WO2020226132A1 - Composition de résine durcissable, film durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs - Google Patents
Composition de résine durcissable, film durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs Download PDFInfo
- Publication number
- WO2020226132A1 WO2020226132A1 PCT/JP2020/018410 JP2020018410W WO2020226132A1 WO 2020226132 A1 WO2020226132 A1 WO 2020226132A1 JP 2020018410 W JP2020018410 W JP 2020018410W WO 2020226132 A1 WO2020226132 A1 WO 2020226132A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- ring
- resin composition
- curable resin
- preferable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/10—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
- C08G73/12—Unsaturated polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G73/00—Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
- C08G73/06—Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
- C08G73/22—Polybenzoxazoles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/004—Photosensitive materials
- G03F7/027—Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/20—Exposure; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/40—Treatment after imagewise removal, e.g. baking
Definitions
- the present invention relates to a curable resin composition, a cured film, a laminate, a method for producing a cured film, and a semiconductor device.
- a resin obtained by cyclizing and curing a polymer precursor such as a polyimide resin or a polybenzoxazole resin (hereinafter, the polyimide resin precursor and the polybenzoxazole resin precursor are collectively referred to as a "heterocycle-containing polymer precursor").
- a polymer precursor such as a polyimide resin or a polybenzoxazole resin
- the polyimide resin precursor and the polybenzoxazole resin precursor are collectively referred to as a "heterocycle-containing polymer precursor”
- a semiconductor device for mounting include use as a material for an insulating film or a sealing material, or as a protective film. It is also used as a base film and coverlay for flexible substrates.
- the heterocycle-containing polymer precursor is used in the form of a curable resin composition containing the heterocycle-containing polymer precursor.
- a curable resin composition is applied to a base material by, for example, coating, and then the heterocyclic-containing polymer precursor is cyclized by heating or the like to form a cured resin on the base material.
- the curable resin composition can be applied by a known coating method or the like, for example, there is a high degree of freedom in designing the shape, size, application position, etc. of the curable resin composition to be applied. It can be said that it has excellent adaptability.
- industrial application development of curable resin compositions containing heterocyclic-containing polymer precursors is expected more and more.
- Patent Document 1 partitions a storage space containing a polar liquid and a non-polar liquid that are immiscible with each other, which is formed between the first electrode layer stack and the second electrode layer stack, and includes a specific step. The method of manufacturing the partition wall is described.
- Patent Document 2 describes a photosensitive polymer composition containing (a) a polyimide precursor and a polyimide, (b) a photopolymerization initiator, and (c) an aromatic diamine compound.
- a curable resin composition obtained by curing a curable resin composition containing a heterocyclic-containing polymer precursor such as a polyimide precursor, for example, a curable resin composition is further applied on the cured film and cured to form a laminate.
- the cured film formed earlier may come into contact with the developer or other composition. Therefore, in the curable resin composition, for example, from the viewpoint of resistance of the cured film to a developing solution or suppression of dissolution of the cured film due to contact with other compositions, the obtained cured film is cured with excellent chemical resistance. It is desired to provide a sex resin composition.
- the present invention relates to a curable resin composition having excellent chemical resistance of the obtained cured film, a cured film obtained by curing the curable resin composition, a laminate containing the cured film, a method for producing the cured film, and a method for producing the cured film.
- An object of the present invention is to provide a semiconductor device including the cured film or the laminate.
- ⁇ 1> Containing at least one polymer precursor selected from the group consisting of a polyimide precursor and a polybenzoxazole precursor.
- a curable resin composition in which the polymer precursor contains an aromatic ring in which a vinyl group which may be substituted is directly bonded.
- the polymer precursor is a polyimide precursor having a repeating unit represented by the following formula (1) or a polybenzoxazole precursor having a repeating unit represented by the following formula (2).
- a 1 and A 2 independently represent an oxygen atom or -NH-, R 111 represents a divalent organic group, and R 115 represents a tetravalent organic.
- R 113 and R 114 each independently represent a hydrogen atom or a monovalent organic group, and at least one of R 113 and R 114 is an aromatic ring directly attached to a optionally substituted vinyl group.
- R 121 represents a divalent organic group
- R 122 represents a tetravalent organic group
- R 123 and R 124 each independently represent a hydrogen atom or a monovalent organic group
- R At least one of 123 and R 124 contains an aromatic ring directly attached to an optionally substituted vinyl group.
- ⁇ 5> The curable resin composition according to any one of ⁇ 1> to ⁇ 4>, further comprising a compound having two or more ethylenically unsaturated groups in the molecule.
- the compound having two or more ethylenically unsaturated groups in the molecule is a compound having two or more aromatic rings in which a vinyl group which may be substituted is directly bonded.
- ⁇ 8> The curable resin composition according to any one of ⁇ 1> to ⁇ 7>, further comprising a photoradical polymerization initiator.
- ⁇ 9> The curable resin composition according to any one of ⁇ 1> to ⁇ 8>, further comprising an onium salt.
- ⁇ 10> The curable resin composition according to any one of ⁇ 1> to ⁇ 9>, which is used for forming an interlayer insulating film for a rewiring layer.
- ⁇ 11> A cured film obtained by curing the curable resin composition according to any one of ⁇ 1> to ⁇ 10>.
- ⁇ 12> A laminate containing two or more layers of the cured film according to ⁇ 11> and containing a metal layer between any of the cured films.
- a method for producing a cured film which comprises a film forming step of applying the curable resin composition according to any one of ⁇ 1> to ⁇ 10> to a substrate to form a film.
- the method for producing a cured film according to ⁇ 13> which comprises an exposure step of exposing the film and a developing step of developing the film.
- the method for producing a cured film according to ⁇ 13> or ⁇ 14> which comprises a heating step of heating the film at 50 to 450 ° C.
- a semiconductor device comprising the cured film according to ⁇ 11> or the laminate according to ⁇ 12>.
- a curable resin composition having excellent chemical resistance of the obtained cured film a cured film obtained by curing the curable resin composition, a laminate containing the cured film, and a method for producing the cured film.
- a semiconductor device including the cured film or the laminate is provided.
- the present invention is not limited to the specified embodiments.
- the numerical range represented by using the symbol “ ⁇ ” means a range including the numerical values before and after “ ⁇ ” as the lower limit value and the upper limit value, respectively.
- the term "process” means not only an independent process but also a process that cannot be clearly distinguished from other processes as long as the desired action of the process can be achieved.
- the notation not describing substitution and non-substitution also includes a group having a substituent (atomic group) as well as a group having no substituent (atomic group).
- the "alkyl group” includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
- exposure includes not only exposure using light but also exposure using particle beams such as electron beams and ion beams. Examples of the light used for exposure include the emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excimer laser, extreme ultraviolet rays (EUV light), X-rays, active rays such as electron beams, or radiation.
- (meth) acrylate means both “acrylate” and “methacrylate”, or either
- (meth) acrylic means both “acrylic” and “methacryl”, or
- (meth) acryloyl means both “acryloyl” and “methacryloyl”, or either.
- Me in the structural formula represents a methyl group
- Et represents an ethyl group
- Bu represents a butyl group
- Ph represents a phenyl group.
- the total solid content means the total mass of all the components of the composition excluding the solvent.
- the solid content concentration is the mass percentage of other components excluding the solvent with respect to the total mass of the composition.
- the weight average molecular weight (Mw) and the number average molecular weight (Mn) are defined as polystyrene-equivalent values according to gel permeation chromatography (GPC measurement) unless otherwise specified.
- GPC measurement gel permeation chromatography
- the weight average molecular weight (Mw) and the number average molecular weight (Mn) for example, HLC-8220GPC (manufactured by Tosoh Corporation) is used, and guard columns HZ-L, TSKgel Super HZM-M, and TSKgel are used as columns. It can be obtained by using Super HZ4000, TSKgel Super HZ3000, and TSKgel Super HZ2000 (manufactured by Tosoh Corporation).
- the direction in which the layers are stacked on the base material is referred to as "upper", or if there is a photosensitive layer, the direction from the base material to the photosensitive layer is referred to as “upper”.
- the opposite direction is referred to as "down”.
- the composition may contain, as each component contained in the composition, two or more compounds corresponding to the component.
- the content of each component in the composition means the total content of all the compounds corresponding to the component.
- the temperature is 23 ° C. and the atmospheric pressure is 101,325 Pa (1 atm).
- the combination of preferred embodiments is a more preferred embodiment.
- the curable resin composition of the present invention contains at least one polymer precursor selected from the group consisting of a polyimide precursor and a polybenzoxazole precursor, and the polymer precursor may be substituted with a vinyl group. Includes an aromatic ring with a direct bond.
- the curable resin composition of the present invention preferably further contains a compound having two or more ethylenically unsaturated groups described later in the molecule. Further, the curable resin composition of the present invention preferably further contains a photoradical polymerization initiator described later.
- the curable resin composition of the present invention is excellent in chemical resistance of the obtained cured film.
- the mechanism by which the above effect is obtained is unknown, but it is presumed as follows.
- the radical polymerizable group is radically polymerized by exposure, heating, etc. using the heterocyclic polymer precursor having a radically polymerizable group to obtain a cured film.
- the radical polymerization is inhibited from being polymerized in the presence of oxygen, and when the above exposure, heating, etc. are performed in the presence of oxygen, unreacted radical polymerizable groups are obtained. It is considered that the compound having the compound remains in the cured film.
- the heterocyclic polymer precursor in the curable resin composition of the present invention contains an aromatic ring in which a vinyl group which may be substituted is directly bonded.
- a heterocycle-containing polymer precursor containing an aromatic ring in which a optionally substituted vinyl group is directly bonded is also referred to as a “specific heterocycle-containing polymer precursor”. Since the vinyl group in the aromatic ring in which the vinyl group which may be substituted in the specific heterocycle-containing polymer precursor is directly bonded is not easily subjected to polymerization inhibition in the presence of oxygen, even in the presence of oxygen, during exposure, heating, etc. It is considered that the radical polymerization in the above proceeds rapidly. As a result, the amount of unreacted radically polymerizable groups in the cured film is reduced.
- the curable resin composition of the present invention a cured film having low permeability of an organic solvent, solubility in an organic solvent, etc. can be obtained. It is thought that it will be obtained. Further, as described above, since the vinyl group is less susceptible to polymerization inhibition in the presence of oxygen, it is considered that the curable resin composition of the present invention tends to have excellent exposure sensitivity.
- Patent Document 1 or 2 does not describe or suggest a heterocycle-containing polymer precursor (specific heterocycle-containing polymer precursor) containing an aromatic ring in which an optionally substituted vinyl group is directly bonded.
- a heterocycle-containing polymer precursor specific heterocycle-containing polymer precursor
- Patent Document 2 does not describe or suggest a heterocycle-containing polymer precursor (specific heterocycle-containing polymer precursor) containing an aromatic ring in which an optionally substituted vinyl group is directly bonded.
- the curable resin composition of the present invention contains a specific heterocycle-containing polymer precursor.
- the curable resin composition of the present invention contains at least one precursor selected from the group consisting of a polyimide precursor and a polybenzoxazole precursor as a specific heterocyclic-containing polymer precursor, and includes a polyimide precursor. Is preferable.
- the specific heterocycle-containing polymer precursor comprises an aromatic ring to which a optionally substituted vinyl group is directly attached.
- an aromatic ring to which a optionally substituted vinyl group is directly bonded means that one carbon atom in the double bond of the optionally substituted vinyl group is directly bonded to the aromatic ring structure. Refers to the structure.
- the aromatic ring may have a known substituent such as an alkyl group or a halogeno group.
- the aromatic ring may be an aromatic hydrocarbon ring or an aromatic heterocycle, and the aromatic hydrocarbon ring or the aromatic heterocycle may be an aromatic hydrocarbon ring or an aliphatic hydrocarbon ring.
- Aromatic heterocycles or aliphatic heterocycles may be condensed.
- each of these aromatic hydrocarbon rings, aliphatic hydrocarbon rings, aromatic heterocycles or aliphatic heterocycles may have a known substituent such as an alkyl group or a halogeno group.
- the aromatic ring in the aromatic ring in which the vinyl group which may be substituted is directly bonded is preferably an aromatic hydrocarbon ring, and more preferably a benzene ring. That is, the specific heterocycle-containing polymer precursor preferably contains a vinylphenyl group as a group containing an aromatic ring to which a vinyl group is directly bonded.
- the specific heterocyclic-containing polymer precursor preferably contains a group represented by the following formula (S-1) as a group having an aromatic ring in which a vinyl group which may be substituted is directly bonded.
- S1 represents a hydrogen atom or a methyl group
- R S2 represents a substituent
- L S1 represents a single bond or a divalent linking group
- n represents an integer of 0 to 4
- RS1 represents a hydrogen atom or a methyl group, and is preferably a hydrogen atom.
- R S2 is a halogen atom, an alkyl group, or an aryl group is preferable, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or a phenyl group is more preferable.
- the linking group preferably contains a (poly) oxyalkylene group having 1 to 30 carbon atoms as a linking group in which an alkylene group and —O— are combined.
- the (poly) oxyalkylene group means an oxyalkylene group or a polyoxyalkylene group.
- the alkylene group in the (poly) oxyalkylene group preferably has 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, and particularly preferably 1 to 3 carbon atoms.
- the alkylene group is preferably an ethylene group or a propylene group.
- the number of repetitions of the oxyalkylene structure in the (poly) oxyalkylene group is preferably 1 to 12, more preferably 1 to 6, and particularly preferably 1 to 3.
- the alkylene group for L S1 preferably an alkylene group having 1 to 10 carbon atoms, more preferably an alkylene group having 1 to 8 carbon atoms.
- Ring members hydrocarbon ring in hydrocarbon ring group in L S1 is preferably 6 to 20, more preferably 6 to 12. It is more preferably 6.
- aromatic hydrocarbon ring is preferably a benzene ring is more preferable.
- the heterocycle may be a fused ring of a plurality of heterocycles, or may be a fused ring of a heterocycle and an aromatic hydrocarbon ring.
- the number of ring members of the monocyclic heterocycle contained in the condensed ring is preferably 5 to 6.
- n represents an integer of 0 to 4, preferably an integer of 0 to 2, and more preferably 0.
- the amount of aromatic rings to which the vinyl group which may be substituted may be directly bonded is 0, based on the total mass of the specific heterocycle-containing polymer precursor. It is preferably 1 to 12 mol / g, more preferably 0.5 to 10 mol / g, and even more preferably 1 to 8 mol / g.
- the specific heterocyclic-containing polymer precursor may be a polyimide precursor having a repeating unit represented by the following formula (1) or a polybenzoxazole precursor having a repeating unit represented by the following formula (2).
- a 1 and A 2 independently represent an oxygen atom or -NH-
- R 111 represents a divalent organic group
- R 115 represents a tetravalent organic.
- R 113 and R 114 each independently represent a hydrogen atom or a monovalent organic group, and at least one of R 113 and R 114 is an aromatic ring directly attached to a optionally substituted vinyl group.
- R 121 represents a divalent organic group
- R 122 represents a tetravalent organic group
- R 123 and R 124 each independently represent a hydrogen atom or a monovalent organic group
- R At least one of 123 and R 124 contains an aromatic ring directly attached to an optionally substituted vinyl group.
- the polyimide precursor preferably contains a repeating unit represented by the above formula (1).
- -A 1 and A 2- A 1 and A 2 in the formula (1) independently represent an oxygen atom or -NH-, and an oxygen atom is preferable.
- -R 111- R 111 in the formula (1) represents a divalent organic group.
- the divalent organic group include a linear or branched aliphatic group, a cyclic aliphatic group, an aromatic group, a heteroaromatic group, or a group in which two or more of these are combined, and the number of carbon atoms is exemplified.
- the group combined as described above is preferable, and an aromatic group having 6 to 20 carbon atoms is more preferable.
- R 111 in formula (1) is preferably derived from diamine.
- the diamine used for producing the polyimide precursor include linear or branched-chain aliphatic, cyclic aliphatic or aromatic diamines. Only one kind of diamine may be used, or two or more kinds of diamines may be used.
- the diamine is a linear aliphatic group having 2 to 20 carbon atoms, a branched or cyclic aliphatic group having 3 to 20 carbon atoms, an aromatic group having 6 to 20 carbon atoms, or these. It is preferably a diamine containing two or more combined groups, and more preferably a diamine containing an aromatic group having 6 to 20 carbon atoms.
- aromatic groups include:
- diamine examples include 1,2-diaminoethane, 1,2-diaminopropane, 1,3-diaminopropane, 1,4-diaminobutane, 1,6-diaminohexane; 1,2- or 1 , 3-Diaminocyclopentane, 1,2-, 1,3- or 1,4-diaminocyclohexane, 1,2-, 1,3- or 1,4-bis (aminomethyl) cyclohexane, bis- (4-) Aminocyclohexyl) methane, bis- (3-aminocyclohexyl) methane, 4,4'-diamino-3,3'-dimethylcyclohexylmethane or isophoronediamine; meta or paraphenylenediamine, diaminotoluene, 4,4'-or 3 , 3'-diaminobiphenyl, 4,4'-diaminodiphenyl ether,
- diamines (DA-1) to (DA-18) shown below are also preferable.
- a diamine having at least two alkylene glycol units in the main chain is also mentioned as a preferable example.
