[go: up one dir, main page]

WO2020210794A1 - Valve with multi-part frame and associated resilient bridging features - Google Patents

Valve with multi-part frame and associated resilient bridging features Download PDF

Info

Publication number
WO2020210794A1
WO2020210794A1 PCT/US2020/027921 US2020027921W WO2020210794A1 WO 2020210794 A1 WO2020210794 A1 WO 2020210794A1 US 2020027921 W US2020027921 W US 2020027921W WO 2020210794 A1 WO2020210794 A1 WO 2020210794A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame subcomponent
prosthetic valve
anchor frame
subcomponent
leaflet frame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2020/027921
Other languages
French (fr)
Inventor
Dustin C. Burkart
Cody L. Hartman
Roy MANYGOATS, Jr.
Ryan S. TITONE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WL Gore and Associates Inc
Original Assignee
WL Gore and Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WL Gore and Associates Inc filed Critical WL Gore and Associates Inc
Priority to CN202080043443.2A priority Critical patent/CN114007546A/en
Priority to CA3131177A priority patent/CA3131177C/en
Priority to EP20722947.7A priority patent/EP3952790A1/en
Priority to JP2021560035A priority patent/JP7381601B2/en
Priority to AU2020270993A priority patent/AU2020270993B2/en
Priority to US17/603,256 priority patent/US12447014B2/en
Publication of WO2020210794A1 publication Critical patent/WO2020210794A1/en
Anticipated expiration legal-status Critical
Priority to US19/047,539 priority patent/US20250177128A1/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2412Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body with soft flexible valve members, e.g. tissue valves shaped like natural valves
    • A61F2/2418Scaffolds therefor, e.g. support stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0057Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof stretchable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0061Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof swellable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0002Two-dimensional shapes, e.g. cross-sections
    • A61F2230/0028Shapes in the form of latin or greek characters
    • A61F2230/0054V-shaped
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0004Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
    • A61F2250/001Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable for adjusting a diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0014Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis
    • A61F2250/0039Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof having different values of a given property or geometrical feature, e.g. mechanical property or material property, at different locations within the same prosthesis differing in diameter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/006Additional features; Implant or prostheses properties not otherwise provided for modular
    • A61F2250/0063Nested prosthetic parts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0069Sealing means

