WO2020223782A1 - Apparatus and method for active noise reduction - Google Patents
Apparatus and method for active noise reduction Download PDFInfo
- Publication number
- WO2020223782A1 WO2020223782A1 PCT/CA2019/050597 CA2019050597W WO2020223782A1 WO 2020223782 A1 WO2020223782 A1 WO 2020223782A1 CA 2019050597 W CA2019050597 W CA 2019050597W WO 2020223782 A1 WO2020223782 A1 WO 2020223782A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wire
- microphone
- sound wave
- emitter module
- sound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
- H04R9/02—Details
- H04R9/025—Magnetic circuit
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/175—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
- G10K11/178—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
- G10K11/1785—Methods, e.g. algorithms; Devices
- G10K11/17857—Geometric disposition, e.g. placement of microphones
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/175—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
- G10K11/178—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
- G10K11/1787—General system configurations
- G10K11/17873—General system configurations using a reference signal without an error signal, e.g. pure feedforward
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R9/00—Transducers of moving-coil, moving-strip, or moving-wire type
- H04R9/06—Loudspeakers
- H04R9/063—Loudspeakers using a plurality of acoustic drivers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2201/00—Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
- H04R2201/02—Details casings, cabinets or mounting therein for transducers covered by H04R1/02 but not provided for in any of its subgroups
- H04R2201/021—Transducers or their casings adapted for mounting in or to a wall or ceiling
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2499/00—Aspects covered by H04R or H04S not otherwise provided for in their subgroups
- H04R2499/10—General applications
- H04R2499/13—Acoustic transducers and sound field adaptation in vehicles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R27/00—Public address systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R7/00—Diaphragms for electromechanical transducers; Cones
- H04R7/02—Diaphragms for electromechanical transducers; Cones characterised by the construction
- H04R7/04—Plane diaphragms
Definitions
- the present invention relates to active noise reduction and, in particular, active noise reduction over a plane.
- Irritating sounds are oftentimes problematic in a wide range of settings including, for example, offices, homes, libraries, cars, outdoor roadways, construction sites, and industrial locations.
- the first is passive noise reduction, which is generally achieved by insulating the ear from the external noise. Headphones may be insulated with material that prevents noise from reaching the ear. A room may use techniques known in the art as soundproofing to reduce an occupant's perception of noise coming from outside the room.
- the second type of noise reduction is active noise reduction ("ANR"), being a method for reducing noise by emitting a second sound that cancels the unwanted noise.
- ANR active noise reduction
- Known algorithms are able to analyze the waveform of a noise, and generate a signal that shifts the phase, or inverts the polarity of, the noise.
- an inverted (also referred to as "antiphase") sound wave that is equal in both frequency and amplitude
- the first and second sound waves effectively cancel each other out.
- the first wave is either reduced or amplified accordingly.
- ANR in hearing aids is in addition to their use for amplifying frequencies for hearing impaired.
- Using ANR in headphones is in addition to their use for playing music.
- a method for active noise reduction comprising sensing one or more characteristics of a sound wave; calculating an inverted sound wave based on the one or more characteristics; and emitting the inverted sound wave by flowing a current, selected according to the inverted sound wave, through a wire under tension that passes through a positive pole of a magnet and a negative pole of the magnet, thereby causing the wire to vibrate.
- an apparatus for active noise reduction comprising: a microphone configured to detect one or more characteristics of a sound wave detected in a predetermined vicinity of the microphone; a processor coupled to the microphone, configured to calculate an inverted sound wave based on the one or more characteristics; a power supply; and at least one emitter module coupled to the processor, each emitter module including one or more magnets with a positive pole and a negative pole, a wire, made of a conductive material, under tension, that passes between the positive pole and the negative pole, and the power supply configured to deliver a current passing through the wire, the current selected by the processor to vibrate the wire and thereby emit the inverted sound wave.
- Fig. 1 is a schematic of an active noise reduction apparatus
- Fig. 2 is a schematic of an active noise reduction apparatus with two emitter modules and two microphones
- Fig. 3 is an elevation view of an active noise reduction apparatus installed in a screen
- Fig. 4 is a partly cutaway view of an active noise reduction apparatus installed on sheet material
- FIG. 5 is a perspective view of a configuration of wires running perpendicular to each other on two spaced apart planes;
- Fig. 6 is a plan view of a configuration of wires on a plane
- Fig. 7 is a schematic of an active noise reduction apparatus; and (viii) Fig. 8 is a top plan view of an active noise reduction apparatus.