- a diamine containing two or more of one or both of an ethylene glycol chain and a propylene glycol chain in one molecule is preferable, and a diamine containing no aromatic ring is preferable.
- Specific examples include Jeffamine (registered trademark) KH-511, Jeffamine (registered trademark) ED-600, Jeffamine (registered trademark) ED-900, Jeffamine (registered trademark) ED-2003, and Jeffamine (registered trademark).
- EDR-148 Jeffamine (registered trademark) EDR-176, D-200, D-400, D-2000, D-4000 (trade name, manufactured by HUNTSMAN), 1- (2- (2- (2)) -Aminopropoxy) ethoxy) propoxy) propane-2-amine, 1- (1- (1- (2-aminopropoxy) propoxy-2-yl) oxy) propane-2-amine, etc., but are limited to these. Not done.
- x, y, and z are arithmetic mean values.
- R 111 in the formula (1) from the viewpoint of flexibility of the cured film obtained, -Ar 0 -L 0 -Ar 0 - is preferably represented by.
- Ar 0 is independently an aromatic hydrocarbon group (preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, particularly preferably 6 to 10 carbon atoms), and a phenylene group is preferable.
- the preferred range of L 0 is synonymous with A above.
- R 111 in the formula (1) is preferably a divalent organic group represented by the following formula (51) or the formula (61) from the viewpoint of i-ray transmittance.
- a divalent organic group represented by the formula (61) is more preferable from the viewpoint of i-ray transmittance and availability.
- R 50 to R 57 are independently hydrogen atoms, fluorine atoms or monovalent organic groups, and at least one of R 50 to R 57 is a fluorine atom, a methyl group, a fluoromethyl group, It is a difluoromethyl group or a trifluoromethyl group, and * independently represents a binding site with another structure.
- the monovalent organic group of R 50 to R 57 includes an unsubstituted alkyl group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms) and 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms). Examples thereof include an alkyl fluoride group.
- R 58 and R 59 are independently fluorine atoms, fluoromethyl groups, difluoromethyl groups, or trifluoromethyl groups, respectively.
- Examples of the diamine compound giving the structure of the formula (51) or (61) include dimethyl-4,4'-diaminobiphenyl, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl, 2,2. Examples thereof include'-bis (fluoro) -4,4'-diaminobiphenyl and 4,4'-diaminooctafluorobiphenyl. One of these may be used, or two or more thereof may be used in combination.
- -R 115- R 115 in the formula (1) represents a tetravalent organic group.
- a tetravalent organic group containing an aromatic ring is preferable, and a group represented by the following formula (5) or formula (6) is more preferable.
- R 112 is synonymous with A and has the same preferred range. * Independently represent a binding site with another structure.
- tetravalent organic group represented by R 115 in the formula (1) include a tetracarboxylic acid residue remaining after removing the acid dianhydride group from the tetracarboxylic dianhydride. Only one type of tetracarboxylic dianhydride may be used, or two or more types may be used.
- the tetracarboxylic dianhydride is preferably a compound represented by the following formula (7).
- R 115 represents a tetravalent organic group.
- R 115 has the same meaning as R 115 in formula (1).
- tetracarboxylic dianhydride examples include pyromellitic acid, pyromellitic dianhydride (PMDA), 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 3,3', 4 , 4'-diphenylsulfide tetracarboxylic dianhydride, 3,3', 4,4'-diphenylsulfonetetracarboxylic dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride, 3,3', 4,4'-diphenylmethanetetracarboxylic dianhydride, 2,2', 3,3'-diphenylmethanetetracarboxylic dianhydride, 2,3,3', 4'-biphenyltetracarboxylic acid Dihydride, 2,3,3', 4'-benzophenonetetracarboxylic dianhydride, 4,4'-oxy
- DAA-1 to DAA-5 tetracarboxylic dianhydrides
- DAA-5 tetracarboxylic dianhydrides
- R -R 113 and R 114- R 113 and R 114 in the formula (1) independently represent a hydrogen atom or a monovalent organic group, and at least one of R 123 and R 124 is an aromatic ring in which an optionally substituted vinyl group is directly bonded. including.
- a group represented by the above formula (S-1) is preferable.
- * in the formula (S-1) is a binding site with A 1 or A 2 in the formula (1). Represents.
- R 113 and R 114 may not contain an aromatic ring to which an optionally substituted vinyl group is directly bonded. If the R 113 and R 114 do not contain an aromatic ring to which the optionally substituted vinyl group is directly attached, one of the R 113 and R 114 is directly attached to the optionally substituted vinyl group.
- a group having an ethylenically unsaturated bond other than the aromatic ring may be used, but a group having no ethylenically unsaturated bond is preferable.
- Examples of the group having an ethylenically unsaturated bond other than the aromatic ring to which the optionally substituted vinyl group in R 113 and R 114 are directly bonded include a vinyl group, an allyl group, a (meth) acryloyl group, and the following formula (III). Examples include the group represented by.
- R200 represents a hydrogen atom or a methyl group, and a methyl group is preferable.
- R 201 is an alkylene group having 2 to 12 carbon atoms, -CH 2 CH (OH) CH 2- or a (poly) oxyalkylene group having 4 to 30 carbon atoms (the alkylene group has 1 carbon atom).
- ⁇ 12 is preferable, 1 to 6 is more preferable, 1 to 3 is particularly preferable; the number of repetitions is preferably 1 to 12, 1 to 6 is more preferable, and 1 to 3 is particularly preferable).
- the (poly) oxyalkylene group means an oxyalkylene group or a polyoxyalkylene group.
- R 201 examples include ethylene group, propylene group, trimethylene group, tetramethylene group, 1,2-butandyl group, 1,3-butandyl group, pentamethylene group, hexamethylene group, octamethylene group, dodecamethylene group. , -CH 2 CH (OH) CH 2-, and more preferably an ethylene group, a propylene group, a trimethylene group, and -CH 2 CH (OH) CH 2- .
- R 200 is a methyl group and R 201 is an ethylene group.
- * represents a binding site with another structure.
- Examples of the group having no ethylenically unsaturated bond in R 113 and R 114 include an aliphatic group, an aromatic group and an arylalkyl group having one, two or three, preferably one acid group. Specific examples thereof include an aromatic group having an acid group having 6 to 20 carbon atoms and an arylalkyl group having an acid group having 7 to 25 carbon atoms. More specifically, a phenyl group having an acid group and a benzyl group having an acid group can be mentioned.
- the acid group is preferably a hydroxy group. That is, R 113 or R 114 is preferably a group having a hydroxy group.
- a substituent that improves the solubility of the developing solution is preferably used.
- R 113 or R 114 is a hydrogen atom, 2-hydroxybenzyl, 3-hydroxybenzyl and 4-hydroxybenzyl from the viewpoint of solubility in an aqueous developer.
- the group having no ethylenically unsaturated bond in R 113 and R 114 is preferably a monovalent organic group.
- a monovalent organic group a linear or branched alkyl group, a cyclic alkyl group, or an aromatic group is preferable, and an alkyl group substituted with an aromatic group is more preferable.
- the alkyl group preferably has 1 to 30 carbon atoms (3 or more in the case of a cyclic group).
- the alkyl group may be linear, branched or cyclic. Examples of the linear or branched alkyl group include methyl group, ethyl group, propyl group, butyl group, pentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, dodecyl group, tetradecyl group and octadecyl group.
- the cyclic alkyl group may be a monocyclic cyclic alkyl group or a polycyclic cyclic alkyl group.
- Examples of the monocyclic cyclic alkyl group include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group and a cyclooctyl group.
- Examples of the polycyclic cyclic alkyl group include an adamantyl group, a norbornyl group, a bornyl group, a phenyl group, a decahydronaphthyl group, a tricyclodecanyl group, a tetracyclodecanyl group, a camphoroyl group, a dicyclohexyl group and a pinenyl group. Can be mentioned. Further, as the alkyl group substituted with an aromatic group, a linear alkyl group substituted with an aromatic group described below is preferable.
- aromatic group examples include a substituted or unsubstituted aromatic hydrocarbon group (the cyclic structure constituting the group includes a benzene ring, a naphthalene ring, a biphenyl ring, a fluorene ring, a pentalene ring, an inden ring, and anthracene.
- the cyclic structure constituting the group includes a benzene ring, a naphthalene ring, a biphenyl ring, a fluorene ring, a pentalene ring, an inden ring, and anthracene.
- the cyclic structure constituting the group includes a fluorene ring, a pyrrole ring, a furan ring, a thiophene ring, an imidazole ring, an oxazole ring, a thiazole ring, a pyridine ring, a pyrazine ring, a pyrimidine ring, a pyridazine ring, an indridin ring, an indol ring, and a benzofuran.
- Ring benzothiophene ring, isobenzofuran ring, quinolidine ring, quinoline ring, phthalazine ring, naphthylidine ring, quinoxaline ring, quinoxazoline ring, isoquinoline ring, carbazole ring, phenanthrene ring, aclysin ring, phenanthrene ring, thianthrene ring, chromene ring. , Xantene ring, phenoxatiin ring, phenothiazine ring or phenazine ring).
- the polyimide precursor has a fluorine atom in the repeating unit.
- the fluorine atom content in the polyimide precursor is preferably 10% by mass or more, more preferably 20% by mass or more. There is no particular upper limit, but 50% by mass or less is practical.
- an aliphatic group having a siloxane structure may be copolymerized in a repeating unit represented by the formula (1).
- the diamine component include bis (3-aminopropyl) tetramethyldisiloxane and bis (paraaminophenyl) octamethylpentasiloxane.
- the repeating unit represented by the formula (1) is preferably a repeating unit represented by the formula (1-A) or the formula (1-B).
- a 11 and A 12 represent an oxygen atom or -NH-
- R 111 and R 112 each independently represent a divalent organic group
- R 113 and R 114 independently represent a hydrogen atom or 1 Representing a valent organic group
- at least one of R 113 and R 114 comprises an aromatic ring directly attached to a optionally substituted vinyl group.
- a 11 , A 12 , R 111 , R 113 and R 114 are synonymous with the preferred ranges of A 1 , A 2 , R 111 , R 113 and R 114 in formula (1), respectively.
- R 112 has the same meaning as R 112 in formula (5), and more preferably among others oxygen atoms.
- the bonding position of the carbonyl group to the benzene ring in the formula is preferably 4, 5, 3', 4'in the formula (1-A). In formula (1-B), it is preferably 1, 2, 4, 5.
- the repeating unit represented by the formula (1) may be one kind, but may be two or more kinds. Further, the structural isomer of the repeating unit represented by the formula (1) may be contained. Further, the polyimide precursor may contain other types of repeating units in addition to the repeating units of the above formula (1).
- a 1 and A 2 independently represent an oxygen atom or -NH-
- R 111 represents a divalent organic group
- R 115 represents a tetravalent organic group.
- R 113a and R 114a independently represent a hydrogen atom or a monovalent organic group
- R 113a and R 114a do not contain an aromatic ring to which a optionally substituted vinyl group is directly attached.
- a 1, A 2, R 111 and, R 115 are each, A 1, A 2, R 111 in the formula (1), and has the same meaning as R 115, preferred embodiments Is the same.
- R 113a, and, each R 114a, R 113 and in the formula (1) good vinyl group be substituted in R 113 and R 114 described in the description of R 114 direct attached group having an ethylenically unsaturated bond other than aromatic ring, or is preferably the same group and a radical having no ethylenically unsaturated bond in the R 113 and R 114, ethylene in R 113 and R 114 More preferably, it is a group similar to a group having no sex unsaturated bond.
- the polyimide precursor may contain one type of repeating unit represented by the formula (1-2) alone, or may contain two or more types.
- the weight average molecular weight (Mw) of the polyimide precursor is preferably 2,000 to 500,000, more preferably 5,000 to 100,000, and further preferably 10,000 to 50,000.
- the number average molecular weight (Mn) is preferably 800 to 250,000, more preferably 2,000 to 50,000, still more preferably 4,000 to 25,000, and particularly preferably. Is 4,000 to 24,000.
- the degree of dispersion of the molecular weight of the polyimide precursor is preferably 1.5 to 3.5, more preferably 2 to 3.
- the degree of molecular weight dispersion means a value obtained by dividing the weight average molecular weight by the number average molecular weight (weight average molecular weight / number average molecular weight).
- the polyimide precursor is obtained by reacting a dicarboxylic acid or a dicarboxylic acid derivative with a diamine.
- the dicarboxylic acid or the dicarboxylic acid derivative is obtained by halogenating it with a halogenating agent and then reacting it with a diamine.
- the method for obtaining a polyimide precursor having an aromatic ring in which a optionally substituted vinyl group is directly bonded include the following methods. (1) Method of reacting a tetracarboxylic acid derivative having an aromatic ring to which a optionally substituted vinyl group is directly bonded with a diamine (2) A method in which a tetracarboxylic acid derivative and a optionally substituted vinyl group are directly bonded.
- the diamine having an aromatic ring in which the vinyl group which may be substituted is directly bonded can be obtained, for example, by reacting a diamine having a hydroxyl group with a styrene derivative having an isocyanato group, an epoxy group or the like.
- the organic solvent may be one kind or two or more kinds.
- the organic solvent can be appropriately determined depending on the raw material, and examples thereof include pyridine, diethylene glycol dimethyl ether (diglyme), N-methyl-2-pyrrolidone and N-ethyl-2-pyrrolidone.
- the polyimide precursor in the reaction solution can be precipitated in water, and the polyimide precursor such as tetrahydrofuran can be dissolved in a soluble solvent to precipitate a solid.
- the polybenzoxazole precursor preferably contains a repeating unit represented by the above formula (2).
- R 121 represents a divalent organic group.
- the divalent organic group includes an aliphatic group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, particularly preferably 1 to 6 carbon atoms) and an aromatic group (preferably 6 to 22 carbon atoms, 6 to 14 carbon atoms). Is more preferable, and 6 to 12 is particularly preferable).
- the aromatic group constituting R 121 include R 111 of the above formula (1).
- the aliphatic group a linear aliphatic group is preferable.
- R 121 is preferably derived from 4,4'-oxydibenzoyl chloride.
- R 122 represents a tetravalent organic group.
- the tetravalent organic group has the same meaning as R 115 in the above formula (1), and the preferable range is also the same.
- R 122 is preferably derived from 2,2'-bis (3-amino-4-hydroxyphenyl) hexafluoropropane.
- R -R 123 and R 124- R 123 and R 124 independently represent a hydrogen atom or a monovalent organic group, and have the same meaning as R 113 and R 114 in the above formula (1), and the preferable range is also the same.
- the polybenzoxazole precursor may contain other types of repeating units in addition to the repeating units of the above formula (2).
- R 121 represents a divalent organic group
- R 122 represents a tetravalent organic group
- R 123a and R 124a independently represent a hydrogen atom or a monovalent organic. Representing a group, R 123a and R 124a do not contain an aromatic ring directly attached to an optionally substituted vinyl group.
- R 121 and R 122 have the same meaning as R 121 and R 122 in formula (2), respectively, and the preferred embodiments are also the same.
- R 123a and R 124a are directly bonded to R 113 in formula (1) and optionally substituted vinyl groups in R 113 and R 114 described in the description of R 114 , respectively.
- the group has an ethylenically unsaturated bond other than the aromatic ring, or the same group as the group having no ethylenically unsaturated bond in R 113 and R 114, and the ethylenically unsaturated group in R 113 and R 114 . It is more preferable that the group is similar to the group having no saturated bond.
- the polybenzoxazole precursor may contain one type of repeating unit represented by the formula (2-2) alone, or may contain two or more types.
- the polybenzoxazole precursor preferably further contains a diamine residue represented by the following formula (SL) as another type of repeating unit in that the occurrence of warpage of the cured film due to ring closure can be suppressed.
- SL diamine residue represented by the following formula (SL) as another type of repeating unit in that the occurrence of warpage of the cured film due to ring closure can be suppressed.
- R 1s is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), and R 2s.
- Is a hydrocarbon group having 1 to 10 carbon atoms (preferably 1 to 6 carbon atoms, more preferably 1 to 3 carbon atoms), and at least one of R 3s , R 4s , R 5s , and R 6s is aromatic. It is a group (preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, particularly preferably 6 to 10 carbon atoms), and the rest is a hydrogen atom or 1 to 30 carbon atoms (preferably 1 to 18 carbon atoms).
- Organic groups having 1 to 12 carbon atoms, particularly preferably 1 to 6) carbon atoms may be the same or different from each other.
- the polymerization of the a structure and the b structure may be block polymerization or random polymerization.
- the a structure is 5 to 95 mol%
- the b structure is 95 to 5 mol%
- a + b is 100 mol%.
- preferred Z includes those in which R 5s and R 6s in the b structure are phenyl groups.
- the molecular weight of the structure represented by the formula (SL) is preferably 400 to 4,000, more preferably 500 to 3,000.
- the molecular weight can be determined by commonly used gel permeation chromatography. By setting the molecular weight in the above range, the elastic modulus of the polybenzoxazole precursor after dehydration ring closure can be lowered, and the effect of suppressing warpage and the effect of improving solubility can be achieved at the same time.
