WO2020233591A1 - 一种面向三维地表形变估计的InSAR和GNSS定权方法 - Google Patents
一种面向三维地表形变估计的InSAR和GNSS定权方法 Download PDFInfo
- Publication number
- WO2020233591A1 WO2020233591A1 PCT/CN2020/091273 CN2020091273W WO2020233591A1 WO 2020233591 A1 WO2020233591 A1 WO 2020233591A1 CN 2020091273 W CN2020091273 W CN 2020091273W WO 2020233591 A1 WO2020233591 A1 WO 2020233591A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gnss
- insar
- data
- observations
- deformation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
- G01S13/9021—SAR image post-processing techniques
- G01S13/9023—SAR image post-processing techniques combined with interferometric techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B15/00—Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
- G01B15/06—Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring the deformation in a solid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/01—Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/13—Receivers
- G01S19/14—Receivers specially adapted for specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/43—Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S19/00—Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
- G01S19/38—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
- G01S19/39—Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
- G01S19/42—Determining position
- G01S19/48—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system
- G01S19/485—Determining position by combining or switching between position solutions derived from the satellite radio beacon positioning system and position solutions derived from a further system whereby the further system is an optical system or imaging system
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
Definitions
- the invention relates to the field of geodetic surveying of remote sensing images, in particular to an InSAR and GNSS weighting method for three-dimensional ground deformation estimation.
- Interferometric Synthetic Aperture Radar SAR, InSAR
- GNSS Global Navigation Satellite System
- InSAR technology processes two SAR images of the same area at different times (intervals ranging from several days to hundreds of days) to obtain a one-dimensional resolution unit (several meters to tens of meters) along the radar line of sight within the time interval.
- the average deformation result, the observation accuracy is generally at the millimeter or centimeter level.
- GNSS technology uses a ground receiver to obtain a time-continuous three-dimensional coordinate sequence, and the difference between the two moments of time can obtain the three-dimensional surface deformation at the receiver.
- InSAR and GNSS technologies have complementary advantages in surface deformation monitoring, and provide a new perspective for obtaining high-precision, high-spatial resolution three-dimensional surface deformation.
- InSAR and GNSS Due to the differences in the deformation observation accuracy of InSAR and GNSS and the characteristics of observation targets, accurately determining the weight ratio between the two types of observations is essential for obtaining high-precision three-dimensional surface deformation results.
- InSAR and GNSS are very susceptible to various uncertain factors when acquiring surface deformation, such as ionosphere, atmospheric water vapor, surface vegetation cover, etc., which makes it difficult to accurately estimate the prior variance information of various observations.
- the prior variance of GNSS is mainly obtained based on GNSS network adjustment, while the prior variance of InSAR data assumes that there is no deformation in the far-field area, and the fitting result of the semivariant variance function is used as the prior variance of the entire InSAR image.
- InSAR observation errors are often different in space, so its weighting accuracy is limited.
- a priori variance estimate of the observation value can also be obtained, but this method is difficult to reflect the influence of the atmospheric long-wave error in the observation value.
- the present invention aims to solve at least one of the technical problems existing in the prior art.
- the present invention discloses an InSAR and GNSS weighting method for three-dimensional surface deformation estimation, which includes the following steps:
- Step 1 Using the ascending and descending InSAR data of the area to be monitored, and the GNSS data of the area to be monitored, the three-dimensional deformation d 0 of the unknown point and a certain amount of InSAR/ of the surrounding points are established based on the surface stress and strain model and the imaging geometry of the observation value. functional relationship between L i GNSS data;
- Step 2 The value of L i K i internal observation data and lift rail and the descending rail InSAR GNSS observations and other relatively fixed weight, determine the initial weight InSAR / GNSS observations of various types of weight matrix W i;
- Step 3 Use variance component estimation to determine the precise weight matrix between various InSAR/GNSS observations Solve the high-precision three-dimensional surface deformation d 0 based on the least squares rule;
- Step 4 Perform the above steps 1-3 for each surface point to realize the fusion of InSAR and GNSS to estimate the high-precision three-dimensional surface deformation field.
- step 1 further comprises, between the points of the unknown three-dimensional distortion function d 0 and a certain number of points around InSAR / GNSS data L i is:
- P 0 means unknown point
- Is the coefficient matrix of the surface stress-strain model
- I is a 3 ⁇ 3 identity matrix
- l represents the unknown parameter vector at point P 0
- the data of up-orbit InSAR and down-orbit InSAR are all a numerical value.
- the representative GNSS data is a 3 ⁇ 1 vector.
