WO2021075596A1 - System for processing medical images by using artificial intelligence-based curriculum learning method, system for intelligent medical diagnosis and treatment, and system for intelligent medical diagnosis and treatment by using block-based flexible ai model - Google Patents
System for processing medical images by using artificial intelligence-based curriculum learning method, system for intelligent medical diagnosis and treatment, and system for intelligent medical diagnosis and treatment by using block-based flexible ai model Download PDFInfo
- Publication number
- WO2021075596A1 WO2021075596A1 PCT/KR2019/013583 KR2019013583W WO2021075596A1 WO 2021075596 A1 WO2021075596 A1 WO 2021075596A1 KR 2019013583 W KR2019013583 W KR 2019013583W WO 2021075596 A1 WO2021075596 A1 WO 2021075596A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- disease
- treatment
- factor
- lesion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/20—ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
Definitions
- the present invention relates to a medical image processing system using an artificial intelligence-based curriculum learning method, an intelligent medical diagnosis and treatment system, and an intelligent medical diagnosis and treatment system using a block-based flexible AI model, and more specifically, an artificial intelligence-based curriculum learning method.
- a medical image processing system using an artificial intelligence-based curriculum learning method that can best detect lesions according to effective iterative learning an intelligent medical diagnosis and treatment system, and a block-based flexible AI model are used to target specific diseases. It relates to an intelligent medical diagnosis and treatment system that can be applied to various diseases, not to the disease.
- outpatient treatment in hospitals has a treatment system called '3-minute treatment' in general.
- a university hospital sees about 4 patients every 15 minutes, and about 3 minutes of treatment time is given per patient.
- outpatient treatment hours are not enough time for patients, and are a limitation of not only Korea but also the global medical system.
- '15 minute treatment' is a system that extends the treatment time, which is around 3 minutes on average, to close to 15 minutes so that patients can hear enough explanations about the disease, and is also called'in-depth examination'. This is an improvement plan that came out as patients' complaints increased, such as the patient's question about the disease did not go away even after the treatment due to the short treatment hours of Korean hospitals and clinics.
- the 15-minute treatment is aimed at improving the so-called 3-minute treatment, where the time to receive treatment from a doctor only stops within 3 minutes, and was derived from the results of a foreign study that the patient's understanding of the disease is high when the treatment is longer than 18 minutes. .
- the recent 15-minute treatment is being piloted at 19 large hospitals including Seoul National University Hospital, Severance Hospital, Seoul St. Mary's Hospital, Samsung Seoul Hospital, and Seoul Asan Hospital.
- the 15-minute treatment is to keep the treatment time at least 15 minutes, so that the doctor can make more accurate diagnosis and treatment, and from the patient's point of view, sufficient time and information regarding the disease can be secured.
- Patent Document 1 Korean Registered Patent Publication No. 10-1623431
- Patent Document 2 Korean Patent Publication No. 10-1740464
- Patent Document 3 Korean Patent Application Publication No. 10-2018-0123810
- the present invention is to solve the above problems, and an object of the present invention is to use a block-based flexible AI model, which can be applied to various diseases rather than targeting a specific disease.
- the purpose is to provide an intelligent medical diagnosis and treatment system capable of efficient diagnosis and treatment within a short treatment time by providing the analysis results of clinical results and the comparison with the lesions of similar patients, clinical, treatment, surgery and prognosis data in advance.
- the present invention is to solve the above problems, and an object of the present invention is to use a block-based flexible AI model, which can be applied to various diseases rather than targeting a specific disease.
- the purpose is to provide an intelligent medical diagnosis and treatment system capable of efficient diagnosis and treatment within a short treatment time by providing the analysis results of clinical results and the comparison with the lesions of similar patients, clinical, treatment, surgery and prognosis data in advance.
- an intelligent medical diagnosis and treatment system based on medical image data includes an image acquisition unit that acquires one or more images selected from the group consisting of an X-ray image, a CT image, an MRI image, and a PET image, a suspect disease input unit that inputs a suspect disease, and a block-based artificial intelligence model.
- the suspicious disease input by using the lesion is mapped by setting each analysis area of the lesion in the input image, and extracting and analyzing any one or more feature factors from the location, length, size, and signal intensity of the mapped lesion.
- An image analysis unit a medical integrated database unit storing and providing disease-specific image factors, disease-specific clinical factors, disease-specific treatment and surgery or prognosis data in which feature factors extracted from images are expressed, and disease-specific data provided from the medical integrated database unit It provides an image factor and a clinical factor in a text format, and includes a diagnosis result output unit that provides a tracking result for the user's past and current state.
- an intelligent medical diagnosis and treatment system wherein the suspected disease is a neurological disease.
- the neurological disease is an intelligent medical diagnosis and treatment system, characterized in that at least one selected from the group consisting of cerebral infarction, arteriosclerosis, cerebral aneurysm, Alzheimer's dementia, compression fracture, and disc. to provide.
- the MRI image is a T2 weighted image (T2), a fluid attenuated inversion recovery (FLAIR) image, a diffusion weighted image (DWI), Intelligent medical diagnosis comprising perfusion weighted imaging (PWI), magnetic resonance angiography (MRA) images, and high resolution T1 weighted 3D images (3DT1) and Provide a medical treatment system.
- T2 weighted image T2
- FLAIR fluid attenuated inversion recovery
- DWI diffusion weighted image
- PWI perfusion weighted imaging
- MRA magnetic resonance angiography
- 3DT1 weighted 3D images 3DT1 weighted 3D images
- the image analysis unit selects and analyzes an input image type according to an input suspicious disease.
- CT, T2-weighted image, fluid attenuation reversal image, diffusion-weighted image, and perfusion-weighted image are images to be analyzed
- CT and magnetic resonance An angiographic image is used as the image to be analyzed
- CT and magnetic resonance angiography images are used as the image to be analyzed
- a fluid attenuation inversion image 3DT1
- An intelligent medical diagnosis characterized in that an emphasis image and a positron emission tomography image (PET) are used as an image to be analyzed, and when the input suspected disease is a compression fracture or a disc, an X-ray image is used as an image to be analyzed.
- PET positron emission tomography
- one or more clinical factors selected from the group consisting of a user's risk factor test, a clinical disease evaluation test, and a blood factor test are evaluated and provided to the integrated medical database. Provides an intelligent medical diagnosis and treatment system.
- an intelligent medical diagnosis and treatment system characterized in that the condition for treatment and prognosis according to the user's tracking result is simultaneously displayed and provided to the user. to provide.
- the image factor for each disease as a search index, by searching for an image factor similar to the disease, clinical factors, treatment, surgery, and prognosis data of the similar image factor disease are obtained as a result of the diagnosis. It provides an intelligent medical diagnosis and treatment system comprising a clinical case search unit provided to the output unit.
- an intelligent medical diagnosis and treatment system characterized in that the difference between the image factor for each disease and the searched image factor for a similar disease is provided.
- an image acquisition unit that acquires one or more images selected from the group consisting of an X-ray image, a CT image, an MRI image, and a PET image, and a suspected disease inputting a suspected disease
- An input unit and an image obtained from the image acquisition unit are analyzed to extract and analyze any one or more of the location, length, size, and signal strength of the lesion, and other images based on the analyzed feature factors.
- An image analysis unit that analyzes and re-extracts and analyzes the characteristic factors of the lesion, and a diagnosis result output unit that outputs at least one of the occurrence region, location, size, size of the lesion relative to the occurrence region, and signal intensity of the analyzed lesion.
- a medical image processing system using an artificial intelligence-based curriculum learning method is provided.
- the image analysis unit recognizes and divides each image obtained from the image acquisition unit by using a reference image for each image, and a characteristic factor of the lesion for each segmented area
- a medical image processing system using an artificial intelligence-based curriculum learning method characterized by extracting and analyzing.
- the image analysis unit analyzes the feature factor by selecting an image that facilitates lesion identification among the acquired images, and then selects another image to analyze the feature factor.
- the image analysis unit provides a medical image processing system using an artificial intelligence-based curriculum learning method, characterized in that the feature factor is further analyzed by selecting an image that is easy to confirm the lesion first analyzed.
- the MRI image is a diffusion weighted image (DWI), an apparent diffusion coefficient map (ADC map), and a fluid attenuated inversion recovery (FLAIR) image.
- DWI diffusion weighted image
- ADC map apparent diffusion coefficient map
- FLAIR fluid attenuated inversion recovery
- T2 weighted image (T2) Perfusion Weighted Imaging
- PWI Perfusion Weighted Imaging
- MRA Magnetic Resonance Angiography
- 3DT1 High resolution T1 Weighted 3D Image
- the image analysis unit when the suspected disease is a cerebral infarction, the image analysis unit first selects the diffusion-enhanced image (DWI) for easy identification of a cerebral infarct lesion among acquired images, After analyzing the factor, the ADC map is selected to analyze the characteristic factor, the fluid attenuation inversion (FLAIR) image is selected to analyze the characteristic factor, and the CT image is then selected to analyze the characteristic factor. And, it provides a medical image processing system using an artificial intelligence-based curriculum learning method, characterized in that the feature factor is analyzed by reselecting the firstly selected diffusion-weighted image (DWI).
- DWI diffusion-enhanced image
- an intelligent medical diagnosis and treatment system using an artificial intelligence-based curriculum learning method includes an image acquisition unit that acquires one or more images selected from the group consisting of an X-ray image, a CT image, an MRI image, and a PET image, a suspect disease input unit that inputs a suspect disease, and a block-based artificial intelligence model.
- an image acquisition unit that acquires one or more images selected from the group consisting of an X-ray image, a CT image, an MRI image, and a PET image
- a suspect disease input unit that inputs a suspect disease
- a block-based artificial intelligence model By analyzing any one of the input images according to the suspicious disease input by using, extract and analyze any one or more of the location, length, size, and signal strength of the lesion, and based on the analyzed feature factors.
- An image analysis unit that analyzes other images and re-extracts and analyzes the characteristic factors of the lesion, image factors for each disease, clinical factors for each disease, treatment and surgery or prognosis data for each disease, and And a diagnosis result output unit that provides an integrated medical database unit and image factors and clinical factors for each disease provided from the integrated medical database unit in a text format, and provides a tracking result of a user's past and present conditions.
- the suspected disease is an intelligent medical diagnosis and treatment system, characterized in that at least one selected from the group consisting of cerebral infarction, arteriosclerosis, cerebral aneurysm, Alzheimer's dementia, compression fracture, and disc. to provide.
- one or more clinical factors selected from the group consisting of a user's risk factor test, a clinical disease evaluation test, and a blood factor test are evaluated and provided to the integrated medical database. Provides an intelligent medical diagnosis and treatment system.
- an intelligent medical diagnosis and treatment system characterized in that the condition for treatment and prognosis according to the user's tracking result is simultaneously displayed and provided to the user. to provide.
- the disease-specific image factor is used as a search index, and the image factor similar to the disease is searched to provide clinical factors, treatment, surgery, and prognosis data of the disease-like image factor, and the disease. It provides an intelligent medical diagnosis and treatment system comprising a clinical case search unit that provides a difference between the respective image factor and the searched similar disease image factor to the diagnosis result output unit.
- an intelligent medical diagnosis and treatment system it is possible to apply a block-based flexible AI model to various diseases rather than targeting a specific disease.
- an intelligent medical diagnosis and treatment system it is possible to apply a block-based flexible AI model to various diseases rather than targeting a specific disease.
- the image data that shows the most characteristic of the lesion according to the type of disease are analyzed and learned, and the analyzed and learned lesion information is converted to the next image data.
- FIG. 1 is a flowchart illustrating a conventional medical diagnosis and treatment system.
- FIG. 2 is a block diagram illustrating a medical image processing system using an artificial intelligence-based curriculum learning method, an intelligent medical diagnosis and treatment system, and an intelligent medical diagnosis and treatment system using a block-based flexible AI model according to an embodiment of the present invention. to be.
- FIG. 3 is a block diagram illustrating a medical image processing system using an artificial intelligence-based curriculum learning method according to an embodiment of the present invention.
- FIG. 4 is a block diagram illustrating an image analysis unit that extracts and analyzes a feature factor of an image by applying a block-based flexible artificial intelligence model according to an embodiment of the present invention.
- an intelligent medical diagnosis and treatment system based on medical image data includes an image acquisition unit that acquires one or more images selected from the group consisting of an X-ray image, a CT image, an MRI image, and a PET image, a suspect disease input unit that inputs a suspect disease, and a block-based artificial intelligence model.
- the suspicious disease input by using the lesion is mapped by setting each analysis area of the lesion in the input image, and extracting and analyzing any one or more feature factors from the location, length, size, and signal intensity of the mapped lesion.