Definitions

  • the present disclosure relates generally to prosthetic valves, and more specifically multi-part frame prosthetic valve devices, systems and methods.
  • Bioprosthetic valves have been developed that attempt to mimic the function and performance of a native valve.
  • Bioprosthetic valves may be formed from synthetic materials, natural tissue such as biological tissue, or a combination of synthetic materials and natural tissue.
  • transcatheter techniques offer a number of advantages.
  • a transcatheter prosthetic valve that is delivered endovascularly via a catheter can help to minimize patient trauma as compared with an open-heart, surgical procedure.
  • Open-heart surgery involves extensive trauma to the patient, with attendant morbidity and extended recovery.
  • a valve delivered to the recipient site via a catheter avoids the trauma of open-heart surgery and may be performed on patients too ill or feeble to survive the open-heart surgery.
  • Various inventive concepts are disclosed relating to multi-frame prosthetic valves including leaflet and anchor frame subcomponents, where the leaflet frame subcomponent does not directly couple with patient anatomy and is separated from the anchor frame subcomponent by a gap or space.
  • An optional connecting sheath may be provided to interconnect the anchor and leaflet frame subcomponents and assist with delivery of the prosthetic valve in an un-nested, low profile configuration and transition to a nested, deployed configuration.
  • One or more bridging members, or annular groove covers are provided to bridge and cover gap or space between the anchor frame subcomponent and leaflet frame subcomponent, such as at the inflow and/or outflow ends of the subcomponents.
  • Such bridging/cover features can help provide smoother flow profiles into and/or out from the prosthetic valve, reduce incidence of complications associated with emboli, facilitate perfusion during prosthetic valve delivery, assist with telescoping nesting of the subcomponents during delivery, assist with relative positioning of the subcomponents following delivery, or provide any of a variety of additional or functions and advantages.
  • Associated prosthetic valve devices, delivery systems, delivery methods and assembly methods are all
  • a prosthetic valve includes a leaflet frame subcomponent including a leaflet frame and having an inflow end and an outflow end, an anchor frame subcomponent including an anchor frame and having an inflow end and an outflow end, the anchor frame subcomponent coupled to the leaflet frame subcomponent such that the prosthetic valve is configured to be transitioned from a delivery configuration in which the leaflet frame subcomponent and the anchor frame subcomponent are longitudinally offset from one another such that the inflow end of the leaflet frame subcomponent is situated distal of the outflow end of the anchor frame subcomponent to a deployed configuration in which the leaflet frame subcomponent is at least partially nested at a nested position within the anchor frame subcomponent such that the leaflet frame subcomponent and the anchor frame subcomponent define a pair of adjacent inflow end portions, a pair of adjacent outflow end portions and an annular gap between the leaflet frame subcomponent and the anchor frame
  • annular groove cover extending between the pair of adjacent inflow end portions or the pair of adjacent outflow end portions to cover the annular groove between the leaflet frame subcomponent and the anchor frame subcomponent.
  • the annular gap includes an inflow annular groove and the annular groove cover is an inflow annular groove cover coupled between the pair of adjacent inflow end portions to cover the inflow annular groove when the prosthetic valve is in the deployed configuration.
  • the annular gap includes an outflow annular groove and the annular groove cover is an outflow annular groove cover coupled between the pair of adjacent outflow end portions to cover the outflow annular groove when the prosthetic valve is in the deployed configuration.
  • the annular groove cover is configured to be blood-permeable under physiologic conditions prior to the prosthetic valve being transitioned to the deployed configuration.
  • the annular groove cover is configured to less permeable to blood under physiologic conditions when the prosthetic valve is in the deployed configuration than when the prosthetic valve is in the not in the deployed configuration.
  • the annular gap includes an inflow annular groove and an outflow annular groove
  • the annular groove cover is an inflow annular groove cover coupled between the pair of adjacent inflow end portions to cover the inflow annular groove when the prosthetic valve is in the deployed configuration
  • the prosthetic valve further comprises an outflow annular groove cover coupled between the pair of adjacent outflow end portions to cover the outflow annular groove when the prosthetic valve is in the deployed configuration.
  • Example 7 further to Example 6, the outflow annular groove cover is configured to be blood-permeable under physiologic conditions prior to the prosthetic valve being transitioned to the deployed configuration.
  • Example 8 further to either Example 6 or 7, the outflow annular groove cover is configured to be blood impermeable under physiologic conditions prior to the prosthetic valve being transitioned to the deployed configuration.
  • the annular groove cover is transitionable from an extended configuration when the prosthetic valve is in the delivery configuration to a retracted configuration when the prosthetic valve is transitioned to the deployed configuration.
  • the annular groove cover is substantially wrinkle-free in the retracted configuration.
  • the annular groove cover is configured to resiliently transition from the extended configuration to the retracted configuration.
  • the annular groove cover has an annular wall that is configured to angulate relative to a longitudinal axis of the prosthetic valve upon transitioning the annular groove cover from the extended configuration to the retracted configuration.
  • the annular groove cover includes a porous elastic film that when in the extended configuration defines pores large enough to render the porous elastic film blood-permeable under physiologic conditions and when in the retracted configuration the pores are small enough to render the porous elastic film less permeable to blood under physiologic conditions.
  • the annular groove cover includes a composite material formed of a retracted membrane and an elastomer.
  • the annular groove cover includes a retracted membrane microstructure comprising serpentine fibrils.
  • the annular groove cover includes at least one of a pleated configuration, a sinuous folded configuration, and a zig-zag folded configuration when the prosthetic valve is in the deployed configuration and, optionally, the annular groove cover is stretched and has an elastic bias when the prosthetic valve is in the delivery
  • the annular groove cover is configured to provide a bias for translating the leaflet frame subcomponent to the nested position within the anchor frame
  • the bias is sufficient to longitudinally translate the leaflet frame subcomponent into the anchor frame subcomponent when the leaflet frame subcomponent is longitudinally unconstrained relative to the anchor frame subcomponent.
  • At least a portion of the annular groove cover is configured for tissue ingrowth and/or at least a portion of the annular groove cover is configured to resist tissue ingrowth.
  • the prosthetic valve further includes a filler agent operable to fill a volume defined by the annular gap and, optionally, wherein the filler agent includes at least one of: hydrogel, alginate, foam, porous material, collagen, hyaluronic acid, alginic salt, cellulose, chitosan, gelatin, agarose, glycosaminoglycan, polysaccharide, and combinations thereof.
  • the filler agent includes at least one of: hydrogel, alginate, foam, porous material, collagen, hyaluronic acid, alginic salt, cellulose, chitosan, gelatin, agarose, glycosaminoglycan, polysaccharide, and combinations thereof.
  • the prosthetic valve further includes a connecting sheath coupling the leaflet frame subcomponent to the anchor frame subcomponent such that upon transitioning the prosthetic valve to the deployed configuration, the connecting sheath is everted.
  • the annular gap is defined by the anchor frame subcomponent, the connecting sheath, and the leaflet frame subcomponent.
  • the annular groove cover is an inflow annular groove cover coupled to and extending circumferentially adjacent an anchor frame subcomponent inflow end and a leaflet frame subcomponent inflow end, wherein the annular gap is an inflow annular groove formed by the anchor frame subcomponent, the connecting sheath, and the leaflet frame subcomponent, and further wherein the inflow annular groove cover is configured to cover the inflow annular groove when the valve is in the deployed configuration.
  • the prosthetic valve further includes an outflow annular groove cover coupled to and circumferentially extending from adjacent an anchor frame subcomponent outflow end and a leaflet frame subcomponent outflow end, wherein, the annular gap defines an outflow annular groove formed between the anchor frame subcomponent outflow end, the connecting sheath, and the leaflet frame subcomponent outflow end, and further wherein when the valve is in the deployed configuration, the outflow annular groove cover is configured to cover the outflow annular groove.
  • the annular groove cover is an outflow annular groove cover coupled to and
  • the outflow annular groove cover is configured to cover an outflow annular groove formed between the anchor frame subcomponent outflow end, the connecting sheath, and the leaflet frame cover.
  • Example 26 when the prosthetic valve is in the deployed configuration, the inflow annular groove cover and/or the outflow annular groove cover are configured to have lower permeability to blood than when the prosthetic valve is not in the deployed configuration.
  • Example 27 further to any one of Examples 21-26, after initiation, but prior to completion of transitioning the prosthetic valve to a fully deployed configuration the inflow annular groove cover and/or the outflow annular groove cover are configured to be blood permeable.
  • the leaflet frame includes a leaflet frame wall and the leaflet frame
  • subcomponent further includes one or more leaflets coupled to the leaflet frame and a leaflet frame cover coupled to the leaflet frame, the leaflet frame being generally tubular in shape and defining a leaflet frame inflow end and a leaflet frame outflow end.
  • the leaflet frame wall of the leaflet frame includes one or more openings at least partially covered by the leaflet frame cover to define a covered portion of the leaflet frame wall, such that the leaflet frame cover is configured to restrict fluid from passing through the covered portion of the leaflet frame wall.
  • the one or more flexible leaflets coupled to the leaflet frame are operable to open to allow flow from the leaflet frame subcomponent inflow end to pass through the leaflet frame subcomponent outflow end in antegrade flow conditions, and are operable to close to restrict flow from flowing from the leaflet frame subcomponent outflow end through the leaflet frame subcomponent inflow end in retrograde flow conditions.
  • the one or more leaflets comprise a composite material including a porous synthetic fluoropolymer membrane defining pores and an elastomer or elastomeric material filling the pores, and optionally TFE-PMVE copolymer comprising from 27 to 32 weight percent perfluoromethyl vinyl ether and respectively from 73 to 68 weight percent tetrafluoroethylene on at least a portion of the composite material, and optionally, the elastomer or elastomeric material comprises a TFE-PMVE copolymer, and optionally, the porous synthetic fluoropolymer membrane is ePTFE.
  • the anchor frame subcomponent further includes an anchor frame and an anchor frame cover and the anchor frame defines a generally tubular shape, wherein an anchor frame inner surface and an anchor frame outer surface define an anchor frame wall of the anchor frame, and wherein the anchor frame wall defines one or more apertures at least partially covered by the anchor frame cover to define a covered portion of the anchor frame wall such that the anchor frame cover is configured to restrict fluid from passing through the anchor frame wall.
  • Example 33 further to Example 32, the connecting sheath is contiguous with the anchor frame cover and the leaflet frame cover.
  • the connecting sheath is a thin-walled flexible tubular member that defines a connecting sheath lumen in fluid communication with an inner lumen of the anchor frame subcomponent and an inner lumen of the leaflet frame subcomponent, and wherein the connecting sheath is operable to fold and evert when the leaflet frame subcomponent is transitioned from the undeployed configuration to the deployed configuration such that the connecting sheath lies between the leaflet frame
  • the connecting sheath comprises flow enabling features in a wall of the connecting sheath, the wall extending between a connecting sheath inflow end and a connecting sheath outflow end, wherein the flow enabling features are operable to allow antegrade fluid flow through the connecting sheath wall and prevent retrograde flow through the connecting sheath wall after initiation, but prior to completion of transitioning the prosthetic valve to a fully deployed configuration.
  • the connecting sheath comprises an inner film layer and an outer film layer, the inner film layer and the outer film layer being coupled together at least at a leaflet frame subcomponent inflow end and an anchor frame subcomponent outflow end, the inner film defining at least one inner film aperture therethrough adjacent the anchor frame subcomponent outflow end and the outer film layer defining at least one outer film aperture therethrough adjacent the leaflet frame subcomponent, the inner film layer and the outer film layer being not coupled at least between one of the inner film apertures and one of the outer film apertures so as to define a flow space therebetween operable to permit antegrade blood flow and restrict retrograde flow therethrough after initiation, but prior to completion of transitioning the prosthetic valve to a fully deployed
  • the connecting sheath comprises an inner film layer and an outer film layer, the inner film layer and the outer film layer being coupled together at least at an anchor frame subcomponent outflow end, the inner film defining at least one inner film aperture therethrough adjacent the anchor frame subcomponent outflow end, the inner film layer and the outer film layer being not coupled at least downstream of the inner film apertures so as to define a flow space therebetween operable to permit antegrade blood flow with the inner film layer separating from the outer film layer at the inner film aperture and restrict retrograde flow therethrough with the inner film layer coming together and covering the inner film aperture after initiation, but prior to completion of transitioning the prosthetic valve to a fully deployed configuration.
  • the anchor frame when the prosthetic valve is in the deployed configuration, defines a flared portion at the inflow end of the anchor frame subcomponent that flares or tapers radially outward.
  • the prosthetic valve has a smaller diameter in the delivery configuration than in the deployed configuration.
  • the anchor frame subcomponent in the deployed configuration, has an inner surface defining an inner diameter larger than the portion of the leaflet frame
  • a method of treating a native valve of a patient’s anatomy includes advancing a prosthetic valve in a delivery configuration to a treatment site within a patient’s anatomy, wherein in the delivery configuration a leaflet frame subcomponent and an anchor frame subcomponent of the prosthetic valve are longitudinally offset from one another such that a leaflet frame subcomponent inflow end of the leaflet frame subcomponent is situated distal of an anchor frame subcomponent inflow end of the anchor frame subcomponent, deploying the anchor frame within a tissue annulus, and nesting the leaflet frame subcomponent within the anchor frame subcomponent by changing a relative longitudinal position between the leaflet frame subcomponent and the anchor frame subcomponent such that the leaflet frame subcomponent is at least partially nested at a nested position within the anchor frame subcomponent such that the leaflet frame subcomponent and the anchor frame subcomponent define a pair of adjacent inflow end portions, a pair of adjacent outflow end portions and an annular gap
  • annular groove cover of the prosthetic valve that extends between the pair of adjacent inflow end portions or the pair of adjacent inflow end portions transitions from an extended configuration to a retracted configuration to cover the annular gap.
  • Example 42 further to Example 41 , the method further includes fully deploying the prosthetic valve at the treatment site to selectively control blood flow at the treatment site.
  • the leaflet frame subcomponent is nested within the anchor frame subcomponent after the anchor frame subcomponent is deployed at the treatment site.
  • Example 44 further to any one of Examples 41 -43, the prosthetic valve is advanced to the treatment site via a catheter.
  • nesting the leaflet frame subcomponent within the anchor frame subcomponent includes drawing the leaflet frame subcomponent proximally relative to the anchor frame subcomponent.
  • the method further includes securing the prosthetic valve to a tissue annulus of the native valve such that the prosthetic valve is operable to transition between an open position wherein antegrade fluid flow is permitted, and a closed position wherein retrograde fluid flow is inhibited.
  • deploying the anchor frame within a tissue annulus includes releasing constraining elements of a delivery system onto which the prosthetic valve has been coupled to facilitate deployment of the anchor frame to a larger diameter.
  • the method further includes recompressing the anchor frame to a smaller diameter after deploying the anchor frame to facilitate repositioning of the prosthetic valve.
  • deploying the anchor frame within a tissue annulus includes releasing constraining elements operable to expand the flange portion or flange element so as to position the flange portion or flange element against the tissue annulus.
  • a method of treating a patient with a prosthetic valve according to any one of Examples 1 -40 includes delivering the prosthetic valve to a treatment site in a body of a patient, and deploying the prosthetic valve at the treatment site in the body of the patient.
  • a prosthetic valve includes a leaflet frame subcomponent including a leaflet frame and having an inflow end and an outflow end, a leaflet subcomponent operably coupled to the leaflet frame
  • an anchor frame subcomponent including an anchor frame and having an inflow end and an outflow end, the leaflet frame subcomponent being configured to be in a nested configuration at a nested position at least partially within the anchor frame subcomponent, and one or more bridging members coupled between the leaflet frame subcomponent and the anchor frame subcomponent to bridge an annular gap defined between the anchor frame subcomponent and the leaflet frame subcomponent in the nested configuration, the one or more bridging members being resiliently extendible and retractable in length between an extended configuration and a retracted configuration such that the leaflet frame subcomponent is translatable longitudinally relative to the anchor frame subcomponent.
  • the one or more bridging members include an annular membrane configured to cover the annular gap defined between the leaflet frame subcomponent and the anchor frame subcomponent when the leaflet frame subcomponent is in the nested configuration.
  • the one or more bridging members include a proximal bridging member coupled between a proximal end portion of the anchor frame subcomponent and a proximal end portion of the leaflet frame subcomponent.
  • the one or more bridging members include an outflow bridging member coupled between an outflow end portion of the anchor frame subcomponent and an outflow end portion of the leaflet frame subcomponent.
  • the one or more bridging members include a bridging member that is configured to be blood impermeable under physiologic conditions.
  • the one or more bridging members include a bridging member that is configured to be blood-permeable under physiologic conditions when the leaflet frame subcomponent is in an un-nested configuration with the anchor frame subcomponent.
  • Example 57 further to any one of Examples 51 -56, the one or more bridging members are substantially wrinkle-free in the retracted configuration.
  • the one or more bridging members includes an elastomeric material.
  • the one or more bridging members include an annular wall that is configured to angulate relative to a longitudinal axis of the prosthetic valve upon transitioning the leaflet frame subcomponent from an un-nested configuration with the anchor frame subcomponent to the nested configuration.
  • the one or more bridging members include a membrane and a plurality of elastomeric members associated with the membrane.
  • the one or more bridging members includes a porous elastic film that when the one or more bridging members are in the extended configuration the porous elastic film defines pores that render the one or more bridging members blood- permeable under physiologic conditions in the extended configuration and less permeable to blood under physiologic conditions it the retracted configuration.
  • the one or more bridging members includes a composite material formed of a retracted membrane and an elastomer.
  • the one or more bridging members includes a retracted membrane microstructure comprising serpentine fibrils.
  • the one or more bridging members are configured to provide a bias for translating the leaflet frame subcomponent to the nested configuration.
  • Example 66 further to any one of Examples 51 -65, at least a portion of the one or more bridging members is configured for tissue ingrowth, and/or wherein at least a portion of the one or more bridging members is configured to resist tissue ingrowth.
  • the prosthetic valve further includes a connecting sheath coupling the leaflet frame subcomponent to the anchor frame subcomponent such that upon transitioning the leaflet frame subcomponent from an un-nested configuration with the anchor frame subcomponent to the nested configuration, the connecting sheath is everted.
  • Example 68 further to Example 67, the anchor frame subcomponent, the connecting sheath, and the leaflet frame
  • the leaflet frame subcomponent define an annular gap
  • the one or more bridging members act to inhibit blood flow passing through the annular gap when the leaflet frame subcomponent is in the nested position and the leaflet subcomponent is operable to facilitate antegrade blood flow and the inhibit retrograde blood flow through the prosthetic valve.
  • the connecting sheath comprises flow enabling features in a wall of the connecting sheath, the wall extending between a connecting sheath inflow end and a connecting sheath outflow end, wherein the flow enabling features are operable to allow antegrade fluid flow through the connecting sheath wall and prevent retrograde flow through the connecting sheath wall after initiation, but prior to completion of transitioning the prosthetic valve from a compacted, delivery configuration to an expanded, fully deployed configuration.
  • the prosthetic valve further includes a filler operable to be delivered into an annular gap between the leaflet frame subcomponent and the anchor frame subcomponent when the leaflet frame subcomponent is in the nested configuration and the prosthetic valve is fully deployed at a treatment site.
  • a filler operable to be delivered into an annular gap between the leaflet frame subcomponent and the anchor frame subcomponent when the leaflet frame subcomponent is in the nested configuration and the prosthetic valve is fully deployed at a treatment site.
  • FIG. 1 is a side view of a prosthetic valve in a compressed pre-deployed configuration, according to some embodiments
  • FIGS. 2A-2D are side views of the prosthetic valve of FIG. 1 in expanded pre-deployed configurations, according to some embodiments;
  • FIGS. 3A, 3B, and 4 show a prosthetic valve in a fully-deployed configuration, according to some embodiments
  • FIGS. 5 and 6 show an anchor frame of a prosthetic valve, according to some embodiments
  • FIG. 7 is an axial view of a leaflet frame subcomponent, according to some embodiments.
  • FIG. 8 is a side view of a leaflet frame of a prosthetic valve, according to some embodiments.
  • FIG. 9 is an isometric view of nested, expanded anchor and leaflet frames of a prosthetic valve, with other portions removed for visualization purposes, according to some embodiments;
  • FIGS. 10A-10E show various views of assemblies and components associated with flow enabling features of a connecting sheath of a prosthetic valve, according to some embodiments
  • FIGS. 11 A-11 H are simplified longitudinal sections of a prosthetic valve showing bridging members, or annular groove covers, in extended and retracted configurations, according to some embodiments;
  • FIG. 12 shows a prosthetic valve and associated delivery device, according to some embodiments;
  • FIGS. 13A-13G are simplified longitudinal sections of a prosthetic valve in various stages of deployment, according to some embodiments;
  • FIGS. 14A-14C show prosthetic valves as implanted in varying patient anatomies, according to some embodiments.
  • FIGS. 15A-15L are illustrative of a delivery device and deployment sequence for treating a patient with a prosthetic valve, according to some embodiments.
  • FIG. 16 shows a delivery device and prosthetic valve as implanted in a patient anatomy, according to some embodiments.
  • “approximately” may be used, interchangeably, to refer to a measurement that includes the stated measurement and that also includes any measurements that are reasonably close to the stated measurement. Measurements that are reasonably close to the stated measurement deviate from the stated measurement by a reasonably small amount as understood and readily ascertained by individuals having ordinary skill in the relevant arts. Such deviations may be attributable to measurement error or minor adjustments made to optimize performance, for example.
  • A“prosthetic valve” may be configured to replace a native valve, such as any of the cardiac valves (e.g., aortic, mitral, or tricuspid) or other bodily valves (e.g., vascular valves).
  • Such prosthetic valves may include leaflets that are flexible and fabricated from biological tissue, synthetic materials, or combinations thereof.
  • the leaflets are coupled onto a relatively more rigid frame that supports the leaflets and provides dimensional stability when implanted.
  • the leaflets move under the influence of fluid pressure where, in operation, the leaflets open when the upstream fluid pressure exceeds the downstream fluid pressure and close when the downstream fluid pressure exceeds the upstream fluid pressure.
  • the free edges of the leaflets generally coapt under the influence of the downstream fluid pressure, which closes the valve to prevent downstream blood from flowing retrograde through the valve.
  • the free edges of the leaflets separate, or move away from one another under the influence of upstream fluid pressure to permit flow antegrade through the valve.
  • leaflet or“leaflet construct”, which comprises a plurality of leaflets, as used herein in the context of prosthetic valves is a component of a one-way valve wherein the leaflet is operable to move between an open and closed position under the influence of a pressure differential. In an open position, the leaflet allows fluid (e.g., blood) to flow through the valve. In a closed position, the leaflet substantially blocks retrograde flow through the valve by occluding the prosthetic valve orifice. In embodiments comprising multiple leaflets, each leaflet cooperates with at least one neighboring leaflet or secondary structure to block the retrograde flow of blood.
  • fluid e.g., blood
  • the pressure differential in the blood is caused, for example, by the contraction of a ventricle or atrium of the heart, such pressure differential typically resulting from a fluid pressure building up on one side of the leaflets when closed, for example, by the contraction of a ventricle or atrium of the heart.
  • the leaflets open and blood flows therethrough.
  • the pressure on the inflow side equalizes with the pressure on the outflow side.
  • the leaflet returns to the closed position generally preventing retrograde flow of blood through the valve.
  • leaflets where not required by the specific design or mode of function of the disclosed embodiment, may be rigid such as in mechanical valves or may be flexible as in bioprosthetic and synthetic valves. It is further appreciated that, although embodiments provided herein include a frame that supports the leaflets, the leaflets may not necessarily be supported by a frame. In other embodiments, the leaflets may be constructed as in the tissue valve art that are formed into the desired shape without a frame.
  • frame refers to any structure or support used to directly or indirectly support leaflets for use in the prosthetic valve. It will be understood that, where appropriate, that the term frame may be used
  • the leaflets may be supported by the wall of a solid-walled conduit, the solid-walled conduit being understood to be a frame or support structure.
  • tubular as used herein includes tubes having a constant diameter along the length of the tube, and tubes having a variable diameter along the length of the tube, such as, but not limited to, a taper, a non-circular transverse profile or irregular circumference, and the like.
  • a tubular member may have a variable diameter along its length in at least one configuration of the tubular member.
  • a tubular member may have a generally constant diameter in a delivery configuration, and a variable diameter in a deployed or pre-deployed
  • tubular does not require a circular profile, but may also include irregular profiles, such as, but not limited to, out-of-round profiles, elliptical profiles, square profiles, and the like.
  • bridging member is inclusive of the term“annular groove cover,” and thus attributes described herein in association with an“annular groove cover” are generally applicable to a“bridging member” and vice versa.
  • tissue annulus is inclusive of native cardiac valve structures, vasculature, and other anatomical features.
  • membrane refers to a sheet of material comprising a single composition, such as, but not limited to, expanded fluoropolymer.
  • composite material refers to a material including two or more material components with one or more different material properties from the other.
  • a composite material includes at least a first material component in the form of a membrane and a second material component in the form of a polymer that is combined with the membrane (e.g., by coating and/or imbibing processes).
  • laminate refers to multiple layers of membrane, composite material, or other materials, such as, but not limited to a polymer, such as, but not limited to an elastomer, elastomeric or non-elastomeric material, and combinations thereof.
  • film refers to one or more of the membrane, composite material, or laminate.
  • the term“elastomer” refers to a polymer or a mixture of polymers that has the ability to be stretched to at least 1.3 times its original length and to retract rapidly to approximately its original length when released.
  • elastomeric material refers to a polymer or a mixture of polymers that displays stretch and recovery properties similar to an elastomer, although not necessarily to the same degree of stretch and/or recovery.
  • non-elastomeric material refers to a polymer or a mixture of polymers that displays stretch and recovery properties not similar to either an elastomer or elastomeric material, that is, considered not an elastomer or elastomeric material as is generally known.
  • resilient refers to the ability to recoil or spring back into shape after bending, stretching, or being compressed.
  • wrinkle-free refers to freedom from creases, folds or wrinkles visible to the naked eye (i.e. , on a gross scale).
  • biocompatible material refers to any material with biocompatible characteristics including synthetic materials, such as, but not limited to, a biocompatible polymer, or a biological material, such as, but not limited to, bovine pericardium.
  • Biocompatible material may comprise a first film and a second film as described herein for various embodiments.
  • a prosthetic valve includes a leaflet frame subcomponent that does not directly couple with a tissue annulus or other anatomical feature in which the prosthetic valve is received.
  • the leaflet frame subcomponent and the anchor frame subcomponent generally define a gap, or space between the two.
  • a connecting sheath, interconnecting the two may extend longitudinally between the leaflet frame subcomponent and the anchor frame subcomponent when the leaflet frame subcomponent is not nested within the anchor frame subcomponent. Then, when the leaflet frame subcomponent is nested within the anchor frame subcomponent, the connecting sheath is optionally everted and extends within the space between the two.
  • annular groove covers may additionally or alternatively connect the leaflet frame subcomponent and anchor frame subcomponent.
  • the bridging members are annular members (e.g., annular membranes) configured to cover annular grooves or gap between anchor frame subcomponent and leaflet frame subcomponent.
  • the leaflet frame subcomponent floats, or is otherwise held in a mechanically isolated position within the anchor frame
  • the leaflet frame subcomponent may conform to the patient anatomy (e.g., shape of the tissue annulus), while the leaflet frame subcomponent is not required to conform to the anatomy, or altered in shape by engagement with the anatomy.
  • the leaflet frame subcomponent can retain a desired shape (e.g., a right circular hollow cylinder) so as to present the leaflets with a geometrically stable platform that promotes proper, repeatable leaflet function, including opening and closing leaflet dynamics and coaptation.
  • a desired shape e.g., a right circular hollow cylinder
  • the anchor frame subcomponent can deform, (e.g., by being out of round or generally oval-shaped), to accommodate or otherwise conform to a native valve tissue annulus without causing a deformation of the leaflet frame subcomponent.
  • the inflow annular groove cover (also described as a proximal annular groove cover) and/or the outflow annular groove cover (also described as an outflow annular groove cover) may assist with maintaining the relative positioning of the leaflet frame subcomponent within the anchor frame subcomponent when the prosthetic valve is fully deployed.
  • the inflow annular groove cover and/or outflow annular groove cover may be resiliently retractable and extendible, such that the groove cover(s) are able to be transitioned between extended and retracted configurations.
  • the inflow annular groove cover is operable to contract within the lumen of the anchor frame subcomponent from a relatively extended configuration to a relatively retracted configuration adjacent the anchor frame subcomponent inflow end.
  • the inflow annular groove cover and/or the outflow annular groove cover can present from the extended configuration to the retracted configuration during nesting and expansion of the leaflet frame subcomponent within the anchor frame subcomponent such that the inflow annular groove cover and/or the outflow annular groove cover take on relatively flatter shapes as the groove cover(s) contract.
  • the annular groove cover(s) may have an angular wall that is defined as the cover(s) contract and angulate as they transition from a lower angle (shallower angle) relative to a longitudinal axis of the prosthetic valve to a higher angle (steeper angle) relative to the longitudinal axis of the prosthetic valve.
  • the groove cover(s) extend approximately perpendicularly between the walls of the leaflet frame subcomponent and the anchor frame subcomponent in the retracted configuration.
  • the inflow annular groove cover is coupled between a pair of adjacent proximal end portions (also described as inflow end portions) of the respective leaflet and anchor frame
  • the outflow annular groove cover is coupled between a pair of adjacent outflow end portions (also described as outflow end portions) of the respective leaflet and anchor frame subcomponents.
  • the inflow annular groove cover first end can be coupled to the anchor frame subcomponent inflow end (also described as a proximal end) and the inflow annular groove cover second end can be coupled to the leaflet frame subcomponent inflow end (again, optionally described as a proximal end).
  • the outflow annular groove cover first end can be coupled to the anchor frame subcomponent outflow end (also described as a distal end) and the outflow annular groove cover second end can be coupled to the leaflet frame
  • subcomponent outflow end also described as a distal end.
  • the one or more bridging members are configured to bridge, or extend across, an annular space, or annular gap between the anchor frame subcomponent and the leaflet frame subcomponent when the leaflet frame subcomponent is translated longitudinally and nested within the anchor frame subcomponent.
  • the annular groove covers are operable to cover annular gaps or grooves, such as an inflow annular groove or an outflow annular groove, respectively, defined by the anchor frame subcomponent, the connecting sheath, and the leaflet frame subcomponent at an inflow end or outflow end,
  • the inflow annular groove cover and/or the outflow annular groove cover extend between the leaflet frame subcomponent inflow end and the anchor frame subcomponent inflow end with the inflow annular groove cover operable to cover and restrict fluid flow into, or out from, the inflow annular groove.
  • the outflow annular groove cover extends between the leaflet frame subcomponent outflow end and the anchor frame
  • the inflow annular groove cover and/or the outflow annular groove cover operable to cover and restrict fluid flow into, or out from, the outflow annular groove.
  • the inflow annular groove cover and/or the outflow annular groove cover is less permeable to blood (e.g., blood impermeable under physiologic conditions) when in the retracted configuration.
  • the inflow annular groove cover and/or the outflow annular groove cover may also be configured to be blood-permeable under physiologic conditions when in the extended configuration. For example, after initiation, but prior to completion of transitioning the prosthetic valve to a fully deployed configuration the inflow annular groove cover and/or the outflow annular groove cover are configured to be blood permeable.
  • FIG. 1 is a side view of the prosthetic valve 1000 in a pre-deployed state, where the prosthetic valve 1000 is in a delivery, un-nested configuration.
  • the prosthetic valve 1000 includes an anchor frame subcomponent 1100, a leaflet frame subcomponent 1200 in coaxial alignment with the anchor frame subcomponent 1100, a connecting sheath 1300 extending between and in coaxial serial alignment with the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200, an inflow annular groove cover 1400 (hidden, but indicated in broken lines), and an outflow annular groove cover 1500 (shown in cross-section).
  • the prosthetic valve 1000 may be carried in the pre-deployed configuration on a delivery device 1600.
  • the prosthetic valve 1000 provides a leaflet frame subcomponent 1200 that essentially floats within the anchor frame subcomponent 1100 and does not directly couple with the anchor frame subcomponent 1100 nor the native valve tissue annulus.
  • the anchor frame subcomponent 1100 may conform to the shape of the native valve tissue annulus whereas the leaflet frame subcomponent 1200 does not conform to the shape of the native valve tissue annulus.
  • the leaflet frame subcomponent 1200 remains a right circular hollow cylinder or at a predetermined geometrical configuration so as to present the valve leaflet(s) with a geometrically stable platform ensuring proper leaflet function, including opening and closing dynamics and, for flexible leaflets, coaptation. It is appreciated that these benefits associated with the leaflet frame subcomponent 1200 not needing to conform to the native valve tissue annulus may be realized in either transcatheter or surgical placement of the prosthetic valve 1000.
  • the prosthetic valve 1000 is configured such that the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 can be nested in-situ after the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are deployed to a treatment site in a patient’s anatomy. That is, in various embodiments, the prosthetic valve 1000 can be delivered to a treatment region within a patient’s anatomy with the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200
  • the prosthetic valve 1000 is loaded onto a delivery catheter with the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 longitudinally offset relative to one another which presents a lower profile or diameter than if the prosthetic valve 1000 were to be loaded onto the delivery catheter in the nested configuration.
  • a lower delivery profile of a transcatheter delivered prosthetic valve has well recognized advantages, including easier advancement though vessels.
  • the anchor frame subcomponent 1100 may be more easily sutured into the native valve tissue annulus without the leaflet frame subcomponent 1200 being within the anchor frame subcomponent 1100 and in close proximity to the suturing procedure lessening the chance of needle damage to the leaflets.
  • FIGS. 2A-2D are each a side view of different variations of the prosthetic valve 1000 each in an expanded, un-nested configuration showing the leaflet frame subcomponent 1200 and the anchor frame subcomponent 1100 having each been expanded to larger diameters relative to what they exhibit in the compressed
  • FIG. 3A is an axial view from the inflow side of the prosthetic valve 1000 in a fully deployed, nested configuration with the leaflet frame subcomponent 1200 nested within the anchor frame subcomponent 1100 at a nested position, according to some examples.
  • FIG. 3B is an isometric view of the prosthetic valve 1000 in the fully deployed, nested configuration with both the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 transitioned to a fully expanded configuration.
  • FIG. 3A is an axial view from the inflow side of the prosthetic valve 1000 in a fully deployed, nested configuration with the leaflet frame subcomponent 1200 nested within the anchor frame subcomponent 1100 at a nested position, according to some examples.
  • FIG. 3B is an isometric view of the prosthetic valve 1000 in the fully deployed, nested configuration with both the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 transitioned to a fully expanded configuration.
  • FIG. 4 is an axial view of the prosthetic valve 1000 from the inflow end in the deployed configuration showing the anchor frame subcomponent 1100, the leaflet frame subcomponent 1200, and the connecting sheath 1300 therebetween, and the inflow annular groove cover 1400 shown as being transparent for clarity of visualizing the other components.
  • the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are generally tubular shaped and operable to have a smaller delivery configuration diameter and a larger deployed configuration diameter, facilitated by balloon expansion and/or self-expansion deployment means.
  • the anchor frame subcomponent 1100 includes an anchor frame 1120 and an anchor frame cover 1132 as shown in FIGS. 2A-2D.
  • FIG. 5 is a side view of the anchor frame 1120 and
  • FIG. 6 is an axial view of the anchor frame 1120.
  • the anchor frame wall 1105 of the anchor frame 1120 may be at least partially covered by the anchor frame cover 1132 (e.g., a film or fabric, FIGS. 2A-2D) that is suitable for desired effect, such as to restrict fluid from passing through the anchor frame wall 1105 of the anchor frame 1120, to encourage tissue ingrowth of the anchor frame subcomponent 1100 with the implant site, or alternative or additional purposes as desired.
  • the anchor frame cover 1132 e.g., a film or fabric, FIGS. 2A-2D
  • the anchor frame cover 1132 may be coupled to the inner surface, outer surface, or both inner surface and outer surface of the anchor frame 1120.
  • the following examples are suitable especially for a transcatheter application, but are also suitable for a surgical application.
  • the anchor frame 1120 is a generally tubular member having an anchor frame inflow end 1122 corresponding to an anchor frame subcomponent inflow end 1102 (FIGS. 2A-2D, also described as a proximal end), an anchor frame outflow end 1124 corresponding to an anchor frame subcomponent outflow end 1104 (FIGS. 2A-2D, also described as a distal end), an anchor frame inner surface 1106 and an anchor frame outer surface 1108 defining an anchor frame wall 1105, wherein the anchor frame inner surface 1106 defines an anchor frame
  • subcomponent 1100 defines an inflow end portion and an outflow end portion proximate the anchor frame subcomponent inflow end 1102 and the anchor frame subcomponent outflow end 1104, respectively.
  • the anchor frame subcomponent lumen 1140 is a generally cylindrical void defined between the anchor frame subcomponent inflow end 1102 (FIGS. 2A-2D) and the anchor frame subcomponent outflow end 1104 (FIGS. 2A- 2D), and the anchor frame inner surface 1106 of the anchor frame subcomponent 1100.
  • the anchor frame subcomponent lumen 1140 may adopt an irregular cross section, depending on the geometry of the tissue annulus into which it is placed and the conformity of the anchor frame subcomponent 1100 to the tissue annulus at the implant site.
  • the anchor frame 1120 is configured to couple or otherwise be secured to a native valve tissue annulus.
  • a diameter of the anchor frame 1120 e.g., a diameter of the anchor frame outer surface 1108, and essentially the diameter of the anchor frame subcomponent outer surface 1109 (FIGS. 2A-2D) of the anchor frame subcomponent 1100 is sized in accordance with patient anatomy.
  • a diameter of an exterior surface of the anchor frame subcomponent 1100 in a range of between twenty-five (25) millimeters and fifty (50) millimeters, depending on a patient’s anatomy.
  • anchor frames 1120 having diameters e.g., a diameter of an anchor frame outer surface 1108) less than twenty-five (25) millimeters and more than fifty (50) millimeters are also envisioned and fall within the scope of the present disclosure, depending on patient anatomy.
  • anchor frame subcomponent inner surface 1107 (shown generically in FIG. 4) of the anchor frame subcomponent 1100 has a diameter at least slightly larger than the outer surface of the leaflet frame subcomponent 1200 to facilitate nesting of the leaflet frame subcomponent 1200 telescopically within the anchor frame subcomponent 1100 and to allow the leaflet frame subcomponent 1200 to float, or otherwise be held in a mechanically isolated position within the anchor frame subcomponent 1100.
  • the anchor frame 1120 is elastically deformable so as to be self-expanding.
  • the anchor frame 1120 comprises a shape memory material operable to flex under load and retain its original shape when the load is removed, thus allowing the anchor frame subcomponent 1100 to self-expand from a compressed shape to a predetermined larger shape.
  • the anchor frame 1120 may comprise the same or different materials as the leaflet frame, described in further detail below.
  • the anchor frame 1120 is plastically deformable, such that it may be mechanically expanded by a radial expansion force, such as with a balloon.
  • the anchor frame 1120 defines a tubular mesh having a framework defining apertures or voids 1116 as shown in FIG. 5.
  • the anchor frame 1120 includes a plurality of frame members 1112 that are interconnected and arranged in one or more patterns. In some examples, these patterns repeat one or more times.
  • the frame members 1112 are arranged and interconnected such that the anchor frame 1120 includes a plurality of patterned rows. In various examples, the frame members 1112 are connected to one another at various joints 1114.
  • these joints 1114 operate as flex points so as to provide a preferential flexing location for the anchor frame 1120 to flex when compressed to a smaller delivery diameter and when forces from the surrounding anatomy act to compress the anchor frame 1120 during normal operation after delivery and deployment of the prosthetic valve 1000.
  • a flex point or joint 1114 may comprise a site on the anchor frame 1120 that undergoes a high degree of bending.
  • the joints 1114 have a geometry, structural modification or material modification, among others, that biases the anchor frame 1120 to preferentially bend at the flex point or joint 1114 when compressed.
  • one or more closed cell apertures or voids 1116 are defined between the joints 1114 and the interconnected frame members 1112 of the anchor frame 1120. As shown, such apertures or voids 1116 can extend from the anchor frame outer surface 1108 to the anchor frame subcomponent inner surface 1107 of the anchor frame 1120. As illustrated in the embodiments of FIGS. 5 and 6, one or more of the apertures or voids 1116 define a diamond shape when the anchor frame 1120 is in a deployed configuration.
  • one or more of the joints 1114 and the frame members 1112 deform such that the apertures or voids 1116 generally define an elongated diamond shape (e.g., as shown generally in FIG. 1 ).
  • the apertures or voids 1116 expand to define the generally wider diamond shape.
  • the interconnected frame members 1112 may be arranged in a number of alternative patterns.
  • a framework of the anchor frame 1120 can define any number of features, repeatable or otherwise, such as geometric shapes and/or linear or meandering series of sinusoids.
  • Geometric shapes can comprise any shape that facilitates circumferential compressibility and expandability of the anchor frame 1120. That is, a number of alternative patterns are envisioned where the arrangement of frame members 1112 is configured in such a manner as to provide for an anchor frame 1120 that can be compressed to a smaller diameter for
  • transcatheter delivery and subsequently expanded (or allowed to expand) to a larger diameter at a treatment site during deployment of the prosthetic valve 1000.
  • the disclosure should not be read as being limited to arrangements of the frame members 1112 that define diamond-shaped apertures or voids 1116.
  • the anchor frame 1120 may comprise or otherwise be formed from a cut tube, or any other element suitable for the particular purpose of the anchor frame 1120 as described herein.
  • the anchor frame 1120 may be etched, cut, laser cut, or stamped into a tube or a sheet of material, with the sheet then formed into a tubular structure.
  • an elongated material such as a wire, bendable strip, or a series thereof, can be bent or braided and formed into a tubular structure wherein the wall of the tube comprises an open framework that is compressible to a smaller diameter in a generally uniform and circumferential manner and expandable to a larger diameter as illustrated and described herein.
  • the anchor frame 1120 is elastically deformable so as to be self-expanding under spring loads, as those of skill will appreciate.
  • the anchor frame 1120 is plastically deformable so as to be mechanically expanded such as with a balloon, as those of skill will appreciate.
  • the anchor frame 1120 is plastically deformable as well as elastically deformable. That is, in some examples, the anchor frame 1120 includes one or more elastically deformable components or features and one or more plastically deformable components or features.
  • the examples of the anchor frame 1120 presented herein are not to be limited to a specific design or mode of expansion.
  • the anchor frame subcomponent 1100 is configured to provide positive engagement with an implant site to firmly anchor the prosthetic valve 1000 to the site.
  • Such positive engagement with the implant site may be facilitated by one or more of the following, but not limited thereto: expansion spring bias of the anchor frame 1120; hoop strength of the expanded anchor frame 1120, tissue engagement features, and the geometric shape, contour and/or texture of the anchor frame subcomponent outer surface 1109.
  • the anchor frame subcomponent 1100 (e.g., anchor frame 1120) includes one or more tissue engagement features 1118 that are configured to engage one or more regions of tissue at the tissue orifice surrounding the prosthetic valve 1000.
  • the tissue engagement features 1118 comprise one or more barbs or tissue anchors and may be integral or separately formed from the anchor frame 1120.
  • the anchor frame subcomponent 1100 can define a flange or a flared portion 1130 at the anchor frame subcomponent inflow end 1102 that flares or tapers radially outward when in the deployed configuration.
  • the flared portion 1130 results in the anchor frame subcomponent inflow end 1102 having a larger deployed diameter than does the anchor frame subcomponent outflow end 1104.
  • such a configuration can help to minimize migration risks and facilitate abutment of the anchor frame subcomponent 1100 with tissue annulus at the implant site.
  • the anchor frame subcomponent 1100 may include a flange element 1150 separate from, adjacent to, and coaxial with the anchor frame inflow end 1122 of the anchor frame 1120.
  • FIG. 2C is a side view of the prosthetic valve 1000 in an expanded pre-deployed configuration showing the leaflet frame subcomponent 1200 and the anchor frame subcomponent 1100 having been expanded to larger diameters so as to show the details of the flange element 1150 as compared with an integral flange or flared portion 1130 of the anchor frame inflow end 1122 of anchor frame 1120 of the embodiment of FIGS 2A and 2B.
  • the flange element 1150 defines a flange or a flared portion 1130 of the anchor frame subcomponent 1100 that also defines the anchor frame subcomponent inflow end 1102 that flares or tapers radially outward when in the deployed configuration.
  • the flange element 1150 is a generally tubular member of substantially the same construction as the anchor frame 1120.
  • the flange element 1150 has a flange element inflow end 1152, a flange element outflow end 1154, a flange element inner surface 1156, and a flange element outer surface 1158 defining a flange element wall 1155 defining flange voids 1157.
  • the flange element inner surface 1156 defines a portion of the anchor frame subcomponent lumen 1140 therethrough.
  • the flange element 1150 may adopt an irregular cross section, depending on the geometry of the tissue annulus into which it is placed and the conformity of the flange element 1150 to the tissue annulus at the implant site.
  • the flange element 1150 is coupled to the anchor frame inflow end 1122 by the anchor frame cover 1132 which is described below.
  • the flange element 1150 defines a flange element inflow end 1152 and a flange element outflow end 1154.
  • the flange element 1150 is located adjacent to, coaxial with, and axially spaced apart from the anchor frame 1120, with the flange element outflow end 1154 adjacent to but separate from the anchor frame inflow end 1122.
  • FIG. 2C shows the flange element 1150 flaring outward in a trumpet shape having a concave curvature to the flange element outer surface 1158.
  • FIG. 2D shows another embodiment of the flange element 1150 wherein the flange element outer surface 1158 defines a convex curvature.
  • the shape of the anatomy into which the anchor frame subcomponent 1100 is placed will determine the best choice of shape for the flange element 1150 of FIGS. 2C and 2D or the flared portion 1130 of the anchor frame subcomponent 1100 of FIGS. 2A and 2B.
  • the flared portion 1130 of the anchor frame subcomponent 1100 of FIGS 2A and 2B may also define the convex curvature of the embodiment of FIG. 2D suitable for a particular anatomy into which is it placed.
  • the anchor frame cover 1132 may also be operable to provide a favorable surface for tissue abutment at the tissue annulus, and further, may be operable to facilitate tissue ingrowth at desired locations which may be advantageous for fixation of the prosthetic valve 1000 to the tissue annulus, facilitate a favorable biological response of the blood (e.g., to prevent a thrombotic response), and/or facilitate sealing of the prosthetic valve 1000 with the tissue annulus to minimize para-valvular leakage.
  • FIGS. 2A-2D provides an embodiment wherein all or a majority of the voids 1116 of the anchor frame 1120 are covered by the anchor frame cover 1132 so as to block flow through the anchor frame wall 1105 (e.g., the anchor frame cover 1132 is less permeable to blood (e.g., blood impermeable under physiologic conditions), or is configured to become less permeable to blood over time (e.g., similarly to woven and/or polyester-based graft materials).
  • the anchor frame cover 1132 is a low permeability or impermeable film, sheet or membrane coupled to the anchor frame outer surface 1108.
  • the anchor frame cover 1132 may comprise any suitable material known in the art.
  • the anchor frame cover 1132 may be a film or fabric material, among others.
  • the anchor frame cover 1132 may be a sheet-like material that is biologically compatible and configured to couple to the anchor frame 1120.
  • the biocompatible material is a film that is not of a biological source and that is sufficiently flexible and strong for the particular purpose, such as a biocompatible polymer.
  • the film comprises a biocompatible polymer (e.g., ePTFE).
  • the film is a composite of two or more materials.
  • the film may comprise one or more of a membrane, composite material, or laminate.
  • the construction of and materials used in the film are such that the anchor frame cover 1132 is less permeable to blood (e.g., blood impermeable under
  • the construction of and materials used in the film are such that the anchor frame cover 1132 promotes cellular ingrowth, adhesion, and/or attachment. That is, in various examples, the anchor frame cover 1132 is constructed in a manner that promotes the ingrowth of tissue into one or more portions of the anchor frame cover 1132. It will be appreciated that cellular ingrowth may further increase sealing of the prosthetic valve with the tissue annnulus and helps minimize para-valvular leakage, that is, leakage between the prosthetic valve and the tissue into which it is coupled.
  • FIG. 7 is an axial, inflow end view of the leaflet frame subcomponent 1200.
  • the leaflet frame subcomponent 1200 includes a leaflet frame 1220, a leaflet subcomponent 1228 (FIG. 7) including one or more leaflets 1230, and leaflet frame cover 1232.
  • the leaflet frame subcomponent 1200 is generally tubular shaped defining a leaflet frame subcomponent inflow end 1202 and a leaflet frame subcomponent outflow end 1204 with a leaflet frame subcomponent lumen 1240 therethrough.
  • the leaflet frame subcomponent 1200 generally provides the prosthetic valve 1000 with the functionality of a one-way valve.
  • leaflet frame subcomponent 1200 is required to have a smaller-diameter compressed configuration and a larger-diameter expanded configuration, and that the valve subcomponent and associated leaflets 1230 must be able to accommodate that functionality.
  • FIG. 8 is a side view of the leaflet frame 1220.
  • the leaflet frame 1220 provides structural support for the leaflets 1230 (FIG. 7).
  • the leaflet frame 1220 is operable to have a smaller delivery configuration diameter and a larger deployed configuration diameter, facilitated by balloon expansion and/or self-expansion deployment means.
  • structure defining apertures such as, but not limited to, a wire form or perforated wall tube that allows for the leaflet frame to have various diameters, such as a stent, is suitable for the particular purpose. As shown in FIGS.
  • the leaflet frame wall 1205 of the leaflet frame 1220 may be at least partially covered with a leaflet frame cover 1232, such as a less blood-permeable material (e.g., blood impermeable under physiologic conditions) including a low-permeability film or fabric, to restrict fluid from passing through the leaflet frame wall 1205 of the leaflet frame 1220.
  • a leaflet frame cover 1232 such as a less blood-permeable material (e.g., blood impermeable under physiologic conditions) including a low-permeability film or fabric, to restrict fluid from passing through the leaflet frame wall 1205 of the leaflet frame 1220.
  • the leaflet frame 1220 is a generally tubular member having a leaflet frame inflow end 1222 corresponding to a leaflet frame subcomponent inflow end 1202, a leaflet frame outflow end 1224 corresponding to a leaflet frame subcomponent outflow end 1204 (FIGS. 2A-2D), a leaflet frame inner surface 1206 and a leaflet frame outer surface 1208 defining a leaflet frame wall 1205, wherein the leaflet frame inner surface 1206 defines a leaflet frame subcomponent lumen 1240 (FIG. 7) therethrough.
  • the leaflet frame subcomponent lumen 1240 is a generally cylindrical void defined between the leaflet frame inflow end 1222 and the leaflet frame outflow end 1224, and the leaflet frame inner surface 1206.
  • the leaflet frame 1220 defines a tubular framework defining apertures or voids 1216.
  • the leaflet frame 1220 includes a plurality of frame members 1212 that are interconnected and arranged in one or more patterns.
  • the frame members 1112 are connected to one another at various joints 1214.
  • these joints 1214 operate as flex points so as to provide a preferential flexing location for the leaflet frame subcomponent 1200, such as to flex when compressed to a smaller delivery diameter such as required for
  • a flex point or joint 1214 comprises a site on the leaflet frame 1220 that undergoes a high degree of bending.
  • the flex points or joints 1214 may comprise a geometry, structural modification or material modification, among others, that biases the leaflet frame 1220 to bend at the joint 1214 when compressed or expanded between a larger diameter and a smaller diameter.
  • one or more closed cell apertures or voids 1216 are defined between the joints 1214 and the interconnected frame members 1212 of the leaflet frame subcomponent 1200. In some examples, these apertures or voids 1216 extend from the leaflet frame outer surface 1208 to the leaflet frame inner surface 1206 of the leaflet frame wall 1205 of the leaflet frame 1220. As illustrated in the
  • one or more of the apertures or voids 1216 define a diamond shape when the leaflet frame subcomponent 1200 is in a deployed configuration.
  • a smaller diameter e.g., a delivery diameter
  • one or more of the joints 1214 and the frame members 1212 deform such that the apertures or voids 1216 generally define an elongated diamond shape (e.g., as shown generally in FIG. 1A).
  • the apertures or voids 1216 expand to define the generally wider diamond shape.
  • frame members 1212 illustrated and described herein are interconnected and define apertures or voids 1216 having generally a diamond shape
  • the interconnected frame members 1212 may be arranged in a number of alternative patterns without departing from the spirit or scope of the disclosure. That is, a number of alternative patterns are envisioned where the arrangement of frame members 1212 is configured in such a manner as to provide for a leaflet frame subcomponent 1200 that can be compressed to a smaller diameter for transcatheter delivery and subsequently expanded (or allowed to expand) to a larger diameter at a treatment site during deployment of the prosthetic valve 1000.
  • a framework of the leaflet frame 1220 can define any number of features, repeatable or otherwise, such as geometric shapes and/or linear or meandering series of sinusoids. Geometric shapes can comprise any shape that facilitates circumferential compressibility and expandability.
  • the leaflet frame 1220 may comprise or otherwise be formed from a cut tube, or any other element suitable for the particular purpose of the leaflet frame 1220 as described herein.
  • the leaflet frame 1220 may be etched, cut, laser cut, or stamped into a tube or a sheet of material, with the sheet then formed into a tubular structure.
  • an elongated material such as a wire, bendable strip, or a series thereof, can be bent or braided and formed into a substantially tubular structure wherein the wall of the tube comprises an open framework that is compressible to a smaller diameter and expandable to a larger diameter as illustrated and described herein.
  • the leaflet frame 1220 may comprise, such as, but not limited to, any elastically deformable metallic or polymeric biocompatible material, in accordance with embodiments.
  • the leaflet frame 1220 may comprise a shape-memory material, such as nitinol, a nickel-titanium alloy.
  • Other materials suitable for the leaflet frame 1220 include, but are not limited to, other titanium alloys, stainless steel, cobalt-nickel alloy, polypropylene, acetyl homopolymer, acetyl copolymer, other alloys or polymers, or any other biocompatible material having adequate physical and mechanical properties to function as a leaflet frame subcomponent 1200 as described herein.
  • the leaflet frame 1220 is elastically deformable so as to be self-expanding under spring loads, as those of skill will appreciate.
  • the leaflet frame 1220 is plastically deformable so as to be mechanically expanded such as with a balloon, as those of skill will appreciate.
  • the leaflet frame 1220 is plastically deformable as well as elastically deformable. That is, in some examples, the leaflet frame 1220 includes one or more elastically deformable components or features and one or more plastically deformable components or features.
  • the examples of the leaflet frame 1220 presented herein are not to be limited to a specific design or mode of expansion.
  • the leaflet frame 1220 comprises a shape memory material operable to flex under load and retain its original shape when the load is removed, thus allowing the leaflet frame subcomponent 1200 to self-expand from a compressed shape to a predetermined shape.
  • the leaflet frame subcomponent 1200 and the anchor frame subcomponent 1100 may comprise the same or different materials.
  • the leaflet frame 1220 is plastically deformable to be expanded by a balloon. In another embodiment the leaflet frame 1220 is elastically deformable so as to be self-expanding.
  • one or more leaflets 1230 of the leaflet subcomponent 1228 are coupled to the leaflet frame 1220 to provide a one-way valve structure.
  • a variety of mechanical valve, biological leaflet, and synthetic leaflet designs may be employed as desired.
  • the one or more flexible leaflets 1230 coupled to the leaflet frame 1220 are operable to open to allow flow from the leaflet frame
  • leaflet frame subcomponent inflow end 1202 and to pass through the leaflet frame subcomponent outflow end 1204, also referred to as the forward flow direction, and are operable to close to restrict flow from flowing from the leaflet frame subcomponent outflow end 1204 through the leaflet frame subcomponent inflow end 1202, also referred to as the retrograde flow direction.
  • the leaflet subcomponent 1228 and in particular the one or more leaflets 1230 of the leaflet subcomponent 1228, is coupled to the leaflet frame inner surface 1206 of the leaflet frame 1220.
  • a film that comprises a leaflet material is coupled to the leaflet frame outer surface 1208 and extends through a leaflet window defined by the leaflet frame 1220 to define the leaflet subcomponent 1228.
  • Such a configuration minimizes a potential for the leaflet 1230 to peel or delaminate, as compared to configurations where the leaflets 1230 are coupled to a leaflet frame inner surface 1206 of the leaflet frame 1220.
  • one or more portions of the leaflets 1230 are wrapped about one or more portions of the leaflet frame subcomponent 1200 to provide enhanced attachment and/or improved fatigue performance, for example.
  • the leaflet frame subcomponent 1200 further comprises a leaflet frame cover 1232 that is operable to prevent the flow of fluid through the wall of the leaflet frame 1220 such that the fluid can only flow through a lumen defined by the open leaflets 1230.
  • FIGS. 2A-2D show the voids 1216 of the leaflet frame 1220 covered by the leaflet frame cover 1232 so as to block flow through the portion of the leaflet frame 1220 that is upstream of the attachment of leaflets 1230 to the leaflet frame 1220.
  • the leaflet frame cover 1232 may be a low
  • the leaflet frame cover 1232 may comprise any suitable material known in the art.
  • the leaflet frame cover 1232 may be a film or a fabric, among others.
  • the leaflet frame cover 1232 may be a sheet-like material that is biologically compatible and configured to couple to the leaflet frame 1220.
  • the biocompatible material is a film that is not of a biological source and that is sufficiently flexible and strong for the particular purpose, such as a biocompatible polymer.
  • the film comprises a biocompatible polymer (e.g., ePTFE).
  • the film is a composite of two or more materials.
  • the film may comprise one or more of a membrane, composite material of two or more components, or laminate of more than one layer of material.
  • the construction of and materials used in the film are such that the leaflet frame cover 1232 is less permeable to blood (e.g., blood impermeable under physiologic conditions).
  • the leaflet frame subcomponent 1200 is nestable within the anchor frame subcomponent 1100.
  • FIG. 9 is a perspective view of the leaflet frame 1220 and anchor frame 1120 in the nested, expanded configuration, without other components shown for clearer visualization.
  • the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are sized and shaped in a manner that provides for the leaflet frame subcomponent 1200 being coaxially disposable or receivable, or otherwise telescopically nested, at least partially within the anchor frame subcomponent 1100.