- a noise-reducing headphone may include a microphone to detect a noise, a computer to process the noise and calculate the inverted waveform, and a speaker to emit a sound corresponding to the inverted waveform.
- the inverted noise waveform may be amplified and a transducer may create a sound wave proportional to the amplitude of the noise, creating destructive interference with the noise. Such destructive interference may make noise less perceptible to a listener.
- the terms "noise” and "sound” may be used interchangeably.
- ANR headphones are able to reduce noise at one point on a plane.
- ANR properties such that noise can be actively reduced in an area A (Fig. 8) on an opposite side of the structure where noise N is occurring. This would allow multiple listeners to benefit from ANR in a room without having to wear headphones.
- the present invention addresses this deficiency in the prior art.
- the invention may allow for ANR over a plane, including a two- dimensional plane and a three-dimensional plane, i.e., over a flat surface or over a curved surface.
- the algorithm may use machine learning by observing or collecting data of the noise the invention encounters in use.
- the algorithm may be capable of predicting noise and thereby improve the invention's accuracy, or ability to reduce noise accurately.
- the invention includes a sound emitter module 400 with a conductor 410, such as a wire, tensioned on a frame 910 through which a sound passes and may be cancelled.
- the sound emitter 400 includes a magnet 300 to apply a magnetic force on the tensioned conductor 410.
- a periodic force perpendicular to the conductor 410 and a magnetic field are produced. This periodic force causes the conductor 410 to vibrate and thereby emit a sound. Altering one or both of i) the forces of the current, and ii) the magnetic field alters the sound wave that the vibrating tensioned conductor 410 emits.
- the invention further includes a circuit 900, in which the wire 410 is connected.
- an electrical circuit 900 further includes a transducer and/or a processor 500.
- a transducer such as microphone 100 detects a first sound wave and converts it into an electrical signal.
- Other single or multiple frequency measurement modules and wave amplitude measurement modules known in the art may be used, in addition to or instead of microphones.
- a processor 500 may receive the electrical signal, invert the first sound wave's waveform, and calculate a current that may be sent through wire 410 by a power supply 800 connected to the circuit 900.
- the current may be calculated by the processor based on a number of factors, which may include the amplitude of the first sound wave, the frequency of the first sound wave, the speed of sound, and the material composition of the wire 410.
- the processor may be connected to a computer or computer components, including memory, operating systems, software, instructions, and algorithms for the processor to execute.
- the power supply 800 may be a battery, a grid power source, a solar panel, example AC or DC. Many factors may affect the speed of sound, such as humidity and temperature.
- Sound wave speed between microphone 200 and microphone 100 may be calculated by dividing distance between the microphones by the elapsed time it takes for the sound wave to travel between the microphones 100 and 200.
- the speed of sound may be taken into account by the processor 500 when determining the current to flow through the wire 410.
- the calculated speed of sound may be used to determine a delay period between the sound being picked up at the transducer and the sound wave being generated at the emitter module 400 so that the emitter module is driven to generate the appropriate inverted signal when the sound to be mitigated actually arrives at the module, as influenced by the calculated speed of sound.
- Another method for synchronizing received and emitted sound waves is to i) position a single microphone behind the emitter (that is, on the opposite side of the noise from the emitter), ii) use the microphone to detect the noise, iii) use the processor to determine an inverted signal, and iv) use the processor to correct the emitted signal, thereby improving performance.
- the processor may use, for example, machine learning techniques.
- the emitter module 400 includes wire 410 and magnet 300.
- the wire 410 is under tension, and passes between the positive pole 310 and the negative pole 320 of the magnet 300.
- the magnet 300 has a positive pole 310 and a negative pole 320.
- the magnet 300 may be one or more magnets.
- one magnet 300 may be oriented such that its positive pole is on one side of the wire, and its negative pole is on an opposite side of the wire.
- two or more magnets 300 are used, such that the negative pole of a first magnet is on one side of the wire, and the positive pole of a second magnet is on another side of the wire.
