at the cycle rate of a programmable logic controller (PLC) that is part of the central target motion controller 162.
- PLC programmable logic controller
- the updated phase P k is compared with a prescribed phase vs. beam-gating schedule (s388), and a cardiac gating status update (s392) is sent to the processor m of the central target motion controller 162 as the cardiac motion signal 196.
- the cardiac gating status may be determined by comparing the cardiac phase bins 254 to the cardiac phase P k + DRc.c (s388).
- the cardiac phase prediction subroutine 306 accounts for the switch on/off time latency Ats by adding the updated switch on/off phase latency DRc.c to the updated cardiac phase P k . That is, the cardiac gating status may be determined for the cardiac phase at P k + DRc.c (s392). In this way, the cardiac phase update subroutine 308 determines the updated cardiac phase P k at the completion of the on/off switching.
- the processor m also receives the respiratory motion signal 184 from the respiratory control module 182 during beam-gating mode operation.
- the processor m of the central target motion controller 162 processes the cardiac signal 196 (i.e., the cardiac gating status) and respiratory phase signal 184 and, if both are determined to be within designated treatment bins of the treatment plan 186, the gating signal 197 sent by the processor m instructs the beam controller 116 to set the on/off switch 199 to enable the charged particle emitting system 102.
- the gating signal 197 sent by the processor m instructs the beam controller 116 to set the on/off switch 199 to gate (disable) the charged particle emitting system 102.
- the updated cardiac phase P k is passed on to the processor m of the central target motion controller 162 as the cardiac motion signal 196.
- the processor m may also receive the respiratory motion signal 184 from the respiratory control module 182. As described attendant to FIG. 5, the processor m processes the respiratory and cardiac phase signals 184 and 196 and relays information via the digital communication signal 198 for utilization by the charged particle emitting system 102 to configure the properties of the particle beam 118.
- each of the subroutines 302, 304, 306, and 308 may be grouped together, or divided into more subroutines.
- the tasks within each subroutine may also be allocated to other subroutines.
- the switch on/off latency conversions at steps s362 and s364 may be performed within the processing subroutines 302 and 304, or within the cardiac phase update subroutine 308, or be allocated in a separate subroutine.
- the real-time imaging and heartbeat sensor processing subroutines 302 and 304 may operate at non-uniform time intervals that depend on the availability of the data incoming from the real-time imaging system 106 and the heartbeat sensing system 172.
- the cardiac phase prediction subroutine 306 may be continuously performed at uniform time intervals governed by the cycling rate of the central target motion controller 162, utilizing the most recent predicted cardiac phase P + available.
- the cardiac phase update subroutine 308 may be executed by a deterministic computing platform, such as real-time LINUX®.
- the target motion controller is a programmable logic controller (PLC) with fast cycle times (e.g., within a range of 1 microsecond to 1 second). Accordingly, the cardiac phase update subroutine 308 blends the randomly acquired and calculated data from the real-time imaging and heartbeat sensor processing subroutines 302 and 304 with the uniformly cycled or lock step continuous update routine.
- PLC programmable logic controller
- cardiac phase gating module 192 includes the flexibility of allowing the usage of one or a plurality of sources of information (e.g., ECG, ultrasound) for cardiac phase identification.
- ECG for example, is only able to deliver one cardiac phase reference point per cardiac cycle (when a R-wave peak is detected), whereas the real-time images can deliver multiple cardiac phases at various time intervals during the cardiac cycle.
- the multiple delivery and calculation of real-time image data during a given cardiac cycle enables the real time image data to be utilized as a time marker.
- a neural network 400 for determining the cardiac phase 251 is depicted according to an embodiment of the disclosure.
- the neural network 400 accepts as input an image sequence 402 and outputs a phase calculation layer 404 that contains a feature corresponding to the cardiac phase value Pi for each real-time image 142 in the image sequence 402.
- the image sequence 402 is a plurality of the real-time images 142 (e.g., a video).
- the plurality of images 142 are received in the order of acquisition and may be internally buffered within the neural network 400.
- the real-time images 142 are two- dimensional B-mode ultrasonic frames with a gray value range of 8 bits (between 0 and 255 inclusive) that are normalized between 0 and 1.
- the image sequence 402 has a dimension of NxHxWxl, where N is the number of real-time images 142, each real-time image 142 being an HxW array of pixels.
- the image sequence 402 is processed by a three-dimensional convolutional neural network (3D CNN) 406 to output a spatial feature layer 408.
- 3D CNN three-dimensional convolutional neural network
- the spatial feature layer 408 is processed by a one-dimensional temporal convolutional neural network (ID TCN) 412.
- the temporal feature layer is dimensioned at NxNf, where Nf is the number of filters.
- the ID TCN 412 outputs the phase calculation layer 404. Determination of the cardiac phase value Pi is performed for each of the plurality of real-time images 142 in image sequence 402 by processing the updated image sequence 402.
- Typical, non-limiting examples of dimensions are Nx512 for the spatial feature layer 408 and Nxl for the phase calculation layer 404.
- the phase calculation layer 404 is a vector of unbounded values containing a determination of the phase corresponding to each real time image 142 in the image sequence 402.
- the 3D CNN 406 is a multi-stage causal convolution neural network.
- the 3D CNN 406 includes a decomposition stage 422 that may be executed multiple times. The multiple execution is represented by a loop 424 in the flow diagram 420, which is executed a total of ND times.
- the decomposition stage 422 includes two consecutive 3D convolutions 426 and 428 and a residual connection 432 added after the second 3D convolution 428. Each execution of the decomposition stage 422 is followed by a maxpooling operation 434.
- the spatial dimension is reduced to one by a global maxpooling operation 436 among the height and width dimensions.
- the neural network 400 may be implemented, for example, to identify the cardiac phase value Pi at step s322 of the image processing subroutine 302.
- the neural network 400 may also be used for phase identification during the simulation stage S201.
- the 3D CNN 406 extracts spatial features and short-term temporal features from the image sequence 402.
- the effect of each successive decomposition stage 422 and maxpooling operation 434 is to reduce the dimensionality in both height and width to reduce the resolution by a selected factor, which generates feature maps of different spatial resolution.
- the height and width are both reduced by a factor of two, so that the resolution is reduced by four.
- the number of feature maps doubles with each execution of the decomposition each stage 422.
- a flow diagram 440 of the ID TCN 412 is depicted according to an embodiment of the disclosure.
- the ID TCN 412 executes a series 441 of four consecutive dilated ID causal convolutional layers 442, 444, 446, and 448 and a residual connection 452 added to the output of each series 441.
- a dilation rate of the convolution is multiplied by two for each successive convolutional layer 442 through 448.
- a kernel size of three is used for each of the convolutional layers 442 through 448.
- the first convolutional layer 442 processes the rows of the spatial feature layer 408 corresponding to the real-time images 142 of the image sequence 402 acquired at marked time h, h-i, and h-2.
- the subscript qualifiers i, i-1, i-2, and so on are depicted at FIG. 13, where i corresponds to the most recently acquired real-time image 142 and the subtracted integer refers to the preceding image number relative thereto.
- the value of the second convolutional layer 444 processes the rows of the temporal feature layer 408 corresponding to the real-time images 142 of the image sequence 402 acquired at marked times h, h-2, and h-4; the third convolutional layer 446 processes the rows of the temporal feature layer 408 corresponding to the real-time images 142 of the image sequence 402 acquired at time h, h-4, and h-s; and the fourth convolutional layer 448 processes the rows of the temporal feature layer 408 corresponding to the real-time images 142 of the image sequence 402 acquired at time h, h-s, and h-i 6 .