  • the anchor frame subcomponent 1100 is configured such that a portion of (or alternatively all of) the leaflet frame subcomponent 1200 can be received by or otherwise positioned within a space defined by the anchor frame subcomponent 1100, to define a pair of adjacent inflow and outflow end portions (or, a pair of adjacent inflow and outflow end portions).
  • the leaflet frame subcomponent 1200 is sized such that a diameter of the exterior surface of the leaflet frame subcomponent 1200 (when in an expanded, deployed configuration) is less than a diameter of the interior surface of the anchor frame subcomponent 1100 (when in an expanded, deployed configuration). In some examples, a diameter of the exterior surface of the leaflet frame subcomponent 1200 is in a range of between seventy five percent (75%) and ninety percent (90%) of a diameter of the interior surface of the anchor frame subcomponent 1100.
  • a diameter of the exterior surface of the leaflet frame subcomponent 1200 is seventy five percent (75%) or less than a diameter of the interior surface of the anchor frame subcomponent 1100. It will be appreciated that nonlimiting examples of the leaflet frame subcomponent 1200 can be provided with a diameter (e.g., a diameter of an interior or exterior surface of the leaflet frame subcomponent 1200) in a range of between twenty (20) millimeters and thirty (30) millimeters, depending on a patient’s anatomy.
  • the one or more leaflets 1230 of the leaflet subcomponent 1228 are formed of a biocompatible, synthetic material (e.g., including ePTFE and ePTFE composites, or other materials as desired).
  • the leaflet 1230 is formed of a natural material, such as repurposed tissue, including bovine tissue, porcine tissue, or the like.
  • the leaflet subcomponent 1228 comprises a composite material having at least one porous synthetic polymer
  • the leaflet 1230 further comprises a layer of an elastomer and/or an elastomeric material and/or a non-elastomeric material on the composite material.
  • the composite material comprises porous synthetic polymer membrane by weight in a range of 10% to 90%.
  • An example of a porous synthetic polymer membrane includes expanded fluoropolymer membrane having a node and fibril structure defining the pores and/or spaces.
  • the expanded fluoropolymer membrane is expanded polytetrafluoroethylene (ePTFE) membrane.
  • ePTFE expanded polytetrafluoroethylene
  • Another example of porous synthetic polymer membrane includes microporous polyethylene membrane.
  • an elastomer and/or an elastomeric material and/or a non- elastomeric material include, but are not limited to, copolymers of tetrafluoroethylene and perfluoromethyl vinyl ether (TFE/PMVE copolymer), (per)fluoroalkylvinylethers (PAVE), urethanes, silicones (organopolysiloxanes), copolymers of silicon-urethane, styrene/isobutylene copolymers, polyisobutylene, polyethylene-co-poly(vinyl acetate), polyester copolymers, nylon copolymers, fluorinated hydrocarbon polymers and copolymers or mixtures of each of the foregoing.
  • the TFE/PMVE copolymer is an elastomer comprising between 60 and 20 weight percent
  • the TFE/PMVE copolymer is an elastomeric material comprising between 67 and 61 weight percent tetrafluoroethylene and respectively between 33 and 39 weight percent perfluoromethyl vinyl ether. In some examples, the TFE/PMVE copolymer is a non-elastomeric material comprising between 73 and 68 weight percent tetrafluoroethylene and respectively between 27 and 32 weight percent perfluoromethyl vinyl ether.
  • the TFE and PMVE components of the TFE-PMVE copolymer are presented in wt%. For reference, the wt% of PMVE of 40, 33-39, and 27-32 corresponds to a mol% of 29, 23-28, and 18-22, respectively.
  • the TFE-PMVE copolymer exhibits elastomer, elastomeric, and/or non-elastomeric properties.
  • the composite material further comprises a layer or coating of TFE-PMVE copolymer comprising from 73 to 68 weight percent
  • tetrafluoroethylene and respectively from 27 to 32 weight percent perfluoromethyl vinyl ether.
  • the leaflet the leaflet subcomponent 1228 is an expanded polytetrafluoroethylene (ePTFE) membrane having been imbibed with TFE- PMVE copolymer comprising from 60 to 20 weight percent tetrafluoroethylene and respectively from 40 to 80 weight percent perfluoromethyl vinyl ether, the leaflet subcomponent 1228 further including a coating of TFE-PMVE copolymer comprising from 73 to 68 weight percent tetrafluoroethylene and respectively 27 to 32 weight percent perfluoromethyl vinyl ether on the blood-contacting surfaces.
  • ePTFE expanded polytetrafluoroethylene
  • the elastomer and/or an elastomeric material and/or a non-elastomeric material may be combined with the expanded fluoropolymer membrane such that the elastomer and/or the elastomeric material and/or the non- elastomeric material occupies substantially all of the void space or pores within the expanded fluoropolymer membrane.
  • leaflet materials Although some examples of suitable leaflet materials have been provided, the foregoing examples are not meant to be read in a limiting sense, and additional or alternative materials are contemplated.
  • the leaflet frame cover 1232, the anchor frame cover 1132, the connecting sheath 1300, the inflow annular groove cover 1400 and/or the outflow annular groove cover 1500 may comprise any of the materials described above in association with the leaflet subcomponent 1228.
  • FIGS. 1 and 2A-2D show the connecting sheath 1300 extending between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 with the leaflet frame subcomponent un-nested, or offset from the anchor frame
  • the connecting sheath 1300 is a flexible tubular membrane coupled about its circumference to the leaflet frame subcomponent 1200 at the leaflet frame subcomponent inflow end 1202 and to the anchor frame subcomponent 1100 at the anchor frame subcomponent outflow end 1104 operable to couple the leaflet frame subcomponent 1200 to the anchor frame subcomponent 1100.
  • the connecting sheath 1300 is thin and flexible, and operable to fold or elastically contract to a smaller diameter in a delivery configuration.
  • the connecting sheath 1300 defines a tapered configuration extending between the leaflet frame subcomponent 1200 and the anchor frame subcomponent 1100.
  • the connecting sheath 1300 is configured to facilitate nesting of the leaflet frame subcomponent 1200 into the anchor frame subcomponent 1100.
  • the connecting sheath 1300 has an inner surface 1307, an outer surface 1308, an inflow end 1322, and an outflow end 1324. As shown, the connecting sheath 1300 is coupled to the anchor frame subcomponent outflow end 1104 of the anchor frame subcomponent 1100 at the connecting sheath inflow end 1322 and is coupled to the leaflet frame subcomponent inflow end 1202 at the connecting sheath outflow end 1324.
  • the connecting sheath 1300 is a thin-walled flexible tubular member that defines a connecting sheath lumen 1340 (e.g., FIGS.
  • the connecting sheath 1300 can be disposed within and/or about the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 as desired.
  • the connecting sheath 1300 can extend not only between but also over or within either or both of the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200.
  • the connecting sheath 1300 is contiguous with the leaflet frame cover 1232 and the anchor frame cover 1132.
  • the connecting sheath 1300 can be a contiguous film with that of the anchor frame cover 1132 and/or the leaflet frame cover 1232 that at least extends between and operates to couple the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 to one another.
  • the connecting sheath 1300 is formed from a generally tubular material and at least partially covers one or more of the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200.
  • the connecting sheath 1300 is formed by wrapping a film over and around a cylindrical mandrel that defines a variable diameter to match the respective inner diameter of each of the leaflet frame 1220 and anchor frame 1120 with a tapered portion therebetween to transition from the smaller diameter of the leaflet frame 1220 to the larger diameter of the anchor frame 1120. Either or both of the anchor frame 1120 and the leaflet frame 1220 are slid over the film and bonded thereto to the inner surface of the frames. If desired, the connecting sheath 1300 is formed by wrapping the film over and around either or both of the anchor frame 1120 and the leaflet frame 1220 and bonded to the outer surface of the frames, for example.
  • the connecting sheath 1300 can be any sheet-like material that is biologically compatible and configured to couple to the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200.
  • the connecting sheath 1300 can be any sheet-like material that is biologically compatible and configured to couple to the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200.
  • biocompatible material is a film that is not of a biological source and that is sufficiently flexible and strong for the particular purpose, such as a biocompatible polymer.
  • the film comprises a biocompatible polymer (e.g., ePTFE).
  • the film may comprise one or more of a membrane, composite material, or laminate.
  • the construction of and materials used in the film are such that the
  • connecting sheath 1300 has low permeability to fluid flow (e.g., blood impermeable) under physiologic conditions.
  • the connecting sheath 1300 includes a connecting sheath wall 1305 that is impervious to fluid flow (e.g., blood impermeable under physiologic conditions) and controls the flow of fluid only through the connecting sheath lumen 1340 particularly during deployment of the prosthetic valve 1000 into the tissue annulus and acts as a low-permeability or impermeable seal between the leaflet frame subcomponent 1200 and the anchor frame subcomponent 1100 when in the deployed nested configuration as shown in FIG. 3.
  • fluid flow e.g., blood impermeable under physiologic conditions
  • blood flow may be occluded during deployment, or the connecting sheath 1300 may include features for facilitating selective blood flow during deployment of the prosthetic valve 1000.
  • the connecting sheath 1300 is operable to allow antegrade fluid flow, (e.g., blood perfusion) through the connecting sheath wall 1305 during deployment of the prosthetic valve 1000 into the tissue annulus.
  • the prosthetic valve 1000 optionally includes one or more flow enabling features 1350 formed in the connecting sheath 1300.
  • FIG. 10A is a side view of the prosthetic valve 1000 with the flow enabling features 1350 in an open configuration where antegrade flow (denoted by arrow“A”) is permitted.
  • FIG. 10B is a side view of the prosthetic valve 1000 with the flow enabling features 1350 in a closed configuration where retrograde (denoted by arrow“R”) flow is obstructed.
  • the one or more flow enabling feature 1350 include one or more perforations or apertures.
  • the flow enabling features 1350 are operable to enable antegrade flow and prevent retrograde flow through the flow enabling features 1350 prior to the anchor frame subcomponent 1100 and the leaflet frame
  • subcomponent 1200 being nested together and in a fully deployed configuration.
  • the flow enabling features 1350 are configured to be fully closed and sealed when the leaflet frame subcomponent 1200 is nested into the anchor frame
  • FIGS. 10A-10E are side views as if the prosthetic valve 1000, as shown in FIG. 1 , was unconstrained from a constrained pre-nested configuration in order to more clearly show the particular elements.
  • an example of flow enabling features 1350 include an aperture 1352 and a flap 1354 that operate to enable antegrade flow through the prosthetic valve 1000 prior to the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 being nested together (while the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are longitudinally offset).
  • the connecting sheath 1300 comprises two layers of film, an inner film layer 1304 and an outer film layer 1306 (as shown in FIGS. 10C and 10D) with both layers coupled to either the inner or outer surface of the anchor frame 1120 and leaflet frame 1220, or the inner film layer 1304 bonded to the inner surfaces of the anchor frame 1120 and leaflet frame 1220 and the outer film layer 1306 coupled to the outer surfaces of the anchor frame 1120 and leaflet frame 1220.
  • FIG. 10C is a side view of another embodiment of the connecting sheath 1300 as shown coupled to the leaflet frame subcomponent 1200 and anchor frame subcomponent 1100.
  • FIG. 10D is an exploded view of the connecting sheath 1300.
  • the connecting sheath 1300 is a double layer of film, an inner film layer 1304 that is a conical tubular member that defines an inner layer of the connecting sheath 1300 and an outer film layer 1306 that is a conical tubular member that is slightly larger than the inner film layer 1304 that defines an outer layer of the connecting sheath 1300 when in the partially deployed configuration shown in FIG. 10C.
  • the inner film layer 1304 and the outer film layer 1306 are coupled together at least at the leaflet frame subcomponent inflow end 1202 of the leaflet frame subcomponent 1200 and the anchor frame subcomponent outflow end 1104 of the anchor frame subcomponent 1100.
  • the inner film layer 1304 defines at least one inner film aperture 1312 therethrough adjacent the anchor frame
  • a respective inner film aperture 1312 is offset in the radial direction from a respective outer film aperture 1310 to facilitate operation as provided below.
  • the inner film layer 1304 and the outer film layer 1306 are not coupled at least between one of the inner film apertures 1312 and one of the outer film apertures 1310 so as to define a flow space 1320 therebetween such that the outer film layer 1306 lifts away from the inner film apertures 1312 to enable antegrade flow through the inner film apertures 1312 and the outer film apertures 1310 prior to the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 being nested (while the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are longitudinally offset as illustrated and described herein).
  • the outer film layer 1306 is not coupled at least downstream of the outer film apertures 1310 and the inner film apertures 1312 so as to define the flow space 1320.
  • the inner film layer 1304 and the outer film layer 1306 come together to close the flow space and to cover and seal the inner film apertures 1312 and outer film apertures 1310 under retrograde flow pressure and restrict or minimize retrograde flow through the inner film apertures 1312 and outer film apertures 1310. Further, the inner film layer 1304 and the outer film layer 1306 are configured to cover and seal the inner film apertures 1312 and outer film apertures 1310 when the leaflet frame subcomponent 1200 is nested into the anchor frame subcomponent 1100 and in a fully deployed configuration.
  • the inner film layer 1304 and the outer film layer 1306 are coupled together at least at the leaflet frame subcomponent inflow end 1202 of the leaflet frame subcomponent 1200 and the anchor frame subcomponent outflow end 1104 of the anchor frame subcomponent 1100. It is appreciated that in accordance with an embodiment, the outer film layer 1306 may not be coupled together at or adjacent to the anchor frame subcomponent outflow end 1104 and still function to cover the inner film aperture 1312 during retrograde flow conditions. As provided in the above embodiment related to the flap 1354, the outer film layer 1306 may function as does the flap 1354; that is, to occlude the inner film aperture 1312 during retrograde flow conditions.
  • FIG. 10E is a side view of the prosthetic valve 1000 similar to the views of FIGS. 2A-2D, with an embodiment of the connecting sheath 1300 including flow enabling features 1350, the connecting sheath 1300 coupled to the leaflet frame subcomponent 1200 and anchor frame subcomponent 1100.
  • the connecting sheath 1300 is a double layer of film, an inner film layer 1304 that is a conical tubular member that defines an inner layer of the connecting sheath 1300 and an outer film layer 1306 that is a conical tubular member that is slightly larger but shorter than the inner film layer 1304 that defines an outer layer of the connecting sheath 1300 when in the partially deployed configuration shown in FIG. 10E.
  • the inner film layer 1304 and the outer film layer 1306 are coupled together at least at the anchor frame subcomponent outflow end 1104 of the anchor frame subcomponent 1100 but are not coupled at the leaflet frame subcomponent inflow end 1202 of the leaflet frame subcomponent 1200.
  • the inner film layer 1304 defines at least one inner film aperture 1312 therethrough adjacent the anchor frame subcomponent 1100 and the outer film layer 1306 is configured to cover the at least one inner film aperture 1312.
  • the outer film layer 1306 lifts away from the inner film layer 1304 and uncovers the at least one inner film aperture 1312 so as to define a flow space 1320 therebetween such that the outer film layer 1306 lifts away from the inner film apertures 1312 to enable antegrade flow through the inner film apertures 1312 prior to the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 being nested (i.e. , while the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are longitudinally offset as illustrated and described herein).
  • the inner film layer 1304 and the outer film layer 1306 come together to close the flow space and to cover and seal the inner film apertures 1312 under retrograde flow pressure and restrict or minimize retrograde flow through the inner film apertures 1312. Further, the inner film layer 1304 and the outer film layer 1306 are configured to cover and seal the inner film apertures 1312 when the leaflet frame subcomponent 1200 is nested into the anchor frame subcomponent 1100 and in a fully deployed configuration.
  • the reinforcement element 1380 provides stiffening bias to the connecting sheath 1300, may be configured to evert along with the connecting sheath 1300, can be curved or s-shaped as shown or zig-zag, or take another form as desired.
  • the one or more reinforcement elements 1380 can be temporarily elastically bent or folded upon itself as the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are nested to provide stiffening bias such that it takes a
  • a column strength of the reinforcement element resists compressive loads that would otherwise cause the leaflet frame subcomponent 1200 to de-nest or telescope out of and away from the anchor frame subcomponent 1100.
  • FIGS. 2A-2D shows an outline of the lateral borders, or periphery of the inflow bridging member 1400 and outflow bridging member 1500, or inflow annular groove cover 1400 and outflow annular groove cover 1500, with relation to a remainder of the prosthetic valve 1000.
  • FIGS. 11A to 11 G illustrated features of the bridging elements, or annular groove covers in a stylized, schematic views, as taken from a cross-section of one-half of the prosthetic valve 1000, according to some embodiments.
  • FIGS. 11 A, 11 C, 11 E, and 11 G illustrate the prosthetic valve 1000 in a fully deployed configuration, with the leaflet frame
  • subcomponent 1200 relatively more diametrically compacted (e.g., in a partially expanded configuration).
  • the inflow annular groove cover 1400 is coupled to the inflow end portion of the anchor frame at the anchor frame subcomponent inflow end 1102 and the inflow end portion of the leaflet frame
  • the inflow annular groove cover 1400 and/or the outflow annular groove cover 1500 is a flexible elastic element that is operable to resiliently stow into a low radial profile in a delivery configuration and is operable to extend between the leaflet frame subcomponent 1200 and the anchor frame
  • the inflow annular groove cover 1400 and/or outflow annular groove cover 1500 can be implemented to inhibit flood flow into or out from between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200.
  • one or both of the inflow annular groove cover 1400 and the outflow annular groove cover 1500 are under elastic bias when in a deployed position such that they are held relatively taught. Engagement of the inflow annular groove cover 1400 and/or the outflow annular groove cover 1500 with the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 may assist in
  • the inflow annular groove cover 1400 is operable to extend across, or bridge an inflow gap 1702 between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200.
  • the inflow gap 1702 has an annular axial profile.
  • the inflow annular groove cover 1400 is operable to cover an inflow annular groove 1704 defined between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200, as well as the connecting sheath 1300 when present, when the leaflet frame
  • the inflow annular groove cover 1400 is configured to bridge the inflow gap 1702 and cover the inflow annular groove 1704 formed between the anchor frame subcomponent 1100, the connecting sheath 1300 (everted during the deployment process), and the leaflet frame subcomponent 1200.
  • the inflow annular groove cover 1400 defines an inflow annular groove cover first end 1432 and an inflow annular groove cover second end 1434.
  • the inflow annular groove cover first end 1432 is coupled to the anchor frame subcomponent inflow end 1102.
  • the inflow annular groove cover second end 1434 is coupled to the leaflet frame subcomponent inflow end 1202
  • the inflow annular groove cover 1400 is a tubular element that is operable to extend generally parallel to the longitudinal axis X of the prosthetic valve 1000 (or at a relatively small, or shallow angle relative to the longitudinal axis X), when in the pre-deployed/expanded configuration (e.g., FIGS.
  • the inflow annular groove cover 1400 is operable to extend through the anchor frame subcomponent 1100 during the deployment process, as shown in FIGS. 11A-12F while the connecting sheath 1300 is operable to fold and evert within the anchor frame subcomponent lumen 1140 of the anchor frame
  • the inflow annular groove cover 1400 bridges the distance between the leaflet frame subcomponent inflow end 1202 and the anchor frame subcomponent inflow end 1102 to bridge the inflow gap 1702 and extends across the inflow annular groove 1704 (FIG. 11A) defined by the anchor frame subcomponent inflow end 1102, the connecting sheath 1300, and the leaflet frame subcomponent inflow end 1202.
  • the inflow annular groove cover 1400 retains the relative position of the leaflet frame subcomponent 1200 and the anchor frame subcomponent 1100 by virtue of the elastic bias of the inflow annular groove cover 1400.
  • the inflow annular groove cover 1400 optionally resists forces in opposition to the inflow annular groove cover 1400 being biased to the retracted configuration.
  • the bias may be predetermined to assist with centering or other desirable positioning of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100 under physiologic loading conditions.
  • the bias may be selected to permit some resilient deflection, or adjustment of the position of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100 to accommodate physiologic loading, or potentially even better replicate natural physiologic action (e.g., to more closely match movement of a natural valve during a cardiac cycle).
  • the bias may be predetermined the such that fluid dynamic forces on the prosthetic valve 1000 are not sufficient to overcome the elastic bias needed to stretch/expand the inflow annular groove cover 1400 which would lead to the leaflet frame subcomponent 1200 moving an
  • the inflow annular groove cover 1400 comprises a pleated, or folded configuration that has a continuous sinuous and/or zig zag configuration.
  • the pleated, or folded configuration may facilitate reduction of the inflow annular groove cover 1400 to a smaller diameter.
  • the pleated configuration may have an elastic bias, or otherwise resiliently return to the contracted, or retracted configuration.
  • FIGS. 11 C and 11 D show a zig-zag, or accordion pleated embodiment in extended and retracted configurations, respectively.
  • FIGS. 11 E and 11 F show a sinuous, pleated or folded configuration in extended and retracted configurations, respectively.
  • the inflow annular groove cover 1400 is non-permeable upon retracting to a retracted or partially retracted configuration (e.g., as shown in FIGS. 11 A, 11 C, 11 E, and 11 G) such that fluid/blood is prevented from passing through the inflow annular groove cover 1400 when the prosthetic valve 1000 is in the deployed configuration (e.g., as shown in FIGS. 3A and 3B).
  • the inflow annular groove cover 1400 extends from the leaflet frame subcomponent inflow end 1202 to the anchor frame subcomponent inflow end 1102 effectively bridging the inflow gap 1702 and covering the inflow annular groove 1704 formed between the anchor frame subcomponent 1100, the connecting sheath 1300 and the leaflet frame subcomponent 1200.
  • FIGS. 11 G and 11 FI provide for examples where the connecting sheath 1300 is omitted from the prosthetic valve 1000.
  • the inflow annular groove cover 1400 serves to bridge the inflow gap and cover the inflow annular groove 1704, which in such instances is defined between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200.
  • the inflow annular groove cover 1400 may assist with positioning and/or retention of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100 (e.g., at a desired, relatively coaxial position).
  • the inflow annular groove cover 1400 may be operable to control the axial position of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100.
  • the inflow annular groove cover 1400 may provide a bias for longitudinally translating the leaflet frame subcomponent 1200 into the anchor frame subcomponent 1100 during a delivery sequence.
  • the outflow annular groove cover 1500 is operable to extend across, or bridge an outflow gap 1705 between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200.
  • the inflow gap 1702 and the outflow gap 1705 are interrupted by the connecting sheath 1300.
  • the connecting sheath 1300 is omitted and the inflow gap 1702 and the outflow gap 1705 are continuous and uninterrupted to form a single, continuous gap.
  • the outflow gap 1705 has an annular axial profile according to various examples.
  • the outflow annular groove cover 1500 is generally operable to cover an outflow annular groove 1706 defined between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200, as well as the connecting sheath 1300 when present, when the leaflet frame subcomponent 1200 is nested within the anchor frame subcomponent 1100 according to FIGS. 11 A, 11 C, 11 E, 11 G, for example. As shown in FIGS. 11 A, 11 C, and 11 E, the outflow annular groove cover 1500 is configured to bridge the outflow gap 1705 and cover the outflow annular groove 1706 formed between the anchor frame
  • the outflow annular groove cover 1500 defines an outflow annular groove cover first end 1532 and an outflow annular groove cover second end 1534.
  • the outflow annular groove cover first end 1532 is coupled to the outflow end portion adjacent the anchor frame subcomponent outflow end 1104.
  • the outflow annular groove cover second end 1534 is coupled to the outflow end portion adjacent the leaflet frame subcomponent outflow end 1204.
  • the outflow annular groove cover second end 1534 may be contiguously attached to the outflow end of the leaflet frame cover 1232.
  • the outflow annular groove cover 1500 may be coupled to and circumferentially extend from adjacent the anchor frame subcomponent outflow end 1104 and an outflow edge of the leaflet frame cover 1232.
  • the leaflet frame cover 1232 optionally couples to an outflow end that corresponds to the leaflet frame outflow end 1224.
  • the line of attachment may be substantially flat in circumference. As shown in FIG.
  • the leaflet frame cover 1232 optionally couples to the outflow end portion which resides proximal to the leaflet frame outflow end 1224. As shown, the leaflet frame cover 1232 does not extend to the leaflet frame outflow end 1224, and the outflow annular groove cover may track the outflow or distal edge of the leaflet frame cover 1232 in a relatively jagged, or non-flat circumferential path, to avoid blood flow through the leaflet frame 1220 into the space corresponding to the outflow annular groove 1706.
  • the outflow annular groove cover 1500 is a tubular element that is operable to extend generally parallel to the longitudinal axis X of the prosthetic valve 1000 (or at a relatively small, or shallow angle relative to the longitudinal axis X), when in the pre-deployed/expanded configuration (e.g., FIGS. 11 B, 11 D, 11 F) and operable to extend at an angle, and in some examples, in a generally lateral direction to the longitudinal axis X (or at a relatively large, or steep angle relative to the longitudinal axis X) when in the deployed/retracted configuration (e.g., FIGS. 11 A, 11 C, 11 E).
  • the outflow annular groove cover 1500 is operable to extend through the anchor frame subcomponent 1100 during the deployment process, as shown in FIGS. 11A-12F while the connecting sheath 1300 is operable to fold and evert within the anchor frame subcomponent lumen 1140 of the anchor frame subcomponent 1100 and lie between the leaflet frame subcomponent 1200 and the anchor frame subcomponent 1100 as shown in FIGS. 11A-11 F and 12A-12F.
  • the outflow annular groove cover 1500 is configured to facilitate delivery of the prosthetic valve 1000, and is operable to be elastically restrained to an extended tubular or conical configuration as shown in FIGS. 1 and 2.
  • the outflow annular groove cover 1500 may also be restrained to define a small tubular diameter in the constrained pre-deployment configuration at relatively the same diameter as that of the constrained leaflet frame subcomponent 1200 and the constrained anchor frame subcomponent 1100 with the outflow annular groove cover 1500 extending within the anchor frame subcomponent 1100 as indicated by broken lines in FIG. 1 and shown in cross-section in FIGS. 11 B, 11 D, 11 F, and 11 FI.
  • the delivery device 1600 is configured to longitudinally restrain the prosthetic valve 1000 in the un-nested configuration until the time in the delivery sequence at which the leaflet frame
  • subcomponent 1200 is nested into the anchor frame subcomponent 1100.
  • the outflow annular groove cover 1500 bridges the distance between the leaflet frame subcomponent outflow end 1204 and the anchor frame subcomponent outflow end 1104 to bridge the outflow gap 1705 (e.g., FIGS. 11 A, 11 C, 11 E, and 11 G) and extends across the outflow annular groove 1706 defined by the anchor frame subcomponent outflow end 1104, the connecting sheath 1300, and the leaflet frame subcomponent outflow end 1204.
  • the outflow annular groove cover 1500 can help retain the relative position of the leaflet frame subcomponent 1200 and the anchor frame subcomponent 1100 by virtue of the elastic bias of the outflow annular groove cover 1500.
  • the outflow annular groove cover 1500 optionally resists forces in opposition to the outflow annular groove cover 1500 being biased to the retracted configuration.
  • the bias may be predetermined to assist with centering or other desirable positioning of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100 under physiologic loading conditions.
  • the outflow annular groove cover 1500 comprises a pleated, or folded configuration that has a continuous sinuous and/or zig-zag configuration.
  • the pleated, or folded configuration may facilitate reduction of the outflow annular groove cover 1500 to a smaller diameter.
  • the pleated configuration may have an elastic bias, or otherwise resiliently return to the contracted, or retracted configuration.
  • FIGS. 11 C and 11 D show a zig-zag, or accordion pleated embodiment in extended and retracted configurations, respectively.
  • FIGS. 11 E and 11 F show a sinuous, pleated or folded configuration in extended and retracted configurations, respectively.
  • the outflow annular groove cover 1500 is non-permeable upon retracting to a retracted or partially retracted configuration (e.g., as shown in FIGS. 11 A, 11 C, 11 E, and 11 G) such that fluid/blood is prevented from passing through the outflow annular groove cover 1500 when the prosthetic valve 1000 is in the deployed configuration (e.g., as shown in FIGS. 3A and 3B).
  • the outflow annular groove cover 1500 extends from the leaflet frame subcomponent outflow end 1204 to the anchor frame subcomponent outflow end 1104 effectively bridging the outflow gap 1705 and covering the outflow annular groove 1706 formed between the anchor frame subcomponent 1100, the connecting sheath 1300 and the leaflet frame subcomponent 1200.
  • FIGS. 11 G and 11 FI provide for examples where the connecting sheath 1300 is omitted from the prosthetic valve 1000.
  • the outflow annular groove cover 1500 also described as the outflow bridging member, serves to bridge the outflow gap 1705 and cover the outflow annular groove 1706, which in such instances is defined between the anchor frame
  • the outflow annular groove cover 1500 may assist with positioning and/or retention of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100 (e.g., at a desired, relatively coaxial position).
  • the outflow annular groove cover 1500 may be operable to control the axial position of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100. And, in further embodiments, the outflow annular groove cover 1500 may provide a bias for longitudinally translating the leaflet frame subcomponent 1200 into the anchor frame subcomponent 1100 during a delivery sequence.
  • the prosthetic valve 1000 may have either an inflow annular groove cover 1400 or an outflow annular groove cover 1500, or both an inflow annular groove cover 1400 and an outflow annular groove cover 1500 as desired, and according to any of the previously-described examples.
  • the inflow annular groove cover 1400 and/or the outflow annular groove cover may be formed from similar materials as those described above with regard to the leaflet subcomponent 1228.
  • one or both are formed from a retracted microstructure membrane such as those described in U.S. 10,166,128, entitled“Lattice” and issued January 1 , 2019.
  • Such retracted microstructures exhibit a high degree of recoverable elongation such that they can be extended and resilient retract. They may be formed of fluoropolymer membranes (e.g., porous synthetic fluoropolymer membranes) such that they exhibit high elongation while substantially retaining the strength properties associated with the fluoropolymer membrane.
  • fluoropolymer membranes e.g., porous synthetic fluoropolymer membranes
  • Such retracted microstructure membranes characteristically possess a microstructure of serpentine fibrils that curve or turn generally one way then generally another way. It is to be understood that the amplitude and/or frequency of the serpentine-like fibrils may vary.
  • the fluoropolymer membranes that go through a retraction process to provide a precursor retracted membrane are formed of expandable fluoropolymers.
  • expandable fluoropolymers include, but are not limited to, expanded PTFE, expanded modified PTFE, and expanded copolymers of PTFE.
  • the high elongation is facilitated by forming relatively straight fibrils into serpentine fibrils that substantially straighten upon the application of a force in a direction opposite to the compressed direction.
  • the creation of the serpentine fibrils can be achieved through a thermally-induced controlled retraction of the expanded polytetrafluoroethylene (ePTFE), through wetting the article with a solvent, such as, but not limited to, isopropyl alcohol or Fluorinert® (a perfluorinated solvent commercially available from 3M, Inc., St. Paul, MN), or by a combination of these two techniques.
  • the retraction of the article does not result in visible pleating, folding, or wrinkling of the ePTFE, unlike what occurs during mechanical compression.
  • the fibrils not only become serpentine in shape but also may also increase in width.
  • Suitable elastomeric materials may include, but are not limited to, PMVE-TFE (perfluoromethylvinyl ether-tetrafluoroethylene) copolymers, PAVE-TFE (perfluoro (alkyl vinyl ether)-tetrafluoroethylene) copolymers, silicones, polyurethanes, and the like. It is to be noted that PMVE-TFE and PAVE-TFE are fluoroelastomers. Other
  • fluoroelastomers include suitable elastomeric materials as identified by those of skill in the art.
  • the resultant retracted membrane composite possesses resilient elongation capability while substantially retaining the strength properties of the fluoropolymer membrane.
  • retracted membranes have the ability to be free of creases, folds or wrinkles visible to the naked eye (i.e. , on a gross scale) in both retracted and extended configurations.
  • one or more elastomeric elements may otherwise be associated with a membrane or sheet-like member to provide desired properties.
  • one or more elastomeric bands, members, or other feature may be associated (e.g., bonded, adhered, or mechanically fastened) with a sheet-like member, such as a membrane or film, to provide resilient elongation capabilities to the annular groove cover(s).
  • the material of the inflow annular groove cover 1400 or outflow annular groove cover 1500 includes a porous elastic film that when in the extended configuration defines pores large enough to render the porous elastic film blood-permeable under physiologic conditions and when in the retracted configuration the pores are small enough to render the porous elastic film low- permeability, such as blood impermeable under physiologic conditions.
  • the materials utilized for the inflow annular groove cover 1400 and/or outflow annular groove cover 1500 may also be configured for tissue ingrowth (i.e. , to facilitate or promote tissue ingrowth or adhesion) or to resist tissue ingrowth. Moreover, one or more portions of the cover(s) may be configured for tissue ingrowth, whereas other portions are configured to resist tissue ingrowth.
  • Such materials include biocompatible filler agents or bulking agents operable to fill a volume (e.g., a volume defined by one of the annular grooves) and may include at least one of hydrogel, alginate, foam, porous bulking material, collagen, hyaluronic acid, alginic salt, cellulose, chitosan, gelatin, agarose,
  • glycosaminoglycans polysaccharides, and combinations thereof, among others.
  • the leaflet 1230 is constructed in a manner that promotes tissue ingrowth.
  • the leaflet 1230 may be constructed to encourage tissue ingrowth and proliferation across one or more discrete regions, portions, or sections of one or more of the materials forming the leaflet 1230, or alternatively across an entirety of one or more of the materials forming the leaflet 1230.
  • Tissue ingrowth and proliferation may be promoted on an outflow side or surface of the leaflet 1230, and/or on an inflow side or surface of the leaflet 1230, and/or within one or more materials forming the leaflet.
  • the leaflets 1230 include a composite material combined with a tissue ingrowth curtain that may be incorporated into the composite material and/or coupled to the composite material.
  • one or more portions of the leaflet frame subcomponent 1200 may be covered with material suitable for promoting tissue ingrowth.
  • the leaflet frame subcomponent 1200 can be wrapped with a material, suitable for promoting tissue ingrowth.
  • tissue ingrowth promoting materials can be applied to leaflet frame subcomponent 1200 entirely, or alternatively to less than all of the leaflet frame subcomponent 1200.
  • suitable materials for promoting tissue ingrowth could be coupled to the leaflet frame inner surface and the leaflet frame outer surface of the leaflet frame.
  • ePTFE expanded polytetrafluoroethylene
  • ePTFE membrane such as an ePTFE membrane
  • fabric such as fabric, film, or coating
  • polyethylene terephthalate fabric e.g., Dacron fabric
  • this promotion of tissue ingrowth is facilitated by the coupling of one or more synthetic tissue ingrowth curtains to one or more composite materials such that tissue is encouraged to grow (or is not otherwise prevented or inhibited from growing) into and/or onto the one or more tissue ingrowth curtains. That is, in some examples, one or more layers configured to promote tissue ingrowth may be applied to the composite material. In some examples, as described herein, the underlying leaflet structure or material may be configured to inhibit or prevent tissue ingrowth.
  • this promotion of tissue ingrowth is facilitated by selectively imbibing, such as with one or more fluoroelastomers, one or more portions of the one or more materials forming the leaflet 1230.
  • selectively imbibing is referring to the act of imbibing a porous material with a filling material at selected portions of the porous material or to a lesser degree leaving a degree of porosity of the porous material.
  • the composite material as discussed above regarding leaflet materials is configured to promote or accommodate tissue ingrowth.
  • the composite material is configured such that tissue is encouraged to grow (or is not otherwise prevented or inhibited from growing) into and/or onto one or more discrete or designated sections, portions, or regions of the composite material by way of selectively imbibing the membrane associated with those portions.
  • the tissue ingrowth curtain generally includes an expanded fluoropolymer membrane which comprises a plurality of spaces within a matrix of fibrils that is suitable for promoting and supporting the ingrowth of tissue.
  • Other nonlimiting example materials include other biocompatible porous materials such as knit PTFE.
  • the tissue ingrowth curtain(s) may be applied to the composite material in the form of one or more coatings.
  • the tissue ingrowth curtain includes an expanded fluoropolymer made from a porous ePTFE membrane.
  • the tissue ingrowth curtain may be formed from a number of different types of membranes, including other fluoropolymer membranes, and other biocompatible porous materials such as porous polyethylene membrane and knit PTFE.
  • the expandable fluoropolymer can comprise PTFE homopolymer.
  • the tissue ingrowth curtain can be formed from copolymers of hexafluoropropylene and tetrafluoroethylenethe, such as Fluorinated Ethylene Propylene (FEP).
  • FEP Fluorinated Ethylene Propylene
  • the tissue ingrowth curtain may be formed from a variety of different polymeric materials provided they are biocompatible and possess or are modified to include a suitable microstructure suitable for promoting or supporting tissue ingrowth.
  • the tissue ingrowth curtains may range in thickness from between one micron and four hundred microns depending on the selected material.
  • the polymeric material may include one or more naturally occurring and/or one or more artificially created pores, reliefs, channels, and/or predetermined surface topology, suitable for supporting tissue ingrowth.
  • Other biocompatible materials which can be suitable for use in forming the tissue ingrowth curtain include but are not limited to the groups of urethanes, fluoropolymers, styrene/isobutylene copolymers, polyisobutylene, polyethylene-co-poly(vinyl acetate), polyester copolymers, nylon copolymers, fluorinated hydrocarbon polymers and copolymers or mixtures of each of the foregoing.
  • tissue ingrowth curtains generally include membranes, films, knits, or other structures that are bonded, applied, or otherwise attached to the composite material
  • the tissue ingrowth curtain(s) may be applied to the composite material in the form of one or more coatings.
  • a coherent irregular network is distributed or deposited onto one or more portions, regions, sections, areas, or zones of the composite material.
  • the coherent irregular network is applied to one or more portions of the composite material to create a surface texture suitable for supporting the ingrowth and proliferation of tissue, as those of skill will appreciate.
  • the coherent irregular network may be selectively applied to one or more discrete or designated sections, portions, or regions of the composite material.
  • the coherent irregular network is applied to the designated areas by masking or otherwise covering those portions of the underlying leaflet where ingrowth of tissue is undesirable such that the cover or mask can be removed subsequent to the coherent irregular network application process to achieve a leaflet having a first region including the coherent irregular network and a second region free of a coherent irregular network.
  • one or more sacrificial sheets such as one or more polyimide sheets (e.g., Kapton sheets), are arranged on the composite material and operate to mask or otherwise prevent the coherent irregular network from being applied to the masked or covered areas.
  • sacrificial sheet materials include polyester, polyetheretherketone (PEEK), PET, ePTFE/Kapton blends such as mapton, ePTFE, PTFE, silicones, and stainless steel, or other thin metal sheeting.
  • the one or more sacrificial sheets can be removed after the coherent irregular network application process to reveal a leaflet having a structure including one or more regions including the coherent irregular network and one or more regions free of the coherent irregular network (e.g., where the underlying composite material is exposed).
  • Such a configuration provides for a construction of the leaflet that minimizes a possibility for delamination between bonded membrane layers.
  • the composite material in addition to or as an alternative to applying one or more tissue ingrowth curtains to the composite material, is configured to promote or accommodate tissue ingrowth.
  • the composite material is configured such that tissue is encouraged to grow (or is not otherwise prevented or inhibited from growing) into and/or onto one or more discrete or designated sections, portions, or regions of the composite material.
  • the composite material forming the synthetic leaflet may include an elastomer and/or an elastomeric material such as a fluoroelastomer imbibed or otherwise incorporated into the expanded fluoropolymer membrane.
  • the expanded fluoropolymer membrane is selectively imbibed, such as with one or more fluoroelastomers, such that the expanded fluoropolymer membrane includes one or more discrete portions, regions, sections, zones, or areas that are free of or are not otherwise imbibed with the elastomeric filler material (or at least are not filled to the extent that the elastomeric filler material operates to prevent tissue ingrowth).
  • Selectively imbibing the membrane material of the composite material may be done in accordance with techniques as known to those of skill in the art.
  • a leaflet may be constructed by both imbibing one or more portions of the membrane and applying a tissue ingrowth curtain to the selectively imbibed membrane.
  • the membrane may be imbibed with a plurality of filler materials. That is, in some examples, a first portion, area, region, section, or zone of the membrane of composite material may be imbibed with a first filler material while a second portion, area, region, section, or zone of the membrane of the composite material is imbibed with a second filler material. For instance, in some examples, a first portion of the membrane of the composite material is imbibed with a first filler material such that the first portion of the membrane is resistant to or otherwise inhibits or prevents tissue ingrowth into and/or onto and/or across the first portion.
  • those portions of the membrane imbibed with the first filler may also be unsuitable for accommodating the bonding or coupling of a tissue ingrowth curtain.
  • the second portion may be imbibed with a second filler material such that the second portion of the membrane is suited to have a tissue ingrowth curtain bonded or otherwise coupled thereto.
  • the second filler material may additionally or alternatively encourage tissue ingrowth. That is, in some examples, one or more portions of the membrane may be imbibed with a filler material that encourages tissue ingrowth and proliferation. Alternatively, as mentioned above, the second portion may not be imbibed with any filler material at all, but may instead remain free of filler material.
  • the method includes applying an adhesive to the membrane in addition to or as an alternative to applying the adhesive to the tissue ingrowth curtain, as discussed above.
  • an adhesive such as FEP
  • FEP is similarly wicked or imbibed into one or more portions of the membrane, after which the tissue ingrowth curtain and the membrane are pressed together and/or heat set according to known methods.
  • the tissue ingrowth curtain e.g., having a designated pattern
  • the membrane are layered with one or more adhesives or adhesive layers therebetween, after which the layered construct is pressed and/or heat set according to known methods.
  • the method further includes cutting the leaflet from the resulting construct according to known methods. In some examples, a final free edge cutting operation may be performed on the leaflet to achieve a clean free edge of the resulting leaflet according to known methods, as those of skill will appreciate.
  • the composite material can include an expanded fluoropolymer made from porous ePTFE membrane.
  • the expanded fluoropolymer membrane used to form some of the composites described, can comprise PTFE homopolymer.
  • blends of PTFE, expandable modified PTFE and/or expanded copolymers of PTFE can be used.
  • FIG. 12 shows the prosthetic valve 1000 carried on the delivery catheter 1604 of the delivery device 1600.
  • the delivery catheter includes a plurality of containing elements, or constraining elements 1716 (e.g., fibers or tethers) for maintaining the various subcomponents of the prosthetic valve 1000 at a desired relatively longitudinal position and at a desired diameter.
  • the delivery catheter 1604 may be configured to facilitate the delivery sequences described herein, with one or more of the constraining elements 1716 being releasable in a desired sequence.
  • the delivery device 1600 may include additional features (e.g., a delivery sheath) as described in further detail in subsequent sections.
  • FIGS. 13A-13F are greatly simplified cross-sectional views of a representation of the prosthetic valve 1000, as well as features of the delivery device 1600 associated with an example delivery sequence.
  • FIG. 13A shows the prosthetic valve 1000 constrained onto the delivery catheter 1604 and placed within a tissue annulus 1342, in accordance with an embodiment. In accordance with the above embodiment, as shown in FIGS.
  • the leaflet frame subcomponent 1200 upon deploying the anchor frame subcomponent 1 100 within the tissue annulus 1342, the leaflet frame subcomponent 1200 is translated and nested within the anchor frame subcomponent 1 100 at a nested position while in the pre-deployed configuration (e.g., either fully compressed on the delivery catheter 1604 as shown or partially expanded according to other examples, such as that shown in FIG. 13G). As shown in the example of FIG.
  • the inflow annular groove cover 1400 and the outflow annular groove cover 1500 are permeable to blood under physiologic conditions and antegrade flow is permitted through the inflow gap 1702 and outflow gap 1705.
  • inflow gap 1702 and outflow gap 1705 may be an alternative to perfusion through the inflow gap 1702 and outflow gap 1705 where the flow enabling features are omitted and/or the inflow annular gap cover 1400 and/or outflow annular gap cover are impermeable, or insufficiently permeable, to facilitate effective perfusion during delivery.
  • the antegrade flow pressure causes the outer film layer 1306 to move away from the inner film layer 1304 so as to define the flow space 1320 between the inner film layer 1304 and outer film layer 1306.
  • Blood may flow in the antegrade direction into the inner film aperture 1312 and out of the outer film aperture 1310 especially during deployment of the prosthetic valve 1000 when the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are still mounted on the delivery catheter and are blocking antegrade flow with the leaflets 1230 of the leaflet subcomponent 1228 not yet being functional.
  • blood profusion may be maintained during substantially the entire deployment process of the prosthetic valve 1000.
  • Retrograde flow pressure causes the outer film layer 1306 to move toward and against the inner film layer 1304 so as to close the flow space 1320 between the inner film layer 1304 and outer film layer 1306, with the inner film layer 1304 covering the outer film aperture 1310 and/or the outer film layer 1306 covering the inner film aperture 1312 due to the radial offset of the inner film aperture 1312 and the outer film aperture 1310.
  • Blood is prevented from flowing in the retrograde direction into the outer film aperture 1310 and out of the inner film aperture 1312 especially during deployment of the prosthetic valve 1000 when the deployed anchor frame subcomponent 1100, and the still-mounted-on-the-delivery- catheter leaflet frame subcomponent 1200, are blocking retrograde flow.
  • the leaflet frame subcomponent 1200 is expanded into its final deployed configuration.
  • the inner film layer 1304 and the outer film layer 1306 are caused to come together under antegrade and retrograde fluid pressure and/or mechanical pressure narrowing or closing the flow space 1320 and with the inner film layer 1304 covering the outer film aperture 1310 and/or the outer film layer 1306 covering the inner film aperture 1312 closing the respective outer film aperture 1310 and inner film aperture 1312 due to the radial offset of the inner film aperture 1312 and the outer film aperture 1310, preventing flow therethrough.
  • blood profusion may be maintained during substantially the entire deployment process when the leaflet frame subcomponent 1200 is not fully functional as shown in FIG. 13E.
  • the inflow annular groove cover 1400 and/or outflow annular groove cover 1500 reduce in permeability as they take on retracted configurations associated with the fully deployed configuration of the prosthetic valve 1000.
  • the inflow annular groove cover 1400 and/or outflow annular groove cover 1500 are generally low-permeability, such as blood impermeable under physiologic conditions when the prosthetic valve 1000 is fully deployed as shown in FIG. 13F. In at least this manner, the inflow gap 1702 and/or outflow gap 1705 is covered and blocked (e.g., to provide a smoother flow profile and/or reduce the potential for formation and release of emboli into the blood stream).
  • the inflow annular groove cover 1400 and/or outflow annular groove cover 1500 assist telescopic nesting of the leaflet frame subcomponent 1200 into the anchor frame subcomponent 1100 by“pulling” the leaflet frame subcomponent 1200 into the anchor frame subcomponent 1100.
  • the connecting sheath 1300 presents a tapered configuration having a smaller diameter at the leaflet frame subcomponent inflow end 1202 to a larger diameter at the anchor frame subcomponent outflow end 1104.
  • the inflow annular groove cover 1400 and/or the outflow annular groove cover 1500 optionally contract so as to pull the leaflet frame subcomponent 1200 into the anchor frame subcomponent 1100, until the axial movement is stopped once the elastic bias is insufficient to cause further movement (e.g., by the connecting sheath 1300 becoming taught in the everted configuration preventing further movement or, where both inflow and outflow annular groove covers are present, upon the biasing forces of the two covers coming to equilibrium).
  • the elastic bias exhibited by the inflow annular groove cover 1400 and/or outflow annular groove cover 1500 may be configured such that sufficient force is produced to advance the leaflet frame subcomponent 1200 into the anchor frame subcomponent 1100 toward the anchor frame subcomponent inflow end 1102.
  • the leaflet frame subcomponent 1200 may be either retained on the delivery catheter 1604 or deployed to the expanded configuration prior to being pulled into the anchor frame subcomponent 1100.
  • the elastic bias of the inflow annular groove cover 1400 and/or the outflow annular groove cover 1500 helps provide a passive means for advancing the leaflet frame
  • the length and/or elastic properties of the inflow annular groove cover 1400 and/or the outflow annular groove cover 1500 is predetermined such that the leaflet frame subcomponent 1200 is properly positioned within the anchor frame subcomponent 1100 while in the deployed configuration.
  • the bias may be predetermined to assist with centering or other desirable positioning of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100 under physiologic loading conditions.
  • the bias may be selected to permit some resilient deflection, or adjustment of the position of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100 to accommodate physiologic loading, or potentially even better replicate natural physiologic action (e.g., to more closely match movement of a natural valve during a cardiac cycle).
  • the bias may be predetermined the such that fluid dynamic forces on the prosthetic valve 1000 are not sufficient to overcome the elastic bias needed to stretch/expand the outflow annular groove cover 1500 which would lead to the leaflet frame subcomponent 1200 moving an
  • the length of the anchor frame subcomponent 1100 varies along the circumference, for example, when viewed transverse to the axis X, the anchor frame subcomponent outflow end 1104 has a tapered geometry, in some embodiments.
  • the anchor frame subcomponent 1100 can be oriented along the X-axis and the leaflet frame subcomponent 1200 can be oriented along the X1 -axis which is off-set to the X-axis.
  • the leaflet frame subcomponent 1200 is generally tilted with respect to the anchor frame subcomponent 1100.
  • the second longitudinal axis is disposed at a tilt angle A between 15° and 45° relative to the first longitudinal axis.
  • the leaflet frame subcomponent outflow end 1204 is generally parallel with the anchor frame subcomponent outflow end 1104, wherein the anchor frame subcomponent outflow end 1104 has a taper as characterized as having a length that varies around the
  • FIGS. 15A-15L are provided additional examples of features and associated methods for delivering the prosthetic valve 1000, according to some examples.
  • the delivery device 1600 incorporates elements to facilitate the advancement and deployment of the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200. In accordance with some embodiments, the advancement of the leaflet frame subcomponent 1200 into the anchor frame
  • the advancement of the leaflet frame subcomponent 1200 into, the anchor frame subcomponent 1100 is facilitated by moving internal components of the delivery catheter 1604, such as, but not limited to the leaflet frame subcomponent 1200 riding on a trolley advanced by a pulling of a tether elements 1714 or by elastic bias of the inflow annular groove cover 1400 and/or the outflow annular groove cover 1500 or an internal component of the delivery device.
  • An embodiment of a sliding trolley may be a larger diameter tubular member operable to be slidingly received onto a smaller diameter delivery catheter 1604. The trolley may be constrained from sliding on the delivery catheter 1604 by a retention means, such as, but not limited to, tether elements 1714 or a latch.
  • FIGS. 15A-15L a non-limiting exemplary deployment sequence and nesting configuration of the prosthetic valve 1000 in-situ during a mitral valve (“MV”) replacement procedure is shown, with a cross-section of a portion of the heart for illustrative purposes.
  • MV mitral valve
  • FIG. 15A the left atrium (“LA”) is accessed
  • FIGS. 15A-15L show a cross-sectional view of a heart illustrating exemplary medical device delivery procedures using the delivery device 1600 to implant the prosthetic valve 1000 into a mitral valve tissue annulus 1930, according to some embodiments.
  • FIG. 15A shows the delivery device 1600 including a constraining sheath 1606 covering the prosthetic valve (1000, hidden from view).
  • the constraining sheath 1606 is a tubular member that is operable to cover the prosthetic valve 1000 while constrained on the delivery device 1600.
  • the delivery device 1600 is shown entering the left atrium (LA) in a transseptal procedure to access the mitral valve (MV), in this example.
  • the delivery device 1600 is steerable and flexible to traverse the anatomy.
  • FIG. 15B shows the distal end of the delivery device 1600 being positioned through the mitral valve tissue annulus 1930.
  • FIG. 15C shows the
  • constraining sheath 1606 partially retracted to uncover the leaflet frame subcomponent 1200.
  • the constraining sheath 1606 may only cover a portion of the prosthetic valve 1000 during positioning of the prosthetic valve (e.g., including, but not limited to when the prosthetic valve is passing through the vasculature, atrial septum, left atrium, and/or otherwise.
  • the constraining sheath 1606 is only extended over the anchor frame subcomponent 1100 during initial positioning of the prosthetic valve 1000 in the native valve tissue annulus 1930.
  • Such a configuration may achieve a variety of advantages, including lower profiles and/or enhanced flexibility, as well as reduced compaction of the leaflet frame subcomponent 1200, and thus the leaflets 1230.
  • FIG. 15D shows the constraining sheath 1606 further retracted to fully uncover the connecting sheath 1300 and partially uncover the anchor frame
  • the prosthetic valve 1000 is mounted on the delivery catheter 1604 in a pre-deployed, un-nested configuration with the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 being longitudinally offset from one another (also referred to as being delivered in series) and coupled together with the connecting sheath 1300 therebetween, which is also shown in FIG. 12.
  • the outflow annular groove cover 1500 can be seen, with the connecting sheath 1300 and the inflow annular groove cover 1400 being hidden from view.
  • the leaflet frame subcomponent inflow end 1202 of the leaflet frame subcomponent 1200 is positioned distal to the anchor frame subcomponent outflow end 1104 of the anchor frame subcomponent 1100 with the connecting sheath 1300, the inflow annular groove cover 1400, and the outflow annular groove cover 1500 coupled thereto and positioned therebetween coupling them together.
  • FIG. 15E shows the constraining sheath 1606 further retracted to fully uncover the anchor frame subcomponent 1100 which allows the flared portion 1130 to expand to a deployed configuration from the constrained configuration.
  • the constraining sheath 1606 constrained the flared portion 1130, wherein in other examples other means of constraining may be used.
  • the remaining portion of the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 remain constrained to the delivery catheter 1604 by constraining elements 1716 as shown in FIG. 12.
  • withdrawal of a constraining sheath 1606 releases the flared portion 1130 as shown in FIGS. 2A and 2B or flange element of 1150 as shown in FIGS.
  • the other portions of the prosthetic valve 1000 are restrained to the delivery catheter 1604 by use of constraining elements 1716 such as fiber loops (FIG. 12).
  • the prosthetic valve 1000 may be positioned and oriented within the tissue annulus 1930 by advancing and withdrawing and otherwise manipulating the delivery catheter 1604 or delivery device 1600 as a whole, for a particular purpose, such as to ensure correct orientation and engagement with the anatomical structure of the tissue annulus 1930 and surrounding tissue.
  • FIG. 15F shows the flared portion 1130 advanced to and placed in contact with the tissue annulus 1930.
  • the delivery catheter 1604 or delivery device 1600 as a whole may be manipulated such that the flared portion 1130 and thus the anchor frame subcomponent 1100 may be positioned and repositioned suitable for a particular purpose.
  • FIG. 15G shows the anchor frame expanded to a larger diameter of the deployed configuration. Before disengagement of the constraining elements 1716 that constrains the anchor frame subcomponent 1100 to the delivery catheter 1604, the position of the anchor frame subcomponent 1100 is verified, and if incorrect, the constraining elements 1716 may be used, such as by instilling tension to the
  • constraining elements 1716 via a tether for example, to re-constrain or recompress the anchor frame subcomponent 1100 back onto the delivery catheter 1604 for
  • the anchor frame subcomponent 1100 optionally includes tissue engagement features 1118, such as those shown in FIGS. 2A- 2D.
  • the constraining elements 1716 may constrain the deployment of the tissue engagement features 1118 so as to allow for repositioning or withdrawal of the anchor frame subcomponent 1100 from within the tissue annulus 1930.
  • the constraining elements 1716 constraining the deployment of the tissue engagement features 1118, such as tissue anchors, re-constraining, or recompressing and repositioning of the anchor frame subcomponent 1100 may be done without trauma to the tissue.
  • the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are nested together. In various examples, nesting of the anchor frame
  • FIG. 15H illustrates the leaflet frame subcomponent 1200 as it is proximally advanced relative to the anchor frame subcomponent 1100 as indicated by the arrow.
  • FIG. 15H shows the delivery catheter 1604 being withdrawn from the anchor frame subcomponent 1100 which pulls the connecting sheath 1300 and a portion of the leaflet frame subcomponent within the anchor frame subcomponent 1100 with the connecting sheath 1300 in the process of being everted therebetween.
  • FIG. 151 shows the delivery catheter 1604 being further withdrawn from the anchor frame subcomponent 1100, and/or the pulling of tethers as discussed below, which pulls the connecting sheath 1300 and a portion of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100 with the connecting sheath 1300 having been everted therebetween.
  • one or more tether elements 1714 are coupled to the leaflet frame
  • the leaflet frame subcomponent 1200 may be recompressed by the tether elements 1714 and the tether elements 1714 may be used to pull the leaflet frame subcomponent 1200 and subsequently the anchor frame subcomponent 1100 into the constraining sheath 1606 or a larger retrieval sheath (not shown).
  • the anchor frame subcomponent 1100 is caused to evert initiating at the anchor frame subcomponent outflow end 1104 such that it is drawn, peeled or pulled away from the tissue annulus.
  • additional tethers may be coupled to the leaflet frame subcomponent inflow end 1202 that are operable to constrain and pull the leaflet frame subcomponent 1200 out of the anchor frame subcomponent 1100 should repositioning and/or retrieval of the prosthetic valve 1000 be required.
  • FIG. 15L shows the prosthetic valve 1000 fully deployed within the tissue annulus 1930 of the mitral valve (MV).
  • the prosthetic valve 1000 is in a fully deployed configuration wherein the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are nested.
  • the prosthetic valve 1000 is fully deployed and operational with the inflow annular groove cover 1400 and the outflow annular groove cover 1500 engaging the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 which minimizes relative axial translation between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 and covers the inflow gap 1702 and inflow annular groove 1704, as well as the outflow gap 1705 and outflow annular groove 1706, respectively.
  • the longitudinal separation or offset of the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 provides for a low-profile delivery configuration that can be easily tracked through the vasculature of the patient. For instance, by longitudinally offsetting the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200, a profile of the delivery device 1600 can be minimized because, unlike conventional designs, the anchor frame
  • a maximum profile of the delivery device 1600 including the prosthetic valve 1000 can be 8mm or less.
  • a region 1602 of the delivery device 1600 located between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 and adjacent to the connecting sheath 1300 and the inflow annular groove cover 1400 and the outflow annular groove cover 1500 may be bendable, or otherwise operable to bend, such that the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are temporarily misaligned with one another.
  • such a configuration is akin to rail cars navigating a curve.
  • Such a configuration is beneficial in procedures where the prosthetic valve 1000 is delivered to a treatment region transseptally, which may require a delivery device to bend as much as ninety (90) degrees or more within the left atrium of the heart.
  • the tissue engagement features 1118 of the anchor frame subcomponent 1100 extend away from the longitudinal axis of the anchor frame subcomponent 1 100 and are configured to engage the tissue of the native valve tissue annulus surrounding the prosthetic valve 1000. In some examples, the tissue engagement features 1118 are configured to penetrate the tissue or otherwise embed within the tissue. In various examples, this interaction of the tissue engagement features 1 1 18 of the anchor frame subcomponent 1 100 with the native tissue
  • surrounding the prosthetic valve 1000 operates to secure the anchor frame
  • the anchor frame subcomponent inflow end 1102 of the anchor frame subcomponent 1100 illustrated in FIGS. 15B-15L is flared radially outward and is situated adjacent to and in abutment with the native valve tissue annulus 1930, as shown.
  • such a configuration provides that the anchor frame subcomponent inflow end 1 102 of the anchor frame subcomponent 1 100 obstructs or otherwise limits the extent to which the anchor frame subcomponent 1100 is operable to extend through the native valve.
  • a flared anchor frame subcomponent inflow end 1 102 limits the extent to which the anchor frame subcomponent 1 100 can be advanced through the native mitral valve tissue annulus and into the left ventricle.
  • FIG. 16 shows the leaflet frame subcomponent 1200 at a fully or partially expanded diameter, but not yet nested with the anchor frame subcomponent 1100 as part of a deployment sequence.
  • the leaflet frame subcomponent1200 optionally perfuses at this stage of deployment, where the leaflet subcomponent 1228 (FIG. 7) is at least partially operational to permit antegrade flow, while restricting retrograde flow.
  • the leaflet frame subcomponent 1200 may then be nested within the anchor frame subcomponent 1100 as described above, such that the prosthetic valve 1000 takes on a final, deployed configuration.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)