- the step 2 further includes: the surface stress-strain model is a description of the physical-mechanical relationship between the three-dimensional surface deformation of adjacent points on the surface; the observation imaging geometry is the relationship between the InSAR/GNSS observation value and the three-dimensional surface deformation The geometric relationship description.
- W i diag(W i ′) indicates that the diagonal elements are in turn the diagonal matrix of the elements in the vector W i ′.
- the inverse distance weighted attenuation factor D 0 is determined by the following formula:
- K′ represents the number of all GNSS stations in the entire deformation field
- K 3 ′ represents the number of GNSS stations closest to P 0
- K 3 ′ takes a value of 4-6
- 'K-th GNSS sites' representing all sites and the distance K between the nearest K P 0. 3 'site of a GNSS. 3 k' of sites.
- step 3 further includes:
- the high-precision three-dimensional surface deformation result is obtained, that is, the first, second, and third elements of the unknown parameter vector l.
- the present invention proposes an InSAR and GNSS weighting method for three-dimensional surface deformation estimation.
- the method is based on the surface stress when InSAR and GNSS are fused to estimate three-dimensional surface deformation.
- the strain model establishes the functional relationship between the InSAR/GNSS observations and the three-dimensional surface deformation of unknown points.
- the variance component estimation algorithm is used to accurately determine the weight ratio between the two types of observations, InSAR and GNSS, and finally based on the least squares rule to achieve three-dimensional High-precision estimation of surface deformation.
- the content of the present invention is to use the surface stress and strain model to provide redundant observations in space, so that the variance component estimation can obtain accurate InSAR/GNSS weight ratios while lacking time series data, thereby effectively improving the fusion of InSAR and GNSS to estimate the three-dimensional surface
- the precision and universality of deformation is to use the surface stress and strain model to provide redundant observations in space, so that the variance component estimation can obtain accurate InSAR/GNSS weight ratios while lacking time series data, thereby effectively improving the fusion of InSAR and GNSS to estimate the three-dimensional surface The precision and universality of deformation.
- Fig. 1 is a flow chart of a method of InSAR and GNSS fusion estimation of three-dimensional surface deformation based on variance component estimation of the present invention
- FIG. 2 is a comparison diagram of the three-dimensional surface deformation field obtained by the method of the present invention and the traditional method and the original simulated three-dimensional surface deformation field;
- Fig. 3 is a graph of InSAR simulation deformation data of ascending and descending orbits in an embodiment of the present invention.
- Step 1 Use the ascending and descending InSAR data of the area to be monitored, and the GNSS data of the area, based on the surface stress-strain model (SM) to establish the three-dimensional surface deformation of the unknown point and a certain amount of InSAR/GNSS around the point The functional relationship between the data;
- SM surface stress-strain model
- H represents the unknown parameter matrix of the stress-strain model, which can be expressed as:
- ⁇ and ⁇ represent the strain parameters and rotation parameters in the surface stress-strain model.
- the representative up-orbit InSAR and down-orbit InSAR data are all a numerical value
- the representative GNSS data is a 3 ⁇ 1 vector, namely Considering the geometric relationship between InSAR and GNSS observations and three-dimensional surface deformation, it can be established : Functional relationship between the three-dimensional deformation of the surface k and the point P k D
- I is a 3 ⁇ 3 identity matrix
- Step 2 Perform relative weighting on K i observation data within various observation values, that is, determine the initial weight matrix W i of various observation values;
- the present invention uses the following formula to determine the initial weight of the InSAR/GNSS observation value at P k :
- K′ represents the number of all GNSS stations in the entire deformation field.
- K '3 represents the distance P 0 of the number of sites GNSS latest, based on experience and generally 4-6.
- the weight ratio coefficient of the GNSS vertical observation value in equation (7) is 0.5.
- the specific implementation process can be based on the first GNSS three-dimensional deformation value. The variance information adjusts this ratio parameter.
- W i diag (W 'i ) denotes the diagonal elements are the vector W' i diagonal matrix elements.
- the observation value corresponding to the minimum weight plays a negligible role in the process of solving unknown parameters. Therefore, when the method of the present invention does not consider the initial weight in the solution process GNSS stations less than the threshold W thr .
- W thr is generally 10 -6 based on experience.
- the number K 3 of GNSS sites used to establish a functional relationship in the first step of participation can be determined.
- the number of various observation values should be approximately equal, that is, K 1 ⁇ K 2 ⁇ 3K 3 should be satisfied in the present invention.
- the InSAR data of K 1 /K 2 ascending/descending orbits closest to P 0 are selected in the present invention to participate in the calculation of the unknown parameter vector l.
