WO2021066039A1 - Medical information processing program, and medical information processing device - Google Patents
Medical information processing program, and medical information processing device Download PDFInfo
- Publication number
- WO2021066039A1 WO2021066039A1 PCT/JP2020/037237 JP2020037237W WO2021066039A1 WO 2021066039 A1 WO2021066039 A1 WO 2021066039A1 JP 2020037237 W JP2020037237 W JP 2020037237W WO 2021066039 A1 WO2021066039 A1 WO 2021066039A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- medical
- data
- case data
- medical information
- information processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/70—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
Definitions
- the present disclosure relates to a medical information processing program and a medical information processing device for outputting medical information useful for diagnosis based on case data similar to the data of a person to be diagnosed among a plurality of case data.
- the ophthalmic information processing apparatus disclosed in Patent Document 1 facilitates follow-up observation of an eye to be inspected by matching layer thickness information based on a plurality of OCT data obtained on different days.
- case data similar to the data of the person to be diagnosed from a plurality of case data including a plurality of medical images taken at different timings, and output medical information based on the extracted case data.
- the transition of the disease state of the patient is grasped from the plurality of medical images included in the extracted case data, the transition of the disease of the diagnosis target person is appropriately predicted by the output medical information. ..
- the multiple medical images included in the case data and the medical images of the person to be diagnosed are both taken at various timings. Therefore, if the medical information is not output in consideration of the timing at which each medical image is taken, the diagnosis by the doctor may not be appropriately assisted.
- the present disclosure is to provide a medical information processing program and a medical information processing device capable of presenting more useful medical information to a user.
- the medical information processing program provided by the typical embodiment in the present disclosure is medical information processing that outputs medical information useful for diagnosis based on case data similar to the data of a person to be diagnosed among a plurality of case data. It is a medical information processing program executed in the device, and each of the plurality of case data includes data of a plurality of medical images taken at different timings and information on the shooting timing of each medical image.
- the medical information processing program is executed by the control unit of the medical information processing apparatus, the data of at least one medical image relating to the diagnosis target person and the imaging timing of the medical image are determined. From the target data acquisition step for acquiring target data including information and the plurality of case data, the case data including a medical image similar to at least one medical image included in the target data is extracted as similar case data.
- the medical information output step of outputting medical information based on the similar case data in a state where the time axes are matched, is executed by the medical information processing apparatus.
- the medical information processing apparatus is medical information processing that outputs medical information useful for diagnosis based on case data similar to the data of a person to be diagnosed among a plurality of case data. It is an apparatus, and each of the plurality of case data is stored in a database in a state including data of a plurality of medical images taken at different timings and information on the timing of taking each medical image.
- the control unit of the medical information processing apparatus includes a target data acquisition step of acquiring at least one medical image data relating to the diagnosis target person and target data including information on the imaging timing of the medical image, and the plurality of case data.
- a similar case data extraction step for extracting the case data including a medical image similar to at least one medical image included in the target data as similar case data, the similar case data and the target data, and a plurality of the similar case data.
- Medical information based on the similar case data in a state where the time axis matching step of matching the time axis of the acquisition timing of the medical image and the time axis are matched between at least one of the similar case data of the above.
- the medical information processing program illustrated in this disclosure is executed in a medical information processing device.
- the medical information processing device outputs medical information useful for diagnosis based on case data similar to the data of the person to be diagnosed among a plurality of case data.
- Each of the plurality of case data is stored in the database in a state including the data of the plurality of medical images taken at different timings and the information of the shooting timing of each medical image.
- the control unit of the medical information processing apparatus executes a target data acquisition step, a similar case data extraction step, a time axis matching step, and a medical information output step.
- the control unit acquires target data including at least one medical image data regarding the diagnosis target person and information on the timing of taking the medical image.
- the control unit extracts case data (similar case data) including a medical image similar to at least one medical image included in the target data from the plurality of case data.
- case data similar case data
- the control unit matches the time axis of the acquisition timing of the medical image between the similar case data, the target data, and at least one of the plurality of similar case data.
- the control unit outputs medical information based on the extracted case data in a state where the time axes are matched.
- the time axis of the acquisition timing of the medical image is set between a plurality of data (between similar case data and target data, and at least one of a plurality of similar case data). Medical information is output in the matched state. Therefore, the user (for example, a doctor or the like) who confirms the output medical information can appropriately predict the transition of the disease of the diagnosis target person after grasping the timing when each medical image is taken. Therefore, more useful medical information is presented to the user.
- the method for extracting similar case data can be set as appropriate.
- the control unit extracts a value indicating the feature amount of each medical image (for example, SIFT (Scale Invariant Feature Transfer Transfer)), and selects a medical image having a small difference in the feature amount between the target data and the medical image.
- the including case data may be extracted as similar case data.
- the control unit may acquire the similarity of the medical image by inputting the medical image into the mathematical model trained by the machine learning algorithm, and extract similar case data based on the acquired result. Further, when the image quality of the medical image included in the case data is less than the threshold value, the control unit may exclude it from the extraction target or warn the user that the image quality is low.
- the control unit may match the time axis of the medical image imaging timing between the plurality of data according to the instruction input from the user.
- the user can output appropriate medical information to the medical information processing apparatus in a state where the time axis between the plurality of data matches a desired state.
- the specific method for matching the time axis according to the instruction from the user can be appropriately selected. For example, a time axis indicating the acquisition timing of each medical image of a plurality of data may be displayed on the display unit.
- the user may input an instruction for adjusting the time axis to the medical information processing apparatus while confirming the time axis indicating the imaging timing.
- the control unit may match the time axis according to the input adjustment instruction. In this case, the control unit may display the medical image on the display unit together with the time axis.
- the user may also enter an instruction to specify a criterion for matching the time axis.
- control unit may input an instruction to specify a medical image whose imaging timing matches on the time axis as a reference image among the medical images of the plurality of data.
- control unit may match the time axes so that the imaging timings of the medical images designated as the reference images match.
- the control unit may match the time axis by matching the imaging timings of the medical images having the highest degree of similarity among the medical images included in each of the plurality of data.
- the disease states in the two most similar medical images are likely to be similar. Therefore, by matching the time axes so that the acquisition timings of the two medical images having the highest degree of similarity match, the user can more appropriately grasp the transition of the disease from the medical information.
- the case data may include information (treatment information) regarding the treatment (eg, medication, surgery, treatment, etc.) performed on the patient.
- the medical information processing apparatus can output more appropriate medical information based on the treatment information included in the case data.
- treatment data includes information indicating whether or not treatment has been performed on the patient, information indicating the content of treatment performed on the patient, and treatment in which treatment has been performed or started on the patient. It may contain at least one of the timing information.
- the control unit is one of a plurality of case data groups classified in the plurality of case data according to at least one of the presence or absence of treatment indicated by the treatment information and the content of the performed treatment.
- case data including a medical image similar to at least one medical image included in the target data hereinafter, referred to as “similar case data”.
- medical information is output after appropriately extracting case data according to at least one of the presence or absence of treatment and the content of treatment. Therefore, the user can appropriately predict the transition of the disease of the diagnosis target person according to the content of the treatment and the like.
- control unit may extract similar case data from one case data group among a plurality of case data groups. Further, the control unit may extract at least one similar case data from each of the plurality of case data. For example, by extracting similar case data from each of the case data group of treated patients and the case data group of untreated patients, the transition of the disease according to the presence or absence of treatment can be appropriately performed. is expected. In addition, by extracting similar case data from each of a plurality of treatment data groups having different treatment contents, the transition of the disease according to the treatment contents can be appropriately predicted.
- the treatment information included in the case data may include information indicating the treatment timing when the treatment is executed or started.
- the control unit may match the time axis by matching the treatment timing between the plurality of data. In this case, the transition of the diagnosed subject due to the treatment of the disease is appropriately predicted based on the treatment timing.
- the timing of treatment for the diagnosis target person may be the timing of the treatment actually performed for the diagnosis target person, or the timing of the treatment assuming that the diagnosis target person will be treated in the future.
- the control unit may specify the timing (change timing) at which the change in the feature amount of the plurality of medical images becomes equal to or greater than the threshold value for each of the plurality of data.
- the control unit may match the time axis by matching the change timings of the plurality of data.
- the transition of the disease is appropriately predicted based on the change timing.
- the control unit identifies the change timing at which the change in the progress of the disease (progress of deterioration) exceeds the threshold value based on the feature amounts of a plurality of medical images, and matches the change timing of the plurality of data. You may let me. In this case, the user can easily compare a plurality of data based on the timing when the progress of the disease suddenly deteriorates.
- the control unit determines the degree of similarity between the medical image included in the case data before or after the treatment / change timing and the medical image of the target data. Similar case data may be extracted by comparing. In this case, similar case data is extracted more appropriately after considering the treatment / change timing.
- the control unit captures a plurality of images at an imaging interval in which the difference from the imaging interval of the plurality of medical images in the target data is equal to or less than the threshold.
- case data in which a plurality of medical images are similar to each other may be extracted as similar case data.
- the plurality of medical images of the extracted similar case data include medical images taken at intervals close to the shooting intervals of the plurality of medical images of the target data. Therefore, the user can more appropriately predict the transition of the disease based on the case data in which the imaging intervals of the plurality of medical images are close and the time axes are the same.
- the threshold value of the difference between the imaging intervals of the medical image of the target data and the medical image of the case data may be set in advance or may be set according to an instruction input by the user.
- the control unit can extract similar case data by various methods. For example, the control unit sets one or a plurality of medical images to be determined for similarity with the case data among a plurality of medical images included in the target data according to an instruction input from the user. You may. The control unit may extract similar case data by comparing the similarity between the medical image to be determined and the medical image of the case data.
- the control unit displays the medical image included in each of the plurality of data and the time axis indicating the shooting timing of the medical image as medical information on the display unit in a state where the time axes are matched. It may be displayed.
- the user can appropriately grasp the imaging timing of the plurality of medical images displayed on the display unit in a state where the time axes of the plurality of data are matched. Therefore, the user can more easily predict the transition of the disease.
- the control unit may display the medical image included in each of the plurality of similar case data on the display unit together with the time axis. Further, the control unit may display the medical image included in the similar case data and the medical image included in the target data on the display unit together with the time axis. In this case, the user can appropriately compare the medical image of the target data and the medical image of the similar case data after grasping the imaging timing on the time axis.
- the control unit is based on the medical image included in the similar case data, the medical image taken after the same timing as the shooting timing of the medical image of the target data on the matched time axis, and the medical image of the target data. Therefore, a predicted image of the person to be diagnosed may be generated.
- the control unit may display the predicted image generated in a state where the time axes are matched on the display unit as medical information. In this case, an appropriate predicted image is generated and displayed based on the medical images of the similar case data and the target data, taking into consideration the imaging timing. Therefore, the user can more appropriately predict the transition of the disease.
- the control unit may further execute the progress acquisition step and the graph generation step.
- the control unit acquires information on the progress of the disease shown in each of the plurality of medical images.
- the graph generation step the control unit displays a progress transition graph showing the transition of the progress in each of the similar case data and the target data, or a plurality of similar case data, in a state where the time axis between the plurality of data is matched. Generate.
- the control unit may display the progress transition graph generated in a state where the time axes are matched on the display unit as medical information. In this case, the user can easily grasp the transition of the disease progression in the plurality of data. Further, since the progress transition graph is generated in a state where the time axes of the plurality of data match, the user can appropriately compare the progress transition graphs of the plurality of data.
- At least one of the plurality of case data may include heterogeneous data acquired by a device of a type different from the medical imaging device that captured the medical image included in the target data regarding the diagnosis target person.
- the control unit may output the heterogeneous data as medical information when the extracted similar case data includes the heterogeneous data.
- the heterogeneous data is, for example, an image taken by a different type of imaging device from the medical imaging apparatus that captured the medical image included in the target data (that is, the medical image referred to when extracting similar case data). It may be.
- the heterogeneous data is the test result acquired by a test device that tests the patient (for example, in the field of ophthalmology, at least one of the test results such as visual acuity, axial length, intraocular pressure, and visual field of the eye to be examined). It may be. Further, the heterogeneous data may be displayed together with the medical image included in the similar case data, or the heterogeneous data may be output independently (for example, display).
- the user can make a diagnosis after confirming the heterogeneous data included in the similar case data, so that the transition of the disease of the person to be diagnosed can be predicted more appropriately.
- the user can perform the diagnosis of the diagnosis target person more appropriately by checking the heterogeneous data included in the similar case data. it can.
- medical information processing including a server 10, a plurality of medical information processing devices 20 used at each base, and a medical image capturing device 30 for supplying data including medical images to the medical information processing device 20.
- the system 1 is illustrated.
- the configurations of the medical information processing system and the medical image processing apparatus are not limited to the configurations exemplified in this embodiment.
- the storage device of the server 10 is used as a database for storing a plurality of case data.
- the server 10 can be omitted.
- the server 10 or the medical imaging device 30 may function as a medical information processing device.
- a plurality of devices for example, two or more such as a server, a terminal device (personal computer or mobile terminal, etc.), and a medical imaging device
- a server may function as a medical information processing device.
- a terminal device personal computer or mobile terminal, etc.
- a medical imaging device may cooperate to function as a medical information processing device.
- the medical information processing system 1 of the present embodiment includes a server 10 and a plurality of medical information processing devices 20 used at each base (for example, a hospital, a medical examination facility, etc.).
- FIG. 1 illustrates a medical information processing device 20A used at the base A and a medical information processing device 20B used at the base B.
- the server 10 provides various data and the like to the connected device (medical information processing device 20 in this embodiment).
- a server (so-called cloud server) of a manufacturer that provides a cloud service is used as the server 10.
- the server 10 includes a control unit 11 that performs various processing controls and a communication I / F 14.
- the control unit 11 includes a CPU 12 which is a controller that controls control, and a storage device 13 that can store programs, data, and the like.
- the storage device 13 of the server 10 is used as a database for storing case data described later.
- the communication I / F 14 connects the server 10 to an external device (for example, the medical information processing device 20) via the network 5 (for example, the Internet).
- the medical information processing device 20 is used by users at each base (for example, doctors and laboratory technicians). Although the medical information processing device 20 of the present embodiment is a personal computer, a mobile terminal such as a smartphone or a tablet terminal may be used as the medical information processing device.
- the medical information processing device 20 includes a control unit 21 that performs various control processes and a communication I / F 24.
- the control unit 21 includes a CPU 22 which is a controller that controls control, and a storage device 23 that can store programs, data, and the like.
- the storage device 23 stores a medical information processing program for executing various processes described later.
- the communication I / F 24 connects the medical information processing device 20 to an external device (for example, a server 10) via the network 5.
- the medical information processing apparatus 20 receives (acquires) case data from the server 10. Further, the medical information processing apparatus 20 transmits (outputs) case data to the server 10.