Abstract

Concepts disclosed relate to multi-frame prosthetic valves including leaflet and anchor frame subcomponents, where the leaflet frame subcomponent does not directly couple with patient anatomy and is separated from the anchor frame subcomponent by a gap / space. An optional connecting sheath may be provided to interconnect the subcomponents and assist with prosthetic valve delivery and deployment. One or more bridging members, or annular groove covers, are provided to bridge and cover gap or space between the anchor frame subcomponent and leaflet frame subcomponent, such as at the inflow and/or outflow ends of the subcomponents. Such bridging/cover features may provide smoother flow profiles, reduce incidence of complications, facilitate perfusion during delivery, assist with device nesting during delivery, assist with relative subcomponent positioning following delivery, or provide any of a variety of additional or alternative functions and advantages.

Description

VALVE WITH MULTI-PART FRAME AND ASSOCIATED RESILIENT BRIDGING
FEATURES
CROSS-REFERENCE TO RELATED APPLICATION
[0001] This application claims the benefit of Provisional Application No.
62/833,176, filed April 12, 2019, which is incorporated herein by reference in its entirety for all purposes.
FIELD
[0002] The present disclosure relates generally to prosthetic valves, and more specifically multi-part frame prosthetic valve devices, systems and methods.
BACKGROUND
[0003] Bioprosthetic valves have been developed that attempt to mimic the function and performance of a native valve. Bioprosthetic valves may be formed from synthetic materials, natural tissue such as biological tissue, or a combination of synthetic materials and natural tissue.
[0004] Though many conventional designs require delivery to a target region within a patient’s anatomy via open-heart surgical techniques, alternative approaches such as transcatheter techniques offer a number of advantages. Among other examples, a transcatheter prosthetic valve that is delivered endovascularly via a catheter can help to minimize patient trauma as compared with an open-heart, surgical procedure. Open-heart surgery involves extensive trauma to the patient, with attendant morbidity and extended recovery. On the other hand, a valve delivered to the recipient site via a catheter avoids the trauma of open-heart surgery and may be performed on patients too ill or feeble to survive the open-heart surgery.
[0005] However, challenges exist with accessing treatment regions within the anatomy, properly positioning the bioprosthesis for deployment, and ultimately, prosthesis efficacy, among others.
SUMMARY
[0006] Various inventive concepts are disclosed relating to multi-frame prosthetic valves including leaflet and anchor frame subcomponents, where the leaflet frame subcomponent does not directly couple with patient anatomy and is separated from the anchor frame subcomponent by a gap or space. An optional connecting sheath may be provided to interconnect the anchor and leaflet frame subcomponents and assist with delivery of the prosthetic valve in an un-nested, low profile configuration and transition to a nested, deployed configuration. One or more bridging members, or annular groove covers, are provided to bridge and cover gap or space between the anchor frame subcomponent and leaflet frame subcomponent, such as at the inflow and/or outflow ends of the subcomponents. Such bridging/cover features can help provide smoother flow profiles into and/or out from the prosthetic valve, reduce incidence of complications associated with emboli, facilitate perfusion during prosthetic valve delivery, assist with telescoping nesting of the subcomponents during delivery, assist with relative positioning of the subcomponents following delivery, or provide any of a variety of additional or functions and advantages. Associated prosthetic valve devices, delivery systems, delivery methods and assembly methods are all
contemplated and addressed herein.
[0007] According to one example (“Example 1”), a prosthetic valve includes a leaflet frame subcomponent including a leaflet frame and having an inflow end and an outflow end, an anchor frame subcomponent including an anchor frame and having an inflow end and an outflow end, the anchor frame subcomponent coupled to the leaflet frame subcomponent such that the prosthetic valve is configured to be transitioned from a delivery configuration in which the leaflet frame subcomponent and the anchor frame subcomponent are longitudinally offset from one another such that the inflow end of the leaflet frame subcomponent is situated distal of the outflow end of the anchor frame subcomponent to a deployed configuration in which the leaflet frame subcomponent is at least partially nested at a nested position within the anchor frame subcomponent such that the leaflet frame subcomponent and the anchor frame subcomponent define a pair of adjacent inflow end portions, a pair of adjacent outflow end portions and an annular gap between the leaflet frame subcomponent and the anchor frame
subcomponent, and an annular groove cover extending between the pair of adjacent inflow end portions or the pair of adjacent outflow end portions to cover the annular groove between the leaflet frame subcomponent and the anchor frame subcomponent.
[0008] According to another example (“Example 2”), further to Example 1 , the annular gap includes an inflow annular groove and the annular groove cover is an inflow annular groove cover coupled between the pair of adjacent inflow end portions to cover the inflow annular groove when the prosthetic valve is in the deployed configuration. [0009] According to another example (“Example 3”), further to Example 1 , the annular gap includes an outflow annular groove and the annular groove cover is an outflow annular groove cover coupled between the pair of adjacent outflow end portions to cover the outflow annular groove when the prosthetic valve is in the deployed configuration.
[00010] According to another example (“Example 4”), further to any preceding Example, the annular groove cover is configured to be blood-permeable under physiologic conditions prior to the prosthetic valve being transitioned to the deployed configuration.
[00011 ] According to another example (“Example 5”), further to any preceding Example, the annular groove cover is configured to less permeable to blood under physiologic conditions when the prosthetic valve is in the deployed configuration than when the prosthetic valve is in the not in the deployed configuration.
[00012] According to another example (“Example 6”), further to Example 1 , the annular gap includes an inflow annular groove and an outflow annular groove, wherein the annular groove cover is an inflow annular groove cover coupled between the pair of adjacent inflow end portions to cover the inflow annular groove when the prosthetic valve is in the deployed configuration, and further wherein the prosthetic valve further comprises an outflow annular groove cover coupled between the pair of adjacent outflow end portions to cover the outflow annular groove when the prosthetic valve is in the deployed configuration.
[00013] According to another example (“Example 7”), further to Example 6, the outflow annular groove cover is configured to be blood-permeable under physiologic conditions prior to the prosthetic valve being transitioned to the deployed configuration.
[00014] According to another example (“Example 8”), further to either Example 6 or 7, the outflow annular groove cover is configured to be blood impermeable under physiologic conditions prior to the prosthetic valve being transitioned to the deployed configuration.
[00015] According to another example (“Example 9”), further to any preceding Example, the annular groove cover is transitionable from an extended configuration when the prosthetic valve is in the delivery configuration to a retracted configuration when the prosthetic valve is transitioned to the deployed configuration.
[00016] According to another example (“Example 10”), further to Example 9, the annular groove cover is substantially wrinkle-free in the retracted configuration. [00017] According to another example (“Example 11”), further to Example 9 or 10, the annular groove cover is configured to resiliently transition from the extended configuration to the retracted configuration.
[00018] According to another example (“Example 12”), further to any one of Examples 9-11 , the annular groove cover has an annular wall that is configured to angulate relative to a longitudinal axis of the prosthetic valve upon transitioning the annular groove cover from the extended configuration to the retracted configuration.
[00019] According to another example (“Example 13”), further to any one of Examples 9-12, the annular groove cover includes a porous elastic film that when in the extended configuration defines pores large enough to render the porous elastic film blood-permeable under physiologic conditions and when in the retracted configuration the pores are small enough to render the porous elastic film less permeable to blood under physiologic conditions.
[00020] According to another example (“Example 14”), further to any preceding Example, the annular groove cover includes a composite material formed of a retracted membrane and an elastomer.
[00021 ] According to another example (“Example 15”), further to Example 14, the annular groove cover includes a retracted membrane microstructure comprising serpentine fibrils.
[00022] According to another example (“Example 16”), further to any preceding Example, the annular groove cover includes at least one of a pleated configuration, a sinuous folded configuration, and a zig-zag folded configuration when the prosthetic valve is in the deployed configuration and, optionally, the annular groove cover is stretched and has an elastic bias when the prosthetic valve is in the delivery
configuration.
[00023] According to another example (“Example 17”), further to any preceding Example, the annular groove cover is configured to provide a bias for translating the leaflet frame subcomponent to the nested position within the anchor frame
subcomponent.
[00024] According to another example (“Example 18”), further to Example 17, the bias is sufficient to longitudinally translate the leaflet frame subcomponent into the anchor frame subcomponent when the leaflet frame subcomponent is longitudinally unconstrained relative to the anchor frame subcomponent.
[00025] According to another example (“Example 19”), further to any preceding Example, at least a portion of the annular groove cover is configured for tissue ingrowth and/or at least a portion of the annular groove cover is configured to resist tissue ingrowth.
[00026] According to another example (“Example 20”), further to any preceding Example, the prosthetic valve further includes a filler agent operable to fill a volume defined by the annular gap and, optionally, wherein the filler agent includes at least one of: hydrogel, alginate, foam, porous material, collagen, hyaluronic acid, alginic salt, cellulose, chitosan, gelatin, agarose, glycosaminoglycan, polysaccharide, and combinations thereof.
[00027] According to another example (“Example 21”), further to any preceding Example, the prosthetic valve further includes a connecting sheath coupling the leaflet frame subcomponent to the anchor frame subcomponent such that upon transitioning the prosthetic valve to the deployed configuration, the connecting sheath is everted.
[00028] According to another example (“Example 22”), further to Example 21 , the annular gap is defined by the anchor frame subcomponent, the connecting sheath, and the leaflet frame subcomponent.
[00029] According to another example (“Example 23”), further to Example 21 , the annular groove cover is an inflow annular groove cover coupled to and extending circumferentially adjacent an anchor frame subcomponent inflow end and a leaflet frame subcomponent inflow end, wherein the annular gap is an inflow annular groove formed by the anchor frame subcomponent, the connecting sheath, and the leaflet frame subcomponent, and further wherein the inflow annular groove cover is configured to cover the inflow annular groove when the valve is in the deployed configuration.
[00030] According to another example (“Example 24”), further to Example 21 , the prosthetic valve further includes an outflow annular groove cover coupled to and circumferentially extending from adjacent an anchor frame subcomponent outflow end and a leaflet frame subcomponent outflow end, wherein, the annular gap defines an outflow annular groove formed between the anchor frame subcomponent outflow end, the connecting sheath, and the leaflet frame subcomponent outflow end, and further wherein when the valve is in the deployed configuration, the outflow annular groove cover is configured to cover the outflow annular groove.
[00031 ] According to another example (“Example 25”), further to Example 24, the annular groove cover is an outflow annular groove cover coupled to and
circumferentially extending from adjacent an anchor frame subcomponent outflow end and a leaflet frame cover outflow edge of the leaflet frame subcomponent, wherein, when the valve is in the deployed configuration, the outflow annular groove cover is configured to cover an outflow annular groove formed between the anchor frame subcomponent outflow end, the connecting sheath, and the leaflet frame cover.
[00032] According to another example (“Example 26”), further to any one of Examples 21 -25, when the prosthetic valve is in the deployed configuration, the inflow annular groove cover and/or the outflow annular groove cover are configured to have lower permeability to blood than when the prosthetic valve is not in the deployed configuration.
[00033] According to another example (“Example 27”), further to any one of Examples 21-26, after initiation, but prior to completion of transitioning the prosthetic valve to a fully deployed configuration the inflow annular groove cover and/or the outflow annular groove cover are configured to be blood permeable.
[00034] According to another example (“Example 28”), further to any preceding Example, the leaflet frame includes a leaflet frame wall and the leaflet frame
subcomponent further includes one or more leaflets coupled to the leaflet frame and a leaflet frame cover coupled to the leaflet frame, the leaflet frame being generally tubular in shape and defining a leaflet frame inflow end and a leaflet frame outflow end.
[00035] According to another example (“Example 29”), further to Example 28, the leaflet frame wall of the leaflet frame includes one or more openings at least partially covered by the leaflet frame cover to define a covered portion of the leaflet frame wall, such that the leaflet frame cover is configured to restrict fluid from passing through the covered portion of the leaflet frame wall.
[00036] According to another example (“Example 30”), further to Example 28 or 29, the one or more flexible leaflets coupled to the leaflet frame are operable to open to allow flow from the leaflet frame subcomponent inflow end to pass through the leaflet frame subcomponent outflow end in antegrade flow conditions, and are operable to close to restrict flow from flowing from the leaflet frame subcomponent outflow end through the leaflet frame subcomponent inflow end in retrograde flow conditions.
[00037] According to another example (“Example 31”), further to any one of Examples 28-30, the one or more leaflets comprise a composite material including a porous synthetic fluoropolymer membrane defining pores and an elastomer or elastomeric material filling the pores, and optionally TFE-PMVE copolymer comprising from 27 to 32 weight percent perfluoromethyl vinyl ether and respectively from 73 to 68 weight percent tetrafluoroethylene on at least a portion of the composite material, and optionally, the elastomer or elastomeric material comprises a TFE-PMVE copolymer, and optionally, the porous synthetic fluoropolymer membrane is ePTFE. [00038] According to another example (“Example 32”), further to any preceding Example, the anchor frame subcomponent further includes an anchor frame and an anchor frame cover and the anchor frame defines a generally tubular shape, wherein an anchor frame inner surface and an anchor frame outer surface define an anchor frame wall of the anchor frame, and wherein the anchor frame wall defines one or more apertures at least partially covered by the anchor frame cover to define a covered portion of the anchor frame wall such that the anchor frame cover is configured to restrict fluid from passing through the anchor frame wall.
[00039] According to another example (“Example 33”), further to Example 32, the connecting sheath is contiguous with the anchor frame cover and the leaflet frame cover.
[00040] According to another example (“Example 34”), further to any one of Examples 21 -33, the connecting sheath is a thin-walled flexible tubular member that defines a connecting sheath lumen in fluid communication with an inner lumen of the anchor frame subcomponent and an inner lumen of the leaflet frame subcomponent, and wherein the connecting sheath is operable to fold and evert when the leaflet frame subcomponent is transitioned from the undeployed configuration to the deployed configuration such that the connecting sheath lies between the leaflet frame
subcomponent and the anchor frame subcomponent.
[00041 ] According to another example (“Example 35”), further to any one of Examples 21 -34, the connecting sheath comprises flow enabling features in a wall of the connecting sheath, the wall extending between a connecting sheath inflow end and a connecting sheath outflow end, wherein the flow enabling features are operable to allow antegrade fluid flow through the connecting sheath wall and prevent retrograde flow through the connecting sheath wall after initiation, but prior to completion of transitioning the prosthetic valve to a fully deployed configuration.
[00042] According to another example (“Example 36”), further to Example 21 -35, the connecting sheath comprises an inner film layer and an outer film layer, the inner film layer and the outer film layer being coupled together at least at a leaflet frame subcomponent inflow end and an anchor frame subcomponent outflow end, the inner film defining at least one inner film aperture therethrough adjacent the anchor frame subcomponent outflow end and the outer film layer defining at least one outer film aperture therethrough adjacent the leaflet frame subcomponent, the inner film layer and the outer film layer being not coupled at least between one of the inner film apertures and one of the outer film apertures so as to define a flow space therebetween operable to permit antegrade blood flow and restrict retrograde flow therethrough after initiation, but prior to completion of transitioning the prosthetic valve to a fully deployed
configuration.
[00043] According to another example (“Example 37”), further to Example 21 -35, the connecting sheath comprises an inner film layer and an outer film layer, the inner film layer and the outer film layer being coupled together at least at an anchor frame subcomponent outflow end, the inner film defining at least one inner film aperture therethrough adjacent the anchor frame subcomponent outflow end, the inner film layer and the outer film layer being not coupled at least downstream of the inner film apertures so as to define a flow space therebetween operable to permit antegrade blood flow with the inner film layer separating from the outer film layer at the inner film aperture and restrict retrograde flow therethrough with the inner film layer coming together and covering the inner film aperture after initiation, but prior to completion of transitioning the prosthetic valve to a fully deployed configuration.
[00044] According to another example (“Example 38”), further to any preceding Example, when the prosthetic valve is in the deployed configuration, the anchor frame defines a flared portion at the inflow end of the anchor frame subcomponent that flares or tapers radially outward.
[00045] According to another example (“Example 39”), further to any preceding Example, the prosthetic valve has a smaller diameter in the delivery configuration than in the deployed configuration.
[00046] According to another example (“Example 40”), further to any preceding Example, in the deployed configuration, the anchor frame subcomponent has an inner surface defining an inner diameter larger than the portion of the leaflet frame
subcomponent that is nested within the anchor frame subcomponent.
[00047] According to another example (“Example 41”), a method of treating a native valve of a patient’s anatomy includes advancing a prosthetic valve in a delivery configuration to a treatment site within a patient’s anatomy, wherein in the delivery configuration a leaflet frame subcomponent and an anchor frame subcomponent of the prosthetic valve are longitudinally offset from one another such that a leaflet frame subcomponent inflow end of the leaflet frame subcomponent is situated distal of an anchor frame subcomponent inflow end of the anchor frame subcomponent, deploying the anchor frame within a tissue annulus, and nesting the leaflet frame subcomponent within the anchor frame subcomponent by changing a relative longitudinal position between the leaflet frame subcomponent and the anchor frame subcomponent such that the leaflet frame subcomponent is at least partially nested at a nested position within the anchor frame subcomponent such that the leaflet frame subcomponent and the anchor frame subcomponent define a pair of adjacent inflow end portions, a pair of adjacent outflow end portions and an annular gap between the leaflet frame
subcomponent and the anchor frame subcomponent, wherein during nesting of the leaflet frame subcomponent within the anchor frame subcomponent an annular groove cover of the prosthetic valve that extends between the pair of adjacent inflow end portions or the pair of adjacent inflow end portions transitions from an extended configuration to a retracted configuration to cover the annular gap.
[00048] According to another example (“Example 42”), further to Example 41 , the method further includes fully deploying the prosthetic valve at the treatment site to selectively control blood flow at the treatment site.
[00049] According to another example (“Example 43”), further to any one of Examples 41 or 42, the leaflet frame subcomponent is nested within the anchor frame subcomponent after the anchor frame subcomponent is deployed at the treatment site.
[00050] According to another example (“Example 44”), further to any one of Examples 41 -43, the prosthetic valve is advanced to the treatment site via a catheter.
[00051 ] According to another example (“Example 45”), further to any one of
Examples 41 -44, nesting the leaflet frame subcomponent within the anchor frame subcomponent includes drawing the leaflet frame subcomponent proximally relative to the anchor frame subcomponent.
[00052] According to another example (“Example 46”), further to any one of Examples 41 -45, the method further includes securing the prosthetic valve to a tissue annulus of the native valve such that the prosthetic valve is operable to transition between an open position wherein antegrade fluid flow is permitted, and a closed position wherein retrograde fluid flow is inhibited.
[00053] According to another example (“Example 47”), further to any one of Examples 41 -46, deploying the anchor frame within a tissue annulus includes releasing constraining elements of a delivery system onto which the prosthetic valve has been coupled to facilitate deployment of the anchor frame to a larger diameter.
[00054] According to another example (“Example 48”), further to any one of Examples 41 -47, the method further includes recompressing the anchor frame to a smaller diameter after deploying the anchor frame to facilitate repositioning of the prosthetic valve. [00055] According to another example (“Example 49”), further to any one of Examples 41 -48, deploying the anchor frame within a tissue annulus includes releasing constraining elements operable to expand the flange portion or flange element so as to position the flange portion or flange element against the tissue annulus.
[00056] According to another example (“Example 50”), a method of treating a patient with a prosthetic valve according to any one of Examples 1 -40 includes delivering the prosthetic valve to a treatment site in a body of a patient, and deploying the prosthetic valve at the treatment site in the body of the patient.
[00057] According to another example (“Example 51”), a prosthetic valve includes a leaflet frame subcomponent including a leaflet frame and having an inflow end and an outflow end, a leaflet subcomponent operably coupled to the leaflet frame
subcomponent, an anchor frame subcomponent including an anchor frame and having an inflow end and an outflow end, the leaflet frame subcomponent being configured to be in a nested configuration at a nested position at least partially within the anchor frame subcomponent, and one or more bridging members coupled between the leaflet frame subcomponent and the anchor frame subcomponent to bridge an annular gap defined between the anchor frame subcomponent and the leaflet frame subcomponent in the nested configuration, the one or more bridging members being resiliently extendible and retractable in length between an extended configuration and a retracted configuration such that the leaflet frame subcomponent is translatable longitudinally relative to the anchor frame subcomponent.
[00058] According to another example (“Example 52”), further to Example 51 , the one or more bridging members include an annular membrane configured to cover the annular gap defined between the leaflet frame subcomponent and the anchor frame subcomponent when the leaflet frame subcomponent is in the nested configuration.
[00059] According to another example (“Example 53”), further to any one of Examples 51 or 52, the one or more bridging members include a proximal bridging member coupled between a proximal end portion of the anchor frame subcomponent and a proximal end portion of the leaflet frame subcomponent.
[00060] According to another example (“Example 54”), further to any one of Examples 51 -53, the one or more bridging members include an outflow bridging member coupled between an outflow end portion of the anchor frame subcomponent and an outflow end portion of the leaflet frame subcomponent. [00061 ] According to another example (“Example 55”), further to any one of Examples 51 -54, the one or more bridging members include a bridging member that is configured to be blood impermeable under physiologic conditions.
[00062] According to another example (“Example 56”), further to any one of Examples 51 -55, the one or more bridging members include a bridging member that is configured to be blood-permeable under physiologic conditions when the leaflet frame subcomponent is in an un-nested configuration with the anchor frame subcomponent.
[00063] According to another example (“Example 57”), further to any one of Examples 51 -56, the one or more bridging members are substantially wrinkle-free in the retracted configuration.
[00064] According to another example (“Example 58”), further to Example 51 -57, the one or more bridging members includes an elastomeric material.
[00065] According to another example (“Example 59”), further to any one of Examples 51 -58, the one or more bridging members include an annular wall that is configured to angulate relative to a longitudinal axis of the prosthetic valve upon transitioning the leaflet frame subcomponent from an un-nested configuration with the anchor frame subcomponent to the nested configuration.
[00066] According to another example (“Example 60”), further to any one of Examples 51 -59, the one or more bridging members include a membrane and a plurality of elastomeric members associated with the membrane.
[00067] According to another example (“Example 61”), further to any one of Examples 51 -60, the one or more bridging members includes a porous elastic film that when the one or more bridging members are in the extended configuration the porous elastic film defines pores that render the one or more bridging members blood- permeable under physiologic conditions in the extended configuration and less permeable to blood under physiologic conditions it the retracted configuration.
[00068] According to another example (“Example 62”), further to any one of Examples 51 -61 , the one or more bridging members includes a composite material formed of a retracted membrane and an elastomer.
[00069] According to another example (“Example 63”), further to any one of Examples 51 -62, the one or more bridging members includes a retracted membrane microstructure comprising serpentine fibrils.
[00070] According to another example (“Example 64”), further to any one of Examples 51 -62, the one or more bridging members includes at least one of a pleated configuration, a sinuous folded configuration, and a zig-zag folded configuration in the retracted configuration.
[00071 ] According to another example (“Example 65”), further to any one of Examples 51 -64, the one or more bridging members are configured to provide a bias for translating the leaflet frame subcomponent to the nested configuration.
[00072] According to another example (“Example 66”), further to any one of Examples 51 -65, at least a portion of the one or more bridging members is configured for tissue ingrowth, and/or wherein at least a portion of the one or more bridging members is configured to resist tissue ingrowth.
[00073] According to another example (“Example 67”), further to Example 51 -66, the prosthetic valve further includes a connecting sheath coupling the leaflet frame subcomponent to the anchor frame subcomponent such that upon transitioning the leaflet frame subcomponent from an un-nested configuration with the anchor frame subcomponent to the nested configuration, the connecting sheath is everted.
[00074] According to another example (“Example 68”), further to Example 67, the anchor frame subcomponent, the connecting sheath, and the leaflet frame
subcomponent define an annular gap, and further wherein the one or more bridging members act to inhibit blood flow passing through the annular gap when the leaflet frame subcomponent is in the nested position and the leaflet subcomponent is operable to facilitate antegrade blood flow and the inhibit retrograde blood flow through the prosthetic valve.
[00075] According to another example (“Example 69”), further to Example 67 or 68, the connecting sheath comprises flow enabling features in a wall of the connecting sheath, the wall extending between a connecting sheath inflow end and a connecting sheath outflow end, wherein the flow enabling features are operable to allow antegrade fluid flow through the connecting sheath wall and prevent retrograde flow through the connecting sheath wall after initiation, but prior to completion of transitioning the prosthetic valve from a compacted, delivery configuration to an expanded, fully deployed configuration.
[00076] According to another example (“Example 70”), further to any one of Examples 51 -69, the prosthetic valve further includes a filler operable to be delivered into an annular gap between the leaflet frame subcomponent and the anchor frame subcomponent when the leaflet frame subcomponent is in the nested configuration and the prosthetic valve is fully deployed at a treatment site. [00077] The foregoing Examples are just that, and should not be read to limit or otherwise narrow the scope of any of the inventive concepts otherwise provided. While multiple examples are disclosed, still other embodiments will become apparent to those skilled in the art from the following detailed description, which shows and describes illustrative examples. Accordingly, the drawings and detailed description are to be regarded as illustrative in nature rather than restrictive in nature.
BRIEF DESCRIPTION OF THE DRAWINGS
[00078] The accompanying drawings are included to provide a further
understanding of the disclosure and are incorporated in and constitute a part of this specification, illustrate embodiments, and together with the description serve to explain the principles of the disclosure.
[00079] FIG. 1 is a side view of a prosthetic valve in a compressed pre-deployed configuration, according to some embodiments;
[00080] FIGS. 2A-2D are side views of the prosthetic valve of FIG. 1 in expanded pre-deployed configurations, according to some embodiments;
[00081 ] FIGS. 3A, 3B, and 4 show a prosthetic valve in a fully-deployed configuration, according to some embodiments;
[00082] FIGS. 5 and 6 show an anchor frame of a prosthetic valve, according to some embodiments;
[00083] FIG. 7 is an axial view of a leaflet frame subcomponent, according to some embodiments;
[00084] FIG. 8 is a side view of a leaflet frame of a prosthetic valve, according to some embodiments;
[00085] FIG. 9 is an isometric view of nested, expanded anchor and leaflet frames of a prosthetic valve, with other portions removed for visualization purposes, according to some embodiments;
[00086] FIGS. 10A-10E show various views of assemblies and components associated with flow enabling features of a connecting sheath of a prosthetic valve, according to some embodiments;
[00087] FIGS. 11 A-11 H are simplified longitudinal sections of a prosthetic valve showing bridging members, or annular groove covers, in extended and retracted configurations, according to some embodiments;
[00088] FIG. 12 shows a prosthetic valve and associated delivery device, according to some embodiments; [00089] FIGS. 13A-13G are simplified longitudinal sections of a prosthetic valve in various stages of deployment, according to some embodiments;
[00090] FIGS. 14A-14C show prosthetic valves as implanted in varying patient anatomies, according to some embodiments;
[00091 ] FIGS. 15A-15L are illustrative of a delivery device and deployment sequence for treating a patient with a prosthetic valve, according to some embodiments;
[00092] FIG. 16 shows a delivery device and prosthetic valve as implanted in a patient anatomy, according to some embodiments.
[00093] Persons skilled in the art will readily appreciate that various aspects of the present disclosure can be realized by any number of methods and apparatus configured to perform the intended functions. It should also be noted that the
accompanying drawing figures referred to herein are not necessarily drawn to scale, but may be exaggerated to illustrate various aspects of the present disclosure, and in that regard, the drawing figures should not be construed as limiting.
DETAILED DESCRIPTION
Definitions and Terminology
[00094] This disclosure is not meant to be read in a restrictive manner. For example, the terminology used in the application should be read broadly in the context of the meaning those in the field would attribute such terminology.
[00095] With respect terminology of inexactitude, the terms“about” and
“approximately” may be used, interchangeably, to refer to a measurement that includes the stated measurement and that also includes any measurements that are reasonably close to the stated measurement. Measurements that are reasonably close to the stated measurement deviate from the stated measurement by a reasonably small amount as understood and readily ascertained by individuals having ordinary skill in the relevant arts. Such deviations may be attributable to measurement error or minor adjustments made to optimize performance, for example.
[00096] Certain terminology is used herein for convenience only. For example, words such as“top”,“bottom”,“upper,”“lower,”“left,”“right,”“horizontal,”“vertical,”
“upward,” and“downward” merely describe the configuration shown in the figures or the orientation of a part in the installed position. Indeed, the referenced components may be oriented in any direction. Similarly, throughout this disclosure, where a process or method is shown or described, the method may be performed in any order or
simultaneously, unless it is clear from the context that the method depends on certain actions being performed first.
[00097] A“prosthetic valve” (also referred to as a bioprosthetic valves) may be configured to replace a native valve, such as any of the cardiac valves (e.g., aortic, mitral, or tricuspid) or other bodily valves (e.g., vascular valves). Such prosthetic valves may include leaflets that are flexible and fabricated from biological tissue, synthetic materials, or combinations thereof. In some prosthetic valve designs, the leaflets are coupled onto a relatively more rigid frame that supports the leaflets and provides dimensional stability when implanted. Typically, the leaflets move under the influence of fluid pressure where, in operation, the leaflets open when the upstream fluid pressure exceeds the downstream fluid pressure and close when the downstream fluid pressure exceeds the upstream fluid pressure. The free edges of the leaflets generally coapt under the influence of the downstream fluid pressure, which closes the valve to prevent downstream blood from flowing retrograde through the valve. In turn, the free edges of the leaflets separate, or move away from one another under the influence of upstream fluid pressure to permit flow antegrade through the valve.
[00098] The term“leaflet” or“leaflet construct”, which comprises a plurality of leaflets, as used herein in the context of prosthetic valves is a component of a one-way valve wherein the leaflet is operable to move between an open and closed position under the influence of a pressure differential. In an open position, the leaflet allows fluid (e.g., blood) to flow through the valve. In a closed position, the leaflet substantially blocks retrograde flow through the valve by occluding the prosthetic valve orifice. In embodiments comprising multiple leaflets, each leaflet cooperates with at least one neighboring leaflet or secondary structure to block the retrograde flow of blood. The pressure differential in the blood is caused, for example, by the contraction of a ventricle or atrium of the heart, such pressure differential typically resulting from a fluid pressure building up on one side of the leaflets when closed, for example, by the contraction of a ventricle or atrium of the heart. As the pressure on an inflow side of the valve rises above the pressure on the outflow side of the valve, the leaflets open and blood flows therethrough. As blood flows through the valve into a neighboring chamber or blood vessel, the pressure on the inflow side equalizes with the pressure on the outflow side. As the pressure on the outflow side of the valve rises above the blood pressure on the inflow side of the valve, the leaflet returns to the closed position generally preventing retrograde flow of blood through the valve.
[00099] It is appreciated that leaflets, where not required by the specific design or mode of function of the disclosed embodiment, may be rigid such as in mechanical valves or may be flexible as in bioprosthetic and synthetic valves. It is further appreciated that, although embodiments provided herein include a frame that supports the leaflets, the leaflets may not necessarily be supported by a frame. In other embodiments, the leaflets may be constructed as in the tissue valve art that are formed into the desired shape without a frame.
[000100] The term“frame” as used herein generically refers to any structure or support used to directly or indirectly support leaflets for use in the prosthetic valve. It will be understood that, where appropriate, that the term frame may be used
interchangeably with support structure. In accordance with some embodiments, the leaflets may be supported by the wall of a solid-walled conduit, the solid-walled conduit being understood to be a frame or support structure.
[000101 ] The term“tubular” as used herein includes tubes having a constant diameter along the length of the tube, and tubes having a variable diameter along the length of the tube, such as, but not limited to, a taper, a non-circular transverse profile or irregular circumference, and the like. For example, a tubular member may have a variable diameter along its length in at least one configuration of the tubular member.
As another example, a tubular member may have a generally constant diameter in a delivery configuration, and a variable diameter in a deployed or pre-deployed
configuration (e.g., when operably positioned in an anatomy of a patient). It is
understood that the term“tubular” does not require a circular profile, but may also include irregular profiles, such as, but not limited to, out-of-round profiles, elliptical profiles, square profiles, and the like.
[000102] The term“bridging member” is inclusive of the term“annular groove cover,” and thus attributes described herein in association with an“annular groove cover” are generally applicable to a“bridging member” and vice versa.
[000103] The term“tissue annulus” is inclusive of native cardiac valve structures, vasculature, and other anatomical features.
[000104] The term“membrane” as used herein refers to a sheet of material comprising a single composition, such as, but not limited to, expanded fluoropolymer.
[000105] The term“composite material” as used herein refers to a material including two or more material components with one or more different material properties from the other. In some examples, a composite material includes at least a first material component in the form of a membrane and a second material component in the form of a polymer that is combined with the membrane (e.g., by coating and/or imbibing processes). The term“laminate” as used herein refers to multiple layers of membrane, composite material, or other materials, such as, but not limited to a polymer, such as, but not limited to an elastomer, elastomeric or non-elastomeric material, and combinations thereof.
[000106] The term“film” as used herein generically refers to one or more of the membrane, composite material, or laminate.
[000107] The term“elastomer” refers to a polymer or a mixture of polymers that has the ability to be stretched to at least 1.3 times its original length and to retract rapidly to approximately its original length when released.
[000108] The term“elastomeric material” refers to a polymer or a mixture of polymers that displays stretch and recovery properties similar to an elastomer, although not necessarily to the same degree of stretch and/or recovery.
[000109] The term“non-elastomeric material” refers to a polymer or a mixture of polymers that displays stretch and recovery properties not similar to either an elastomer or elastomeric material, that is, considered not an elastomer or elastomeric material as is generally known.
[000110] The term“resilient” refers to the ability to recoil or spring back into shape after bending, stretching, or being compressed.
[000111 ] The term“wrinkle-free” refers to freedom from creases, folds or wrinkles visible to the naked eye (i.e. , on a gross scale).
[000112] The term“contiguous” refers to elements that share a common border or are touching.
[000113] The term“biocompatible material” as used herein generically refers to any material with biocompatible characteristics including synthetic materials, such as, but not limited to, a biocompatible polymer, or a biological material, such as, but not limited to, bovine pericardium. Biocompatible material may comprise a first film and a second film as described herein for various embodiments.
[000114] The section headers in the description below are not meant to be read in a limiting sense, nor are they meant to segregate the collective disclosure presented below. The disclosure should be read as a whole. The headings are simply provided to assist with review, and do not imply that discussion outside of a particular heading is inapplicable to the portion of the disclosure falling under that header.
[000115] Although various examples are described herein in association with transcatheter designs, it is appreciated that the various examples of the prosthetic valve may be suitable for either surgical or transcatheter applications. Therefore, the inventive concepts described in association with transcatheter designs are applicable for both surgical and transcatheter applications and not limited to only transcatheter applications.
Description of Various Embodiments
[000116] As will be described further below, in various examples, a prosthetic valve includes a leaflet frame subcomponent that does not directly couple with a tissue annulus or other anatomical feature in which the prosthetic valve is received. The leaflet frame subcomponent and the anchor frame subcomponent generally define a gap, or space between the two. A connecting sheath, interconnecting the two, may extend longitudinally between the leaflet frame subcomponent and the anchor frame subcomponent when the leaflet frame subcomponent is not nested within the anchor frame subcomponent. Then, when the leaflet frame subcomponent is nested within the anchor frame subcomponent, the connecting sheath is optionally everted and extends within the space between the two. One or more annular groove covers (e.g., an annular inflow groove cover or annular outflow groove cover), also described as bridging members, may additionally or alternatively connect the leaflet frame subcomponent and anchor frame subcomponent. In general terms, the bridging members are annular members (e.g., annular membranes) configured to cover annular grooves or gap between anchor frame subcomponent and leaflet frame subcomponent.
[000117] In various examples, the leaflet frame subcomponent floats, or is otherwise held in a mechanically isolated position within the anchor frame
subcomponent to which the leaflet frame subcomponent is coupled. Such a
configuration may be advantageous from a standpoint that the anchor frame
subcomponent may conform to the patient anatomy (e.g., shape of the tissue annulus), while the leaflet frame subcomponent is not required to conform to the anatomy, or altered in shape by engagement with the anatomy. In this manner, the leaflet frame subcomponent can retain a desired shape (e.g., a right circular hollow cylinder) so as to present the leaflets with a geometrically stable platform that promotes proper, repeatable leaflet function, including opening and closing leaflet dynamics and coaptation. In different terms, such configurations provide that the anchor frame subcomponent can deform, (e.g., by being out of round or generally oval-shaped), to accommodate or otherwise conform to a native valve tissue annulus without causing a deformation of the leaflet frame subcomponent.
[000118] In various embodiments, the inflow annular groove cover (also described as a proximal annular groove cover) and/or the outflow annular groove cover (also described as an outflow annular groove cover) may assist with maintaining the relative positioning of the leaflet frame subcomponent within the anchor frame subcomponent when the prosthetic valve is fully deployed. For example, the inflow annular groove cover and/or outflow annular groove cover may be resiliently retractable and extendible, such that the groove cover(s) are able to be transitioned between extended and retracted configurations. In different terms, the inflow annular groove cover is operable to contract within the lumen of the anchor frame subcomponent from a relatively extended configuration to a relatively retracted configuration adjacent the anchor frame subcomponent inflow end.
[000119] The inflow annular groove cover and/or the outflow annular groove cover can present from the extended configuration to the retracted configuration during nesting and expansion of the leaflet frame subcomponent within the anchor frame subcomponent such that the inflow annular groove cover and/or the outflow annular groove cover take on relatively flatter shapes as the groove cover(s) contract. For example, the annular groove cover(s) may have an angular wall that is defined as the cover(s) contract and angulate as they transition from a lower angle (shallower angle) relative to a longitudinal axis of the prosthetic valve to a higher angle (steeper angle) relative to the longitudinal axis of the prosthetic valve. In some examples, the groove cover(s) extend approximately perpendicularly between the walls of the leaflet frame subcomponent and the anchor frame subcomponent in the retracted configuration.
[000120] In terms of coupling locations, in various examples, the inflow annular groove cover is coupled between a pair of adjacent proximal end portions (also described as inflow end portions) of the respective leaflet and anchor frame
subcomponents and the outflow annular groove cover is coupled between a pair of adjacent outflow end portions (also described as outflow end portions) of the respective leaflet and anchor frame subcomponents. In some examples, the inflow annular groove cover first end can be coupled to the anchor frame subcomponent inflow end (also described as a proximal end) and the inflow annular groove cover second end can be coupled to the leaflet frame subcomponent inflow end (again, optionally described as a proximal end). Similarly, the outflow annular groove cover first end can be coupled to the anchor frame subcomponent outflow end (also described as a distal end) and the outflow annular groove cover second end can be coupled to the leaflet frame
subcomponent outflow end (also described as a distal end).
[000121 ] The one or more bridging members, referred to as annular groove covers below, are configured to bridge, or extend across, an annular space, or annular gap between the anchor frame subcomponent and the leaflet frame subcomponent when the leaflet frame subcomponent is translated longitudinally and nested within the anchor frame subcomponent. In various examples, the annular groove covers are operable to cover annular gaps or grooves, such as an inflow annular groove or an outflow annular groove, respectively, defined by the anchor frame subcomponent, the connecting sheath, and the leaflet frame subcomponent at an inflow end or outflow end,
respectively, of the prosthetic valve.
[000122] In the deployed, or retracted configuration, the inflow annular groove cover and/or the outflow annular groove cover extend between the leaflet frame subcomponent inflow end and the anchor frame subcomponent inflow end with the inflow annular groove cover operable to cover and restrict fluid flow into, or out from, the inflow annular groove. Where employed, the outflow annular groove cover extends between the leaflet frame subcomponent outflow end and the anchor frame
subcomponent outflow end with the outflow annular groove cover operable to cover and restrict fluid flow into, or out from, the outflow annular groove. In various embodiments, the inflow annular groove cover and/or the outflow annular groove cover is less permeable to blood (e.g., blood impermeable under physiologic conditions) when in the retracted configuration. The inflow annular groove cover and/or the outflow annular groove cover may also be configured to be blood-permeable under physiologic conditions when in the extended configuration. For example, after initiation, but prior to completion of transitioning the prosthetic valve to a fully deployed configuration the inflow annular groove cover and/or the outflow annular groove cover are configured to be blood permeable.
[000123] Although various features are described above, they are provided by way of example and additional or alternative features, associated advantages, and other inventive aspects are contemplated and will be apparent from the disclosure read as a whole.
[000124] Various embodiments are directed to a prosthetic valve 1000 that is transitionable between a delivery, compressed, un-nested configuration (FIG. 1 ) and a deployed, expanded, nested configuration (FIGS. 3A and 3B) in-situ. FIG. 1 is a side view of the prosthetic valve 1000 in a pre-deployed state, where the prosthetic valve 1000 is in a delivery, un-nested configuration. As shown, the prosthetic valve 1000 includes an anchor frame subcomponent 1100, a leaflet frame subcomponent 1200 in coaxial alignment with the anchor frame subcomponent 1100, a connecting sheath 1300 extending between and in coaxial serial alignment with the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200, an inflow annular groove cover 1400 (hidden, but indicated in broken lines), and an outflow annular groove cover 1500 (shown in cross-section). As subsequently described and as shown in FIG. 12, the prosthetic valve 1000 may be carried in the pre-deployed configuration on a delivery device 1600.
[000125] The prosthetic valve 1000 provides a leaflet frame subcomponent 1200 that essentially floats within the anchor frame subcomponent 1100 and does not directly couple with the anchor frame subcomponent 1100 nor the native valve tissue annulus. The anchor frame subcomponent 1100 may conform to the shape of the native valve tissue annulus whereas the leaflet frame subcomponent 1200 does not conform to the shape of the native valve tissue annulus. The leaflet frame subcomponent 1200 remains a right circular hollow cylinder or at a predetermined geometrical configuration so as to present the valve leaflet(s) with a geometrically stable platform ensuring proper leaflet function, including opening and closing dynamics and, for flexible leaflets, coaptation. It is appreciated that these benefits associated with the leaflet frame subcomponent 1200 not needing to conform to the native valve tissue annulus may be realized in either transcatheter or surgical placement of the prosthetic valve 1000.
[000126] In various embodiments, as discussed in greater detail below, the prosthetic valve 1000 is configured such that the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 can be nested in-situ after the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are deployed to a treatment site in a patient’s anatomy. That is, in various embodiments, the prosthetic valve 1000 can be delivered to a treatment region within a patient’s anatomy with the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200
longitudinally offset relative to one another and subsequently nested with one another at the treatment site. In various embodiments, the prosthetic valve 1000 is loaded onto a delivery catheter with the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 longitudinally offset relative to one another which presents a lower profile or diameter than if the prosthetic valve 1000 were to be loaded onto the delivery catheter in the nested configuration. A lower delivery profile of a transcatheter delivered prosthetic valve has well recognized advantages, including easier advancement though vessels.
[000127] It is appreciated that these benefits associated with the leaflet frame subcomponent 1200 not being nested into the anchor frame subcomponent 1100 during implantation may also be realized in surgical placement of the prosthetic valve 1000. By way of example, but not limited thereto, the anchor frame subcomponent 1100 may be more easily sutured into the native valve tissue annulus without the leaflet frame subcomponent 1200 being within the anchor frame subcomponent 1100 and in close proximity to the suturing procedure lessening the chance of needle damage to the leaflets.
[000128] FIGS. 2A-2D are each a side view of different variations of the prosthetic valve 1000 each in an expanded, un-nested configuration showing the leaflet frame subcomponent 1200 and the anchor frame subcomponent 1100 having each been expanded to larger diameters relative to what they exhibit in the compressed
configuration of FIG. 1. The views of FIGS. 2A-2D would be as if the prosthetic valve 1000 were radially/circumferentially unconstrained from the constrained pre-nested configuration of FIG. 1 , such as when the prosthetic valve 1000 is placed over a delivery catheter 1604 of the delivery device 1600 prior to being compressed and constrained onto the delivery catheter 1604 (e.g., using one or more constraining elements 1716 associated with the delivery device 1600 as shown in FIG. 12).
[000129] FIG. 3A is an axial view from the inflow side of the prosthetic valve 1000 in a fully deployed, nested configuration with the leaflet frame subcomponent 1200 nested within the anchor frame subcomponent 1100 at a nested position, according to some examples. FIG. 3B is an isometric view of the prosthetic valve 1000 in the fully deployed, nested configuration with both the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 transitioned to a fully expanded configuration. FIG. 4 is an axial view of the prosthetic valve 1000 from the inflow end in the deployed configuration showing the anchor frame subcomponent 1100, the leaflet frame subcomponent 1200, and the connecting sheath 1300 therebetween, and the inflow annular groove cover 1400 shown as being transparent for clarity of visualizing the other components. As understood with reference to FIGS. 1 to 4, the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are generally tubular shaped and operable to have a smaller delivery configuration diameter and a larger deployed configuration diameter, facilitated by balloon expansion and/or self-expansion deployment means.
Anchor Frame Subcomponent
[000130] In some embodiments, the anchor frame subcomponent 1100 includes an anchor frame 1120 and an anchor frame cover 1132 as shown in FIGS. 2A-2D. FIG. 5 is a side view of the anchor frame 1120 and FIG. 6 is an axial view of the anchor frame 1120. The anchor frame wall 1105 of the anchor frame 1120 may be at least partially covered by the anchor frame cover 1132 (e.g., a film or fabric, FIGS. 2A-2D) that is suitable for desired effect, such as to restrict fluid from passing through the anchor frame wall 1105 of the anchor frame 1120, to encourage tissue ingrowth of the anchor frame subcomponent 1100 with the implant site, or alternative or additional purposes as desired. The anchor frame cover 1132 may be coupled to the inner surface, outer surface, or both inner surface and outer surface of the anchor frame 1120. For illustrative purposes, the following examples are suitable especially for a transcatheter application, but are also suitable for a surgical application.
[000131 ] As shown in FIGS. 5 and 6, the anchor frame 1120 is a generally tubular member having an anchor frame inflow end 1122 corresponding to an anchor frame subcomponent inflow end 1102 (FIGS. 2A-2D, also described as a proximal end), an anchor frame outflow end 1124 corresponding to an anchor frame subcomponent outflow end 1104 (FIGS. 2A-2D, also described as a distal end), an anchor frame inner surface 1106 and an anchor frame outer surface 1108 defining an anchor frame wall 1105, wherein the anchor frame inner surface 1106 defines an anchor frame
subcomponent lumen 1140 therethrough. For reference, the anchor frame
subcomponent 1100 defines an inflow end portion and an outflow end portion proximate the anchor frame subcomponent inflow end 1102 and the anchor frame subcomponent outflow end 1104, respectively.
[000132] As shown in FIG. 6, the anchor frame subcomponent lumen 1140 is a generally cylindrical void defined between the anchor frame subcomponent inflow end 1102 (FIGS. 2A-2D) and the anchor frame subcomponent outflow end 1104 (FIGS. 2A- 2D), and the anchor frame inner surface 1106 of the anchor frame subcomponent 1100. Flowever, in-situ, the anchor frame subcomponent lumen 1140 may adopt an irregular cross section, depending on the geometry of the tissue annulus into which it is placed and the conformity of the anchor frame subcomponent 1100 to the tissue annulus at the implant site. In various examples, the anchor frame 1120 is configured to couple or otherwise be secured to a native valve tissue annulus. Accordingly, in various examples, a diameter of the anchor frame 1120 (e.g., a diameter of the anchor frame outer surface 1108), and essentially the diameter of the anchor frame subcomponent outer surface 1109 (FIGS. 2A-2D) of the anchor frame subcomponent 1100 is sized in accordance with patient anatomy. [000133] It will be appreciated that nonlimiting examples of an anchor frame subcomponent 1100 can be provided with a diameter (e.g., a diameter of an exterior surface of the anchor frame subcomponent 1100) in a range of between twenty-five (25) millimeters and fifty (50) millimeters, depending on a patient’s anatomy. However, anchor frames 1120 having diameters (e.g., a diameter of an anchor frame outer surface 1108) less than twenty-five (25) millimeters and more than fifty (50) millimeters are also envisioned and fall within the scope of the present disclosure, depending on patient anatomy. In general terms, anchor frame subcomponent inner surface 1107 (shown generically in FIG. 4) of the anchor frame subcomponent 1100 has a diameter at least slightly larger than the outer surface of the leaflet frame subcomponent 1200 to facilitate nesting of the leaflet frame subcomponent 1200 telescopically within the anchor frame subcomponent 1100 and to allow the leaflet frame subcomponent 1200 to float, or otherwise be held in a mechanically isolated position within the anchor frame subcomponent 1100.