- the series 441 is executed in a series loop 456 a total of NS times.
- a causal ID convolutional layer 454 with a kernel size of 5 may be used to output the phase calculation layer 404 having a single feature associated with each real-time image 142 of the image sequence 402.
- the ID TCN 412 extracts long-term temporal features from the image sequence 402. Increasing the dilation rate for each successive convolution layer 442 - 448 has the effect of looking back in time over the image sequence 402 while favoring (weighting) the more recent real-time images 142.
- the number of features at the input is 512
- the number of temporal features is divided by 2.
- the phase calculation layer 404 output by the ID TCN 412 is a vector of unbounded float values, wherein each feature of the vector corresponds to the cardiac phase determination for the associated real-time image 142.
- the neural network 400 is trained for multiple epochs.
- a 4-fold cross-validation strategy may be implemented to assess network performances. In the 4-fold approach, 75% of samples (data from patients) are used as a training set and 25% of the samples (patients) as a validation set. In some embodiments, every sample is used only once in the validation set. The model having the best correlation is selected for is selected as the motion model.
- the neural network 400 is easier to train when the phase of every real-time image 142 of the image sequence 402 is determined as a causal progression instead of focusing on just the most recent real-time image 142.
- only the cardiac phase value Pi of the latest real-time image 142 of the image sequence 402 is used for further processing.
- Example implementations of the neural network 400 include PYTHON® 3 with the KERAS framework using TENSORFLOW® as a backend.
- the neural network 400 may be trained, for example, with an AD AM AX optimizer for multiple epochs. Details about the ADAMAX optimizer can be found, for example, at Kingma et al., “Adam: A method for stochastic optimization,” 3rd International Conference on Learning Representations, ICLR 2015 - Conference Track Proceedings, 2015, pp. 1-15, the disclosure of which is hereby incorporated by reference herein in its entirety.
- a flow chart 460 depicting the workflow and interfaces of the non- invasive cardiac ablation system 100 is depicted according to an embodiment of the disclosure.
- the flow chart 460 is an approximation of the Unified Modeling Language (UML) convention.
- Each block 462, 464, and 466 of the flow chart 460 represents a class, with the block title in bold providing the class name and the list below each title providing the class methods.
- the ControlThread class 462 has a identification_thread attribute 472 which is a IdentificationThread class instance
- the IdentificationThread class 464 has a model attribute 474 which is a GenericCardiacPhaseModel class instance.
- the workflow of flow chart 460 is as follows:
- a ControlThread 462 is created, which handles the ControlRequest and ControlResponse messages.
- the ControlThread creates a IdentificationThread 464 that handles the IdentificationRequest and PredictionResponse messages.
- the IdentificationThread 464 instantiates a GenericCardiacPhaseModel 466 to off load the identification requests to a graphics processing unit (GPU).
- GPU graphics processing unit
- the ControlThread 462 receives START/STOP/CONFIGURE commands and changes the state of the IdentificationThread 464 accordingly.
- the IdentificationThread 464 receives IdentificationRequest messages. It pre- processes the ultrasound images (resizing and rescaling) contained in the messages and handles a video buffer. It off-loads the identification to the GPU through the GenericCardiacPhaseModel 466.
- a cardiac phase prediction is performed by the GenericCardiacPhaseModel and is given to the_IdentificationThread.
- the IdentificationThread sends the PredictionResponse with the predicted cardiac phase.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Heart & Thoracic Surgery (AREA)
- Molecular Biology (AREA)
- Physiology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Cardiology (AREA)
- Radiology & Medical Imaging (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Artificial Intelligence (AREA)
- Psychiatry (AREA)
- Pulmonology (AREA)
- Dentistry (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Urology & Nephrology (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Radiation-Therapy Devices (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
Abstract
L'invention concerne des systèmes et des techniques permettant de prédire de manière fiable une phase de mouvement pour un traitement non invasif du cœur. Le système et les procédés peuvent tenir compte des cycles respiratoires et cardiaques dans la caractérisation du mouvement du cœur par rapport à la source de rayonnement. Le système et les procédés peuvent également comprendre un capteur de battement de cœur qui fournit une indication de référence indépendante sur la phase cardiaque afin de fournir une assurance de qualité en temps réel ou quasiment en temps réel d'une indication de phase prédite actuelle. Le système et les procédés selon l'invention peuvent être conçus pour être utilisés dans l'un des deux modes suivants : « déclenchement de faisceau » et « suivi de faisceau ». Pour le mode déclenchement de faisceau, la phase cardiaque prédite est comparée à la fenêtre de déclenchement souhaitée, sur la base du plan de traitement spécifique au patient, pour déterminer s'il convient de définir un signal d'activation de déclenchement ou de désactivation de déclenchement. Pour le mode suivi de faisceau, la phase cardiaque prédite est utilisée pour charger les paramètres de faisceau appropriés sur la base des plans de traitement spécifiques au patient et dépendant de la phase de mouvement.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/776,004 US12156760B2 (en) | 2019-11-14 | 2020-11-11 | Cardiac phase gating system for radiation therapy |
| US18/959,580 US20250082301A1 (en) | 2019-11-14 | 2024-11-25 | Cardiac phase gating system for radiation therapy |
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201962935279P | 2019-11-14 | 2019-11-14 | |
| US62/935,279 | 2019-11-14 | ||