- the tetracarboxylic dianhydride is further provided in that it improves the alkali solubility of the curable resin composition. It is preferable that the tetracarboxylic acid residue remaining after the removal of the acid dianhydride group from the product is contained as a repeating unit. Examples of such a tetracarboxylic acid residue include the example of R 115 in the formula (1).
- the weight average molecular weight (Mw) of the polybenzoxazole precursor is preferably 2,000 to 500,000, more preferably 5,000 to 100,000, still more preferably 10,000 to 50,000. is there.
- the number average molecular weight (Mn) is preferably 800 to 250,000, more preferably 2,000 to 50,000, and even more preferably 4,000 to 25,000.
- the degree of dispersion of the molecular weight of the polybenzoxazole precursor is preferably 1.5 to 3.5, more preferably 2 to 3.
- the content of the specific heterocycle-containing polymer precursor in the curable resin composition of the present invention is preferably 20% by mass or more, preferably 30% by mass or more, based on the total solid content of the curable resin composition. Is more preferably 40% by mass or more, further preferably 50% by mass or more, further preferably 60% by mass or more, and even more preferably 70% by mass or more. Further, the content of the specific heterocycle-containing polymer precursor in the curable resin composition of the present invention is preferably 99.5% by mass or less, preferably 99% by mass, based on the total solid content of the curable resin composition. % Or less, more preferably 98% by mass or less, further preferably 97% by mass or less, and even more preferably 95% by mass or less.
- the curable resin composition of the present invention may contain only one type of specific heterocyclic-containing polymer precursor, or may contain two or more types. When two or more types are included, the total amount is preferably in the above range.
- the curable resin composition of the present invention may further contain other heterocyclic-containing polymer precursors other than the above-mentioned specific heterocyclic-containing polymer precursor.
- Other heterocyclic-containing polymer precursors include a polyimide precursor that does not contain an aromatic ring to which a optionally substituted vinyl group is directly bonded, or an aromatic ring to which an optionally substituted vinyl group is directly bonded.
- a polybenzoxazole precursor without polybenzoxazole is preferable, and a polyimide precursor without an aromatic ring to which a vinyl group which may be substituted is directly bonded is more preferable.
- polyimide precursor containing no aromatic ring to which a vinyl group which may be substituted is directly bonded
- the polyimide precursor containing no aromatic ring to which a optionally substituted vinyl group is directly bonded preferably has a repeating unit represented by the above formula (1-2).
- the repeating unit represented by the formula (1-2) may be one kind, but two or more kinds. May be good. Further, the structural isomer of the repeating unit represented by the formula (1-2) may be contained. Further, the polyimide precursor may contain other types of repeating units in addition to the repeating units represented by the above formula (1-2).
- an aromatic ring-free polyimide precursor to which a optionally substituted vinyl group is directly bonded in the present invention 50 mol% or more, more 70 mol% or more, particularly 90 mol% or more of all repetition units.
- the above is an example of a polyimide precursor which is a repeating unit represented by the formula (1-2).
- the weight average molecular weight (Mw) of the polyimide precursor containing no aromatic ring to which a optionally substituted vinyl group is directly bonded is preferably 2,000 to 500,000, more preferably 5,000 to 100, It is 000, more preferably 10,000 to 50,000.
- the number average molecular weight (Mn) is preferably 800 to 250,000, more preferably 2,000 to 50,000, and even more preferably 4,000 to 25,000.
- the degree of dispersion of the molecular weight of the polyimide precursor containing no aromatic ring to which the vinyl group which may be substituted is directly bonded is preferably 1.5 to 3.5, and more preferably 2 to 3.
- a polyimide precursor that does not contain an aromatic ring in which a vinyl group that may be substituted is directly bonded can be obtained by reacting a dicarboxylic acid or a dicarboxylic acid derivative with a diamine.
- the dicarboxylic acid or the dicarboxylic acid derivative is obtained by halogenating it with a halogenating agent and then reacting it with a diamine.
- an organic solvent in the reaction.
- the organic solvent may be one kind or two or more kinds.
- the organic solvent can be appropriately determined depending on the raw material, and examples thereof include organic solvents similar to those used in the synthesis of the polyimide precursor which is the above-mentioned specific heterocyclic-containing polymer precursor.
- the polyimide precursor in the reaction solution can be precipitated in water, and the polyimide precursor such as tetrahydrofuran can be dissolved in a soluble solvent to precipitate a solid.
- the aromatic ring-free polybenzoxazole precursor to which a optionally substituted vinyl group is directly attached preferably has a repeating unit represented by the above formula (2-2).
- the aromatic ring-free polybenzoxazole precursor to which the vinyl group which may be substituted is directly bonded further contains the diamine residue represented by the above formula (SL) as another kind of repeating unit. Is preferable.
- the curable resin composition From the viewpoint of improving the alkali solubility of the product, it is preferable to further include, as a repeating unit, a tetracarboxylic acid residue remaining after removal of the acid dianhydride group from the tetracarboxylic dianhydride.
- a tetracarboxylic acid residue include the example of R 115 in the formula (1).
- the weight average molecular weight (Mw) of the aromatic ring-free polybenzoxazole precursor to which the optionally substituted vinyl group is directly bonded is preferably 2,000 to 500,000, more preferably 5,000 to 5,000. It is 100,000, more preferably 10,000 to 50,000.
- the number average molecular weight (Mn) is preferably 800 to 250,000, more preferably 2,000 to 50,000, and even more preferably 4,000 to 25,000.
- the degree of dispersion of the molecular weight of the polybenzoxazole precursor that does not contain an aromatic ring in which a vinyl group that may be substituted is directly bonded is preferably 1.5 to 3.5, and more preferably 2 to 3.
- the content of the other heterocycle-containing polymer precursor is 20% by mass or more based on the total solid content of the curable resin composition. It is preferably 30% by mass or more, and more preferably 40% by mass or more.
- the content of the other heterocyclic-containing polymer precursor in the curable resin composition of the present invention is preferably 99.5% by mass or less based on the total solid content of the curable resin composition, preferably 99. It is more preferably mass% or less, further preferably 98 mass% or less, further preferably 97 mass% or less, and even more preferably 95 mass% or less.
- the curable resin composition of the present invention may contain only one type of other heterocyclic polymer precursor, or may contain two or more types. When two or more types are included, the total amount is preferably in the above range.
- the curable resin composition of the present invention preferably contains a compound having two or more ethylenically unsaturated groups in the molecule.
- the compound having two or more ethylenically unsaturated groups in the molecule is preferably a compound having two or more aromatic rings in which a vinyl group which may be substituted is directly bonded.
- the curable resin composition of the present invention is a compound having two or more aromatic rings in which a vinyl group which may be substituted is directly bonded (hereinafter, "specific polymerization”). It is also preferable to include “sex compound”).
- an aromatic ring to which a optionally substituted vinyl group is directly bonded means that one carbon atom in the double bond of the optionally substituted vinyl group is directly bonded to the aromatic ring structure.
- the aromatic ring may have a known substituent such as an alkyl group or a halogeno group.
- the aromatic ring may be an aromatic hydrocarbon ring or an aromatic heterocycle, and the aromatic hydrocarbon ring or the aromatic heterocycle may be an aromatic hydrocarbon ring or an aliphatic hydrocarbon ring.
- Aromatic heterocycles or aliphatic heterocycles may be condensed.
- each of these aromatic hydrocarbon rings, aliphatic hydrocarbon rings, aromatic heterocycles or aliphatic heterocycles may have a known substituent such as an alkyl group or a halogeno group.
- the aromatic ring in the aromatic ring in which the vinyl group which may be substituted is directly bonded is preferably an aromatic hydrocarbon ring, and more preferably a benzene ring. That is, the specific polymerizable compound preferably contains a vinyl phenyl group as a group containing an aromatic ring to which the vinyl group is directly bonded.
- the number of aromatic rings to which the vinyl group is directly bonded in the specific polymerizable compound is preferably 2 to 10, more preferably 2 to 6, further preferably 2 to 4, and preferably 2 or 3. Especially preferable.
- the specific polymerizable compound may have an ethylenically unsaturated group other than the vinyl group in the aromatic ring in the aromatic ring to which the vinyl group is directly bonded, but as a preferable aspect of the specific polymerizable compound, Examples thereof include an embodiment having no ethylenically unsaturated group other than the vinyl group.
- the vinyl group in the aromatic ring in the aromatic ring in which the vinyl group in the specific polymerizable compound is directly bonded has radical polymerizable property.
- examples of the substituent in the vinyl group which may be substituted include an alkyl group and the like, and examples thereof include an embodiment in which ⁇ -hydrogen in the vinyl group is substituted with a methyl group and the like.
- the amount (molar amount) of the vinyl group in 1 g of the specific polymerizable compound is preferably 2 to 8 mol / g, and more preferably 3 to 7 mol / g.
- the specific polymerizable compound is preferably a compound represented by the following formula (1-1).
- RA may be the same or different, where R 1 independently represents a hydrogen atom or a methyl group, and m represents an integer of 2 to 6.
- the hydrogen atom in the benzene ring in the formula (1-1) may be substituted with a substituent.
- the substituent is not particularly limited as long as the object of the present invention is achieved, and a known substituent can be used. In addition, an embodiment having no of these substituents is also a preferred embodiment in the present invention.
- the divalent or higher valent aliphatic saturated hydrocarbon group in Z is preferably an aliphatic saturated hydrocarbon group having 1 to 100 carbon atoms, and more preferably an aliphatic saturated hydrocarbon group having 2 to 30 carbon atoms.
- the divalent or higher valent aliphatic saturated hydrocarbon group is preferably a 2- to 20-valent aliphatic saturated hydrocarbon group, and preferably a 2- to 10-valent aliphatic saturated hydrocarbon group is 2 to 6 valent. More preferably, it is a valent aliphatic saturated hydrocarbon group.
- the divalent or higher valent aliphatic saturated hydrocarbon group may have a known substituent as long as the effect of the present invention can be obtained.
- the divalent or higher valent aliphatic unsaturated hydrocarbon group in Z is preferably an aliphatic unsaturated hydrocarbon group having 2 to 100 carbon atoms, and an aliphatic unsaturated hydrocarbon group having 2 to 30 carbon atoms is more preferable. preferable.
- the divalent or higher valent aliphatic unsaturated hydrocarbon group is preferably a 2- to 20-valent aliphatic unsaturated hydrocarbon group, and preferably a 2- to 10-valent aliphatic unsaturated hydrocarbon group. It is more preferably a divalent to hexavalent aliphatic unsaturated hydrocarbon group.
- the divalent or higher valent aliphatic unsaturated hydrocarbon group may have a known substituent as long as the effect of the present invention can be obtained.
- Z is preferably a group containing at least one selected from the group consisting of a divalent or higher valent hydrocarbon ring group and a divalent or higher valent heterocyclic group.
- the divalent or higher valent hydrocarbon ring group in Z a divalent to tetravalent group obtained by removing 2 to 4 hydrogen atoms from the hydrocarbon ring is preferable.
- the number of ring members of the hydrocarbon ring in the divalent or higher valent hydrocarbon ring group in Z is preferably 6 to 20, more preferably 6 to 12, and even more preferably 6.
- an aromatic hydrocarbon ring is preferable, and a benzene ring is more preferable.
- the divalent or higher valent heterocyclic group in Z a divalent to tetravalent group obtained by removing 2 to 4 hydrogen atoms from the heterocycle is preferable.
- the complex atom (hetero atom) in the heterocycle is preferably an oxygen atom, a nitrogen atom, a sulfur atom, or a selenium atom. Further, the number of complex atoms contained as ring members in the heterocycle is preferably 1 to 4.
- an aromatic heterocycle is preferable, an aromatic heterocycle having 5 to 20 ring members is preferable, and an aromatic heterocycle having 5 to 20 members is more preferable.
- the heterocycle may be a fused ring of a plurality of heterocycles, or may be a fused ring of a heterocycle and an aromatic hydrocarbon ring.
- the number of ring members of the monocyclic heterocycle contained in the condensed ring is preferably 5 to 6.
- Z is a heterocyclic ring in a heterocyclic group having a valence of 2 or more, such as a pyrazole ring, a pyrazole ring, an imidazole ring, a triazole ring, a tetrazole ring, and an iso.
- Oxazole ring, oxazole ring, oxadiazole ring, isothiazole ring, thiazole ring, thiazazole ring, thiatriazole ring, indole ring, indazole ring, benzoimidazole ring, benzotriazole ring, benzoxazole ring, benzothiazole ring, benzoselazole ring Includes at least one heterocycle selected from the group consisting of a ring, a benzothiazole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, a triazine ring, a quinoline ring, a quinoxaline ring, a furan ring, and a thiophene ring.
- Pyrazole ring imidazole ring, triazole ring, isoxazole ring, oxazole ring, oxaziazole ring, isothiazole ring, thiazole ring, thiazizole ring, thiatriazole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, It is more preferable to contain at least one heterocycle selected from the group consisting of a triazine ring, a quinoline ring, a quinoxaline ring, a furan ring, and a thiophene ring.
- Z is preferably a group represented by the following formula (Z-1) or formula (Z-2).
- A1 and A2 independently represent a hydrocarbon ring group or a heterocyclic group
- L Z1 to L Z5 independently represent an alkylene group and an alkenylene group, respectively.
- A1 and A2 are preferably aromatic hydrocarbon ring groups or aromatic heterocyclic groups, respectively.
- aromatic hydrocarbon ring in the above aromatic hydrocarbon ring group a benzene ring is preferable.
- Examples of the aromatic heterocycle in the above aromatic heterocyclic group include a pyrazole ring, a pyrazole ring, an imidazole ring, a triazole ring, a tetrazole ring, an isooxazole ring, an oxazole ring, an oxaziazole ring, an isothiazole ring, a thiazole ring, and a thiazazole ring.
- L Z1 to L Z5 are independently alkylene groups, divalent aromatic hydrocarbon ring groups, -O-, -S-, and -N (R).
- a divalent linking group selected from the group consisting of two or more bonded groups thereof is preferable, and an alkylene group, a divalent aromatic hydrocarbon ring group, —O—, —S—, and —N It is more preferable that ( RA )-is a divalent linking group in which two or more are bonded.
- R A in formula (Z-1) or formula (Z-2) has the same meaning as R A in the above formula (1-1), preferable embodiments thereof are also the same.
- the divalent aromatic hydrocarbon ring group a phenyl group is preferable.
- the divalent aromatic heterocyclic group include a pyrazole ring, a pyrazole ring, an imidazole ring, a triazole ring, a tetrazole ring, an isoxazole ring, an oxazole ring, an oxaziazole ring, an isothiazole ring, a thiazole ring, a thiazazole ring, and a thia.
- Triazole ring indole ring, indazole ring, benzoimidazole ring, benzotriazole ring, benzoxazole ring, benzothiazole ring, benzoselenazole ring, benzothiazole ring, pyridine ring, pyridazine ring, pyrimidine ring, pyrazine ring, triazine ring, quinoline
- a divalent aromatic heterocyclic group obtained by removing two hydrogen atoms from a ring, a quinoxalin ring, a furan ring, or a thiophene ring is preferable, and a pyrazole ring, an imidazole ring, a triazole ring, an isoxazole ring, an oxazole ring, and an oxadiazole ring are preferable.
- RA represents a hydrogen atom, an alkyl group or an aryl group, and a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a phenyl group is preferable, and a hydrogen atom is more preferable.
- R 1 represents a hydrogen atom or a methyl group, and a hydrogen atom is more preferable.
- m represents an integer of 2 to 6, preferably an integer of 2 to 4, and more preferably 2 or 3.
- the ratio of the sp 3 carbon relative to the total number of atoms excluding hydrogen atoms in Z is 0.2 to 0.4.
- the ratio of sp 3 carbons to the total number of atoms excluding hydrogen atoms in Z is a value calculated by "the number of sp 3 carbon atoms contained in Z / the total number of atoms excluding hydrogen atoms in Z". ..
- the molecular weight of the specific polymerizable compound may be determined in consideration of, for example, cyclization temperature, volatility, etc., but is preferably 200 or more, more preferably 250 or more, and more preferably 300 or more. It is preferably 400 or more, and more preferably 400 or more. The upper limit is not particularly limited, but is preferably 2,000 or less.
- Examples of the specific polymerizable compound include, but are not limited to, the following compounds.
- the specific polymerizable compound is synthesized, for example, by the following method.
- compounds such as (B-1) to (B-5), (B-8) or (B-12) are known thioetherification reactions such as reacting a polyvalent mercapto compound with halogenomethylstyrene.
- Compounds such as (B-6), (B-7), (B-9) or (B-11) are known ethers such as reacting a polyhydric alcohol compound with halogenomethylstyrene or halogenated styrene.
- the compound (B-10) or the like can be obtained by a known esterification reaction such as reacting a polyhydric alcohol compound with a vinyl benzoic acid halide.
- the content of the specific polymerizable compound is from the viewpoint of improving the storage stability of the curable resin composition and the elongation at break of the obtained cured film. Is preferably 0.005 to 50% by mass with respect to the total solid content of the curable resin composition.
- the lower limit is more preferably 0.05% by mass or more, further preferably 0.5% by mass or more, particularly preferably 1% by mass or more, and most preferably 3% by mass or more.
- the upper limit of the content is more preferably 40% by mass or less, further preferably 30% by mass or less, and particularly preferably 20% by mass or less.