- Step 3 Use variance component estimation to determine the precise weight matrix between various InSAR/GNSS observations Error in unit weight Solve high-precision three-dimensional surface deformation d 0 based on the least square rule;
- the weight matrix of observations at this time is the optimal weight matrix. Since the initial weight matrix W i only considers the relative weights between the observation data within the same type of observations, and does not consider the weight ratios between different types of observations, the unit weights of the various observations obtained by equation (11) are The error often does not satisfy equation (12).
- the present invention combines the idea of variance component estimation, using the following formula weights of all kinds of observed values W i is updated:
- the high-precision three-dimensional surface deformation result can be obtained, that is, the first, second, and third elements of the unknown parameter vector l.
- the fusion of InSAR and GNSS can be realized to estimate the high-precision three-dimensional surface deformation field.
- Figure 2(a)-(c) are the original simulated east-west, north-south and vertical deformation data in sequence
- Figure 2(d)- (f) In turn are the east-west, north-south and vertical deformation data obtained by the traditional method.
- Figure 2(g)-(i) are the east-west, north-south and vertical deformation data obtained by the method of the present invention (unit : Cm)
- Figure 3(a) is the rising orbit InSAR data
- Figure 3(b) is the falling orbit InSAR data.
- the triangles in the figure represent the location distribution of GNSS stations (unit: cm).
- Simulation data description 1Simulate three-dimensional deformation fields in east-west, north-south and vertical directions in a certain area (image size 400 ⁇ 450) (as shown in Figure 2(a)-(c)); 2Combine sentinel-1A/B satellite data Calculate the ascending and descending InSAR deformation results, and the incident angle and azimuth angle of the ascending orbit data are 39.3 respectively. ,-12.2. , The incident angle and azimuth angle of the descending orbit data are 33.9 respectively. ,-167.8.
- the inverse distance weighting method is used to amplify the prior variance of the GNSS, and the InSAR far-field data is used to fit the semivariogram to solve the prior variance of the far-field InSAR observations, and Take it as the prior variance of the entire InSAR image. Then, in the process of solving, the prior variance of InSAR and GNSS observations is used to determine the weights, and the three-dimensional surface deformation is solved under the least squares criterion.
- this application can be provided as methods, systems, or computer program products. Therefore, this application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, this application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
- computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- Electromagnetism (AREA)
- Mathematical Physics (AREA)
- Mathematical Optimization (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Pure & Applied Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Theoretical Computer Science (AREA)