| US202063028053P | 2020-05-21 | 2020-05-21 | |
| US63/028,053 | 2020-05-21 |
Related Child Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/776,004 A-371-Of-International US12156760B2 (en) | 2019-11-14 | 2020-11-11 | Cardiac phase gating system for radiation therapy |
| US18/959,580 Continuation US20250082301A1 (en) | 2019-11-14 | 2024-11-25 | Cardiac phase gating system for radiation therapy |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2021094824A1 true WO2021094824A1 (fr) | 2021-05-20 |
Family
ID=74194774
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/IB2020/000930 Ceased WO2021094824A1 (fr) | 2019-11-14 | 2020-11-11 | Système de déclenchement selon la phase cardiaque pour radiothérapie |
Country Status (2)
| Country | Link |
|---|---|
| US (2) | US12156760B2 (fr) |
| WO (1) | WO2021094824A1 (fr) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN116128958A (zh) * | 2022-12-08 | 2023-05-16 | 苏州国科康成医疗科技有限公司 | 内脏运动的预测方法、装置、电子设备 |
| DE102022203903B3 (de) | 2022-04-21 | 2023-05-25 | Siemens Healthcare Gmbh | Verfahren zur Bereitstellung eines Bestrahlungsplans, Vorrichtung zur Ermittlung und Vorrichtung zur Anwendung des Bestrahlungsplans |
| EP4275740A1 (fr) * | 2022-05-10 | 2023-11-15 | RaySearch Laboratories AB | Procédé de planification de traitement de radiothérapie et moyen d'administration d'un traitement de radiothérapie |
| WO2024062307A1 (fr) | 2022-08-29 | 2024-03-28 | Ebamed Sa | Ensemble de maintien de sonde ultrasonore |
| US12156760B2 (en) | 2019-11-14 | 2024-12-03 | Ebamed Sa | Cardiac phase gating system for radiation therapy |
| US12277627B1 (en) | 2021-08-27 | 2025-04-15 | Queensland University Of Technology | Correction of ultrasound probe-induced metal artifacts in X-ray based imaging systems |
| US12311200B2 (en) | 2020-12-23 | 2025-05-27 | Ebamed Sa | Multiplanar motion management system |
| US12318632B2 (en) | 2017-11-16 | 2025-06-03 | Ebamed Sa | Heart arrhythmia non-invasive treatment device and method |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11950877B2 (en) * | 2019-02-05 | 2024-04-09 | University Of Virginia Patent Foundation | System and method for fully automatic LV segmentation of myocardial first-pass perfusion images |
| GB2592229B (en) | 2020-02-20 | 2022-10-19 | Elekta ltd | Radiotherapy device for irradiating cardiac targets |
| US20220054021A1 (en) * | 2020-08-18 | 2022-02-24 | Siemens Healthcare Gmbh | Medical imaging with ecg triggering |
| EP4295900A4 (fr) * | 2021-04-02 | 2024-07-31 | Fudan University Shanghai Cancer Center | Procédé et système d'élimination de cible |
| US20220369968A1 (en) * | 2021-05-19 | 2022-11-24 | Biosense Webster (Israel) Ltd. | Catheter with blood o2/co2 concentration measurement |
| JP2024119633A (ja) * | 2023-02-22 | 2024-09-03 | 日立造船株式会社 | 期外収縮判定装置、期外収縮判定方法、および期外収縮判定プログラム |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008086434A2 (fr) * | 2007-01-09 | 2008-07-17 | Cyberheart, Inc. | Dépôt de rayonnement dans le myocarde sous guidage échographique |
| US20120083645A1 (en) * | 2010-10-02 | 2012-04-05 | Varian Medical Systems, Inc. | Ecg-correlated radiotherapy |
| WO2019096943A1 (fr) | 2017-11-16 | 2019-05-23 | Ebamed Sa | Dispositif et méthode de traitement non effractif d'arythmie cardiaque |
Family Cites Families (207)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3399302A (en) | 1964-06-19 | 1968-08-27 | North American Rockwell | Gamma radiation sensor and detection system |
| US3923060A (en) | 1974-04-23 | 1975-12-02 | Jr Everett H Ellinwood | Apparatus and method for implanted self-powered medication dispensing having timing and evaluator means |
| FR2626773A1 (fr) | 1988-02-05 | 1989-08-11 | Puy Philippe | Support de sonde echographique, notamment de sonde echocardiographique |
| US5538494A (en) | 1994-03-17 | 1996-07-23 | Hitachi, Ltd. | Radioactive beam irradiation method and apparatus taking movement of the irradiation area into consideration |
| US5718241A (en) | 1995-06-07 | 1998-02-17 | Biosense, Inc. | Apparatus and method for treating cardiac arrhythmias with no discrete target |
| US5590657A (en) | 1995-11-06 | 1997-01-07 | The Regents Of The University Of Michigan | Phased array ultrasound system and method for cardiac ablation |
| US5764723A (en) | 1996-10-16 | 1998-06-09 | The Trustees Of Columbia University In The City Of New York | Apparatus and method to gate a source for radiation therapy |
| US6024703A (en) | 1997-05-07 | 2000-02-15 | Eclipse Surgical Technologies, Inc. | Ultrasound device for axial ranging |
| US5909476A (en) | 1997-09-22 | 1999-06-01 | University Of Iowa Research Foundation | Iterative process for reconstructing cone-beam tomographic images |
| US6778850B1 (en) | 1999-03-16 | 2004-08-17 | Accuray, Inc. | Frameless radiosurgery treatment system and method |
| US6144875A (en) | 1999-03-16 | 2000-11-07 | Accuray Incorporated | Apparatus and method for compensating for respiratory and patient motion during treatment |
| US9402601B1 (en) | 1999-06-22 | 2016-08-02 | Teratech Corporation | Methods for controlling an ultrasound imaging procedure and providing ultrasound images to an external non-ultrasound application via a network |
| AU8002500A (en) | 1999-10-08 | 2001-04-23 | Advanced Research And Technology Institute, Inc. | Apparatus and method for non-invasive myocardial revascularization |
| AU2001247440A1 (en) | 2000-03-15 | 2001-09-24 | Cardiac Focus, Inc. | Non-invasive localization and treatment of focal atrial fibrillation |
| DE10031074A1 (de) | 2000-06-30 | 2002-01-31 | Schwerionenforsch Gmbh | Vorrichtung zur Bestrahlung eines Tumorgewebes |
| WO2002003872A2 (fr) | 2000-07-11 | 2002-01-17 | Johns Hopkins University | Photochimiotherapie destinee au traitement de l'arythmie cardiaque |
| US6443896B1 (en) | 2000-08-17 | 2002-09-03 | Koninklijke Philips Electronics N.V. | Method for creating multiplanar ultrasonic images of a three dimensional object |
| US8909325B2 (en) | 2000-08-21 | 2014-12-09 | Biosensors International Group, Ltd. | Radioactive emission detector equipped with a position tracking system and utilization thereof with medical systems and in medical procedures |
| US6537221B2 (en) | 2000-12-07 | 2003-03-25 | Koninklijke Philips Electronics, N.V. | Strain rate analysis in ultrasonic diagnostic images |