- An image analysis unit a medical integrated database unit storing and providing disease-specific image factors, disease-specific clinical factors, disease-specific treatment and surgery or prognosis data in which feature factors extracted from images are expressed, and disease-specific data provided from the medical integrated database unit It provides an image factor and a clinical factor in a text format, and includes a diagnosis result output unit that provides a tracking result for the user's past and current state.
- a structure or shape arranged adjacent to another shape may have a portion disposed below or overlapping with the adjacent shape.
- Relative terms such as below, above, upper, lower, horizontal or vertical in this specification are as shown in the figures, It may be used to describe the relationship one constituent member, layer, or region has with another constituent member, layer or region. These terms encompass not only the orientation indicated in the figures, but also other orientations of the device.
- FIG. 1 is a flowchart illustrating a conventional medical diagnosis and treatment system.
- the patient may think that the doctor is aware of the test result and treatment plan in advance, but in reality, it is checked at the time of the patient's treatment. After that, the doctor explains the disease and treatment plan to the patient based on the test results. At this time, the test results are communicated orally with the clinical results or imaging test results, and if more detailed explanation is determined, the explanation is made through pictures on a memo pad. If the patient's condition deteriorates in the case of follow-up care, the doctor in charge should find the cause and change to an appropriate treatment method.
- the medical staff in charge cannot provide a satisfactory explanation within a short treatment time, and the patient does not receive a satisfactory explanation within a short treatment time.
- FIG. 2 is a block diagram illustrating a medical image processing system using an artificial intelligence-based curriculum learning method, an intelligent medical diagnosis and treatment system, and an intelligent medical diagnosis and treatment system using a block-based flexible AI model according to an embodiment of the present invention.
- 3 is a block diagram illustrating a medical image processing system using an artificial intelligence-based curriculum learning method according to an embodiment of the present invention.
- 4 is a block diagram illustrating an image analysis unit that extracts and analyzes a feature factor of an image by applying a block-based flexible artificial intelligence model according to an embodiment of the present invention.
- FIGS. 2 to 4 a medical image processing system using an artificial intelligence-based curriculum learning method, an intelligent medical diagnosis and treatment system, and an intelligent medical diagnosis and treatment system using a block-based flexible AI model will be described in detail.
- the medical diagnosis and treatment system of the present invention is an intelligent medical diagnosis and treatment system based on medical image data, and includes an image acquisition unit 100, a suspected disease input unit 200, an image analysis unit 300, and a medical integrated database unit 400. And a diagnosis result output unit 500.
- the image acquisition unit 100 acquires one or more images selected from the group consisting of an X-ray image, a CT image, an MRI image, and a PET image.
- the suspected disease input unit 200 inputs a suspected disease.
- the disease to be analyzed may specifically target a neurological disease.
- the neurological disease may be any one or more selected from the group consisting of cerebral infarction, arteriosclerosis, cerebral aneurysm, Alzheimer's dementia, compression fracture, and disc.
- the image acquired by the image acquisition unit 100 may be a CT image, an MRI image or a PET image, and the disease to be analyzed is a compression fracture or a disc.
- the image acquired by the image acquisition unit 100 may be an X-ray image.
- the image analysis unit 300 maps the lesions by respectively setting analysis regions of lesions in the input image according to the input suspicious disease using a block-based artificial intelligence model.
- the image analysis unit 300 extracts and analyzes one or more feature factors from among the location, length, size, and signal intensity of the mapped lesion.
- the neurological disease may be any one or more selected from the group consisting of cerebral infarction, arteriosclerosis, cerebral aneurysm, Alzheimer's dementia, compression fracture, and disc.
- the image analysis unit 300 selects and analyzes an input image type according to an input suspicious disease.
- the image analysis unit 300 can be applied to various diseases rather than targeting a specific disease by using a block-based flexible AI model, and has excellent scalability.
- the image analysis unit 300 recommends an optimal learning method according to the medical environment and purpose if only data on the disease is inputted, and a block-type algorithm combination technique
- a block-type algorithm combination technique anyone can easily create a flexible artificial intelligence model by using. Since it is not a complete system for specific diseases, the expansion of additional diseases is very flexible and its versatility is very good. In addition, since all analysis is performed inside the medical institution, not outside the leak, there is no security problem of medical data.
- the image analysis unit 300 selects and analyzes an input image type according to the input suspicious disease. For example, if the input suspicious disease is a cerebral infarction, the CT, The T2-weighted image, the fluid attenuated inversion image, the diffusion-weighted image, and the perfusion-weighted image can be used as an analysis target image.
- CT and magnetic resonance angiography images may be used as an image to be analyzed.
- CT and magnetic resonance angiography images may be used as an image to be analyzed.
- CT and magnetic resonance angiography images may be used as an image to be analyzed.
- a fluid attenuation inversion image, a 3DT1 weighted image, and a positron emission tomography image (PET) may be used as an image to be analyzed.
- PET positron emission tomography
- an X-ray image may be used as an image to be analyzed.
- the image analysis unit 300 analyzes any one of the images acquired from the image acquisition unit 100 to extract and analyze any one or more of the location, length, size, and signal strength of the lesion, and then Another image is analyzed based on the feature factors sequentially analyzed in, and the feature factors of the lesion are re-extracted and analyzed.
- the image first selected and analyzed by the image analysis unit 300 is learned by selecting an image technique in which a lesion is best identified according to the suspicious disease, and accordingly, learning is performed from the lowest learning difficulty. You can maximize the learning efficiency by proceeding.
- an imaging technique with a lower learning difficulty level is selected and learning is performed sequentially, and the characteristics of the lesion identified according to the previously analyzed imaging technique are transmitted during the subsequent analysis, so that the target disease can be diagnosed more accurately.
- the last image analyzed by the image analysis unit 300 is selected for the first time, and the analyzed image is reselected to perform analysis once more. This is to minimize the loss of feature learning ability and data in the AI model by learning the imaging technique that can best diagnose the target disease once more, and learn and remember the most important features of the target disease lesion once more. It is to do. That is, it is possible to minimize a problem in which analysis results may be deformed or distorted according to repetitive learning.
- the MRI image is a diffusion weighted image (DWI), an apparent diffusion coefficient map (ADC map), a fluid attenuated inversion recovery (FLAIR) image, and a T2 weighted image (T2 weighted image).
- image, T2) a Perfusion Weighted Imaging (PWI), Magnetic Resonance Angiography (MRA) image, and 3D T1 weighted image (high resolution T1 Weighted 3D Image, 3DT1). It may contain more than one.
- the image analysis unit 300 is, first among the acquired images, the diffusion-weighted image (DWI) for easy identification of a cerebral infarction lesion.
- the feature factor is analyzed by selecting first, and then, secondly, the ADC map is selected to analyze the feature factor, and thirdly, the fluid attenuation inversion (FLAIR) image is selected and the feature factor is analyzed, Thereafter, fourthly, the CT image is selected to analyze the feature factor, and fifthly, the firstly selected diffusion-weighted image (DWI) may be reselected to analyze the feature factor.
- “Learned AI model #A” is a model in which lesion features of DWI images are learned, inherits (transfers) the features of learned lesions seen in DWI images
- “Learned AI model #B” includes DWI images and ADC. The lesion features of the map are accumulated and learned.
- Lesion features of DWI image, ADC map and FLAIR image are accumulated and learned.
- Learned AI Model #D lesion features of DWI image, ADC map, FLAIR image and CT image are accumulated and learned.
- the DWI image that the characteristics of the cerebral infarct lesion is best confirmed is learned once more to be more accurate.
- the characteristics of the lesion can be analyzed.
- the integrated medical database unit 400 stores and provides disease-specific image factors, disease-specific clinical factors, disease-specific treatment and surgery or prognosis data, in which characteristic factors extracted from images are expressed.
- the intelligent medical diagnosis and treatment system converts the medical image into an index through artificial intelligence techniques, and uses a database through all data on clinical factors, treatment methods, and results matching the medical image. It is converted and stored in the medical integration database unit 400.
- the integrated medical database unit 400 stores data accumulated while providing services according to the intelligent medical diagnosis and treatment system according to an embodiment of the present invention, medical image data for each user, and medical care of similar users (patients).
- Image data, diagnostic information, clinical data, visual information and text data of a lesion area, tracking result data for a user's past and current state, treatment of a corresponding disease, surgery and prognosis data, and the like may be stored.
- the diagnosis result output unit 500 provides disease-specific image factors and clinical factors provided from the medical integrated database unit 400 in text format, and provides tracking results of the user's past and present conditions.
- the diagnosis result output unit 500 may display the image factors and clinical factors for each disease in a text format and provide them to a user and a medical staff.
- the medical diagnosis and treatment system of the present invention is an intelligent medical diagnosis and treatment system based on medical image data, and includes an image acquisition unit 100, a suspected disease input unit 200, an image analysis unit 300, and a medical integrated database unit 400. And a diagnosis result output unit 500, and further includes a clinical factor input unit 600, a disease-specific treatment input unit 700, and a clinical case search unit 800.
- the clinical factor input unit 600 evaluates one or more clinical factors selected from a group consisting of a risk factor test, a clinical disease evaluation test, and a blood factor test of a user, and provides and stores it in the medical integrated database unit 400.
- the integrated medical database unit 400 stores clinical factor data for each disease accumulated while providing services according to the intelligent medical diagnosis and treatment system according to an embodiment of the present invention.
- the disease-specific treatment input unit 700 inputs disease-specific treatment, surgery, and prognosis data, and provides and stores it in the medical integrated database unit 400.
- the integrated medical database unit 400 stores treatment, surgery, and prognosis data for each disease accumulated while providing services according to the intelligent medical diagnosis and treatment system according to an embodiment of the present invention.
- the clinical case search unit 800 uses the disease-specific image factor as a search index, searches for an image factor similar to the disease, and displays the clinical factor, treatment, surgery, and prognosis data of the disease-like image factor, and outputs the diagnosis result. Can be provided to.
- the clinical case search unit 800 may provide a difference between the image factor for each disease and the searched image factor for a similar disease.
- the clinical case search unit 800 interlocks with the medical integration database unit 400 to search and classify the data of the medical integration database unit 400, Provides data, visual information and text data of the lesion area, tracking result data for the user's past and current state, treatment of the disease, surgery and prognosis data, and the like, and the diagnosis result output unit 500, that is, the medical staff in charge Updates to automatic readings can be provided.
- the intelligent medical diagnosis and treatment system of the present invention it is possible to apply a block-based flexible AI model to various diseases rather than targeting a specific disease.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Primary Health Care (AREA)
- Pathology (AREA)
- Epidemiology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Heart & Thoracic Surgery (AREA)
- Biophysics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
본 발명은 인공지능 기반 커리큘럼 학습 방법을 이용한 의료 영상 처리 시스템, 지능형 의료 진단 및 진료 시스템 및 블록 기반 유연한 AI 모델을 이용한 지능형 의료 진단 및 진료 시스템에 관한 것으로서, 보다 구체적으로, 인공지능 기반 커리큘럼 학습 방법을 이용하여 효과적인 반복 학습에 따라 병변을 가장 잘 발견할 수 있는 인공지능 기반 커리큘럼 학습 방법을 이용한 의료 영상 처리 시스템, 지능형 의료 진단 및 진료 시스템, 그리고 블록 기반 유연한 AI 모델을 이용하여 특정 질환을 타겟으로 하는 것이 아닌 다양한 질환에 적용이 가능한 지능형 의료 진단 및 진료 시스템에 관한 것이다.The present invention relates to a medical image processing system using an artificial intelligence-based curriculum learning method, an intelligent medical diagnosis and treatment system, and an intelligent medical diagnosis and treatment system using a block-based flexible AI model, and more specifically, an artificial intelligence-based curriculum learning method. Using a medical image processing system using an artificial intelligence-based curriculum learning method that can best detect lesions according to effective iterative learning, an intelligent medical diagnosis and treatment system, and a block-based flexible AI model are used to target specific diseases. It relates to an intelligent medical diagnosis and treatment system that can be applied to various diseases, not to the disease.
현재 병원 외래 진료는 '3분 진료'라는 진료 시스템이 일반적으로 행해지고 있다. 일반적으로 대학병원에서 15분에 환자 4명 정도를 보며, 환자 1명당 약 3분의 진료 시간이 주어지는 셈이다. 하지만 현실적으로 외래 진료시간은 환자에게는 충분하지 못한 시간이며, 우리나라 뿐만 아니라 전세계적인 의료 시스템의 한계점에 해당한다.Currently, outpatient treatment in hospitals has a treatment system called '3-minute treatment' in general. In general, a university hospital sees about 4 patients every 15 minutes, and about 3 minutes of treatment time is given per patient. However, in reality, outpatient treatment hours are not enough time for patients, and are a limitation of not only Korea but also the global medical system.