- Computing Systems (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Geophysics And Detection Of Objects (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
Claims (8)
- 一种面向三维地表形变估计的InSAR和GNSS定权方法,其特征在于,包括以下步骤:步骤1:利用待监测区域升轨和降轨InSAR数据,以及所述待监测区域的GNSS数据,基于地表应力应变模型及观测值成像几何建立未知点三维形变d 0与周围点一定数量的InSAR/GNSS数据L i之间的函数关系;步骤2:对升轨和降轨InSAR和GNSS等观测值L i内部的K i个观测数据进行相对定权,确定InSAR/GNSS各类观测值的初始权重矩阵W i;步骤4:对每一个地表点经过上述步骤1-3实现InSAR和GNSS融合估计高精度三维地表形变场。
- 如权利要求4所述的一种的方法,其特征在于,所述3进一步包括,l=M -1N (10)进而根据方差分量估计算法可得:σ 2=Ψ -1δ (11)其中,通过式(13)对各类观测值权重W i进行更新:再根据式(10)得到高精度三维地表形变结果,即未知参数向量l的第1、2、3个元素。
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US17/035,771 US20210011149A1 (en) | 2019-05-21 | 2020-09-29 | InSAR and GNSS weighting method for three-dimensional surface deformation estimation |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910423735.8A CN110058236B (zh) | 2019-05-21 | 2019-05-21 | 一种面向三维地表形变估计的InSAR和GNSS定权方法 |
| CN201910423735.8 | 2019-05-21 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US17/035,771 Continuation US20210011149A1 (en) | 2019-05-21 | 2020-09-29 | InSAR and GNSS weighting method for three-dimensional surface deformation estimation |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2020233591A1 true WO2020233591A1 (zh) | 2020-11-26 |
Family
ID=67323791
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2020/091273 Ceased WO2020233591A1 (zh) | 2019-05-21 | 2020-05-20 | 一种面向三维地表形变估计的InSAR和GNSS定权方法 |
Country Status (3)
| Country | Link |
|---|---|
| US (1) | US20210011149A1 (zh) |
| CN (1) | CN110058236B (zh) |
| WO (1) | WO2020233591A1 (zh) |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112835043A (zh) * | 2021-01-06 | 2021-05-25 | 中南大学 | 一种任意方向的二维形变的监测方法 |
| CN112986990A (zh) * | 2021-02-04 | 2021-06-18 | 中国地质大学(北京) | 一种大气相位改正方法及系统 |
| CN112986993A (zh) * | 2021-02-07 | 2021-06-18 | 同济大学 | 一种基于空间约束的InSAR形变监测方法 |
| CN114089335A (zh) * | 2021-11-16 | 2022-02-25 | 安徽理工大学 | 一种基于单轨道InSAR的山区开采沉陷三维变形提取方法 |
| CN114114332A (zh) * | 2021-11-03 | 2022-03-01 | 湖北理工学院 | 一种有效探测gnss基准站坐标时间序列不连续点的方法 |
| CN114114256A (zh) * | 2021-11-08 | 2022-03-01 | 辽宁工程技术大学 | 一种基于D-InSAR-GIS叠加分析技术的大面积矿区沉陷监测方法 |
| CN114578356A (zh) * | 2022-03-02 | 2022-06-03 | 中南大学 | 基于深度学习的分布式散射体形变监测方法、系统及设备 |
| CN114757238A (zh) * | 2022-06-15 | 2022-07-15 | 武汉地铁集团有限公司 | 地铁保护区变形监测的方法、系统、电子设备和存储介质 |
| CN114966689A (zh) * | 2022-05-27 | 2022-08-30 | 厦门理工学院 | 沿海城市时序InSAR沉降监测分析方法、装置、设备及介质 |
| CN116049929A (zh) * | 2022-10-26 | 2023-05-02 | 马培峰 | 一种城市建筑物风险等级InSAR评估和预测方法 |
| CN116148852A (zh) * | 2022-12-27 | 2023-05-23 | 北京理工大学 | 基于空时连续的北斗InSAR三维高精度形变反演方法 |
| CN117055082A (zh) * | 2023-09-01 | 2023-11-14 | 兰州交通大学 | 一种基于gnss时间序列的精准垂直形变提取方法 |
| CN117109426A (zh) * | 2023-08-28 | 2023-11-24 | 兰州交通大学 | 一种融合GNSS/InSAR观测资料的三维形变场建模方法 |
| CN117213443A (zh) * | 2023-11-07 | 2023-12-12 | 江苏省地质调查研究院 | 一种天地深一体化地面沉降监测网建设与更新方法 |
| CN117607865A (zh) * | 2023-10-30 | 2024-02-27 | 云南大学 | 一种地铁沿线形变检测方法、装置、系统以及存储介质 |
| CN118226529A (zh) * | 2024-03-28 | 2024-06-21 | 应急管理部国家自然灾害防治研究院 | 一种基于深度学习的InSAR同震三维形变场恢复方法 |
| CN119395703A (zh) * | 2024-11-27 | 2025-02-07 | 众智软件股份有限公司 | 核电站InSAR地表形变实时监测预警方法与系统 |