- the curable resin composition of the present invention may contain only one type of the specific polymerizable compound, or may contain two or more types. When two or more types are included, the total amount is preferably in the above range.
- a compound having two or more ethylenically unsaturated groups in the molecule is a compound having two or more ethylenically unsaturated groups other than an aromatic ring to which a vinyl group which may be substituted is directly bonded (“other polyfunctional polymerization”). It may also be "sex compound”).
- the other polyfunctional polymerizable compound may have one aromatic ring to which a optionally substituted vinyl group is directly bonded, or may have an aromatic ring to which a optionally substituted vinyl group is directly bonded. It does not have to be.
- a compound having two or more aromatic rings directly bonded to a optionally substituted vinyl group and having two or more ethylenically unsaturated groups other than the aromatic ring directly bonded to a optionally substituted vinyl group corresponds to the above-mentioned specific polymerizable compound, and does not correspond to other polyfunctional polymerizable compounds.
- Examples of the group having an ethylenically unsaturated group in other polyfunctional polymerizable compounds include a vinyl group, an allyl group, a vinylphenyl group, a (meth) acryloyl group, and the like, and among these, a (meth) acryloyl group is preferable. From the viewpoint of reactivity, a (meth) acryloyl group is more preferable.
- the number of groups having an ethylenically unsaturated group in other polyfunctional polymerizable compounds may be one, two or more, but preferably three or more.
- the upper limit is preferably 15 or less, more preferably 10 or less, and even more preferably 8 or less.
- the molecular weight of the other polyfunctional polymerizable compound is preferably 2,000 or less, more preferably 1,500 or less, and even more preferably 900 or less.
- the lower limit of the molecular weight of other polyfunctional polymerizable compounds is preferably 100 or more.
- the other polyfunctional polymerizable compound preferably contains at least one bifunctional or higher functional polyfunctional polymerizable compound, and more preferably contains at least one trifunctional or higher functional polyfunctional polymerizable compound. .. Further, it may be a mixture of a bifunctional polyfunctional polymerizable compound and a trifunctional or higher functional polyfunctional polymerizable compound.
- the bifunctional polyfunctional polymerizable compound refers to the other functional polymerizable compound having two groups having the above-mentioned ethylenically unsaturated group.
- polyfunctional polymerizable compounds include unsaturated carboxylic acids (for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, etc.), esters thereof, and amides.
- esters of unsaturated carboxylic acid and polyhydric alcohol compound are esters of unsaturated carboxylic acid and polyvalent amine compound.
- an addition reaction product of an unsaturated carboxylic acid ester or amide having a nucleophilic substituent such as a hydroxy group, an amino group or a sulfanyl group with a monofunctional or polyfunctional isocyanate or an epoxy, or a monofunctional or polyfunctional group.
- a dehydration condensation reaction product with a functional carboxylic acid is also preferably used.
- an addition reaction product of an unsaturated carboxylic acid ester or amide having a parentionic substituent such as an isocyanate group or an epoxy group with a monofunctional or polyfunctional alcohol, amines or thiols, and a halogeno group.
- Substitution reactions of unsaturated carboxylic acid esters or amides having a releasable substituent such as tosyloxy group and monofunctional or polyfunctional alcohols, amines and thiols are also suitable.
- a compound having a boiling point of 100 ° C. or higher under normal pressure is also preferable.
- examples are polyethylene glycol di (meth) acrylate, trimethyl ethanetri (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol.
- a compound obtained by adding ethylene oxide or propylene oxide to a functional alcohol and then (meth) acrylated, is described in JP-A-48-041708, JP-A-50-006034, and JP-A-51-0371993.
- Urethane (meth) acrylates such as those described in JP-A-48-064183, JP-A-49-043191, and JP-A-52-030490, the polyester acrylates, epoxy resins and (meth) acrylics. Examples thereof include polyfunctional acrylates and methacrylates such as epoxy acrylates which are reaction products with acids, and mixtures thereof. Further, the compounds described in paragraphs 0254 to 0257 of JP-A-2008-292970 are also suitable.
- a polyfunctional (meth) acrylate obtained by reacting a polyfunctional carboxylic acid with a cyclic ether group such as glycidyl (meth) acrylate and a compound having an ethylenically unsaturated bond can also be mentioned.
- the compound described in Japanese Patent Application Laid-Open No. 10-062986 together with specific examples as formulas (1) and (2) after addition of ethylene oxide or propylene oxide to a polyfunctional alcohol is also (meth) acrylated. It can be used as another polyfunctional polymerizable compound.
- JP-A-2015-187211 can also be used as other polyfunctional polymerizable compounds, and their contents are incorporated in the present specification.
- polyfunctional polymerizable compounds include dipentaerythritol triacrylate (commercially available KAYARAD D-330; manufactured by Nippon Kayaku Co., Ltd.) and dipentaerythritol tetraacrylate (commercially available KAYARAD D-320; Japan).
- SR-494 which is a tetrafunctional acrylate having four ethyleneoxy chains manufactured by Sartmer
- Sartmer which is a bifunctional methacrylate having four ethyleneoxy chains.
- Examples of other polyfunctional polymerizable compounds include urethanes as described in Japanese Patent Publication No. 48-041708, Japanese Patent Application Laid-Open No. 51-037193, Japanese Patent Publication No. 02-032293, and Japanese Patent Application Laid-Open No. 02-016765. Acrylates and urethane compounds having an ethylene oxide-based skeleton described in Japanese Patent Publication No. 58-049860, Japanese Patent Publication No. 56-0176554, Japanese Patent Publication No. 62-039417, and Japanese Patent Publication No. 62-039418 are also suitable. is there.
- radically polymerizable compound compounds having an amino structure or a sulfide structure in the molecule described in JP-A-63-277653, JP-A-63-260909, and JP-A-01-105238 are used. It can also be used.
- the other polyfunctional polymerizable compound may be a radical polymerizable compound having an acid group such as a carboxy group or a phosphoric acid group.
- the radically polymerizable compound having an acid group is preferably an ester of an aliphatic polyhydroxy compound and an unsaturated carboxylic acid, and an acid is obtained by reacting an unreacted hydroxy group of the aliphatic polyhydroxy compound with a non-aromatic carboxylic acid anhydride.
- a radically polymerizable compound having a group is more preferable.
- the aliphatic polyhydroxy compound in a radical polymerizable compound in which an unreacted hydroxy group of an aliphatic polyhydroxy compound is reacted with a non-aromatic carboxylic acid anhydride to give an acid group, is pentaerythritol or dipenta. It is a compound that is erythritol.
- examples of commercially available products include M-510 and M-520 as polybasic acid-modified acrylic oligomers manufactured by Toagosei Co., Ltd.
- the preferable acid value of the other polyfunctional polymerizable compound having an acid group is 0.1 to 40 mgKOH / g, and particularly preferably 5 to 30 mgKOH / g.
- the acid value of the other polyfunctional polymerizable compound is within the above range, it is excellent in manufacturing handleability and further excellent in developability. Moreover, the polymerizable property is good.
- the acid value is measured according to the description of JIS K 0070: 1992.
- the content thereof is preferably more than 0% by mass and 60% by mass or less with respect to the total solid content of the curable resin composition of the present invention.
- the lower limit is more preferably 5% by mass or more.
- the upper limit is more preferably 50% by mass or less, and further preferably 30% by mass or less.
- One of the other polyfunctional polymerizable compounds may be used alone, or two or more thereof may be mixed and used. When two or more types are used in combination, the total amount is preferably in the above range.
- the curable resin composition of the present invention may further contain the above-mentioned specific polymerizable compound and other polymerizable compounds other than other polyfunctional polymerizable compounds.
- examples of other polymerizable compounds include monofunctional radical polymerizable compounds; compounds having a hydroxymethyl group, an alkoxymethyl group or an acyloxymethyl group; epoxy compounds; oxetane compounds; benzoxazine compounds.
- the curable resin composition of the present invention may further contain a monofunctional radical polymerizable compound from the viewpoint of suppressing warpage associated with controlling the elastic modulus of the cured film.
- a monofunctional radical polymerizable compound examples include n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, butoxyethyl (meth) acrylate, carbitol (meth) acrylate, and cyclohexyl (meth).
- Acrylate derivatives N-vinyl compounds such as N-vinylpyrrolidone and N-vinylcaprolactam, and allyl compounds such as allylglycidyl ether, diallyl phthalate, and triallyl trimellitate are preferably used.
- the monofunctional radical polymerizable compound a compound having a boiling point of 100 ° C. or higher under normal pressure is also preferable in order to suppress volatilization before exposure.
- R 104 represents an organic group having a t-valence of 1 to 200 carbon atoms
- R 105 is a group represented by -OR 106 or -OCO-R 107.
- R 106 indicates a hydrogen atom or an organic group having 1 to 10 carbon atoms
- R 107 indicates an organic group having 1 to 10 carbon atoms.
- R 404 represents a divalent organic group having 1 to 200 carbon atoms
- R 405 represents a group represented by -OR 406 or -OCO-R 407
- R 406 is a hydrogen atom or carbon.
- R 407 indicates an organic group having 1 to 10 carbon atoms.
- U in the formula represents an integer of 3 to 8
- R 504 represents a u-valent organic group having 1 to 200 carbon atoms
- R 505 represents a group represented by -OR 506 or -OCO-R 507.
- R 506 represents a hydrogen atom or an organic group having 1 to 10 carbon atoms
- R 507 represents an organic group having 1 to 10 carbon atoms.
- Specific examples of the compound represented by the formula (AM4) include 46DMOC, 46DMOEP (trade name, manufactured by Asahi Organic Materials Industry Co., Ltd.), DML-MBPC, DML-MBOC, DML-OCHP, DML-PCHP, DML.
- Specific examples of the compound represented by the formula (AM5) include TriML-P, TriML-35XL, TML-HQ, TML-BP, TML-pp-BPF, TML-BPA, TMOM-BP, HML-TPPHBA, and the like.
- HML-TPHAP, HMOM-TPPHBA, HMOM-TPHAP (trade name, manufactured by Honshu Chemical Industry Co., Ltd.), TM-BIP-A (trade name, manufactured by Asahi Organic Materials Industry Co., Ltd.), NIKALAC MX-280, Examples thereof include NIKALAC MX-270 and NIKALAC MW-100LM (above, trade name, manufactured by Sanwa Chemical Co., Ltd.).
- Epoxy compound (compound having an epoxy group)
- the epoxy compound is preferably a compound having two or more epoxy groups in one molecule.
- the epoxy group undergoes a cross-linking reaction at 200 ° C. or lower, and the dehydration reaction derived from the cross-linking does not occur, so that film shrinkage is unlikely to occur. Therefore, the inclusion of the epoxy compound is effective in suppressing low-temperature curing and warpage of the curable resin composition.
- the epoxy compound preferably contains a polyethylene oxide group.
- the polyethylene oxide group means that the number of repeating units of ethylene oxide is 2 or more, and the number of repeating units is preferably 2 to 15.
- epoxy compounds include bisphenol A type epoxy resin; bisphenol F type epoxy resin; alkylene glycol type epoxy resin such as propylene glycol diglycidyl ether; polyalkylene glycol type epoxy resin such as polypropylene glycol diglycidyl ether; polymethyl (glycidi).
- epoxy groups include, but are not limited to, epoxy group-containing silicones such as loxypropyl) siloxane.
- an epoxy resin containing a polyethylene oxide group is preferable because it is excellent in suppressing warpage and heat resistance.
- an epoxy resin containing a polyethylene oxide group is preferable because it is excellent in suppressing warpage and heat resistance.
- Epicron® EXA-4880, Epicron® EXA-4822, and Ricaresin® BEO-60E are preferred because they contain polyethylene oxide groups.
- oxetane compound compound having an oxetanyl group
- examples of the oxetane compound include compounds having two or more oxetane rings in one molecule, 3-ethyl-3-hydroxymethyloxetane, 1,4-bis ⁇ [(3-ethyl-3-oxetanyl) methoxy] methyl ⁇ benzene, and the like.
- examples thereof include 3-ethyl-3- (2-ethylhexylmethyl) oxetane, 1,4-benzenedicarboxylic acid-bis [(3-ethyl-3-oxetanyl) methyl] ester and the like.
- the Aron Oxetane series manufactured by Toagosei Co., Ltd. (for example, OXT-121, OXT-221, OXT-191, OXT-223) can be preferably used, and these can be used alone. Alternatively, two or more types may be mixed.
- Benzoxazine compound (compound having a benzoxazolyl group) Since the benzoxazine compound is a cross-linking reaction derived from the ring-opening addition reaction, degassing does not occur during curing, and heat shrinkage is further reduced to suppress the occurrence of warpage, which is preferable.
- benzoxazine compound Preferred examples of the benzoxazine compound are BA type benzoxazine, Bm type benzoxazine (above, trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd.), benzoxazine adduct of polyhydroxystyrene resin, phenol novolac type dihydrobenzo.
- Oxazine compounds can be mentioned. These may be used alone or in combination of two or more.
- the content thereof is preferably more than 0% by mass and 60% by mass or less with respect to the total solid content of the curable resin composition of the present invention.
- the lower limit is more preferably 5% by mass or more.
- the upper limit is more preferably 50% by mass or less, and further preferably 30% by mass or less.
- the curable resin composition of the present invention may be in an embodiment that does not substantially contain other polymerizable compounds.
- the content of the other polymerizable compound is preferably 0 to 5% by mass, preferably 0 to 1% by mass, based on the total solid content of the curable resin composition of the present invention. It is more preferably%, and further preferably 0 to 0.1% by mass.
- the said content may be 0 mass%.
- One type of other polymerizable compound may be used alone, or two or more types may be mixed and used. When two or more types are used in combination, the total amount is preferably in the above range.
- the curable resin composition of the present invention preferably contains an onium salt.
- the type of onium salt and the like are not particularly specified, but ammonium salt, iminium salt, sulfonium salt, iodonium salt and phosphonium salt are preferably mentioned.
- an ammonium salt or an iminium salt is preferable from the viewpoint of high thermal stability, and a sulfonium salt, an iodonium salt or a phosphonium salt is preferable from the viewpoint of compatibility with a polymer.
- the onium salt is a salt of a cation and an anion having an onium structure, and the cation and anion may or may not be bonded via a covalent bond. .. That is, the onium salt may be an intramolecular salt having a cation portion and an anion portion in the same molecular structure, or a cation molecule and an anion molecule, which are different molecules, are ionically bonded. It may be an intermolecular salt, but it is preferably an intermolecular salt. Further, in the curable resin composition of the present invention, the cation portion or the cation molecule and the anion portion or the anion molecule may be bonded or dissociated by an ionic bond.
- an ammonium cation, a pyridinium cation, a sulfonium cation, an iodonium cation or a phosphonium cation is preferable, and at least one cation selected from the group consisting of a tetraalkylammonium cation, a sulfonium cation and an iodonium cation is more preferable.
- the onium salt used in the present invention may be a thermobase generator described later.
- the thermal base generator refers to a compound that generates a base by heating, and examples thereof include a compound that generates a base when heated to 40 ° C. or higher.
- ammonium salt means a salt of an ammonium cation and an anion.
- R 1 to R 4 independently represent a hydrogen atom or a hydrocarbon group, and at least two of R 1 to R 4 may be bonded to each other to form a ring.
- R 1 to R 4 are each independently preferably a hydrocarbon group, more preferably an alkyl group or an aryl group, and an alkyl group having 1 to 10 carbon atoms or 6 to 6 carbon atoms. It is more preferably 12 aryl groups.
- R 1 to R 4 may have a substituent, and examples of the substituent include a hydroxy group, an aryl group, an alkoxy group, an aryloxy group, an arylcarbonyl group, an alkylcarbonyl group, an alkoxycarbonyl group, and an aryloxy. Examples thereof include a carbonyl group and an acyloxy group.
- the ring may contain a hetero atom. Examples of the hetero atom include a nitrogen atom.
- the ammonium cation is preferably represented by any of the following formulas (Y1-1) and (Y1-2).
- R 101 represents an n-valent organic group
- R 1 has the same meaning as R 1 in the formula (101)
- Ar 101 and Ar 102 are each independently , Represents an aryl group
- n represents an integer of 1 or more.
- R 101 is preferably an aliphatic hydrocarbon, an aromatic hydrocarbon, or a group obtained by removing n hydrogen atoms from a structure in which these are bonded, and has 2 to 30 carbon atoms. More preferably, it is a group obtained by removing n hydrogen atoms from the saturated aliphatic hydrocarbon, benzene or naphthalene.
- n is preferably 1 to 4, more preferably 1 or 2, and even more preferably 1.
- Ar 101 and Ar 102 are preferably phenyl groups or naphthyl groups, respectively, and more preferably phenyl groups.
- the anion in the ammonium salt one selected from a carboxylic acid anion, a phenol anion, a phosphoric acid anion and a sulfate anion is preferable, and a carboxylic acid anion is more preferable because both salt stability and thermal decomposability can be achieved.
- the ammonium salt is more preferably a salt of an ammonium cation and a carboxylic acid anion.
- the carboxylic acid anion is preferably a divalent or higher carboxylic acid anion having two or more carboxy groups, and more preferably a divalent carboxylic acid anion.
- the stability, curability and developability of the curable resin composition can be further improved.