- the wire is positioned in the space between the positive and the negative poles such that the magnetic force acts upon the wire.
- the wires may be installed in a tensioned condition on mounts or there may be tensioners for each wire.
- Various tensioning methods and devices may be employed to tension the wires, such as a turnbuckle, springs, permanent deflection, or a combination thereof.
- the current flowing through the wire 410 causes the wire to vibrate and thereby emit a sound.
- the current is selected by the processor 500 such that the emitted sound will reduce the noticeability of, for example, substantially cancel out, the first sound wave within the vicinity of the wire.
- the microphone may be within 1 cm of the wire.
- the microphone may be on the side of the wire closer to the unwanted sound N.
- the invention may include a frame 910 on which the emitter module 400 is installed.
- the frame may include frame components such as a plane with an open area 920 on it, or of rigid elongate members that are connected together to form a polygonal with the open area there between.
- the emitter module 400 is installed on the frame with wire 410 extending under tension across the open area 920.
- the one or more magnets 100, 200 may be in, on, or integral with the frame.
- the one or more magnets may be placed across the frame or parts of the frame such that the magnets are positioned 90 degrees to the wire 410.
- Each wire may have one or more magnets fixed thereto such that the wire may pass between the poles of the magnet.
- Wire 410 extends between ends of the frame, thereby extending across the opening through which sound may pass. The sound therefore passes through open area 920 and between and past wire 410. Wire 410, therefore, is directly in the path of sound waves and can act on them as they pass.
- the frame may be electrically non-conducting.
- wires 410 there may be multiple wires 410 connected into circuit 900, and possibly to a single processor 500.
- the wires may be arranged in parallel, or in a grid pattern.
- Parallel here means the wires 410 may be arranged side by side substantially parallel to one another. Parallel does not necessarily refer to parallel circuitry.
- Each wire may have the same or a different current passed therethrough.
- the wires 410 may, for example, be oriented at a 90 degree angle with respect to each other, so as to increase air turbulence between the wires in use.
- the wires may be electrically conductive in one direction, and connected by a non-electrically conductive material in a second direction.
- conductive wires may run vertically, and non-conductive material may run horizontally (or vice versa), thereby connecting the vertical conductive wires to each other. This would allow the invention to, for example, act as a physical barrier preventing insects from passing therethrough, while allowing fluid communication from one side to the other. If the non-conductive material touches the conductive wires, the non- conductive material may be extendable such that their possible contact with the conductive wires does not quench sound-generating vibration thereof.
- a first set of wires 410 may run in a first direction, and a second set of wires 410 may run in a second direction.
- the second direction may be, for example, substantially 90 degrees from the first direction.
- the first direction may be vertical, and the second direction may be horizontal.
- the first set of wires may run along a first plane, and the second set of wires may run along a second plane.
- the first plane and second plane may be substantially parallel to each other. The planes may be spaced apart such that no wire in the first set touches any wire in the second set when the wires vibrate.
- wires 410 may be spaced apart such that when vibrating they do not come into physical contact with each other.
- the distance between wires may be selected based on various factors, including the maximum width W of vibration. When adjacent wires are vibrating at their maximum amplitude (or, alternatively, maximum expected amplitude), the space between the wires will allow the wires to so vibrate freely. The minimum space between wires to allow this is equal to W. For example, wires may be positioned up to 1 cm apart.
- Wires should generally be at least distance W from anything, such as a surface in or on which the wires are installed, to allow the wires to vibrate freely.
- Microphones may be positioned near, for example, within 1 cm of one or more of the wires. In one embodiment, microphone 100 is positioned 1 cm away from the wire, and microphone 200 is placed between the wire and the first microphone, for example 0.5 cm away from the wire.
- Fig. 7 depicts an embodiment of the invention including electronic circuit 901 with two spaced apart conductor grid systems 400A, 400B each including a plurality of spaced apart, substantially parallelly oriented, tensioned conductor wires, each wire with an associated magnet 300 and each wire capable of being driven to emit a sound. While the grid systems could both be driven in response to the operation of one microphone, in this embodiment, each grid system 400A, 400B has at least one microphone for picking up sounds to be reduced. For example, in this embodiment microphones 100, 200 are for driving grid system 400 A and microphones 101, 201, are for driving grid system 400B.