최근에는 환자에게 보다 높은 의료 서비스 제공을 위해서 '15분 진료'를 적용하고자 하는 움직임도 많아지고 있다. '15분 진료'는 평균 3분 안팎인 진료시간을 15분 가까이로 늘려 환자가 질환에 대해 충분히 설명을 들을 수 있도록 하는 제도로, '심층 진찰'이라고도 한다. 우리나라 병의원의 진료 시간이 너무 짧아 환자가 진료 후에도 질환에 관한 의문이 가시지 않는 등 환자들의 불만이 높아짐에 따라 나온 개선 방안이다. 즉, 15분 진료는 의사로부터 진료를 받는 시간이 겨우 3분 이내에 그치는 소위 3분 진료의 폐단을 개선하기 위한 것으로, 18분 이상 진료 시 환자의 질병 이해도가 높다는 한 외국 연구 결과에 기인해 도출됐다. 최근 15분 진료는 서울대병원, 세브란스병원, 서울성모병원, 삼성서울병원, 서울아산병원 등 대형병원 19곳에서 시범운영 중에 있다. 15분 진료는 진료 시간을 최소 15분 이상 지키도록 하고 있는데, 이는 의사로서는 보다 정확한 진단과 치료를 할 수 있도록 하고 환자 입장에선 질환에 관한 충분한 질문 시간과 정보를 확보할 수 있도록 하기 위해서다.In recent years, there is a growing movement to apply '15 minute treatment' in order to provide higher medical services to patients. '15-minute treatment' is a system that extends the treatment time, which is around 3 minutes on average, to close to 15 minutes so that patients can hear enough explanations about the disease, and is also called'in-depth examination'. This is an improvement plan that came out as patients' complaints increased, such as the patient's question about the disease did not go away even after the treatment due to the short treatment hours of Korean hospitals and clinics. In other words, the 15-minute treatment is aimed at improving the so-called 3-minute treatment, where the time to receive treatment from a doctor only stops within 3 minutes, and was derived from the results of a foreign study that the patient's understanding of the disease is high when the treatment is longer than 18 minutes. . The recent 15-minute treatment is being piloted at 19 large hospitals including Seoul National University Hospital, Severance Hospital, Seoul St. Mary's Hospital, Samsung Seoul Hospital, and Seoul Asan Hospital. The 15-minute treatment is to keep the treatment time at least 15 minutes, so that the doctor can make more accurate diagnosis and treatment, and from the patient's point of view, sufficient time and information regarding the disease can be secured.
의료진의 입장에서는 정해진 진료 시간에 많은 환자들에게 진단 결과, 질환의 설명과 치료계획 등을 효율적으로 전달해야 하는데, 현재 임상 의료진들은 “환자에게 설명을 할 수 있는 방법이 너무 없다”고 하소연하고 있으며, 실제로 의료진은 환자에게 설명을 해주는 시스템이 매우 제한되어 있다.From the point of view of the medical staff, the diagnosis results, the explanation of the disease and the treatment plan, etc., must be efficiently communicated to many patients during the prescribed treatment time, but the clinical medical staff are complaining that "there is not too much a way to explain to the patients." In fact, there is a very limited system for medical staff to explain to patients.
현재 대부분의 환자에게 설명을 하는 가장 좋은 방법은 검사한 의료 영상을 통하여 현재 상태를 설명하는 방법이다. 환자 및 보호자는 현재 환자의 상태를 명확히 알고 싶으며 그 이후의 치료 계획을 통하여 질환이 호전될 수 있는지 등을 알고 싶으나, 의료진은 이러한 니즈를 충분히 인지하고 있으나 진료 시간 등의 이유로 해소하고 있지 못하는 실정이다.Currently, the best way to explain to most patients is to explain the current state through a medical image that has been examined. Patients and guardians want to know clearly the current condition of the patient and whether the disease can be improved through subsequent treatment plans, but the medical staff is sufficiently aware of these needs, but the situation is not resolved due to reasons such as treatment hours. to be.
의료진들은 치료 및 수술에 대한 계획을 세울 때 관련 학과가 모여서 해당 환자에 대하여 다양한 각도로 회의를 한다. 이를 다학제 진료라고 하며, 이때 가장 중요한 것이 바로 해당 환자와 비슷한 과거의 환자를 함께 리뷰하며 부작용에 대한 가능성은 최소화하며 환자에게 가장 안전하고 가장 빠르게 회복 가능한 치료 계획을 세운다. 즉, 해당 환자와 가장 유사한 과거의 대상자들을 모아서 함께 논의를 하게 되며 매우 효율적인 진료 및 치료 계획이 만들어진다. 하지만 해당 다학제 진료는 일반적인 환자 대상은 아니고 특수한 환자에 대해서만 이뤄지며, 과거의 유사한 질환 대상자를 찾는 일도 시간과 인력이 많이 필요하다. 결국 특수한 경우가 아닌 한, 일반적인 외래 진료시에는 결국 진료 의료진의 경험을 바탕으로 이뤄지게 된다.When medical staff plan treatment and surgery, related departments gather and hold meetings from various angles about the patient. This is called multidisciplinary care, and the most important thing at this time is to review patients in the past similar to those in question together, minimize the likelihood of side effects, and establish a treatment plan that is the safest and fastest recoverable for the patient. In other words, the subjects of the past who are most similar to the patient in the past are gathered and discussed together, and a very effective treatment and treatment plan is created. However, the multidisciplinary treatment is not for general patients, but only for special patients, and it takes a lot of time and manpower to find similar patients in the past. In the end, unless in a special case, general outpatient treatment will eventually be made based on the experience of the medical staff.
따라서, 다양한 질환에 적용이 가능하고 담당 의료진의 진료에 앞서 의료 영상 및 임상 결과의 분석 결과와 유사 환자의 임상, 치료, 수술 및 예후 데이터를 사전에 제공하여 다학제 진료와 유사한 결과를 얻을 수 있고, 짧은 진료시간 내에 효율적인 진단 및 진료가 가능한 시스템의 개발이 요구되는 실정이다.Therefore, it can be applied to a variety of diseases, and results similar to multidisciplinary treatment can be obtained by providing the analysis results of medical images and clinical results and clinical, treatment, surgery and prognosis data of similar patients in advance prior to treatment by the medical staff in charge. However, there is a need to develop a system that enables efficient diagnosis and treatment within a short treatment time.
또한, 최근 인공지능을 활용한 의료 영상 판독 및 처리 시스템에 관하여 연구가 시작되고 있는 실정이나, 단순히 촬영된 영상을 분석하여 병변을 검출 분석하는 내용이 개시될 뿐, 실제 의료 환경에서 의료진들은 여러 영상 자료를 비교 분석을 하여 병변을 분석하나, 이와 같이 여러 종류의 영상을 분석하는 방법 내지 시스템에 관한 연구가 부족한 실정이다.In addition, researches on medical image reading and processing systems using artificial intelligence have recently begun, but only the contents of detecting and analyzing lesions by analyzing captured images have been disclosed. Although the lesion is analyzed by comparative analysis of data, research on methods or systems for analyzing various types of images is lacking.
(특허문헌 1) 대한민국 등록특허공보 제10-1623431호(Patent Document 1) Korean Registered Patent Publication No. 10-1623431
(특허문헌 2) 대한민국 등록특허공보 제10-1740464호(Patent Document 2) Korean Patent Publication No. 10-1740464
(특허문헌 3) 대한민국 공개특허공보 제10-2018-0123810호(Patent Document 3) Korean Patent Application Publication No. 10-2018-0123810
본 발명은 상기와 같은 문제를 해결하기 위한 것으로서, 본 발명의 목적은 블록 기반 유연한 AI 모델을 이용하여 특정 질환을 타겟으로 하는 것이 아닌 다양한 질환에 적용이 가능하고 담당 의료진의 진료에 앞서 의료 영상 및 임상 결과의 분석 결과와 유사 환자의 병변과의 비교, 임상, 치료, 수술 및 예후 데이터를 사전에 제공하여, 짧은 진료시간 내에 효율적인 진단 및 진료가 가능한 지능형 의료 진단 및 진료 시스템을 제공하는데 있다.The present invention is to solve the above problems, and an object of the present invention is to use a block-based flexible AI model, which can be applied to various diseases rather than targeting a specific disease. The purpose is to provide an intelligent medical diagnosis and treatment system capable of efficient diagnosis and treatment within a short treatment time by providing the analysis results of clinical results and the comparison with the lesions of similar patients, clinical, treatment, surgery and prognosis data in advance.
본 발명은 상기와 같은 문제를 해결하기 위한 것으로서, 본 발명의 목적은 블록 기반 유연한 AI 모델을 이용하여 특정 질환을 타겟으로 하는 것이 아닌 다양한 질환에 적용이 가능하고 담당 의료진의 진료에 앞서 의료 영상 및 임상 결과의 분석 결과와 유사 환자의 병변과의 비교, 임상, 치료, 수술 및 예후 데이터를 사전에 제공하여, 짧은 진료시간 내에 효율적인 진단 및 진료가 가능한 지능형 의료 진단 및 진료 시스템을 제공하는데 있다.The present invention is to solve the above problems, and an object of the present invention is to use a block-based flexible AI model, which can be applied to various diseases rather than targeting a specific disease. The purpose is to provide an intelligent medical diagnosis and treatment system capable of efficient diagnosis and treatment within a short treatment time by providing the analysis results of clinical results and the comparison with the lesions of similar patients, clinical, treatment, surgery and prognosis data in advance.
뿐만 아니라, 본 발명의 목적은 획득된 복수의 영상들 중 질환의 종류에 따라 가장 병변의 특징이 잘 나타나는 영상 자료부터 분석 및 학습하고, 분석 및 학습된 병변 정보를 다음 영상 자료의 분석시 축적 전달하여, 대상 질환을 보다 더 정확하게 진단할 수 있도록 학습 효율을 극대화하는 인공지능 기반의 커리큘럼 학습 방법을 이용하여 효과적인 반복 학습에 따라 병변을 가장 잘 발견할 수 있는 의료 영상 처리 시스템을 제공하는데 있다.In addition, it is an object of the present invention to analyze and learn from the image data that shows the best lesion characteristics according to the type of disease among a plurality of acquired images, and to store and transmit the analyzed and learned lesion information when analyzing the next image data. Thus, it is to provide a medical image processing system that can best detect lesions through effective repetitive learning using an artificial intelligence-based curriculum learning method that maximizes learning efficiency so that a target disease can be diagnosed more accurately.
본 발명의 목적들은 이상에서 언급한 목적들로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects not mentioned will be clearly understood by those skilled in the art from the following description.
상기한 문제를 해결하기 위한 본 발명의 일 실시예에 따르면, 의료 영상 데이터 기반의 지능형 의료 진단 및 진료 시스템이 제공된다. 상기 지능형 의료 진단 및 진료 시스템은 엑스레이 영상, CT 영상, MRI 영상 및 PET 영상으로 이루어진 그룹에서 선택된 어느 하나 이상의 영상을 획득하는 영상 획득부, 의심 질환을 입력하는 의심 질환 입력부, 블록 기반의 인공지능 모델을 이용하여 입력된 상기 의심 질환에 따라 입력된 영상 내 병변의 분석 영역을 각각 설정하여 병변을 맵핑하며, 맵핑된 병변의 위치, 길이, 크기 및 신호 강도 중 어느 하나 이상의 특징 인자를 추출하여 분석하는 영상 분석부, 영상에서 추출된 특징 인자가 표현된 질환별 영상 인자, 질환별 임상 인자, 질환별 치료 및 수술 또는 예후 데이터를 저장 및 제공하는 의료통합 데이터베이스부 및 상기 의료통합 데이터베이스부로부터 제공된 질환별 영상 인자 및 임상 인자를 텍스트 형태로 제공하며, 사용자의 과거 및 현재 상태에 대한 추적 결과를 제공하는 진단 결과 출력부를 포함한다.According to an embodiment of the present invention for solving the above problem, an intelligent medical diagnosis and treatment system based on medical image data is provided. The intelligent medical diagnosis and treatment system includes an image acquisition unit that acquires one or more images selected from the group consisting of an X-ray image, a CT image, an MRI image, and a PET image, a suspect disease input unit that inputs a suspect disease, and a block-based artificial intelligence model. According to the suspicious disease input by using, the lesion is mapped by setting each analysis area of the lesion in the input image, and extracting and analyzing any one or more feature factors from the location, length, size, and signal intensity of the mapped lesion. An image analysis unit, a medical integrated database unit storing and providing disease-specific image factors, disease-specific clinical factors, disease-specific treatment and surgery or prognosis data in which feature factors extracted from images are expressed, and disease-specific data provided from the medical integrated database unit It provides an image factor and a clinical factor in a text format, and includes a diagnosis result output unit that provides a tracking result for the user's past and current state.
또한, 본 발명의 일 실시예에 따르면, 상기 의심 질환은 신경 질환인 것을 특징으로 하는 지능형 의료 진단 및 진료 시스템을 제공한다.In addition, according to an embodiment of the present invention, there is provided an intelligent medical diagnosis and treatment system, wherein the suspected disease is a neurological disease.