- the medical information processing device 20 is connected to the operation unit 25 and the display unit 26.
- the operation unit 25 is operated by the user in order for the user to input various instructions to the medical information processing apparatus 20.
- the operation unit 25 for example, at least one of a keyboard, a mouse, a touch panel, and the like can be used.
- a microphone or the like for inputting various instructions may be used together with the operation unit 25 or instead of the operation unit 25.
- the display unit 26 is a device (for example, a monitor or a projector) capable of displaying various images.
- At least one of the plurality of medical information processing devices 20 can exchange data (for example, medical image data, etc.) with one or a plurality of medical image capturing devices 30 that capture a medical image of a patient. ..
- the method by which the medical information processing apparatus 20 exchanges data and the like with the medical imaging apparatus 30 can be appropriately selected.
- the medical information processing apparatus 20 exchanges data and control signals with the medical imaging apparatus 30 by at least one of wired communication, wireless communication, a detachable storage medium (for example, a USB memory), and the like. May be good.
- the medical imaging device 30 used in the present embodiment includes an OCT device capable of acquiring a tomographic image and a frontal image of the tissue of the eye to be inspected (the fundus in the present embodiment).
- an ophthalmologic imaging device other than the OCT device for example, at least one of a fundus camera, a scanning laser ophthalmoscope (SLO), a corneal shape measuring device, and the like
- SLO scanning laser ophthalmoscope
- a corneal shape measuring device and the like
- a medical imaging device that photographs the tissue of a patient other than the eye to be inspected may be used.
- the medical imaging device 30 includes a control unit 31 that performs various control processes and an imaging unit 35.
- the control unit 31 includes a CPU 32, which is a controller that controls control, and a storage device 33 that can store programs, data, and the like.
- the imaging unit 35 includes various configurations necessary for the medical imaging apparatus 30 to capture a medical image of a patient.
- the imaging unit 35 includes an OCT light source, a scanning unit for scanning OCT light, an optical system for irradiating the eye to be inspected with OCT light, and an eye to be inspected.
- a light receiving element or the like that receives light reflected by the tissue is included.
- the medical information processing illustrated in FIG. 2 is executed by the CPU 22 of the medical information processing device 20 according to the medical information processing program stored in the storage device 23 of the medical information processing device 20.
- the medical information processing may be executed by the control unit of another device (for example, the CPU 12 of the server 10 or the CPU 32 of the medical imaging device 30).
- the control units of a plurality of devices for example, the CPU 22 of the medical information processing device 20 and the CPU 12 of the server 10) may cooperate to execute medical information processing.
- the CPU 22 acquires the target data 40 regarding the diagnosis target person (S1). As shown in FIGS. 3 and 4, in the target data 40 of the present embodiment, at least one medical image 41 taken by the medical imaging apparatus 30 and each medical image 41 were taken for the diagnosis target person. Information on the shooting timing (in the present embodiment, information on the shooting date and time) is included.
- the CPU 22 may acquire the target data 40 from the medical imaging apparatus 30 via communication, a detachable storage medium, or the like. Further, the CPU 22 uses the target data of the past target data of the diagnosis target person already stored in the storage device 23, the medical image 41 newly captured by the medical image capturing device 30, and the imaging timing information. It may be acquired as 40. Although the details will be described later, the medical information processing apparatus 20 extracts case data similar to the target data 40 as similar case data from a plurality of case data stored in the database.
- the storage device 13 of the server 10 is used as a database for storing a plurality of case data 50.
- the database that stores the case data 50 may be another storage device (for example, the storage device 23 of the medical information processing device 20).
- the case data 50 includes a plurality of medical images 51 captured at different timings by the medical imaging apparatus 30, and information on the imaging timing of each medical image 51.
- the plurality of case data 50 are stored in the database.
- the case data 50 of the present embodiment includes information regarding the treatment performed on the patient (hereinafter, referred to as “treatment information”).
- the treatment information includes the presence or absence of treatment for the patient, the timing when the treatment is executed or started (hereinafter referred to as "treatment timing"), and the content of the treatment performed (for example, the type of surgery performed). , At least one of the type of drug administered, the method of administration, the type of treatment performed, etc.).
- Each of the plurality of case data 50 stored in the database is classified into one of the plurality of case data groups according to the presence or absence of treatment indicated by the treatment information and the content of the performed treatment. That is, in the present embodiment, each of the plurality of case data 50 is classified into either a case data group of a patient who has not been treated and a case data group of a patient who has been treated. Furthermore, the case data group of the treated patients is further subdivided according to the content of the treatment performed. Although the details will be described later, the medical information processing apparatus 20 can also extract case data 50 similar to the target data 40 according to the classification of the case data group.
- At least one of the plurality of case data stored in the database includes data related to the patient (hereinafter,) acquired by a device of a type different from the medical image capturing device 30 that captures the medical image 41 of the target data 40.
- “Different data” may be included.
- the heterogeneous data includes at least an imaging device (for example, a fundus camera, a scanning laser ophthalmoscope (SLO), a corneal shape measuring device, etc.) different from the medical imaging apparatus 30 (OCT apparatus in the present embodiment) described above. The data of the image taken by either) may be included.
- the heterogeneous data includes test result data (for example, at least one test result data such as visual acuity, axial length, intraocular pressure, visual field, etc.) acquired by a test device that tests a patient. It may be.
- the CPU 22 uses one or a plurality of medical images 41 as a reference for extracting the case data 50 from the one or a plurality of medical images 41 included in the target data 40 acquired in S1 as a reference image.
- Set (S2) the medical information processing apparatus 20 of the present embodiment has a medical image 51 similar to at least one medical image 41 included in the target data 40 from among a plurality of case data 50 stored in the database. Case data 50 including the above is extracted as similar case data.
- the medical image 41 for determining the degree of similarity with the medical image 51 in the case data 50 is set as a reference image.
- the specific method for setting the reference image in S2 can be appropriately selected.
- the CPU 22 sets one medical image 41 in the target data 40 as the reference image.
- the CPU 22 uses one or a plurality of medical images 41 selected by the instruction as the reference image based on the reference image selection instruction input from the user. It may be set.
- the CPU 22 may automatically set one or a plurality of medical images 41 as reference images in the order of newest imaging timing.
- the CPU 22 extracts one or more case data 50 similar to the target data 40 from the plurality of case data 50 stored in the database as similar case data (S3). Specifically, the CPU 22 extracts the case data 50 including the medical image 51 similar to the reference image set in the target data 40 as the similar case data.
- the CPU 22 acquires a value indicating the feature amount of each of the reference image and the plurality of medical images 51 in the case data 50.
- SIFT Scale Invariant Feature Transfer Transfer
- feature quantities other than SIFT may be acquired.
- the CPU 22 extracts the case data 50 including the medical image 51 having a small difference in the feature amount from the reference image as similar case data.
- the CPU 50 may extract case data 50 including a medical image 51 in which the difference in feature amounts is equal to or less than a threshold value. Further, the CPU 50 may extract one or more case data 50 in ascending order of the difference between the feature amounts of the reference image and the medical image 51.
- FIG. 3 an example of a method for extracting similar case data when a plurality of reference images 41A and 41B are set in the target data 40 will be described.
- the CPU 22 specifies the shooting intervals D1 of the plurality of reference images 41A and 41B based on the shooting timing information included in the target data 40.
- the CPU 22 identifies the case data 50 including the plurality of medical images 51 taken at intervals of the plurality of reference images 41A and 41B with an interval D1 which is equal to or less than the threshold value among the plurality of case data 50.
- Case data 50 including a plurality of medical images 41 is extracted as similar case data.
- the threshold value for comparing the shooting intervals may be set in advance or may be set according to an instruction from the user.
- the difference between the imaging interval D2 of the two medical images 51A and 51B included in the case data 50A and the imaging interval D1 of the two reference images 41A and 41B is equal to or less than the threshold value. Further, the similarity between the two medical images 51A and 51B and the two reference images 41A and 41B is high (that is, the similarity between the medical image 51A and the reference image 41A and the similarity between the medical image 51B and the reference image 41B are high. , Both are expensive). Therefore, the CPU 22 extracts the case data 50A as similar case data.
- the two medical images 51X and 51Y included in the case data 50B have a high degree of similarity with the two reference images 41A and 41B, the two medical images 51X and 51Y have an imaging interval D3 and two.
- the difference between the shooting intervals D1 of the reference images 41A and 41B is larger than the threshold value. Therefore, the CPU 22 does not extract the case data 50B as similar case data.
- the extracted similar case data includes medical images 51A and 51B taken at intervals close to the imaging intervals of the plurality of reference images 41A and 41B of the target data 40. ..
- the CPU 22 extracts the case data 50 including the medical image 51 having a high degree of similarity to the one reference image as the similar case data.
- the CPU 22 can extract similar case data from one or a plurality of case data groups among a plurality of case data groups classified by treatment information. For example, when an instruction to extract similar case data from a case data group of a patient who has been treated with a specific content is input, the CPU 22 is one from the case data group corresponding to the content of the instructed treatment. Or extract multiple similar case data. The CPU 22 can also extract one or more similar case data from each of the plurality of case data groups. For example, the CPU 22 can also extract each of the similar case data of the treated patient and the similar case data of the untreated patient. The CPU 22 can also extract a plurality of similar case data having different contents of the performed treatment.
- the CPU 22 uses the medical image 51 before or after the treatment timing indicated by the treatment information among the plurality of medical images 51 included in each case data 50, and the reference image of the target data 40. It is also possible to extract similar case data by comparing the similarities of. For example, when the reference image of the target data 40 is the medical image 41 before the treatment, the CPU 22 compares the similarity between the medical image 51 before the treatment timing and the reference image and extracts similar case data. As a result, case data 50 in which the state of the disease before treatment is close to the state of the disease of the diagnosed subject is appropriately extracted.
- the CPU 22 acquires the similarity of the medical images 41 and 51 by inputting the medical images 41 and 51 into the mathematical model trained by the machine learning algorithm, and extracts similar case data based on the acquired results. You may. Further, when the image quality of the medical image 51 included in the case data 50 is less than the threshold value, the CPU 22 may exclude the case data 50 from the extraction target, or may exclude the extracted similar case data image. The user may be warned that the quality is low.
- the CPU 22 performs a process of matching the time axis of the acquisition timing of the medical image with respect to the plurality of data (S5, S6, S7, S9, S10, S13, S14).
- the plurality of data to be matched on the time axis may be the similar case data 50 and the target data 40, or may be the extracted plurality of similar case data 50.
- the user selects one of a method of manually matching the time axis, a method of automatically matching the time axis according to the similarity of medical images, and a method of automatically matching the time axis according to the treatment timing.
- the instruction to be performed can be input by operating the operation unit 25.
- the CPU 22 uses a plurality of data (similar case data 50 and target data 40, or a plurality of data) for which the time axis is to be matched.
- the medical image of the similar case data 50) of the above is displayed on the display unit 26 together with the time axis (S6).
- the medical images 41A and 41B included in the target data 40 and the medical images 51A, 51B, 51C and 51D included in the extracted similar case data 50A are displayed on the display unit 26 together with the time axis T. Has been done. On the time axis T, the timing of taking each medical image is shown.
- the imaging timing of the medical image 41A is indicated by “A” on the time axis T
- the imaging timing of the medical image 51D is indicated by “d” on the time axis T.
- the treatment timing at which the treatment is executed or started is also shown based on the treatment information included in the similar case data 50A. In the example shown in FIG. 4, the timing of starting the medication coincides with the timing of photographing the medical image 51B.
- the CPU 22 matches the time axis of the acquisition timing of the medical image between the plurality of data (in the example shown in FIG. 4, between the target data 40 and the similar case data 50A) in response to an instruction input from the user. Further, the CPU 22 changes the imaging timing of each medical image shown on the time axis T according to the result of matching the time axes (S7).
- the CPU 22 may change the display positions of a plurality of medical images and the like according to the matched time axis together with the imaging timing on the time axis T. For example, the user may input an instruction to match the time axis by inputting an instruction to slide the shooting timing indicated on the time axis T in a direction along the time axis by the operation unit 25.
- the user can use two medical images whose imaging timings match among the medical images included in each of the plurality of data (in the example shown in FIG. 4, the medical image 41A of the target data 40 and the medical image of the similar case data 50A). You may enter an instruction to specify image 51A).
- the CPU 22 matches the time axes of the plurality of data so that the imaging timings of the two designated medical images match.
- the CPU 22 When an instruction to match the time axis according to the similarity of the medical images is input (S9: YES), the CPU 22 has a plurality of data (similar case data 50 and target data 40, or a plurality of similar case data 50). By comparing the similarity of the medical images included in each of the data among the data and matching the imaging timings of the medical images having the highest similarity, the time axes of the plurality of data are matched (S10).
- the CPU 22 causes the display unit 26 to display both the medical image included in each of the plurality of data and the time axis T indicating the shooting timing of the medical image as medical information in the state where the time axes are matched in S10 (S11). ).
- S10 When comparing medical images of a plurality of data, the disease states in the two medical images having the highest similarity are likely to be similar. Therefore, by performing the processing of S10, the user can more appropriately grasp the transition of the disease from the medical information.
- the CPU 22 When an instruction to match the time axis according to the treatment timing is input (S13: YES), the CPU 22 performs treatment between a plurality of data (similar case data 50 and target data 40, or a plurality of similar case data 50). By matching the timings, the time axes of a plurality of data are matched (S14). The CPU 22 causes the display unit 26 to display both the medical image included in each of the plurality of data and the time axis T indicating the shooting timing of the medical image as medical information in the state where the time axes are matched in S14 (S15). ). By performing the process of S14, the user can compare a plurality of data with reference to the treatment timing, so that the transition of the disease due to the treatment can be appropriately predicted.
- the time is based on the timing of the treatment assuming that the diagnosis target person is to be treated in the future.
- the axes may be aligned.
- the user may input the timing of future treatment, or the timing of treatment may be the time when the latest medical image 41 is taken.
- the CPU 22 determines whether or not an instruction for displaying the predicted image of the diagnosis target person has been input by the user (S17).
- the predicted image is an image that is predicted to show the future state of the disease of the person to be diagnosed.
- the CPU 22 generates a predicted image based on the medical image 41 included in the target data 40 and the medical image 51 included in the similar case data. , Displayed on the display unit 26 (S18).
- the CPU 22 extracts the medical image 41 used for generating the predicted image as the base image 42 from the medical image 41 included in the target data 40 (see FIGS. 3 and 4) for the diagnosis target person.
- the base image 42 used to generate the predicted image is preferably a new image as much as possible. Therefore, when the target data 40 includes a plurality of medical images 41, the CPU 22 extracts the medical image 41 having the latest imaging timing as the base image 42.