| US7346381B2 (en) | 2002-11-01 | 2008-03-18 | Ge Medical Systems Global Technology Company Llc | Method and apparatus for medical intervention procedure planning |
| US6780152B2 (en) | 2002-06-26 | 2004-08-24 | Acuson Corporation | Method and apparatus for ultrasound imaging of the heart |
| US7620444B2 (en) | 2002-10-05 | 2009-11-17 | General Electric Company | Systems and methods for improving usability of images for medical applications |
| CN1723058A (zh) | 2002-10-07 | 2006-01-18 | 帕洛玛医疗技术公司 | 用于进行光生物刺激的设备 |
| US7260426B2 (en) | 2002-11-12 | 2007-08-21 | Accuray Incorporated | Method and apparatus for tracking an internal target region without an implanted fiducial |
| US6889695B2 (en) | 2003-01-08 | 2005-05-10 | Cyberheart, Inc. | Method for non-invasive heart treatment |
| US7565190B2 (en) | 2003-05-09 | 2009-07-21 | Ge Medical Systems Global Technology Company, Llc | Cardiac CT system and method for planning atrial fibrillation intervention |
| US7171257B2 (en) | 2003-06-11 | 2007-01-30 | Accuray Incorporated | Apparatus and method for radiosurgery |
| US7322929B2 (en) | 2003-06-18 | 2008-01-29 | Xoft, Inc. | Method for radiation treatment |
| EP1673146B1 (fr) | 2003-09-30 | 2012-11-14 | Koninklijke Philips Electronics N.V. | Appareil de suivi de cible pour la planification et l'administration d'une radiotherapie |
| US20050171396A1 (en) | 2003-10-20 | 2005-08-04 | Cyberheart, Inc. | Method for non-invasive lung treatment |
| US7853308B2 (en) | 2004-02-17 | 2010-12-14 | Siemens Medical Solutions Usa, Inc. | System and method for patient positioning for radiotherapy in the presence of respiratory motion |
| EP1584353A1 (fr) | 2004-04-05 | 2005-10-12 | Paul Scherrer Institut | Systeme pour therapie protonique |
| JP2008507329A (ja) | 2004-07-23 | 2008-03-13 | カリプソー メディカル テクノロジーズ インコーポレイテッド | 放射線治療及び他の医療用途におけるターゲットの実時間追跡のためのシステム及び方法 |
| US7369695B2 (en) | 2004-08-20 | 2008-05-06 | General Electric Company | Method and apparatus for metal artifact reduction in 3D X-ray image reconstruction using artifact spatial information |
| US8989349B2 (en) | 2004-09-30 | 2015-03-24 | Accuray, Inc. | Dynamic tracking of moving targets |
| DE102004049677B3 (de) | 2004-10-12 | 2006-06-14 | Siemens Ag | Detektoranordnung zur Verwendung in einem kombinierten Transmissions- / Emissions-Tomographiegerät |
| US20090074278A1 (en) | 2004-10-12 | 2009-03-19 | Universite Laval | Method and apparatus for metal artifact reduction in computed tomography |
| JP2005095640A (ja) | 2004-10-28 | 2005-04-14 | Hitachi Ltd | 放射線照射方法及び放射線照射装置 |
| WO2006057911A2 (fr) | 2004-11-22 | 2006-06-01 | Civco Medical Instruments Co., Inc. | Suivi ultrasonore en temps reel du mouvement de structure internes durant la respiration pour le controle d'administration de traitement |
| JP5094707B2 (ja) | 2005-03-09 | 2012-12-12 | パウル・シェラー・インスティトゥート | 陽子線治療を施すと同時に広視野のビームズアイビュー(bev)によるx線画像を撮影するシステム |
| US20060224053A1 (en) | 2005-03-30 | 2006-10-05 | Skyline Biomedical, Inc. | Apparatus and method for non-invasive and minimally-invasive sensing of venous oxygen saturation and pH levels |
| US8747382B2 (en) | 2005-04-13 | 2014-06-10 | University Of Maryland, Baltimore | Techniques for compensating movement of a treatment target in a patient |
| US7349522B2 (en) | 2005-06-22 | 2008-03-25 | Board Of Trustees Of The University Of Arkansas | Dynamic radiation therapy simulation system |
| WO2007014108A2 (fr) | 2005-07-22 | 2007-02-01 | Tomotherapy Incorporated | Methode et systeme pour evaluer des criteres d'assurance qualite concernant un programme d'administration de traitement |
| JP4189505B2 (ja) | 2005-08-11 | 2008-12-03 | 独立行政法人 日本原子力研究開発機構 | 中性子・γ線非弁別式臨界検出装置 |
| EP1959823A2 (fr) | 2005-11-30 | 2008-08-27 | Philips Intellectual Property & Standards GmbH | Mesure de la frequence cardiaque |
| US8155729B1 (en) | 2006-02-17 | 2012-04-10 | General Electric Company | Method and apparatus to compensate imaging data with simultaneously acquired motion data |
| JP4981023B2 (ja) | 2006-03-02 | 2012-07-18 | 株式会社日立メディコ | 自動圧迫装置及び同装置を用いた超音波診断装置 |
| WO2007120873A2 (fr) | 2006-04-13 | 2007-10-25 | Mayo Foundation For Medical Education And Research | Système de surveillance du rythme cardiaque d'un foetus |
| US20080021300A1 (en) | 2006-06-29 | 2008-01-24 | Allison John W | Four-dimensional target modeling and radiation treatment |
| DE102006033662A1 (de) | 2006-07-20 | 2008-01-24 | Forschungszentrum Dresden - Rossendorf E.V. | Verfahren zum Bestimmen einer Materialzusammensetzung einer Materialprobe |
| US8660635B2 (en) | 2006-09-29 | 2014-02-25 | Medtronic, Inc. | Method and apparatus for optimizing a computer assisted surgical procedure |
| EP2097008A1 (fr) | 2006-12-21 | 2009-09-09 | Koninklijke Philips Electronics N.V. | Système intégré d'imagerie tem et de thérapie par ultrasons |
| WO2008086430A1 (fr) | 2007-01-09 | 2008-07-17 | Cyberheart, Inc. | Procédé pour le dépôt de radiations dans le myocarde |
| WO2008127368A2 (fr) | 2007-02-07 | 2008-10-23 | Koninklijke Philips Electronics, N.V. | Compensation de mouvement dans le traitement et l'analyse de donnees quantitatives |
| CN101610719B (zh) | 2007-02-07 | 2014-02-26 | 皇家飞利浦电子股份有限公司 | 治疗计划中的运动估计 |
| US20080221382A1 (en) | 2007-03-09 | 2008-09-11 | Sunnybrook Health Sciences Centre | Method and system of radiotherapy enhancement through cellular perturbation using ultrasound and microbubbles |
| WO2008115830A2 (fr) | 2007-03-16 | 2008-09-25 | Cyberheart, Inc. | Planification et administration d'un traitement par rayonnement pour des cibles mobiles dans le cœur |
| US20090003528A1 (en) | 2007-06-19 | 2009-01-01 | Sankaralingam Ramraj | Target location by tracking of imaging device |
| WO2009012240A1 (fr) | 2007-07-13 | 2009-01-22 | Calypso Medical Technologies, Inc. | Systèmes et procédés de positionnement de patients pendant le suivi de cibles en radiothérapie et autres applications médicales |
| EP2188776B1 (fr) | 2007-08-31 | 2011-05-25 | Koninklijke Philips Electronics N.V. | Cartes d'incertitude pour segmentation en présence d'artéfacts métalliques |
| DE102007043731A1 (de) | 2007-09-13 | 2009-04-02 | Siemens Ag | Medizinische Bildaufnahmeeinrichtung, insbesondere zur Erstellung von Bildaufnahmen im Rahmen einer Behandlung von Herzrhythmusstörungen, sowie zugehöriges Verfahren |