또한, 본 발명의 일 실시예에 따르면, 상기 신경 질환은 뇌경색, 동맥경화, 뇌동맥류, 알츠하이머성 치매, 압박 골절 및 디스크로 이루어진 그룹에서 선택된 어느 하나 이상인 것을 특징으로 하는 지능형 의료 진단 및 진료 시스템을 제공한다.In addition, according to an embodiment of the present invention, the neurological disease is an intelligent medical diagnosis and treatment system, characterized in that at least one selected from the group consisting of cerebral infarction, arteriosclerosis, cerebral aneurysm, Alzheimer's dementia, compression fracture, and disc. to provide.
또한, 본 발명의 일 실시예에 따르면, 상기 MRI 영상은 T2 강조 영상(T2 weighted image, T2), 유체 감쇄 반전(Fluid Attenuated Inversion Recovery, FLAIR) 영상, 확산 강조 영상(Diffusion Weighted Image, DWI), 관류 강조 영상(Perfusion Weighted Imaging, PWI), 자기 공명 혈관 조영(Magnetic Resonance Angiography, MRA) 영상 및 3차원 T1 강조 영상(high resolution T1 Weighted 3D Image, 3DT1)을 포함하는 것을 특징으로 하는 지능형 의료 진단 및 진료 시스템을 제공한다.In addition, according to an embodiment of the present invention, the MRI image is a T2 weighted image (T2), a fluid attenuated inversion recovery (FLAIR) image, a diffusion weighted image (DWI), Intelligent medical diagnosis comprising perfusion weighted imaging (PWI), magnetic resonance angiography (MRA) images, and high resolution T1 weighted 3D images (3DT1) and Provide a medical treatment system.
또한, 본 발명의 일 실시예에 따르면, 상기 영상 분석부는 입력된 의심 질환에 따라 입력된 영상 종류를 선택하여 분석한다.In addition, according to an embodiment of the present invention, the image analysis unit selects and analyzes an input image type according to an input suspicious disease.
또한, 입력된 상기 의심 질환이 뇌경색인 경우 CT, T2 강조 영상, 유체 감쇄 반전 영상, 확산 강조 영상 및 관류 강조 영상을 분석 대상 영상으로 하며, 입력된 상기 의심 질환이 동맥경화인 경우 CT 및 자기 공명 혈관 조영 영상을 분석 대상 영상으로 하며, 입력된 상기 의심 질환이 뇌동맥류인 경우 CT 및 자기 공명 혈관 조영 영상을 분석 대상 영상으로 하며, 입력된 상기 의심 질환이 알츠하이머성 치매인 경우 유체 감쇄 반전 영상, 3DT1 강조 영상 및 양전자 방출 단층 촬영 영상(positron emission tomography image, PET)을 분석 대상 영상으로 하며, 입력된 상기 의심 질환이 압박 골절 또는 디스크인 경우 엑스레이 영상을 분석 대상 영상으로 하는 것을 특징으로 하는 지능형 의료 진단 및 진료 시스템을 제공한다.In addition, when the input suspected disease is cerebral infarction, CT, T2-weighted image, fluid attenuation reversal image, diffusion-weighted image, and perfusion-weighted image are images to be analyzed, and when the input suspected disease is arteriosclerosis, CT and magnetic resonance An angiographic image is used as the image to be analyzed, and if the input suspected disease is a cerebral aneurysm, CT and magnetic resonance angiography images are used as the image to be analyzed, and if the input suspected disease is Alzheimer's dementia, a fluid attenuation inversion image, 3DT1 An intelligent medical diagnosis, characterized in that an emphasis image and a positron emission tomography image (PET) are used as an image to be analyzed, and when the input suspected disease is a compression fracture or a disc, an X-ray image is used as an image to be analyzed. And a medical treatment system.
또한, 본 발명의 일 실시예에 따르면, 사용자의 위험 인자 검사, 임상 질환 평가 검사 및 혈액 인자 검사로 이루어진 그룹에서 선택된 어느 하나 이상의 임상 인자를 평가하여 상기 의료통합 데이터베이스부에 제공하는 것을 특징으로 하는 지능형 의료 진단 및 진료 시스템을 제공한다.In addition, according to an embodiment of the present invention, one or more clinical factors selected from the group consisting of a user's risk factor test, a clinical disease evaluation test, and a blood factor test are evaluated and provided to the integrated medical database. Provides an intelligent medical diagnosis and treatment system.
또한, 본 발명의 일 실시예에 따르면, 상기 진단 결과 출력부에서, 상기 사용자의 추적 결과에 따른 치료 및 예후에 대한 상태를 동시에 표기하여 사용자에게 제공하는 것을 특징으로 하는 지능형 의료 진단 및 진료 시스템을 제공한다.In addition, according to an embodiment of the present invention, in the diagnosis result output unit, an intelligent medical diagnosis and treatment system, characterized in that the condition for treatment and prognosis according to the user's tracking result is simultaneously displayed and provided to the user. to provide.
또한, 본 발명의 일 실시예에 따르면, 상기 질환별 영상 인자를 검색 인덱스로 사용하여, 상기 질환과 유사한 영상 인자를 검색하여 유사 영상 인자 질환의 임상 인자, 치료, 수술 및 예후 데이터를 상기 진단 결과 출력부에 제공하는 임상 증례 검색부를 포함하는 것을 특징으로 하는 지능형 의료 진단 및 진료 시스템을 제공한다.In addition, according to an embodiment of the present invention, by using the image factor for each disease as a search index, by searching for an image factor similar to the disease, clinical factors, treatment, surgery, and prognosis data of the similar image factor disease are obtained as a result of the diagnosis. It provides an intelligent medical diagnosis and treatment system comprising a clinical case search unit provided to the output unit.
또한, 본 발명의 일 실시예에 따르면, 상기 질환별 영상 인자 및 검색된 유사 질환 영상 인자의 차이점을 제공하는 것을 특징으로 하는 지능형 의료 진단 및 진료 시스템을 제공한다.In addition, according to an embodiment of the present invention, there is provided an intelligent medical diagnosis and treatment system, characterized in that the difference between the image factor for each disease and the searched image factor for a similar disease is provided.
상기한 문제를 해결하기 위한 본 발명의 일 실시예에 따르면, 엑스레이 영상, CT 영상, MRI 영상 및 PET 영상으로 이루어진 그룹에서 선택된 어느 하나 이상의 영상을 획득하는 영상 획득부, 의심 질환을 입력하는 의심 질환 입력부, 상기 영상 획득부로부터 획득된 영상 중 어느 하나의 영상을 분석하여 병변의 위치, 길이, 크기 및 신호 강도 중 어느 하나 이상의 특징 인자를 추출하여 분석하며, 분석된 상기 특징 인자를 기반으로 다른 영상을 분석하여 병변의 특징 인자를 재추출하여 분석하는 영상 분석부 및 분석된 병변의 발생 영역, 위치, 크기, 상기 발생 영역 대비 병변의 크기 및 신호 강도 중 어느 하나 이상을 출력하는 진단결과 출력부를 포함하는 인공지능 기반 커리큘럼 학습 방법을 이용한 의료 영상 처리 시스템이 제공된다.According to an embodiment of the present invention for solving the above problem, an image acquisition unit that acquires one or more images selected from the group consisting of an X-ray image, a CT image, an MRI image, and a PET image, and a suspected disease inputting a suspected disease An input unit and an image obtained from the image acquisition unit are analyzed to extract and analyze any one or more of the location, length, size, and signal strength of the lesion, and other images based on the analyzed feature factors. An image analysis unit that analyzes and re-extracts and analyzes the characteristic factors of the lesion, and a diagnosis result output unit that outputs at least one of the occurrence region, location, size, size of the lesion relative to the occurrence region, and signal intensity of the analyzed lesion. A medical image processing system using an artificial intelligence-based curriculum learning method is provided.
또한, 본 발명의 일 실시예에 따르면, 상기 영상 분석부는, 상기 영상 획득부로부터 획득된 각 영상들을 영상별 기준 영상을 이용하여 주요 뇌 영역들을 인식하여 분할하며, 분할된 영역별로 병변의 특징 인자를 추출하여 분석하는 것을 특징으로 하는 인공지능 기반 커리큘럼 학습 방법을 이용한 의료 영상 처리 시스템을 제공한다.In addition, according to an embodiment of the present invention, the image analysis unit recognizes and divides each image obtained from the image acquisition unit by using a reference image for each image, and a characteristic factor of the lesion for each segmented area Provides a medical image processing system using an artificial intelligence-based curriculum learning method characterized by extracting and analyzing.
또한, 본 발명의 일 실시예에 따르면, 상기 영상 분석부는 획득된 각 영상들 중 병변의 확인이 용이한 영상을 선택하여 상기 특징 인자를 분석하고, 이후 다른 영상을 선택하여 상기 특징 인자를 분석하며, 마지막에 최초로 분석한 병변의 확인이 용이한 영상을 선택하여 상기 특징 인자를 더 분석하는 것을 특징으로 하는 인공지능 기반 커리큘럼 학습 방법을 이용한 의료 영상 처리 시스템을 제공한다.In addition, according to an embodiment of the present invention, the image analysis unit analyzes the feature factor by selecting an image that facilitates lesion identification among the acquired images, and then selects another image to analyze the feature factor. At the end, it provides a medical image processing system using an artificial intelligence-based curriculum learning method, characterized in that the feature factor is further analyzed by selecting an image that is easy to confirm the lesion first analyzed.
또한, 본 발명의 일 실시예에 따르면, 상기 MRI 영상은 확산 강조 영상(Diffusion Weighted Image, DWI), ADC 맵(apparent diffusion coefficient map, ADC map), 유체 감쇄 반전(Fluid Attenuated Inversion Recovery, FLAIR) 영상, T2 강조 영상(T2 weighted image, T2), 관류 강조 영상(Perfusion Weighted Imaging, PWI), 자기 공명 혈관 조영(Magnetic Resonance Angiography, MRA) 영상 및 3차원 T1 강조 영상(high resolution T1 Weighted 3D Image, 3DT1)으로 이루어진 그룹에서 선택된 어느 하나 이상을 포함하는 것을 특징으로 하는 인공지능 기반 커리큘럼 학습 방법을 이용한 의료 영상 처리 시스템을 제공한다.In addition, according to an embodiment of the present invention, the MRI image is a diffusion weighted image (DWI), an apparent diffusion coefficient map (ADC map), and a fluid attenuated inversion recovery (FLAIR) image. , T2 weighted image (T2), Perfusion Weighted Imaging (PWI), Magnetic Resonance Angiography (MRA) image, and high resolution T1 Weighted 3D Image, 3DT1 It provides a medical image processing system using an artificial intelligence-based curriculum learning method, characterized in that it includes any one or more selected from the group consisting of ).
또한, 본 발명의 일 실시예에 따르면, 상기 영상 분석부는, 상기 의심 질환이 뇌경색인 경우, 획득된 각 영상들 중 뇌경색 병변의 확인이 용이한 상기 확산 강조 영상(DWI)을 최초로 선택하여 상기 특징 인자를 분석하고, 이후 상기 ADC 맵을 선택하여 상기 특징 인자를 분석하며, 이후 상기 유체 감쇄 반전(FLAIR) 영상을 선택하여 상기 특징 인자를 분석하며, 이후 상기 CT 영상을 선택하여 상기 특징 인자를 분석하며, 마지막에 최초로 선택한 상기 확산 강조 영상(DWI)을 재선택하여 상기 특징 인자를 분석하는 것을 특징으로 하는 인공지능 기반 커리큘럼 학습 방법을 이용한 의료 영상 처리 시스템을 제공한다.In addition, according to an embodiment of the present invention, when the suspected disease is a cerebral infarction, the image analysis unit first selects the diffusion-enhanced image (DWI) for easy identification of a cerebral infarct lesion among acquired images, After analyzing the factor, the ADC map is selected to analyze the characteristic factor, the fluid attenuation inversion (FLAIR) image is selected to analyze the characteristic factor, and the CT image is then selected to analyze the characteristic factor. And, it provides a medical image processing system using an artificial intelligence-based curriculum learning method, characterized in that the feature factor is analyzed by reselecting the firstly selected diffusion-weighted image (DWI).