- the CPU 22 captures the medical image 51 captured after the same timing as the imaging timing of the base image 42 on the matched time axis among the plurality of medical images 51 included in the similar case data 50 (see FIG. 4).
- the reference image 52 is extracted in a state where the time axes of the imaging timings of the target data 40 and the similar case data 50 are matched. Therefore, the reference image 52 for generating the predicted image 60 is extracted more appropriately.
- the base image 42 includes the diseased portion 43
- the reference image 52 also includes the diseased portion 53.
- the disease progresses as a result of the patient not being treated, and the diseased portion 53 larger than the diseased portion 43 of the base image 42 is reflected.
- the CPU 22 generates a predicted image 60 based on the base image 42 and the reference image 52.
- the CPU 22 generates a diseased portion removal image 45 in which the information of the diseased portion 43 is removed from the basic image 42.
- the CPU 22 generates a diseased part image 55 in which information other than the diseased part 53 is removed from the reference image 52.
- the CPU 22 generates a predicted image 60 based on the diseased part removal image 45 and the diseased part image 55 (for example, by performing composition by image processing or the like).
- a predicted image predicted to show the future disease state of the diagnosed subject is appropriately generated.
- the predicted image 60 may be generated by utilizing a mathematical model trained by a machine learning algorithm.
- the mathematical model may be pre-trained with data from a plurality of medical images so that the predicted image 60 is output by inputting the base image 42 and the reference image 52.
- At least one of the mathematical models that inputs and outputs the predicted image 60 may be used.
- Whether or not the CPU 22 has been input with an instruction to display a progress transition graph showing the transition of the disease progression in each of the plurality of data (similar case data 50 and target data 40, or a plurality of similar case data 50). Is determined (S20).
- the CPU 22 acquires information on the progress of the disease shown in each of the plurality of medical images (S21).
- the CPU 22 generates a progress transition graph showing the transition of the progress in each data in a state where the time axes of the shooting timings among the plurality of data are matched, and displays the graph on the display unit 26 (S22).
- the CPU 22 acquires information on the degree of progression of the disease shown in each of the medical images included in each data.
- the method for acquiring information on the degree of disease progression can be appropriately selected.
- the CPU 22 may acquire information on the degree of progression by inputting a medical image into a mathematical model trained by a machine learning algorithm and outputting the degree of progression (for example, the probability of a disease) to the mathematical model.
- the CPU 22 inputs a medical image into a mathematical model that outputs the analysis result of the disease, and information indicating the distribution of the degree of influence that the mathematical model has influenced when outputting the analysis result (sometimes referred to as an "attention map").
- Information on the degree of disease progression may be obtained based on (there is).
- the CPU 22 may perform image processing on each medical image and acquire information on the degree of progression based on at least one of the size and color of the diseased portion.
- the above-mentioned attention map may be displayed on the display unit 26 together with the original medical image.
- the CPU 22 obtains a progress transition graph showing the transition of the disease progression from the medical image. Create based on the information in.
- the CPU 22 generates a progress transition graph in a state where the time axes of the shooting timings of the plurality of data are matched.
- the time axis of the imaging timing is matched so that the treatment timing in the data of the patient who performed the treatment is matched. Therefore, in the example shown in FIG. 6, the user can easily compare the transition of the degree of progression of the disease according to the presence or absence of treatment and the content of treatment based on the treatment timing.
- the imaging timing of the latest medical image 41 is adjusted to the treatment timing of other data as a provisional treatment timing. Therefore, the user can easily predict the transition of the disease when the treatment is started immediately by the progress transition graph. Further, in the example shown in FIG. 6, among the similar case data of the patients who were not treated, the imaging timing of the medical image 51 having the highest degree of similarity to the latest medical image 41 in the target data 40 is the target data. It is adjusted to the shooting timing of the latest medical image 41 in 40.
- the CPU 22 displays the heterogeneous data together with the medical image included in the similar case data or separately from the medical image. It is displayed on the unit 26. Therefore, the user can more appropriately predict the transition of the disease of the diagnosis target person by confirming the heterogeneous data included in the similar case data. Further, even when the heterogeneous data regarding the diagnosis target person has not been acquired yet, the user can confirm the heterogeneous data of the patients having similar cases, so that the diagnosis of the diagnosis target person can be performed more appropriately. be able to.
- the CPU 22 of the medical information processing apparatus 20 may specify the timing (change timing) at which the change in the feature amount of the plurality of medical images included in each data becomes equal to or greater than the threshold value for each of the plurality of data.
- the CPU 22 may match the time axis by matching the change timings in the data.
- the change timing may be, for example, the timing when the change in the progress of the disease (progress of deterioration) becomes equal to or higher than the threshold value, or the change timing may be the timing when the change in the progress of healing of the disease becomes equal to or higher than the threshold value.
- the CPU 22 obtains similar case data by comparing the medical image before or after the change timing with the medical image 41 of the target data 40 among the plurality of medical images 51 included in the case data 50. It may be extracted.
- the process of acquiring the target data 40 in S1 of FIG. 2 is an example of the “target data acquisition step”.
- the process of extracting similar case data in S3 of FIG. 2 is an example of the “similar case data extraction step”.
- the process of matching the time axis of the shooting timing in S7, S10, and S14 of FIG. 2 is an example of the “time axis matching step”.
- the process of outputting medical information in S7, S11, S15, S18, and S22 of FIG. 2 is an example of the “medical information output step”.
- the process of generating the predicted image in S18 of FIG. 2 is an example of the “predicted image generation step”.
- the process of acquiring the progress information in S21 of FIG. 2 is an example of the “progress acquisition step”.
- the process of generating the progress transition graph in S22 of FIG. 2 is an example of the “graph generation step”.
Landscapes
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Databases & Information Systems (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Medical Treatment And Welfare Office Work (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
Description
本開示は、複数の症例データのうち、診断対象者のデータに類似する症例データに基づいて、診断に有用な医療情報を出力するための医療情報処理プログラムおよび医療情報処理装置に関する。 The present disclosure relates to a medical information processing program and a medical information processing device for outputting medical information useful for diagnosis based on case data similar to the data of a person to be diagnosed among a plurality of case data.
従来、診断に有用な医療情報をユーザに提示するための種々の技術が提案されている。例えば、特許文献1が開示する眼科情報処理装置は、異なる日に得られた複数のOCTデータに基づく層厚情報を整合させることで、被検眼の経過観察の容易化を図っている。
Conventionally, various techniques for presenting medical information useful for diagnosis to users have been proposed. For example, the ophthalmic information processing apparatus disclosed in
異なるタイミングで撮影された複数の医療画像を含む複数の症例データから、診断対象者のデータに類似する症例データを抽出し、抽出した症例データに基づいて医療情報を出力することも考えられる。この場合、抽出された症例データに含まれる複数の医療画像から、患者の疾患の状態の推移が把握されるため、診断対象者の疾患の推移が、出力される医療情報によって適切に予測される。 It is also conceivable to extract case data similar to the data of the person to be diagnosed from a plurality of case data including a plurality of medical images taken at different timings, and output medical information based on the extracted case data. In this case, since the transition of the disease state of the patient is grasped from the plurality of medical images included in the extracted case data, the transition of the disease of the diagnosis target person is appropriately predicted by the output medical information. ..
しかし、症例データに含まれる複数の医療画像、および診断対象者の医療画像は、共に種々のタイミングで撮影されている。従って、各々の医療画像が撮影されたタイミングも考慮したうえで医療情報が出力されなければ、医師による診断が適切に補助されない可能性がある。 However, the multiple medical images included in the case data and the medical images of the person to be diagnosed are both taken at various timings. Therefore, if the medical information is not output in consideration of the timing at which each medical image is taken, the diagnosis by the doctor may not be appropriately assisted.
本開示は、より有用な医療情報をユーザに提示することが可能な医療情報処理プログラムおよび医療情報処理装置を提供することである。 The present disclosure is to provide a medical information processing program and a medical information processing device capable of presenting more useful medical information to a user.
本開示における典型的な実施形態が提供する医療情報処理プログラムは、複数の症例データのうち、診断対象者のデータに類似する症例データに基づいて、診断に有用な医療情報を出力する医療情報処理装置において実行される医療情報処理プログラムであって、複数の前記症例データの各々は、異なるタイミングで撮影された複数の医療画像のデータと、各々の医療画像の撮影タイミングの情報とを含んだ状態でデータベースに記憶されており、前記医療情報処理プログラムが前記医療情報処理装置の制御部によって実行されることで、診断対象者に関する少なくとも1つの医療画像のデータ、および、前記医療画像の撮影タイミングの情報を含む対象データを取得する対象データ取得ステップと、前記複数の症例データから、前記対象データに含まれる少なくとも1つの医療画像に類似する医療画像を含む前記症例データを、類似症例データとして抽出する類似症例データ抽出ステップと、前記類似症例データと前記対象データ、および、複数の前記類似症例データのうち、少なくとも一方のデータ間について、医療画像の撮影タイミングの時間軸を一致させる時間軸一致ステップと、前記時間軸を一致させた状態で、前記類似症例データに基づく医療情報を出力する医療情報出力ステップと、が前記医療情報処理装置によって実行される。 The medical information processing program provided by the typical embodiment in the present disclosure is medical information processing that outputs medical information useful for diagnosis based on case data similar to the data of a person to be diagnosed among a plurality of case data. It is a medical information processing program executed in the device, and each of the plurality of case data includes data of a plurality of medical images taken at different timings and information on the shooting timing of each medical image. When the medical information processing program is executed by the control unit of the medical information processing apparatus, the data of at least one medical image relating to the diagnosis target person and the imaging timing of the medical image are determined. From the target data acquisition step for acquiring target data including information and the plurality of case data, the case data including a medical image similar to at least one medical image included in the target data is extracted as similar case data. A similar case data extraction step, and a time axis matching step of matching the time axis of the acquisition timing of the medical image between the similar case data, the target data, and at least one of the plurality of similar case data. , The medical information output step of outputting medical information based on the similar case data in a state where the time axes are matched, is executed by the medical information processing apparatus.
本開示における典型的な実施形態が提供する医療情報処理装置は、複数の症例データのうち、診断対象者のデータに類似する症例データに基づいて、診断に有用な医療情報を出力する医療情報処理装置であって、複数の前記症例データの各々は、異なるタイミングで撮影された複数の医療画像のデータと、各々の医療画像の撮影タイミングの情報とを含んだ状態でデータベースに記憶されており、前記医療情報処理装置の制御部は、診断対象者に関する少なくとも1つの医療画像のデータ、および、前記医療画像の撮影タイミングの情報を含む対象データを取得する対象データ取得ステップと、前記複数の症例データから、前記対象データに含まれる少なくとも1つの医療画像に類似する医療画像を含む前記症例データを、類似症例データとして抽出する類似症例データ抽出ステップと、前記類似症例データと前記対象データ、および、複数の前記類似症例データのうち、少なくとも一方のデータ間について、医療画像の撮影タイミングの時間軸を一致させる時間軸一致ステップと、前記時間軸を一致させた状態で、前記類似症例データに基づく医療情報を出力する医療情報出力ステップと、を実行する。 The medical information processing apparatus provided by the typical embodiment in the present disclosure is medical information processing that outputs medical information useful for diagnosis based on case data similar to the data of a person to be diagnosed among a plurality of case data. It is an apparatus, and each of the plurality of case data is stored in a database in a state including data of a plurality of medical images taken at different timings and information on the timing of taking each medical image. The control unit of the medical information processing apparatus includes a target data acquisition step of acquiring at least one medical image data relating to the diagnosis target person and target data including information on the imaging timing of the medical image, and the plurality of case data. A similar case data extraction step for extracting the case data including a medical image similar to at least one medical image included in the target data as similar case data, the similar case data and the target data, and a plurality of the similar case data. Medical information based on the similar case data in a state where the time axis matching step of matching the time axis of the acquisition timing of the medical image and the time axis are matched between at least one of the similar case data of the above. To output the medical information output step, and to execute.
本開示における医療情報処理プログラムおよび医療情報処理方法によると、より有用な医療情報がユーザに提示される。 According to the medical information processing program and medical information processing method in the present disclosure, more useful medical information is presented to the user.
本開示で例示する医療情報処理プログラムは、医療情報処理装置において実行される。医療情報処理装置は、複数の症例データのうち、診断対象者のデータに類似する症例データに基づいて、診断に有用な医療情報を出力する。複数の症例データの各々は、異なるタイミングで撮影された複数の医療画像のデータと、各々の医療画像の撮影タイミングの情報とを含んだ状態でデータベースに記憶されている。医療情報処理装置の制御部は、対象データ取得ステップ、類似症例データ抽出ステップ、時間軸一致ステップ、および医療情報出力ステップを実行する。対象データ取得ステップでは、制御部は、診断対象者に関する少なくとも1つの医療画像のデータ、および、医療画像の撮影タイミングの情報を含む対象データを取得する。類似症例データ抽出ステップでは、制御部は、複数の症例データから、対象データに含まれる少なくとも1つの医療画像に類似する医療画像を含む症例データ(類似症例データ)を抽出する。時間軸一致ステップでは、制御部は、類似症例データと対象データ、および、複数の類似症例データのうち、少なくとも一方のデータ間について、医療画像の撮影タイミングの時間軸を一致させる。医療情報出力ステップでは、制御部は、時間軸を一致させた状態で、抽出された症例データに基づく医療情報を出力する。 The medical information processing program illustrated in this disclosure is executed in a medical information processing device. The medical information processing device outputs medical information useful for diagnosis based on case data similar to the data of the person to be diagnosed among a plurality of case data. Each of the plurality of case data is stored in the database in a state including the data of the plurality of medical images taken at different timings and the information of the shooting timing of each medical image. The control unit of the medical information processing apparatus executes a target data acquisition step, a similar case data extraction step, a time axis matching step, and a medical information output step. In the target data acquisition step, the control unit acquires target data including at least one medical image data regarding the diagnosis target person and information on the timing of taking the medical image. In the similar case data extraction step, the control unit extracts case data (similar case data) including a medical image similar to at least one medical image included in the target data from the plurality of case data. In the time axis matching step, the control unit matches the time axis of the acquisition timing of the medical image between the similar case data, the target data, and at least one of the plurality of similar case data. In the medical information output step, the control unit outputs medical information based on the extracted case data in a state where the time axes are matched.
本開示で例示する医療情報処理装置によると、複数のデータ間(類似症例データと対象データの間、および、複数の類似症例データの間の少なくとも一方)において、医療画像の撮影タイミングの時間軸が一致された状態で、医療情報が出力される。従って、出力された医療情報を確認するユーザ(例えば医師等)は、各々の医療画像が撮影されたタイミングも把握したうえで、診断対象者の疾患の推移を適切に予測することができる。よって、より有用な医療情報がユーザに提示される。 According to the medical information processing apparatus exemplified in the present disclosure, the time axis of the acquisition timing of the medical image is set between a plurality of data (between similar case data and target data, and at least one of a plurality of similar case data). Medical information is output in the matched state. Therefore, the user (for example, a doctor or the like) who confirms the output medical information can appropriately predict the transition of the disease of the diagnosis target person after grasping the timing when each medical image is taken. Therefore, more useful medical information is presented to the user.