- the stability, curability and developability of the curable resin composition can be further improved.
- the carboxylic acid anion is preferably represented by the following formula (X1).
- EWG represents an electron-attracting group.
- the electron-attracting group means that the substituent constant ⁇ m of Hammett shows a positive value.
- ⁇ m is a review article by Yusuke Tono, Journal of Synthetic Organic Chemistry, Vol. 23, No. 8 (1965), p. It is described in detail in 631-642.
- the EWG is preferably a group represented by the following formulas (EWG-1) to (EWG-6).
- R x1 to R x3 independently represent a hydrogen atom, an alkyl group, an alkenyl group, an aryl group, a hydroxy group or a carboxy group, and Ar is an aromatic group. Represents.
- the carboxylic acid anion is preferably represented by the following formula (XA).
- L 10 represents a single bond or an alkylene group, an alkenylene group, an aromatic group, -NR X - represents and divalent connecting group selected from the group consisting a combination thereof, R X is , Hydrogen atom, alkyl group, alkenyl group or aryl group.
- carboxylic acid anion examples include maleic acid anion, phthalate anion, N-phenyliminodiacetic acid anion and oxalate anion.
- the onium salt in the present invention contains an ammonium cation as a cation, and the onium salt is an anion. It is preferable to contain an anion having a pKa (pKaH) of 2.5 or less, and more preferably to contain an anion having a pKa (pKaH) of 1.8 or less.
- the lower limit of pKa is not particularly limited, but it is preferably -3 or more, preferably -2 or more, from the viewpoint that the generated base is not easily neutralized and the cyclization efficiency of the specific precursor or the like is improved. Is more preferable.
- the above pKa includes Determination of Organic Structures by Physical Methods (authors: Brown, HC, McDaniel, D.H., Hafliger, O., Nachod, F. See Nachod, FC; Academic Press, New York, 1955) and Data for Biochemical Research (Author: Dawson, RMC et al; Oxford, Clarendon Press, 19). Can be done. For compounds not described in these documents, the values calculated from the structural formulas using software of ACD / pKa (manufactured by ACD / Labs) shall be used.
- ammonium salt examples include the following compounds, but the present invention is not limited thereto.
- the iminium salt means a salt of an iminium cation and an anion.
- the anion the same as the anion in the above-mentioned ammonium salt is exemplified, and the preferred embodiment is also the same.
- a pyridinium cation is preferable.
- a cation represented by the following formula (102) is also preferable.
- R 5 and R 6 each independently represent a hydrogen atom or a hydrocarbon group
- R 7 represents a hydrocarbon group
- at least two of R 5 to R 7 are bonded to each other to form a ring. It may be formed.
- R 5 and R 6 have the same meaning as R1 to R4 in the above formula (101), and the preferred embodiment is also the same.
- R 7 preferably combines with at least one of R 5 and R 6 to form a ring.
- the ring may contain a heteroatom. Examples of the hetero atom include a nitrogen atom. Further, as the ring, a pyridine ring is preferable.
- the iminium cation is preferably represented by any of the following formulas (Y1-3) to (Y1-5).
- R 101 represents an n-valent organic group
- R 5 has the same meaning as R 5 in the formula (102)
- R 7 is R in the formula (102) Synonymous with 7
- n and m represent integers of 1 or more.
- R 101 is preferably an aliphatic hydrocarbon, an aromatic hydrocarbon, or a group obtained by removing n hydrogen atoms from a structure in which these are bonded, and has 2 to 30 carbon atoms.
- n is preferably 1 to 4, more preferably 1 or 2, and even more preferably 1.
- m is preferably 0 to 4, more preferably 1 or 2, and even more preferably 1.
- iminium salt examples include the following compounds, but the present invention is not limited thereto.
- the sulfonium salt means a salt of a sulfonium cation and an anion.
- the anion the same as the anion in the above-mentioned ammonium salt is exemplified, and the preferred embodiment is also the same.
- sulfonium cation a tertiary sulfonium cation is preferable, and a triarylsulfonium cation is more preferable. Further, as the sulfonium cation, a cation represented by the following formula (103) is preferable.
- R 8 to R 10 each independently represent a hydrocarbon group.
- Each of R 8 to R 10 is preferably an alkyl group or an aryl group independently, more preferably an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, and 6 to 12 carbon atoms. It is more preferably an aryl group, and even more preferably a phenyl group.
- R 8 to R 10 may have a substituent, and examples of the substituent include a hydroxy group, an aryl group, an alkoxy group, an aryloxy group, an arylcarbonyl group, an alkylcarbonyl group, an alkoxycarbonyl group, and an aryloxy group.
- Examples thereof include a carbonyl group and an acyloxy group.
- an alkyl group or an alkoxy group as the substituent, more preferably to have a branched alkyl group or an alkoxy group, and a branched alkyl group having 3 to 10 carbon atoms or a branched alkyl group having 1 to 10 carbon atoms. It is more preferable to have 10 alkoxy groups.
- R 8 to R 10 may be the same group or different groups, but from the viewpoint of synthetic suitability, they are preferably the same group.
- sulfonium salt examples include the following compounds, but the present invention is not limited thereto.
- the iodonium salt means a salt of an iodonium cation and an anion.
- the anion the same as the anion in the above-mentioned ammonium salt is exemplified, and the preferred embodiment is also the same.
- iodonium cation a diallyl iodonium cation is preferable. Further, as the iodonium cation, a cation represented by the following formula (104) is preferable.
- R 11 and R 12 each independently represent a hydrocarbon group.
- R 11 and R 12 are each independently preferably an alkyl group or an aryl group, more preferably an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, and 6 to 12 carbon atoms. It is more preferably an aryl group, and even more preferably a phenyl group.
- R 11 and R 12 may have a substituent, and examples of the substituent include a hydroxy group, an aryl group, an alkoxy group, an aryloxy group, an arylcarbonyl group, an alkylcarbonyl group, an alkoxycarbonyl group, and an aryloxy.
- Examples thereof include a carbonyl group and an acyloxy group.
- R 11 and R 12 may be the same group or different groups, but from the viewpoint of synthetic suitability, they are preferably the same group.
- iodonium salt examples include the following compounds, but the present invention is not limited thereto.
- the phosphonium salt means a salt of a phosphonium cation and an anion.
- the anion the same as the anion in the above-mentioned ammonium salt is exemplified, and the preferred embodiment is also the same.
- a quaternary phosphonium cation is preferable, and examples thereof include a tetraalkylphosphonium cation and a triarylmonoalkylphosphonium cation. Further, as the phosphonium cation, a cation represented by the following formula (105) is preferable.
- R 13 to R 16 independently represent a hydrogen atom or a hydrocarbon group.
- Each of R 13 to R 16 is preferably an alkyl group or an aryl group independently, more preferably an alkyl group having 1 to 10 carbon atoms or an aryl group having 6 to 12 carbon atoms, and 6 to 12 carbon atoms. It is more preferably an aryl group, and even more preferably a phenyl group.
- R 13 to R 16 may have a substituent, and examples of the substituent include a hydroxy group, an aryl group, an alkoxy group, an aryloxy group, an arylcarbonyl group, an alkylcarbonyl group, an alkoxycarbonyl group, and an aryloxy group.
- Examples thereof include a carbonyl group and an acyloxy group.
- R 13 to R 16 may be the same group or different groups, but from the viewpoint of synthetic suitability, they are preferably the same group.
- phosphonium salt examples include the following compounds, but the present invention is not limited thereto.
- the content of the onium salt is preferably 0.1 to 50% by mass based on the total solid content of the curable resin composition of the present invention.
- the lower limit is more preferably 0.5% by mass or more, further preferably 0.85% by mass or more, and even more preferably 1% by mass or more.
- the upper limit is more preferably 30% by mass or less, further preferably 20% by mass or less, further preferably 10% by mass or less, 5% by mass or less, or 4% by mass or less.
- the onium salt one kind or two or more kinds can be used. When two or more types are used, the total amount is preferably in the above range.
- the curable resin composition of the present invention may contain a thermosetting agent.
- the thermobase generator may be a compound corresponding to the above-mentioned onium salt, or may be a thermobase generator other than the above-mentioned onium salt.
- examples of other thermobase generators include nonionic thermobase generators.
- Examples of the nonionic thermobase generator include compounds represented by the formula (B1) or the formula (B2).
- Rb 1 , Rb 2 and Rb 3 are independently organic groups, halogen atoms or hydrogen atoms having no tertiary amine structure. However, Rb 1 and Rb 2 do not become hydrogen atoms at the same time. Further, none of Rb 1 , Rb 2 and Rb 3 has a carboxy group.
- the tertiary amine structure refers to a structure in which all three bonds of a trivalent nitrogen atom are covalently bonded to a hydrocarbon-based carbon atom. Therefore, this does not apply when the bonded carbon atom is a carbon atom forming a carbonyl group, that is, when an amide group is formed together with a nitrogen atom.
- Rb 1 , Rb 2 and Rb 3 contains a cyclic structure, and it is more preferable that at least two of them contain a cyclic structure.
- the cyclic structure may be either a monocyclic ring or a condensed ring, and a monocyclic ring or a condensed ring in which two monocyclic rings are condensed is preferable.
- the single ring is preferably a 5-membered ring or a 6-membered ring, and preferably a 6-membered ring.
- a cyclohexane ring and a benzene ring are preferable, and a cyclohexane ring is more preferable.
- Rb 1 and Rb 2 are hydrogen atoms, alkyl groups (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, further preferably 3 to 12 carbon atoms), and alkenyl groups (preferably 2 to 24 carbon atoms). , 2-18 is more preferred, 3-12 is more preferred), aryl groups (6-22 carbons are preferred, 6-18 are more preferred, 6-10 are more preferred), or arylalkyl groups (7 carbons). ⁇ 25 is preferable, 7 to 19 is more preferable, and 7 to 12 is even more preferable). These groups may have substituents as long as the effects of the present invention are exhibited. Rb 1 and Rb 2 may be bonded to each other to form a ring.
- Rb 1 and Rb 2 are particularly linear, branched, or cyclic alkyl groups that may have substituents (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, still more preferably 3 to 12). It is more preferably a cycloalkyl group which may have a substituent (preferably 3 to 24 carbon atoms, more preferably 3 to 18 carbon atoms, still more preferably 3 to 12 carbon atoms) and having a substituent.
- a cyclohexyl group which may be used is more preferable.
- an alkyl group (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, further preferably 3 to 12 carbon atoms) and an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, 6 to 6).
- ⁇ 10 is more preferable
- alkenyl group (2 to 24 carbon atoms are preferable, 2 to 12 is more preferable, 2 to 6 is more preferable)
- arylalkyl group (7 to 23 carbon atoms is preferable, 7 to 19 is more preferable).
- an arylalkenyl group (8 to 24 carbon atoms is preferable, 8 to 20 is more preferable, 8 to 16 is more preferable), and an alkoxyl group (1 to 24 carbon atoms is preferable, 2 to 2 to 24).
- 18 is more preferable, 3 to 12 is more preferable), an aryloxy group (6 to 22 carbon atoms is preferable, 6 to 18 is more preferable, 6 to 12 is more preferable), or an arylalkyloxy group (7 to 12 carbon atoms is more preferable).
- 23 is preferable, 7 to 19 is more preferable, and 7 to 12 is even more preferable).
- a cycloalkyl group (preferably having 3 to 24 carbon atoms, more preferably 3 to 18 carbon atoms, still more preferably 3 to 12 carbon atoms), an arylalkenyl group, and an arylalkyloxy group are preferable.
- Rb 3 may further have a substituent as long as the effects of the present invention are exhibited.
- the compound represented by the formula (B1) is preferably a compound represented by the following formula (B1-1) or the following formula (B1-2).
- Rb 11 and Rb 12 , and Rb 31 and Rb 32 are the same as Rb 1 and Rb 2 in the formula (B1), respectively.
- Rb 13 has an alkyl group (preferably 1 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, further preferably 3 to 12 carbon atoms) and an alkenyl group (preferably 2 to 24 carbon atoms, more preferably 2 to 18 carbon atoms, 3 to 12 carbon atoms). Is more preferable), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, further preferably 6 to 12 carbon atoms), an arylalkyl group (preferably 7 to 23 carbon atoms, more preferably 7 to 19 carbon atoms). 7 to 12 is more preferable), and a substituent may be provided as long as the effects of the present invention are exhibited. Of these, Rb 13 is preferably an arylalkyl group.
- Rb 33 and Rb 34 independently have a hydrogen atom, an alkyl group (preferably 1 to 12 carbon atoms, more preferably 1 to 8 carbon atoms, further preferably 1 to 3 carbon atoms), and an alkenyl group (preferably 2 to 12 carbon atoms). , 2 to 8 are more preferable, 2 to 3 are more preferable), aryl groups (6 to 22 carbon atoms are preferable, 6 to 18 are more preferable, 6 to 10 are more preferable), arylalkyl groups (7 to 7 to carbon atoms are more preferable). 23 is preferable, 7 to 19 is more preferable, and 7 to 11 is further preferable), and a hydrogen atom is preferable.
- Rb 35 is an alkyl group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 3 to 8 carbon atoms), an alkenyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, 3 to 10 carbon atoms). 8 is more preferable), aryl group (6 to 22 carbon atoms is preferable, 6 to 18 is more preferable, 6 to 12 is more preferable), arylalkyl group (7 to 23 carbon atoms is preferable, 7 to 19 is more preferable). , 7-12 is more preferable), and an aryl group is preferable.
- the compound represented by the formula (B1-1) is also preferable.
- Rb 11 and Rb 12 have the same meanings as Rb 11 and Rb 12 in the formula (B1-1).
- Rb 15 and Rb 16 are hydrogen atoms, alkyl groups (preferably 1 to 12 carbon atoms, more preferably 1 to 6 carbon atoms, further preferably 1 to 3 carbon atoms), alkenyl groups (preferably 2 to 12 carbon atoms, 2 to 6 carbon atoms). More preferably, 2 to 3 are more preferable), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, further preferably 6 to 10 carbon atoms), and an arylalkyl group (preferably 7 to 23 carbon atoms, 7).
- Rb 17 has an alkyl group (preferably 1 to 24 carbon atoms, more preferably 1 to 12 carbon atoms, further preferably 3 to 8 carbon atoms) and an alkenyl group (preferably 2 to 12 carbon atoms, more preferably 2 to 10 carbon atoms, 3 to 8 carbon atoms). Is more preferable), an aryl group (preferably 6 to 22 carbon atoms, more preferably 6 to 18 carbon atoms, further preferably 6 to 12 carbon atoms), and an arylalkyl group (preferably 7 to 23 carbon atoms, more preferably 7 to 19 carbon atoms). 7 to 12 is more preferable), and an aryl group is particularly preferable.
- the molecular weight of the nonionic thermobase generator is preferably 800 or less, more preferably 600 or less, and even more preferably 500 or less.
- the lower limit is preferably 100 or more, more preferably 200 or more, and even more preferably 300 or more.
- the following compounds can be mentioned as specific examples of the compound which is a thermal base generator or other specific examples of the thermal base generator.
- the content of the thermosetting agent is preferably 0.1 to 50% by mass with respect to the total solid content of the curable resin composition of the present invention.
- the lower limit is more preferably 0.5% by mass or more, and further preferably 1% by mass or more.
- the upper limit is more preferably 30% by mass or less, further preferably 20% by mass or less.
- the thermobase generator one kind or two or more kinds can be used. When two or more types are used, the total amount is preferably in the above range.
- the curable resin composition of the present invention preferably contains a photopolymerization initiator.
- the photopolymerization initiator may be a photocationic polymerization initiator, but is preferably a photoradical polymerization initiator.
- the photoradical polymerization initiator is not particularly limited and may be appropriately selected from known photoradical polymerization initiators. For example, a photoradical polymerization initiator having curability with respect to light in the ultraviolet region to the visible region is preferable. Further, it may be an activator that produces an active radical by causing some action with the photoexcited sensitizer.
- the photoradical polymerization initiator contains at least one compound having a molar extinction coefficient of at least about 50 L ⁇ mol -1 ⁇ cm -1 within the range of about 300 to 800 nm (preferably 330 to 500 nm). Is preferable.
- the molar extinction coefficient of a compound can be measured using a known method. For example, it is preferable to measure at a concentration of 0.01 g / L using an ethyl acetate solvent with an ultraviolet-visible spectrophotometer (Cary-5 spectrophotometer manufactured by Varian).
- a known compound can be arbitrarily used.
- halogenated hydrocarbon derivatives for example, compounds having a triazine skeleton, compounds having an oxadiazole skeleton, compounds having a trihalomethyl group, etc.
- acylphosphine compounds such as acylphosphine oxide, hexaarylbiimidazole, oxime derivatives and the like.
- Oxime compounds, organic peroxides, thio compounds, ketone compounds, aromatic onium salts, ketooxime ethers, aminoacetophenone compounds, hydroxyacetophenones, azo compounds, azide compounds, metallocene compounds, organic boron compounds, iron arene complexes, etc. Can be mentioned.
- paragraphs 0165 to 0182 of JP2016-027357 and paragraphs 0138 to 0151 of International Publication No. 2015/199219 can be referred to, and the contents thereof are incorporated in the present specification.