또한, 상기한 문제를 해결하기 위한 본 발명의 일 실시예에 따르면, 인공지능 기반 커리큘럼 학습 방법을 이용한 지능형 의료 진단 및 진료 시스템이 제공된다. 상기 지능형 의료 진단 및 진료 시스템은 엑스레이 영상, CT 영상, MRI 영상 및 PET 영상으로 이루어진 그룹에서 선택된 어느 하나 이상의 영상을 획득하는 영상 획득부, 의심 질환을 입력하는 의심 질환 입력부, 블록 기반의 인공지능 모델을 이용하여 입력된 상기 의심 질환에 따라 입력된 영상 중 어느 하나의 영상을 분석하여 병변의 위치, 길이, 크기 및 신호 강도 중 어느 하나 이상의 특징 인자를 추출하여 분석하며, 분석된 상기 특징 인자를 기반으로 다른 영상을 분석하여 병변의 특징 인자를 재추출하여 분석하는 영상 분석부, 영상에서 추출된 특징 인자가 표현된 질환별 영상 인자, 질환별 임상 인자, 질환별 치료 및 수술 또는 예후 데이터를 저장 및 제공하는 의료통합 데이터베이스부 및 상기 의료통합 데이터베이스부로부터 제공된 질환별 영상 인자 및 임상 인자를 텍스트 형태로 제공하며, 사용자의 과거 및 현재 상태에 대한 추적 결과를 제공하는 진단 결과 출력부를 포함한다.In addition, according to an embodiment of the present invention for solving the above problem, an intelligent medical diagnosis and treatment system using an artificial intelligence-based curriculum learning method is provided. The intelligent medical diagnosis and treatment system includes an image acquisition unit that acquires one or more images selected from the group consisting of an X-ray image, a CT image, an MRI image, and a PET image, a suspect disease input unit that inputs a suspect disease, and a block-based artificial intelligence model. By analyzing any one of the input images according to the suspicious disease input by using, extract and analyze any one or more of the location, length, size, and signal strength of the lesion, and based on the analyzed feature factors. An image analysis unit that analyzes other images and re-extracts and analyzes the characteristic factors of the lesion, image factors for each disease, clinical factors for each disease, treatment and surgery or prognosis data for each disease, and And a diagnosis result output unit that provides an integrated medical database unit and image factors and clinical factors for each disease provided from the integrated medical database unit in a text format, and provides a tracking result of a user's past and present conditions.
또한, 본 발명의 일 실시예에 따르면, 상기 의심 질환은 뇌경색, 동맥경화, 뇌동맥류, 알츠하이머성 치매, 압박 골절 및 디스크로 이루어진 그룹에서 선택된 어느 하나 이상인 것을 특징으로 하는 지능형 의료 진단 및 진료 시스템을 제공한다.In addition, according to an embodiment of the present invention, the suspected disease is an intelligent medical diagnosis and treatment system, characterized in that at least one selected from the group consisting of cerebral infarction, arteriosclerosis, cerebral aneurysm, Alzheimer's dementia, compression fracture, and disc. to provide.
또한, 본 발명의 일 실시예에 따르면, 사용자의 위험 인자 검사, 임상 질환 평가 검사 및 혈액 인자 검사로 이루어진 그룹에서 선택된 어느 하나 이상의 임상 인자를 평가하여 상기 의료통합 데이터베이스부에 제공하는 것을 특징으로 하는 지능형 의료 진단 및 진료 시스템을 제공한다.In addition, according to an embodiment of the present invention, one or more clinical factors selected from the group consisting of a user's risk factor test, a clinical disease evaluation test, and a blood factor test are evaluated and provided to the integrated medical database. Provides an intelligent medical diagnosis and treatment system.
또한, 본 발명의 일 실시예에 따르면, 상기 진단 결과 출력부에서, 상기 사용자의 추적 결과에 따른 치료 및 예후에 대한 상태를 동시에 표기하여 사용자에게 제공하는 것을 특징으로 하는 지능형 의료 진단 및 진료 시스템을 제공한다.In addition, according to an embodiment of the present invention, in the diagnosis result output unit, an intelligent medical diagnosis and treatment system, characterized in that the condition for treatment and prognosis according to the user's tracking result is simultaneously displayed and provided to the user. to provide.
또한, 본 발명의 일 실시예에 따르면, 상기 질환별 영상 인자를 검색 인덱스로 사용하여, 상기 질환과 유사한 영상 인자를 검색하여 유사 영상 인자 질환의 임상 인자, 치료, 수술 및 예후 데이터와, 상기 질환별 영상 인자 및 검색된 유사 질환 영상 인자의 차이점을 상기 진단 결과 출력부에 제공하는 임상 증례 검색부를 포함하는 것을 특징으로 하는 지능형 의료 진단 및 진료 시스템을 제공한다.In addition, according to an embodiment of the present invention, the disease-specific image factor is used as a search index, and the image factor similar to the disease is searched to provide clinical factors, treatment, surgery, and prognosis data of the disease-like image factor, and the disease. It provides an intelligent medical diagnosis and treatment system comprising a clinical case search unit that provides a difference between the respective image factor and the searched similar disease image factor to the diagnosis result output unit.
본 발명에 따르면, 지능형 의료 진단 및 진료 시스템에 있어서, 블록 기반 유연한 AI 모델을 이용하여 특정 질환을 타겟으로 하는 것이 아닌 다양한 질환에 적용이 가능하다.According to the present invention, in an intelligent medical diagnosis and treatment system, it is possible to apply a block-based flexible AI model to various diseases rather than targeting a specific disease.
또한, 본 발명에 따르면, 담당 의료진의 진료에 앞서, 사용자인 환자의 병변을 촬영한 각종 영상 및 임상 결과를 분석하여 분석 결과를 의료진에게 제공하고, 분석한 영상의 특징 인자를 추출하여 유사 환자의 데이터를 검색하여 유사 환자와의 차이점, 유사 환자의 임상, 치료, 수술 및 예후 데이터를 진료 전에 분석 및 제공하여, 짧은 진료시간 내에 효율적인 진단 및 진료가 가능하다.In addition, according to the present invention, prior to treatment by the medical staff in charge, various images and clinical results of the lesions of the user, which are the user, are analyzed to provide the analysis results to the medical staff, and feature factors of the analyzed images are extracted to By searching for data, it is possible to analyze and provide differences between similar patients and clinical, treatment, surgery and prognosis data of similar patients before treatment, enabling efficient diagnosis and treatment within a short treatment time.
본 발명에 따르면, 지능형 의료 진단 및 진료 시스템에 있어서, 블록 기반 유연한 AI 모델을 이용하여 특정 질환을 타겟으로 하는 것이 아닌 다양한 질환에 적용이 가능하다.According to the present invention, in an intelligent medical diagnosis and treatment system, it is possible to apply a block-based flexible AI model to various diseases rather than targeting a specific disease.
또한, 본 발명에 따르면, 담당 의료진의 진료에 앞서, 사용자인 환자의 병변을 촬영한 각종 영상 및 임상 결과를 분석하여 분석 결과를 의료진에게 제공하고, 분석한 영상의 특징 인자를 추출하여 유사 환자의 데이터를 검색하여 유사 환자와의 차이점, 유사 환자의 임상, 치료, 수술 및 예후 데이터를 진료 전에 분석 및 제공하여, 짧은 진료시간 내에 효율적인 진단 및 진료가 가능하다.In addition, according to the present invention, prior to treatment by the medical staff in charge, various images and clinical results of the lesions of the user, which are the user, are analyzed to provide the analysis results to the medical staff, and feature factors of the analyzed images are extracted to By searching for data, it is possible to analyze and provide differences between similar patients and clinical, treatment, surgery and prognosis data of similar patients before treatment, enabling efficient diagnosis and treatment within a short treatment time.
또한, 본 발명에 따르면, 인공지능 기법을 활용하여 획득된 복수의 영상들 중 질환의 종류에 따라 가장 병변의 특징이 잘 나타나는 영상 자료부터 분석 및 학습하고, 분석 및 학습된 병변 정보를 다음 영상 자료의 분석시 축적 전달하여, 대상 질환을 보다 더 정확하게 진단할 수 있도록 학습 효율을 극대화하는 인공지능 기반의 커리큘럼 학습 방법을 이용하여 효과적인 반복 학습에 따라 병변을 가장 잘 발견할 수 있다.In addition, according to the present invention, among a plurality of images acquired using artificial intelligence techniques, the image data that shows the most characteristic of the lesion according to the type of disease are analyzed and learned, and the analyzed and learned lesion information is converted to the next image data. By using the curriculum learning method based on artificial intelligence that maximizes the learning efficiency so that the target disease can be diagnosed more accurately by accumulating and transmitting during the analysis of, lesions can best be found through effective iterative learning.
도 1은 종래의 의료 진단 및 진료 시스템을 설명하기 위한 순서도이다.1 is a flowchart illustrating a conventional medical diagnosis and treatment system.
도 2는 본 발명의 일 실시예에 따른 인공지능 기반 커리큘럼 학습 방법을 이용한 의료 영상 처리 시스템, 지능형 의료 진단 및 진료 시스템 및 블록 기반 유연한 AI 모델을 이용한 지능형 의료 진단 및 진료 시스템을 설명하기 위한 구성도이다.FIG. 2 is a block diagram illustrating a medical image processing system using an artificial intelligence-based curriculum learning method, an intelligent medical diagnosis and treatment system, and an intelligent medical diagnosis and treatment system using a block-based flexible AI model according to an embodiment of the present invention. to be.
도 3은 본 발명의 일 실시예에 따른 인공지능 기반 커리큘럼 학습 방법을 이용한 의료 영상 처리 시스템을 설명하기 위한 블록도이다.3 is a block diagram illustrating a medical image processing system using an artificial intelligence-based curriculum learning method according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 블록 기반 유연한 인공지능 모델을 적용하여 영상의 특징 인자를 추출하여 분석하는 영상 분석부를 설명하기 위한 블록도이다.4 is a block diagram illustrating an image analysis unit that extracts and analyzes a feature factor of an image by applying a block-based flexible artificial intelligence model according to an embodiment of the present invention.
본 발명의 일 실시예에 따르면, 의료 영상 데이터 기반의 지능형 의료 진단 및 진료 시스템이 제공된다. 상기 지능형 의료 진단 및 진료 시스템은 엑스레이 영상, CT 영상, MRI 영상 및 PET 영상으로 이루어진 그룹에서 선택된 어느 하나 이상의 영상을 획득하는 영상 획득부, 의심 질환을 입력하는 의심 질환 입력부, 블록 기반의 인공지능 모델을 이용하여 입력된 상기 의심 질환에 따라 입력된 영상 내 병변의 분석 영역을 각각 설정하여 병변을 맵핑하며, 맵핑된 병변의 위치, 길이, 크기 및 신호 강도 중 어느 하나 이상의 특징 인자를 추출하여 분석하는 영상 분석부, 영상에서 추출된 특징 인자가 표현된 질환별 영상 인자, 질환별 임상 인자, 질환별 치료 및 수술 또는 예후 데이터를 저장 및 제공하는 의료통합 데이터베이스부 및 상기 의료통합 데이터베이스부로부터 제공된 질환별 영상 인자 및 임상 인자를 텍스트 형태로 제공하며, 사용자의 과거 및 현재 상태에 대한 추적 결과를 제공하는 진단 결과 출력부를 포함한다.According to an embodiment of the present invention, an intelligent medical diagnosis and treatment system based on medical image data is provided. The intelligent medical diagnosis and treatment system includes an image acquisition unit that acquires one or more images selected from the group consisting of an X-ray image, a CT image, an MRI image, and a PET image, a suspect disease input unit that inputs a suspect disease, and a block-based artificial intelligence model. According to the suspicious disease input by using, the lesion is mapped by setting each analysis area of the lesion in the input image, and extracting and analyzing any one or more feature factors from the location, length, size, and signal intensity of the mapped lesion. An image analysis unit, a medical integrated database unit storing and providing disease-specific image factors, disease-specific clinical factors, disease-specific treatment and surgery or prognosis data in which feature factors extracted from images are expressed, and disease-specific data provided from the medical integrated database unit It provides an image factor and a clinical factor in a text format, and includes a diagnosis result output unit that provides a tracking result for the user's past and current state.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 게시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 게시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려 주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention, and a method of achieving them will become apparent with reference to the embodiments described below in detail together with the accompanying drawings. However, the present invention is not limited to the embodiments to be posted below, but may be implemented in a variety of different forms, and only these embodiments make the posting of the present invention complete, and common knowledge in the technical field to which the present invention pertains. It is provided to completely inform the scope of the invention to the possessor, and the invention is only defined by the scope of the claims. The same reference numerals refer to the same elements throughout the specification.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다. 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다.Unless otherwise defined, all terms (including technical and scientific terms) used in the present specification may be used with meanings that can be commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in a commonly used dictionary are not interpreted ideally or excessively unless explicitly defined specifically. The terms used in the present specification are for describing exemplary embodiments and are not intended to limit the present invention. In this specification, the singular form also includes the plural form unless specifically stated in the phrase.
또한, 본 명세서에서 사용되는 포함한다(comprise) 및/또는 포함하는(comprise) 이란 용어는 언급한 형상들, 숫자, 단계, 부재, 요소 및 또는 이들의 그룹의 존재를 특정하는 것이며, 언급되지 않은 다른 형상, 숫자, 동작, 부재, 요소 및/또는 그룹들의 존재 또는 부가를 배제하고자 하는 것이 아니다.In addition, the terms "comprise" and/or "comprise" as used herein specify the presence of the mentioned shapes, numbers, steps, members, elements and or groups thereof, and are not mentioned. It is not intended to exclude the presence or addition of other shapes, numbers, actions, members, elements and/or groups.