[000134] In various examples, the anchor frame 1120 is elastically deformable so as to be self-expanding. In some embodiments, the anchor frame 1120 comprises a shape memory material operable to flex under load and retain its original shape when the load is removed, thus allowing the anchor frame subcomponent 1100 to self-expand from a compressed shape to a predetermined larger shape. The anchor frame 1120 may comprise the same or different materials as the leaflet frame, described in further detail below. In some examples, the anchor frame 1120 is plastically deformable, such that it may be mechanically expanded by a radial expansion force, such as with a balloon.
[000135] In some embodiments, the anchor frame 1120 defines a tubular mesh having a framework defining apertures or voids 1116 as shown in FIG. 5. For example, as shown, the anchor frame 1120 includes a plurality of frame members 1112 that are interconnected and arranged in one or more patterns. In some examples, these patterns repeat one or more times. In some such examples, the frame members 1112 are arranged and interconnected such that the anchor frame 1120 includes a plurality of patterned rows. In various examples, the frame members 1112 are connected to one another at various joints 1114. In some examples, these joints 1114 operate as flex points so as to provide a preferential flexing location for the anchor frame 1120 to flex when compressed to a smaller delivery diameter and when forces from the surrounding anatomy act to compress the anchor frame 1120 during normal operation after delivery and deployment of the prosthetic valve 1000. A flex point or joint 1114 may comprise a site on the anchor frame 1120 that undergoes a high degree of bending. In some examples, the joints 1114 have a geometry, structural modification or material modification, among others, that biases the anchor frame 1120 to preferentially bend at the flex point or joint 1114 when compressed.
[000136] In some embodiments, one or more closed cell apertures or voids 1116 are defined between the joints 1114 and the interconnected frame members 1112 of the anchor frame 1120. As shown, such apertures or voids 1116 can extend from the anchor frame outer surface 1108 to the anchor frame subcomponent inner surface 1107 of the anchor frame 1120. As illustrated in the embodiments of FIGS. 5 and 6, one or more of the apertures or voids 1116 define a diamond shape when the anchor frame 1120 is in a deployed configuration. Upon compression to a smaller diameter (e.g., a delivery diameter), one or more of the joints 1114 and the frame members 1112 deform such that the apertures or voids 1116 generally define an elongated diamond shape (e.g., as shown generally in FIG. 1 ). Upon expanding the anchor frame 1120 to a larger diameter during deployment at a treatment site, the apertures or voids 1116 expand to define the generally wider diamond shape.
[000137] It should be appreciated that while the frame members 1112 illustrated and described herein are interconnected and define apertures or voids 1116 having generally a diamond shape, the interconnected frame members 1112 may be arranged in a number of alternative patterns. For example, a framework of the anchor frame 1120 can define any number of features, repeatable or otherwise, such as geometric shapes and/or linear or meandering series of sinusoids. Geometric shapes can comprise any shape that facilitates circumferential compressibility and expandability of the anchor frame 1120. That is, a number of alternative patterns are envisioned where the arrangement of frame members 1112 is configured in such a manner as to provide for an anchor frame 1120 that can be compressed to a smaller diameter for
transcatheter delivery and subsequently expanded (or allowed to expand) to a larger diameter at a treatment site during deployment of the prosthetic valve 1000.
Accordingly, the disclosure should not be read as being limited to arrangements of the frame members 1112 that define diamond-shaped apertures or voids 1116.
[000138] In various embodiments, the anchor frame 1120 may comprise or otherwise be formed from a cut tube, or any other element suitable for the particular purpose of the anchor frame 1120 as described herein. In some examples, the anchor frame 1120 may be etched, cut, laser cut, or stamped into a tube or a sheet of material, with the sheet then formed into a tubular structure. Alternatively, an elongated material, such as a wire, bendable strip, or a series thereof, can be bent or braided and formed into a tubular structure wherein the wall of the tube comprises an open framework that is compressible to a smaller diameter in a generally uniform and circumferential manner and expandable to a larger diameter as illustrated and described herein.
[000139] The anchor frame 1120 can comprise any metallic or polymeric biocompatible material. For example, the anchor frame 1120 can comprise a material, such as, but not limited to nitinol, cobalt-nickel alloy, stainless steel, or polypropylene, acetyl homopolymer, acetyl copolymer, ePTFE, other alloys or polymers, or any other biocompatible material having adequate physical and mechanical properties to function as described herein.
[000140] In various examples, the anchor frame 1120 is elastically deformable so as to be self-expanding under spring loads, as those of skill will appreciate. In some examples, the anchor frame 1120 is plastically deformable so as to be mechanically expanded such as with a balloon, as those of skill will appreciate. In yet some other examples, the anchor frame 1120 is plastically deformable as well as elastically deformable. That is, in some examples, the anchor frame 1120 includes one or more elastically deformable components or features and one or more plastically deformable components or features. Thus, it should be appreciated that the examples of the anchor frame 1120 presented herein are not to be limited to a specific design or mode of expansion.
[000141 ] In various embodiments, the anchor frame subcomponent 1100 is configured to provide positive engagement with an implant site to firmly anchor the prosthetic valve 1000 to the site. Such positive engagement with the implant site may be facilitated by one or more of the following, but not limited thereto: expansion spring bias of the anchor frame 1120; hoop strength of the expanded anchor frame 1120, tissue engagement features, and the geometric shape, contour and/or texture of the anchor frame subcomponent outer surface 1109.
[000142] In various examples, the anchor frame subcomponent 1100 (e.g., anchor frame 1120) includes one or more tissue engagement features 1118 that are configured to engage one or more regions of tissue at the tissue orifice surrounding the prosthetic valve 1000. In various examples, the tissue engagement features 1118 comprise one or more barbs or tissue anchors and may be integral or separately formed from the anchor frame 1120.
[000143] As shown in FIGS. 2A-2D, the anchor frame subcomponent 1100 can define a flange or a flared portion 1130 at the anchor frame subcomponent inflow end 1102 that flares or tapers radially outward when in the deployed configuration. As shown, the flared portion 1130 results in the anchor frame subcomponent inflow end 1102 having a larger deployed diameter than does the anchor frame subcomponent outflow end 1104. In various examples, as discussed in greater detail below, such a configuration can help to minimize migration risks and facilitate abutment of the anchor frame subcomponent 1100 with tissue annulus at the implant site.
[000144] As shown in FIGS. 2C and 2D, rather than an integral flared portion 1130 as shown in FIGS. 2A and 2B, the anchor frame subcomponent 1100 may include a flange element 1150 separate from, adjacent to, and coaxial with the anchor frame inflow end 1122 of the anchor frame 1120. FIG. 2C is a side view of the prosthetic valve 1000 in an expanded pre-deployed configuration showing the leaflet frame subcomponent 1200 and the anchor frame subcomponent 1100 having been expanded to larger diameters so as to show the details of the flange element 1150 as compared with an integral flange or flared portion 1130 of the anchor frame inflow end 1122 of anchor frame 1120 of the embodiment of FIGS 2A and 2B.
[000145] As shown in FIG. 2C, the flange element 1150 defines a flange or a flared portion 1130 of the anchor frame subcomponent 1100 that also defines the anchor frame subcomponent inflow end 1102 that flares or tapers radially outward when in the deployed configuration. The flange element 1150 is a generally tubular member of substantially the same construction as the anchor frame 1120. The flange element 1150 has a flange element inflow end 1152, a flange element outflow end 1154, a flange element inner surface 1156, and a flange element outer surface 1158 defining a flange element wall 1155 defining flange voids 1157. The flange element inner surface 1156 defines a portion of the anchor frame subcomponent lumen 1140 therethrough. In-situ, the flange element 1150 may adopt an irregular cross section, depending on the geometry of the tissue annulus into which it is placed and the conformity of the flange element 1150 to the tissue annulus at the implant site.
[000146] The flange element 1150 is coupled to the anchor frame inflow end 1122 by the anchor frame cover 1132 which is described below. The flange element 1150 defines a flange element inflow end 1152 and a flange element outflow end 1154. The flange element 1150 is located adjacent to, coaxial with, and axially spaced apart from the anchor frame 1120, with the flange element outflow end 1154 adjacent to but separate from the anchor frame inflow end 1122.
[000147] FIG. 2C shows the flange element 1150 flaring outward in a trumpet shape having a concave curvature to the flange element outer surface 1158. FIG. 2D shows another embodiment of the flange element 1150 wherein the flange element outer surface 1158 defines a convex curvature. The shape of the anatomy into which the anchor frame subcomponent 1100 is placed will determine the best choice of shape for the flange element 1150 of FIGS. 2C and 2D or the flared portion 1130 of the anchor frame subcomponent 1100 of FIGS. 2A and 2B. The flared portion 1130 of the anchor frame subcomponent 1100 of FIGS 2A and 2B may also define the convex curvature of the embodiment of FIG. 2D suitable for a particular anatomy into which is it placed.
[000148] The anchor frame subcomponent 1100 further comprises an anchor frame cover 1132 that is operable to prevent the flow of fluid through the anchor frame wall 1105 of the anchor frame 1120. In various examples, the anchor frame cover 1132 is translucent or transparent, and thus the elements of the anchor frame 1120 are shown through the anchor frame cover 1132. In addition to inhibiting or preventing flow, the anchor frame cover 1132 may also be operable to provide a favorable surface for tissue abutment at the tissue annulus, and further, may be operable to facilitate tissue ingrowth at desired locations which may be advantageous for fixation of the prosthetic valve 1000 to the tissue annulus, facilitate a favorable biological response of the blood (e.g., to prevent a thrombotic response), and/or facilitate sealing of the prosthetic valve 1000 with the tissue annulus to minimize para-valvular leakage.
[000149] FIGS. 2A-2D provides an embodiment wherein all or a majority of the voids 1116 of the anchor frame 1120 are covered by the anchor frame cover 1132 so as to block flow through the anchor frame wall 1105 (e.g., the anchor frame cover 1132 is less permeable to blood (e.g., blood impermeable under physiologic conditions), or is configured to become less permeable to blood over time (e.g., similarly to woven and/or polyester-based graft materials). Thus, in some implementations, the anchor frame cover 1132 is a low permeability or impermeable film, sheet or membrane coupled to the anchor frame outer surface 1108. The anchor frame cover 1132 may comprise any suitable material known in the art. By way of example, the anchor frame cover 1132 may be a film or fabric material, among others.
[000150] The anchor frame cover 1132 may be a sheet-like material that is biologically compatible and configured to couple to the anchor frame 1120. In various examples, the biocompatible material is a film that is not of a biological source and that is sufficiently flexible and strong for the particular purpose, such as a biocompatible polymer. In an embodiment, the film comprises a biocompatible polymer (e.g., ePTFE). In some examples, the film is a composite of two or more materials. The film may comprise one or more of a membrane, composite material, or laminate. In various examples, the construction of and materials used in the film are such that the anchor frame cover 1132 is less permeable to blood (e.g., blood impermeable under
physiologic conditions). In various examples, the construction of and materials used in the film are such that the anchor frame cover 1132 promotes cellular ingrowth, adhesion, and/or attachment. That is, in various examples, the anchor frame cover 1132 is constructed in a manner that promotes the ingrowth of tissue into one or more portions of the anchor frame cover 1132. It will be appreciated that cellular ingrowth may further increase sealing of the prosthetic valve with the tissue annnulus and helps minimize para-valvular leakage, that is, leakage between the prosthetic valve and the tissue into which it is coupled.
Leaflet Frame Subcomponent
[000151 ] FIG. 7 is an axial, inflow end view of the leaflet frame subcomponent 1200. As shown in FIGS. 2A-2D and 7, the leaflet frame subcomponent 1200 includes a leaflet frame 1220, a leaflet subcomponent 1228 (FIG. 7) including one or more leaflets 1230, and leaflet frame cover 1232. The leaflet frame subcomponent 1200 is generally tubular shaped defining a leaflet frame subcomponent inflow end 1202 and a leaflet frame subcomponent outflow end 1204 with a leaflet frame subcomponent lumen 1240 therethrough. The leaflet frame subcomponent 1200 generally provides the prosthetic valve 1000 with the functionality of a one-way valve. It is appreciated that mechanical leaflet, biological leaflet, synthetic leaflet, and biological and synthetic leaflet valves may be employed. It is also appreciated that, for transcatheter applications, the leaflet frame subcomponent 1200 is required to have a smaller-diameter compressed configuration and a larger-diameter expanded configuration, and that the valve subcomponent and associated leaflets 1230 must be able to accommodate that functionality.
[000152] FIG. 8 is a side view of the leaflet frame 1220. In general terms, the leaflet frame 1220 provides structural support for the leaflets 1230 (FIG. 7). The leaflet frame 1220 is operable to have a smaller delivery configuration diameter and a larger deployed configuration diameter, facilitated by balloon expansion and/or self-expansion deployment means. As is known in the art, by way of example, structure defining apertures, such as, but not limited to, a wire form or perforated wall tube that allows for the leaflet frame to have various diameters, such as a stent, is suitable for the particular purpose. As shown in FIGS. 2A-2D, the leaflet frame wall 1205 of the leaflet frame 1220 may be at least partially covered with a leaflet frame cover 1232, such as a less blood-permeable material (e.g., blood impermeable under physiologic conditions) including a low-permeability film or fabric, to restrict fluid from passing through the leaflet frame wall 1205 of the leaflet frame 1220.
[000153] Referring to FIG. 8, the leaflet frame 1220 is a generally tubular member having a leaflet frame inflow end 1222 corresponding to a leaflet frame subcomponent inflow end 1202, a leaflet frame outflow end 1224 corresponding to a leaflet frame subcomponent outflow end 1204 (FIGS. 2A-2D), a leaflet frame inner surface 1206 and a leaflet frame outer surface 1208 defining a leaflet frame wall 1205, wherein the leaflet frame inner surface 1206 defines a leaflet frame subcomponent lumen 1240 (FIG. 7) therethrough. The leaflet frame subcomponent lumen 1240 is a generally cylindrical void defined between the leaflet frame inflow end 1222 and the leaflet frame outflow end 1224, and the leaflet frame inner surface 1206.
[000154] The leaflet frame 1220 defines a tubular framework defining apertures or voids 1216. For example, as shown, the leaflet frame 1220 includes a plurality of frame members 1212 that are interconnected and arranged in one or more patterns. In various examples, the frame members 1112 are connected to one another at various joints 1214. In some examples, these joints 1214 operate as flex points so as to provide a preferential flexing location for the leaflet frame subcomponent 1200, such as to flex when compressed to a smaller delivery diameter such as required for
transcatheter delivery. In some examples, a flex point or joint 1214 comprises a site on the leaflet frame 1220 that undergoes a high degree of bending. In some examples, the flex points or joints 1214 may comprise a geometry, structural modification or material modification, among others, that biases the leaflet frame 1220 to bend at the joint 1214 when compressed or expanded between a larger diameter and a smaller diameter.
[000155] In some examples, one or more closed cell apertures or voids 1216 are defined between the joints 1214 and the interconnected frame members 1212 of the leaflet frame subcomponent 1200. In some examples, these apertures or voids 1216 extend from the leaflet frame outer surface 1208 to the leaflet frame inner surface 1206 of the leaflet frame wall 1205 of the leaflet frame 1220. As illustrated in the
embodiments of FIG. 2A, one or more of the apertures or voids 1216 define a diamond shape when the leaflet frame subcomponent 1200 is in a deployed configuration. Upon compression to a smaller diameter (e.g., a delivery diameter), one or more of the joints 1214 and the frame members 1212 deform such that the apertures or voids 1216 generally define an elongated diamond shape (e.g., as shown generally in FIG. 1A). Upon expanding the leaflet frame subcomponent 1200 to a larger diameter during deployment at a treatment site, the apertures or voids 1216 expand to define the generally wider diamond shape.
[000156] It should be appreciated that while the frame members 1212 illustrated and described herein are interconnected and define apertures or voids 1216 having generally a diamond shape, the interconnected frame members 1212 may be arranged in a number of alternative patterns without departing from the spirit or scope of the disclosure. That is, a number of alternative patterns are envisioned where the arrangement of frame members 1212 is configured in such a manner as to provide for a leaflet frame subcomponent 1200 that can be compressed to a smaller diameter for transcatheter delivery and subsequently expanded (or allowed to expand) to a larger diameter at a treatment site during deployment of the prosthetic valve 1000.
Accordingly, the disclosure should not be limited to arrangements of the frame members 1212 that define diamond-shaped apertures or voids 1216. For example, a framework of the leaflet frame 1220 can define any number of features, repeatable or otherwise, such as geometric shapes and/or linear or meandering series of sinusoids. Geometric shapes can comprise any shape that facilitates circumferential compressibility and expandability.
[000157] In various embodiments, the leaflet frame 1220 may comprise or otherwise be formed from a cut tube, or any other element suitable for the particular purpose of the leaflet frame 1220 as described herein. In some examples, the leaflet frame 1220 may be etched, cut, laser cut, or stamped into a tube or a sheet of material, with the sheet then formed into a tubular structure. Alternatively, an elongated material, such as a wire, bendable strip, or a series thereof, can be bent or braided and formed into a substantially tubular structure wherein the wall of the tube comprises an open framework that is compressible to a smaller diameter and expandable to a larger diameter as illustrated and described herein.
[000158] The leaflet frame 1220 may comprise, such as, but not limited to, any elastically deformable metallic or polymeric biocompatible material, in accordance with embodiments. The leaflet frame 1220 may comprise a shape-memory material, such as nitinol, a nickel-titanium alloy. Other materials suitable for the leaflet frame 1220 include, but are not limited to, other titanium alloys, stainless steel, cobalt-nickel alloy, polypropylene, acetyl homopolymer, acetyl copolymer, other alloys or polymers, or any other biocompatible material having adequate physical and mechanical properties to function as a leaflet frame subcomponent 1200 as described herein. [000159] In various examples, the leaflet frame 1220 is elastically deformable so as to be self-expanding under spring loads, as those of skill will appreciate. In some examples, the leaflet frame 1220 is plastically deformable so as to be mechanically expanded such as with a balloon, as those of skill will appreciate. In yet some other examples, the leaflet frame 1220 is plastically deformable as well as elastically deformable. That is, in some examples, the leaflet frame 1220 includes one or more elastically deformable components or features and one or more plastically deformable components or features. Thus, it should be appreciated that the examples of the leaflet frame 1220 presented herein are not to be limited to a specific design or mode of expansion.
[000160] In accordance with some embodiments, the leaflet frame 1220 comprises a shape memory material operable to flex under load and retain its original shape when the load is removed, thus allowing the leaflet frame subcomponent 1200 to self-expand from a compressed shape to a predetermined shape. The leaflet frame subcomponent 1200 and the anchor frame subcomponent 1100 may comprise the same or different materials. In accordance with an embodiment, the leaflet frame 1220 is plastically deformable to be expanded by a balloon. In another embodiment the leaflet frame 1220 is elastically deformable so as to be self-expanding.
[000161 ] In various embodiments, one or more leaflets 1230 of the leaflet subcomponent 1228 are coupled to the leaflet frame 1220 to provide a one-way valve structure. As referenced above, a variety of mechanical valve, biological leaflet, and synthetic leaflet designs may be employed as desired.
[000162] In general terms, the one or more flexible leaflets 1230 coupled to the leaflet frame 1220 are operable to open to allow flow from the leaflet frame
subcomponent inflow end 1202 and to pass through the leaflet frame subcomponent outflow end 1204, also referred to as the forward flow direction, and are operable to close to restrict flow from flowing from the leaflet frame subcomponent outflow end 1204 through the leaflet frame subcomponent inflow end 1202, also referred to as the retrograde flow direction.
[000163] In some examples, the leaflet subcomponent 1228, and in particular the one or more leaflets 1230 of the leaflet subcomponent 1228, is coupled to the leaflet frame inner surface 1206 of the leaflet frame 1220. In other examples, a film that comprises a leaflet material is coupled to the leaflet frame outer surface 1208 and extends through a leaflet window defined by the leaflet frame 1220 to define the leaflet subcomponent 1228. Such a configuration minimizes a potential for the leaflet 1230 to peel or delaminate, as compared to configurations where the leaflets 1230 are coupled to a leaflet frame inner surface 1206 of the leaflet frame 1220. In some related examples, one or more portions of the leaflets 1230 are wrapped about one or more portions of the leaflet frame subcomponent 1200 to provide enhanced attachment and/or improved fatigue performance, for example.
[000164] The leaflet frame subcomponent 1200 further comprises a leaflet frame cover 1232 that is operable to prevent the flow of fluid through the wall of the leaflet frame 1220 such that the fluid can only flow through a lumen defined by the open leaflets 1230. FIGS. 2A-2D show the voids 1216 of the leaflet frame 1220 covered by the leaflet frame cover 1232 so as to block flow through the portion of the leaflet frame 1220 that is upstream of the attachment of leaflets 1230 to the leaflet frame 1220. In accordance with some examples, the leaflet frame cover 1232 may be a low
permeability material (e.g., blood impermeable under physiologic conditions), such as an impermeable film, sheet or membrane that is wrapped around and coupled to the leaflet frame outer surface 1208. The leaflet frame cover 1232 may comprise any suitable material known in the art. By way of example, the leaflet frame cover 1232 may be a film or a fabric, among others.
[000165] The leaflet frame cover 1232 may be a sheet-like material that is biologically compatible and configured to couple to the leaflet frame 1220. In various examples, the biocompatible material is a film that is not of a biological source and that is sufficiently flexible and strong for the particular purpose, such as a biocompatible polymer. In an embodiment, the film comprises a biocompatible polymer (e.g., ePTFE). In some examples, the film is a composite of two or more materials. The film may comprise one or more of a membrane, composite material of two or more components, or laminate of more than one layer of material. In various examples, the construction of and materials used in the film are such that the leaflet frame cover 1232 is less permeable to blood (e.g., blood impermeable under physiologic conditions).
[000166] As previously referenced, in various embodiments, the leaflet frame subcomponent 1200 is nestable within the anchor frame subcomponent 1100. FIG. 9 is a perspective view of the leaflet frame 1220 and anchor frame 1120 in the nested, expanded configuration, without other components shown for clearer visualization. In terms of the full subcomponent assemblies, as shown in FIGS. 3 and 9, the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are sized and shaped in a manner that provides for the leaflet frame subcomponent 1200 being coaxially disposable or receivable, or otherwise telescopically nested, at least partially within the anchor frame subcomponent 1100. In different terms, the anchor frame subcomponent 1100 is configured such that a portion of (or alternatively all of) the leaflet frame subcomponent 1200 can be received by or otherwise positioned within a space defined by the anchor frame subcomponent 1100, to define a pair of adjacent inflow and outflow end portions (or, a pair of adjacent inflow and outflow end portions).
[000167] Consistent with the foregoing, in some examples, the leaflet frame subcomponent 1200 is sized such that a diameter of the exterior surface of the leaflet frame subcomponent 1200 (when in an expanded, deployed configuration) is less than a diameter of the interior surface of the anchor frame subcomponent 1100 (when in an expanded, deployed configuration). In some examples, a diameter of the exterior surface of the leaflet frame subcomponent 1200 is in a range of between seventy five percent (75%) and ninety percent (90%) of a diameter of the interior surface of the anchor frame subcomponent 1100. In others, a diameter of the exterior surface of the leaflet frame subcomponent 1200 is seventy five percent (75%) or less than a diameter of the interior surface of the anchor frame subcomponent 1100. It will be appreciated that nonlimiting examples of the leaflet frame subcomponent 1200 can be provided with a diameter (e.g., a diameter of an interior or exterior surface of the leaflet frame subcomponent 1200) in a range of between twenty (20) millimeters and thirty (30) millimeters, depending on a patient’s anatomy.
Leaflet Materials
[000168] In various examples, the one or more leaflets 1230 of the leaflet subcomponent 1228 are formed of a biocompatible, synthetic material (e.g., including ePTFE and ePTFE composites, or other materials as desired). In other examples, the leaflet 1230 is formed of a natural material, such as repurposed tissue, including bovine tissue, porcine tissue, or the like.
[000169] In accordance with embodiments herein, the leaflet subcomponent 1228 comprises a composite material having at least one porous synthetic polymer
membrane layer having a plurality of pores and/or spaces and an elastomer and/or an elastomeric material and/or a non-elastomeric material filling the pores and/or spaces of the at least one synthetic polymer membrane layer. In accordance with other examples, the leaflet 1230 further comprises a layer of an elastomer and/or an elastomeric material and/or a non-elastomeric material on the composite material. In accordance with examples, the composite material comprises porous synthetic polymer membrane by weight in a range of 10% to 90%.
[000170] An example of a porous synthetic polymer membrane includes expanded fluoropolymer membrane having a node and fibril structure defining the pores and/or spaces. In some examples, the expanded fluoropolymer membrane is expanded polytetrafluoroethylene (ePTFE) membrane. Another example of porous synthetic polymer membrane includes microporous polyethylene membrane.
[000171 ] Examples of an elastomer and/or an elastomeric material and/or a non- elastomeric material include, but are not limited to, copolymers of tetrafluoroethylene and perfluoromethyl vinyl ether (TFE/PMVE copolymer), (per)fluoroalkylvinylethers (PAVE), urethanes, silicones (organopolysiloxanes), copolymers of silicon-urethane, styrene/isobutylene copolymers, polyisobutylene, polyethylene-co-poly(vinyl acetate), polyester copolymers, nylon copolymers, fluorinated hydrocarbon polymers and copolymers or mixtures of each of the foregoing. In some examples, the TFE/PMVE copolymer is an elastomer comprising between 60 and 20 weight percent
tetrafluoroethylene and respectively between 40 and 80 weight percent perfluoromethyl vinyl ether. In some examples, the TFE/PMVE copolymer is an elastomeric material comprising between 67 and 61 weight percent tetrafluoroethylene and respectively between 33 and 39 weight percent perfluoromethyl vinyl ether. In some examples, the TFE/PMVE copolymer is a non-elastomeric material comprising between 73 and 68 weight percent tetrafluoroethylene and respectively between 27 and 32 weight percent perfluoromethyl vinyl ether. The TFE and PMVE components of the TFE-PMVE copolymer are presented in wt%. For reference, the wt% of PMVE of 40, 33-39, and 27-32 corresponds to a mol% of 29, 23-28, and 18-22, respectively.
[000172] In some examples, the TFE-PMVE copolymer exhibits elastomer, elastomeric, and/or non-elastomeric properties.
[000173] In some examples, the composite material further comprises a layer or coating of TFE-PMVE copolymer comprising from 73 to 68 weight percent
tetrafluoroethylene and respectively from 27 to 32 weight percent perfluoromethyl vinyl ether.
[000174] In some examples, the leaflet the leaflet subcomponent 1228 is an expanded polytetrafluoroethylene (ePTFE) membrane having been imbibed with TFE- PMVE copolymer comprising from 60 to 20 weight percent tetrafluoroethylene and respectively from 40 to 80 weight percent perfluoromethyl vinyl ether, the leaflet subcomponent 1228 further including a coating of TFE-PMVE copolymer comprising from 73 to 68 weight percent tetrafluoroethylene and respectively 27 to 32 weight percent perfluoromethyl vinyl ether on the blood-contacting surfaces.
[000175] As discussed above, the elastomer and/or an elastomeric material and/or a non-elastomeric material may be combined with the expanded fluoropolymer membrane such that the elastomer and/or the elastomeric material and/or the non- elastomeric material occupies substantially all of the void space or pores within the expanded fluoropolymer membrane.
[000176] Although some examples of suitable leaflet materials have been provided, the foregoing examples are not meant to be read in a limiting sense, and additional or alternative materials are contemplated.
[000177] In some examples, the leaflet frame cover 1232, the anchor frame cover 1132, the connecting sheath 1300, the inflow annular groove cover 1400 and/or the outflow annular groove cover 1500 may comprise any of the materials described above in association with the leaflet subcomponent 1228.
Connecting sheath
[000178] FIGS. 1 and 2A-2D show the connecting sheath 1300 extending between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 with the leaflet frame subcomponent un-nested, or offset from the anchor frame
subcomponent 1100. In various examples, the connecting sheath 1300 is a flexible tubular membrane coupled about its circumference to the leaflet frame subcomponent 1200 at the leaflet frame subcomponent inflow end 1202 and to the anchor frame subcomponent 1100 at the anchor frame subcomponent outflow end 1104 operable to couple the leaflet frame subcomponent 1200 to the anchor frame subcomponent 1100. The connecting sheath 1300 is thin and flexible, and operable to fold or elastically contract to a smaller diameter in a delivery configuration.
[000179] When the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are expanded, the connecting sheath 1300 defines a tapered configuration extending between the leaflet frame subcomponent 1200 and the anchor frame subcomponent 1100. The connecting sheath 1300 is configured to facilitate nesting of the leaflet frame subcomponent 1200 into the anchor frame subcomponent 1100.
[000180] When the prosthetic valve 1000 is in the deployed nested configuration, the leaflet frame subcomponent 1200 translated into the anchor frame subcomponent 1100 in a nested position, with the connecting sheath 1300 having been everted and positioned therebetween (FIG. 11 A).
[000181 ] Referring to FIGS. 2A-2D, which shows the prosthetic valve in the un nested configuration, the connecting sheath 1300 has an inner surface 1307, an outer surface 1308, an inflow end 1322, and an outflow end 1324. As shown, the connecting sheath 1300 is coupled to the anchor frame subcomponent outflow end 1104 of the anchor frame subcomponent 1100 at the connecting sheath inflow end 1322 and is coupled to the leaflet frame subcomponent inflow end 1202 at the connecting sheath outflow end 1324. The connecting sheath 1300 is a thin-walled flexible tubular member that defines a connecting sheath lumen 1340 (e.g., FIGS. 11 A and 11 B) in fluid communication with the anchor frame subcomponent lumen 1140 and the leaflet frame subcomponent lumen 1240 when in the pre-deployed configuration. When the leaflet frame subcomponent 1200 is nested into the anchor frame subcomponent 1100 the connecting sheath 1300 is operable to fold and evert so as to lie between the leaflet frame subcomponent 1200 and the anchor frame subcomponent 1100. The connecting sheath 1300 may comprise any suitable material known in the art. By way of example, the connecting sheath 1300 may be a film, fabric, or membrane, among others, that is flexible and less permeable to blood (e.g., blood impermeable under physiologic conditions).
[000182] The connecting sheath 1300 can be disposed within and/or about the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 as desired. For example, the connecting sheath 1300 can extend not only between but also over or within either or both of the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200. In some examples, the connecting sheath 1300 is contiguous with the leaflet frame cover 1232 and the anchor frame cover 1132. In particular, the connecting sheath 1300 can be a contiguous film with that of the anchor frame cover 1132 and/or the leaflet frame cover 1232 that at least extends between and operates to couple the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 to one another. As shown, the connecting sheath 1300 is formed from a generally tubular material and at least partially covers one or more of the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200.
[000183] In some examples, the connecting sheath 1300 is formed by wrapping a film over and around a cylindrical mandrel that defines a variable diameter to match the respective inner diameter of each of the leaflet frame 1220 and anchor frame 1120 with a tapered portion therebetween to transition from the smaller diameter of the leaflet frame 1220 to the larger diameter of the anchor frame 1120. Either or both of the anchor frame 1120 and the leaflet frame 1220 are slid over the film and bonded thereto to the inner surface of the frames. If desired, the connecting sheath 1300 is formed by wrapping the film over and around either or both of the anchor frame 1120 and the leaflet frame 1220 and bonded to the outer surface of the frames, for example.
[000184] The connecting sheath 1300 can be any sheet-like material that is biologically compatible and configured to couple to the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200. In various examples, the
biocompatible material is a film that is not of a biological source and that is sufficiently flexible and strong for the particular purpose, such as a biocompatible polymer. In an embodiment, the film comprises a biocompatible polymer (e.g., ePTFE). The film may comprise one or more of a membrane, composite material, or laminate. In various examples, the construction of and materials used in the film are such that the
connecting sheath 1300 has low permeability to fluid flow (e.g., blood impermeable) under physiologic conditions.
[000185] In various examples, the connecting sheath 1300 includes a connecting sheath wall 1305 that is impervious to fluid flow (e.g., blood impermeable under physiologic conditions) and controls the flow of fluid only through the connecting sheath lumen 1340 particularly during deployment of the prosthetic valve 1000 into the tissue annulus and acts as a low-permeability or impermeable seal between the leaflet frame subcomponent 1200 and the anchor frame subcomponent 1100 when in the deployed nested configuration as shown in FIG. 3. As will be discussed further below, during deployment of the prosthetic valve 1000, with the anchor frame subcomponent 1100 deployed within the tissue annulus and the leaflet frame subcomponent 1200 mounted to a delivery device 1600 (FIG. 12), blood flow may be occluded during deployment, or the connecting sheath 1300 may include features for facilitating selective blood flow during deployment of the prosthetic valve 1000. In particular, in some examples, the connecting sheath 1300 is operable to allow antegrade fluid flow, (e.g., blood perfusion) through the connecting sheath wall 1305 during deployment of the prosthetic valve 1000 into the tissue annulus.
[000186] With reference to FIGS. 10A-10C and 10E, the prosthetic valve 1000 optionally includes one or more flow enabling features 1350 formed in the connecting sheath 1300. FIG. 10A is a side view of the prosthetic valve 1000 with the flow enabling features 1350 in an open configuration where antegrade flow (denoted by arrow“A”) is permitted. FIG. 10B is a side view of the prosthetic valve 1000 with the flow enabling features 1350 in a closed configuration where retrograde (denoted by arrow“R”) flow is obstructed. In some examples, the one or more flow enabling feature 1350 include one or more perforations or apertures. The flow enabling features 1350 are operable to enable antegrade flow and prevent retrograde flow through the flow enabling features 1350 prior to the anchor frame subcomponent 1100 and the leaflet frame
subcomponent 1200 being nested together and in a fully deployed configuration.
Further, the flow enabling features 1350 are configured to be fully closed and sealed when the leaflet frame subcomponent 1200 is nested into the anchor frame
subcomponent 1100 and in a fully deployed configuration.
[000187] In some examples, the one or more flow enabling features 1350 additionally or alternatively include one or more mechanisms that facilitate unidirectional flow. For instance, in some examples, the flow enabling features 1350 are configured as one-way valves. In some examples, one-way valves include an aperture or perforation and a flap or element of material that overlays and is larger than the aperture or perforation so as to cover and seal the aperture or perforation under retrograde flow pressure. In some examples, the one-way valve is oriented to permit antegrade flow through the prosthetic valve, while minimizing or preventing retrograde flow through the prosthetic valve.
[000188] FIGS. 10A-10E are side views as if the prosthetic valve 1000, as shown in FIG. 1 , was unconstrained from a constrained pre-nested configuration in order to more clearly show the particular elements. As shown in FIGS. 10A-10B, an example of flow enabling features 1350 include an aperture 1352 and a flap 1354 that operate to enable antegrade flow through the prosthetic valve 1000 prior to the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 being nested together (while the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are longitudinally offset). The flap 1354 can be oversized relative to the aperture 1352 to cover the aperture 1352 under retrograde flow pressure and restrict or minimize retrograde flow through the aperture 1352, while during antegrade flow the flap 1354 lifts away from the aperture 1352 permitting antegrade flow through the aperture 1352. Further, the flap 1354 can be configured to cover and seal the aperture 1352 when the leaflet frame subcomponent 1200 is nested into the anchor frame subcomponent 1100 and in a fully deployed configuration.
[000189] In some embodiments, the connecting sheath 1300 comprises two layers of film, an inner film layer 1304 and an outer film layer 1306 (as shown in FIGS. 10C and 10D) with both layers coupled to either the inner or outer surface of the anchor frame 1120 and leaflet frame 1220, or the inner film layer 1304 bonded to the inner surfaces of the anchor frame 1120 and leaflet frame 1220 and the outer film layer 1306 coupled to the outer surfaces of the anchor frame 1120 and leaflet frame 1220.
[000190] FIG. 10C is a side view of another embodiment of the connecting sheath 1300 as shown coupled to the leaflet frame subcomponent 1200 and anchor frame subcomponent 1100. FIG. 10D is an exploded view of the connecting sheath 1300. In accordance with this embodiment, the connecting sheath 1300 is a double layer of film, an inner film layer 1304 that is a conical tubular member that defines an inner layer of the connecting sheath 1300 and an outer film layer 1306 that is a conical tubular member that is slightly larger than the inner film layer 1304 that defines an outer layer of the connecting sheath 1300 when in the partially deployed configuration shown in FIG. 10C.
[000191 ] In some examples, the inner film layer 1304 and the outer film layer 1306 are coupled together at least at the leaflet frame subcomponent inflow end 1202 of the leaflet frame subcomponent 1200 and the anchor frame subcomponent outflow end 1104 of the anchor frame subcomponent 1100. The inner film layer 1304 defines at least one inner film aperture 1312 therethrough adjacent the anchor frame
subcomponent 1100 and the outer film layer 1306 defines at least one outer film aperture 1310 therethrough adjacent the leaflet frame subcomponent 1200. A respective inner film aperture 1312 is offset in the radial direction from a respective outer film aperture 1310 to facilitate operation as provided below. The inner film layer 1304 and the outer film layer 1306 are not coupled at least between one of the inner film apertures 1312 and one of the outer film apertures 1310 so as to define a flow space 1320 therebetween such that the outer film layer 1306 lifts away from the inner film apertures 1312 to enable antegrade flow through the inner film apertures 1312 and the outer film apertures 1310 prior to the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 being nested (while the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are longitudinally offset as illustrated and described herein). In some embodiments, the outer film layer 1306 is not coupled at least downstream of the outer film apertures 1310 and the inner film apertures 1312 so as to define the flow space 1320.
[000192] In operation, the inner film layer 1304 and the outer film layer 1306 come together to close the flow space and to cover and seal the inner film apertures 1312 and outer film apertures 1310 under retrograde flow pressure and restrict or minimize retrograde flow through the inner film apertures 1312 and outer film apertures 1310. Further, the inner film layer 1304 and the outer film layer 1306 are configured to cover and seal the inner film apertures 1312 and outer film apertures 1310 when the leaflet frame subcomponent 1200 is nested into the anchor frame subcomponent 1100 and in a fully deployed configuration.
[000193] In the above embodiment, the inner film layer 1304 and the outer film layer 1306 are coupled together at least at the leaflet frame subcomponent inflow end 1202 of the leaflet frame subcomponent 1200 and the anchor frame subcomponent outflow end 1104 of the anchor frame subcomponent 1100. It is appreciated that in accordance with an embodiment, the outer film layer 1306 may not be coupled together at or adjacent to the anchor frame subcomponent outflow end 1104 and still function to cover the inner film aperture 1312 during retrograde flow conditions. As provided in the above embodiment related to the flap 1354, the outer film layer 1306 may function as does the flap 1354; that is, to occlude the inner film aperture 1312 during retrograde flow conditions.
[000194] FIG. 10E is a side view of the prosthetic valve 1000 similar to the views of FIGS. 2A-2D, with an embodiment of the connecting sheath 1300 including flow enabling features 1350, the connecting sheath 1300 coupled to the leaflet frame subcomponent 1200 and anchor frame subcomponent 1100. In accordance with this embodiment, the connecting sheath 1300 is a double layer of film, an inner film layer 1304 that is a conical tubular member that defines an inner layer of the connecting sheath 1300 and an outer film layer 1306 that is a conical tubular member that is slightly larger but shorter than the inner film layer 1304 that defines an outer layer of the connecting sheath 1300 when in the partially deployed configuration shown in FIG. 10E. The inner film layer 1304 and the outer film layer 1306 are coupled together at least at the anchor frame subcomponent outflow end 1104 of the anchor frame subcomponent 1100 but are not coupled at the leaflet frame subcomponent inflow end 1202 of the leaflet frame subcomponent 1200.
[000195] The inner film layer 1304 defines at least one inner film aperture 1312 therethrough adjacent the anchor frame subcomponent 1100 and the outer film layer 1306 is configured to cover the at least one inner film aperture 1312. Under antegrade flow conditions, the outer film layer 1306 lifts away from the inner film layer 1304 and uncovers the at least one inner film aperture 1312 so as to define a flow space 1320 therebetween such that the outer film layer 1306 lifts away from the inner film apertures 1312 to enable antegrade flow through the inner film apertures 1312 prior to the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 being nested (i.e. , while the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are longitudinally offset as illustrated and described herein). The inner film layer 1304 and the outer film layer 1306 come together to close the flow space and to cover and seal the inner film apertures 1312 under retrograde flow pressure and restrict or minimize retrograde flow through the inner film apertures 1312. Further, the inner film layer 1304 and the outer film layer 1306 are configured to cover and seal the inner film apertures 1312 when the leaflet frame subcomponent 1200 is nested into the anchor frame subcomponent 1100 and in a fully deployed configuration.
[000196] In any of the examples of the connecting sheath 1300, the connecting sheath 1300 optionally includes one or more reinforcement elements 1380 as shown in FIG. 2D. In particular, FIG. 2D shows an optional reinforcement element 1380 in broken line for visualization purposes. The reinforcement element 1380 is optionally a stent-like frame element (e.g., a circumferentially-extending, sinuous shape memory element), one or more longitudinally extending reinforcement members (e.g., a fiber, wire, shape memory frame element or the like), or the like. Examples of such reinforcement elements can be found in U.S. Patent Application 16/129,779, filed September 12, 2018, and titled“Telescoping Prosthetic Valve and Delivery System.” In various examples, the reinforcement element 1380 provides stiffening bias to the connecting sheath 1300, may be configured to evert along with the connecting sheath 1300, can be curved or s-shaped as shown or zig-zag, or take another form as desired. The one or more reinforcement elements 1380 can be temporarily elastically bent or folded upon itself as the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are nested to provide stiffening bias such that it takes a
predetermined amount of force to nest the leaflet frame subcomponent 1200 into the anchor frame subcomponent 1100 and a corresponding predetermined amount of force to resist the movement of the leaflet frame subcomponent 1200 from the nested position. In some examples, with the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 in the nested configuration, a column strength of the reinforcement element resists compressive loads that would otherwise cause the leaflet frame subcomponent 1200 to de-nest or telescope out of and away from the anchor frame subcomponent 1100. Although some functions and advantages of the one or more reinforcement elements 1380 have been described, additional or alternative features and advantages are contemplated.
[000197] Although various embodiments are described including the connecting sheath 1300, in other embodiments the connecting sheath 1300 is omitted (e.g., as shown in FIGS. 11 G and 11 H. In such embodiments, the inflow annular groove cover 1400 and/or outflow annular groove cover 1500 optionally serve to couple, or connect the anchor frame subcomponent 1100 and leaflet frame subcomponent 1200 without use of the connecting sheath 1300, for example.
Annular Groove Covers / Bridging Members
[000198] FIGS. 2A-2D (collectively, FIGS. 2A-2D) shows an outline of the lateral borders, or periphery of the inflow bridging member 1400 and outflow bridging member 1500, or inflow annular groove cover 1400 and outflow annular groove cover 1500, with relation to a remainder of the prosthetic valve 1000. FIGS. 11A to 11 G illustrated features of the bridging elements, or annular groove covers in a stylized, schematic views, as taken from a cross-section of one-half of the prosthetic valve 1000, according to some embodiments. For reference, FIGS. 11 A, 11 C, 11 E, and 11 G illustrate the prosthetic valve 1000 in a fully deployed configuration, with the leaflet frame
subcomponent 1200 nested and expanded within the anchor frame subcomponent 1100 also in an expanded configuration. In turn, FIGS. 11 B, 11 D, 11 F, and 11 FI illustrate the prosthetic valve 1000 in a pre-deployed state with the leaflet frame subcomponent 1200 un-nested from the anchor frame subcomponent 1100 and the leaflet frame
subcomponent 1200 relatively more diametrically compacted (e.g., in a partially expanded configuration).
[000199] As shown in each of FIGS. 11A to 11 G, the inflow annular groove cover 1400 is coupled to the inflow end portion of the anchor frame at the anchor frame subcomponent inflow end 1102 and the inflow end portion of the leaflet frame
subcomponent at the leaflet frame subcomponent inflow end 1202. The outflow annular groove cover 1500 is coupled to the anchor frame subcomponent 1100 at the outflow end portion of the anchor frame subcomponent outflow end 1104 and the outflow end portion of the leaflet frame subcomponent 1200 at the leaflet frame subcomponent outflow end 1204. Although the inflow annular groove cover 1400 is shown and described as being attached toward the ends of the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200, the inflow annular groove cover 1400 and/or the outflow annular groove cover 1500 may be attached at other locations as
appropriate.
[000200] In various examples, the inflow annular groove cover 1400 and/or the outflow annular groove cover 1500 is a flexible elastic element that is operable to resiliently stow into a low radial profile in a delivery configuration and is operable to extend between the leaflet frame subcomponent 1200 and the anchor frame
subcomponent 1100. The inflow annular groove cover 1400 and/or outflow annular groove cover 1500 can be implemented to inhibit flood flow into or out from between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200.
[000201 ] In some examples, one or both of the inflow annular groove cover 1400 and the outflow annular groove cover 1500 are under elastic bias when in a deployed position such that they are held relatively taught. Engagement of the inflow annular groove cover 1400 and/or the outflow annular groove cover 1500 with the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 may assist in
maintaining the relative position of the leaflet frame subcomponent 1200 within an anchor frame subcomponent lumen 1140, according to some embodiments.
Inflow Annular Groove Cover / Inflow Bridging Member
[000202] In various embodiments, the inflow annular groove cover 1400 is operable to extend across, or bridge an inflow gap 1702 between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200. In general terms, the inflow gap 1702 has an annular axial profile. In some examples, the inflow annular groove cover 1400 is operable to cover an inflow annular groove 1704 defined between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200, as well as the connecting sheath 1300 when present, when the leaflet frame
subcomponent 1200 is nested within the anchor frame subcomponent 1100 according to FIGS. 11 A, 11 C, 11 E, 11 G, for example. As shown in FIGS. 11 A, 11 C, and 11 E, the inflow annular groove cover 1400 is configured to bridge the inflow gap 1702 and cover the inflow annular groove 1704 formed between the anchor frame subcomponent 1100, the connecting sheath 1300 (everted during the deployment process), and the leaflet frame subcomponent 1200.
[000203] As shown, the inflow annular groove cover 1400 defines an inflow annular groove cover first end 1432 and an inflow annular groove cover second end 1434. The inflow annular groove cover first end 1432 is coupled to the anchor frame subcomponent inflow end 1102. The inflow annular groove cover second end 1434 is coupled to the leaflet frame subcomponent inflow end 1202 The inflow annular groove cover 1400 is a tubular element that is operable to extend generally parallel to the longitudinal axis X of the prosthetic valve 1000 (or at a relatively small, or shallow angle relative to the longitudinal axis X), when in the pre-deployed/expanded configuration (e.g., FIGS. 11 B, 11 D, 11 F) and operable to extend at an angle, and in some examples, in a generally lateral direction to the longitudinal axis X (or at a relatively large, or steep angle relative to the longitudinal axis X) when in the deployed/retracted configuration (e.g., FIGS. 11 A, 11 C, 11 E). The inflow annular groove cover 1400 is operable to extend through the anchor frame subcomponent 1100 during the deployment process, as shown in FIGS. 11A-12F while the connecting sheath 1300 is operable to fold and evert within the anchor frame subcomponent lumen 1140 of the anchor frame
subcomponent 1100 and lie between the leaflet frame subcomponent 1200 and the anchor frame subcomponent 1100 as shown in FIGS. 11A-11 F and 12A-12F.
[000204] The inflow annular groove cover 1400 is configured to facilitate delivery of the prosthetic valve 1000, and is operable to be elastically restrained to an extended tubular or conical configuration as shown in FIGS. 1 and 2. In particular, the inflow annular groove cover 1400 may also be restrained to define a small tubular diameter in the constrained pre-deployment configuration at relatively the same diameter as that of the constrained leaflet frame subcomponent 1200 and the constrained anchor frame subcomponent 1100 with the inflow annular groove cover 1400 extending adjacent to the connecting sheath lumen 1340, as shown in FIG. 1. In some embodiments, the delivery device 1600 is configured to longitudinally restrain the prosthetic valve 1000 in the un-nested configuration until the time in the delivery sequence at which the leaflet frame subcomponent 1200 is nested into the anchor frame subcomponent 1100.
[000205] In the deployed configuration, the inflow annular groove cover 1400 bridges the distance between the leaflet frame subcomponent inflow end 1202 and the anchor frame subcomponent inflow end 1102 to bridge the inflow gap 1702 and extends across the inflow annular groove 1704 (FIG. 11A) defined by the anchor frame subcomponent inflow end 1102, the connecting sheath 1300, and the leaflet frame subcomponent inflow end 1202.
[000206] In some embodiments, the inflow annular groove cover 1400 retains the relative position of the leaflet frame subcomponent 1200 and the anchor frame subcomponent 1100 by virtue of the elastic bias of the inflow annular groove cover 1400. For example, the inflow annular groove cover 1400 optionally resists forces in opposition to the inflow annular groove cover 1400 being biased to the retracted configuration.
[000207] If desired, the bias may be predetermined to assist with centering or other desirable positioning of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100 under physiologic loading conditions. In other embodiments, the bias may be selected to permit some resilient deflection, or adjustment of the position of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100 to accommodate physiologic loading, or potentially even better replicate natural physiologic action (e.g., to more closely match movement of a natural valve during a cardiac cycle). In different terms, the bias may be predetermined the such that fluid dynamic forces on the prosthetic valve 1000 are not sufficient to overcome the elastic bias needed to stretch/expand the inflow annular groove cover 1400 which would lead to the leaflet frame subcomponent 1200 moving an
unacceptable distance axially or radially within the anchor frame subcomponent lumen 1140 and maintain a relative axial and/or radial position (or at least minimize relative axial or radial movement) between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200.
[000208] In accordance with an embodiment, the inflow annular groove cover 1400 comprises a pleated, or folded configuration that has a continuous sinuous and/or zig zag configuration. The pleated, or folded configuration may facilitate reduction of the inflow annular groove cover 1400 to a smaller diameter. The pleated configuration may have an elastic bias, or otherwise resiliently return to the contracted, or retracted configuration. FIGS. 11 C and 11 D show a zig-zag, or accordion pleated embodiment in extended and retracted configurations, respectively. FIGS. 11 E and 11 F show a sinuous, pleated or folded configuration in extended and retracted configurations, respectively.
[000209] In accordance with embodiments, the inflow annular groove cover 1400 is non-permeable upon retracting to a retracted or partially retracted configuration (e.g., as shown in FIGS. 11 A, 11 C, 11 E, and 11 G) such that fluid/blood is prevented from passing through the inflow annular groove cover 1400 when the prosthetic valve 1000 is in the deployed configuration (e.g., as shown in FIGS. 3A and 3B). In the retracted configuration, the inflow annular groove cover 1400 extends from the leaflet frame subcomponent inflow end 1202 to the anchor frame subcomponent inflow end 1102 effectively bridging the inflow gap 1702 and covering the inflow annular groove 1704 formed between the anchor frame subcomponent 1100, the connecting sheath 1300 and the leaflet frame subcomponent 1200. FIGS. 11 G and 11 FI provide for examples where the connecting sheath 1300 is omitted from the prosthetic valve 1000. In such examples, the inflow annular groove cover 1400 serves to bridge the inflow gap and cover the inflow annular groove 1704, which in such instances is defined between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200.