- ketone compound for example, the compound described in paragraph 0087 of JP2015-087611A is exemplified, and the content thereof is incorporated in the present specification.
- KayaCure DETX manufactured by Nippon Kayaku Co., Ltd.
- Nippon Kayaku Co., Ltd. is also preferably used.
- a hydroxyacetophenone compound, an aminoacetophenone compound, and an acylphosphine compound can also be preferably used. More specifically, for example, the aminoacetophenone-based initiator described in JP-A-10-291969 and the acylphosphine oxide-based initiator described in Japanese Patent No. 4225898 can also be used.
- IRGACURE 184 (IRGACURE is a registered trademark)
- DAROCUR 1173 As the hydroxyacetophenone-based initiator, IRGACURE 184 (IRGACURE is a registered trademark), DAROCUR 1173, IRGACURE 500, IRGACURE-2959, and IRGACURE 127 (trade names: all manufactured by BASF) can be used.
- aminoacetophenone-based initiator commercially available products IRGACURE 907, IRGACURE 369, and IRGACURE 379 (trade names: all manufactured by BASF) can be used.
- the compound described in JP-A-2009-191179 in which the absorption maximum wavelength is matched with a wavelength light source such as 365 nm or 405 nm, can also be used.
- acylphosphine-based initiator examples include 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide. Further, commercially available products such as IRGACURE-819 and IRGACURE-TPO (trade names: both manufactured by BASF) can be used.
- metallocene compound examples include IRGACURE-784 (manufactured by BASF).
- An oxime compound is more preferable as the photoradical polymerization initiator.
- the exposure latitude can be improved more effectively.
- the oxime compound is particularly preferable because it has a wide exposure latitude (exposure margin) and also acts as a photocuring accelerator.
- the compound described in JP-A-2001-233842 the compound described in JP-A-2000-080068, and the compound described in JP-A-2006-342166 can be used.
- Preferred oxime compounds include, for example, compounds having the following structures, 3-benzoyloxyiminobutane-2-one, 3-acetoxyiminobutane-2-one, 3-propionyloxyiminobutane-2-one, 2-acetoxy. Iminopentane-3-one, 2-acetoxyimino-1-phenylpropan-1-one, 2-benzoyloxyimino-1-phenylpropane-1-one, 3- (4-toluenesulfonyloxy) iminobutane-2-one , And 2-ethoxycarbonyloxyimino-1-phenylpropan-1-one and the like.
- an oxime compound (oxime-based photopolymerization initiator) as the photoradical polymerization initiator.
- IRGACURE OXE 01 IRGACURE OXE 02, IRGACURE OXE 03, IRGACURE OXE 04 (above, manufactured by BASF), ADEKA PUTMER N-1919 (manufactured by ADEKA Corporation, Japanese Patent Application Laid-Open No. 2012-014052).
- a radical polymerization initiator 2) is also preferably used.
- TR-PBG-304 manufactured by Changzhou Powerful Electronics New Materials Co., Ltd.
- Adeka Arkuru's NCI-831 and Adeka Arkuru's NCI-930 can also be used.
- DFI-091 manufactured by Daito Chemix Corp.
- an oxime compound having a fluorine atom examples include compounds described in JP-A-2010-262028, compounds 24, 36-40 described in paragraph 0345 of JP-A-2014-500852, and JP-A-2013. Examples thereof include the compound (C-3) described in paragraph 0101 of JP-A-164471.
- Examples of the most preferable oxime compound include an oxime compound having a specific substituent shown in JP-A-2007-269779 and an oxime compound having a thioaryl group shown in JP-A-2009-191061.
- the photoradical polymerization initiator includes a trihalomethyltriazine compound, a benzyldimethylketal compound, an ⁇ -hydroxyketone compound, an ⁇ -aminoketone compound, an acylphosphine compound, a phosphine oxide compound, a metallocene compound, an oxime compound, and a triaryl.
- a trihalomethyltriazine compound Selected from the group consisting of imidazole dimer, onium salt compound, benzothiazole compound, benzophenone compound, acetophenone compound and its derivative, cyclopentadiene-benzene-iron complex and its salt, halomethyloxaziazole compound, 3-aryl substituted coumarin compound. Compounds are preferred.
- More preferable photoradical polymerization initiators are trihalomethyltriazine compounds, ⁇ -aminoketone compounds, acylphosphine compounds, phosphine oxide compounds, metallocene compounds, oxime compounds, triarylimidazole dimers, onium salt compounds, benzophenone compounds and acetophenone compounds.
- At least one compound selected from the group consisting of trihalomethyltriazine compounds, ⁇ -aminoketone compounds, oxime compounds, triarylimidazole dimers, and benzophenone compounds is more preferable, and metallocene compounds or oxime compounds are even more preferable, and oxime compounds are even more preferable. Is even more preferable.
- the photoradical polymerization initiator is N, N'-tetraalkyl-4,4'-diaminobenzophenone, 2-benzyl such as benzophenone, N, N'-tetramethyl-4,4'-diaminobenzophenone (Michler ketone).
- Aromatic ketones such as -2-dimethylamino-1- (4-morpholinophenyl) -butanone-1,2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propanol-1, alkylanthraquinone, etc.
- benzoin ether compounds such as benzoin alkyl ether
- benzoin compounds such as benzoin and alkyl benzoin
- benzyl derivatives such as benzyl dimethyl ketal.
- a compound represented by the following formula (I) can also be used.
- R I00 is an alkyl group having 1 to 20 carbon atoms, an alkyl group having 2 to 20 carbon atoms interrupted by one or more oxygen atoms, an alkoxy group having 1 to 12 carbon atoms, a phenyl group, and the like.
- R I01 is a group represented by formula (II), the same as R I00
- the groups, R I02 to R I04, are independently alkyls having 1 to 12 carbon atoms, alkoxy groups having 1 to 12 carbon atoms, or halogens, respectively.
- R I05 to R I07 are the same as R I 02 to R I 04 of the above formula (I).
- the compounds described in paragraphs 0048 to 0055 of International Publication No. 2015/1254669 can also be used.
- the content thereof is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the curable resin composition of the present invention. It is more preferably 0.5 to 15% by mass, and even more preferably 1.0 to 10% by mass. Only one type of photopolymerization initiator may be contained, or two or more types may be contained. When two or more kinds of photopolymerization initiators are contained, the total is preferably in the above range.
- the curable resin composition of the present invention may contain a thermal polymerization initiator as the polymerization initiator, and may particularly contain a thermal radical polymerization initiator.
- a thermal radical polymerization initiator is a compound that generates radicals by heat energy to initiate or accelerate the polymerization reaction of a polymerizable compound.
- thermal radical polymerization initiator examples include compounds described in paragraphs 0074 to 0118 of JP-A-2008-063554.
- the content thereof is preferably 0.1 to 30% by mass, more preferably 0.1 to 20% by mass, based on the total solid content of the curable resin composition of the present invention. %, More preferably 5 to 15% by mass. Only one type of thermal radical polymerization initiator may be contained, or two or more types may be contained. When two or more kinds of thermal radical polymerization initiators are contained, the total is preferably in the above range.
- the curable resin composition of the present invention preferably contains a solvent.
- a solvent a known solvent can be arbitrarily used.
- the solvent is preferably an organic solvent.
- the organic solvent include compounds such as esters, ethers, ketones, aromatic hydrocarbons, sulfoxides, and amides.
- esters include ethyl acetate, -n-butyl acetate, isobutyl acetate, amyl formate, isoamyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, ⁇ -butyrolactone, and ⁇ -caprolactone.
- alkylalkyloxyacetate eg, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (eg, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, ethyl ethoxyacetate, etc.)
- 3-alkyloxypropionate alkyl esters eg, methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc.
- 2-alkyloxypropionate alkyl esters eg, methyl 2-alkyloxypropionate, ethyl 2-alkyloxypropionate, propyl 2-alkyloxypropionate
- Etc. eg, methyl 2-methoxypropionate, ethyl 2-methoxypropionate, propyl 2-methoxypropionate, methyl 2-ethoxypropionate, ethyl 2-ethoxypropionate
- 2-alkyloxy-2-methylpropionate etc.
- Methyl acid and ethyl 2-alkyloxy-2-methylpropionate eg, methyl 2-methoxy-2-methylpropionate, ethyl 2-ethoxy-2-methylpropionate, etc.
- methyl pyruvate, ethyl pyruvate, pyruvin Suitable examples include propyl acid acid, methyl acetoacetate, ethyl acetoacetate, methyl 2-oxobutate, ethyl 2-oxobutate and the like.
- ethers include diethylene glycol dimethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, and propylene glycol.
- Suitable examples include monomethyl ether acetate, propylene glycol monoethyl ether acetate, and propylene glycol monopropyl ether acetate.
- ketones for example, methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone and the like are preferable.
- aromatic hydrocarbons for example, toluene, xylene, anisole, limonene and the like are preferable.
- sulfoxides for example, dimethyl sulfoxide is preferable.
- N-methyl-2-pyrrolidone N-ethyl-2-pyrrolidone
- N, N-dimethylacetamide N, N-dimethylformamide and the like are preferable.
- the solvent is preferably a mixture of two or more types from the viewpoint of improving the properties of the coated surface.
- the mixed solvent to be mixed is preferable.
- the combined use of dimethyl sulfoxide and ⁇ -butyrolactone is particularly preferred.
- the content of the solvent is preferably such that the total solid content concentration of the curable resin composition of the present invention is 5 to 80% by mass, and is preferably 5 to 75% by mass. It is more preferable that the amount is 10 to 70% by mass, and more preferably 40 to 70% by mass.
- the solvent content may be adjusted according to the desired thickness and coating method.
- the solvent may contain only one type or two or more types. When two or more kinds of solvents are contained, the total is preferably in the above range.
- the curable resin composition of the present invention preferably further contains a migration inhibitor.
- a migration inhibitor By including the migration inhibitor, it is possible to effectively suppress the movement of metal ions derived from the metal layer (metal wiring) into the curable resin composition layer.
- the migration inhibitor is not particularly limited, but heterocycles (pyrazole ring, furan ring, thiophene ring, imidazole ring, oxazole ring, thiazole ring, pyrazole ring, isoxazole ring, isothiazole ring, tetrazole ring, pyridine ring, etc.
- triazole-based compounds such as 1,2,4-triazole and benzotriazole
- tetrazole-based compounds such as 1H-tetrazole and 5-phenyltetrazole can be preferably used.
- an ion trap agent that traps anions such as halogen ions can also be used.
- Examples of other migration inhibitors include rust preventives described in paragraph 0094 of JP2013-015701, compounds described in paragraphs 0073 to 0076 of JP2009-283711, and JP2011-059656.
- the compounds described in paragraph 0052, the compounds described in paragraphs 0114, 0116 and 0118 of JP2012-194520A, the compounds described in paragraph 0166 of International Publication No. 2015/199219, and the like can be used.
- the migration inhibitor include the following compounds.
- the content of the migration inhibitor is preferably 0.01 to 5.0% by mass with respect to the total solid content of the curable resin composition, and is 0. It is more preferably 0.05 to 2.0% by mass, and further preferably 0.1 to 1.0% by mass.
- the migration inhibitor may be only one type or two or more types. When there are two or more types of migration inhibitors, the total is preferably in the above range.
- the curable resin composition of the present invention preferably contains a polymerization inhibitor.
- polymerization inhibitor examples include hydroquinone, p-methoxyphenol, di-tert-butyl-p-cresol, pyrogallol, p-tert-butylcatechol, 1,4-benzoquinone, diphenyl-p-benzoquinone, 4,4'.
- -Thiobis (3-methyl-6-tert-butylphenol), 2,2'-methylenebis (4-methyl-6-tert-butylphenol), N-nitroso-N-phenylhydroxyamine aluminum salt, phenothiazine, N-nitrosodiphenylamine , N-phenylnaphthylamine, ethylenediamine tetraacetic acid, 1,2-cyclohexanediamine tetraacetic acid, glycol etherdiamine tetraacetic acid, 2,6-di-tert-butyl-4-methylphenol, 5-nitroso-8-hydroxyquinoline, 1 -Nitroso-2-naphthol, 2-nitroso-1-naphthol, 2-nitroso-5- (N-ethyl-N-sulfopropylamino) phenol, N-nitroso-N- (1-naphthyl) hydroxyamine ammonium salt, Bis (4-hydroxy-3,5-ter
- the content of the polymerization inhibitor shall be 0.01 to 5% by mass with respect to the total solid content of the curable resin composition of the present invention. Is more preferable, 0.02 to 3% by mass is more preferable, and 0.05 to 2.5% by mass is further preferable.
- the polymerization inhibitor may be only one type or two or more types. When there are two or more types of polymerization inhibitors, the total is preferably in the above range.
- the curable resin composition of the present invention preferably contains a metal adhesiveness improving agent for improving the adhesiveness with a metal material used for electrodes, wiring and the like.
- a metal adhesiveness improving agent for improving the adhesiveness with a metal material used for electrodes, wiring and the like.
- the metal adhesiveness improving agent include a silane coupling agent.
- silane coupling agent examples include the compounds described in paragraph 0167 of International Publication No. 2015/199219, the compounds described in paragraphs 0062 to 0073 of JP-A-2014-191002, paragraphs of International Publication No. 2011/080992.
- Examples include the compounds described in paragraph 0055. It is also preferable to use two or more different silane coupling agents as described in paragraphs 0050 to 0058 of JP2011-128358A. Further, it is also preferable to use the following compounds as the silane coupling agent.
- Et represents an ethyl group.
- the compounds described in paragraphs 0046 to 0049 of JP2014-186186A and the sulfide compounds described in paragraphs 0032 to 0043 of JP2013-072935 can also be used. ..
- the content of the metal adhesion improver is preferably 0.1 to 30 parts by mass when the total amount of the specific heterocycle-containing polymer precursor and the other heterocycle-containing polymer precursor is 100 parts by mass. , More preferably in the range of 0.5 to 15 parts by mass, and even more preferably in the range of 0.5 to 5 parts by mass.
- the metal adhesiveness improving agent may be only one kind or two or more kinds. When two or more types are used, the total is preferably in the above range.
- the curable resin composition of the present invention contains various additives, for example, a thermosetting agent, a sensitizer such as N-phenyldiethanolamine, and a chain transfer agent, if necessary, as long as the effects of the present invention are not impaired.
- a thermosetting agent for example, a thermosetting agent, a sensitizer such as N-phenyldiethanolamine, and a chain transfer agent, if necessary, as long as the effects of the present invention are not impaired.
- Surfactants, higher fatty acid derivatives, inorganic particles, curing agents, curing catalysts, fillers, antioxidants, ultraviolet absorbers, antiaggregating agents and the like can be blended.
- the total blending amount is preferably 3% by mass or less of the solid content of the curable resin composition.
- the curable resin composition of the present invention may contain a sensitizer.
- the sensitizer absorbs specific active radiation and becomes an electron-excited state.
- the sensitizer in the electron-excited state comes into contact with a thermosetting accelerator, a thermal radical polymerization initiator, a photoradical polymerization initiator, and the like, and acts such as electron transfer, energy transfer, and heat generation occur.
- the thermosetting accelerator, the thermal radical polymerization initiator, and the photoradical polymerization initiator undergo a chemical change and decompose to generate radicals, acids, or bases.
- the sensitizer include N-phenyldiethanolamine and the like.
- the content of the sensitizer may be 0.01 to 20% by mass with respect to the total solid content of the curable resin composition of the present invention. It is preferably 0.1 to 15% by mass, more preferably 0.5 to 10% by mass.
- the sensitizer may be used alone or in combination of two or more.
- the curable resin composition of the present invention may contain a chain transfer agent.
- Chain transfer agents are defined, for example, in the Polymer Dictionary, Third Edition (edited by the Society of Polymer Science, 2005), pp. 683-684.
- As the chain transfer agent for example, a group of compounds having SH, PH, SiH, and GeH in the molecule is used. They can donate hydrogen to low-activity radicals to generate radicals, or they can be oxidized and then deprotonated to generate radicals.
- a thiol compound can be preferably used.
- the content of the chain transfer agent is 0.01 to 20 parts by mass with respect to 100 parts by mass of the total solid content of the curable resin composition of the present invention.
- 1 to 10 parts by mass is more preferable, and 1 to 5 parts by mass is further preferable.
- the chain transfer agent may be only one kind or two or more kinds. When there are two or more types of chain transfer agents, the total is preferably in the above range.
- Each type of surfactant may be added to the curable resin composition of the present invention from the viewpoint of further improving the coatability.
- the surfactant various types of surfactants such as fluorine-based surfactants, nonionic surfactants, cationic surfactants, anionic surfactants, and silicone-based surfactants can be used.
- the following surfactants are also preferable.
- the parentheses indicating the repeating unit of the main chain represent the content (mol%) of each repeating unit
- the parentheses indicating the repeating unit of the side chain represent the number of repetitions of each repeating unit.
- the surfactant the compound described in paragraphs 0159 to 0165 of International Publication No. 2015/199219 can also be used.
- the content of the surfactant is 0.001 to 2.0% by mass based on the total solid content of the curable resin composition of the present invention. It is preferably 0.005 to 1.0% by mass, more preferably 0.005 to 1.0% by mass. Only one type of surfactant may be used, or two or more types may be used. When there are two or more types of surfactant, the total is preferably in the above range.