| CN120405652A (zh) * | 2025-03-28 | 2025-08-01 | 中国矿业大学(北京) | 边坡雷达与gnss三维形变数据的联合观测融合方法及系统 |
Families Citing this family (50)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110058236B (zh) * | 2019-05-21 | 2023-04-07 | 中南大学 | 一种面向三维地表形变估计的InSAR和GNSS定权方法 |
| CN111077525B (zh) * | 2019-12-20 | 2022-12-27 | 长安大学 | 融合sar与光学偏移量技术的地表三维形变计算方法及系统 |
| CN110804912B (zh) * | 2020-01-06 | 2020-05-19 | 北京铁科工程检测有限公司 | 一种铁路线路及沿线区域形变信息的提取方法 |
| CN111339483B (zh) * | 2020-01-19 | 2022-03-11 | 武汉大学 | 一种基于去趋势互相关分析的gnss影像生成方法 |
| US20230245287A1 (en) * | 2020-07-20 | 2023-08-03 | Nec Corporation | Image processing device and image processing method |
| CN112540369A (zh) * | 2020-11-27 | 2021-03-23 | 武汉大学 | 融合GNSS与升降轨时序InSAR的滑坡三维形变解算方法及系统 |
| CN112711022B (zh) * | 2020-12-18 | 2022-08-30 | 中国矿业大学 | 一种GNSS层析技术辅助的InSAR大气延迟改正方法 |
| CN112797886B (zh) * | 2021-01-27 | 2022-04-22 | 中南大学 | 面向缠绕相位的InSAR时序三维形变监测方法 |
| CN113091596B (zh) * | 2021-03-31 | 2022-01-25 | 中国矿业大学 | 一种基于多极化时序sar数据的地表形变监测方法 |
| CN113091598B (zh) * | 2021-04-06 | 2022-02-08 | 中国矿业大学 | 一种InSAR划定采空区建筑场地稳定性等级范围的方法 |
| CN113096005B (zh) * | 2021-04-06 | 2023-07-07 | 中国科学院生态环境研究中心 | 一种监测山体现今抬升速度的雷达时序差分干涉测量方法 |
| CN113219414B (zh) * | 2021-04-22 | 2024-04-02 | 桂林理工大学 | 一种消除卫星干涉雷达地表形变方向模糊新方法 |
| CN113281742B (zh) * | 2021-06-02 | 2023-07-25 | 西南交通大学 | 一种基于滑坡形变信息和气象数据的sar滑坡预警方法 |
| CN113777606B (zh) * | 2021-08-12 | 2023-12-26 | 北京理工大学 | 分布式geo sar三维形变反演多角度选取方法及装置 |
| CN113723531B (zh) * | 2021-09-02 | 2024-06-14 | 淮阴师范学院 | 面向全运行周期的矿区地表形变实时/准实时监测方法 |
| CN113899301B (zh) * | 2021-09-15 | 2022-07-15 | 武汉大学 | 联合gnss三维形变的区域陆地水储量变化反演方法及系统 |
| CN114444377B (zh) * | 2021-12-24 | 2024-06-21 | 北京理工大学 | 一种基于梯度提升机的多地面测距仪选站方法 |
| CN115032637B (zh) * | 2022-06-07 | 2024-06-14 | 安徽理工大学 | 一种井工开采全生命周期地表沉陷监测方法 |
| CN115267774B (zh) * | 2022-06-14 | 2024-12-24 | 深圳大学 | 一种城区多时相InSAR相位解缠方法、终端及存储介质 |
| CN115201823B (zh) * | 2022-07-22 | 2023-08-04 | 电子科技大学 | 一种利用BDS-InSAR数据融合的地表形变监测方法 |
| CN115358311B (zh) * | 2022-08-16 | 2023-06-16 | 南昌大学 | 地表变形监测多源数据融合处理方法 |
| CN115455659A (zh) * | 2022-08-19 | 2022-12-09 | 武汉大学 | 组合卫星重力场的新方法及系统 |
| CN115574706B (zh) * | 2022-10-11 | 2025-09-26 | 中国水利水电科学研究院 | 一种基于gnss的土石坝表面变形高精度监测方法 |
| CN115855003B (zh) * | 2022-12-01 | 2025-04-15 | 中南大学 | 一种InSAR辅助的GNSS监测网的优化布设方法 |
| CN115629384B (zh) * | 2022-12-08 | 2023-04-11 | 中南大学 | 一种时序InSAR误差的改正方法及相关设备 |
| CN116050657B (zh) * | 2023-02-28 | 2025-09-09 | 中南大学 | 关闭矿井的地表抬升预测方法、装置、终端设备及介质 |
| CN116124052B (zh) * | 2023-03-02 | 2025-09-23 | 中铁第四勘察设计院集团有限公司 | 桥梁综合变形监测系统及方法 |
| CN116338690B (zh) * | 2023-03-28 | 2024-01-16 | 中南林业科技大学 | 一种无模型约束的时序InSAR地形残差与地表形变估计方法 |
| CN116485857B (zh) * | 2023-05-05 | 2024-06-28 | 中山大学 | 一种基于多源遥感数据的高时间分辨率冰川厚度反演方法 |
| CN117168373B (zh) * | 2023-07-20 | 2024-07-09 | 中国卫通集团股份有限公司 | 基于卫星通导遥一体化的水库坝体形变监测系统 |
| CN116659429A (zh) * | 2023-08-01 | 2023-08-29 | 齐鲁空天信息研究院 | 一种多源数据高精度时序地表三维形变解算方法和系统 |
| CN117113277A (zh) * | 2023-09-05 | 2023-11-24 | 北京睿知行科技有限公司 | 基于传感器数据和卫星数据交互迭代的融合方法和系统 |
| CN118053070B (zh) * | 2024-01-08 | 2025-01-03 | 北京师范大学 | 基于双轨道雷达卫星的植被分布提取方法、装置及设备 |
| CN118037563B (zh) * | 2024-01-19 | 2024-11-22 | 中国民用航空飞行学院 | 一种机场跑道沉降预测方法及系统 |