- This embodiment further includes a wifi module 700, processor 500 (the processor including an operating system, memory, software, algorithms, and instructions 600, frequency wave generator module 610, and wave amplifier module 620), and power supply 800.
- the wires 410 may each be made of a conductive material, such as aluminum, copper, steel, or an alloy.
- the wire may be stranded or solid provided it can be tensioned.
- the wire may have a thickness of about 15-45 gauge or approximately 25-35 gauge.
- the wire need not be straight and may be a spring.
- the emitter module 400 and frame 910 may together construct a structure, such as a wall, fence, screen, or tarp.
- the structure for example, can be a window screen where emitter 400 of one or more tensioned wires 410 for noise mitigation extend in one direction, extending from side to opposite side of the screen frame.
- the frame 910 can be made of elongate members such as frame extrusions of non-conductive material. Such a screen may allow fluid communication from one side of the screen to the other.
- Such a screen could be installed in a window opening 915 using, for example, frame extrusions with releasably connectable fasteners 920'.
- the emitter module 400 and frame 910 could be installed on or inside a sheet of material or in a gap (as shown) between sheathing such as two sheets of material 960, such as drywall, wood, fabric, metal, concrete, or glass.
- the wires 410 of the emitter modules 400 in each embodiment are tensioned and can be driven to emit an inverted waveform to cancel noises picked up by the transducers.
- the wires 410 may be tensioned between two opposite sides of the frame 910 on which they are mounted, be it a screen frame, a support frame for sheathing or a frame formed of sheet material.
- these embodiments could allow a person positioned at multiple points (for example, multiple points within area A on an opposite side of the structure from where noise N is occurring) near the structure to benefit from ANR.
- Such a structure, being in the path of the travelling sound wave, may also implement passive noise reduction techniques, such as soundproofing.
- part or all of the circuit 900 may be built on or into a structure, or be behind a structure.
- the frame may be non-conductive.
- each wire 410 may have a different current passed therethrough, such that each wire more accurately negates the noise in its vicinity or range.
- One or more of the plurality of microphones may be monitored continuously, or on a schedule.
- Multiple microphones may serve various purposes, including i) synchronization of inbound and emitted (cancelled) soundwaves, and ii) synchronization of cancelled sound waves over large areas.
- sound waves in air may be affected by several factors, including wind, air density, temperature, pressure and humidity.
- the emitter design resolves the location.
- the speed of sound can be determined by measuring the sound level and time at the first microphone, then the sound level and time at the second level. Using this method the speed of sound is calculated as speed equals distance divided by time, since existing air conditions are being measured, this formula accounts for air density, temperature, pressure and humidity in real time. Wind also affects speed of sound and its direction my cause a slower or faster speed.
- the microphones must be in close proximity (within 1 cm) to the emitter to mitigate the changes of wind affects.
- a single set of microphones may be suitable to measure incoming sound waves, and provide the emitter with effective emitted (cancelling) signals. If needed, sound level measurements can be made across the area to determine if a single set of microphones or a number of sets of microphones are required to best cancel inbound should waves.
- the processor may be capable of calculating (using the output of the microphone or microphones) changing conditions such as a loud truck passing by a traffic noise barrier.
- the emitter may be comprised of numerous smaller emitter areas, each of an area equipped with at least one set of microphones, and each area may be independently controlled for providing an individual emitter with effective cancelling signals.
- An unlimited number of smaller emitters may thus be assembled to perform noise cancellation for larger areas.
- Microphones 100, 200 may be tuned to detect sound in a predetermined vicinity of the given microphone, for example within 1 m in any direction, or within 1 m in a given direction or directions. For example, if noise is expected to come from a particular direction relative to the microphone, the microphone may be tuned to pick up sound in that direction. Conversely, the microphones can be tuned to ignore certain directions in order to avoid cancelling sounds originating from such directions. For example, it may be useful to avoid cancelling sounds coming from a smoke detector located at a known place on the ceiling of a room in which the invention is installed.
- the processor 500 may execute an algorithm for synchronizing the components.