- the curable resin composition of the present invention has a curable resin composition in the process of drying after application by adding a higher fatty acid derivative such as behenic acid or behenic acid amide in order to prevent polymerization inhibition due to oxygen. It may be unevenly distributed on the surface of an object.
- a higher fatty acid derivative such as behenic acid or behenic acid amide
- the content of the higher fatty acid derivative is 0.1 to 10% by mass based on the total solid content of the curable resin composition of the present invention. Is preferable.
- the higher fatty acid derivative may be only one kind or two or more kinds. When there are two or more higher fatty acid derivatives, the total is preferably in the above range.
- the water content of the curable resin composition of the present invention is preferably less than 5% by mass, more preferably less than 1% by mass, and even more preferably less than 0.6% by mass from the viewpoint of coating surface properties.
- the metal content of the curable resin composition of the present invention is preferably less than 5 parts by mass (parts per million), more preferably less than 1 parts by mass, and even more preferably less than 0.5 parts by mass.
- the metal include sodium, potassium, magnesium, calcium, iron, chromium, nickel and the like. When a plurality of metals are contained, it is preferable that the total of these metals is in the above range.
- a raw material having a low metal content is selected as a raw material constituting the curable resin composition of the present invention.
- Methods such as filtering the raw materials constituting the curable resin composition of the present invention with a filter, lining the inside of the apparatus with polytetrafluoroethylene or the like and performing distillation under conditions in which contamination is suppressed as much as possible are mentioned. be able to.
- the curable resin composition of the present invention preferably has a halogen atom content of less than 500 mass ppm, more preferably less than 300 mass ppm, and more preferably 200 mass ppm from the viewpoint of wiring corrosiveness. Less than ppm is more preferred. Among them, those existing in the state of halogen ions are preferably less than 5 mass ppm, more preferably less than 1 mass ppm, and even more preferably less than 0.5 mass ppm.
- the halogen atom include a chlorine atom and a bromine atom. It is preferable that the total amount of chlorine atom and bromine atom, or chlorine ion and bromine ion is in the above range, respectively.
- a conventionally known storage container can be used as the storage container for the curable resin composition of the present invention.
- a multi-layer bottle having the inner wall of the container composed of 6 types and 6 layers of resin and 6 types of resin are used. It is also preferable to use a bottle having a layered structure. Examples of such a container include the container described in Japanese Patent Application Laid-Open No. 2015-123351.
- the curable resin composition of the present invention can be prepared by mixing each of the above components.
- the mixing method is not particularly limited, and a conventionally known method can be used.
- the filter pore diameter is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, and even more preferably 0.1 ⁇ m or less.
- the material of the filter is preferably polytetrafluoroethylene, polyethylene or nylon.
- the filter may be one that has been pre-cleaned with an organic solvent.
- a plurality of types of filters may be connected in series or in parallel. When a plurality of types of filters are used, filters having different pore diameters or materials may be used in combination. Moreover, you may filter various materials a plurality of times.
- circulation filtration When filtering a plurality of times, circulation filtration may be used. Moreover, you may pressurize and perform filtration. When pressurizing and filtering, the pressurizing pressure is preferably 0.05 MPa or more and 0.3 MPa or less.
- impurities may be removed using an adsorbent. Filter filtration and impurity removal treatment using an adsorbent may be combined.
- adsorbent a known adsorbent can be used. Examples thereof include inorganic adsorbents such as silica gel and zeolite, and organic adsorbents such as activated carbon.
- the curable resin composition of the present invention is preferably used for forming an interlayer insulating film for a rewiring layer. In addition, it can also be used for forming an insulating film of a semiconductor device, forming a stress buffer film, and the like.
- the cured film of the present invention is obtained by curing the curable resin composition of the present invention.
- the film thickness of the cured film of the present invention can be, for example, 0.5 ⁇ m or more, and can be 1 ⁇ m or more. Further, the upper limit value can be 100 ⁇ m or less, and can be 30 ⁇ m or less.
- the cured film of the present invention may be laminated in two or more layers, and further in three to seven layers to form a laminated body. It is preferable that the laminate of the present invention contains two or more cured films and includes a metal layer between any of the cured films. For example, a laminate containing at least a layer structure in which three layers of a first cured film, a metal layer, and a second cured film are laminated in this order is preferable.
- the first cured film and the second cured film are both cured films of the present invention.
- both the first cured film and the second cured film are curable of the present invention.
- An embodiment in which the resin composition is a cured film is preferable.
- the curable resin composition of the present invention used for forming the first cured film and the curable resin composition of the present invention used for forming the second cured film have the same composition. It may be present, or it may be a composition having a different composition.
- the metal layer in the laminate of the present invention is preferably used as metal wiring such as a rewiring layer.
- Examples of applicable fields of the cured film of the present invention include an insulating film for a semiconductor device, an interlayer insulating film for a rewiring layer, a stress buffer film, and the like.
- a sealing film, a substrate material (base film or coverlay of a flexible printed circuit board, an interlayer insulating film), or an insulating film for mounting purposes as described above may be patterned by etching. For these applications, for example, Science & Technology Co., Ltd.
- the cured film in the present invention can also be used for manufacturing a plate surface such as an offset plate surface or a screen plate surface, using it for etching molded parts, and manufacturing a protective lacquer and a dielectric layer in electronics, particularly microelectronics.
- the method for producing a cured film of the present invention includes a film forming step of applying the curable resin composition of the present invention to a substrate to form a film.
- the method for producing a cured film of the present invention preferably includes the film forming step, an exposure step for exposing the film, and a developing step for developing the film.
- the method for producing a cured film of the present invention more preferably includes the film forming step and, if necessary, the developing step, and also includes a heating step of heating the film at 50 to 450 ° C. Specifically, it is also preferable to include the following steps (a) to (d).
- A Film forming step of applying the curable resin composition to a substrate to form a film (curable resin composition layer)
- Exposure step of exposing the film after the film forming step
- Exposure Development step for developing the developed film
- Heating step for heating the developed film at 50 to 450 ° C. By heating in the heating step, the resin layer cured by exposure can be further cured. In this heating step, for example, the above-mentioned thermal base generator is decomposed to obtain sufficient curability.
- the method for producing a laminate according to a preferred embodiment of the present invention includes the method for producing a cured film of the present invention.
- the steps (a), the steps (a) to (c), or (a) are further performed.
- )-(D) it is preferable to perform each of the above steps a plurality of times, for example, 2 to 5 times (that is, 3 to 6 times in total) in order.
- the production method according to a preferred embodiment of the present invention includes a film forming step (layer forming step) in which the curable resin composition is applied to a base material to form a film (layered).
- the type of base material can be appropriately determined depending on the application, but semiconductor-made base materials such as silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon, quartz, glass, optical film, ceramic material, and thin-film deposition film, There are no particular restrictions on magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe, paper, SOG (Spin On Glass), TFT (thin film) array substrates, and electrode plates of plasma display panels (PDPs).
- a semiconductor-made base material is particularly preferable, and a silicon base material is more preferable.
- a plate-shaped base material (board) is used as the base material.
- the resin layer or the metal layer serves as a base material.
- Coating is preferable as a means for applying the curable resin composition to the base material.
- the inkjet method and the like are exemplified. From the viewpoint of the uniformity of the thickness of the curable resin composition layer, a spin coating method, a slit coating method, a spray coating method, and an inkjet method are more preferable.
- a resin layer having a desired thickness can be obtained by adjusting an appropriate solid content concentration and coating conditions according to the method. Further, the coating method can be appropriately selected depending on the shape of the base material.
- a spin coating method, a spray coating method, an inkjet method, etc. are preferable, and for a rectangular base material, a slit coating method or a spray coating method is used.
- the method, the inkjet method and the like are preferable.
- the spin coating method for example, it can be applied at a rotation speed of 500 to 2,000 rpm for about 10 seconds to 1 minute.
- the transfer method the production method described in paragraphs 0023, 0036 to 0051 of JP-A-2006-023696 and paragraphs 096 to 0108 of JP-A-2006-047592 can be preferably used in the present invention.
- the production method of the present invention may include a step of forming the film (curable resin composition layer), followed by a film forming step (layer forming step), and then drying to remove the solvent.
- the preferred drying temperature is 50 to 150 ° C, more preferably 70 ° C to 130 ° C, still more preferably 90 ° C to 110 ° C.
- the drying time is exemplified by 30 seconds to 20 minutes, preferably 1 minute to 10 minutes, and more preferably 3 minutes to 7 minutes.
- the production method of the present invention may include an exposure step of exposing the film (curable resin composition layer).
- the amount of exposure is not particularly determined as long as the curable resin composition can be cured, but for example, it is preferable to irradiate 100 to 10,000 mJ / cm 2 in terms of exposure energy at a wavelength of 365 nm, and 200 to 8,000 mJ /. It is more preferable to irradiate with cm 2 .
- the exposure wavelength can be appropriately determined in the range of 190 to 1,000 nm, preferably 240 to 550 nm.
- the exposure wavelengths are (1) semiconductor laser (wavelength 830 nm, 532 nm, 488 nm, 405 nm, etc.), (2) metal halide lamp, (3) high-pressure mercury lamp, g-ray (wavelength 436 nm), h.
- the curable resin composition of the present invention is particularly preferably exposed to a high-pressure mercury lamp, and above all, to be exposed to i-rays. As a result, particularly high exposure sensitivity can be obtained.
- the production method of the present invention may include a developing step of developing (developing the above film) the exposed film (curable resin composition layer). By performing the development, the unexposed portion (non-exposed portion) is removed.
- the developing method is not particularly limited as long as a desired pattern can be formed, and for example, a developing method such as paddle, spray, immersion, or ultrasonic wave can be adopted.
- the developer can be used without particular limitation as long as the unexposed portion (non-exposed portion) is removed.
- the developer preferably contains an organic solvent, and more preferably the developer contains 90% or more of the organic solvent.
- the developer preferably contains an organic solvent having a ClogP value of -1 to 5, and more preferably contains an organic solvent having a ClogP value of 0 to 3.
- the ClogP value can be obtained as a calculated value by inputting a structural formula in ChemBioDraw.
- Organic solvents include, for example, ethyl acetate, -n-butyl acetate, amyl formate, isoamyl acetate, isobutyl acetate, butyl propionate, isopropyl butyrate, ethyl butyrate, butyl butyrate, methyl lactate, ethyl lactate, ⁇ -butyrolactone.
- alkylalkyloxyacetate eg, methyl alkyloxyacetate, ethyl alkyloxyacetate, butyl alkyloxyacetate (eg, methyl methoxyacetate, ethyl methoxyacetate, butyl methoxyacetate, methyl ethoxyacetate, Ethyl ethoxyacetate, etc.)
- 3-alkyloxypropionate alkyl esters eg, methyl 3-alkyloxypropionate, ethyl 3-alkyloxypropionate, etc.
- Ke As tons for example, methyl ethyl ketone, cyclohexanone, cyclopentanone, 2-heptanone, 3-heptanone, N-methyl-2-pyrrolidone, etc., and as aromatic hydrocarbons, for example, toluene, xylene, anisole, limonene, etc.
- Dimethyl sulfoxide is preferably mentioned as the sulfoxides.
- cyclopentanone and ⁇ -butyrolactone are particularly preferable, and cyclopentanone is more preferable.
- the developing solution preferably contains 50% by mass or more of an organic solvent, more preferably 70% by mass or more of an organic solvent, and further preferably 90% by mass or more of an organic solvent. Further, the developing solution may be 100% by mass of an organic solvent.
- the development time is preferably 10 seconds to 5 minutes.
- the temperature of the developing solution at the time of development is not particularly specified, but is usually 20 to 40 ° C.
- the rinsing is preferably performed with a solvent different from that of the developing solution. For example, it can be rinsed with a solvent contained in the curable resin composition.
- the rinsing time is preferably 5 seconds to 1 minute.
- the production method of the present invention preferably includes a step (heating step) of heating the developed film at 50 to 450 ° C.
- the heating step is preferably included after the film forming step (layer forming step), the drying step, and the developing step.
- the heating step for example, the above-mentioned thermal base generator decomposes to generate a base, and the cyclization reaction of the specific heterocyclic-containing polymer precursor proceeds.
- the curable resin composition of the present invention contains a compound having two or more ethylenically unsaturated groups in the molecule other than the specific heterocyclic-containing polymer precursor, but contains unreacted ethylenically unsaturated groups in the molecule.
- the heating temperature (maximum heating temperature) of the layer in the heating step is preferably 50 ° C. or higher, more preferably 80 ° C. or higher, further preferably 140 ° C. or higher, and 150 ° C. or higher. Is even more preferable, 160 ° C. or higher is even more preferable, and 170 ° C. or higher is even more preferable.
- the upper limit is preferably 500 ° C. or lower, more preferably 450 ° C. or lower, further preferably 350 ° C. or lower, further preferably 250 ° C. or lower, and preferably 220 ° C. or lower. Even more preferable.
- the heating is preferably performed at a heating rate of 1 to 12 ° C./min from the temperature at the start of heating to the maximum heating temperature, more preferably 2 to 10 ° C./min, and even more preferably 3 to 10 ° C./min.
- a heating rate of 1 to 12 ° C./min from the temperature at the start of heating to the maximum heating temperature, more preferably 2 to 10 ° C./min, and even more preferably 3 to 10 ° C./min.
- the temperature at the start of heating is preferably 20 ° C. to 150 ° C., more preferably 20 ° C. to 130 ° C., and even more preferably 25 ° C. to 120 ° C.
- the temperature at the start of heating refers to the temperature at which the process of heating to the maximum heating temperature is started.
- the temperature of the film (layer) after drying is higher than, for example, the boiling point of the solvent contained in the curable resin composition. It is preferable to gradually raise the temperature from a temperature as low as 30 to 200 ° C.
- the heating time (heating time at the maximum heating temperature) is preferably 10 to 360 minutes, more preferably 20 to 300 minutes, and even more preferably 30 to 240 minutes.
- the heating temperature is preferably 180 ° C. to 320 ° C., more preferably 180 ° C. to 260 ° C. from the viewpoint of adhesion between layers of the cured film.
- the vinyl groups in the aromatic ring in which the vinyl groups that may be substituted of the specific heterocyclic-containing polymer precursor between the layers are directly bonded proceed with the cross-linking reaction. Probably because it is.
- Heating may be performed in stages. As an example, the temperature is raised from 25 ° C. to 180 ° C. at 3 ° C./min and held at 180 ° C. for 60 minutes, the temperature is raised from 180 ° C. to 200 ° C. at 2 ° C./min, and held at 200 ° C. for 120 minutes. , Etc. may be performed.
- the heating temperature as the pretreatment step is preferably 100 to 200 ° C., more preferably 110 to 190 ° C., and even more preferably 120 to 185 ° C. In this pretreatment step, it is also preferable to perform the treatment while irradiating with ultraviolet rays as described in US Pat. No. 9,159,547.
- the pretreatment step is preferably performed in a short time of about 10 seconds to 2 hours, more preferably 15 seconds to 30 minutes.
- the pretreatment may be performed in two or more steps.
- the pretreatment step 1 may be performed in the range of 100 to 150 ° C.
- the pretreatment step 2 may be performed in the range of 150 to 200 ° C.
- cooling may be performed after heating, and the cooling rate in this case is preferably 1 to 5 ° C./min.
- the heating step is preferably performed in an atmosphere having a low oxygen concentration by flowing an inert gas such as nitrogen, helium, or argon in order to prevent decomposition of the specific heterocyclic polymer precursor.
- the oxygen concentration is preferably 50 ppm (volume ratio) or less, and more preferably 20 ppm (volume ratio) or less.
- the production method of the present invention preferably includes a metal layer forming step of forming a metal layer on the surface of the developed film (curable resin composition layer).
- metal layer existing metal types can be used without particular limitation, and copper, aluminum, nickel, vanadium, titanium, chromium, cobalt, gold and tungsten are exemplified, copper and aluminum are more preferable, and copper is preferable. More preferred.
- the method for forming the metal layer is not particularly limited, and an existing method can be applied.
- the methods described in JP-A-2007-157879, JP-A-2001-521288, JP-A-2004-214501, and JP-A-2004-101850 can be used.
- photolithography, lift-off, electrolytic plating, electroless plating, etching, printing, and a method combining these can be considered. More specifically, a patterning method combining sputtering, photolithography and etching, and a patterning method combining photolithography and electroplating can be mentioned.
- the thickness of the metal layer is preferably 0.1 to 50 ⁇ m, more preferably 1 to 10 ⁇ m at the thickest portion.
- the production method of the present invention preferably further includes a laminating step.
- the laminating step means that (a) a film forming step (layer forming step), (b) an exposure step, (c) a developing step, and (d) a heating step are performed again on the surface of the cured film (resin layer) or the metal layer. , A series of steps including performing in this order. However, the mode may be such that only the film forming step (a) is repeated. Further, (d) the heating step may be performed collectively at the end or the middle of the lamination. That is, the steps (a) to (c) may be repeated a predetermined number of times, and then the heating of (d) may be performed to cure the laminated curable resin composition layers all at once.