| CN117761729A (zh) * | 2024-01-26 | 2024-03-26 | 中国地震局地震预测研究所 | 监测断层闭锁深度的gnss站点布设方法 |
| CN118089611B (zh) * | 2024-04-17 | 2024-08-30 | 东南大学 | 一种融合InSAR数据和物理知识的建筑三向位移监测方法及系统 |
| CN118259280B (zh) * | 2024-05-28 | 2024-08-06 | 深圳大学 | 联合InSAR与GNSS的填海区机场形变测评方法、系统及终端 |
| CN118794484A (zh) * | 2024-06-13 | 2024-10-18 | 国能榆林能源有限责任公司 | 一种基于干涉雷达的地质灾害监测预报预警系统及方法 |
| CN118551665B (zh) * | 2024-07-26 | 2024-10-22 | 兰州交通大学 | 一种基于InSAR和双向门控循环单元的地表形变预测方法 |
| CN118656707B (zh) * | 2024-08-16 | 2024-12-31 | 中南大学 | 基于InSAR和多源数据的地铁线路形变风险监测方法 |
| CN118656684B (zh) * | 2024-08-20 | 2024-12-10 | 中国科学院精密测量科学与技术创新研究院 | 一种基于InSAR数据和多诱发因子的形变智能预测方法 |
| CN119064929A (zh) * | 2024-08-21 | 2024-12-03 | 国能榆林能源有限责任公司 | 基于多源数据的煤矿采空区形变动态耦合监测方法及系统 |
| CN119199853B (zh) * | 2024-09-14 | 2025-05-02 | 中国地质大学(武汉) | 一种考虑环境因素的sar时序位移同步观测值求解方法 |
| CN119575376B (zh) * | 2024-11-12 | 2025-06-13 | 鄂尔多斯市腾远煤炭有限责任公司 | 一种基于露天煤矿边坡形变聚集区自动提取方法 |
| CN119936876B (zh) * | 2024-12-05 | 2025-09-26 | 武汉大学 | 北斗辅助InSAR地表形变序列时间分辨率的优化方法 |
| CN119902242B (zh) * | 2024-12-25 | 2025-09-23 | 武汉大学 | 一种探测短波长形变的gnss成像方法及设备 |
| CN119986647A (zh) * | 2025-01-15 | 2025-05-13 | 湖南科技大学 | InSAR与GNSS数据融合反演地表高精三维形变的建模方法 |
| CN119986652B (zh) * | 2025-01-24 | 2025-10-10 | 昆明理工大学 | 一种开采沉陷地表三维形变估计方法、装置、设备、介质及产品 |
| CN120101711B (zh) * | 2025-04-28 | 2025-08-05 | 中安国泰(北京)科技发展有限公司 | 自适应相位解缠地基sar形变监测方法及系统 |
| CN120742316B (zh) * | 2025-08-21 | 2025-11-11 | 中国矿业大学 | 基于总功率极化与非局域相位连接的干涉相位优化方法 |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090237297A1 (en) * | 2008-02-06 | 2009-09-24 | Halliburton Energy Services, Inc. | Geodesy Via GPS and INSAR Integration |
| CN104699966A (zh) * | 2015-03-09 | 2015-06-10 | 中南大学 | 一种融合GNSS和InSAR数据获取高时空分辨率形变序列的方法 |
| CN107102332A (zh) * | 2017-05-11 | 2017-08-29 | 中南大学 | 基于方差分量估计与应力应变模型的InSAR三维地表形变监测方法 |
| CN110058236A (zh) * | 2019-05-21 | 2019-07-26 | 中南大学 | 一种面向三维地表形变估计的InSAR和GNSS定权方法 |
Family Cites Families (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101738620B (zh) * | 2008-11-19 | 2012-02-15 | 中国农业科学院农业资源与农业区划研究所 | 从被动微波遥感数据amsr-e反演地表温度的方法 |
| US8384583B2 (en) * | 2010-06-07 | 2013-02-26 | Ellegi S.R.L. | Synthetic-aperture radar system and operating method for monitoring ground and structure displacements suitable for emergency conditions |
| US9207318B2 (en) * | 2011-06-20 | 2015-12-08 | California Institute Of Technology | Damage proxy map from interferometric synthetic aperture radar coherence |
| CN103698750A (zh) * | 2014-01-07 | 2014-04-02 | 国家卫星海洋应用中心 | 海洋二号卫星散射计海面风场反演方法和装置 |
| CN104122553B (zh) * | 2014-07-23 | 2017-01-25 | 中国国土资源航空物探遥感中心 | 一种集成多轨道、长条带CTInSAR的区域性地面沉降监测方法 |
| CN106226767B (zh) * | 2016-07-12 | 2018-08-21 | 中南大学 | 基于单个雷达成像几何学sar影像的矿区三维时序形变监测方法 |
-
2019
- 2019-05-21 CN CN201910423735.8A patent/CN110058236B/zh active Active
-
2020
- 2020-05-20 WO PCT/CN2020/091273 patent/WO2020233591A1/zh not_active Ceased
- 2020-09-29 US US17/035,771 patent/US20210011149A1/en not_active Abandoned
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20090237297A1 (en) * | 2008-02-06 | 2009-09-24 | Halliburton Energy Services, Inc. | Geodesy Via GPS and INSAR Integration |
| CN104699966A (zh) * | 2015-03-09 | 2015-06-10 | 中南大学 | 一种融合GNSS和InSAR数据获取高时空分辨率形变序列的方法 |