또한 다른 형상에 인접하여(adjacent) 배치된 구조 또는 형상은 인접하는 형상에 중첩되거나 하부에 배치되는 부분을 가질 수 있다.In addition, a structure or shape arranged adjacent to another shape may have a portion disposed below or overlapping with the adjacent shape.
본 명세서에서 아래로(below), 위로(above), 상부의(upper), 하부의(lower), 수평의(horizontal) 또는 수직의(vertical)와 같은 상대적 용어들은 도면들 상에서 도시된 바와 같이, 일 구성 부재, 층 또는 영역들이 다른 구성 부재, 층 또는 영역과 갖는 관계를 기술하기 위하여 사용될 수 있다. 이들 용어들은 도면들에 표시된 방향 뿐만 아니라 장치의 다른 방향들도 포괄한다.Relative terms such as below, above, upper, lower, horizontal or vertical in this specification are as shown in the figures, It may be used to describe the relationship one constituent member, layer, or region has with another constituent member, layer or region. These terms encompass not only the orientation indicated in the figures, but also other orientations of the device.
이하에서, 본 발명의 실시예들은 본 발명의 이상적인 실시예들(및 중간구조 들)을 개략적으로 도시하는 단면도들을 참조하여 설명된다. 이들 도면들에 있어서 예를 들면, 부재들의 크기와 형상은 설명의 편의와 명확성을 위하여 과장될 수 있으며, 실제 구현시, 도시된 형상의 변형들이 예상될 수 있다. 따라서, 본 발명의 실시예는 본 명세서에 도시된 영역의 특정 형상으로 한정되지 아니한다.In the following, embodiments of the present invention are described with reference to cross-sectional views schematically showing ideal embodiments (and intermediate structures) of the present invention. In these drawings, for example, the size and shape of the members may be exaggerated for convenience and clarity of description, and in actual implementation, variations of the illustrated shape may be expected. Accordingly, embodiments of the present invention are not limited to the specific shape of the region shown in the present specification.
도 1은 종래의 의료 진단 및 진료 시스템을 설명하기 위한 순서도이다.1 is a flowchart illustrating a conventional medical diagnosis and treatment system.
현재의 대학병원의 일반적인 외래 진료를 예를 들어보면, 먼저 환자의 필요한 의료 영상 검사 및 임상 증상 검사 등의 검사를 사전에 완료한 후 검사 결과를 듣기 위해서 진료실로 입장하며, 해당 진료 의사는 환자의 차트를 이때 열어보고 환자의 상태에 대해서 확인한다.Taking the general outpatient treatment of the current university hospital, for example, first, after completing the tests such as necessary medical imaging tests and clinical symptom tests of the patient in advance, the doctor enters the clinic to hear the test results. Open the chart at this time and check the patient's condition.
일반적으로 환자는 의사가 검사 결과와 치료 계획에 대해서 사전에 인지하고 있다고 생각할 수 있지만 실제로는 해당 환자의 진료시에 확인하게 된다. 이후, 의사는 검사 결과를 바탕으로 환자에게 해당 질환과 치료 계획을 설명한다. 이때 검사 결과는 임상 결과 수치 또는 영상 검사 결과를 구두로 전달하며, 보다 구체적인 설명이 필요하다고 판단되면 메모지에 그림을 통해서 설명을 한다. 만약 추적 관리 환자의 진료인 경우 환자의 상태가 악화되었다면 담당 의사는 해당 원인을 찾고 적합한 치료 방법으로 변경을 해야 한다.In general, the patient may think that the doctor is aware of the test result and treatment plan in advance, but in reality, it is checked at the time of the patient's treatment. After that, the doctor explains the disease and treatment plan to the patient based on the test results. At this time, the test results are communicated orally with the clinical results or imaging test results, and if more detailed explanation is determined, the explanation is made through pictures on a memo pad. If the patient's condition deteriorates in the case of follow-up care, the doctor in charge should find the cause and change to an appropriate treatment method.
결론적으로 담당 의료진은 짧은 진료시간 내에 만족할 만한 설명을 하지 못하게 되고, 환자는 짧은 진료시간 내에 만족할 만한 설명을 듣지 못하게 된다.In conclusion, the medical staff in charge cannot provide a satisfactory explanation within a short treatment time, and the patient does not receive a satisfactory explanation within a short treatment time.
도 2는 본 발명의 일 실시예에 따른 인공지능 기반 커리큘럼 학습 방법을 이용한 의료 영상 처리 시스템, 지능형 의료 진단 및 진료 시스템 및 블록 기반 유연한 AI 모델을 이용한 지능형 의료 진단 및 진료 시스템을 설명하기 위한 구성도이다. 도 3은 본 발명의 일 실시예에 따른 인공지능 기반 커리큘럼 학습 방법을 이용한 의료 영상 처리 시스템을 설명하기 위한 블록도이다. 도 4는 본 발명의 일 실시예에 따른 블록 기반 유연한 인공지능 모델을 적용하여 영상의 특징 인자를 추출하여 분석하는 영상 분석부를 설명하기 위한 블록도이다.FIG. 2 is a block diagram illustrating a medical image processing system using an artificial intelligence-based curriculum learning method, an intelligent medical diagnosis and treatment system, and an intelligent medical diagnosis and treatment system using a block-based flexible AI model according to an embodiment of the present invention. to be. 3 is a block diagram illustrating a medical image processing system using an artificial intelligence-based curriculum learning method according to an embodiment of the present invention. 4 is a block diagram illustrating an image analysis unit that extracts and analyzes a feature factor of an image by applying a block-based flexible artificial intelligence model according to an embodiment of the present invention.
도 2 내지 도 4를 참조하여 본 발명의 인공지능 기반 커리큘럼 학습 방법을 이용한 의료 영상 처리 시스템, 지능형 의료 진단 및 진료 시스템 및 블록 기반 유연한 AI 모델을 이용한 지능형 의료 진단 및 진료 시스템을 상세히 설명하도록 한다.With reference to FIGS. 2 to 4, a medical image processing system using an artificial intelligence-based curriculum learning method, an intelligent medical diagnosis and treatment system, and an intelligent medical diagnosis and treatment system using a block-based flexible AI model will be described in detail.
본 발명의 의료 진단 및 진료 시스템은 의료 영상 데이터 기반의 지능형 의료 진단 및 진료 시스템으로서, 영상 획득부(100), 의심 질환 입력부(200), 영상 분석부(300), 의료통합 데이터베이스부(400) 및 진단 결과 출력부(500)를 포함한다.The medical diagnosis and treatment system of the present invention is an intelligent medical diagnosis and treatment system based on medical image data, and includes an image acquisition unit 100, a suspected disease input unit 200, an image analysis unit 300, and a medical integrated database unit 400. And a diagnosis result output unit 500.
상기 영상 획득부(100)는 엑스레이 영상, CT 영상, MRI 영상 및 PET 영상으로 이루어진 그룹에서 선택된 어느 하나 이상의 영상을 획득한다.The image acquisition unit 100 acquires one or more images selected from the group consisting of an X-ray image, a CT image, an MRI image, and a PET image.
상기 의심 질환 입력부(200)는 의심 질환을 입력한다. 본 발명의 일 실시예에 따른 의료 진단 및 진료 시스템에 있어서, 분석 대상 질환은 구체적으로 신경 질환을 타겟으로 할 수 있다. 예를 들어, 상기 신경 질환은 뇌경색, 동맥경화, 뇌동맥류, 알츠하이머성 치매, 압박 골절 및 디스크로 이루어진 그룹에서 선택된 어느 하나 이상일 수 있다.The suspected disease input unit 200 inputs a suspected disease. In the medical diagnosis and treatment system according to an embodiment of the present invention, the disease to be analyzed may specifically target a neurological disease. For example, the neurological disease may be any one or more selected from the group consisting of cerebral infarction, arteriosclerosis, cerebral aneurysm, Alzheimer's dementia, compression fracture, and disc.
분석 대상 질환이 뇌경색, 동맥경화, 뇌동맥류, 알츠하이머성 치매인 경우, 상기 영상 획득부(100)에서 획득하는 영상은 CT 영상, MRI 영상 내지 PET 영상일 수 있고, 분석 대상 질환이 압박 골절 내지 디스크인 경우, 상기 영상 획득부(100)에서 획득하는 영상은 엑스레이 영상일 수 있다.When the disease to be analyzed is cerebral infarction, arteriosclerosis, cerebral aneurysm, or Alzheimer's dementia, the image acquired by the image acquisition unit 100 may be a CT image, an MRI image or a PET image, and the disease to be analyzed is a compression fracture or a disc. In the case of, the image acquired by the image acquisition unit 100 may be an X-ray image.
상기 영상 분석부(300)는 블록 기반의 인공지능 모델을 이용하여 입력된 상기 의심 질환에 따라 입력된 영상 내 병변의 분석 영역을 각각 설정하여 병변을 맵핑한다. 상기 영상 분석부(300)에서 맵핑된 병변의 위치, 길이, 크기 및 신호 강도 중 어느 하나 이상의 특징 인자를 추출하여 분석한다.The image analysis unit 300 maps the lesions by respectively setting analysis regions of lesions in the input image according to the input suspicious disease using a block-based artificial intelligence model. The image analysis unit 300 extracts and analyzes one or more feature factors from among the location, length, size, and signal intensity of the mapped lesion.
상기 신경 질환은 뇌경색, 동맥경화, 뇌동맥류, 알츠하이머성 치매, 압박 골절 및 디스크로 이루어진 그룹에서 선택된 어느 하나 이상일 수 있다.The neurological disease may be any one or more selected from the group consisting of cerebral infarction, arteriosclerosis, cerebral aneurysm, Alzheimer's dementia, compression fracture, and disc.
도 2 및 도 4를 참조하면, 상기 영상 분석부(300)는 입력된 의심 질환에 따라 입력된 영상 종류를 선택하여 분석한다.2 and 4, the image analysis unit 300 selects and analyzes an input image type according to an input suspicious disease.
상기 영상 분석부(300)는 블록 기반의 유연한 인공지능 모델(Block-based Flexible AI Model)을 사용하여 특정 질환을 타켓하는 것이 아닌 다양한 질환에 적용이 가능하며, 확장성이 우수하다.The image analysis unit 300 can be applied to various diseases rather than targeting a specific disease by using a block-based flexible AI model, and has excellent scalability.
상기 블록 기반의 유연한 인공지능 모델을 사용함으로써, 상기 영상 분석부(300)는 해당 질환에 대한 데이터만 입력해주면 해당 의료 환경과 목적에 따라 최적의 학습 방법이 추천이 되며, 블록 형태의 알고리즘 조합 기법을 활용하여 누구나 쉽게 유연한 인공지능 모델을 만들 수 있다. 특정 질환용 완성 시스템이 아니므로 추가 질환의 확장이 매우 유연하며 그에 따른 범용성이 매우 뛰어나다. 또한, 외부 유출이 아닌 의료 기관 내부에서 모든 분석이 이루어지므로 의료 데이터의 보안 문제는 발생하지 않는다.By using the block-based flexible artificial intelligence model, the image analysis unit 300 recommends an optimal learning method according to the medical environment and purpose if only data on the disease is inputted, and a block-type algorithm combination technique Anyone can easily create a flexible artificial intelligence model by using. Since it is not a complete system for specific diseases, the expansion of additional diseases is very flexible and its versatility is very good. In addition, since all analysis is performed inside the medical institution, not outside the leak, there is no security problem of medical data.
본 발명의 의료 진단 및 진료 시스템에 있어서, 상기 영상 분석부(300)는 입력된 의심 질환에 따라 입력된 영상 종류를 선택하여 분석하며, 예를 들어, 입력된 상기 의심 질환이 뇌경색인 경우 CT, T2 강조 영상, 유체 감쇄 반전 영상, 확산 강조 영상 및 관류 강조 영상을 분석 대상 영상으로 할 수 있다.In the medical diagnosis and treatment system of the present invention, the image analysis unit 300 selects and analyzes an input image type according to the input suspicious disease. For example, if the input suspicious disease is a cerebral infarction, the CT, The T2-weighted image, the fluid attenuated inversion image, the diffusion-weighted image, and the perfusion-weighted image can be used as an analysis target image.