- the processor 500 may be connected to a network, such as a wired or WiFi network, such that the processor can communicate with other devices. This could also enable remote control of the apparatus, for example for it to be powered on and off remotely.
- circuit 900 can include wired or wireless configurations.
- the various components can communicate wirelessly, for example using WiFi or Bluetooth. That is, the microphone 100 or 200, processor 500, and emitter 400 of the same embodiment may each have their own circuits and communicate wirelessly.
- a tensioned wire of approximately 20 gauge was connected between two fixed locations approximately 0.6 metres apart.
- Two bar magnets were installed at one end of the wire’s fixed location such that the wire passed between the poles of the magnet, thereby inducing an electromagnetic force when current was applied.
- An audio speaker was connected to a signal generator and amplifier, and located to project sound into a box.
- the box was configured with an approximately 10 cm sound hole (similar to a guitar sound hole), located directly under and within 0.5 cm of the wire.
- a microphone was installed through the box's side wall to measure sound inside the box. This particular test set up was used to control for ambient sound.
- the present invention may have numerous applications, for example:
- Industrial noise protection such as at a wellbore fracturing (fracking) site, in which the invention is installed in or as a large fence, such as a series of sections of, for example, approximately 20 ft (6.1 m) high by approximately 12 ft (3.7 m) wide, configured to surround or encircle fracking equipment;
- Transducer e.g., Microphone
- a method for active noise reduction comprising sensing one or more characteristics of a sound wave; calculating an inverted sound wave based on the one or more characteristics; and emitting the inverted sound wave by flowing a current, selected according to the inverted sound wave, through a wire under tension that passes through a positive pole of a magnet and a negative pole of the magnet, thereby causing the wire to vibrate.
- Clause 3 The method of any one or more of clauses 1-14, wherein the plurality of locations includes a first location and a second location, and calculating further includes computing a speed of sound between the first location and the second location based on a distance between the first location and the second location, and the one or more characteristics detected over a period of time at each of the first location and the second location.
- Clause 4 The method of any one or more of clauses 1-14, wherein the one or more characteristics includes one or more of a frequency and an amplitude.
- An apparatus for active noise reduction comprising: a microphone configured to detect one or more characteristics of a sound wave detected in a predetermined vicinity of the microphone; a processor coupled to the microphone, configured to calculate an inverted sound wave based on the one or more characteristics; a power supply; and at least one emitter module coupled to the processor, each emitter module including one or more magnets with a positive pole and a negative pole, a wire, made of a conductive material, under tension, that passes between the positive pole and the negative pole, and the power supply configured to deliver a current passing through the wire, the current selected by the processor to vibrate the wire and thereby emit the inverted sound wave.
- Clause 6. The apparatus of any one or more of clauses 1-14, wherein the microphone is positioned within 1 cm of at least one of the one or more wires.
- Clause 7 The apparatus of any one or more of clauses 1-14, wherein the at least one emitter module includes a first emitter module and a second emitter module, and wherein the wire of the first emitter module is substantially parallel to and positioned within 1 cm of the wire of the second emitter module.
- Clause 8 The apparatus of any one or more of clauses 1-14, wherein the at least one emitter module includes a first emitter module and a second emitter module, and wherein the wire of the first emitter module is substantially perpendicular to the wire of the second emitter module.
- Clause 9 The apparatus of any one or more of clauses 1-14, further comprising a second microphone spaced a distance from the microphone; and the processor being further configured to calculate a speed of sound between the microphone and the second microphone based on the distance, and by comparing the sound waves detected over a period of time by the microphone and the second microphone; and the one or more characteristics includes the speed of sound.
- Clause 10 The apparatus of any one or more of clauses 1-14, wherein the one or more characteristics includes one or more of a frequency and an amplitude.
- Clause 11 The apparatus of any one or more of clauses 1-14, further comprising being installed in association with a structure.
- Clause 12 The apparatus of any one or more of clauses 1-14, wherein the structure is one or more of a wall, a tarp, a screen and a fence.
- Clause 13 The apparatus of any one or more of clauses 1-14, further comprising being installed on a frame.