なお、類似症例データを抽出する方法は適宜設定できる。例えば、制御部は、各々の医療画像の特徴量を示す値(例えば、SIFT(Scale Invariant Feature Transform)等)を抽出し、対象データの医療画像との間の特徴量の差が小さい医療画像を含む症例データを、類似症例データとして抽出してもよい。また、制御部は、機械学習アルゴリズムによって訓練された数学モデルに医療画像を入力することで、医療画像の類似度を取得し、取得した結果に基づいて類似症例データを抽出してもよい。また、制御部は、症例データに含まれる医療画像の画像品質が閾値未満である場合には、抽出する対象から除外してもよいし、画像品質が低い旨をユーザに警告してもよい。 The method for extracting similar case data can be set as appropriate. For example, the control unit extracts a value indicating the feature amount of each medical image (for example, SIFT (Scale Invariant Feature Transfer Transfer)), and selects a medical image having a small difference in the feature amount between the target data and the medical image. The including case data may be extracted as similar case data. In addition, the control unit may acquire the similarity of the medical image by inputting the medical image into the mathematical model trained by the machine learning algorithm, and extract similar case data based on the acquired result. Further, when the image quality of the medical image included in the case data is less than the threshold value, the control unit may exclude it from the extraction target or warn the user that the image quality is low.
時間軸一致ステップでは、制御部は、ユーザから入力される指示に応じて、複数のデータ間における医療画像の撮影タイミングの時間軸を一致させてもよい。この場合、ユーザは、複数のデータ間の時間軸を所望の状態に一致させた状態で、適切な医療情報を医療情報処理装置に出力させることができる。 In the time axis matching step, the control unit may match the time axis of the medical image imaging timing between the plurality of data according to the instruction input from the user. In this case, the user can output appropriate medical information to the medical information processing apparatus in a state where the time axis between the plurality of data matches a desired state.
なお、ユーザからの指示に応じて時間軸を一致させるための具体的な方法は、適宜選択できる。例えば、複数のデータの各々の医療画像の撮影タイミングを示す時間軸が、表示部に表示されてもよい。ユーザは、撮影タイミングを示す時間軸を確認しつつ、時間軸を調整する指示を医療情報処理装置に入力してもよい。制御部は、入力された調整指示に応じて時間軸を一致させてもよい。この場合、制御部は、時間軸と共に医療画像を表示部に表示させてもよい。また、ユーザは、時間軸を一致させる基準を指定する指示を入力してもよい。例えば、制御部は、複数のデータの各々の医療画像のうち、時間軸上で撮影タイミングを一致させる医療画像を基準画像として指定する指示を入力してもよい。この場合、制御部は、基準画像として指定された医療画像同士の撮影タイミングが一致するように、時間軸を一致させてもよい。 The specific method for matching the time axis according to the instruction from the user can be appropriately selected. For example, a time axis indicating the acquisition timing of each medical image of a plurality of data may be displayed on the display unit. The user may input an instruction for adjusting the time axis to the medical information processing apparatus while confirming the time axis indicating the imaging timing. The control unit may match the time axis according to the input adjustment instruction. In this case, the control unit may display the medical image on the display unit together with the time axis. The user may also enter an instruction to specify a criterion for matching the time axis. For example, the control unit may input an instruction to specify a medical image whose imaging timing matches on the time axis as a reference image among the medical images of the plurality of data. In this case, the control unit may match the time axes so that the imaging timings of the medical images designated as the reference images match.
時間軸一致ステップでは、制御部は、複数のデータの各々に含まれる医療画像のうち、類似度が最も高い医療画像同士の撮影タイミングを一致させることで、時間軸を一致させてもよい。類似度が最も高い2つの医療画像中の疾患の状態は、近似している可能性が高い。従って、類似度が最も高い2つの医療画像の撮影タイミングが一致するように、時間軸を一致させることで、ユーザは、疾患の推移を医療情報によってより適切に把握することができる。 In the time axis matching step, the control unit may match the time axis by matching the imaging timings of the medical images having the highest degree of similarity among the medical images included in each of the plurality of data. The disease states in the two most similar medical images are likely to be similar. Therefore, by matching the time axes so that the acquisition timings of the two medical images having the highest degree of similarity match, the user can more appropriately grasp the transition of the disease from the medical information.
症例データには、患者に対して実行された治療(例えば、投薬、手術、または処置等)に関する情報(治療情報)が含まれていてもよい。この場合、医療情報処理装置は、症例データに含まれる治療情報に基づいて、より適切な医療情報を出力することができる。 The case data may include information (treatment information) regarding the treatment (eg, medication, surgery, treatment, etc.) performed on the patient. In this case, the medical information processing apparatus can output more appropriate medical information based on the treatment information included in the case data.
治療情報の具体的な内容は、適宜選択できる。例えば、治療データには、患者に対して治療が実行されたか否かを示す情報、患者に対して実行された治療の内容を示す情報、および、患者に対して治療が実行または開始された治療タイミングの示す情報の少なくともいずれかが含まれていてもよい。 The specific content of treatment information can be selected as appropriate. For example, treatment data includes information indicating whether or not treatment has been performed on the patient, information indicating the content of treatment performed on the patient, and treatment in which treatment has been performed or started on the patient. It may contain at least one of the timing information.
対象データ取得ステップでは、制御部は、治療情報が示す治療の有無、および実行された治療の内容の少なくともいずれかによって複数の症例データ内で分類される複数の症例データ群のうち、1つまたは複数の症例データ群の中から、対象データに含まれる少なくとも1つの医療画像に類似する医療画像を含む症例データ(以下、「類似症例データ」という)を抽出してもよい。この場合、治療の有無、および治療の内容の少なくともいずれかに応じた症例データが適切に抽出されたうえで、医療情報が出力される。よって、ユーザは、治療の内容等に応じて適切に診断対象者の疾患の推移を予測することができる。 In the target data acquisition step, the control unit is one of a plurality of case data groups classified in the plurality of case data according to at least one of the presence or absence of treatment indicated by the treatment information and the content of the performed treatment. From a plurality of case data groups, case data including a medical image similar to at least one medical image included in the target data (hereinafter, referred to as “similar case data”) may be extracted. In this case, medical information is output after appropriately extracting case data according to at least one of the presence or absence of treatment and the content of treatment. Therefore, the user can appropriately predict the transition of the disease of the diagnosis target person according to the content of the treatment and the like.
なお、制御部は、複数の症例データ群のうち、1つの症例データ群から類似症例データを抽出してもよい。また、制御部は、複数の症例データの各々から少なくとも1つずつ類似症例データを抽出してもよい。例えば、治療が行われた患者の症例データ群と、治療が行われていない患者の症例データ群の各々から類似症例データが抽出されることで、治療の有無に応じた疾患の推移が適切に予測される。また、治療の内容が異なる複数の治療データ群の各々から類似症例データが抽出されることで、治療の内容に応じた疾患の推移が適切に予測される。 Note that the control unit may extract similar case data from one case data group among a plurality of case data groups. Further, the control unit may extract at least one similar case data from each of the plurality of case data. For example, by extracting similar case data from each of the case data group of treated patients and the case data group of untreated patients, the transition of the disease according to the presence or absence of treatment can be appropriately performed. is expected. In addition, by extracting similar case data from each of a plurality of treatment data groups having different treatment contents, the transition of the disease according to the treatment contents can be appropriately predicted.
症例データに含まれる治療情報には、治療が実行または開始された治療タイミングを示す情報が含まれていてもよい。時間軸一致ステップでは、制御部は、複数のデータ間の治療タイミングを一致させることで、時間軸を一致させてもよい。この場合、治療タイミングを基準として、診断対象者の疾患の治療による推移が適切に予測される。 The treatment information included in the case data may include information indicating the treatment timing when the treatment is executed or started. In the time axis matching step, the control unit may match the time axis by matching the treatment timing between the plurality of data. In this case, the transition of the diagnosed subject due to the treatment of the disease is appropriately predicted based on the treatment timing.
なお、診断対象者に対する治療のタイミングは、診断対象者に対して実際に実行された治療のタイミングでもよいし、診断対象者に対して将来治療を実行すると仮定した場合の治療のタイミングでもよい。 The timing of treatment for the diagnosis target person may be the timing of the treatment actually performed for the diagnosis target person, or the timing of the treatment assuming that the diagnosis target person will be treated in the future.
なお、複数のデータの時間軸を一致させるための具体的な方法を変更することも可能である。例えば、制御部は、複数の医療画像の特徴量の変化が閾値以上となったタイミング(変化タイミング)を、複数のデータの各々について特定してもよい。制御部は、複数のデータの変化タイミングを一致させることで、時間軸を一致させてもよい。この場合、変化タイミングを基準として、疾患の推移が適切に予測される。例えば、制御部は、複数の医療画像の特徴量等に基づいて、疾患の進行具合(悪化の進行具合)の変化が閾値以上となった変化タイミングを特定し、複数のデータの変化タイミングを一致させてもよい。この場合、ユーザは、疾患の進行具合が急激に悪化したタイミングを基準として、複数のデータを容易に比較することが可能である。 It is also possible to change the specific method for matching the time axes of multiple data. For example, the control unit may specify the timing (change timing) at which the change in the feature amount of the plurality of medical images becomes equal to or greater than the threshold value for each of the plurality of data. The control unit may match the time axis by matching the change timings of the plurality of data. In this case, the transition of the disease is appropriately predicted based on the change timing. For example, the control unit identifies the change timing at which the change in the progress of the disease (progress of deterioration) exceeds the threshold value based on the feature amounts of a plurality of medical images, and matches the change timing of the plurality of data. You may let me. In this case, the user can easily compare a plurality of data based on the timing when the progress of the disease suddenly deteriorates.
また、複数の症例データから類似症例データを抽出する場合、制御部は、症例データに含まれる医療画像のうち、治療・変化タイミング以前、または以後の医療画像と、対象データの医療画像の類似度を比較することで、類似症例データを抽出してもよい。この場合、治療・変化タイミングが考慮されたうえで、より適切に類似症例データが抽出される。 When extracting similar case data from a plurality of case data, the control unit determines the degree of similarity between the medical image included in the case data before or after the treatment / change timing and the medical image of the target data. Similar case data may be extracted by comparing. In this case, similar case data is extracted more appropriately after considering the treatment / change timing.
類似症例データ抽出ステップでは、制御部は、対象データに複数の医療画像が含まれている場合に、対象データにおける複数の医療画像の撮影間隔との差が閾値以下の撮影間隔で撮影された複数の医療画像を含む症例データから、複数の医療画像同士が類似する症例データを、類似症例データとして抽出してもよい。この場合、抽出された類似症例データの複数の医療画像には、対象データの複数の医療画像の撮影間隔に近い間隔で撮影された医療画像が含まれる。従って、ユーザは、複数の医療画像の撮影間隔が近く、且つ時間軸も一致した症例データに基づいて、より適切に疾患の推移を予測することが可能である。なお、対象データの医療画像と症例データ医療画像の撮影間隔の差の閾値は、予め設定されていてもよいし、ユーザによって入力される指示に応じて設定されてもよい。 In the similar case data extraction step, when the target data includes a plurality of medical images, the control unit captures a plurality of images at an imaging interval in which the difference from the imaging interval of the plurality of medical images in the target data is equal to or less than the threshold. From the case data including the medical images of the above, case data in which a plurality of medical images are similar to each other may be extracted as similar case data. In this case, the plurality of medical images of the extracted similar case data include medical images taken at intervals close to the shooting intervals of the plurality of medical images of the target data. Therefore, the user can more appropriately predict the transition of the disease based on the case data in which the imaging intervals of the plurality of medical images are close and the time axes are the same. The threshold value of the difference between the imaging intervals of the medical image of the target data and the medical image of the case data may be set in advance or may be set according to an instruction input by the user.
なお、対象データに複数の医療画像が含まれている場合、制御部は、種々の方法で類似症例データを抽出することができる。例えば、制御部は、対象データに含まれる複数の医療画像のうち、症例データとの類似度を判断する対象とする1つまたは複数の医療画像を、ユーザから入力される指示に応じて設定してもよい。制御部は、判断対象とする医療画像と、症例データの医療画像の類似度を比較することで、類似症例データを抽出してもよい。 When the target data includes a plurality of medical images, the control unit can extract similar case data by various methods. For example, the control unit sets one or a plurality of medical images to be determined for similarity with the case data among a plurality of medical images included in the target data according to an instruction input from the user. You may. The control unit may extract similar case data by comparing the similarity between the medical image to be determined and the medical image of the case data.
医療情報出力ステップでは、制御部は、時間軸を一致させた状態で、複数のデータの各々に含まれる医療画像と、医療画像の撮影タイミングを示す時間軸とを、共に医療情報として表示部に表示させてもよい。この場合、ユーザは、複数のデータの時間軸が一致された状態で、表示部に表示されている複数の医療画像の撮影タイミングを適切に把握することができる。従って、ユーザは、より容易に疾患の推移を予測することができる。 In the medical information output step, the control unit displays the medical image included in each of the plurality of data and the time axis indicating the shooting timing of the medical image as medical information on the display unit in a state where the time axes are matched. It may be displayed. In this case, the user can appropriately grasp the imaging timing of the plurality of medical images displayed on the display unit in a state where the time axes of the plurality of data are matched. Therefore, the user can more easily predict the transition of the disease.
なお、制御部は、複数の類似症例データの各々に含まれる医療画像を、時間軸と共に表示部に表示させてもよい。また、制御部は、類似症例データに含まれる医療画像と、対象データに含まれる医療画像を、時間軸と共に表示部に表示させてもよい。この場合、ユーザは、対象データの医療画像と、類似症例データの医療画像を、撮影タイミングを時間軸によって把握したうえで適切に比較することができる。 The control unit may display the medical image included in each of the plurality of similar case data on the display unit together with the time axis. Further, the control unit may display the medical image included in the similar case data and the medical image included in the target data on the display unit together with the time axis. In this case, the user can appropriately compare the medical image of the target data and the medical image of the similar case data after grasping the imaging timing on the time axis.