| DE102007045879B4 (de) | 2007-09-25 | 2014-07-10 | Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh | Bestrahlung eines bewegten Zielvolumens |
| WO2009042842A1 (fr) | 2007-09-26 | 2009-04-02 | Cyberheart, Inc. | Ablation radio-chirurgicale du myocarde |
| WO2009072618A1 (fr) | 2007-12-07 | 2009-06-11 | Mitsubishi Heavy Industries, Ltd. | Dispositif de planification d'une radiothérapie et procédé de planification d'une radiothérapie |
| WO2014152463A1 (fr) | 2013-03-15 | 2014-09-25 | Cyberheart, Inc. | Appareil et procédé pour le suivi en temps réel de structures tissulaires |
| US8295435B2 (en) | 2008-01-16 | 2012-10-23 | Accuray Incorporated | Cardiac target tracking |
| CA2716940C (fr) | 2008-02-29 | 2016-01-19 | The Regents Of The University Of Michigan | Systemes et procedes d'imagerie de changements au niveau de tissus |
| WO2009111783A2 (fr) | 2008-03-07 | 2009-09-11 | University Of Florida Research Foundation, Inc. | Procédé et appareil de détection de rayonnement et d'imagerie |
| US7953204B2 (en) | 2008-03-14 | 2011-05-31 | Cyberheart, Inc. | Radiation treatment planning and delivery for moving targets in the heart |
| US20090238404A1 (en) | 2008-03-18 | 2009-09-24 | Fredrik Orderud | Methods for using deformable models for tracking structures in volumetric data |
| US8121669B2 (en) | 2008-04-07 | 2012-02-21 | Mitsubishi Electric Research Laboratories, Inc. | Method for tracking soft tissue masses in images using directed graphs |
| FR2930995B1 (fr) | 2008-05-07 | 2010-07-30 | Centre Nat Rech Scient | Procede et dispositif de mesure en temps reel d'une dose locale lors du bombardement d'une cible par des hadrons au moyen des gamma prompts |
| CN102119586B (zh) | 2008-05-22 | 2015-09-02 | 弗拉迪米尔·叶戈罗维奇·巴拉金 | 多场带电粒子癌症治疗方法和装置 |
| US9498649B2 (en) | 2008-05-22 | 2016-11-22 | Vladimir Balakin | Charged particle cancer therapy patient constraint apparatus and method of use thereof |
| EP2140913A1 (fr) | 2008-07-03 | 2010-01-06 | Ion Beam Applications S.A. | Dispositif et procédé pour la vérification d'une thérapie par particules |
| CA2638996C (fr) | 2008-08-20 | 2013-04-30 | Imris Inc. | Radiotherapie guidee par irm |
| US8348846B2 (en) | 2008-09-30 | 2013-01-08 | Mediri Gmbh | 3D motion detection and correction by object tracking in ultrasound images |
| JP5662326B2 (ja) | 2008-10-23 | 2015-01-28 | コーニンクレッカ フィリップス エヌ ヴェ | インターベンション・ラジオ波焼灼療法またはペースメーカー設置手順における、仮想的な解剖学的構造を豊かにしたリアルタイム2d撮像のための、心臓および/または呼吸同期画像取得システム |
| WO2010059349A1 (fr) | 2008-11-21 | 2010-05-27 | Cyberheart, Inc. | Objet de test pour la validation de suivi en présence de mouvement |
| US8488910B2 (en) | 2008-11-25 | 2013-07-16 | Koninklijke Philips N.V. | Image provision for registration |
| US8337512B2 (en) | 2008-12-08 | 2012-12-25 | Siemens Aktiengesellschaft | Device and workflow for minimally-invasive therapy, in particular needle guidance |
| US8278633B2 (en) | 2009-01-20 | 2012-10-02 | Varian Medical Systems International Ag | Gated radiation procedure using packages |
| US8331531B2 (en) | 2009-03-13 | 2012-12-11 | The Board Of Trustees Of The Leland Stanford Junior University | Configurations for integrated MRI-linear accelerators |
| DE102009033284A1 (de) | 2009-07-15 | 2011-01-27 | Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh | Vorrichtung und Verfahren zur Steuerung einer Bestrahlungsanlage |
| US9205279B2 (en) | 2009-07-17 | 2015-12-08 | Cyberheart, Inc. | Heart tissue surface contour-based radiosurgical treatment planning |
| EP2453793A1 (fr) | 2009-07-17 | 2012-05-23 | Cyberheart, Inc. | Kit de traitement cardiaque, système et procédé pour atténuer l arythmie par radiochirurgie |
| CA2771906A1 (fr) | 2009-07-27 | 2011-02-03 | Flir Radiation Gmbh | Appareil et methode de detection de neutrons par calorimetrie gamma a capture |
| EP2290406B1 (fr) | 2009-07-27 | 2013-06-12 | FLIR Radiation GmbH | Appareil et procédé de détection de neutrons avec détecteurs de rayonnement gamma calorimétrique avec absorption de neutrons |
| JP2012210232A (ja) | 2009-08-19 | 2012-11-01 | Mitsubishi Electric Corp | 放射線治療システム |
| KR101065838B1 (ko) | 2009-10-13 | 2011-09-19 | (주)제노레이 | 사이노그램 복원 장치 및 방법 |
| US8819591B2 (en) | 2009-10-30 | 2014-08-26 | Accuray Incorporated | Treatment planning in a virtual environment |
| DE102009058294A1 (de) | 2009-12-05 | 2011-06-09 | Gsi Helmholtzzentrum Für Schwerionenforschung Gmbh | Bestrahlungsverfahren und Vorrichtung zur Durchführung des Verfahrens |
| JP6243121B2 (ja) | 2009-12-10 | 2017-12-06 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 飛行時間情報を用いて画像化スキャンにおける動き検出及び補正をする方法と装置 |
| US20110160566A1 (en) | 2009-12-24 | 2011-06-30 | Labros Petropoulos | Mri and ultrasound guided treatment on a patient |
| US20110172526A1 (en) | 2010-01-12 | 2011-07-14 | Martin Lachaine | Feature Tracking Using Ultrasound |
| US20110185503A1 (en) | 2010-01-29 | 2011-08-04 | William Beaumont Hospital | Local Adjustment Device for Radiotherapy |
| WO2011107145A1 (fr) | 2010-03-02 | 2011-09-09 | Brainlab Ag | Suivi de représentations de parties de corps d'indicateur |
| JP5095037B2 (ja) | 2010-07-15 | 2012-12-12 | 三菱電機株式会社 | 粒子線照射装置およびこれを備えた粒子線治療装置 |
| US9125570B2 (en) | 2010-07-16 | 2015-09-08 | The Board Of Trustees Of The Leland Stanford Junior University | Real-time tomosynthesis guidance for radiation therapy |
| WO2012019162A1 (fr) | 2010-08-06 | 2012-02-09 | Accuray, Inc. | Systèmes et procédés de suivi de tumeur en temps réel par échographie durant une radiothérapie |
| RU2013124017A (ru) | 2010-10-26 | 2014-12-10 | Конинклейке Филипс Электроникс Н.В. | Терапевтическое устройство, реализуемый компьютером способ и компьютерный программный продукт для управления фокусом излучения в движущейся целевой зоне |
| US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
| US8758248B2 (en) | 2010-11-30 | 2014-06-24 | General Electric Company | Systems and methods for acoustic radiation force imaging with enhanced performance |
| US9121915B2 (en) | 2010-12-09 | 2015-09-01 | The Board Of Trustees Of The Leland Stanford Junior University | Multi-dimensional cardiac and respiratory imaging with MRI |
| WO2012100270A2 (fr) | 2011-01-21 | 2012-07-26 | Headwater Partners Ii Llc | Détection d'emplacement de tumeur pour traitement par rayonnement ciblé |