[000210] There may be various reasons for bridging the inflow gap 1702 and covering or sealing off the inflow annular groove 1704 from blood flow when the prosthetic valve 1000 is in the fully deployed configuration. For example, such practice may help provide smoother flow into the leaflet frame subcomponent inflow end 1202 of the leaflet frame subcomponent 1200, which could otherwise flow antegrade into and retrograde out of the inflow annular groove 1704, or may prevent, or contain embolus that could form within the inflow annular groove 1704, dislodge and enter blood flow. In various embodiments, the inflow annular groove cover 1400 may assist with positioning and/or retention of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100 (e.g., at a desired, relatively coaxial position). In accordance with some embodiments, the inflow annular groove cover 1400 may be operable to control the axial position of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100. And, in further embodiments, the inflow annular groove cover 1400 may provide a bias for longitudinally translating the leaflet frame subcomponent 1200 into the anchor frame subcomponent 1100 during a delivery sequence. These, and additional or alternative features and advantages may be achieved according to the examples provided herein.
Outflow Annular Groove Cover / Outflow Bridging Member
[000211 ] In various embodiments, the outflow annular groove cover 1500 is operable to extend across, or bridge an outflow gap 1705 between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200. In various examples, the inflow gap 1702 and the outflow gap 1705 are interrupted by the connecting sheath 1300. In other embodiments (e.g., FIGS. 11 G and 11 H), the connecting sheath 1300 is omitted and the inflow gap 1702 and the outflow gap 1705 are continuous and uninterrupted to form a single, continuous gap. Regardless, the outflow gap 1705 has an annular axial profile according to various examples. The outflow annular groove cover 1500 is generally operable to cover an outflow annular groove 1706 defined between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200, as well as the connecting sheath 1300 when present, when the leaflet frame subcomponent 1200 is nested within the anchor frame subcomponent 1100 according to FIGS. 11 A, 11 C, 11 E, 11 G, for example. As shown in FIGS. 11 A, 11 C, and 11 E, the outflow annular groove cover 1500 is configured to bridge the outflow gap 1705 and cover the outflow annular groove 1706 formed between the anchor frame
subcomponent 1100, the connecting sheath 1300 (everted during the deployment process), and the leaflet frame subcomponent 1200.
[000212] As shown, the outflow annular groove cover 1500 defines an outflow annular groove cover first end 1532 and an outflow annular groove cover second end 1534. The outflow annular groove cover first end 1532 is coupled to the outflow end portion adjacent the anchor frame subcomponent outflow end 1104. The outflow annular groove cover second end 1534 is coupled to the outflow end portion adjacent the leaflet frame subcomponent outflow end 1204. As shown in FIGS. 2A and 2B, the outflow annular groove cover second end 1534 may be contiguously attached to the outflow end of the leaflet frame cover 1232. For example, the outflow annular groove cover 1500 may be coupled to and circumferentially extend from adjacent the anchor frame subcomponent outflow end 1104 and an outflow edge of the leaflet frame cover 1232. As shown in FIG. 2A, the leaflet frame cover 1232 optionally couples to an outflow end that corresponds to the leaflet frame outflow end 1224. In such instances, it may be desirable for the leaflet frame cover 1232 to also extend to the leaflet frame outflow end 1224 to avoid blood flow through the leaflet frame 1220 into the space corresponding to the outflow annular groove 1706. In such instances, the line of attachment may be substantially flat in circumference. As shown in FIG. 2B, the leaflet frame cover 1232 optionally couples to the outflow end portion which resides proximal to the leaflet frame outflow end 1224. As shown, the leaflet frame cover 1232 does not extend to the leaflet frame outflow end 1224, and the outflow annular groove cover may track the outflow or distal edge of the leaflet frame cover 1232 in a relatively jagged, or non-flat circumferential path, to avoid blood flow through the leaflet frame 1220 into the space corresponding to the outflow annular groove 1706.
[000213] The outflow annular groove cover 1500 is a tubular element that is operable to extend generally parallel to the longitudinal axis X of the prosthetic valve 1000 (or at a relatively small, or shallow angle relative to the longitudinal axis X), when in the pre-deployed/expanded configuration (e.g., FIGS. 11 B, 11 D, 11 F) and operable to extend at an angle, and in some examples, in a generally lateral direction to the longitudinal axis X (or at a relatively large, or steep angle relative to the longitudinal axis X) when in the deployed/retracted configuration (e.g., FIGS. 11 A, 11 C, 11 E). The outflow annular groove cover 1500 is operable to extend through the anchor frame subcomponent 1100 during the deployment process, as shown in FIGS. 11A-12F while the connecting sheath 1300 is operable to fold and evert within the anchor frame subcomponent lumen 1140 of the anchor frame subcomponent 1100 and lie between the leaflet frame subcomponent 1200 and the anchor frame subcomponent 1100 as shown in FIGS. 11A-11 F and 12A-12F.
[000214] In some examples, the outflow annular groove cover 1500 is configured to facilitate delivery of the prosthetic valve 1000, and is operable to be elastically restrained to an extended tubular or conical configuration as shown in FIGS. 1 and 2. In particular, the outflow annular groove cover 1500 may also be restrained to define a small tubular diameter in the constrained pre-deployment configuration at relatively the same diameter as that of the constrained leaflet frame subcomponent 1200 and the constrained anchor frame subcomponent 1100 with the outflow annular groove cover 1500 extending within the anchor frame subcomponent 1100 as indicated by broken lines in FIG. 1 and shown in cross-section in FIGS. 11 B, 11 D, 11 F, and 11 FI. For reference, as indicated above, in some embodiments, the delivery device 1600 is configured to longitudinally restrain the prosthetic valve 1000 in the un-nested configuration until the time in the delivery sequence at which the leaflet frame
subcomponent 1200 is nested into the anchor frame subcomponent 1100.
[000215] In the deployed configuration, the outflow annular groove cover 1500 bridges the distance between the leaflet frame subcomponent outflow end 1204 and the anchor frame subcomponent outflow end 1104 to bridge the outflow gap 1705 (e.g., FIGS. 11 A, 11 C, 11 E, and 11 G) and extends across the outflow annular groove 1706 defined by the anchor frame subcomponent outflow end 1104, the connecting sheath 1300, and the leaflet frame subcomponent outflow end 1204.
[000216] In some embodiments, the outflow annular groove cover 1500 can help retain the relative position of the leaflet frame subcomponent 1200 and the anchor frame subcomponent 1100 by virtue of the elastic bias of the outflow annular groove cover 1500. For example, the outflow annular groove cover 1500 optionally resists forces in opposition to the outflow annular groove cover 1500 being biased to the retracted configuration.
[000217] If desired, the bias may be predetermined to assist with centering or other desirable positioning of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100 under physiologic loading conditions. In other
embodiments, the bias may be selected to permit some resilient deflection, or adjustment of the position of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100 to accommodate physiologic loading, or potentially even better replicate natural physiologic action (e.g., to more closely match movement of a natural valve during a cardiac cycle). In different terms, the bias may be predetermined the such that fluid dynamic forces on the prosthetic valve 1000 are not sufficient to overcome the elastic bias needed to stretch/expand the outflow annular groove cover 1500 which would lead to the leaflet frame subcomponent 1200 moving an
unacceptable distance axially or radially within the anchor frame subcomponent lumen 1140 and maintain a relative axial and/or radial position (or at least minimize relative axial or radial movement) between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200.
[000218] In accordance with an embodiment, the outflow annular groove cover 1500 comprises a pleated, or folded configuration that has a continuous sinuous and/or zig-zag configuration. The pleated, or folded configuration may facilitate reduction of the outflow annular groove cover 1500 to a smaller diameter. The pleated configuration may have an elastic bias, or otherwise resiliently return to the contracted, or retracted configuration. FIGS. 11 C and 11 D show a zig-zag, or accordion pleated embodiment in extended and retracted configurations, respectively. FIGS. 11 E and 11 F show a sinuous, pleated or folded configuration in extended and retracted configurations, respectively.
[000219] In accordance with embodiments, the outflow annular groove cover 1500 is non-permeable upon retracting to a retracted or partially retracted configuration (e.g., as shown in FIGS. 11 A, 11 C, 11 E, and 11 G) such that fluid/blood is prevented from passing through the outflow annular groove cover 1500 when the prosthetic valve 1000 is in the deployed configuration (e.g., as shown in FIGS. 3A and 3B). In the retracted configuration, the outflow annular groove cover 1500 extends from the leaflet frame subcomponent outflow end 1204 to the anchor frame subcomponent outflow end 1104 effectively bridging the outflow gap 1705 and covering the outflow annular groove 1706 formed between the anchor frame subcomponent 1100, the connecting sheath 1300 and the leaflet frame subcomponent 1200. FIGS. 11 G and 11 FI provide for examples where the connecting sheath 1300 is omitted from the prosthetic valve 1000. In such examples, the outflow annular groove cover 1500, also described as the outflow bridging member, serves to bridge the outflow gap 1705 and cover the outflow annular groove 1706, which in such instances is defined between the anchor frame
subcomponent 1100 and the leaflet frame subcomponent 1200.
[000220] There may be various reasons for bridging the outflow gap 1705 and covering or sealing off the outflow annular groove 1706 from blood flow when the prosthetic valve 1000 is in the fully deployed configuration. For example, such practice may help provide smoother flow from the leaflet frame subcomponent outflow end 1204 of the leaflet frame subcomponent 1200, which could otherwise stagnate, or flow retrograde into the outflow annular groove 1706, or may prevent, or contain embolus that could form within the outflow annular groove 1706, dislodge and enter blood flow.
In various embodiments, the outflow annular groove cover 1500 may assist with positioning and/or retention of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100 (e.g., at a desired, relatively coaxial position). In
accordance with some embodiments, the outflow annular groove cover 1500 may be operable to control the axial position of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100. And, in further embodiments, the outflow annular groove cover 1500 may provide a bias for longitudinally translating the leaflet frame subcomponent 1200 into the anchor frame subcomponent 1100 during a delivery sequence. These, and additional or alternative features and advantages may be achieved according to the examples provided herein.
Annular Groove Cover / Bridging Member Materials
[000221 ] From the foregoing, it should be understood that the prosthetic valve 1000 may have either an inflow annular groove cover 1400 or an outflow annular groove cover 1500, or both an inflow annular groove cover 1400 and an outflow annular groove cover 1500 as desired, and according to any of the previously-described examples. As previously referenced the inflow annular groove cover 1400 and/or the outflow annular groove cover may be formed from similar materials as those described above with regard to the leaflet subcomponent 1228. In some examples, one or both are formed from a retracted microstructure membrane such as those described in U.S. 10,166,128, entitled“Lattice” and issued January 1 , 2019. Such retracted microstructures exhibit a high degree of recoverable elongation such that they can be extended and resilient retract. They may be formed of fluoropolymer membranes (e.g., porous synthetic fluoropolymer membranes) such that they exhibit high elongation while substantially retaining the strength properties associated with the fluoropolymer membrane. Such retracted microstructure membranes characteristically possess a microstructure of serpentine fibrils that curve or turn generally one way then generally another way. It is to be understood that the amplitude and/or frequency of the serpentine-like fibrils may vary. In some embodiments, the fluoropolymer membranes that go through a retraction process to provide a precursor retracted membrane are formed of expandable fluoropolymers. Non-limiting examples of expandable fluoropolymers include, but are not limited to, expanded PTFE, expanded modified PTFE, and expanded copolymers of PTFE.
[000222] The high elongation is facilitated by forming relatively straight fibrils into serpentine fibrils that substantially straighten upon the application of a force in a direction opposite to the compressed direction. The creation of the serpentine fibrils can be achieved through a thermally-induced controlled retraction of the expanded polytetrafluoroethylene (ePTFE), through wetting the article with a solvent, such as, but not limited to, isopropyl alcohol or Fluorinert® (a perfluorinated solvent commercially available from 3M, Inc., St. Paul, MN), or by a combination of these two techniques.
The retraction of the article does not result in visible pleating, folding, or wrinkling of the ePTFE, unlike what occurs during mechanical compression. During the retraction process, the fibrils not only become serpentine in shape but also may also increase in width.
[000223] The retracted membranes described above can be imbibed with an elastomeric material prior, during, or subsequent to retraction to form a composite such that at least a portion of the pores of a porous material such as ePTFE or the like are filled. Suitable elastomeric materials may include, but are not limited to, PMVE-TFE (perfluoromethylvinyl ether-tetrafluoroethylene) copolymers, PAVE-TFE (perfluoro (alkyl vinyl ether)-tetrafluoroethylene) copolymers, silicones, polyurethanes, and the like. It is to be noted that PMVE-TFE and PAVE-TFE are fluoroelastomers. Other
fluoroelastomers include suitable elastomeric materials as identified by those of skill in the art. The resultant retracted membrane composite possesses resilient elongation capability while substantially retaining the strength properties of the fluoropolymer membrane. Moreover, such retracted membranes have the ability to be free of creases, folds or wrinkles visible to the naked eye (i.e. , on a gross scale) in both retracted and extended configurations.
[000224] In addition to or as an alternative to a membrane or other sheet-like component having elastic recovery (e.g., by coating or imbibing a membrane with elastomer), one or more elastomeric elements may otherwise be associated with a membrane or sheet-like member to provide desired properties. For example, one or more elastomeric bands, members, or other feature may be associated (e.g., bonded, adhered, or mechanically fastened) with a sheet-like member, such as a membrane or film, to provide resilient elongation capabilities to the annular groove cover(s). [000225] In some examples, wherein the material of the inflow annular groove cover 1400 or outflow annular groove cover 1500 includes a porous elastic film that when in the extended configuration defines pores large enough to render the porous elastic film blood-permeable under physiologic conditions and when in the retracted configuration the pores are small enough to render the porous elastic film low- permeability, such as blood impermeable under physiologic conditions.
[000226] The materials utilized for the inflow annular groove cover 1400 and/or outflow annular groove cover 1500 may also be configured for tissue ingrowth (i.e. , to facilitate or promote tissue ingrowth or adhesion) or to resist tissue ingrowth. Moreover, one or more portions of the cover(s) may be configured for tissue ingrowth, whereas other portions are configured to resist tissue ingrowth.
[000227] Filler materials may also be utilized in addition to the annular groove covers. Whether separately injectable (e.g., utilizing a syringe or other delivery mechanism) or associated with the annular groove cover(s) as a coating or other treatment, such filler materials may serve to help fill the inflow gap 1702 and inflow annular groove 1704 and/or the outflow gap 1705 and outflow annular groove 1706 as desired. Examples of such materials include biocompatible filler agents or bulking agents operable to fill a volume (e.g., a volume defined by one of the annular grooves) and may include at least one of hydrogel, alginate, foam, porous bulking material, collagen, hyaluronic acid, alginic salt, cellulose, chitosan, gelatin, agarose,
glycosaminoglycans, polysaccharides, and combinations thereof, among others.
Tissue Ingrowth
[000228] In various embodiments, the leaflet 1230 is constructed in a manner that promotes tissue ingrowth. In some embodiments, the leaflet 1230 may be constructed to encourage tissue ingrowth and proliferation across one or more discrete regions, portions, or sections of one or more of the materials forming the leaflet 1230, or alternatively across an entirety of one or more of the materials forming the leaflet 1230. Tissue ingrowth and proliferation may be promoted on an outflow side or surface of the leaflet 1230, and/or on an inflow side or surface of the leaflet 1230, and/or within one or more materials forming the leaflet.
[000229] In various embodiments, the leaflets 1230 include a composite material combined with a tissue ingrowth curtain that may be incorporated into the composite material and/or coupled to the composite material. [000230] In various embodiments, one or more portions of the leaflet frame subcomponent 1200 may be covered with material suitable for promoting tissue ingrowth. For example, the leaflet frame subcomponent 1200 can be wrapped with a material, suitable for promoting tissue ingrowth. In various examples, such tissue ingrowth promoting materials can be applied to leaflet frame subcomponent 1200 entirely, or alternatively to less than all of the leaflet frame subcomponent 1200. For example, suitable materials for promoting tissue ingrowth could be coupled to the leaflet frame inner surface and the leaflet frame outer surface of the leaflet frame. Some nonlimiting examples of materials that can be applied to the leaflet frame subcomponent 1200 (or other portions of the leaflet frame subcomponent 1200) include expanded polytetrafluoroethylene (ePTFE), such as an ePTFE membrane, as well as fabric, film, or coating, and a polyethylene terephthalate fabric (e.g., Dacron fabric).
[000231 ] According to some examples, as will be discussed in greater detail below, this promotion of tissue ingrowth is facilitated by the coupling of one or more synthetic tissue ingrowth curtains to one or more composite materials such that tissue is encouraged to grow (or is not otherwise prevented or inhibited from growing) into and/or onto the one or more tissue ingrowth curtains. That is, in some examples, one or more layers configured to promote tissue ingrowth may be applied to the composite material. In some examples, as described herein, the underlying leaflet structure or material may be configured to inhibit or prevent tissue ingrowth.
[000232] Additionally or alternatively, in some examples, this promotion of tissue ingrowth is facilitated by selectively imbibing, such as with one or more fluoroelastomers, one or more portions of the one or more materials forming the leaflet 1230. Reference to “selectively imbibing” is referring to the act of imbibing a porous material with a filling material at selected portions of the porous material or to a lesser degree leaving a degree of porosity of the porous material.
[000233] That is, in some examples, in addition to or as an alternative to coupling one or more synthetic tissue ingrowth curtains to one or more composite materials, the composite material as discussed above regarding leaflet materials is configured to promote or accommodate tissue ingrowth. In some such examples, as discussed in greater detail below, the composite material is configured such that tissue is encouraged to grow (or is not otherwise prevented or inhibited from growing) into and/or onto one or more discrete or designated sections, portions, or regions of the composite material by way of selectively imbibing the membrane associated with those portions.
[000234] In various embodiments, the tissue ingrowth curtain generally includes an expanded fluoropolymer membrane which comprises a plurality of spaces within a matrix of fibrils that is suitable for promoting and supporting the ingrowth of tissue. Other nonlimiting example materials include other biocompatible porous materials such as knit PTFE. However, as mentioned above, and as discussed in greater detail below, in some examples the tissue ingrowth curtain(s) may be applied to the composite material in the form of one or more coatings.
[000235] In some examples, the tissue ingrowth curtain includes an expanded fluoropolymer made from a porous ePTFE membrane. However, it is appreciated that the tissue ingrowth curtain may be formed from a number of different types of membranes, including other fluoropolymer membranes, and other biocompatible porous materials such as porous polyethylene membrane and knit PTFE. For instance, the expandable fluoropolymer can comprise PTFE homopolymer. In some examples, the tissue ingrowth curtain can be formed from copolymers of hexafluoropropylene and tetrafluoroethylenethe, such as Fluorinated Ethylene Propylene (FEP). In some examples, blends of PTFE, expandable modified PTFE and/or expanded copolymers of PTFE can be used. It will thus be appreciated that the tissue ingrowth curtain may be formed from a variety of different polymeric materials provided they are biocompatible and possess or are modified to include a suitable microstructure suitable for promoting or supporting tissue ingrowth. In various examples, the tissue ingrowth curtains may range in thickness from between one micron and four hundred microns depending on the selected material.
[000236] In some examples, the polymeric material may include one or more naturally occurring and/or one or more artificially created pores, reliefs, channels, and/or predetermined surface topology, suitable for supporting tissue ingrowth. Other biocompatible materials which can be suitable for use in forming the tissue ingrowth curtain include but are not limited to the groups of urethanes, fluoropolymers, styrene/isobutylene copolymers, polyisobutylene, polyethylene-co-poly(vinyl acetate), polyester copolymers, nylon copolymers, fluorinated hydrocarbon polymers and copolymers or mixtures of each of the foregoing.
[000237] While the above-discussed tissue ingrowth curtains generally include membranes, films, knits, or other structures that are bonded, applied, or otherwise attached to the composite material, as mentioned above, in some examples the tissue ingrowth curtain(s) may be applied to the composite material in the form of one or more coatings. In some such example, a coherent irregular network is distributed or deposited onto one or more portions, regions, sections, areas, or zones of the composite material. In some examples, the coherent irregular network is applied to one or more portions of the composite material to create a surface texture suitable for supporting the ingrowth and proliferation of tissue, as those of skill will appreciate. For example, the coherent irregular network may be selectively applied to one or more discrete or designated sections, portions, or regions of the composite material. In some such examples, the coherent irregular network is applied to the designated areas by masking or otherwise covering those portions of the underlying leaflet where ingrowth of tissue is undesirable such that the cover or mask can be removed subsequent to the coherent irregular network application process to achieve a leaflet having a first region including the coherent irregular network and a second region free of a coherent irregular network. In some examples, one or more sacrificial sheets, such as one or more polyimide sheets (e.g., Kapton sheets), are arranged on the composite material and operate to mask or otherwise prevent the coherent irregular network from being applied to the masked or covered areas. Some nonlimiting examples of sacrificial sheet materials include polyester, polyetheretherketone (PEEK), PET, ePTFE/Kapton blends such as mapton, ePTFE, PTFE, silicones, and stainless steel, or other thin metal sheeting. In some examples, the one or more sacrificial sheets can be removed after the coherent irregular network application process to reveal a leaflet having a structure including one or more regions including the coherent irregular network and one or more regions free of the coherent irregular network (e.g., where the underlying composite material is exposed). Such a configuration provides for a construction of the leaflet that minimizes a possibility for delamination between bonded membrane layers.
[000238] As mentioned above, in some examples, in addition to or as an alternative to applying one or more tissue ingrowth curtains to the composite material, the composite material is configured to promote or accommodate tissue ingrowth. For instance, in some examples, the composite material is configured such that tissue is encouraged to grow (or is not otherwise prevented or inhibited from growing) into and/or onto one or more discrete or designated sections, portions, or regions of the composite material. For instance, as mentioned above, the composite material forming the synthetic leaflet may include an elastomer and/or an elastomeric material such as a fluoroelastomer imbibed or otherwise incorporated into the expanded fluoropolymer membrane. In various examples, to achieve a composite material that promotes or otherwise accommodates the ingrowth and proliferation of tissue the expanded fluoropolymer membrane is selectively imbibed, such as with one or more fluoroelastomers, such that the expanded fluoropolymer membrane includes one or more discrete portions, regions, sections, zones, or areas that are free of or are not otherwise imbibed with the elastomeric filler material (or at least are not filled to the extent that the elastomeric filler material operates to prevent tissue ingrowth). Selectively imbibing the membrane material of the composite material may be done in accordance with techniques as known to those of skill in the art.
[000239] While the above discussed embodiments and examples include applying a tissue ingrowth curtain to one or more portions of one or more surfaces of the composite material, or selectively imbibing one or more portions of one or more sides of a membrane of the composite material with a filler material, it will be appreciated that, in various examples, a leaflet may be constructed by both imbibing one or more portions of the membrane and applying a tissue ingrowth curtain to the selectively imbibed membrane.
[000240] In various examples, the membrane may be imbibed with a plurality of filler materials. That is, in some examples, a first portion, area, region, section, or zone of the membrane of composite material may be imbibed with a first filler material while a second portion, area, region, section, or zone of the membrane of the composite material is imbibed with a second filler material. For instance, in some examples, a first portion of the membrane of the composite material is imbibed with a first filler material such that the first portion of the membrane is resistant to or otherwise inhibits or prevents tissue ingrowth into and/or onto and/or across the first portion. However, in some examples, those portions of the membrane imbibed with the first filler may also be unsuitable for accommodating the bonding or coupling of a tissue ingrowth curtain. Accordingly, in examples where it is desirable bond or otherwise couple a tissue ingrowth leaflet to a second portion of the membrane, the second portion may be imbibed with a second filler material such that the second portion of the membrane is suited to have a tissue ingrowth curtain bonded or otherwise coupled thereto. In some examples, the second filler material may additionally or alternatively encourage tissue ingrowth. That is, in some examples, one or more portions of the membrane may be imbibed with a filler material that encourages tissue ingrowth and proliferation. Alternatively, as mentioned above, the second portion may not be imbibed with any filler material at all, but may instead remain free of filler material.
[000241 ] In some examples, the method includes applying an adhesive to the membrane in addition to or as an alternative to applying the adhesive to the tissue ingrowth curtain, as discussed above. In some examples, an adhesive, such as FEP, is similarly wicked or imbibed into one or more portions of the membrane, after which the tissue ingrowth curtain and the membrane are pressed together and/or heat set according to known methods. [000242] In some other examples, in addition to or as an alternative to applying adhesives to the tissue ingrowth curtain and the membrane separately or individually, the tissue ingrowth curtain (e.g., having a designated pattern) and the membrane are layered with one or more adhesives or adhesive layers therebetween, after which the layered construct is pressed and/or heat set according to known methods. The method further includes cutting the leaflet from the resulting construct according to known methods. In some examples, a final free edge cutting operation may be performed on the leaflet to achieve a clean free edge of the resulting leaflet according to known methods, as those of skill will appreciate.
[000243] In accordance with an embodiment, the composite material can include an expanded fluoropolymer made from porous ePTFE membrane.
The expanded fluoropolymer membrane, used to form some of the composites described, can comprise PTFE homopolymer. In alternative embodiments, blends of PTFE, expandable modified PTFE and/or expanded copolymers of PTFE can be used.
Delivery Perfusion and Associated Features
[000244] FIG. 12 shows the prosthetic valve 1000 carried on the delivery catheter 1604 of the delivery device 1600. As shown, the delivery catheter includes a plurality of containing elements, or constraining elements 1716 (e.g., fibers or tethers) for maintaining the various subcomponents of the prosthetic valve 1000 at a desired relatively longitudinal position and at a desired diameter. The delivery catheter 1604 may be configured to facilitate the delivery sequences described herein, with one or more of the constraining elements 1716 being releasable in a desired sequence. The delivery device 1600 may include additional features (e.g., a delivery sheath) as described in further detail in subsequent sections.
[000245] In terms of blood perfusion during delivery, FIGS. 13A-13F are greatly simplified cross-sectional views of a representation of the prosthetic valve 1000, as well as features of the delivery device 1600 associated with an example delivery sequence. FIG. 13A shows the prosthetic valve 1000 constrained onto the delivery catheter 1604 and placed within a tissue annulus 1342, in accordance with an embodiment. In accordance with the above embodiment, as shown in FIGS. 13A-13E, upon deploying the anchor frame subcomponent 1 100 within the tissue annulus 1342, the leaflet frame subcomponent 1200 is translated and nested within the anchor frame subcomponent 1 100 at a nested position while in the pre-deployed configuration (e.g., either fully compressed on the delivery catheter 1604 as shown or partially expanded according to other examples, such as that shown in FIG. 13G). As shown in the example of FIG.
13B, prior to transitioning the prosthetic valve 1000 to the fully deployed state, in which the leaflet frame subcomponent 1200 is fully nested and diametrically expanded, and during everting or folding/rotating the connecting sheath 1300, the inflow annular groove cover 1400 and the outflow annular groove cover 1500 are permeable to blood under physiologic conditions and antegrade flow is permitted through the inflow gap 1702 and outflow gap 1705.
[000246] As referenced above, FIG. 13G shows the prosthetic valve 1000 in the un-nested configuration with the leaflet frame subcomponent 1200 either partially or fully expanded. For reference, FIG. 16 shows the prosthetic valve 1000 in a similar configuration situated in the patient’s anatomy. According to some examples, in the un nested, but expanded or partially expanded state, the leaflet frame subcomponent 1200 permits some degree of selective perfusion (e.g., antegrade perfusion) and/or assessment of valve function and positioning prior to final, full deployment. Such perfusion may be additional to perfusion through the inflow gap 1702 and outflow gap 1705 (e.g., as indicated by the broken lines in FIG. 13G), or may be an alternative to perfusion through the inflow gap 1702 and outflow gap 1705 where the flow enabling features are omitted and/or the inflow annular gap cover 1400 and/or outflow annular gap cover are impermeable, or insufficiently permeable, to facilitate effective perfusion during delivery.
[000247] As indicated by the flow lines in the figures, the antegrade flow pressure causes the outer film layer 1306 to move away from the inner film layer 1304 so as to define the flow space 1320 between the inner film layer 1304 and outer film layer 1306. Blood may flow in the antegrade direction into the inner film aperture 1312 and out of the outer film aperture 1310 especially during deployment of the prosthetic valve 1000 when the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are still mounted on the delivery catheter and are blocking antegrade flow with the leaflets 1230 of the leaflet subcomponent 1228 not yet being functional. In this example, blood profusion may be maintained during substantially the entire deployment process of the prosthetic valve 1000.
[000248] Under retrograde flow pressure, blood is prevented from flowing through the flow enabling features 1350 in a retrograde direction. Retrograde flow pressure causes the outer film layer 1306 to move toward and against the inner film layer 1304 so as to close the flow space 1320 between the inner film layer 1304 and outer film layer 1306, with the inner film layer 1304 covering the outer film aperture 1310 and/or the outer film layer 1306 covering the inner film aperture 1312 due to the radial offset of the inner film aperture 1312 and the outer film aperture 1310. Blood is prevented from flowing in the retrograde direction into the outer film aperture 1310 and out of the inner film aperture 1312 especially during deployment of the prosthetic valve 1000 when the deployed anchor frame subcomponent 1100, and the still-mounted-on-the-delivery- catheter leaflet frame subcomponent 1200, are blocking retrograde flow.
[000249] In this manner, antegrade flow, or perfusion may be permitted during the delivery sequence of the prosthetic valve 1000 prior to full deployment of the prosthetic valve 1000.
[000250] As shown in FIG. 13D the leaflet frame subcomponent 1200 is expanded into its final deployed configuration. The inner film layer 1304 and the outer film layer 1306 are caused to come together under antegrade and retrograde fluid pressure and/or mechanical pressure narrowing or closing the flow space 1320 and with the inner film layer 1304 covering the outer film aperture 1310 and/or the outer film layer 1306 covering the inner film aperture 1312 closing the respective outer film aperture 1310 and inner film aperture 1312 due to the radial offset of the inner film aperture 1312 and the outer film aperture 1310, preventing flow therethrough.
[000251 ] In this example, blood profusion may be maintained during substantially the entire deployment process when the leaflet frame subcomponent 1200 is not fully functional as shown in FIG. 13E. In various examples, the inflow annular groove cover 1400 and/or outflow annular groove cover 1500 reduce in permeability as they take on retracted configurations associated with the fully deployed configuration of the prosthetic valve 1000. In some examples, the inflow annular groove cover 1400 and/or outflow annular groove cover 1500 are generally low-permeability, such as blood impermeable under physiologic conditions when the prosthetic valve 1000 is fully deployed as shown in FIG. 13F. In at least this manner, the inflow gap 1702 and/or outflow gap 1705 is covered and blocked (e.g., to provide a smoother flow profile and/or reduce the potential for formation and release of emboli into the blood stream).
[000252] Although the examples above are generally described in association with flow enabling features similar to those of FIGS. 10C-10E, similar principles apply when employing other flow enabling features, such as those described in association with FIGS. 10A and 10B. Biased-Deployment and Associated Features
[000253] In some embodiments, the inflow annular groove cover 1400 and/or outflow annular groove cover 1500 assist telescopic nesting of the leaflet frame subcomponent 1200 into the anchor frame subcomponent 1100 by“pulling” the leaflet frame subcomponent 1200 into the anchor frame subcomponent 1100. In accordance with some embodiments, after deployment or expansion of the anchor frame
subcomponent 1100 into the tissue annulus, the connecting sheath 1300 presents a tapered configuration having a smaller diameter at the leaflet frame subcomponent inflow end 1202 to a larger diameter at the anchor frame subcomponent outflow end 1104. Upon axially releasing the leaflet frame subcomponent 1200 (e.g., by releasing one or more of the constraining elements 1716), the inflow annular groove cover 1400 and/or the outflow annular groove cover 1500 optionally contract so as to pull the leaflet frame subcomponent 1200 into the anchor frame subcomponent 1100, until the axial movement is stopped once the elastic bias is insufficient to cause further movement (e.g., by the connecting sheath 1300 becoming taught in the everted configuration preventing further movement or, where both inflow and outflow annular groove covers are present, upon the biasing forces of the two covers coming to equilibrium).
[000254] The elastic bias exhibited by the inflow annular groove cover 1400 and/or outflow annular groove cover 1500 may be configured such that sufficient force is produced to advance the leaflet frame subcomponent 1200 into the anchor frame subcomponent 1100 toward the anchor frame subcomponent inflow end 1102. In accordance with embodiments, the leaflet frame subcomponent 1200 may be either retained on the delivery catheter 1604 or deployed to the expanded configuration prior to being pulled into the anchor frame subcomponent 1100. In this embodiment, the elastic bias of the inflow annular groove cover 1400 and/or the outflow annular groove cover 1500 helps provide a passive means for advancing the leaflet frame
subcomponent 1200 into the anchor frame subcomponent 1100, where an operator need not actively bias the leaflet frame subcomponent 1200 into the anchor frame subcomponent 1100 (e.g., by manipulating the position of the delivery catheter 1604) during nesting.
[000255] In accordance with another embodiment, the length and/or elastic properties of the inflow annular groove cover 1400 and/or the outflow annular groove cover 1500 is predetermined such that the leaflet frame subcomponent 1200 is properly positioned within the anchor frame subcomponent 1100 while in the deployed configuration. If desired, the bias may be predetermined to assist with centering or other desirable positioning of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100 under physiologic loading conditions. In other
embodiments, the bias may be selected to permit some resilient deflection, or adjustment of the position of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100 to accommodate physiologic loading, or potentially even better replicate natural physiologic action (e.g., to more closely match movement of a natural valve during a cardiac cycle). In different terms, the bias may be predetermined the such that fluid dynamic forces on the prosthetic valve 1000 are not sufficient to overcome the elastic bias needed to stretch/expand the outflow annular groove cover 1500 which would lead to the leaflet frame subcomponent 1200 moving an
unacceptable distance axially or radially within the anchor frame subcomponent lumen 1140 and maintain a relative axial and/or radial position (or at least minimize relative axial or radial movement) between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200.
Tapered Configurations and Associated Features
[000256] As shown in FIG. 14C, the length of the anchor frame subcomponent 1100 varies along the circumference, for example, when viewed transverse to the axis X, the anchor frame subcomponent outflow end 1104 has a tapered geometry, in some embodiments. As shown, the anchor frame subcomponent 1100 can be oriented along the X-axis and the leaflet frame subcomponent 1200 can be oriented along the X1 -axis which is off-set to the X-axis. FIG. 14C shows an embodiment in which "off-set" can refer to an arrangement wherein the X1 -axis can be angled from the X1 -axis (e.g., the X-axis and the X1 -axis are non-collinear or non-parallel) such that the leaflet frame subcomponent 1200 is generally tilted with respect to the anchor frame subcomponent 1100. In one embodiment, the second longitudinal axis is disposed at a tilt angle A between 15° and 45° relative to the first longitudinal axis. In another embodiment, the leaflet frame subcomponent outflow end 1204 is generally parallel with the anchor frame subcomponent outflow end 1104, wherein the anchor frame subcomponent outflow end 1104 has a taper as characterized as having a length that varies around the
circumference. In this orientation, the extension of the leaflet frame subcomponent outflow end 1204 into the LVOT is reduced as compared with a coaxial anchor frame subcomponent 1100 and leaflet frame subcomponent 1200, as shown by comparing FIG. 14B with FIG. 14C.
Additional Prosthetic Valve Delivery Features
[000257] FIGS. 15A-15L are provided additional examples of features and associated methods for delivering the prosthetic valve 1000, according to some examples. In various examples, the delivery device 1600 incorporates elements to facilitate the advancement and deployment of the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200. In accordance with some embodiments, the advancement of the leaflet frame subcomponent 1200 into the anchor frame
subcomponent 1100 is facilitated by moving or staged withdrawal of the delivery catheter 1604. In accordance with other embodiments, the advancement of the leaflet frame subcomponent 1200 into, the anchor frame subcomponent 1100 is facilitated by moving internal components of the delivery catheter 1604, such as, but not limited to the leaflet frame subcomponent 1200 riding on a trolley advanced by a pulling of a tether elements 1714 or by elastic bias of the inflow annular groove cover 1400 and/or the outflow annular groove cover 1500 or an internal component of the delivery device. An embodiment of a sliding trolley (not shown) may be a larger diameter tubular member operable to be slidingly received onto a smaller diameter delivery catheter 1604. The trolley may be constrained from sliding on the delivery catheter 1604 by a retention means, such as, but not limited to, tether elements 1714 or a latch.
[000258] With reference to FIGS. 15A-15L a non-limiting exemplary deployment sequence and nesting configuration of the prosthetic valve 1000 in-situ during a mitral valve (“MV”) replacement procedure is shown, with a cross-section of a portion of the heart for illustrative purposes. In FIG. 15A, the left atrium (“LA”) is accessed
transseptally by a delivery device 1600. In various examples, the delivery device 1600 delivered percutaneously and is coupled to a control system 1700 outside of the body. Accessing the left atrium transseptally can be done in accordance with techniques as known those of skilled in the art. Upon gaining access to the left atrium transseptally, the delivery device 1600 is positioned for deployment of the prosthetic valve 1000. For example, as shown in FIG. 15B, the delivery device 1600 is advanced through the mitral valve and into the left ventricle (“LV”). In some examples, advancement of the delivery device 1600 through the mitral valve causes the anterior leaflet (“AL”) and the posterior leaflet (“PL”) of the mitral valve to deflect into the left ventricle. [000259] For reference, FIGS. 15A-15L show a cross-sectional view of a heart illustrating exemplary medical device delivery procedures using the delivery device 1600 to implant the prosthetic valve 1000 into a mitral valve tissue annulus 1930, according to some embodiments.
[000260] FIG. 15A shows the delivery device 1600 including a constraining sheath 1606 covering the prosthetic valve (1000, hidden from view). The constraining sheath 1606 is a tubular member that is operable to cover the prosthetic valve 1000 while constrained on the delivery device 1600. In FIG. 15A, the delivery device 1600 is shown entering the left atrium (LA) in a transseptal procedure to access the mitral valve (MV), in this example. The delivery device 1600 is steerable and flexible to traverse the anatomy.
[000261 ] FIG. 15B shows the distal end of the delivery device 1600 being positioned through the mitral valve tissue annulus 1930. FIG. 15C shows the
constraining sheath 1606 partially retracted to uncover the leaflet frame subcomponent 1200. Although the constraining sheath 1606 is shown covering the entire prosthetic valve 1000 in the initial stages of delivery, it should also be appreciated that the constraining sheath 1606 may only cover a portion of the prosthetic valve 1000 during positioning of the prosthetic valve (e.g., including, but not limited to when the prosthetic valve is passing through the vasculature, atrial septum, left atrium, and/or otherwise. In some examples, the constraining sheath 1606 is only extended over the anchor frame subcomponent 1100 during initial positioning of the prosthetic valve 1000 in the native valve tissue annulus 1930. Such a configuration may achieve a variety of advantages, including lower profiles and/or enhanced flexibility, as well as reduced compaction of the leaflet frame subcomponent 1200, and thus the leaflets 1230.
[000262] FIG. 15D shows the constraining sheath 1606 further retracted to fully uncover the connecting sheath 1300 and partially uncover the anchor frame
subcomponent 1100. As now seen, the prosthetic valve 1000 is mounted on the delivery catheter 1604 in a pre-deployed, un-nested configuration with the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 being longitudinally offset from one another (also referred to as being delivered in series) and coupled together with the connecting sheath 1300 therebetween, which is also shown in FIG. 12. The outflow annular groove cover 1500 can be seen, with the connecting sheath 1300 and the inflow annular groove cover 1400 being hidden from view.
[000263] As previously discussed and shown in FIG. 12, the leaflet frame subcomponent inflow end 1202 of the leaflet frame subcomponent 1200 is positioned distal to the anchor frame subcomponent outflow end 1104 of the anchor frame subcomponent 1100 with the connecting sheath 1300, the inflow annular groove cover 1400, and the outflow annular groove cover 1500 coupled thereto and positioned therebetween coupling them together.
[000264] FIG. 15E shows the constraining sheath 1606 further retracted to fully uncover the anchor frame subcomponent 1100 which allows the flared portion 1130 to expand to a deployed configuration from the constrained configuration. In this example, the constraining sheath 1606 constrained the flared portion 1130, wherein in other examples other means of constraining may be used. The remaining portion of the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 remain constrained to the delivery catheter 1604 by constraining elements 1716 as shown in FIG. 12. In various examples, withdrawal of a constraining sheath 1606 releases the flared portion 1130 as shown in FIGS. 2A and 2B or flange element of 1150 as shown in FIGS. 2C and 2D which engages the tissue annulus 1930, as shown in FIGS. 15E-15G. The other portions of the prosthetic valve 1000 are restrained to the delivery catheter 1604 by use of constraining elements 1716 such as fiber loops (FIG. 12). The prosthetic valve 1000 may be positioned and oriented within the tissue annulus 1930 by advancing and withdrawing and otherwise manipulating the delivery catheter 1604 or delivery device 1600 as a whole, for a particular purpose, such as to ensure correct orientation and engagement with the anatomical structure of the tissue annulus 1930 and surrounding tissue.
[000265] FIG. 15F shows the flared portion 1130 advanced to and placed in contact with the tissue annulus 1930. The delivery catheter 1604 or delivery device 1600 as a whole may be manipulated such that the flared portion 1130 and thus the anchor frame subcomponent 1100 may be positioned and repositioned suitable for a particular purpose. FIG. 15G shows the anchor frame expanded to a larger diameter of the deployed configuration. Before disengagement of the constraining elements 1716 that constrains the anchor frame subcomponent 1100 to the delivery catheter 1604, the position of the anchor frame subcomponent 1100 is verified, and if incorrect, the constraining elements 1716 may be used, such as by instilling tension to the
constraining elements 1716 via a tether, for example, to re-constrain or recompress the anchor frame subcomponent 1100 back onto the delivery catheter 1604 for
repositioning or removal.
[000266] As previously referenced, the anchor frame subcomponent 1100 optionally includes tissue engagement features 1118, such as those shown in FIGS. 2A- 2D. In such instances, the constraining elements 1716 may constrain the deployment of the tissue engagement features 1118 so as to allow for repositioning or withdrawal of the anchor frame subcomponent 1100 from within the tissue annulus 1930. With the constraining elements 1716 constraining the deployment of the tissue engagement features 1118, such as tissue anchors, re-constraining, or recompressing and repositioning of the anchor frame subcomponent 1100 may be done without trauma to the tissue.
[000267] In various examples, after the anchor frame subcomponent 1100 is expanded, the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are nested together. In various examples, nesting of the anchor frame
subcomponent 1100 and the leaflet frame subcomponent 1200 in-situ involves proximally advancing the leaflet frame subcomponent 1200 relative to the anchor frame subcomponent 1100. FIG. 15H illustrates the leaflet frame subcomponent 1200 as it is proximally advanced relative to the anchor frame subcomponent 1100 as indicated by the arrow. FIG. 15H shows the delivery catheter 1604 being withdrawn from the anchor frame subcomponent 1100 which pulls the connecting sheath 1300 and a portion of the leaflet frame subcomponent within the anchor frame subcomponent 1100 with the connecting sheath 1300 in the process of being everted therebetween.
[000268] Alternatively, or in addition thereto, FIG. 151 shows the delivery catheter 1604 being further withdrawn from the anchor frame subcomponent 1100, and/or the pulling of tethers as discussed below, which pulls the connecting sheath 1300 and a portion of the leaflet frame subcomponent 1200 within the anchor frame subcomponent 1100 with the connecting sheath 1300 having been everted therebetween. As shown in FIG. 15I, one or more tether elements 1714 are coupled to the leaflet frame
subcomponent inflow end 1202 as shown and discussed further below, which may be used to pull the leaflet frame subcomponent 1200 into the anchor frame subcomponent 1100.
[000269] If it is required to remove the prosthetic valve 1000 from the heart, in some examples, the leaflet frame subcomponent 1200 may be recompressed by the tether elements 1714 and the tether elements 1714 may be used to pull the leaflet frame subcomponent 1200 and subsequently the anchor frame subcomponent 1100 into the constraining sheath 1606 or a larger retrieval sheath (not shown). In this case, the anchor frame subcomponent 1100 is caused to evert initiating at the anchor frame subcomponent outflow end 1104 such that it is drawn, peeled or pulled away from the tissue annulus. Thus, various examples provide a means for removing a prosthetic valve 1000 that is experiencing a failed deployment without the need for invasive surgical care.
[000270] In various examples, while the leaflet frame subcomponent 1200 is being nested and expanded within the anchor frame subcomponent 1100, the tether elements 1714 are loosened allowing the inflow annular groove cover 1400 and the outflow annular groove cover 1500 to contract under elastic bias as shown in FIG. 15J so as to fully deploy over the inflow annular groove 1704 and the outflow annular groove 1706, respectively, as shown in FIG. 15K. The delivery catheter 1604 may be withdrawn from the prosthetic valve 1000, as shown in FIG. 15K, so as to verify that the leaflets 1230 are properly functioning prior to releasing the tether elements 1714 from the leaflet frame subcomponent 1200. If the leaflets 1230 are not functioning properly, the delivery catheter 1604 may be advanced adjacent to or within the leaflet frame subcomponent 1200 and the prosthetic valve 1000 removed with the procedure discussed above.
[000271 ] As previously discussed, additional tethers may be coupled to the leaflet frame subcomponent inflow end 1202 that are operable to constrain and pull the leaflet frame subcomponent 1200 out of the anchor frame subcomponent 1100 should repositioning and/or retrieval of the prosthetic valve 1000 be required.
[000272] FIG. 15L shows the prosthetic valve 1000 fully deployed within the tissue annulus 1930 of the mitral valve (MV). The prosthetic valve 1000 is in a fully deployed configuration wherein the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are nested. The prosthetic valve 1000 is fully deployed and operational with the inflow annular groove cover 1400 and the outflow annular groove cover 1500 engaging the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 which minimizes relative axial translation between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 and covers the inflow gap 1702 and inflow annular groove 1704, as well as the outflow gap 1705 and outflow annular groove 1706, respectively.
[000273] In various examples, the longitudinal separation or offset of the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 provides for a low-profile delivery configuration that can be easily tracked through the vasculature of the patient. For instance, by longitudinally offsetting the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200, a profile of the delivery device 1600 can be minimized because, unlike conventional designs, the anchor frame
subcomponent 1100 and the leaflet frame subcomponent 1200 do not overlap one another during delivery. In some examples, a maximum profile of the delivery device 1600 including the prosthetic valve 1000 can be 8mm or less.
[000274] Additionally, as shown in FIGS. 12 and 15D, a region 1602 of the delivery device 1600 located between the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 and adjacent to the connecting sheath 1300 and the inflow annular groove cover 1400 and the outflow annular groove cover 1500 may be bendable, or otherwise operable to bend, such that the anchor frame subcomponent 1100 and the leaflet frame subcomponent 1200 are temporarily misaligned with one another. In some examples, such a configuration is akin to rail cars navigating a curve. Such a configuration is beneficial in procedures where the prosthetic valve 1000 is delivered to a treatment region transseptally, which may require a delivery device to bend as much as ninety (90) degrees or more within the left atrium of the heart.
[000275] Additionally, as shown, the tissue engagement features 1118 of the anchor frame subcomponent 1100 extend away from the longitudinal axis of the anchor frame subcomponent 1 100 and are configured to engage the tissue of the native valve tissue annulus surrounding the prosthetic valve 1000. In some examples, the tissue engagement features 1118 are configured to penetrate the tissue or otherwise embed within the tissue. In various examples, this interaction of the tissue engagement features 1 1 18 of the anchor frame subcomponent 1 100 with the native tissue
surrounding the prosthetic valve 1000 operates to secure the anchor frame
subcomponent 1 100 (and thus the leaflet frame subcomponent 1200) to the native tissue of the tissue annulus 1930.
[000276] As shown, the anchor frame subcomponent inflow end 1102 of the anchor frame subcomponent 1100 illustrated in FIGS. 15B-15L is flared radially outward and is situated adjacent to and in abutment with the native valve tissue annulus 1930, as shown. In some examples, such a configuration provides that the anchor frame subcomponent inflow end 1 102 of the anchor frame subcomponent 1 100 obstructs or otherwise limits the extent to which the anchor frame subcomponent 1100 is operable to extend through the native valve. For instance, in the case of a mitral valve replacement, such a flared anchor frame subcomponent inflow end 1 102 limits the extent to which the anchor frame subcomponent 1 100 can be advanced through the native mitral valve tissue annulus and into the left ventricle. In some examples, such flared anchor frame subcomponent inflow end 1 102 additionally operates to minimize the potential for the anchor frame subcomponent 1 100 to migrate distally. [000277] FIG. 16 shows the leaflet frame subcomponent 1200 at a fully or partially expanded diameter, but not yet nested with the anchor frame subcomponent 1100 as part of a deployment sequence. As shown, the leaflet frame subcomponent1200 optionally perfuses at this stage of deployment, where the leaflet subcomponent 1228 (FIG. 7) is at least partially operational to permit antegrade flow, while restricting retrograde flow. The leaflet frame subcomponent 1200 may then be nested within the anchor frame subcomponent 1100 as described above, such that the prosthetic valve 1000 takes on a final, deployed configuration.
[000278] While the embodiments and examples illustrated and described above pertain to transseptal delivery, it should be appreciated that a variety of additional well- known delivery procedures can be utilized without departing from the spirit or scope of the present application. Additional non-limiting delivery procedures include transapical, left atriotomy, and transaortic approaches, among others. The scope of the concepts addressed in this disclosure has been described above both generically and with regard to specific examples. It will be apparent to those skilled in the art that various modifications and variations can be made in the examples without departing from the scope of the disclosure. Likewise, the various components discussed in the examples discussed herein are combinable. Thus, it is intended that the examples cover the modifications and variations of the scope.