- the (c) developing step may be followed by the (e) metal layer forming step, and even if the heating is performed each time (d), the steps of (d) are collectively performed after laminating a predetermined number of times. Heating may be performed. Needless to say, the laminating step may further include the above-mentioned drying step, heating step, and the like as appropriate.
- the surface activation treatment step may be further performed after the heating step, the exposure step, or the metal layer forming step.
- An example of the surface activation treatment is plasma treatment.
- the laminating step is preferably performed 2 to 5 times, more preferably 3 to 5 times.
- the resin layer is 3 or more and 7 or less, such as a resin layer / metal layer / resin layer / metal layer / resin layer / metal layer, is preferable, and 3 or more and 5 or less are more preferable.
- a cured film (resin layer) of the curable resin composition so as to cover the metal layer after the metal layer is provided.
- Examples thereof include an embodiment in which the steps, (b) exposure steps, (c) development steps, and (e) metal layer forming steps are repeated in this order, and (d) heating steps are collectively provided at the end or in the middle.
- the present invention also discloses a semiconductor device containing the cured film or laminate of the present invention.
- the semiconductor device in which the curable resin composition of the present invention is used to form the interlayer insulating film for the rewiring layer the description in paragraphs 0213 to 0218 and the description in FIG. 1 of JP-A-2016-0273557 are taken into consideration. Yes, these contents are incorporated herein.
- ⁇ Synthesis example 1> [Synthesis of polyimide precursor (A-1) from 4,4'-oxydiphthalic dianhydride, 4,4'-diaminodiphenyl ether and 4-aminostyrene] 20.0 g (64.5 mmol) of 4,4'-oxydiphthaldioic acid anhydride (dried at 140 ° C. for 12 hours), 15.4 g (129 mmol) of 4-aminostyrene, and 0.05 g of hydroquinone. , 20.4 g (258 mmol) of pyridine, and 100 g of diglime were mixed and stirred at 0 ° C. for 1 hour, followed by 60 ° C.
- the polyimide precursor was removed by filtration, stirred again in 4 liters of water for 30 minutes and filtered again. The obtained polyimide precursor was then dried under reduced pressure at 45 ° C. for 3 days. The weight average molecular weight of this polyimide precursor was 18,000.
- the reaction solution was added to 1,000 g of pure water, and the mixture was stirred at room temperature for 30 minutes, and then the crystals were separated by filtration.
- the obtained crude crystals were reslurried with 300 g of methanol and 100 g of ethyl acetate, and dried under vacuum to obtain 11.5 g of B-1 (yield 30%).
- the obtained curable resin composition and comparative composition were pressure-filtered through a filter made of polytetrafluoroethylene having a pore width of 0.8 ⁇ m. Further, in Table 1, the description of "-" indicates that the composition does not contain the corresponding component.
- B-1, B-5 and B-12 B-1, B-5 and B-12 synthesized above
- ⁇ solvent ⁇ -I-1 ⁇ -Butyrolactone (manufactured by Sanwa Yuka Co., Ltd.)
- ⁇ I-2 Dimethyl sulfoxide (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
- -I-3 N-methyl-2-pyrrolidone (manufactured by Ashland)
- I-4 Ethyl lactate (manufactured by Tokyo Chemical Industry Co., Ltd.)
- a curable resin composition or a comparative composition was applied onto a silicon wafer by a spin coating method to form a resin layer.
- the silicon wafer on which the resin layer was formed was dried on a hot plate at 100 ° C. for 4 minutes to obtain a resin composition layer having a uniform thickness of 20 ⁇ m on the silicon wafer.
- the resin composition layer on the silicon wafer was exposed to an exposure energy of 400 mJ / cm 2 using a broadband exposure machine (manufactured by Ushio, Inc .: UX-1000SN-EH01), and the exposed resin composition layer was exposed.
- the temperature was raised at a heating rate of 5 ° C./min under a nitrogen atmosphere, and after reaching 180 ° C., heating was performed at this temperature for 2 hours.
- the heated resin composition layer and the silicon wafer were immersed in a 3 mass% hydrofluoric acid aqueous solution, and the heated resin composition layer was peeled off from the silicon wafer. The peeled and heated resin composition layer was used as a cured film.
- the dissolution rate is less than 250 nm / min.
- B The dissolution rate is 250 nm / min or more and less than 500 nm / min.
- C The dissolution rate is 500 nm / min or more.
- the curable resin composition containing the specific heterocyclic-containing polymer precursor according to the present invention has excellent chemical resistance of the cured film.
- the curable resin composition according to Comparative Example 1 does not contain a specific heterocyclic-containing polymer precursor. It can be seen that the curable resin composition according to Comparative Example 1 is inferior in the chemical resistance of the cured film.
- Example 101 The curable resin composition used in Example 1 was applied in layers to the surface of a resin base material on which a thin copper layer was formed by a spin coating method, dried at 100 ° C. for 5 minutes, and cured with a film thickness of 20 ⁇ m. After forming the resin composition layer, the resin composition layer was exposed to light using a stepper (NSR1505 i6, manufactured by Nikon Corporation). Exposure was performed at a wavelength of 365 nm via a mask (a binary mask with a pattern of 1: 1 line and space and a line width of 10 ⁇ m). After exposure, it was developed with cyclopentanone for 30 seconds and rinsed with PGMEA for 20 seconds to obtain a layer pattern.
- NSR1505 i6 a binary mask with a pattern of 1: 1 line and space and a line width of 10 ⁇ m.
- the interlayer insulating film for the rewiring layer was excellent in insulating properties. Moreover, when a semiconductor device was manufactured using these interlayer insulating films for the rewiring layer, it was confirmed that the semiconductor device operated without any problem.
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Materials For Photolithography (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Laminated Bodies (AREA)
- Polymerisation Methods In General (AREA)
Abstract
L'invention concerne une composition de résine durcissable qui contient au moins une sorte de précurseur de polymère choisie dans un groupe constitué d'un précurseur de polyimide et d'un précurseur de polybenzoxazole, lequel précurseur de polymère contient un cycle aromatique auquel un groupe vinyle éventuellement substitué est directement lié. L'invention concerne également un film durci constitué par durcissement de ladite composition de résine durcissable, un stratifié contenant ledit film durci, un procédé de fabrication dudit film durci, et un dispositif à semi-conducteurs contenant ledit film durci ou ledit stratifié.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2021518383A JP7277573B2 (ja) | 2019-05-08 | 2020-05-01 | 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2019-088585 | 2019-05-08 | ||
| JP2019088585 | 2019-05-08 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2020226132A1 true WO2020226132A1 (fr) | 2020-11-12 |
Family
ID=73050699
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2020/018410 Ceased WO2020226132A1 (fr) | 2019-05-08 | 2020-05-01 | Composition de résine durcissable, film durci ainsi que procédé de fabrication de celui-ci, stratifié, et dispositif à semi-conducteurs |
Country Status (3)
| Country | Link |
|---|---|
| JP (1) | JP7277573B2 (fr) |
| TW (1) | TWI845668B (fr) |
| WO (1) | WO2020226132A1 (fr) |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114524938A (zh) * | 2021-10-28 | 2022-05-24 | 江苏三月科技股份有限公司 | 一种聚合物、感光树脂组合物及其制备的固化膜与电子元件 |
| WO2022210096A1 (fr) * | 2021-04-02 | 2022-10-06 | Jsr株式会社 | Composition sensible au rayonnement pour utilisation de formation de film isolant, film de résine présentant un motif et carte de circuit imprimé semi-conductrice |
| WO2024095884A1 (fr) * | 2022-10-31 | 2024-05-10 | 富士フイルム株式会社 | Composition de résine, produit durci, stratifié, procédé de production de produit durci, procédé de production de stratifié, procédé de fabrication de dispositif semi-conducteur et dispositif semi-conducteur |
| WO2025126958A1 (fr) * | 2023-12-13 | 2025-06-19 | 富士フイルム株式会社 | Composition de résine, produit durci, stratifié, procédé de production de produit durci, procédé de production de stratifié, procédé de production de dispositif à semi-conducteur, dispositif à semi-conducteur et résine |
| WO2025126934A1 (fr) * | 2023-12-12 | 2025-06-19 | 富士フイルム株式会社 | Composition de résine photosensible, produit durci, stratifié, procédé de production de produit durci, procédé de production de stratifié, procédé de production de dispositif à semi-conducteur, dispositif à semi-conducteur et résine |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5021540A (en) * | 1990-09-18 | 1991-06-04 | American Cyanamid | Polyimides from diaminobenzotrifluorides |
| JPH11193326A (ja) * | 1997-12-29 | 1999-07-21 | Chisso Corp | ポリアミド酸およびこれを用いたポリイミド液晶配向膜、液晶表示素子 |
| JP2001189109A (ja) * | 2000-01-05 | 2001-07-10 | Sumitomo Bakelite Co Ltd | 絶縁材用樹脂組成物およびこれを用いた絶縁材 |
| JP2004051781A (ja) * | 2002-07-19 | 2004-02-19 | Sumitomo Bakelite Co Ltd | 絶縁膜用コーティングワニス及び絶縁膜 |
| JP2004055340A (ja) * | 2002-07-19 | 2004-02-19 | Sumitomo Bakelite Co Ltd | 絶縁膜用コーティングワニス及び絶縁膜 |
| WO2006109514A1 (fr) * | 2005-03-30 | 2006-10-19 | Nippon Steel Chemical Co., Ltd. | Composition de resine photosensible et substrat pour circuit l’utilisant |
| WO2010110335A1 (fr) * | 2009-03-26 | 2010-09-30 | 新日鐵化学株式会社 | Composition de résine photosensible et film durci |
| WO2016167038A1 (fr) * | 2015-04-15 | 2016-10-20 | 東レ株式会社 | Composition de résine résistant à la chaleur, procédé de fabrication d'un film de résine résistant à la chaleur, procédé de fabrication d'un film d'isolation intercouche ou d'un film protecteur de surface et procédé de fabrication de composant électronique ou de composant semi-conducteur |
| WO2018225676A1 (fr) * | 2017-06-06 | 2018-12-13 | 富士フイルム株式会社 | Composition de résine photosensible, film durci, stratifié, procédé de production de film durci, dispositif à semi-conducteur et composé |
-
2020
- 2020-05-01 WO PCT/JP2020/018410 patent/WO2020226132A1/fr not_active Ceased
- 2020-05-01 JP JP2021518383A patent/JP7277573B2/ja active Active
- 2020-05-05 TW TW109114839A patent/TWI845668B/zh active
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5021540A (en) * | 1990-09-18 | 1991-06-04 | American Cyanamid | Polyimides from diaminobenzotrifluorides |
| JPH11193326A (ja) * | 1997-12-29 | 1999-07-21 | Chisso Corp | ポリアミド酸およびこれを用いたポリイミド液晶配向膜、液晶表示素子 |
| JP2001189109A (ja) * | 2000-01-05 | 2001-07-10 | Sumitomo Bakelite Co Ltd | 絶縁材用樹脂組成物およびこれを用いた絶縁材 |
| JP2004051781A (ja) * | 2002-07-19 | 2004-02-19 | Sumitomo Bakelite Co Ltd | 絶縁膜用コーティングワニス及び絶縁膜 |
| JP2004055340A (ja) * | 2002-07-19 | 2004-02-19 | Sumitomo Bakelite Co Ltd | 絶縁膜用コーティングワニス及び絶縁膜 |
| WO2006109514A1 (fr) * | 2005-03-30 | 2006-10-19 | Nippon Steel Chemical Co., Ltd. | Composition de resine photosensible et substrat pour circuit l’utilisant |
| WO2010110335A1 (fr) * | 2009-03-26 | 2010-09-30 | 新日鐵化学株式会社 | Composition de résine photosensible et film durci |
| WO2016167038A1 (fr) * | 2015-04-15 | 2016-10-20 | 東レ株式会社 | Composition de résine résistant à la chaleur, procédé de fabrication d'un film de résine résistant à la chaleur, procédé de fabrication d'un film d'isolation intercouche ou d'un film protecteur de surface et procédé de fabrication de composant électronique ou de composant semi-conducteur |
| WO2018225676A1 (fr) * | 2017-06-06 | 2018-12-13 | 富士フイルム株式会社 | Composition de résine photosensible, film durci, stratifié, procédé de production de film durci, dispositif à semi-conducteur et composé |
Non-Patent Citations (1)
| Title |
|---|
| KATOH KOHJI: "Latest technology of stress buffer material for semiconduct application", NIPPON GOMU KYOKAISHI, 2012, pages 40 - 45 * |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2022210096A1 (fr) * | 2021-04-02 | 2022-10-06 | Jsr株式会社 | Composition sensible au rayonnement pour utilisation de formation de film isolant, film de résine présentant un motif et carte de circuit imprimé semi-conductrice |
| CN114524938A (zh) * | 2021-10-28 | 2022-05-24 | 江苏三月科技股份有限公司 | 一种聚合物、感光树脂组合物及其制备的固化膜与电子元件 |
| CN114524938B (zh) * | 2021-10-28 | 2024-02-09 | 江苏三月科技股份有限公司 | 一种聚合物、感光树脂组合物及其制备的固化膜与电子元件 |
| WO2024095884A1 (fr) * | 2022-10-31 | 2024-05-10 | 富士フイルム株式会社 | Composition de résine, produit durci, stratifié, procédé de production de produit durci, procédé de production de stratifié, procédé de fabrication de dispositif semi-conducteur et dispositif semi-conducteur |
| WO2025126934A1 (fr) * | 2023-12-12 | 2025-06-19 | 富士フイルム株式会社 | Composition de résine photosensible, produit durci, stratifié, procédé de production de produit durci, procédé de production de stratifié, procédé de production de dispositif à semi-conducteur, dispositif à semi-conducteur et résine |
| WO2025126958A1 (fr) * | 2023-12-13 | 2025-06-19 | 富士フイルム株式会社 | Composition de résine, produit durci, stratifié, procédé de production de produit durci, procédé de production de stratifié, procédé de production de dispositif à semi-conducteur, dispositif à semi-conducteur et résine |
Also Published As
| Publication number | Publication date |
|---|---|
| JP7277573B2 (ja) | 2023-05-19 |
| JPWO2020226132A1 (fr) | 2020-11-12 |
| TW202104368A (zh) | 2021-02-01 |
| TWI845668B (zh) | 2024-06-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7333383B2 (ja) | 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス | |
| JP7008732B2 (ja) | 感光性樹脂組成物、樹脂、硬化膜、積層体、硬化膜の製造方法、半導体デバイス | |
| JP7281533B2 (ja) | 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス | |
| JP7277572B2 (ja) | 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス | |
| JP7277573B2 (ja) | 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス | |
| WO2020255859A1 (fr) | Composition de résine durcissable, film durci, stratifié, procédé de production de film durci, dispositif à semi-conducteur et polyimide ou précurseur de polyimide | |
| WO2021002383A1 (fr) | Composition de résine durcissable, procédé de production de composition de résine durcissable, film durci, corps multicouche, procédé de production de film durci et dispositif à semi-conducteur | |
| JP7086882B2 (ja) | 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、及び、半導体デバイス | |
| JP7351896B2 (ja) | 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、及び、熱塩基発生剤 | |
| JP7477579B2 (ja) | 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、及び、ポリマー前駆体 | |
| JP2020154205A (ja) | パターン形成方法、硬化性樹脂組成物、膜、硬化膜、積層体、及び、半導体デバイス | |
| WO2020196363A1 (fr) | Composition de résine durcissable, film durci, produit stratifié, procédé de production de film durci, et dispositif à semi-conducteurs | |
| JP7023379B2 (ja) | 樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス | |
| JPWO2020080216A1 (ja) | 硬化膜の製造方法、樹脂組成物、硬化膜、積層体の製造方法および半導体デバイスの製造方法 | |
| WO2020246234A1 (fr) | Composition durcissable négative, film durci, produit en couches, procédé de production de film durci, et dispositif à semi-conducteur | |
| JPWO2019189111A1 (ja) | 感光性樹脂組成物、硬化膜、積層体、これらの製造方法、半導体デバイス、これらに用いられる熱塩基発生剤 | |
| JP7078744B2 (ja) | 樹脂組成物、硬化膜、積層体、硬化膜の製造方法、および半導体デバイス | |
| WO2020255825A1 (fr) | Composition de résine durcissable, film durci, stratifié, procédé de production de film durci, dispositif à semi-conducteur et polyimide, polybenzoxazole, précurseur de polyimide ou précurseur de polybenzoxazole | |
| WO2020262227A1 (fr) | Composition de resine durcissable, film durci, corps stratifie, procede de fabrication de film durci et dispositif a semi-conducteurs | |
| JPWO2019189327A1 (ja) | 感光性樹脂組成物、硬化膜、積層体およびこれらの応用 | |
| KR102690289B1 (ko) | 경화성 수지 조성물, 경화막, 적층체, 경화막의 제조 방법, 및, 반도체 디바이스 | |
| JP7426375B2 (ja) | 硬化性樹脂組成物、硬化膜、積層体、硬化膜の製造方法、半導体デバイス、及び、熱塩基発生剤 | |
| WO2020066244A1 (fr) | Composition de résine photosensible, film durci, produit stratifié, procédé de production de film durci, dispositif à semi-conducteur et générateur de base thermique |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20802750 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2021518383 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 20802750 Country of ref document: EP Kind code of ref document: A1 |