| US9283404B2 (en) | 2011-01-21 | 2016-03-15 | Headwater Partners Ii Llc | Imaging observation timing for assisting radiation treatment |
| US9186525B2 (en) | 2011-02-04 | 2015-11-17 | Ion Beam Applications S.A. | Apparatus for particle therapy verification |
| WO2012110942A1 (fr) | 2011-02-17 | 2012-08-23 | Koninklijke Philips Electronics N.V. | Système permettant d'obtenir une carte d'activité électrique à l'aide d'une détection de forme optique |
| US20120226152A1 (en) | 2011-03-03 | 2012-09-06 | Porikli Fatih M | Tumor Tracking System and Method for Radiotherapy |
| US9526476B2 (en) | 2011-04-12 | 2016-12-27 | Brigham And Women's Hospital, Inc. | System and method for motion tracking using unique ultrasound echo signatures |
| EP2706939A4 (fr) | 2011-05-09 | 2015-05-27 | Cyberheart Inc | Dispositif, système et procédé de traitement rénovasculaire pour soulager de manière radiochirurgicale l'hypertension |
| EP2707100B1 (fr) | 2011-05-11 | 2019-07-10 | Ion Beam Applications S.A. | Appareil de vérification de portée de faisceau de particules |
| US20140107435A1 (en) | 2011-05-16 | 2014-04-17 | Cardiogal Ltd. | Methods and systems of aiming sensor(s) for measuring cardiac parameters |
| US20120292534A1 (en) | 2011-05-20 | 2012-11-22 | Sarah Geneser | Multi-phase Gating for Radiation Treatment Delivery and Imaging |
| CA2781536C (fr) | 2011-06-29 | 2017-11-07 | University Of Maryland, Baltimore | Techniques visant a compenser le mouvement d'une cible de traitement d'un patient |
| US20130035682A1 (en) | 2011-08-02 | 2013-02-07 | Sirius Medicine, Llc | Noninvasive Nerve Ablation |
| GB201115419D0 (en) | 2011-09-07 | 2011-10-19 | Univ Leuven Kath | Non-invasive in-situ radiation dosimetry |
| AU2012312066C1 (en) | 2011-09-22 | 2016-06-16 | 460Medical, Inc. | Systems and methods for visualizing ablated tissue |
| JP5896211B2 (ja) | 2011-11-30 | 2016-03-30 | 株式会社日立製作所 | 荷電粒子照射システムおよび荷電粒子照射システムの作動方法 |
| CN104093450B (zh) | 2011-11-30 | 2018-12-28 | 皇家飞利浦有限公司 | 用于自适应处置规划的束节段水平剂量计算与时间运动跟踪 |
| CN104093361B (zh) | 2012-01-25 | 2018-09-04 | 皇家飞利浦有限公司 | 一种牙科金属伪影减少方法及成像系统 |
| KR20130098531A (ko) | 2012-02-28 | 2013-09-05 | (주)제노레이 | 씨티의 메탈 아티팩트 감소 방법 |
| US20130237822A1 (en) | 2012-03-07 | 2013-09-12 | Patrick Gross | Combined radiotherapy ultrasound device |
| EP2827779B1 (fr) | 2012-03-23 | 2017-07-05 | Koninklijke Philips N.V. | Système d'imagerie pour imager un objet se déplaçant périodiquement |
| DE102012205935B4 (de) | 2012-04-12 | 2018-11-15 | Siemens Healthcare Gmbh | Verfahren zur Aufnahme eines vierdimensionalen Angiographie-Datensatzes |
| US10426975B2 (en) | 2012-05-29 | 2019-10-01 | Koninklijke Philips N.V. | Elasticity imaging-based methods for improved gating efficiency an dynamic margin adjustment in radiation therapy |
| EP2679277A1 (fr) | 2012-06-28 | 2014-01-01 | Ion Beam Applications | Préparation d'esters d'acides 3-fluoroalkyl-pyrazole-4-carboxyliques substitués 1 |
| CN104869912A (zh) | 2012-07-27 | 2015-08-26 | 小利兰·斯坦福大学理事会 | 成像探头在医疗程序期间的操纵 |
| US10159446B2 (en) | 2012-09-04 | 2018-12-25 | Gregg A. Dickerson | Medical gating using positive airway pressure devices |
| US20140107390A1 (en) | 2012-10-12 | 2014-04-17 | Elekta Ab (Publ) | Implementation and experimental results of real-time 4d tumor tracking using multi-leaf collimator (mlc), and/or mlc-carriage (mlc-bank), and/or treatment table (couch) |
| FR2997766B1 (fr) | 2012-11-08 | 2015-06-12 | Alain Iltis | Systeme et procede de detection de rayonnement gamma de type gamma camera |
| EP2938399B1 (fr) | 2012-12-28 | 2020-04-15 | Cyberheart, Inc. | Elaboration d'un traitement radiochirurgical du rein fondé sur une surface tissulaire sanguine |
| US10806947B2 (en) | 2013-03-12 | 2020-10-20 | General Electric Company | Methods and systems to determine respiratory phase and motion state during guided radiation therapy |
| DE102013102920A1 (de) | 2013-03-21 | 2014-09-25 | Technische Universität Dresden | Vorrichtung zum Verifizieren der Hadronentherapie durch Messung prompter Gammastrahlung unter Verwendung aktiver Kollimatoren |
| US11160454B2 (en) | 2013-04-08 | 2021-11-02 | Sunnybrook Research Institute | System and method for imaging biomarkers indicative of cardiac thermal ablation lesions |
| WO2014165979A1 (fr) | 2013-04-11 | 2014-10-16 | British Columbia Cancer Agency Branch | Déclenchement respiratoire et cardiaque combiné pour radiothérapie utilisant la technologie de l'impédance électrique |
| KR20140126815A (ko) | 2013-04-22 | 2014-11-03 | 삼성전자주식회사 | 호흡 주기 동안 체내 장기의 변화를 추적하는 방법, 장치 및 시스템. |
| US9545527B2 (en) | 2013-05-01 | 2017-01-17 | Purdue Research Foundation | System design and method for verifying 3D dosimetric imaging of charged particles in media |
| US20140343401A1 (en) | 2013-05-14 | 2014-11-20 | Michael Huber | Systems and methods for considering target motion in medical field |
| CN103279929B (zh) | 2013-05-25 | 2015-11-18 | 北京工业大学 | 一种基于余弦积分的ct图像金属轨迹预测和伪影去除方法 |
| ITCO20130036A1 (it) | 2013-08-22 | 2015-02-23 | Fond Per Adroterapia Oncologi Ca Tera | ¿sistema di acceleratori di ioni per il trattamento della fibrillazione atriale¿ |
| WO2015102680A2 (fr) | 2013-09-11 | 2015-07-09 | The Board Of Trustees Of The Leland Stanford Junior University | Méthodes et systèmes de modulation de l'intensité d'un faisceau pour faciliter des traitements radiothérapeutiques rapides |
| EP3046467A4 (fr) | 2013-09-19 | 2017-05-31 | Pronova Solutions, LLC | Suivi de repères externes au niveau de structures corporelles internes |
| EP2950119B1 (fr) | 2014-05-26 | 2016-05-18 | Ion Beam Applications S.A. | Système et procédé permettant de vérifier un faisceau de particules |
| US9364688B2 (en) | 2013-09-20 | 2016-06-14 | Ion Beam Applications, S.A. | Method and apparatus for monitoring the range of a particle beam |
| CN104517263B (zh) | 2013-09-30 | 2019-06-14 | Ge医疗系统环球技术有限公司 | 减少计算机断层扫描图像重构中伪像的方法和装置 |
| WO2015053737A1 (fr) | 2013-10-07 | 2015-04-16 | Empire Technology Development Llc | Ballon de repérage |
| DE102013112573A1 (de) | 2013-11-14 | 2015-06-03 | Technische Universität Dresden | Szintillationsdetektor mit intrinsischer Unterdrückung entweichender Sekundärteilchen |
| CN104644200B (zh) | 2013-11-25 | 2019-02-19 | Ge医疗系统环球技术有限公司 | 减少计算机断层扫描图像重构中伪像的方法和装置 |
| US20150150643A1 (en) | 2013-12-02 | 2015-06-04 | The Johns Hopkins University | Personalized computational modeling of atrial fibrosis to guide catheter ablation of atrial fibrillation |