Claims

WHAT IS CLAIMED IS:
1. A prosthetic valve comprising:
a leaflet frame subcomponent including a leaflet frame and having an inflow end and an outflow end;
an anchor frame subcomponent including an anchor frame and having an inflow end and an outflow end,
the anchor frame subcomponent coupled to the leaflet frame subcomponent such that the prosthetic valve is configured to be transitioned from a delivery configuration in which the leaflet frame subcomponent and the anchor frame subcomponent are longitudinally offset from one another such that the inflow end of the leaflet frame subcomponent is situated distal of the outflow end of the anchor frame subcomponent to a deployed configuration in which the leaflet frame subcomponent is at least partially nested at a nested position within the anchor frame subcomponent such that the leaflet frame subcomponent and the anchor frame subcomponent define a pair of adjacent inflow end portions, a pair of adjacent outflow end portions and an annular gap between the leaflet frame subcomponent and the anchor frame subcomponent; and
an annular groove cover extending between the pair of adjacent inflow end
portions or the pair of adjacent outflow end portions to cover the annular gap between the leaflet frame subcomponent and the anchor frame
subcomponent.
2. The prosthetic valve of claim 1 , wherein the annular gap includes an inflow annular groove and the annular groove cover is an inflow annular groove cover coupled between the pair of adjacent inflow end portions to cover the inflow annular groove when the prosthetic valve is in the deployed configuration.
3. The prosthetic valve of claim 1 , wherein the annular gap includes an outflow annular groove and the annular groove cover is an outflow annular groove cover coupled between the pair of adjacent outflow end portions to cover the outflow annular groove when the prosthetic valve is in the deployed configuration.
4. The prosthetic valve of any preceding claim, wherein the annular groove cover is configured to be blood-permeable under physiologic conditions prior to the prosthetic valve being transitioned to the deployed configuration.
5. The prosthetic valve of any preceding claim, wherein the annular groove cover is configured to less permeable to blood under physiologic conditions when the prosthetic valve is in the deployed configuration than when the prosthetic valve is not in the deployed configuration.
6. The prosthetic valve of claim 1 , wherein the annular gap includes an inflow annular groove and an outflow annular groove, wherein the annular groove cover is an inflow annular groove cover coupled between the pair of adjacent inflow end portions to cover the inflow annular groove when the prosthetic valve is in the deployed configuration, and further wherein the prosthetic valve further comprises an outflow annular groove cover coupled between the pair of adjacent outflow end portions to cover the outflow annular groove when the prosthetic valve is in the deployed configuration.
7. The prosthetic valve of claim 6, wherein the outflow annular groove cover is configured to be blood-permeable under physiologic conditions prior to the prosthetic valve being transitioned to the deployed configuration.
8. The prosthetic valve of any one of claims 6 or 7, wherein the outflow annular groove cover is configured to be blood impermeable under physiologic conditions subsequent to the prosthetic valve being transitioned to the deployed configuration.
9. The prosthetic valve of any preceding claim, wherein the annular groove cover is transitionable from an extended configuration when the prosthetic valve is in the delivery configuration to a retracted configuration when the prosthetic valve is transitioned to the deployed configuration.
10. The prosthetic valve of claim 9, wherein the annular groove cover is substantially wrinkle-free in the retracted configuration.
11. The prosthetic valve of claims 9 or 10, wherein the annular groove cover is configured to resiliently transition from the extended configuration to the retracted configuration.
12. The prosthetic valve of any one of claims 9 to 11 , wherein the annular groove cover has an annular wall that is configured to angulate relative to a longitudinal axis of the prosthetic valve upon transitioning the annular groove cover from the extended configuration to the retracted configuration.
13. The prosthetic valve of any one of claims 9 to 12, wherein the annular groove cover includes a porous elastic film that when in the extended configuration defines pores large enough to render the porous elastic film blood-permeable under physiologic conditions and when in the retracted configuration the pores are small enough to render the porous elastic film less permeable to blood under physiologic conditions.
14. The prosthetic valve of any preceding claim, wherein the annular groove cover includes a composite material formed of a retracted membrane and an elastomer.
15. The prosthetic valve of claim 14, wherein the annular groove cover includes a retracted membrane microstructure comprising serpentine fibrils.
16. The prosthetic valve of any preceding claim, wherein the annular groove cover includes at least one of a pleated configuration, a sinuous folded configuration, and a zig-zag folded configuration when the prosthetic valve is in the deployed configuration and, optionally, the annular groove cover is stretched and has an elastic bias when the prosthetic valve is in the delivery configuration.
17. The prosthetic valve of any preceding claim, wherein the annular groove cover is configured to provide a bias for translating the leaflet frame subcomponent to the nested position within the anchor frame subcomponent.
18. The prosthetic valve of claim 17, wherein the bias is sufficient to longitudinally translate the leaflet frame subcomponent into the anchor frame subcomponent when the leaflet frame subcomponent is longitudinally unconstrained relative to the anchor frame subcomponent.
19. The prosthetic valve according to any preceding claim,
wherein at least a portion of the annular groove cover is configured for tissue ingrowth and/or
wherein at least a portion of the annular groove cover is configured to resist tissue ingrowth.
20. The prosthetic valve according to any preceding claim, further comprising a filler agent operable to fill a volume defined by the annular gap and, optionally, wherein the filler agent includes at least one of: hydrogel, alginate, foam, porous material, collagen, hyaluronic acid, alginic salt, cellulose, chitosan, gelatin, agarose, glycosaminoglycan, polysaccharide, and combinations thereof.
21. The prosthetic valve of any preceding claim, further comprising:
a connecting sheath coupling the leaflet frame subcomponent to the anchor
frame subcomponent such that upon transitioning the prosthetic valve to the deployed configuration, the connecting sheath is everted.
22. The prosthetic valve of claim 21 , wherein the annular gap is defined by the anchor frame subcomponent, the connecting sheath, and the leaflet frame subcomponent.
23. The prosthetic valve of claim 21 , wherein the annular groove cover is an inflow annular groove cover coupled to and extending circumferentially adjacent an anchor frame subcomponent inflow end and a leaflet frame subcomponent inflow end, wherein the annular gap is an inflow annular groove formed by the anchor frame subcomponent, the connecting sheath, and the leaflet frame subcomponent, and further wherein the inflow annular groove cover is configured to cover the inflow annular groove when the prosthetic valve is in the deployed configuration.
24. The prosthetic valve of claim 21 , further comprising an outflow annular groove cover coupled to and circumferentially extending from adjacent an anchor frame subcomponent outflow end and a leaflet frame subcomponent outflow end, wherein, the annular gap includes an outflow annular groove formed between the anchor frame subcomponent outflow end, the connecting sheath, and the leaflet frame subcomponent outflow end, and further wherein when the prosthetic valve is in the deployed configuration, the outflow annular groove cover is configured to cover the outflow annular groove.
25. The prosthetic valve of claim 24, wherein the annular groove cover is an outflow annular groove cover coupled to and circumferentially extending from adjacent an anchor frame subcomponent outflow end and a leaflet frame cover outflow edge of the leaflet frame subcomponent, wherein, when the prosthetic valve is in the deployed configuration, the outflow annular groove cover is configured to cover an outflow annular groove formed between the anchor frame subcomponent outflow end, the connecting sheath, and the leaflet frame cover.
26. The prosthetic valve of any one of claims 21 to 25, wherein, when the prosthetic valve is in the deployed configuration, the inflow annular groove cover and/or the outflow annular groove cover are configured to have lower permeability to blood than when the prosthetic valve is not in the deployed configuration.
27. The prosthetic valve of any one of claims 21 to 26, wherein after initiation, but prior to completion of transitioning the prosthetic valve to a fully deployed configuration the inflow annular groove cover and/or the outflow annular groove cover are configured to be blood permeable.
28. The prosthetic valve according to any preceding claim, wherein the leaflet frame includes a leaflet frame wall and the leaflet frame subcomponent further includes one or more leaflets coupled to the leaflet frame and a leaflet frame cover coupled to the leaflet frame, the leaflet frame being generally tubular in shape and defining a leaflet frame inflow end and a leaflet frame outflow end.
29. The prosthetic valve of claim 28, wherein the leaflet frame wall of the leaflet frame includes one or more openings at least partially covered by the leaflet frame cover to define a covered portion of the leaflet frame wall, such that the leaflet frame cover is configured to restrict fluid from passing through the covered portion of the leaflet frame wall.
30. The prosthetic valve of claims 28 or 29, wherein the one or more leaflets coupled to the leaflet frame are operable to open to allow flow from the leaflet frame subcomponent inflow end to pass through the leaflet frame subcomponent outflow end in antegrade flow conditions, and are operable to close to restrict flow from flowing from the leaflet frame subcomponent outflow end through the leaflet frame subcomponent inflow end in retrograde flow conditions.
31. The prosthetic valve of any one of claims 28 to 30, wherein the one or more leaflets comprise a composite material including a porous synthetic fluoropolymer membrane defining pores and an elastomer or elastomeric material filling the pores,
and optionally TFE-PMVE copolymer comprising from 27 to 32 weight percent
perfluoromethyl vinyl ether and respectively from 73 to 68 weight percent tetrafluoroethylene on at least a portion of the composite material,
and optionally, the elastomer or elastomeric material comprises a TFE-PMVE
copolymer,
and optionally, the porous synthetic fluoropolymer membrane is ePTFE.
32. The prosthetic valve according to any preceding claim, wherein the anchor frame subcomponent further includes an anchor frame and an anchor frame cover and the anchor frame defines a generally tubular shape, wherein an anchor frame inner surface and an anchor frame outer surface define an anchor frame wall of the anchor frame, and wherein the anchor frame wall defines one or more apertures at least partially covered by the anchor frame cover to define a covered portion of the anchor frame wall such that the anchor frame cover is configured to restrict fluid from passing through the anchor frame wall.
33. The prosthetic valve of claim 32, wherein the connecting sheath is contiguous with the anchor frame cover and the leaflet frame cover.
34. The prosthetic valve of any one of claims 21 to 33, wherein the connecting sheath is a thin-walled flexible tubular member that defines a connecting sheath lumen in fluid communication with an inner lumen of the anchor frame subcomponent and an inner lumen of the leaflet frame subcomponent, and wherein the connecting sheath is operable to fold and evert when the leaflet frame subcomponent is transitioned from the undeployed configuration to the deployed configuration such that the connecting sheath lies between the leaflet frame subcomponent and the anchor frame subcomponent.
35. The prosthetic valve of any one of claims 21 to 34, wherein the connecting sheath comprises flow enabling features in a wall of the connecting sheath, the wall extending between a connecting sheath inflow end and a connecting sheath outflow end, wherein the flow enabling features are operable to allow antegrade fluid flow through the connecting sheath wall and prevent retrograde flow through the connecting sheath wall after initiation, but prior to completion of transitioning the prosthetic valve to a fully deployed configuration.
36. The prosthetic valve of any one of claims 21 to 35, wherein the connecting sheath comprises an inner film layer and an outer film layer, the inner film layer and the outer film layer being coupled together at least at a leaflet frame subcomponent inflow end and an anchor frame subcomponent outflow end, the inner film layer defining at least one inner film aperture therethrough adjacent the anchor frame subcomponent outflow end and the outer film layer defining at least one outer film aperture therethrough adjacent the leaflet frame subcomponent, the inner film layer and the outer film layer being not coupled at least between one of the inner film apertures and one of the outer film apertures so as to define a flow space therebetween operable to permit antegrade blood flow and restrict retrograde flow therethrough after initiation, but prior to completion of transitioning the prosthetic valve to a fully deployed configuration.
37. The prosthetic valve of any one of claims 21 to 35, wherein the connecting sheath comprises an inner film layer and an outer film layer, the inner film layer and the outer film layer being coupled together at least at an anchor frame subcomponent outflow end, the inner film defining at least one inner film aperture therethrough adjacent the anchor frame subcomponent outflow end, the inner film layer and the outer film layer being not coupled at least downstream of the inner film apertures so as to define a flow space therebetween operable to permit antegrade blood flow with the inner film layer separating from the outer film layer at the inner film aperture and restrict retrograde flow therethrough with the inner film layer coming together and covering the inner film aperture after initiation, but prior to completion of transitioning the prosthetic valve to a fully deployed configuration.
38. The prosthetic valve according to any preceding claim, wherein when the prosthetic valve is in the deployed configuration, the anchor frame defines a flared portion at the inflow end of the anchor frame subcomponent that flares or tapers radially outward.
39. The prosthetic valve according to any preceding claim, wherein the prosthetic valve has a smaller diameter in the delivery configuration than in the deployed configuration.
40. The prosthetic valve according to any preceding claim, wherein in the deployed configuration, the anchor frame subcomponent has an inner surface defining an inner diameter larger than a portion of the leaflet frame subcomponent that is nested within the anchor frame subcomponent.
41. A method of treating a native valve of a patient’s anatomy comprising:
advancing a prosthetic valve in a delivery configuration to a treatment site within a patient’s anatomy, wherein in the delivery configuration a leaflet frame subcomponent and an anchor frame subcomponent of the prosthetic valve are longitudinally offset from one another such that a leaflet frame
subcomponent inflow end of the leaflet frame subcomponent is situated distal of an anchor frame subcomponent inflow end of the anchor frame
subcomponent;
deploying the anchor frame subcomponent within a tissue annulus; and nesting the leaflet frame subcomponent within the anchor frame subcomponent by changing a relative longitudinal position between the leaflet frame subcomponent and the anchor frame subcomponent such that the leaflet frame subcomponent is at least partially nested at a nested position within the anchor frame subcomponent such that the leaflet frame subcomponent and the anchor frame subcomponent define a pair of adjacent inflow end portions, a pair of adjacent outflow end portions and an annular gap between the leaflet frame subcomponent and the anchor frame subcomponent,
wherein during nesting of the leaflet frame subcomponent within the anchor
frame subcomponent an annular groove cover of the prosthetic valve that extends between the pair of adjacent inflow end portions or the pair of adjacent inflow end portions transitions from an extended configuration to a retracted configuration to cover the annular gap.
42. The method of claim 41 , further comprising fully deploying the prosthetic valve at the treatment site to selectively control blood flow at the treatment site.
43. The method of claims 41 or 42, wherein the leaflet frame subcomponent is nested within the anchor frame subcomponent after the anchor frame subcomponent is deployed at the treatment site.
44. The method of any one of claims 41 to 43, wherein the prosthetic valve is advanced to the treatment site via a catheter.
45. The method of any one of claims 41 to 44, wherein nesting the leaflet frame subcomponent within the anchor frame subcomponent includes drawing the leaflet frame subcomponent proximally relative to the anchor frame subcomponent.
46. The method of any one of claims 41 to 45, further comprising securing the prosthetic valve to a tissue annulus of the native valve such that the prosthetic valve is operable to transition between an open position wherein antegrade fluid flow is permitted, and a closed position wherein retrograde fluid flow is inhibited.
47. The method of any one of claims 41 to 46, wherein deploying the anchor frame within a tissue annulus includes releasing constraining elements of a delivery system onto which the prosthetic valve has been coupled to facilitate deployment of the anchor frame to a larger diameter.
48. The method of any one of claims 41 to 47, further comprising recompressing the anchor frame to a smaller diameter after deploying the anchor frame to facilitate repositioning of the prosthetic valve.
49. The method of any one of claims 41 to 48, wherein deploying the anchor frame within a tissue annulus includes releasing constraining elements operable to expand a flange portion or flange element so as to position the flange portion or flange element against the tissue annulus.
50. A method of treating a patient with a prosthetic valve according to any one of claims 1-40, the method comprising:
delivering the prosthetic valve to a treatment site in a body of a patient; and deploying the prosthetic valve at the treatment site in the body of the patient.
51. A prosthetic valve comprising:
a leaflet frame subcomponent including a leaflet frame and having an inflow end and an outflow end;
a leaflet subcomponent operably coupled to the leaflet frame subcomponent; an anchor frame subcomponent including an anchor frame and having an inflow end and an outflow end, the leaflet frame subcomponent being configured to be in a nested configuration at a nested position at least partially within the anchor frame subcomponent; and
one or more bridging members coupled between the leaflet frame subcomponent and the anchor frame subcomponent to bridge an annular gap defined between the anchor frame subcomponent and the leaflet frame
subcomponent in the nested configuration, the one or more bridging members being resiliently extendible and retractable in length between an extended configuration and a retracted configuration such that the leaflet frame subcomponent is translatable longitudinally relative to the anchor frame subcomponent.
52. The prosthetic valve of claim 51 , wherein the one or more bridging members include an annular membrane configured to cover the annular gap defined between the leaflet frame subcomponent and the anchor frame subcomponent when the leaflet frame subcomponent is in the nested configuration.
53. The prosthetic valve of claims 51 or 52, wherein the one or more bridging members include a proximal bridging member coupled between a proximal end portion of the anchor frame subcomponent and a proximal end portion of the leaflet frame
subcomponent.
54. The prosthetic valve of any one of claims 51 to 53, wherein the one or more bridging members include an outflow bridging member coupled between the outflow end portion of the anchor frame subcomponent and the outflow end portion of the leaflet frame subcomponent.
55. The prosthetic valve of any one of claims 51 to 54, wherein the one or more bridging members include a bridging member that is configured to be blood
impermeable under physiologic conditions.
56. The prosthetic valve of any one of claims 51 to 55, wherein the one or more bridging members include a bridging member that is configured to be blood-permeable under physiologic conditions when the leaflet frame subcomponent is in an un-nested configuration with the anchor frame subcomponent.
57. The prosthetic valve of any one of claims 51 to 56, wherein the one or more bridging members are substantially wrinkle-free in the retracted configuration.
58. The prosthetic valve of any one of claims 51 to 57, wherein the one or more bridging members includes an elastomeric material.
59. The prosthetic valve of any one of claims 51 to 58, wherein the one or more bridging members include an annular wall that is configured to angulate relative to a longitudinal axis of the prosthetic valve upon transitioning the leaflet frame subcomponent from an un-nested configuration with the anchor frame subcomponent to the nested
configuration.
60. The prosthetic valve of any one of claims 51 to 59, wherein the one or more bridging members include a membrane and a plurality of elastomeric members associated with the membrane.
61. The prosthetic valve of any one of claims 51 to 60, wherein the one or more bridging members includes a porous elastic film that when the one or more bridging members are in the extended configuration the porous elastic film defines pores that render the one or more bridging members blood-permeable under physiologic conditions in the extended configuration and less permeable to blood under physiologic conditions in the retracted configuration.
62. The prosthetic valve of any one of claims 51 to 61 , wherein the one or more bridging members includes a composite material formed of a retracted membrane and an elastomer.
63. The prosthetic valve of any one of claims 51 to 62, wherein the one or more bridging members includes a retracted membrane microstructure comprising serpentine fibrils.
64. The prosthetic valve of any one of claims 51 to 62, wherein the one or more bridging members includes at least one of a pleated configuration, a sinuous folded configuration, and a zig-zag folded configuration in the retracted configuration.
65. The prosthetic valve of any one of claims 51 to 64, wherein the one or more bridging members are configured to provide a bias for translating the leaflet frame subcomponent to the nested configuration.
66. The prosthetic valve of any one of claims 51 to 65, wherein at least a portion of the one or more bridging members is configured for tissue ingrowth, and/or wherein at least a portion of the one or more bridging members is configured to resist tissue ingrowth.
67. The prosthetic valve of any one of claims 51 to 66, further comprising a connecting sheath coupling the leaflet frame subcomponent to the anchor frame subcomponent such that upon transitioning the leaflet frame subcomponent from an un-nested configuration with the anchor frame subcomponent to the nested configuration, the connecting sheath is everted.
68. The prosthetic valve of claim 67, wherein the anchor frame subcomponent, the connecting sheath, and the leaflet frame subcomponent define an annular gap, and further wherein the one or more bridging members act to inhibit flood flow passing through the annular gap when the leaflet frame subcomponent is in the nested position and the leaflet subcomponent is operable to facilitate antegrade blood flow and the inhibit retrograde blood flow through the prosthetic valve.
69. The prosthetic valve of claims 67 or 68, wherein the connecting sheath comprises flow enabling features in a wall of the connecting sheath, the wall extending between a connecting sheath inflow end and a connecting sheath outflow end, wherein the flow enabling features are operable to allow antegrade fluid flow through the connecting sheath wall and prevent retrograde flow through the connecting sheath wall after initiation, but prior to completion of transitioning the prosthetic valve from a compacted, delivery configuration to an expanded, fully deployed configuration.
70. The prosthetic valve of any one of claims 51 to 69, further comprising a filler operable to be delivered into an annular gap between the leaflet frame subcomponent and the anchor frame subcomponent when the leaflet frame subcomponent is in the nested configuration and the prosthetic valve is fully deployed at a treatment site.
PCT/US2020/027921 2019-04-12 2020-04-13 Valve with multi-part frame and associated resilient bridging features Ceased WO2020210794A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN202080043443.2A CN114007546A (en) 2019-04-12 2020-04-13 Valve with multi-part frame and associated elastic bridging features
CA3131177A CA3131177C (en) 2019-04-12 2020-04-13 Valve with multi-part frame and associated resilient bridging features
EP20722947.7A EP3952790A1 (en) 2019-04-12 2020-04-13 Valve with multi-part frame and associated resilient bridging features
JP2021560035A JP7381601B2 (en) 2019-04-12 2020-04-13 Valves with multi-part frames and associated resilient bridge features
AU2020270993A AU2020270993B2 (en) 2019-04-12 2020-04-13 Valve with multi-part frame and associated resilient bridging features
US17/603,256 US12447014B2 (en) 2019-04-12 2020-04-13 Valve with multi-part frame and associated resilient bridging features
US19/047,539 US20250177128A1 (en) 2019-04-12 2025-02-06 Valve with multi-part frame and associated resilient bridging features