制御部は、類似症例データに含まれる医療画像のうち、一致された時間軸において対象データの医療画像の撮影タイミングと同じタイミングよりも後に撮影された医療画像と、対象データの医療画像とに基づいて、診断対象者の予測画像を生成してもよい。医療情報出力ステップでは、制御部は、時間軸を一致させた状態で生成された予測画像を、医療情報として表示部に表示させてもよい。この場合、類似症例データと対象データの各々の医療画像に基づいて、撮影タイミングが考慮されたうえで適切な予測画像が生成されて表示される。よって、ユーザは、より適切に疾患の推移を予測することができる。 The control unit is based on the medical image included in the similar case data, the medical image taken after the same timing as the shooting timing of the medical image of the target data on the matched time axis, and the medical image of the target data. Therefore, a predicted image of the person to be diagnosed may be generated. In the medical information output step, the control unit may display the predicted image generated in a state where the time axes are matched on the display unit as medical information. In this case, an appropriate predicted image is generated and displayed based on the medical images of the similar case data and the target data, taking into consideration the imaging timing. Therefore, the user can more appropriately predict the transition of the disease.
制御部は、進行度取得ステップとグラフ生成ステップをさらに実行してもよい。進行度取得ステップでは、制御部は、複数の医療画像の各々に写る疾患の、進行度の情報を取得する。グラフ生成ステップでは、制御部は、類似症例データと対象データ、または、複数類似症例データの各々における進行度の推移を示す進行度推移グラフを、複数のデータ間の時間軸を一致させた状態で生成する。医療情報出力ステップでは、制御部は、時間軸を一致させた状態で生成された進行度推移グラフを、医療情報として表示部に表示させてもよい。この場合、ユーザは、複数のデータにおける疾患の進行度の推移を容易に把握することができる。さらに、複数のデータ間の時間軸が一致した状態で進行度推移グラフが生成されるので、ユーザは、複数のデータの進行度推移グラフを適切に比較することが可能である。 The control unit may further execute the progress acquisition step and the graph generation step. In the progress acquisition step, the control unit acquires information on the progress of the disease shown in each of the plurality of medical images. In the graph generation step, the control unit displays a progress transition graph showing the transition of the progress in each of the similar case data and the target data, or a plurality of similar case data, in a state where the time axis between the plurality of data is matched. Generate. In the medical information output step, the control unit may display the progress transition graph generated in a state where the time axes are matched on the display unit as medical information. In this case, the user can easily grasp the transition of the disease progression in the plurality of data. Further, since the progress transition graph is generated in a state where the time axes of the plurality of data match, the user can appropriately compare the progress transition graphs of the plurality of data.
複数の症例データの少なくともいずれかには、診断対象者に関する対象データに含まれる医療画像を撮影した医療画像撮影装置とは異なる種別の装置によって取得された異種別データが含まれていてもよい。医療情報出力ステップでは、制御部は、抽出された類似症例データに異種別データが含まれている場合には、異種別データを医療情報として出力してもよい。異種別データは、例えば、対象データに含まれる医療画像(つまり、類似症例データを抽出する際に参照される医療画像)を撮影した医療画像撮影装置とは異なる種別の撮影装置によって撮影された画像であってもよい。また、異種別データは、患者の検査を行う検査装置によって取得された検査結果(例えば、眼科分野では、被検眼の視力、眼軸長、眼圧、および視野等の少なくともいずれかの検査結果)であってもよい。また、異種別データは、類似症例データに含まれる医療画像と共に表示されてもよいし、異種別データが単独で出力(例えば表示等)されてもよい。 At least one of the plurality of case data may include heterogeneous data acquired by a device of a type different from the medical imaging device that captured the medical image included in the target data regarding the diagnosis target person. In the medical information output step, the control unit may output the heterogeneous data as medical information when the extracted similar case data includes the heterogeneous data. The heterogeneous data is, for example, an image taken by a different type of imaging device from the medical imaging apparatus that captured the medical image included in the target data (that is, the medical image referred to when extracting similar case data). It may be. In addition, the heterogeneous data is the test result acquired by a test device that tests the patient (for example, in the field of ophthalmology, at least one of the test results such as visual acuity, axial length, intraocular pressure, and visual field of the eye to be examined). It may be. Further, the heterogeneous data may be displayed together with the medical image included in the similar case data, or the heterogeneous data may be output independently (for example, display).
この場合、ユーザは、類似症例データに含まれる異種別データを確認したうえで診断等を行うことができるので、診断対象者の疾患の推移をより適切に予測することができる。また、診断対象者に関する異種別データが未だ取得されていない場合でも、ユーザは、類似症例データに含まれる異種別データを確認することで、診断対象者の診断等をより適切に実行することができる。 In this case, the user can make a diagnosis after confirming the heterogeneous data included in the similar case data, so that the transition of the disease of the person to be diagnosed can be predicted more appropriately. In addition, even if the heterogeneous data regarding the diagnosis target person has not been acquired yet, the user can perform the diagnosis of the diagnosis target person more appropriately by checking the heterogeneous data included in the similar case data. it can.
以下、本開示における典型的な実施形態の1つについて、図面を参照して説明する。本実施形態では、サーバ10と、各拠点で使用される複数の医療情報処理装置20と、医療情報処理装置20に医療画像を含むデータを供給する医療画像撮影装置30とを備えた医療情報処理システム1を例示する。ただし、医療情報処理システムおよび医療画像処理装置の構成は、本実施形態で例示する構成に限定されない。例えば、本実施形態では、複数の症例データを記憶するデータベースとして、サーバ10の記憶装置が用いられる。しかし、症例データが医療情報処理装置20の記憶装置23に記憶される場合等には、サーバ10を省略することも可能である。また、サーバ10または医療画像撮影装置30が、医療情報処理装置として機能してもよい。また、複数のデバイス(例えば、サーバ、端末装置(パーソナルコンピュータまたは携帯端末等)、および医療画像撮影装置等の2つ以上)が協働して、医療情報処理装置として機能してもよい。
Hereinafter, one of the typical embodiments in the present disclosure will be described with reference to the drawings. In the present embodiment, medical information processing including a
図1を参照して、本実施形態における医療情報処理システム1のシステム構成について説明する。前述したように、本実施形態の医療情報処理システム1は、サーバ10と、各拠点(例えば、病院、健康診断施設等)において使用される複数の医療情報処理装置20を備える。図1では、拠点Aで使用される医療情報処理装置20Aと、拠点Bで使用される医療情報処理装置20Bを例示している。
The system configuration of the medical
サーバ10は、接続されるデバイス(本実施形態では医療情報処理装置20)に対して各種データ等を提供する。本実施形態では、クラウドサービスを提供するメーカーのサーバ(所謂クラウドサーバ)が、サーバ10として用いられている。しかし、クラウドサーバ以外のサーバが用いられてもよいことは言うまでもない。サーバ10は、各種処理制御を行う制御ユニット11と、通信I/F14を備える。制御ユニット11は、制御を司るコントローラであるCPU12と、プログラムおよびデータ等を記憶することが可能な記憶装置13を備える。本実施形態では、サーバ10の記憶装置13は、後述する症例データを記憶するデータベースとして使用される。通信I/F14は、ネットワーク5(例えばインターネット)を介して、サーバ10を外部機器(例えば医療情報処理装置20)と接続する。
The
医療情報処理装置20は、各拠点のユーザ(例えば、医師および検査技師等)によって使用される。本実施形態の医療情報処理装置20はパーソナルコンピュータであるが、スマートフォンまたはタブレット端末等の携帯端末等が医療情報処理装置として使用されてもよい。医療情報処理装置20は、各種制御処理を行う制御ユニット21と、通信I/F24を備える。制御ユニット21は、制御を司るコントローラであるCPU22と、プログラムおよびデータ等を記憶することが可能な記憶装置23を備える。記憶装置23には、後述する各種処理を実行するための医療情報処理プログラムが記憶されている。また、通信I/F24は、ネットワーク5を介して、医療情報処理装置20を外部機器(例えばサーバ10)と接続する。例えば、医療情報処理装置20は、症例データをサーバ10から受信(取得)する。また、医療情報処理装置20は、症例データをサーバ10に送信(出力)する。
The medical information processing device 20 is used by users at each base (for example, doctors and laboratory technicians). Although the medical information processing device 20 of the present embodiment is a personal computer, a mobile terminal such as a smartphone or a tablet terminal may be used as the medical information processing device. The medical information processing device 20 includes a control unit 21 that performs various control processes and a communication I / F 24. The control unit 21 includes a CPU 22 which is a controller that controls control, and a storage device 23 that can store programs, data, and the like. The storage device 23 stores a medical information processing program for executing various processes described later. Further, the communication I / F 24 connects the medical information processing device 20 to an external device (for example, a server 10) via the
医療情報処理装置20は、操作部25および表示部26に接続されている。操作部25は、ユーザが各種指示を医療情報処理装置20に入力するために、ユーザによって操作される。操作部25には、例えば、キーボード、マウス、タッチパネル等の少なくともいずれかを使用できる。なお、操作部25と共に、または操作部25に代えて、各種指示を入力するためのマイク等が使用されてもよい。表示部26は、各種画像を表示することが可能なデバイス(例えば、モニタまたはプロジェクタ等)である。 The medical information processing device 20 is connected to the operation unit 25 and the display unit 26. The operation unit 25 is operated by the user in order for the user to input various instructions to the medical information processing apparatus 20. For the operation unit 25, for example, at least one of a keyboard, a mouse, a touch panel, and the like can be used. A microphone or the like for inputting various instructions may be used together with the operation unit 25 or instead of the operation unit 25. The display unit 26 is a device (for example, a monitor or a projector) capable of displaying various images.
複数の医療情報処理装置20の少なくともいずれかは、患者の医療画像を撮影する1つまたは複数の医療画像撮影装置30との間でデータ(例えば医療画像のデータ等)のやり取りを行うことができる。医療情報処理装置20が医療画像撮影装置30との間でデータ等のやり取りを行う方法は、適宜選択できる。例えば、医療情報処理装置20は、有線通信、無線通信、着脱可能な記憶媒体(例えばUSBメモリ)等の少なくともいずれかによって、医療画像撮影装置30との間でデータおよび制御信号のやり取りを行ってもよい。 At least one of the plurality of medical information processing devices 20 can exchange data (for example, medical image data, etc.) with one or a plurality of medical image capturing devices 30 that capture a medical image of a patient. .. The method by which the medical information processing apparatus 20 exchanges data and the like with the medical imaging apparatus 30 can be appropriately selected. For example, the medical information processing apparatus 20 exchanges data and control signals with the medical imaging apparatus 30 by at least one of wired communication, wireless communication, a detachable storage medium (for example, a USB memory), and the like. May be good.
医療画像撮影装置30には、種々の装置を用いることができる。一例として、本実施形態で使用される医療画像撮影装置30には、被検眼の組織(本実施形態では眼底)の断層画像および正面画像を取得することが可能なOCT装置が含まれる。しかし、OCT装置以外の眼科撮影装置(例えば、眼底カメラ、走査型レーザ検眼鏡(SLO)、角膜形状測定装置等の少なくともいずれか)が用いられてもよい。また、被検眼以外の患者の組織を撮影する医療画像撮影装置が用いられてもよい。 Various devices can be used for the medical imaging device 30. As an example, the medical imaging device 30 used in the present embodiment includes an OCT device capable of acquiring a tomographic image and a frontal image of the tissue of the eye to be inspected (the fundus in the present embodiment). However, an ophthalmologic imaging device other than the OCT device (for example, at least one of a fundus camera, a scanning laser ophthalmoscope (SLO), a corneal shape measuring device, and the like) may be used. In addition, a medical imaging device that photographs the tissue of a patient other than the eye to be inspected may be used.
医療画像撮影装置30は、各種制御処理を行う制御ユニット31と、撮影部35を備える。制御ユニット31は、制御を司るコントローラであるCPU32と、プログラムおよびデータ等を記憶することが可能な記憶装置33を備える。撮影部35は、医療画像撮影装置30が患者の医療画像の撮影を行うために必要な各種構成を備える。例えば、医療画像撮影装置30としてOCT装置が用いられる場合、撮影部35には、OCT光源、OCT光を走査するための走査部、OCT光を被検眼に照射するための光学系、被検眼の組織によって反射された光を受光する受光素子等が含まれる。 The medical imaging device 30 includes a control unit 31 that performs various control processes and an imaging unit 35. The control unit 31 includes a CPU 32, which is a controller that controls control, and a storage device 33 that can store programs, data, and the like. The imaging unit 35 includes various configurations necessary for the medical imaging apparatus 30 to capture a medical image of a patient. For example, when an OCT device is used as the medical imaging device 30, the imaging unit 35 includes an OCT light source, a scanning unit for scanning OCT light, an optical system for irradiating the eye to be inspected with OCT light, and an eye to be inspected. A light receiving element or the like that receives light reflected by the tissue is included.
図2~図6を参照して、本実施形態における医療情報処理の一例について説明する。図2に例示する医療情報処理は、医療情報処理装置20の記憶装置23に記憶された医療情報処理プログラムに従って、医療情報処理装置20のCPU22によって実行される。ただし、前述したように、医療情報処理は、他のデバイスの制御部(例えば、サーバ10のCPU12、または、医療画像撮影装置30のCPU32等)によって実行されてもよい。また、複数のデバイスの制御部(例えば、医療情報処理装置20のCPU22と、サーバ10のCPU12等)が協働して医療情報処理を実行してもよい。
An example of medical information processing in the present embodiment will be described with reference to FIGS. 2 to 6. The medical information processing illustrated in FIG. 2 is executed by the CPU 22 of the medical information processing device 20 according to the medical information processing program stored in the storage device 23 of the medical information processing device 20. However, as described above, the medical information processing may be executed by the control unit of another device (for example, the
まず、CPU22は、診断対象者に関する対象データ40を取得する(S1)。図3および図4に示すように、本実施形態の対象データ40には、診断対象者について医療画像撮影装置30によって撮影された少なくとも1つの医療画像41と、各々の医療画像41が撮影された撮影タイミングの情報(本実施形態では、撮影日時の情報)とが含まれる。CPU22は、通信、または着脱可能な記憶媒体等を介して、医療画像撮影装置30から対象データ40を取得してもよい。また、CPU22は、既に記憶装置23に記憶されている、診断対象者の過去の対象データと、医療画像撮影装置30によって新たに撮影された医療画像41および撮影タイミングの情報とを、共に対象データ40として取得してもよい。詳細は後述するが、医療情報処理装置20は、データベースに記憶されている複数の症例データから、対象データ40に類似する症例データを類似症例データとして抽出する。
First, the CPU 22 acquires the
ここで、図3および図4を参照して、データベースに記憶されている複数の症例データ50について説明する。本実施形態では、複数の症例データ50を記憶するデータベースとして、サーバ10の記憶装置13が用いられる。しかし、症例データ50を記憶するデータベースは、他の記憶装置(例えば、医療情報処理装置20の記憶装置23等)であってもよい。症例データ50には、医療画像撮影装置30によって異なるタイミングで撮影された複数の医療画像51と、各々の医療画像51の撮影タイミングの情報とが含まれる。複数の症例データ50は、データベースに記憶されている。
Here, a plurality of case data 50 stored in the database will be described with reference to FIGS. 3 and 4. In the present embodiment, the
さらに、図4に示すように、本実施形態の症例データ50には、患者に対して実行された治療に関する情報(以下、「治療情報」という)が含まれる。本実施形態では、治療情報は、患者に対する治療の有無、治療が実行または開始されたタイミング(以下、「治療タイミング」という)、および、実行された治療の内容(例えば、実行された手術の種類、投薬された薬の種類、投薬方法、実行された処置の種類等の少なくともいずれか)を示す。 Further, as shown in FIG. 4, the case data 50 of the present embodiment includes information regarding the treatment performed on the patient (hereinafter, referred to as “treatment information”). In the present embodiment, the treatment information includes the presence or absence of treatment for the patient, the timing when the treatment is executed or started (hereinafter referred to as "treatment timing"), and the content of the treatment performed (for example, the type of surgery performed). , At least one of the type of drug administered, the method of administration, the type of treatment performed, etc.).