| EP3238651B1 (fr) | 2013-12-12 | 2019-02-20 | Koninklijke Philips N.V. | Fusion en temps réel d'informations ultrasonores anatomiques et d'informations de distribution de rayonnement pour des radiothérapies |
| US10029121B2 (en) | 2013-12-31 | 2018-07-24 | The Medical College Of Wisconsin, Inc. | System and method for producing synthetic images |
| EP2942081B1 (fr) | 2014-05-09 | 2019-11-06 | Ion Beam Applications S.A. | Appareil pour la vérification d'une thérapie particulaire comprenant un collimateur à multiples ouvertures |
| US20150371420A1 (en) | 2014-06-19 | 2015-12-24 | Samsung Electronics Co., Ltd. | Systems and methods for extending a field of view of medical images |
| EP3188660A4 (fr) | 2014-07-23 | 2018-05-16 | Kineticor, Inc. | Systèmes, dispositifs et procédés de suivi et de compensation de mouvement de patient pendant une imagerie médicale par balayage |
| DE102014217966A1 (de) | 2014-09-09 | 2016-03-10 | Siemens Aktiengesellschaft | Adaptive Metallartefaktreduktion für die Computertomographie |
| JP6334349B2 (ja) | 2014-09-19 | 2018-05-30 | 株式会社東芝 | 粒子線治療システム、粒子線治療装置の作動方法、および、粒子線治療プログラム |
| US9849307B2 (en) | 2014-10-21 | 2017-12-26 | The Regents Of The University Of California | System and method for dose verification and gamma ray imaging in ion beam therapy |
| US9655580B2 (en) | 2014-10-24 | 2017-05-23 | General Electric Company | Systems and methods for metal artifact reduction |
| KR101591381B1 (ko) | 2014-10-30 | 2016-02-04 | 기초과학연구원 | Ct 촬영에서의 금속에 의한 잡음 및 오류 감쇄방법 |
| US10925579B2 (en) | 2014-11-05 | 2021-02-23 | Otsuka Medical Devices Co., Ltd. | Systems and methods for real-time tracking of a target tissue using imaging before and during therapy delivery |
| US9498179B1 (en) | 2015-05-07 | 2016-11-22 | General Electric Company | Methods and systems for metal artifact reduction in spectral CT imaging |
| US20160331262A1 (en) | 2015-05-13 | 2016-11-17 | Ep Solutions Sa | Combined Electrophysiological Mapping and Cardiac Ablation Methods, Systems, Components and Devices |
| US9789342B2 (en) | 2015-05-18 | 2017-10-17 | Varian Medical Systems, Inc. | System and method for in-layer synchronization for fast spot rescanning |
| JP6530961B2 (ja) | 2015-05-18 | 2019-06-12 | 株式会社日立製作所 | 超音波診断装置 |
| US20180153467A1 (en) | 2015-06-03 | 2018-06-07 | Yoav Lichtenstein | Injecting and monitoring nervous tissue |
| CN107820435B (zh) | 2015-06-19 | 2020-05-22 | 皇家飞利浦有限公司 | 超声引导的放射治疗系统 |
| US10013779B2 (en) | 2015-06-22 | 2018-07-03 | Toshiba Medical Systems Corporation | Metal artifact reduction for 3D-digtial subtraction angiography |
| US10328282B2 (en) | 2015-07-13 | 2019-06-25 | Mayo Foundation For Medical Education And Research | System and method for novel chance-constrained optimization in intensity-modulated proton therapy planning to account for range and patient setup uncertainties |
| WO2017013019A1 (fr) | 2015-07-17 | 2017-01-26 | Koninklijke Philips N.V. | Guidage de la radiothérapie d'un cancer du poumon |
| US10252083B2 (en) | 2015-09-23 | 2019-04-09 | Varian Medical Systems Inc. | Systems, methods, and devices for high-energy irradiation |
| US10631778B2 (en) | 2015-10-01 | 2020-04-28 | Varian Medical Systems International Ag | Patient setup using respiratory gated and time resolved image data |
| WO2017066358A1 (fr) | 2015-10-12 | 2017-04-20 | Loma Linda University | Procédés et systèmes pour effectuer une tomodensitométrie par émission de protons |
| US10315049B2 (en) | 2015-10-15 | 2019-06-11 | Elekta Ltd. | System and method for monitoring structural movements throughout radiation therapy |
| ES2629092B1 (es) | 2015-11-04 | 2018-07-04 | Consejo Superior De Investigaciones Científicas (Csic) | Sistema de cámara compton de rayos gamma con medida de tiempo de vuelo |
| EP3370617A4 (fr) | 2015-11-06 | 2019-08-07 | Washington University in St. Louis | Système non invasif d'imagerie et de traitement des arythmies cardiaques |
| DE102016200433B4 (de) | 2016-01-15 | 2024-05-23 | Siemens Healthineers Ag | Verfahren zur Planung einer Bestrahlung eines Patienten und Bestrahlungsplanungseinheit |
| EP3427081A4 (fr) | 2016-03-09 | 2020-02-26 | University of Maryland, Baltimore | Techniques de production d'une image d'émissions radioactives en utilisant une caméra compton et des lignes compton |
| CN106291656A (zh) | 2016-08-01 | 2017-01-04 | 汪金龙 | 瞬发伽马成像系统 |
| CN107730455B (zh) | 2016-08-11 | 2023-06-20 | 通用电气公司 | 获得mar图像的方法及装置 |
| FR3058249B3 (fr) | 2016-10-28 | 2018-12-07 | Carl Zeiss X Ray Microscopy Inc | Programme informatique pour la segmentation et la reduction d'artefacts metalliques a base de spectre et systeme tdm |
| BE1024702B1 (de) | 2016-10-28 | 2018-06-05 | Carl Zeiss X Ray Microscopy Inc | Computerprogramm für die segmentierung und die spektrumsbasierte metallartefaktreduktion und ct-system |
| CN108022272B (zh) | 2016-10-28 | 2021-12-21 | 卡尔蔡司X射线显微镜公司 | 用于基于分割和光谱的金属伪影降低的计算机程序和ct系统 |
| US10500418B2 (en) | 2017-01-04 | 2019-12-10 | Varian Medical Systems International Ag | System and method for patient-specific motion management for treatment |
| US10166406B2 (en) | 2017-02-24 | 2019-01-01 | Varian Medical Systems International Ag | Radiation treatment planning and delivery using collision free regions |
| EP3369381A1 (fr) | 2017-03-01 | 2018-09-05 | Koninklijke Philips N.V. | Agencement de sonde ultrasonore |
| US11744558B2 (en) | 2017-03-31 | 2023-09-05 | The Brigham And Women's Hospital | Systems and methods for controlling imaging artifacts using an array of sensor data |
| KR102423104B1 (ko) | 2017-07-21 | 2022-07-20 | 주식회사 바텍 | 듀얼 에너지 엑스선 프로젝션을 이용한 금속 이미지 구분 방법, 금속 인공음영 제거 방법 및 이를 이용한 엑스선 영상 획득 장치 |
| JP2020532364A (ja) | 2017-08-31 | 2020-11-12 | メイヨ フオンデーシヨン フオー メデイカル エジユケーシヨン アンド リサーチ | 心不整脈およびその他の疾患の治療のための炭素粒子療法のシステムおよび方法 |
| WO2019051209A1 (fr) | 2017-09-08 | 2019-03-14 | The General Hospital Corporation | Système et procédé de réduction d'artefacts métalliques rendus épars par sinogramme |
| US11247072B2 (en) | 2017-09-29 | 2022-02-15 | Varian Medical Systems International Ag | X-ray imaging system with a combined filter and collimator positioning mechanism |
| US11120551B2 (en) | 2017-11-27 | 2021-09-14 | Rensselaer Polytechnic Institute | Training a CNN with pseudo ground truth for CT artifact reduction |