| CN107102332A (zh) * | 2017-05-11 | 2017-08-29 | 中南大学 | 基于方差分量估计与应力应变模型的InSAR三维地表形变监测方法 |
| CN110058236A (zh) * | 2019-05-21 | 2019-07-26 | 中南大学 | 一种面向三维地表形变估计的InSAR和GNSS定权方法 |
Non-Patent Citations (2)
| Title |
|---|
| HU, JUN ET AL.: "Three-Dimensional Surface Displacements From InSAR and GPS Measurements With Variance Component Estimation", 《IEEE GEOSCIENCE AND REMOTE SENSING LETTERS》, vol. 9, no. 4,, 31 July 2012 (2012-07-31), XP011448385, ISSN: 1545-598X, DOI: 20200728095337A * |
| LIU, JIHONG ET AL.: "A Method for Measuring 3-D Surface Deformations With InSAR Based on Strain Model and Variance Component Estimation", 《IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING》, vol. 56, no. 1,, 31 January 2018 (2018-01-31), XP55755606, ISSN: 0196-2892, DOI: 20200728095059A * |
Cited By (27)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN112835043A (zh) * | 2021-01-06 | 2021-05-25 | 中南大学 | 一种任意方向的二维形变的监测方法 |
| CN112986990B (zh) * | 2021-02-04 | 2023-02-17 | 中国地质大学(北京) | 一种大气相位改正方法及系统 |
| CN112986990A (zh) * | 2021-02-04 | 2021-06-18 | 中国地质大学(北京) | 一种大气相位改正方法及系统 |
| CN112986993A (zh) * | 2021-02-07 | 2021-06-18 | 同济大学 | 一种基于空间约束的InSAR形变监测方法 |
| CN114114332A (zh) * | 2021-11-03 | 2022-03-01 | 湖北理工学院 | 一种有效探测gnss基准站坐标时间序列不连续点的方法 |
| CN114114256A (zh) * | 2021-11-08 | 2022-03-01 | 辽宁工程技术大学 | 一种基于D-InSAR-GIS叠加分析技术的大面积矿区沉陷监测方法 |
| CN114089335B (zh) * | 2021-11-16 | 2022-09-06 | 安徽理工大学 | 一种基于单轨道InSAR的山区开采沉陷三维变形提取方法 |
| CN114089335A (zh) * | 2021-11-16 | 2022-02-25 | 安徽理工大学 | 一种基于单轨道InSAR的山区开采沉陷三维变形提取方法 |
| CN114578356B (zh) * | 2022-03-02 | 2024-11-08 | 中南大学 | 基于深度学习的分布式散射体形变监测方法、系统及设备 |
| CN114578356A (zh) * | 2022-03-02 | 2022-06-03 | 中南大学 | 基于深度学习的分布式散射体形变监测方法、系统及设备 |
| CN114966689A (zh) * | 2022-05-27 | 2022-08-30 | 厦门理工学院 | 沿海城市时序InSAR沉降监测分析方法、装置、设备及介质 |
| CN114757238A (zh) * | 2022-06-15 | 2022-07-15 | 武汉地铁集团有限公司 | 地铁保护区变形监测的方法、系统、电子设备和存储介质 |
| CN114757238B (zh) * | 2022-06-15 | 2022-09-20 | 武汉地铁集团有限公司 | 地铁保护区变形监测的方法、系统、电子设备和存储介质 |
| CN116049929A (zh) * | 2022-10-26 | 2023-05-02 | 马培峰 | 一种城市建筑物风险等级InSAR评估和预测方法 |
| CN116049929B (zh) * | 2022-10-26 | 2023-09-29 | 马培峰 | 一种城市建筑物风险等级InSAR评估和预测方法 |
| US12055624B2 (en) | 2022-10-26 | 2024-08-06 | Peifeng MA | Building risk monitoring and predicting based on method integrating MT-InSAR and pore water pressure model |
| CN116148852A (zh) * | 2022-12-27 | 2023-05-23 | 北京理工大学 | 基于空时连续的北斗InSAR三维高精度形变反演方法 |
| CN117109426B (zh) * | 2023-08-28 | 2024-03-22 | 兰州交通大学 | 一种融合GNSS/InSAR观测资料的三维形变场建模方法 |
| CN117109426A (zh) * | 2023-08-28 | 2023-11-24 | 兰州交通大学 | 一种融合GNSS/InSAR观测资料的三维形变场建模方法 |
| CN117055082A (zh) * | 2023-09-01 | 2023-11-14 | 兰州交通大学 | 一种基于gnss时间序列的精准垂直形变提取方法 |
| CN117607865A (zh) * | 2023-10-30 | 2024-02-27 | 云南大学 | 一种地铁沿线形变检测方法、装置、系统以及存储介质 |
| CN117213443B (zh) * | 2023-11-07 | 2024-03-19 | 江苏省地质调查研究院 | 一种天地深一体化地面沉降监测网建设与更新方法 |
| CN117213443A (zh) * | 2023-11-07 | 2023-12-12 | 江苏省地质调查研究院 | 一种天地深一体化地面沉降监测网建设与更新方法 |
| CN118226529A (zh) * | 2024-03-28 | 2024-06-21 | 应急管理部国家自然灾害防治研究院 | 一种基于深度学习的InSAR同震三维形变场恢复方法 |
| CN119395703A (zh) * | 2024-11-27 | 2025-02-07 | 众智软件股份有限公司 | 核电站InSAR地表形变实时监测预警方法与系统 |