예를 들어, 입력된 상기 의심 질환이 동맥경화인 경우 CT 및 자기 공명 혈관 조영 영상을 분석 대상 영상으로 할 수 있다. 예를 들어, 입력된 상기 의심 질환이 뇌동맥류인 경우 CT 및 자기 공명 혈관 조영 영상을 분석 대상 영상으로 할 수 있다. 예를 들어, 입력된 상기 의심 질환이 알츠하이머성 치매인 경우 유체 감쇄 반전 영상, 3DT1 강조 영상 및 양전자 방출 단층 촬영 영상(positron emission tomography image, PET)을 분석 대상 영상으로 할 수 있다. 예를 들어, 입력된 상기 의심 질환이 압박 골절 또는 디스크인 경우 엑스레이 영상을 분석 대상 영상으로 할 수 있다.For example, when the input suspicious disease is arteriosclerosis, CT and magnetic resonance angiography images may be used as an image to be analyzed. For example, when the input suspicious disease is a cerebral aneurysm, CT and magnetic resonance angiography images may be used as an image to be analyzed. For example, when the input suspicious disease is Alzheimer's dementia, a fluid attenuation inversion image, a 3DT1 weighted image, and a positron emission tomography image (PET) may be used as an image to be analyzed. For example, when the input suspicious disease is a compression fracture or a disc, an X-ray image may be used as an image to be analyzed.
상기 영상 분석부(300)는 상기 영상 획득부(100)로부터 획득된 영상 중 어느 하나의 영상을 분석하여 병변의 위치, 길이, 크기 및 신호 강도 중 어느 하나 이상의 특징 인자를 추출하여 분석하며, 이후에 순차적으로 분석된 상기 특징 인자를 기반으로 다른 영상을 분석하여 병변의 특징 인자를 재추출하여 분석한다.The image analysis unit 300 analyzes any one of the images acquired from the image acquisition unit 100 to extract and analyze any one or more of the location, length, size, and signal strength of the lesion, and then Another image is analyzed based on the feature factors sequentially analyzed in, and the feature factors of the lesion are re-extracted and analyzed.
즉, 상기 영상 분석부(300)에서 최초로 선택되어 분석되는 영상은 상기 의심 질환에 따라 병변이 가장 잘 확인되는 영상 기법을 선택하여 학습을 진행하며, 이에 따라 학습 난이도가 상대적으로 가장 낮은 것부터 학습을 진행하여 학습 효율을 극대화시킬 수 있다.That is, the image first selected and analyzed by the image analysis unit 300 is learned by selecting an image technique in which a lesion is best identified according to the suspicious disease, and accordingly, learning is performed from the lowest learning difficulty. You can maximize the learning efficiency by proceeding.
이후, 학습 난이도가 그 후순위로 낮은 영상 기법을 선택하여 순차적으로 학습을 진행하여 선행하여 분석된 영상 기법에 따라 확인된 병변의 특징을 후행 분석의 진행시 전달하여 보다 정확하게 대상 질환을 진단할 수 있다.Thereafter, an imaging technique with a lower learning difficulty level is selected and learning is performed sequentially, and the characteristics of the lesion identified according to the previously analyzed imaging technique are transmitted during the subsequent analysis, so that the target disease can be diagnosed more accurately. .
영상 분석부(300)에서 분석되는 최후의 영상은 최초로 선택되어 분석된 영상을 재선택하여 한번 더 분석을 진행한다. 이는 대상 질환을 가장 잘 진단할 수 있는 영상 기법을 한번 더 학습하여, 인공지능 모델에서의 특징 학습 능력 및 데이터의 손실을 최소화하기 위한 것이며, 대상 질환 병변의 가장 핵심적인 특징을 한번 더 학습하여 기억하도록 하기 위한 것이다. 즉, 반복적인 학습에 따라 분석 결과가 변형되거나 왜곡될 수 있는 문제를 최소화할 수 있다.The last image analyzed by the image analysis unit 300 is selected for the first time, and the analyzed image is reselected to perform analysis once more. This is to minimize the loss of feature learning ability and data in the AI model by learning the imaging technique that can best diagnose the target disease once more, and learn and remember the most important features of the target disease lesion once more. It is to do. That is, it is possible to minimize a problem in which analysis results may be deformed or distorted according to repetitive learning.
예를 들어, 상기 MRI 영상은 확산 강조 영상(Diffusion Weighted Image, DWI), ADC 맵(apparent diffusion coefficient map, ADC map), 유체 감쇄 반전(Fluid Attenuated Inversion Recovery, FLAIR) 영상, T2 강조 영상(T2 weighted image, T2), 관류 강조 영상(Perfusion Weighted Imaging, PWI), 자기 공명 혈관 조영(Magnetic Resonance Angiography, MRA) 영상 및 3차원 T1 강조 영상(high resolution T1 Weighted 3D Image, 3DT1)으로 이루어진 그룹에서 선택된 어느 하나 이상을 포함할 수 있다.For example, the MRI image is a diffusion weighted image (DWI), an apparent diffusion coefficient map (ADC map), a fluid attenuated inversion recovery (FLAIR) image, and a T2 weighted image (T2 weighted image). image, T2), Perfusion Weighted Imaging (PWI), Magnetic Resonance Angiography (MRA) image, and 3D T1 weighted image (high resolution T1 Weighted 3D Image, 3DT1). It may contain more than one.
예를 들어, 도 3을 참조하면, 상기 영상 분석부(300)는, 상기 의심 질환이 뇌경색인 경우, 획득된 각 영상들 중 첫번째로, 뇌경색 병변의 확인이 용이한 상기 확산 강조 영상(DWI)을 최초로 선택하여 상기 특징 인자를 분석하고, 이후 두번째로, 상기 ADC 맵을 선택하여 상기 특징 인자를 분석하며, 이후 세번째로, 상기 유체 감쇄 반전(FLAIR) 영상을 선택하여 상기 특징 인자를 분석하며, 이후 네번째로, 상기 CT 영상을 선택하여 상기 특징 인자를 분석하며, 다섯번째로, 마지막에 최초로 선택한 상기 확산 강조 영상(DWI)을 재선택하여 상기 특징 인자를 분석할 수 있다.For example, referring to FIG. 3, when the suspected disease is a cerebral infarction, the image analysis unit 300 is, first among the acquired images, the diffusion-weighted image (DWI) for easy identification of a cerebral infarction lesion. First, the feature factor is analyzed by selecting first, and then, secondly, the ADC map is selected to analyze the feature factor, and thirdly, the fluid attenuation inversion (FLAIR) image is selected and the feature factor is analyzed, Thereafter, fourthly, the CT image is selected to analyze the feature factor, and fifthly, the firstly selected diffusion-weighted image (DWI) may be reselected to analyze the feature factor.
(1) 최초에 DWI 영상을 최초로 선택하여 “학습된 AI 모델 #A”을 통하여, (2) 이후 선택된 ADC map은 “학습된 AI 모델 #A”을 기초로 지식이 축적되어 전달되어 “학습된 AI 모델 #B”를 구성하고, (3) 이후 선택된 FLAIR 영상은 “학습된 AI 모델 #B”를 기초로 지식이 축적되어 전달되어 “학습된 AI 모델 #C”를 구성하고, (4) 이후 선택된 CT 영상은 “학습된 AI 모델 #C”를 기초로 지식이 축적되어 전달되어 “학습된 AI 모델 #D”를 구성하고, (5) 이후 선택된 CT 영상은 “학습된 AI 모델 #D”를 기초로 지식이 축적되어 전달되어 “학습된 AI 모델 #E”를 구성한다.(1) After selecting the DWI image for the first time, through “learned AI model #A”, (2) the ADC map selected afterwards is accumulated knowledge based on “learned AI model #A” and transferred to “learned AI model #A”. AI model #B" is formed, and the FLAIR video selected after (3) is accumulated knowledge based on "learned AI model #B" and transferred to form "learned AI model #C", and after (4) The selected CT image consists of “learned AI model #D” by accumulating knowledge based on “learned AI model #C”, and (5) the selected CT image is “learned AI model #D”. Knowledge is accumulated and delivered as a basis to form “learned AI model #E”.
“학습된 AI 모델 #A”은 DWI 영상의 병변 특징이 학습되어 있는 모델이며, DWI 영상에서 보이는 학습된 병변의 특징을 상속(전달)시키며, “학습된 AI 모델 #B”에는 DWI 영상 및 ADC map의 병변 특징이 축적되어 학습되어 있다. “학습된 AI 모델 #C”에는 DWI 영상, ADC map 및 FLAIR 영상의 병변 특징이 축적되어 학습되어 있다. “학습된 AI 모델 #D”에는 DWI 영상, ADC map, FLAIR 영상 및 CT 영상의 병변 특징이 축적되어 학습되어 있다.“Learned AI model #A” is a model in which lesion features of DWI images are learned, inherits (transfers) the features of learned lesions seen in DWI images, and “Learned AI model #B” includes DWI images and ADC. The lesion features of the map are accumulated and learned. In "Learned AI Model #C", lesion features of DWI image, ADC map and FLAIR image are accumulated and learned. In "Learned AI Model #D", lesion features of DWI image, ADC map, FLAIR image and CT image are accumulated and learned.
최종적으로 “학습된 AI 모델 #E”에는 누적되어 학습된 DWI 영상, ADC map, FLAIR 영상 및 CT 영상의 병변 특징에 더하여, 뇌경색 병변의 특징이 가장 잘 확인되는 DWI 영상을 한번 더 학습하여 보다 정확하게 병변의 특징을 분석할 수 있다.Finally, in the “learned AI model #E”, in addition to the lesion characteristics of the accumulated and learned DWI image, ADC map, FLAIR image, and CT image, the DWI image that the characteristics of the cerebral infarct lesion is best confirmed is learned once more to be more accurate. The characteristics of the lesion can be analyzed.
상기 의료통합 데이터베이스부(400)는 영상에서 추출된 특징 인자가 표현된 질환별 영상 인자, 질환별 임상 인자, 질환별 치료 및 수술 또는 예후 데이터를 저장 및 제공한다.The integrated medical database unit 400 stores and provides disease-specific image factors, disease-specific clinical factors, disease-specific treatment and surgery or prognosis data, in which characteristic factors extracted from images are expressed.
현재 의료 데이터베이스 시스템은 영상은 PACS, 환자에 대한 임상 평가 결과는 EMR에서 관리하고 있다. 이러한 시스템은 환자의 구체적인 증상과 검사 결과, 그리고 질환에 대한 매칭이 불가하며 그로 인하여 검사 결과에 대한 확인은 가능하나 유사 질환 및 환자에 대한 검색을 불가능하다.Currently, the medical database system is managed by PACS for images and EMR for clinical evaluation results for patients. Such a system cannot match specific symptoms, test results, and diseases of the patient, and thus, it is possible to check the test results, but it is impossible to search for similar diseases and patients.
본 발명의 일 실시예에 따른 지능형 의료 진단 및 진료 시스템은 이러한 제한점 극복을 위하여 해당 의료 영상을 인공지능 기법을 통하여 Index 수치화하고 그와 매칭되는 임상 인자와 치료 방법 및 결과에 대한 모든 데이터를 통한 데이터베이스화하여 상기 의료통합 데이터베이스부(400)에 저장한다.In order to overcome these limitations, the intelligent medical diagnosis and treatment system according to an embodiment of the present invention converts the medical image into an index through artificial intelligence techniques, and uses a database through all data on clinical factors, treatment methods, and results matching the medical image. It is converted and stored in the medical integration database unit 400.
따라서, 검사 결과를 정량적이고 추적 관리 대상자를 위한 연속성을 반영한 판독 시스템을 제공할 수 있다.Therefore, it is possible to provide a reading system that quantitatively reflects the test result and reflects the continuity for the subject of tracking management.
상기 의료통합 데이터베이스부(400)에는 본 발명의 일 실시예에 따른 지능형 의료 진단 및 진료 시스템에 따라 서비스 제공을 수행하면서 누적되는 데이터가 저장되며, 사용자별 의료 영상 데이터, 유사 사용자(환자)의 의료 영상 데이터, 진단 정보, 임상 데이터, 병변 영역의 시각 정보 및 텍스트 데이터, 사용자의 과거 및 현재 상태에 대한 추적 결과 데이터, 해당 질환의 치료, 수술 및 예후 데이터 등이 저장될 수 있다.The integrated medical database unit 400 stores data accumulated while providing services according to the intelligent medical diagnosis and treatment system according to an embodiment of the present invention, medical image data for each user, and medical care of similar users (patients). Image data, diagnostic information, clinical data, visual information and text data of a lesion area, tracking result data for a user's past and current state, treatment of a corresponding disease, surgery and prognosis data, and the like may be stored.
상기 진단 결과 출력부(500)는 상기 의료통합 데이터베이스부(400)로부터 제공된 질환별 영상 인자 및 임상 인자를 텍스트 형태로 제공하며, 사용자의 과거 및 현재 상태에 대한 추적 결과를 제공한다.The diagnosis result output unit 500 provides disease-specific image factors and clinical factors provided from the medical integrated database unit 400 in text format, and provides tracking results of the user's past and present conditions.