| EP3582184B1 (fr) | 2018-06-13 | 2021-11-03 | Siemens Healthcare GmbH | Réduction multiénergétique d'artefacts métalliques |
| EP3833258A4 (fr) | 2018-08-06 | 2022-05-11 | Vanderbilt University | Procédé basé sur l'apprentissage profond pour la réduction de métaux dans des images de tomodensitométrie et ses applications |
| US10664979B2 (en) | 2018-09-14 | 2020-05-26 | Siemens Healthcare Gmbh | Method and system for deep motion model learning in medical images |
| US11506801B2 (en) | 2018-10-10 | 2022-11-22 | Ebamed Sa | Prompt gamma monitor for hadron therapy |
| US20200151921A1 (en) | 2018-11-14 | 2020-05-14 | Carestream Dental Llc | Methods for metal artifact reduction in cone beam reconstruction |
| US11786193B2 (en) | 2018-12-30 | 2023-10-17 | Carestream Dental Llc | Metal artifacts reduction in cone beam reconstruction |
| EP3725229B1 (fr) | 2019-04-18 | 2025-05-28 | DENTSPLY SIRONA Inc. | Procédé de réduction d'artefacts métalliques dans la tomographie volumique dentaire par rayons x |
| US11080900B2 (en) | 2019-07-08 | 2021-08-03 | Korea Advanced Institute Of Science And Technology | Method and apparatus for metal artifact reduction in industrial 3-dimensional cone beam computed tomography |
| US11944490B2 (en) | 2019-07-19 | 2024-04-02 | General Electric Company | Neuromodulation energy application techniques |
| CN111223156B (zh) | 2019-11-06 | 2023-06-16 | 深圳市深图医学影像设备有限公司 | 一种用于牙科锥束ct系统的金属伪影消除方法 |
| US12156760B2 (en) | 2019-11-14 | 2024-12-03 | Ebamed Sa | Cardiac phase gating system for radiation therapy |
| WO2022132651A1 (fr) | 2020-12-14 | 2022-06-23 | Bard Access Systems, Inc. | Fixation de sonde ultrasonore mains libres |
| JP2024501500A (ja) | 2020-12-23 | 2024-01-12 | エバメッド・エセアー | 多断面運動管理システム |
| EP4580508A1 (fr) | 2022-08-29 | 2025-07-09 | Ebamed SA | Ensemble de maintien de sonde ultrasonore |
-
2020
- 2020-11-11 US US17/776,004 patent/US12156760B2/en active Active
- 2020-11-11 WO PCT/IB2020/000930 patent/WO2021094824A1/fr not_active Ceased
-
2024
- 2024-11-25 US US18/959,580 patent/US20250082301A1/en active Pending
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008086434A2 (fr) * | 2007-01-09 | 2008-07-17 | Cyberheart, Inc. | Dépôt de rayonnement dans le myocarde sous guidage échographique |
| US20120083645A1 (en) * | 2010-10-02 | 2012-04-05 | Varian Medical Systems, Inc. | Ecg-correlated radiotherapy |
| WO2019096943A1 (fr) | 2017-11-16 | 2019-05-23 | Ebamed Sa | Dispositif et méthode de traitement non effractif d'arythmie cardiaque |
Non-Patent Citations (6)
| Title |
|---|
| BAI ET AL.: "An empirical evaluation of generic convolutional and recurrent networks for sequence modeling", ARXIV PREPR. ARXIV1803.01271, 2018 |
| DIETERICH ET AL.: "Practical Radiation Oncology Physics", 2016, ELSEVIER INC., article "Respiratory Motion Management for External Beam Radiotherapy", pages: 252 - 263 |
| FIORITO ET AL.: "Detection of Cardiac Events in Echocardiography using 3D Convolutional Recurrent Neural Networks", ULTRASONICS SYMPOSIUM (IUS), 2018 IEEE INTERNATIONAL, 2018 |
| KINGMA ET AL.: "Adam: A method for stochastic optimization", 3RD INTERNATIONAL CONFERENCE ON LEARNING REPRESENTATIONS, ICLR 2015 - CONFERENCE TRACK PROCEEDINGS, 2015, pages 1 - 15 |
| MEIDELL FIORITO ADRIAN ET AL: "Detection of Cardiac Events in Echocardiography Using 3D Convolutional Recurrent Neural Networks", 2018 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), IEEE, 22 October 2018 (2018-10-22), pages 1 - 4, XP033523144, DOI: 10.1109/ULTSYM.2018.8580137 * |
| PRALL M ET AL: "Ion beam tracking using ultrasound motion detection", MEDICAL PHYSICS, AIP, MELVILLE, NY, US, vol. 41, no. 4, 30 April 2014 (2014-04-30), XP012183455, ISSN: 0094-2405, [retrieved on 19010101], DOI: 10.1118/1.4868459 * |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12318632B2 (en) | 2017-11-16 | 2025-06-03 | Ebamed Sa | Heart arrhythmia non-invasive treatment device and method |
| US12156760B2 (en) | 2019-11-14 | 2024-12-03 | Ebamed Sa | Cardiac phase gating system for radiation therapy |
| US12311200B2 (en) | 2020-12-23 | 2025-05-27 | Ebamed Sa | Multiplanar motion management system |
| US12277627B1 (en) | 2021-08-27 | 2025-04-15 | Queensland University Of Technology | Correction of ultrasound probe-induced metal artifacts in X-ray based imaging systems |
| DE102022203903B3 (de) | 2022-04-21 | 2023-05-25 | Siemens Healthcare Gmbh | Verfahren zur Bereitstellung eines Bestrahlungsplans, Vorrichtung zur Ermittlung und Vorrichtung zur Anwendung des Bestrahlungsplans |
| EP4275740A1 (fr) * | 2022-05-10 | 2023-11-15 | RaySearch Laboratories AB | Procédé de planification de traitement de radiothérapie et moyen d'administration d'un traitement de radiothérapie |
| WO2023217435A1 (fr) * | 2022-05-10 | 2023-11-16 | Raysearch Laboratories Ab | Planification de traitement par radiothérapie et moyen d'administration de traitement par radiothérapie |
| WO2024062307A1 (fr) | 2022-08-29 | 2024-03-28 | Ebamed Sa | Ensemble de maintien de sonde ultrasonore |
| CN116128958A (zh) * | 2022-12-08 | 2023-05-16 | 苏州国科康成医疗科技有限公司 | 内脏运动的预测方法、装置、电子设备 |
Also Published As
| Publication number | Publication date |
|---|---|
| US12156760B2 (en) | 2024-12-03 |
| US20250082301A1 (en) | 2025-03-13 |
| US20220386987A1 (en) | 2022-12-08 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20250082301A1 (en) | Cardiac phase gating system for radiation therapy | |
| US9968801B2 (en) | Radiation treatment planning and delivery for moving targets in the heart | |
| US7953204B2 (en) | Radiation treatment planning and delivery for moving targets in the heart | |
| US10722193B2 (en) | Image acquisition optimization | |
| US12311200B2 (en) | Multiplanar motion management system | |
| US11951327B2 (en) | Heart arrhythmia non-invasive treatment device and method | |
| US20240017094A1 (en) | Radiation treatment planning and delivery for moving targets in the heart | |
| US20250072809A1 (en) | Medical image diagnosis apparatus, x-ray computed tomography apparatus, and medical image diagnosis system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20845209 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 20845209 Country of ref document: EP Kind code of ref document: A1 |