- Clause 14 The apparatus of any one or more of clauses 1-14, wherein the frame is for a window installation.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Abstract
Description
Claims
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CA2019/050597 WO2020223782A1 (en) | 2019-05-03 | 2019-05-03 | Apparatus and method for active noise reduction |
| CA3138951A CA3138951A1 (en) | 2019-05-03 | 2019-05-03 | Apparatus and method for active noise reduction |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CA2019/050597 WO2020223782A1 (en) | 2019-05-03 | 2019-05-03 | Apparatus and method for active noise reduction |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2020223782A1 true WO2020223782A1 (en) | 2020-11-12 |
Family
ID=73050463
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CA2019/050597 Ceased WO2020223782A1 (en) | 2019-05-03 | 2019-05-03 | Apparatus and method for active noise reduction |
Country Status (2)
| Country | Link |
|---|---|
| CA (1) | CA3138951A1 (en) |
| WO (1) | WO2020223782A1 (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20010046303A1 (en) * | 2000-04-21 | 2001-11-29 | Keizo Ohnishi | Active sound reduction apparatus and active noise insulation wall having same |
| US20090175484A1 (en) * | 2008-01-07 | 2009-07-09 | Stephen Saint Vincent | Embedded audio system in distributed acoustic sources |
| US20130251176A1 (en) * | 2012-03-22 | 2013-09-26 | Goto Denshi Co.,Ltd. | Exciter and its installation method, and acoustic transmission member |
-
2019
- 2019-05-03 CA CA3138951A patent/CA3138951A1/en not_active Abandoned
- 2019-05-03 WO PCT/CA2019/050597 patent/WO2020223782A1/en not_active Ceased
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20010046303A1 (en) * | 2000-04-21 | 2001-11-29 | Keizo Ohnishi | Active sound reduction apparatus and active noise insulation wall having same |
| US20090175484A1 (en) * | 2008-01-07 | 2009-07-09 | Stephen Saint Vincent | Embedded audio system in distributed acoustic sources |
| US20130251176A1 (en) * | 2012-03-22 | 2013-09-26 | Goto Denshi Co.,Ltd. | Exciter and its installation method, and acoustic transmission member |
Also Published As
| Publication number | Publication date |
|---|---|
| CA3138951A1 (en) | 2020-11-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US10388266B2 (en) | Planar element for the active compensation of noise in an interior room and anti-noise module therefor | |
| KR20170054963A (en) | Interlayer noise reduction device using a concurrently generating offset vibration | |
| KR101175930B1 (en) | Active Sound Proofing Wall | |
| US10665219B2 (en) | Apparatus and method for active noise reduction | |
| US11151975B2 (en) | Apparatus and method for sound wave generation | |
| WO2020223782A1 (en) | Apparatus and method for active noise reduction | |
| CN116259301B (en) | A semi-coupled active noise reduction method and system | |
| KR102285414B1 (en) | Photovoltaic soundproof wall comprising complex sound generator | |
| CA3138954A1 (en) | Apparatus and method for sound wave generation and active noise reduction | |
| JP2015158542A (en) | Noise reduction method in closed space, and noise reduction system | |
| US20230020879A1 (en) | Plasma based noise reduction system | |
| CN119339700A (en) | A Reactor Chamber Active Noise Control Device and Control Method | |
| JP7166062B2 (en) | NOISE REDUCTION METHOD AND NOISE REDUCTION DEVICE | |
| JP4086743B2 (en) | Noise control device | |
| FI110896B (en) | Sound active damping construction | |
| JP2008028652A (en) | Curtain speaker | |
| JP3802438B2 (en) | Active silencer | |
| JP6164462B2 (en) | Noise reduction system | |
| JP4088425B2 (en) | Active sound reduction device and active sound insulation wall having the same | |
| CN209266014U (en) | A kind of active noise controller | |
| US20190251944A1 (en) | System and Method For Altering Sound Waves | |
| Buikema et al. | Active noise control in practice: transformer station | |
| JP2003253628A (en) | Soundproof wall with noise canceller | |
| KR20210090892A (en) | Sound Wall | |
| Jung et al. | Active noise reduction system using multi-channel ANC |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19927881 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2021565066 Country of ref document: JP Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 3138951 Country of ref document: CA |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| NENP | Non-entry into the national phase |
Ref country code: JP |
|
| 32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/02/2022) |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 19927881 Country of ref document: EP Kind code of ref document: A1 |