データベースに記憶されている複数の症例データ50の各々は、治療情報が示す治療の有無、および実行された治療の内容に応じて、複数の症例データ群のいずれかに分類される。つまり、本実施形態では、複数の症例データ50の各々は、治療が行われなかった患者の症例データ群と、治療が行われた患者の症例データ群のいずれかに分類される。さらに、治療が行われた患者の症例データ群は、実行された治療の内容に応じてさらに細かく分類されている。詳細は後述するが、医療情報処理装置20は、症例データ群の分類に応じて、対象データ40に類似する症例データ50を抽出することもできる。
Each of the plurality of case data 50 stored in the database is classified into one of the plurality of case data groups according to the presence or absence of treatment indicated by the treatment information and the content of the performed treatment. That is, in the present embodiment, each of the plurality of case data 50 is classified into either a case data group of a patient who has not been treated and a case data group of a patient who has been treated. Furthermore, the case data group of the treated patients is further subdivided according to the content of the treatment performed. Although the details will be described later, the medical information processing apparatus 20 can also extract case data 50 similar to the
また、データベースに記憶されている複数の症例データの少なくともいずれかには、対象データ40の医療画像41を撮影する医療画像撮影装置30とは異なる種別の装置によって取得された、患者に関するデータ(以下、「異種別データ」という)が含まれている場合もある。異種別データには、前述した医療画像撮影装置30(本実施形態ではOCT装置)とは異なる種別の撮影装置(例えば、眼底カメラ、走査型レーザ検眼鏡(SLO)、角膜形状測定装置等の少なくともいずれか)によって撮影された画像のデータが含まれていてもよい。また、異種別データは、患者の検査を行う検査装置によって取得された検査結果のデータ(例えば、視力、眼軸長、眼圧、および視野等の少なくともいずれかの検査結果のデータ等)が含まれていてもよい。
In addition, at least one of the plurality of case data stored in the database includes data related to the patient (hereinafter,) acquired by a device of a type different from the medical image capturing device 30 that captures the medical image 41 of the
図2の説明に戻る。CPU22は、S1で取得された対象データ40に含まれる1つまたは複数の医療画像41の中から、症例データ50を抽出するための基準とする1つまたは複数の医療画像41を、基準画像として設定する(S2)。詳細は後述するが、本実施形態の医療情報処理装置20は、データベースに記憶されている複数の症例データ50の中から、対象データ40に含まれる少なくとも1つの医療画像41に類似する医療画像51を含む症例データ50を、類似症例データとして抽出する。S2では、対象データ40中の医療画像41の中から、症例データ50中の医療画像51との類似度を判断する医療画像41が、基準画像として設定される。
Return to the explanation in Fig. 2. The CPU 22 uses one or a plurality of medical images 41 as a reference for extracting the case data 50 from the one or a plurality of medical images 41 included in the
S2において基準画像を設定する際の具体的な方法は、適宜選択できる。まず、S1で取得された対象データ40に医療画像41が1つしか含まれていない場合には、CPU22は、対象データ40中の1つの医療画像41を基準画像に設定する。対象データ40に複数の医療画像41が含まれている場合、CPU22は、ユーザから入力される基準画像の選択指示に基づいて、指示によって選択された1つまたは複数の医療画像41を基準画像として設定してもよい。また、対象データ40に複数の医療画像41が含まれている場合、CPU22は、撮影タイミングが新しい順に、1つまたは複数の医療画像41を自動的に基準画像として設定してもよい。
The specific method for setting the reference image in S2 can be appropriately selected. First, when the
次いで、CPU22は、データベースに記憶されている複数の症例データ50の中から、対象データ40に類似する1つまたは複数の症例データ50を、類似症例データとして抽出する(S3)。詳細には、CPU22は、対象データ40内で設定された基準画像に類似する医療画像51を含む症例データ50を、類似症例データとして抽出する。
Next, the CPU 22 extracts one or more case data 50 similar to the
一例として、本実施形態のS3では、CPU22は、基準画像、および症例データ50中の複数の医療画像51の各々の特徴量を示す値を取得する。本実施形態では、画像の特徴量を示す値として、SIFT(Scale Invariant Feature Transform)が採用されている。しかし、SIFT以外の特徴量が取得されてもよい。CPU22は、基準画像との間の特徴量の差が小さい医療画像51を含む症例データ50を、類似症例データとして抽出する。例えば、CPU50は、特徴量の差が閾値以下である医療画像51を含む症例データ50を抽出してもよい。また、CPU50は、基準画像と医療画像51の特徴量の差が小さい順に、1つまたは複数の症例データ50を抽出してもよい。 As an example, in S3 of the present embodiment, the CPU 22 acquires a value indicating the feature amount of each of the reference image and the plurality of medical images 51 in the case data 50. In this embodiment, SIFT (Scale Invariant Feature Transfer Transfer) is adopted as a value indicating the feature amount of the image. However, feature quantities other than SIFT may be acquired. The CPU 22 extracts the case data 50 including the medical image 51 having a small difference in the feature amount from the reference image as similar case data. For example, the CPU 50 may extract case data 50 including a medical image 51 in which the difference in feature amounts is equal to or less than a threshold value. Further, the CPU 50 may extract one or more case data 50 in ascending order of the difference between the feature amounts of the reference image and the medical image 51.
図3を参照して、対象データ40内に複数の基準画像41A,41Bが設定されている場合の、類似症例データの抽出方法の一例について説明する。図3に示す例では、対象データ40に含まれる複数の医療画像41のうち、2つの医療画像が基準画像41A,41Bとして設定されている。この場合、CPU22は、対象データ40に含まれる撮影タイミングの情報に基づいて、複数の基準画像41A,41Bの撮影間隔D1を特定する。次いで、CPU22は、複数の症例データ50のうち、複数の基準画像41A,41Bの撮影間隔D1との差が閾値以下の間隔で撮影された複数の医療画像51を含む症例データ50を特定する。CPU22は、特定された症例データ50から、基準画像41A,41Bとの撮影間隔の差が閾値以下であり、且つ、基準画像41A,41Bとの類似度が高い(つまり、特徴量の差が小さい)複数の医療画像41を含む症例データ50を、類似症例データとして抽出する。なお、撮影間隔を比較する際の閾値は、予め設定されていてもよいし、ユーザからの指示によって設定されてもよい。
With reference to FIG. 3, an example of a method for extracting similar case data when a plurality of
図3に示す例では、症例データ50Aに含まれる2つの医療画像51A,51Bの撮影間隔D2と、2つの基準画像41A,41Bの撮影間隔D1の差は、閾値以下である。さらに、2つの医療画像51A,51Bと、2つの基準画像41A,41Bの類似度が高い(つまり、医療画像51Aと基準画像41Aの類似度、および、医療画像51Bと基準画像41Bの類似度が、共に高い)。従って、CPU22は、症例データ50Aを類似症例データとして抽出する。一方で、症例データ50Bに含まれる2つの医療画像51X,51Yは、2つの基準画像41A,41Bとの間の類似度は高いものの、2つの医療画像51X,51Yの撮影間隔D3と、2つの基準画像41A,41Bの撮影間隔D1の差は、閾値よりも大きい。従って、CPU22は、症例データ50Bについては類似症例データとして抽出しない。以上の処理が行われることで、抽出された類似症例データには、対象データ40の複数の基準画像41A,41Bの撮影間隔に近い間隔で撮影された医療画像51A,51Bが含まれることとなる。
In the example shown in FIG. 3, the difference between the imaging interval D2 of the two
なお、対象データ40内で設定された基準画像が1つである場合には、CPU22は、1つの基準画像に対する類似度が高い医療画像51を含む症例データ50を、類似症例データとして抽出する。
When there is only one reference image set in the
また、本実施形態のS3では、CPU22は、治療情報によって分類される複数の症例データ群のうち、1つまたは複数の症例データ群の中から、類似症例データを抽出することができる。例えば、特定の内容の治療が行われた患者の症例データ群から類似症例データを抽出する指示が入力されている場合、CPU22は、指示された治療の内容に対応する症例データ群から、1つまたは複数の類似症例データを抽出する。また、CPU22は、複数の症例データ群の各々から、1つまたは複数の類似症例データを抽出することも可能である。例えば、CPU22は、治療が行われた患者の類似症例データと、治療が行われなかった患者の類似症例データの各々を抽出することも可能である。また、CPU22は、実行された治療の内容が異なる複数の類似症例データを抽出することも可能である。 Further, in S3 of the present embodiment, the CPU 22 can extract similar case data from one or a plurality of case data groups among a plurality of case data groups classified by treatment information. For example, when an instruction to extract similar case data from a case data group of a patient who has been treated with a specific content is input, the CPU 22 is one from the case data group corresponding to the content of the instructed treatment. Or extract multiple similar case data. The CPU 22 can also extract one or more similar case data from each of the plurality of case data groups. For example, the CPU 22 can also extract each of the similar case data of the treated patient and the similar case data of the untreated patient. The CPU 22 can also extract a plurality of similar case data having different contents of the performed treatment.
さらに、本実施形態のS3では、CPU22は、各々の症例データ50に含まれる複数の医療画像51のうち、治療情報が示す治療タイミング以前、または以後の医療画像51と、対象データ40の基準画像の類似度を比較することで、類似症例データを抽出することも可能である。例えば、対象データ40の基準画像が治療前の医療画像41である場合、CPU22は、治療タイミング以前の医療画像51と基準画像の類似度を比較して類似症例データを抽出する。その結果、治療前の疾患の状態が診断対象者の疾患の状態と近い症例データ50が、適切に抽出される。
Further, in S3 of the present embodiment, the CPU 22 uses the medical image 51 before or after the treatment timing indicated by the treatment information among the plurality of medical images 51 included in each case data 50, and the reference image of the
なお、類似症例データの抽出方法を変更することも可能である。例えば、CPU22は、機械学習アルゴリズムによって訓練された数学モデルに医療画像41,51を入力することで、医療画像41,51の類似度を取得し、取得した結果に基づいて類似症例データを抽出してもよい。また、CPU22は、症例データ50に含まれる医療画像51の画像品質が閾値未満である場合には、その症例データ50を抽出する対象から除外してもよいし、抽出された類似症例データの画像品質が低い旨をユーザに警告してもよい。 It is also possible to change the extraction method of similar case data. For example, the CPU 22 acquires the similarity of the medical images 41 and 51 by inputting the medical images 41 and 51 into the mathematical model trained by the machine learning algorithm, and extracts similar case data based on the acquired results. You may. Further, when the image quality of the medical image 51 included in the case data 50 is less than the threshold value, the CPU 22 may exclude the case data 50 from the extraction target, or may exclude the extracted similar case data image. The user may be warned that the quality is low.
図2の説明に戻る。類似症例データが抽出されると(S3)、CPU22は、複数のデータについて、医療画像の撮影タイミングの時間軸を一致させる処理を行う(S5,S6,S7,S9,S10,S13,S14)。時間軸を一致させる対象となる複数のデータは、類似症例データ50と対象データ40であってもよいし、抽出された複数の類似症例データ50であってもよい。
Return to the explanation in Fig. 2. When similar case data is extracted (S3), the CPU 22 performs a process of matching the time axis of the acquisition timing of the medical image with respect to the plurality of data (S5, S6, S7, S9, S10, S13, S14). The plurality of data to be matched on the time axis may be the similar case data 50 and the
本実施形態では、ユーザは、手動で時間軸を一致させる方法、医療画像の類似度によって自動で時間軸を一致させる方法、および、治療タイミングによって自動で時間軸を一致させる方法のいずれかを選択する指示を、操作部25を操作することで入力することができる。 In the present embodiment, the user selects one of a method of manually matching the time axis, a method of automatically matching the time axis according to the similarity of medical images, and a method of automatically matching the time axis according to the treatment timing. The instruction to be performed can be input by operating the operation unit 25.