상기 진단 결과 출력부(500)는 상기 질환별 영상 인자, 임상 인자를 텍스트 형태로 표기하여 사용자 및 의료진에게 제공할 수 있다.The diagnosis result output unit 500 may display the image factors and clinical factors for each disease in a text format and provide them to a user and a medical staff.
또한, 사용자의 과거 및 현재 상태 추적 결과 뿐만 아니라 이에 따른 치료 및 예후 상태를 동시에 표기하여 사용자에게 제공할 수 있다.In addition, it is possible to simultaneously display the results of tracking the user's past and present conditions, as well as treatment and prognosis according to the results, and provide them to the user.
본 발명의 의료 진단 및 진료 시스템은 의료 영상 데이터 기반의 지능형 의료 진단 및 진료 시스템으로서, 영상 획득부(100), 의심 질환 입력부(200), 영상 분석부(300), 의료통합 데이터베이스부(400) 및 진단 결과 출력부(500)를 포함하며, 임상 인자 입력부(600), 질환별 치료 입력부(700), 임상 증례 검색부(800)를 더 포함한다.The medical diagnosis and treatment system of the present invention is an intelligent medical diagnosis and treatment system based on medical image data, and includes an image acquisition unit 100, a suspected disease input unit 200, an image analysis unit 300, and a medical integrated database unit 400. And a diagnosis result output unit 500, and further includes a clinical factor input unit 600, a disease-specific treatment input unit 700, and a clinical case search unit 800.
상기 임상 인자 입력부(600)는 사용자의 위험 인자 검사, 임상 질환 평가 검사 및 혈액 인자 검사로 이루어진 그룹에서 선택된 어느 하나 이상의 임상 인자를 평가하여 상기 의료통합 데이터베이스부(400)에 제공 및 저장한다. 상기 의료통합 데이터베이스부(400)에는 본 발명의 일 실시예에 따른 지능형 의료 진단 및 진료 시스템에 따라 서비스 제공을 수행하면서 누적되는 질환별 임상 인자 데이터가 저장된다.The clinical factor input unit 600 evaluates one or more clinical factors selected from a group consisting of a risk factor test, a clinical disease evaluation test, and a blood factor test of a user, and provides and stores it in the medical integrated database unit 400. The integrated medical database unit 400 stores clinical factor data for each disease accumulated while providing services according to the intelligent medical diagnosis and treatment system according to an embodiment of the present invention.
상기 질환별 치료 입력부(700)는 질환별 치료, 수술 및 예후 데이터를 입력하여 상기 의료통합 데이터베이스부(400)에 제공 및 저장한다. 상기 의료통합 데이터베이스부(400)에는 본 발명의 일 실시예에 따른 지능형 의료 진단 및 진료 시스템에 따라 서비스 제공을 수행하면서 누적되는 질환별 치료, 수술 및 예후 데이터가 저장된다.The disease-specific treatment input unit 700 inputs disease-specific treatment, surgery, and prognosis data, and provides and stores it in the medical integrated database unit 400. The integrated medical database unit 400 stores treatment, surgery, and prognosis data for each disease accumulated while providing services according to the intelligent medical diagnosis and treatment system according to an embodiment of the present invention.
상기 임상 증례 검색부(800)는 상기 질환별 영상 인자를 검색 인덱스로 사용하여, 상기 질환과 유사한 영상 인자를 검색하여 유사 영상 인자 질환의 임상 인자, 치료, 수술 및 예후 데이터를 상기 진단 결과 출력부에 제공할 수 있다.The clinical case search unit 800 uses the disease-specific image factor as a search index, searches for an image factor similar to the disease, and displays the clinical factor, treatment, surgery, and prognosis data of the disease-like image factor, and outputs the diagnosis result. Can be provided to.
또한, 상기 임상 증례 검색부(800)는 상기 질환별 영상 인자 및 검색된 유사 질환 영상 인자의 차이점을 제공할 수 있다.In addition, the clinical case search unit 800 may provide a difference between the image factor for each disease and the searched image factor for a similar disease.
상기 임상 증례 검색부(800)는 상기 의료통합 데이터베이스부(400)와 연동하여 상기 의료통합 데이터베이스부(400)의 데이터를 검색 및 분류하여, 유사 사용자(환자)의 의료 영상 데이터, 진단 정보, 임상 데이터, 병변 영역의 시각 정보 및 텍스트 데이터, 사용자의 과거 및 현재 상태에 대한 추적 결과 데이터, 해당 질환의 치료, 수술 및 예후 데이터 등을 제공하며, 상기 진단 결과 출력부(500), 즉 담당 의료진의 자동 판독문에 업데이트하여 제공할 수 있다.The clinical case search unit 800 interlocks with the medical integration database unit 400 to search and classify the data of the medical integration database unit 400, Provides data, visual information and text data of the lesion area, tracking result data for the user's past and current state, treatment of the disease, surgery and prognosis data, and the like, and the diagnosis result output unit 500, that is, the medical staff in charge Updates to automatic readings can be provided.
이에 따라, 본 발명의 지능형 의료 진단 및 진료 시스템에 따라 블록 기반 유연한 AI 모델을 이용하여 특정 질환을 타겟으로 하는 것이 아닌 다양한 질환에 적용이 가능하다.Accordingly, according to the intelligent medical diagnosis and treatment system of the present invention, it is possible to apply a block-based flexible AI model to various diseases rather than targeting a specific disease.
또한, 담당 의료진의 진료에 앞서, 사용자인 환자의 병변을 촬영한 각종 영상 및 임상 결과를 분석하여 분석 결과를 의료진에게 제공하고, 분석한 영상의 특징 인자를 추출하여 유사 환자의 데이터를 검색하여 유사 환자와의 차이점, 유사 환자의 임상, 치료, 수술 및 예후 데이터를 진료 전에 분석 및 제공하여, 짧은 진료시간 내에 효율적인 진단 및 진료가 가능한 장점이 있다.In addition, prior to treatment by the medical staff in charge, various images and clinical results of the patient's lesions are analyzed and the analysis results are provided to the medical staff, and feature factors of the analyzed images are extracted to search for similar patient data. It has the advantage of enabling efficient diagnosis and treatment within a short treatment time by analyzing and providing differences from patients and clinical, treatment, surgery and prognostic data of similar patients before treatment.
전술한 본원의 설명은 예시를 위한 것이며, 본원이 속하는 기술분야의 통상의 지식을 가진 자는 본원의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present application is for illustrative purposes only, and those of ordinary skill in the art to which the present application pertains will be able to understand that it can be easily modified into other specific forms without changing the technical spirit or essential features of the present application. Therefore, it should be understood that the embodiments described above are illustrative in all respects and are not limiting. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as being distributed may also be implemented in a combined form.
본원의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본원의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present application is indicated by the claims to be described later rather than the detailed description, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be interpreted as being included in the scope of the present application.
Claims (15)
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020190127819A KR102166647B1 (en) | 2019-10-15 | 2019-10-15 | Medical diagnosis and treatment system using by block-based flexible artificial intelligence model |
| KR10-2019-0127819 | 2019-10-15 | ||
| KR1020190127820A KR102186893B1 (en) | 2019-10-15 | 2019-10-15 | Medical image processing system using artificial intelligence based curriculum learning method and medical diagnosis and treatment system |
| KR10-2019-0127820 | 2019-10-15 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2021075596A1 true WO2021075596A1 (en) | 2021-04-22 |
Family
ID=75538753
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/KR2019/013583 Ceased WO2021075596A1 (en) | 2019-10-15 | 2019-10-16 | System for processing medical images by using artificial intelligence-based curriculum learning method, system for intelligent medical diagnosis and treatment, and system for intelligent medical diagnosis and treatment by using block-based flexible ai model |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2021075596A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118942640A (en) * | 2024-08-12 | 2024-11-12 | 南京轻盈行健生物科技有限公司 | A medical case image processing and analysis system |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009061175A (en) * | 2007-09-07 | 2009-03-26 | Konica Minolta Medical & Graphic Inc | Medical image processor and program |
| KR20150030974A (en) * | 2013-09-13 | 2015-03-23 | 재단법인 아산사회복지재단 | Method for estimating onset time of infarct region based on brain image |
| KR101857624B1 (en) * | 2017-08-21 | 2018-05-14 | 동국대학교 산학협력단 | Medical diagnosis method applied clinical information and apparatus using the same |
| KR101865275B1 (en) * | 2016-12-27 | 2018-06-08 | 아주대학교 산학협력단 | Method and Apparatus for providing template-based information regarding disease-centric Medical image |
| JP2018097463A (en) * | 2016-12-09 | 2018-06-21 | 富士フイルム株式会社 | Diagnosis support device, operation method thereof, operation program thereof and diagnosis support system |
| KR102001398B1 (en) * | 2018-01-25 | 2019-07-18 | 재단법인 아산사회복지재단 | Method and apparatus for predicting brain desease change though machine learning and program for the same |
-
2019
- 2019-10-16 WO PCT/KR2019/013583 patent/WO2021075596A1/en not_active Ceased
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2009061175A (en) * | 2007-09-07 | 2009-03-26 | Konica Minolta Medical & Graphic Inc | Medical image processor and program |
| KR20150030974A (en) * | 2013-09-13 | 2015-03-23 | 재단법인 아산사회복지재단 | Method for estimating onset time of infarct region based on brain image |
| JP2018097463A (en) * | 2016-12-09 | 2018-06-21 | 富士フイルム株式会社 | Diagnosis support device, operation method thereof, operation program thereof and diagnosis support system |
| KR101865275B1 (en) * | 2016-12-27 | 2018-06-08 | 아주대학교 산학협력단 | Method and Apparatus for providing template-based information regarding disease-centric Medical image |
| KR101857624B1 (en) * | 2017-08-21 | 2018-05-14 | 동국대학교 산학협력단 | Medical diagnosis method applied clinical information and apparatus using the same |
| KR102001398B1 (en) * | 2018-01-25 | 2019-07-18 | 재단법인 아산사회복지재단 | Method and apparatus for predicting brain desease change though machine learning and program for the same |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118942640A (en) * | 2024-08-12 | 2024-11-12 | 南京轻盈行健生物科技有限公司 | A medical case image processing and analysis system |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR102166647B1 (en) | Medical diagnosis and treatment system using by block-based flexible artificial intelligence model | |
| KR102186893B1 (en) | Medical image processing system using artificial intelligence based curriculum learning method and medical diagnosis and treatment system | |
| WO2019083129A1 (en) | Method for supporting reading of fundus image of subject, and device using same | |
| WO2017051944A1 (en) | Method for increasing reading efficiency by using gaze information of user in medical image reading process and apparatus therefor | |
| CN112309566A (en) | Remote automatic diagnosis system and method for image intelligent recognition and medical intelligent reasoning | |
| CN112308888B (en) | Full-mode medical image sequence grouping method based on deep learning physical sign structure | |
| WO2013151289A1 (en) | Medical image compression system and method using visually lossless compression | |
| WO2016125978A1 (en) | Method and apparatus for displaying medical image | |
| WO2016159726A1 (en) | Device for automatically sensing lesion location from medical image and method therefor | |
| CN112802000A (en) | Intelligent auxiliary diagnosis and treatment system for multi-modal medical images | |
| Xu et al. | Upper gastrointestinal anatomy detection with multi‐task convolutional neural networks | |
| WO2016085236A1 (en) | Method and system for automatic determination of thyroid cancer | |
| WO2023017889A1 (en) | Method and device for diagnosing acute ischaemic stroke using 3d-cnn-based deep-learning model | |
| WO2019098415A1 (en) | Method for determining whether subject has developed cervical cancer, and device using same | |
| WO2020179950A1 (en) | Deep learning-based method and device for prediction of progression of brain disease | |
| WO2021075826A1 (en) | Method for diagnosing disease by preprocessing biologically-extracted data and device therefor | |
| JP2018175864A (en) | Automatic layout apparatus, automatic layout method and automatic layout program | |
| Dhali et al. | Artificial intelligence–assisted capsule endoscopy versus conventional capsule endoscopy for detection of small bowel lesions: a systematic review and meta‐analysis | |
| CN110232360B (en) | Method for judging negative and positive of fluorescent microscopic fungi by using neural network | |
| CN111916185A (en) | Management system and method for providing image data for AI diagnostic model | |
| Chen et al. | Individualized prediction of schizophrenia based on the whole‐brain pattern of altered white matter tract integrity | |
| WO2021075596A1 (en) | System for processing medical images by using artificial intelligence-based curriculum learning method, system for intelligent medical diagnosis and treatment, and system for intelligent medical diagnosis and treatment by using block-based flexible ai model | |
| JPH10225441A (en) | Method for selecting display image in medical image observing device | |
| CN107977958A (en) | A kind of image diagnosing method and device | |
| WO2022190891A1 (en) | Information processing system and information processing method |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19949216 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 19949216 Country of ref document: EP Kind code of ref document: A1 |