| CN120405652A (zh) * | 2025-03-28 | 2025-08-01 | 中国矿业大学(北京) | 边坡雷达与gnss三维形变数据的联合观测融合方法及系统 |
| CN120405652B (zh) * | 2025-03-28 | 2025-09-30 | 中国矿业大学(北京) | 边坡雷达与gnss三维形变数据的联合观测融合方法及系统 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN110058236A (zh) | 2019-07-26 |
| US20210011149A1 (en) | 2021-01-14 |
| CN110058236B (zh) | 2023-04-07 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2020233591A1 (zh) | 一种面向三维地表形变估计的InSAR和GNSS定权方法 | |
| James et al. | 3‐D uncertainty‐based topographic change detection with structure‐from‐motion photogrammetry: precision maps for ground control and directly georeferenced surveys | |
| CN112393714B (zh) | 一种基于无人机航拍与卫星遥感融合的影像校正方法 | |
| Snay et al. | Continuously operating reference station (CORS): history, applications, and future enhancements | |
| CN105698764B (zh) | 一种光学遥感卫星影像时变系统误差建模补偿方法及系统 | |
| Cheng et al. | Making an onboard reference map from MRO/CTX imagery for Mars 2020 lander vision system | |
| Zhang et al. | Satellite SAR geocoding with refined RPC model | |
| CN113238228B (zh) | 基于水准约束的三维地表形变获取方法、系统及装置 | |
| Wu et al. | Geometric integration of high-resolution satellite imagery and airborne LiDAR data for improved geopositioning accuracy in metropolitan areas | |
| Elshambaky et al. | A novel three-direction datum transformation of geodetic coordinates for Egypt using artificial neural network approach | |
| Feng et al. | A hierarchical network densification approach for reconstruction of historical ice velocity fields in East Antarctica | |
| Tiwari et al. | Multi-sensor geodetic approach for landslide detection and monitoring | |
| Tian et al. | Automatic calibration method for airborne LiDAR systems based on approximate corresponding points model | |
| CN117572378B (zh) | 基于InSAR与北斗数据的山体沉降分析方法及设备 | |
| CN118311615B (zh) | 一种gnss对流层与多路径联合建模纠正方法及系统 | |
| CN117388851A (zh) | 一种InSAR变形监测精度可靠估计方法 | |
| CN120559651B (zh) | 一种地表三维形变反演方法、装置、设备及介质 | |
| Ashkenazi | Models for controlling national and continental networks | |
| Kwon et al. | Geodetic datum transformation to the global geocentric datum for seas and islands around Korea | |
| CN116560207A (zh) | 一种用于测量世界时的方法 | |
| Santos Filho et al. | Cartographic Accuracy Standard (CAS) of the digital terrain model of the digital and continuous cartographic base of the state of Amapá: case study in the city of Macapá | |
| Grant et al. | The development and implementation of New Zealand Geodetic Datum 2000 | |
| CN114924270A (zh) | 基于GNSS的InSAR形变监测基准建立方法及装置 | |
| CN115407367A (zh) | 一种混合星座卫星导航定位精度衰减因子估计方法 | |
| Noinak et al. | Testing Horizontal Coordinate Correction Model Used for Transformation from PPP GNSS Technique to Thai GNSS CORS Network Based on ITRF2014 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20810830 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 20810830 Country of ref document: EP Kind code of ref document: A1 |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 20810830 Country of ref document: EP Kind code of ref document: A1 |
|
| 32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/05/2022) |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 20810830 Country of ref document: EP Kind code of ref document: A1 |