手動で時間軸を一致(調整)する指示が入力されている場合(S5:YES)、CPU22は、時間軸を一致させる対象とする複数のデータ(類似症例データ50と対象データ40、または、複数の類似症例データ50)の医療画像を、時間軸と共に表示部26に表示させる(S6)。図4に示す例では、対象データ40に含まれる医療画像41A,41Bと、抽出された類似症例データ50Aに含まれる医療画像51A,51B,51C,51Dが、時間軸Tと共に表示部26に表示されている。時間軸T上には、各々の医療画像の撮影タイミングが示されている。例えば、医療画像41Aの撮影タイミングは、時間軸T上に「A」で示されており、医療画像51Dの撮影タイミングは、時間軸T上に「d」で示されている。さらに、図4に示す例では、類似症例データ50Aに含まれる治療情報に基づいて、治療が実行または開始された治療タイミングも示されている。図4に示す例では、投薬開始のタイミングは、医療画像51Bの撮影タイミングと一致している。
When an instruction to manually match (adjust) the time axis is input (S5: YES), the CPU 22 uses a plurality of data (similar case data 50 and
CPU22は、ユーザから入力される指示に応じて、複数のデータ間(図4に示す例では、対象データ40と類似症例データ50Aの間)における医療画像の撮影タイミングの時間軸を一致させる。さらに、CPU22は、時間軸を一致させた結果に応じて、時間軸Tに示す各々の医療画像の撮影タイミングを変更する(S7)。なお、CPU22は、時間軸Tにおける撮影タイミングと共に、複数の医療画像の表示位置等を、一致させた時間軸に応じて変更してもよい。例えば、ユーザは、時間軸T上に示された撮影タイミングを、時間軸に沿う方向にスライドさせる指示を操作部25によって入力することで、時間軸を一致させる指示を入力してもよい。また、ユーザは、複数のデータの各々に含まれる医療画像のうち、撮影タイミングを一致させる2つの医療画像(図4に示す例では、対象データ40の医療画像41Aと、類似症例データ50Aの医療画像51A)を指定する指示を入力してもよい。この場合、CPU22は、指定された2つの医療画像の撮影タイミングが一致するように、複数のデータの時間軸を一致させる。
The CPU 22 matches the time axis of the acquisition timing of the medical image between the plurality of data (in the example shown in FIG. 4, between the
医療画像の類似度によって時間軸を一致させる指示が入力されている場合(S9:YES)、CPU22は、複数のデータ(類似症例データ50と対象データ40、または、複数の類似症例データ50)の各々に含まれる医療画像の類似度をデータ間で比較し、類似度が最も高い医療画像同士の撮影タイミングを一致させることで、複数のデータの時間軸を一致させる(S10)。CPU22は、S10で時間軸を一致させた状態で、複数のデータの各々に含まれる医療画像と、医療画像の撮影タイミングを示す時間軸Tを、共に医療情報として表示部26に表示させる(S11)。複数のデータの医療画像同士を比較した際に、類似度が最も高い2つの医療画像中の疾患の状態は、近似している可能性が高い。従って、S10の処理が行われることで、ユーザは、疾患の推移を医療情報によってより適切に把握することができる。
When an instruction to match the time axis according to the similarity of the medical images is input (S9: YES), the CPU 22 has a plurality of data (similar case data 50 and
治療タイミングによって時間軸を一致させる指示が入力されている場合(S13:YES)、CPU22は、複数のデータ(類似症例データ50と対象データ40、または、複数の類似症例データ50)の間の治療タイミングを一致させることで、複数のデータの時間軸を一致させる(S14)。CPU22は、S14で時間軸を一致させた状態で、複数のデータの各々に含まれる医療画像と、医療画像の撮影タイミングを示す時間軸Tを、共に医療情報として表示部26に表示させる(S15)。S14の処理が行われることで、ユーザは、治療タイミングを基準として複数のデータを比較することができるので、治療による疾患の推移を適切に予測することができる。なお、対象データ40が取得された診断対象者に対して治療が未だ実行されていない場合等には、診断対象者に対して将来治療を実行すると仮定した場合の治療のタイミングに基づいて、時間軸が一致されてもよい。この場合、将来の治療のタイミングをユーザが入力してもよいし、最新の医療画像41の撮影時が治療のタイミングとされてもよい。
When an instruction to match the time axis according to the treatment timing is input (S13: YES), the CPU 22 performs treatment between a plurality of data (similar case data 50 and
次いで、CPU22は、診断対象者の予測画像を表示させる指示がユーザによって入力されているか否かを判断する(S17)。予測画像とは、診断対象者の将来の疾患の状態を示すと予測される画像である。予測画像を表示させる指示が入力されている場合(S17:YES)、CPU22は、対象データ40に含まれる医療画像41と、類似症例データに含まれる医療画像51とに基づいて予測画像を生成し、表示部26に表示させる(S18)。
Next, the CPU 22 determines whether or not an instruction for displaying the predicted image of the diagnosis target person has been input by the user (S17). The predicted image is an image that is predicted to show the future state of the disease of the person to be diagnosed. When an instruction to display the predicted image is input (S17: YES), the CPU 22 generates a predicted image based on the medical image 41 included in the
図5を参照して、予測画像60の生成方法の一例について説明する。まず、CPU22は、診断対象者についての対象データ40(図3および図4参照)に含まれる医療画像41から、予測画像の生成に用いる医療画像41を、基画像42として抽出する。予測画像の生成に用いる基画像42は、極力新しい画像が望ましい。従って、対象データ40に複数の医療画像41が含まれる場合、CPU22は、撮影タイミングが最も新しい医療画像41を、基画像42として抽出する。次いで、CPU22は、類似症例データ50(図4参照)に含まれる複数の医療画像51のうち、一致された時間軸において基画像42の撮影タイミングと同じタイミングよりも後に撮影された医療画像51を、参照用画像52として抽出する。本実施形態では、対象データ40と類似症例データ50の撮影タイミングの時間軸が一致された状態で、参照用画像52が抽出される。よって、予測画像60を生成するための参照用画像52が、より適切に抽出される。
An example of a method for generating the predicted
図5に示す例では、基画像42には疾患部43が含まれており、参照用画像52にも疾患部53が含まれている。ただし、参照用画像52では、患者に対する治療が行われなかった結果疾患が進行し、基画像42の疾患部43よりも大きい疾患部53が写り込んでいる。
In the example shown in FIG. 5, the
CPU22は、基画像42と参照用画像52に基づいて、予測画像60を生成する。一例として、本実施形態では、CPU22は、基画像42から疾患部43の情報を除去した疾患部除去画像45を生成する。また、CPU22は、参照用画像52から疾患部53以外の情報を除去した疾患部画像55を生成する。CPU22は、疾患部除去画像45と疾患部画像55に基づいて(例えば、画像処理による合成等を行うことで)、予測画像60を生成する。その結果、基画像42と参照用画像52に基づいて、診断対象者の将来の疾患の状態を示すと予測される予測画像が適切に生成される。
The CPU 22 generates a predicted
なお、予測画像60の具体的な生成方法を変更することも可能である。例えば、機械学習アルゴリズムによって訓練された数学モデルが利用されることで、予測画像60が生成されてもよい。この場合、例えば、数学モデルは、基画像42と参照用画像52を入力することで予測画像60を出力するように、複数の医療画像のデータによって予め訓練されていてもよい。また、基画像42を入力して疾患部除去画像45を出力する数学モデル、参照用画像52を入力して疾患部画像55を出力する数学モデル、および、疾患部除去画像45と疾患部画像55を入力して予測画像60を出力する数学モデルの少なくともいずれかが利用されてもよい。
It is also possible to change the specific generation method of the predicted
図2の説明に戻る。CPU22は、複数のデータ(類似症例データ50と対象データ40、または、複数の類似症例データ50)の各々における疾患の進行度の推移を示す進行度推移グラフを表示させる指示が入力されているか否かを判断する(S20)。進行度推移グラフを表示させる指示が入力されている場合(S20:YES)、CPU22は、複数の医療画像の各々に写る疾患の進行度の情報を取得する(S21)。CPU22は、各データにおける進行度の推移を示す進行度推移グラフを、複数のデータ間における撮影タイミングの時間軸を一致させた状態で生成し、表示部26に表示させる(S22)。
Return to the explanation in Fig. 2. Whether or not the CPU 22 has been input with an instruction to display a progress transition graph showing the transition of the disease progression in each of the plurality of data (similar case data 50 and
図6を参照して、進行度推移グラフの生成方法の一例について説明する。図6に示す例では、症例データ抽出処理(S3、図2参照)において、手術および投薬が共に実行された患者の類似症例データ(黒い丸のグラフ)、投薬のみが実行された患者の類似症例データ(黒い四角のグラフ)、および、治療が実行されなかった患者の類似症例データ(白い丸のグラフ)が、各々の症例データ群の中から抽出されている。また、検査対象者の進行度の推移は、白い四角のグラフで示されている。 An example of a method for generating a progress transition graph will be described with reference to FIG. In the example shown in FIG. 6, in the case data extraction process (see S3 and FIG. 2), similar case data (black circle graph) of patients who received both surgery and medication, and similar cases of patients who received only medication. Data (black square graph) and similar case data (white circle graph) for patients who were not treated are extracted from each case data group. In addition, the transition of the progress of the test subject is shown by a white square graph.
まず、CPU22は、各データに含まれる医療画像の各々に写る疾患の、進行度の情報を取得する。疾患の進行度の情報を取得する方法は、適宜選択できる。例えば、CPU22は、機械学習アルゴリズムによって訓練された数学モデルに医療画像を入力し、進行度(例えば疾患の確率等)を数学モデルに出力させることで、進行度の情報を取得してもよい。また、CPU22は、疾患の解析結果を出力する数学モデルに医療画像を入力し、数学モデルが解析結果を出力する際に影響した影響度の分布を示す情報(「アテンションマップ」と言われる場合もある)に基づいて、疾患の進行度の情報を取得してもよい。また、CPU22は、各医療画像に対して画像処理を行い、疾患部の大きさおよび色等の少なくともいずれかに基づいて、進行度の情報を取得してもよい。なお、前述したアテンションマップは、元となった医療画像と共に表示部26に表示されてもよい。 First, the CPU 22 acquires information on the degree of progression of the disease shown in each of the medical images included in each data. The method for acquiring information on the degree of disease progression can be appropriately selected. For example, the CPU 22 may acquire information on the degree of progression by inputting a medical image into a mathematical model trained by a machine learning algorithm and outputting the degree of progression (for example, the probability of a disease) to the mathematical model. In addition, the CPU 22 inputs a medical image into a mathematical model that outputs the analysis result of the disease, and information indicating the distribution of the degree of influence that the mathematical model has influenced when outputting the analysis result (sometimes referred to as an "attention map"). Information on the degree of disease progression may be obtained based on (there is). Further, the CPU 22 may perform image processing on each medical image and acquire information on the degree of progression based on at least one of the size and color of the diseased portion. The above-mentioned attention map may be displayed on the display unit 26 together with the original medical image.
CPU22は、複数のデータ(本実施形態では、対象データ40、および3つの類似症例データ50)の各々について、疾患の進行度の推移を示す進行度推移グラフを、医療画像から取得された進行度の情報に基づいて作成する。ここで、CPU22は、複数のデータ間における撮影タイミングの時間軸を一致させた状態で、進行度推移グラフを生成する。図6に示す例では、図2のS13において、治療が実行された患者のデータにおける治療タイミングが一致するように、撮影タイミングの時間軸が一致されている。従って、図6に示す例では、ユーザは、治療タイミングを基準として、治療の有無および治療内容に応じた疾患の進行度の推移を容易に比較することができる。
For each of the plurality of data (
なお、図6に示す例では、対象データ40に含まれる複数の医療画像41のうち、最新の医療画像41の撮影タイミングが、仮の治療タイミングとして他のデータの治療タイミングに合わせられている。従って、ユーザは、早急に治療を開始した際の疾患の推移を、進行度推移グラフによって容易に予測することができる。また、図6に示す例では、治療が実行されなかった患者の類似症例データのうち、対象データ40中の最新の医療画像41との類似度が最も高い医療画像51の撮影タイミングが、対象データ40中の最新の医療画像41の撮影タイミングに合わせられている。
In the example shown in FIG. 6, among the plurality of medical images 41 included in the
また、CPU22は、S3で抽出された類似症例データに前述した異種別データが含まれている場合には、類似症例データに含まれる医療画像と共に、または医療画像とは別に、異種別データを表示部26に表示させる。従って、ユーザは、類似症例データに含まれる異種別データを確認することで、診断対象者の疾患の推移をより適切に予測することができる。また、診断対象者に関する異種別データが未だ取得されていない場合でも、ユーザは、症例が類似する患者の異種別データを確認することができるので、診断対象者の診断等をより適切に実行することができる。 Further, when the similar case data extracted in S3 includes the above-mentioned heterogeneous data, the CPU 22 displays the heterogeneous data together with the medical image included in the similar case data or separately from the medical image. It is displayed on the unit 26. Therefore, the user can more appropriately predict the transition of the disease of the diagnosis target person by confirming the heterogeneous data included in the similar case data. Further, even when the heterogeneous data regarding the diagnosis target person has not been acquired yet, the user can confirm the heterogeneous data of the patients having similar cases, so that the diagnosis of the diagnosis target person can be performed more appropriately. be able to.
上記実施形態で開示された技術は一例に過ぎない。従って、上記実施形態で例示された技術を変更することも可能である。例えば、医療情報処理装置20のCPU22は、各データに含まれる複数の医療画像の特徴量の変化が閾値以上となったタイミング(変化タイミング)を、複数のデータの各々について特定してもよい。CPU22は、データにおける変化タイミングを一致させることで、時間軸を一致させてもよい。変化タイミングは、例えば、疾患の進行具合(悪化の進行具合)の変化が閾値以上となったタイミングでもよいし、疾患の治癒の進行具合の変化が閾値以上となったタイミングでもよい。また、CPU22は、症例データ50に含まれる複数の医療画像51のうち、変化タイミング以前、または以後の医療画像と、対象データ40の医療画像41の類似度を比較することで、類似症例データを抽出してもよい。
The technology disclosed in the above embodiment is only an example. Therefore, it is possible to modify the techniques exemplified in the above embodiments. For example, the CPU 22 of the medical information processing apparatus 20 may specify the timing (change timing) at which the change in the feature amount of the plurality of medical images included in each data becomes equal to or greater than the threshold value for each of the plurality of data. The CPU 22 may match the time axis by matching the change timings in the data. The change timing may be, for example, the timing when the change in the progress of the disease (progress of deterioration) becomes equal to or higher than the threshold value, or the change timing may be the timing when the change in the progress of healing of the disease becomes equal to or higher than the threshold value. Further, the CPU 22 obtains similar case data by comparing the medical image before or after the change timing with the medical image 41 of the
図2のS1で対象データ40を取得する処理は、「対象データ取得ステップ」の一例である。図2のS3で類似症例データを抽出する処理は、「類似症例データ抽出ステップ」の一例である。図2のS7,S10,S14で撮影タイミングの時間軸を一致させる処理は、「時間軸一致ステップ」の一例である。図2のS7,S11,S15,S18,S22で医療情報を出力する処理は、「医療情報出力ステップ」の一例である。図2のS18で予測画像を生成する処理は、「予測画像生成ステップ」の一例である。図2のS21で進行度の情報を取得する処理は、「進行度取得ステップ」の一例である。図2のS22で進行度推移グラフを生成する処理は、「グラフ生成ステップ」の一例である。
The process of acquiring the
10 サーバ
13 記憶装置
20 医療情報処理装置
22 CPU
23 記憶装置
26 表示部
40 対象データ
41 医療画像
50 症例データ
51 医療画像
60 予測画像
10
23 Storage device 26
Claims (11)
複数の前記症例データの各々は、異なるタイミングで撮影された複数の医療画像のデータと、各々の医療画像の撮影タイミングの情報とを含んだ状態でデータベースに記憶されており、
前記医療情報処理プログラムが前記医療情報処理装置の制御部によって実行されることで、
診断対象者に関する少なくとも1つの医療画像のデータ、および、前記医療画像の撮影タイミングの情報を含む対象データを取得する対象データ取得ステップと、
前記複数の症例データから、前記対象データに含まれる少なくとも1つの医療画像に類似する医療画像を含む前記症例データを、類似症例データとして抽出する類似症例データ抽出ステップと、
前記類似症例データと前記対象データ、および、複数の前記類似症例データのうち、少なくとも一方のデータ間について、医療画像の撮影タイミングの時間軸を一致させる時間軸一致ステップと、
前記時間軸を一致させた状態で、前記類似症例データに基づく医療情報を出力する医療情報出力ステップと、
が前記医療情報処理装置によって実行されることを特徴とする医療情報処理プログラム。 A medical information processing program executed in a medical information processing device that outputs medical information useful for diagnosis based on case data similar to the data of a person to be diagnosed among a plurality of case data.
Each of the plurality of case data is stored in a database in a state including data of a plurality of medical images taken at different timings and information on the timing of taking each medical image.
When the medical information processing program is executed by the control unit of the medical information processing device,
A target data acquisition step for acquiring at least one medical image data regarding a diagnosis target person and target data including information on the timing of taking the medical image, and a target data acquisition step.
A similar case data extraction step of extracting the case data including a medical image similar to at least one medical image included in the target data from the plurality of case data as similar case data.
A time axis matching step of matching the time axis of the acquisition timing of the medical image between the similar case data, the target data, and at least one of the plurality of similar case data.
A medical information output step that outputs medical information based on the similar case data in a state where the time axes are matched, and
Is executed by the medical information processing apparatus.
前記時間軸一致ステップでは、前記制御部は、ユーザから入力される指示に応じて、複数のデータ間における医療画像の撮影タイミングの時間軸を一致させることを特徴とする医療情報処理プログラム。 The medical information processing program according to claim 1.
In the time axis matching step, the control unit is a medical information processing program characterized in that the time axis of the acquisition timing of a medical image among a plurality of data is matched according to an instruction input from a user.
前記時間軸一致ステップでは、前記制御部は、複数のデータの各々に含まれる医療画像のうち、類似度が最も高い医療画像同士の撮影タイミングを一致させることで、時間軸を一致させることを特徴とする医療情報処理プログラム。 The medical image processing apparatus according to claim 1 or 2.
In the time axis matching step, the control unit is characterized in that the time axes are matched by matching the imaging timings of the medical images having the highest degree of similarity among the medical images included in each of the plurality of data. Medical information processing program.
前記症例データには、患者に対して実行された治療に関する情報である治療情報が含まれていることを特徴とする医療情報処理プログラム。 The medical information processing program according to any one of claims 1 to 3.
A medical information processing program characterized in that the case data includes treatment information which is information on treatment performed on a patient.
前記類似症例データ抽出ステップでは、前記制御部は、前記治療情報が示す治療の有無、および実行された治療の内容の少なくともいずれかによって前記複数の症例データ内で分類される複数の症例データ群のうち、1つまたは複数の前記症例データ群の中から、前記類似症例データを抽出することを特徴とする医療情報処理プログラム。 The medical information processing program according to claim 4.
In the similar case data extraction step, the control unit is a plurality of case data groups classified in the plurality of case data according to at least one of the presence or absence of treatment indicated by the treatment information and the content of the performed treatment. A medical information processing program characterized by extracting the similar case data from one or a plurality of the case data groups.
前記症例データに含まれる前記治療情報には、治療が実行または開始された治療タイミングを示す情報が含まれており、
前記時間軸一致ステップでは、前記制御部は、複数のデータ間の治療タイミングを一致させることで、前記時間軸を一致させることを特徴とする医療情報処理プログラム。 The medical information processing program according to claim 4 or 5.
The treatment information included in the case data includes information indicating the treatment timing when the treatment is executed or started.
In the time axis matching step, the control unit is a medical information processing program characterized in that the time axis is matched by matching the treatment timing between a plurality of data.
前記類似症例データ抽出ステップでは、前記制御部は、前記対象データ取得ステップで取得された前記対象データに複数の医療画像が含まれている場合に、前記対象データにおける複数の医療画像の撮影間隔との差が閾値以下の間隔で撮影された複数の医療画像を含む前記症例データから、複数の医療画像同士が類似する前記症例データを前記類似症例データとして抽出することを特徴とする医療情報処理プログラム。 The medical image processing program according to any one of claims 1 to 6.
In the similar case data extraction step, when the target data acquired in the target data acquisition step includes a plurality of medical images, the control unit determines the imaging interval of the plurality of medical images in the target data. A medical information processing program characterized by extracting the case data in which a plurality of medical images are similar to each other as the similar case data from the case data including a plurality of medical images in which the difference between the two is equal to or less than a threshold. ..
前記医療情報出力ステップでは、前記制御部は、前記時間軸を一致させた状態で、複数のデータの各々に含まれる医療画像と、前記医療画像の撮影タイミングを示す前記時間軸とを、共に前記医療情報として表示部に表示させることを特徴とする医療情報処理プログラム。 The medical information processing program according to any one of claims 1 to 7.
In the medical information output step, the control unit sets both the medical image included in each of the plurality of data and the time axis indicating the imaging timing of the medical image in a state where the time axes are matched. A medical information processing program characterized by displaying medical information on the display unit.
前記制御部は、
前記類似症例データ抽出ステップにおいて抽出された前記症例データに含まれる前記医療画像のうち、一致された前記時間軸において、前記対象データに含まれる前記医療画像の撮影タイミングと同じタイミングよりも後に撮影された前記医療画像と、前記対象データに含まれる前記医療画像とに基づいて、前記診断対象者の予測画像を生成する予測画像生成ステップをさらに実行し、
前記医療情報出力ステップでは、前記制御部は、前記時間軸を一致させた状態で生成された前記予測画像を、前記医療情報として表示部に表示させることを特徴とする医療情報処理プログラム。 The medical information processing program according to any one of claims 1 to 8.
The control unit
Of the medical images included in the case data extracted in the similar case data extraction step, the medical images included in the target data are captured after the same timing as the imaging timing of the medical images included in the target data on the matched time axis. A predictive image generation step of generating a predictive image of the diagnosis target person based on the medical image and the medical image included in the target data is further executed.
In the medical information output step, the control unit displays the predicted image generated in a state where the time axes are matched on the display unit as the medical information.
前記制御部は、
複数の医療画像の各々に写る疾患の、進行度の情報を取得する進行度取得ステップと、
前記類似症例データと前記対象データ、または、複数の前記類似症例データの各々における前記進行度の推移を示す進行度推移グラフを、複数のデータの前記時間軸を一致させた状態で生成するグラフ生成ステップと、
をさらに実行し、
前記医療情報出力ステップでは、前記時間軸を一致させた状態で生成された前記進行度推移グラフを、前記医療情報として表示部に表示させることを特徴とする医療情報処理プログラム。 The medical information processing program according to any one of claims 1 to 9.
The control unit
The progress acquisition step for acquiring information on the progress of the disease shown in each of multiple medical images,
Graph generation that generates a progress transition graph showing the transition of the progress in each of the similar case data and the target data, or a plurality of the similar case data, in a state where the time axes of the plurality of data are matched. Steps and
Further run,
In the medical information output step, the medical information processing program is characterized in that the progress transition graph generated in a state where the time axes are matched is displayed on the display unit as the medical information.
複数の前記症例データの各々は、異なるタイミングで撮影された複数の医療画像のデータと、各々の医療画像の撮影タイミングの情報とを含んだ状態でデータベースに記憶されており、
前記医療情報処理装置の制御部は、
診断対象者に関する少なくとも1つの医療画像のデータ、および、前記医療画像の撮影タイミングの情報を含む対象データを取得する対象データ取得ステップと、
前記複数の症例データから、前記対象データに含まれる少なくとも1つの医療画像に類似する医療画像を含む前記症例データを、類似症例データとして抽出する類似症例データ抽出ステップと、
前記類似症例データと前記対象データ、および、複数の前記類似症例データのうち、少なくとも一方のデータ間について、医療画像の撮影タイミングの時間軸を一致させる時間軸一致ステップと、
前記時間軸を一致させた状態で、前記類似症例データに基づく医療情報を出力する医療情報出力ステップと、
を実行することを特徴とする医療情報処理装置。
A medical information processing device that outputs medical information useful for diagnosis based on case data similar to the data of a person to be diagnosed among a plurality of case data.
Each of the plurality of case data is stored in a database in a state including data of a plurality of medical images taken at different timings and information on the timing of taking each medical image.
The control unit of the medical information processing device
A target data acquisition step for acquiring at least one medical image data regarding a diagnosis target person and target data including information on the timing of taking the medical image, and a target data acquisition step.
A similar case data extraction step of extracting the case data including a medical image similar to at least one medical image included in the target data from the plurality of case data as similar case data.
A time axis matching step of matching the time axis of the acquisition timing of the medical image between the similar case data, the target data, and at least one of the plurality of similar case data.
A medical information output step that outputs medical information based on the similar case data in a state where the time axes are matched, and
A medical information processing device characterized by executing.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2021551394A JP7709047B2 (en) | 2019-09-30 | 2020-09-30 | Medical information processing program and medical information processing device |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019180319 | 2019-09-30 | ||
| JP2019-180319 | 2019-09-30 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2021066039A1 true WO2021066039A1 (en) | 2021-04-08 |
Family
ID=75338085
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2020/037237 Ceased WO2021066039A1 (en) | 2019-09-30 | 2020-09-30 | Medical information processing program, and medical information processing device |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP7709047B2 (en) |
| WO (1) | WO2021066039A1 (en) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024162100A1 (en) | 2023-02-03 | 2024-08-08 | 株式会社ニデック | Medical information processing program and medical information processing device |
| WO2025141847A1 (en) * | 2023-12-28 | 2025-07-03 | 三菱電機株式会社 | Information assistance server and information assistance method |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006149654A (en) * | 2004-11-29 | 2006-06-15 | Hitachi Omron Terminal Solutions Corp | Diagnosis support for fundus lesions |
| JP2007287018A (en) * | 2006-04-19 | 2007-11-01 | Fujifilm Corp | Diagnosis support system |
| JP2007287027A (en) * | 2006-04-19 | 2007-11-01 | Fujifilm Corp | Medical planning support system |
| JP2009045121A (en) * | 2007-08-14 | 2009-03-05 | Fujifilm Corp | Medical image processing system, medical image processing method, and program |
| JP2011182960A (en) * | 2010-03-09 | 2011-09-22 | Fuji Xerox Co Ltd | Program and information treatment device |
| JP2013052245A (en) * | 2012-10-31 | 2013-03-21 | Canon Inc | Information processing device and information processing method |
| JP2013198817A (en) * | 2013-07-10 | 2013-10-03 | Canon Inc | Information processing apparatus, information processing method, program, and storage medium |
| JP2014233611A (en) * | 2013-06-05 | 2014-12-15 | 株式会社東芝 | Treatment planning support apparatus and treatment planning support system |
| JP2017033093A (en) * | 2015-07-29 | 2017-02-09 | 富士フイルム株式会社 | Medical support device, its operating method and operating program, and medical support system |
-
2020
- 2020-09-30 WO PCT/JP2020/037237 patent/WO2021066039A1/en not_active Ceased
- 2020-09-30 JP JP2021551394A patent/JP7709047B2/en active Active
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006149654A (en) * | 2004-11-29 | 2006-06-15 | Hitachi Omron Terminal Solutions Corp | Diagnosis support for fundus lesions |
| JP2007287018A (en) * | 2006-04-19 | 2007-11-01 | Fujifilm Corp | Diagnosis support system |
| JP2007287027A (en) * | 2006-04-19 | 2007-11-01 | Fujifilm Corp | Medical planning support system |
| JP2009045121A (en) * | 2007-08-14 | 2009-03-05 | Fujifilm Corp | Medical image processing system, medical image processing method, and program |
| JP2011182960A (en) * | 2010-03-09 | 2011-09-22 | Fuji Xerox Co Ltd | Program and information treatment device |
| JP2013052245A (en) * | 2012-10-31 | 2013-03-21 | Canon Inc | Information processing device and information processing method |
| JP2014233611A (en) * | 2013-06-05 | 2014-12-15 | 株式会社東芝 | Treatment planning support apparatus and treatment planning support system |
| JP2013198817A (en) * | 2013-07-10 | 2013-10-03 | Canon Inc | Information processing apparatus, information processing method, program, and storage medium |
| JP2017033093A (en) * | 2015-07-29 | 2017-02-09 | 富士フイルム株式会社 | Medical support device, its operating method and operating program, and medical support system |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2024162100A1 (en) | 2023-02-03 | 2024-08-08 | 株式会社ニデック | Medical information processing program and medical information processing device |
| EP4661016A1 (en) | 2023-02-03 | 2025-12-10 | Nidek Co., Ltd. | Medical information processing program and medical information processing device |
| WO2025141847A1 (en) * | 2023-12-28 | 2025-07-03 | 三菱電機株式会社 | Information assistance server and information assistance method |
Also Published As
| Publication number | Publication date |
|---|---|
| JPWO2021066039A1 (en) | 2021-04-08 |
| JP7709047B2 (en) | 2025-07-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US12096981B2 (en) | Ophthalmologic image processing device and non-transitory computer-readable storage medium storing computer-readable instructions | |
| JP7196908B2 (en) | Ophthalmic image processing device and ophthalmic image processing program | |
| JP2019526334A (en) | Prediction device to assist doctors during ophthalmic surgery | |
| JP2019208831A (en) | Dental analysis system and dental analysis X-ray system | |
| CN112533526B (en) | Ophthalmic image processing device, OCT device, and ophthalmic image processing program | |
| JP7521575B2 (en) | Ophthalmic image processing device, OCT device, and ophthalmic image processing program | |
| JP7406901B2 (en) | Information processing device and information processing method | |
| JP7709047B2 (en) | Medical information processing program and medical information processing device | |
| JP2018147387A (en) | System and method for processing ophthalmic examination information | |
| JP7435885B2 (en) | Ophthalmology image processing device and ophthalmology image processing program | |
| US12014827B2 (en) | Using artificial intelligence and biometric data for serial screening exams for medical conditions | |
| JP7328489B2 (en) | Ophthalmic image processing device and ophthalmic photographing device | |
| WO2020116351A1 (en) | Diagnostic assistance device and diagnostic assistance program | |
| JP7563384B2 (en) | Medical image processing device and medical image processing program | |
| JP2020121038A (en) | Ophthalmologic image processing device and ophthalmologic image processing program | |
| JP2019208832A (en) | Dental analysis system and dental analysis X-ray system | |
| JP7612990B2 (en) | Ophthalmic image processing device and ophthalmic image processing program | |
| JP7439990B2 (en) | Medical image processing device, medical image processing program, and medical image processing method | |
| GB2576139A (en) | Ocular assessment | |
| JP7468163B2 (en) | Ophthalmic image processing program and ophthalmic image processing device | |
| JP2018147386A (en) | System and method for processing ophthalmic examination information | |
| JP2022087936A (en) | Ophthalmic devices, how they operate, and programs | |
| CN110974151A (en) | Artificial intelligence system and method for identifying retinal detachment | |
| US20250336530A1 (en) | Inter-transformation and management system of digital imaging information and clinical diagnosis information and method thereof | |
| EP4344642A1 (en) | Computer-implemented method for setting x-ray acquisition parameters |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20871321 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2021551394 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 20871321 Country of ref document: EP Kind code of ref document: A1 |