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201962833176P 2019-04-12 2019-04-12
US62/833,176 2019-04-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/603,256 A-371-Of-International US12447014B2 (en) 2019-04-12 2020-04-13 Valve with multi-part frame and associated resilient bridging features
US19/047,539 Continuation US20250177128A1 (en) 2019-04-12 2025-02-06 Valve with multi-part frame and associated resilient bridging features

Publications (1)

Publication Number Publication Date
WO2020210794A1 true WO2020210794A1 (en) 2020-10-15

Family

ID=70476556

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2020/027921 Ceased WO2020210794A1 (en) 2019-04-12 2020-04-13 Valve with multi-part frame and associated resilient bridging features

Country Status (7)

Country Link
US (2) US12447014B2 (en)
EP (1) EP3952790A1 (en)
JP (1) JP7381601B2 (en)
CN (1) CN114007546A (en)
AU (1) AU2020270993B2 (en)
CA (1) CA3131177C (en)
WO (1) WO2020210794A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024502934A (en) * 2020-12-04 2024-01-24 ハンチョウ セコイア メディカル デバイス カンパニー リミテッド Artificial heart valve devices, systems and methods

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9283072B2 (en) 2012-07-25 2016-03-15 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
US10376360B2 (en) 2012-07-27 2019-08-13 W. L. Gore & Associates, Inc. Multi-frame prosthetic valve apparatus and methods
US9968443B2 (en) 2012-12-19 2018-05-15 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US9101469B2 (en) 2012-12-19 2015-08-11 W. L. Gore & Associates, Inc. Prosthetic heart valve with leaflet shelving
US9144492B2 (en) 2012-12-19 2015-09-29 W. L. Gore & Associates, Inc. Truncated leaflet for prosthetic heart valves, preformed valve
US10321986B2 (en) 2012-12-19 2019-06-18 W. L. Gore & Associates, Inc. Multi-frame prosthetic heart valve
US9737398B2 (en) 2012-12-19 2017-08-22 W. L. Gore & Associates, Inc. Prosthetic valves, frames and leaflets and methods thereof
WO2015126711A1 (en) 2014-02-18 2015-08-27 St. Jude Medical, Cardiology Division, Inc. Bowed runners and corresponding valve assemblies for paravalvular leak protection
US11147667B2 (en) * 2017-09-08 2021-10-19 Edwards Lifesciences Corporation Sealing member for prosthetic heart valve
CA3182971A1 (en) 2017-09-12 2019-03-21 W.L. Gore & Associates, Inc. Leaflet frame attachment for prosthetic valves
US11020221B2 (en) 2017-09-27 2021-06-01 W. L. Gore & Associates, Inc. Prosthetic valve with expandable frame and associated systems and methods
WO2019067220A1 (en) 2017-09-27 2019-04-04 W. L. Gore & Associates, Inc. Prosthetic valves with mechanically coupled leaflets
US11090153B2 (en) 2017-10-13 2021-08-17 W. L. Gore & Associates, Inc. Telescoping prosthetic valve and delivery system
JP7052032B2 (en) 2017-10-31 2022-04-11 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Medical valves and valve membranes that promote inward tissue growth
JP7072062B2 (en) 2017-10-31 2022-05-19 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Transcatheter placement system and related methods
WO2020127616A1 (en) * 2018-12-20 2020-06-25 Biotronik Ag Prosthetic heart valve comprising a stent structure having a conical-convex inflow region and a linear cylindrical outflow region
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
US20250018094A1 (en) * 2023-07-14 2025-01-16 W. L. Gore & Associates, Inc. Hydrogel reinforcement using expanded articles and hydrogel-expanded article composites

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140031927A1 (en) * 2012-07-27 2014-01-30 W. L. Gore & Associates, Inc. Multi-frame prosthetic valve apparatus and methods
US20140277413A1 (en) * 2013-03-15 2014-09-18 Valve Medical Ltd. System and method for sealing percutaneous valve
WO2014144937A2 (en) * 2013-03-15 2014-09-18 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
WO2016172349A1 (en) * 2015-04-21 2016-10-27 Edwards Lifesciences Corporation Percutaneous mitral valve replacement device
US20180021129A1 (en) * 2016-07-21 2018-01-25 Edwards Lifesciences Corporation Replacement heart valve prosthesis
CN107690323A (en) * 2015-04-16 2018-02-13 爱德华兹生命科学公司 For replacing mitral small profile heart valve prosthesis
US10166128B2 (en) 2011-01-14 2019-01-01 W. L. Gore & Associates. Inc. Lattice

Family Cites Families (1125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US654799A (en) 1900-03-08 1900-07-31 Morris H Levett Display device.
GB1127325A (en) 1965-08-23 1968-09-18 Henry Berry Improved instrument for inserting artificial heart valves
US3587115A (en) 1966-05-04 1971-06-28 Donald P Shiley Prosthetic sutureless heart valves and implant tools therefor
US3472230A (en) 1966-12-19 1969-10-14 Fogarty T J Umbrella catheter
US3548417A (en) 1967-09-05 1970-12-22 Ronnie G Kischer Heart valve having a flexible wall which rotates between open and closed positions
GB1264471A (en) 1968-01-12 1972-02-23
US3671979A (en) 1969-09-23 1972-06-27 Univ Utah Catheter mounted artificial heart valve for implanting in close proximity to a defective natural heart valve
US3657744A (en) 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
GB1315844A (en) 1970-05-12 1973-05-02 Nat Res Dev Prosthetic cardiac valve
CA962021A (en) 1970-05-21 1975-02-04 Robert W. Gore Porous products and process therefor
US3739402A (en) 1970-10-15 1973-06-19 Cutter Lab Bicuspid fascia lata valve
US3714671A (en) 1970-11-30 1973-02-06 Cutter Lab Tissue-type heart valve with a graft support ring or stent
US3755823A (en) 1971-04-23 1973-09-04 Hancock Laboratories Inc Flexible stent for heart valve
GB1402255A (en) 1971-09-24 1975-08-06 Smiths Industries Ltd Medical or surgical devices of the kind having an inflatable balloon
US4340091A (en) 1975-05-07 1982-07-20 Albany International Corp. Elastomeric sheet materials for heart valve and other prosthetic implants
US4011947A (en) 1975-05-22 1977-03-15 Philip Nicholas Sawyer Packaged prosthetic device
US4035849A (en) 1975-11-17 1977-07-19 William W. Angell Heart valve stent and process for preparing a stented heart valve prosthesis
AR206762A1 (en) 1976-01-01 1976-08-13 Pisanu A LOW PROFILE BIOPROTHESIS DERIVED FROM PORCINE HETEROLOGICAL AORTIC VALVE
CA1069652A (en) 1976-01-09 1980-01-15 Alain F. Carpentier Supported bioprosthetic heart valve with compliant orifice ring
US4056854A (en) 1976-09-28 1977-11-08 The United States Of America As Represented By The Department Of Health, Education And Welfare Aortic heart valve catheter
US4297749A (en) 1977-04-25 1981-11-03 Albany International Corp. Heart valve prosthesis
GB1603634A (en) 1977-05-05 1981-11-25 Nat Res Dev Prosthetic valves
US4178639A (en) 1978-04-06 1979-12-18 Carbomedics, Inc. Two-leaflet heart valve
CA1147109A (en) 1978-11-30 1983-05-31 Hiroshi Mano Porous structure of polytetrafluoroethylene and process for production thereof
US4265694A (en) 1978-12-14 1981-05-05 The United States Of America As Represented By The Department Of Health, Education And Welfare Method of making unitized three leaflet heart valve
US4222126A (en) 1978-12-14 1980-09-16 The United States Of America As Represented By The Secretary Of The Department Of Health, Education & Welfare Unitized three leaflet heart valve
US4574803A (en) 1979-01-19 1986-03-11 Karl Storz Tissue cutter
GB2056023B (en) 1979-08-06 1983-08-10 Ross D N Bodnar E Stent for a cardiac valve
US4340977A (en) 1980-09-19 1982-07-27 Brownlee Richard T Catenary mitral valve replacement
US4373216A (en) 1980-10-27 1983-02-15 Hemex, Inc. Heart valves having edge-guided occluders
US4339831A (en) 1981-03-27 1982-07-20 Medtronic, Inc. Dynamic annulus heart valve and reconstruction ring
US4470157A (en) 1981-04-27 1984-09-11 Love Jack W Tricuspid prosthetic tissue heart valve
US4345340A (en) 1981-05-07 1982-08-24 Vascor, Inc. Stent for mitral/tricuspid heart valve
US4865600A (en) 1981-08-25 1989-09-12 Baxter International Inc. Mitral valve holder
NL8220336A (en) 1981-09-16 1984-01-02 Wallsten Hans Ivar DEVICE FOR APPLICATION IN VESSELS OR OTHER DIFFICULT ACCESSORIES AND ITS USE.
US4406022A (en) 1981-11-16 1983-09-27 Kathryn Roy Prosthetic valve means for cardiovascular surgery
ATE21330T1 (en) 1982-01-20 1986-08-15 Martin Morris Black ARTIFICIAL HEART VALVES.
SE445884B (en) 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
IT1212547B (en) 1982-08-09 1989-11-30 Iorio Domenico INSTRUMENT FOR SURGICAL USE INTENDED TO MAKE INTERVENTIONS FOR THE IMPLANTATION OF BIOPROTESIS IN HUMAN ORGANS EASIER AND SAFER
US4477930A (en) 1982-09-28 1984-10-23 Mitral Medical International, Inc. Natural tissue heat valve and method of making same
GB8300636D0 (en) 1983-01-11 1983-02-09 Black M M Heart valve replacements
US4535483A (en) 1983-01-17 1985-08-20 Hemex, Inc. Suture rings for heart valves
CA1232407A (en) 1983-06-23 1988-02-09 David K. Walker Bubble heart valve
US4612011A (en) 1983-07-22 1986-09-16 Hans Kautzky Central occluder semi-biological heart valve
US4556996A (en) 1983-08-04 1985-12-10 Robert S. Wallace Heart valve
US4626255A (en) 1983-09-23 1986-12-02 Christian Weinhold Heart valve bioprothesis
US5190546A (en) 1983-10-14 1993-03-02 Raychem Corporation Medical devices incorporating SIM alloy elements
US4585705A (en) 1983-11-09 1986-04-29 Dow Corning Corporation Hard organopolysiloxane release coating
US4787899A (en) 1983-12-09 1988-11-29 Lazarus Harrison M Intraluminal graft device, system and method
US4627436A (en) 1984-03-01 1986-12-09 Innoventions Biomedical Inc. Angioplasty catheter and method for use thereof
US4592340A (en) 1984-05-02 1986-06-03 Boyles Paul W Artificial catheter means
US5007896A (en) 1988-12-19 1991-04-16 Surgical Systems & Instruments, Inc. Rotary-catheter for atherectomy
US4979939A (en) 1984-05-14 1990-12-25 Surgical Systems & Instruments, Inc. Atherectomy system with a guide wire
US4883458A (en) 1987-02-24 1989-11-28 Surgical Systems & Instruments, Inc. Atherectomy system and method of using the same
DE3426300A1 (en) 1984-07-17 1986-01-30 Doguhan Dr.med. 6000 Frankfurt Baykut TWO-WAY VALVE AND ITS USE AS A HEART VALVE PROSTHESIS
DE3442088A1 (en) 1984-11-17 1986-05-28 Beiersdorf Ag, 2000 Hamburg HEART VALVE PROSTHESIS
SU1271508A1 (en) 1984-11-29 1986-11-23 Горьковский государственный медицинский институт им.С.М.Кирова Artificial heart valve
US4759758A (en) 1984-12-07 1988-07-26 Shlomo Gabbay Prosthetic heart valve
US4733665C2 (en) 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (en) 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Catheter for producing or extending connections to or between body cavities
FR2591100B1 (en) 1985-12-09 1990-08-17 Clinique Residence Parc TRICUSPID VALVULAR PROSTHESIS.
CH672247A5 (en) 1986-03-06 1989-11-15 Mo Vysshee Tekhnicheskoe Uchil
US4878906A (en) 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US4777951A (en) 1986-09-19 1988-10-18 Mansfield Scientific, Inc. Procedure and catheter instrument for treating patients for aortic stenosis
US5071609A (en) 1986-11-26 1991-12-10 Baxter International Inc. Process of manufacturing porous multi-expanded fluoropolymers
US4762128A (en) 1986-12-09 1988-08-09 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
US4816339A (en) 1987-04-28 1989-03-28 Baxter International Inc. Multi-layered poly(tetrafluoroethylene)/elastomer materials useful for in vivo implantation
US4878495A (en) 1987-05-15 1989-11-07 Joseph Grayzel Valvuloplasty device with satellite expansion means
US4796629A (en) 1987-06-03 1989-01-10 Joseph Grayzel Stiffened dilation balloon catheter device
US4829990A (en) 1987-06-25 1989-05-16 Thueroff Joachim Implantable hydraulic penile erector
US4851000A (en) 1987-07-31 1989-07-25 Pacific Biomedical Holdings, Ltd. Bioprosthetic valve stent
US4851001A (en) 1987-09-17 1989-07-25 Taheri Syde A Prosthetic valve for a blood vein and an associated method of implantation of the valve
GB2211190A (en) 1987-10-19 1989-06-28 Gore & Ass Rapid recoverable ptfe and a process for its manufacture
US4877661A (en) 1987-10-19 1989-10-31 W. L. Gore & Associates, Inc. Rapidly recoverable PTFE and process therefore
US5026513A (en) 1987-10-19 1991-06-25 W. L. Gore & Associates, Inc. Process for making rapidly recoverable PTFE
US5266073A (en) 1987-12-08 1993-11-30 Wall W Henry Angioplasty stent
US5032128A (en) 1988-07-07 1991-07-16 Medtronic, Inc. Heart valve prosthesis
DE8815082U1 (en) 1988-11-29 1989-05-18 Biotronik Meß- und Therapiegeräte GmbH & Co Ingenieurbüro Berlin, 1000 Berlin Heart valve prosthesis
US4856516A (en) 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US4966604A (en) 1989-01-23 1990-10-30 Interventional Technologies Inc. Expandable atherectomy cutter with flexibly bowed blades
FR2642960B1 (en) 1989-02-15 1994-02-25 Dassault Breguet Aviation PROSTHETIC HEART VALVE
US4994077A (en) 1989-04-21 1991-02-19 Dobben Richard L Artificial heart valve for implantation in a blood vessel
US4955899A (en) 1989-05-26 1990-09-11 Impra, Inc. Longitudinally compliant vascular graft
DE69016426T2 (en) 1989-05-31 1995-08-17 Baxter Int BIOLOGICAL VALVE PROSTHESIS.
US5609626A (en) 1989-05-31 1997-03-11 Baxter International Inc. Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts
US5047041A (en) 1989-08-22 1991-09-10 Samuels Peter B Surgical apparatus for the excision of vein valves in situ
US4986830A (en) 1989-09-22 1991-01-22 Schneider (U.S.A.) Inc. Valvuloplasty catheter with balloon which remains stable during inflation
US5108370A (en) 1989-10-03 1992-04-28 Paul Walinsky Perfusion balloon catheter
US5089015A (en) 1989-11-28 1992-02-18 Promedica International Method for implanting unstented xenografts and allografts
US5591185A (en) 1989-12-14 1997-01-07 Corneal Contouring Development L.L.C. Method and apparatus for reprofiling or smoothing the anterior or stromal cornea by scraping
US5037434A (en) 1990-04-11 1991-08-06 Carbomedics, Inc. Bioprosthetic heart valve with elastic commissures
US5059177A (en) 1990-04-19 1991-10-22 Cordis Corporation Triple lumen balloon catheter
GB9009390D0 (en) 1990-04-26 1990-06-20 Smith Kline French Lab Pharmaceutical compositions
US5411552A (en) 1990-05-18 1995-05-02 Andersen; Henning R. Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
DK124690D0 (en) 1990-05-18 1990-05-18 Henning Rud Andersen FAT PROTECTION FOR IMPLEMENTATION IN THE BODY FOR REPLACEMENT OF NATURAL FLEET AND CATS FOR USE IN IMPLEMENTING A SUCH FAT PROTECTION
US5085635A (en) 1990-05-18 1992-02-04 Cragg Andrew H Valved-tip angiographic catheter
GB9012716D0 (en) 1990-06-07 1990-08-01 Frater Robert W M Mitral heart valve replacements
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
US5152771A (en) 1990-12-31 1992-10-06 The Board Of Supervisors Of Louisiana State University Valve cutter for arterial by-pass surgery
US5163955A (en) 1991-01-24 1992-11-17 Autogenics Rapid assembly, concentric mating stent, tissue heart valve with enhanced clamping and tissue alignment
US6128068A (en) 1991-02-22 2000-10-03 Canon Kabushiki Kaisha Projection exposure apparatus including an illumination optical system that forms a secondary light source with a particular intensity distribution
US5282847A (en) 1991-02-28 1994-02-01 Medtronic, Inc. Prosthetic vascular grafts with a pleated structure
JPH05184611A (en) 1991-03-19 1993-07-27 Kenji Kusuhara Valvular annulation retaining member and its attaching method
US5295958A (en) 1991-04-04 1994-03-22 Shturman Cardiology Systems, Inc. Method and apparatus for in vivo heart valve decalcification
US5167628A (en) 1991-05-02 1992-12-01 Boyles Paul W Aortic balloon catheter assembly for indirect infusion of the coronary arteries
US5397351A (en) 1991-05-13 1995-03-14 Pavcnik; Dusan Prosthetic valve for percutaneous insertion
US5370685A (en) 1991-07-16 1994-12-06 Stanford Surgical Technologies, Inc. Endovascular aortic valve replacement
US5769812A (en) 1991-07-16 1998-06-23 Heartport, Inc. System for cardiac procedures
US5795325A (en) 1991-07-16 1998-08-18 Heartport, Inc. Methods and apparatus for anchoring an occluding member
US5232446A (en) 1991-10-30 1993-08-03 Scimed Life Systems, Inc. Multi-sinus perfusion balloon dilatation catheter
US5192297A (en) 1991-12-31 1993-03-09 Medtronic, Inc. Apparatus and method for placement and implantation of a stent
US5756476A (en) 1992-01-14 1998-05-26 The United States Of America As Represented By The Department Of Health And Human Services Inhibition of cell proliferation using antisense oligonucleotides
US5489297A (en) 1992-01-27 1996-02-06 Duran; Carlos M. G. Bioprosthetic heart valve with absorbable stent
US5163953A (en) 1992-02-10 1992-11-17 Vince Dennis J Toroidal artificial heart valve stent
US5258023A (en) 1992-02-12 1993-11-02 Reger Medical Development, Inc. Prosthetic heart valve
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5332402A (en) 1992-05-12 1994-07-26 Teitelbaum George P Percutaneously-inserted cardiac valve
US5405378A (en) 1992-05-20 1995-04-11 Strecker; Ernst P. Device with a prosthesis implantable in the body of a patient
US5342305A (en) 1992-08-13 1994-08-30 Cordis Corporation Variable distention angioplasty balloon assembly
DE4327825C2 (en) 1992-11-24 1996-10-02 Mannesmann Ag Throttle check element
US5628782A (en) 1992-12-11 1997-05-13 W. L. Gore & Associates, Inc. Method of making a prosthetic vascular graft
KR100295124B1 (en) 1993-01-25 2001-09-17 이노우에 노리유끼 Polytetrafluoroethylene porous membrane and preparation method thereof
GB9312666D0 (en) 1993-06-18 1993-08-04 Vesely Ivan Bioprostetic heart valve
CA2125258C (en) 1993-08-05 1998-12-22 Dinah B Quiachon Multicapsule intraluminal grafting system and method
DE69431302T2 (en) 1993-08-18 2003-05-15 W.L. Gore & Associates, Inc. TUBULAR INTRALUMINAL APPLICABLE FABRIC
US6027779A (en) 1993-08-18 2000-02-22 W. L. Gore & Associates, Inc. Thin-wall polytetrafluoroethylene tube
US5411522A (en) 1993-08-25 1995-05-02 Linvatec Corporation Unitary anchor for soft tissue fixation
US5545209A (en) 1993-09-30 1996-08-13 Texas Petrodet, Inc. Controlled deployment of a medical device
WO1995009586A1 (en) 1993-10-01 1995-04-13 Emory University Self-expanding intraluminal composite prosthesis
US5480424A (en) 1993-11-01 1996-01-02 Cox; James L. Heart valve replacement using flexible tubes
US6245040B1 (en) 1994-01-14 2001-06-12 Cordis Corporation Perfusion balloon brace and method of use
IT1269443B (en) 1994-01-19 1997-04-01 Stefano Nazari VASCULAR PROSTHESIS FOR THE REPLACEMENT OR INTERNAL COATING OF MEDIUM AND LARGE DIAMETER BLOOD VESSELS AND DEVICE FOR ITS APPLICATION WITHOUT INTERRUPTION OF BLOOD FLOW
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US5549663A (en) 1994-03-09 1996-08-27 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
US5522885A (en) 1994-05-05 1996-06-04 Autogenics Assembly tooling for an autologous tissue heart valve
DE69532636T2 (en) 1994-05-06 2004-11-25 Bard Peripheral Vascular, Inc., Tempe DEVICE FOR TREATING A BODY VESSEL
US5728068A (en) 1994-06-14 1998-03-17 Cordis Corporation Multi-purpose balloon catheter
DE69528216T2 (en) 1994-06-17 2003-04-17 Terumo K.K., Tokio/Tokyo Process for the production of a permanent stent
US5554185A (en) 1994-07-18 1996-09-10 Block; Peter C. Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same
WO1996007370A1 (en) 1994-09-02 1996-03-14 W.L. Gore & Associates, Inc. An asymmetrical porous ptfe form and method of making
DE69428056T2 (en) 1994-09-02 2002-01-03 W.L. Gore & Associates, Inc. POROUS POLYTETRAFLUORETHYLENE COMPOSITIONS
US5599305A (en) 1994-10-24 1997-02-04 Cardiovascular Concepts, Inc. Large-diameter introducer sheath having hemostasis valve and removable steering mechanism
US5562729A (en) 1994-11-01 1996-10-08 Biocontrol Technology, Inc. Heart valve
CA2301351C (en) 1994-11-28 2002-01-22 Advanced Cardiovascular Systems, Inc. Method and apparatus for direct laser cutting of metal stents
US6896696B2 (en) 1998-11-20 2005-05-24 Scimed Life Systems, Inc. Flexible and expandable stent
US6451047B2 (en) 1995-03-10 2002-09-17 Impra, Inc. Encapsulated intraluminal stent-graft and methods of making same
US5476589A (en) 1995-03-10 1995-12-19 W. L. Gore & Associates, Inc. Porpous PTFE film and a manufacturing method therefor
US5534007A (en) 1995-05-18 1996-07-09 Scimed Life Systems, Inc. Stent deployment catheter with collapsible sheath
US5639274A (en) 1995-06-02 1997-06-17 Fischell; Robert E. Integrated catheter system for balloon angioplasty and stent delivery
US5766201A (en) 1995-06-07 1998-06-16 Boston Scientific Corporation Expandable catheter
US5571175A (en) 1995-06-07 1996-11-05 St. Jude Medical, Inc. Suture guard for prosthetic heart valve
US5716417A (en) 1995-06-07 1998-02-10 St. Jude Medical, Inc. Integral supporting structure for bioprosthetic heart valve
US5814405A (en) 1995-08-04 1998-09-29 W. L. Gore & Associates, Inc. Strong, air permeable membranes of polytetrafluoroethylene
DE19532846A1 (en) 1995-09-06 1997-03-13 Georg Dr Berg Valve for use in heart
US20060271091A1 (en) 1995-09-18 2006-11-30 Campbell Carey V Balloon catheter device
US5868704A (en) 1995-09-18 1999-02-09 W. L. Gore & Associates, Inc. Balloon catheter device
US5752934A (en) 1995-09-18 1998-05-19 W. L. Gore & Associates, Inc. Balloon catheter device
US5824037A (en) 1995-10-03 1998-10-20 Medtronic, Inc. Modular intraluminal prostheses construction and methods
US6193745B1 (en) 1995-10-03 2001-02-27 Medtronic, Inc. Modular intraluminal prosteheses construction and methods
US6328763B1 (en) 1995-10-06 2001-12-11 Cardiomend, Llc Optimized geometry of a tissue pattern for semilunar heart valve reconstruction
US5716399A (en) 1995-10-06 1998-02-10 Cardiomend Llc Methods of heart valve repair
ES2242198T3 (en) 1995-10-25 2005-11-01 Octoplus B.V. POLYACRYLATES AND POLY (RENT) CATIONIC ACRYLATES OR CORRESPONDING ACRYLICATES FOR USE IN SYNTHETIC TRANSFECTION SYSTEMS.
US5788626A (en) 1995-11-21 1998-08-04 Schneider (Usa) Inc Method of making a stent-graft covered with expanded polytetrafluoroethylene
US6428489B1 (en) 1995-12-07 2002-08-06 Precision Vascular Systems, Inc. Guidewire system
US6042605A (en) 1995-12-14 2000-03-28 Gore Enterprose Holdings, Inc. Kink resistant stent-graft
DE19546692C2 (en) 1995-12-14 2002-11-07 Hans-Reiner Figulla Self-expanding heart valve prosthesis for implantation in the human body via a catheter system
FR2742994B1 (en) 1995-12-28 1998-04-03 Sgro Jean-Claude INTRACORPOREAL LIGHT SURGICAL TREATMENT ASSEMBLY
US5855602A (en) 1996-09-09 1999-01-05 Shelhigh, Inc. Heart valve prosthesis
US5843158A (en) 1996-01-05 1998-12-01 Medtronic, Inc. Limited expansion endoluminal prostheses and methods for their use
US5747128A (en) 1996-01-29 1998-05-05 W. L. Gore & Associates, Inc. Radially supported polytetrafluoroethylene vascular graft
US5716370A (en) 1996-02-23 1998-02-10 Williamson, Iv; Warren Means for replacing a heart valve in a minimally invasive manner
EP1477133B9 (en) 1996-03-05 2007-11-21 Evysio Medical Devices Ulc Expandable stent
JPH09241412A (en) 1996-03-07 1997-09-16 Sumitomo Electric Ind Ltd Stretched polytetrafluoroethylene tube and method for producing the same
GB2312485B (en) 1996-04-24 1999-10-20 Endre Bodnar Bioprosthetic conduits
US5628791A (en) 1996-05-09 1997-05-13 Medical Carbon Research Institute, Llc Prosthetic trileaflet heart valve
DE69719237T2 (en) 1996-05-23 2003-11-27 Samsung Electronics Co., Ltd. Flexible, self-expandable stent and method for its manufacture
US5855601A (en) 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
DE19625202A1 (en) 1996-06-24 1998-01-02 Adiam Medizintechnik Gmbh & Co Prosthetic mitral heart valve
DE19624948A1 (en) 1996-06-24 1998-01-02 Adiam Medizintechnik Gmbh & Co Prosthetic heart valve
US5843161A (en) 1996-06-26 1998-12-01 Cordis Corporation Endoprosthesis assembly for percutaneous deployment and method of deploying same
US5769884A (en) 1996-06-27 1998-06-23 Cordis Corporation Controlled porosity endovascular implant
US5749852A (en) 1996-07-23 1998-05-12 Medtronic, Inc. Sheath system for autoperfusion dilatation catheter balloon
US6217585B1 (en) 1996-08-16 2001-04-17 Converge Medical, Inc. Mechanical stent and graft delivery system
US6174329B1 (en) 1996-08-22 2001-01-16 Advanced Cardiovascular Systems, Inc. Protective coating for a stent with intermediate radiopaque coating
US5968069A (en) 1996-08-23 1999-10-19 Scimed Life Systems, Inc. Stent delivery system having stent securement apparatus
US5968068A (en) 1996-09-12 1999-10-19 Baxter International Inc. Endovascular delivery system
US5944654A (en) 1996-11-14 1999-08-31 Vista Medical Technologies, Inc. Endoscope with replaceable irrigation tube
US6261320B1 (en) 1996-11-21 2001-07-17 Radiance Medical Systems, Inc. Radioactive vascular liner
US5749890A (en) 1996-12-03 1998-05-12 Shaknovich; Alexander Method and system for stent placement in ostial lesions
US6010529A (en) 1996-12-03 2000-01-04 Atrium Medical Corporation Expandable shielded vessel support
NL1004827C2 (en) 1996-12-18 1998-06-19 Surgical Innovations Vof Device for regulating blood circulation.
EP0850607A1 (en) 1996-12-31 1998-07-01 Cordis Corporation Valve prosthesis for implantation in body channels
US5925061A (en) 1997-01-13 1999-07-20 Gore Enterprise Holdings, Inc. Low profile vascular stent
US5957974A (en) 1997-01-23 1999-09-28 Schneider (Usa) Inc Stent graft with braided polymeric sleeve
CN1626048B (en) 1997-01-24 2012-09-12 帕拉贡知识产权有限责任公司 Expandable device having bistable spring construction
GB9701479D0 (en) 1997-01-24 1997-03-12 Aortech Europ Ltd Heart valve
US5853419A (en) 1997-03-17 1998-12-29 Surface Genesis, Inc. Stent
US5928281A (en) 1997-03-27 1999-07-27 Baxter International Inc. Tissue heart valves
US5957949A (en) 1997-05-01 1999-09-28 World Medical Manufacturing Corp. Percutaneous placement valve stent
US6206917B1 (en) 1997-05-02 2001-03-27 St. Jude Medical, Inc. Differential treatment of prosthetic devices
US5855597A (en) 1997-05-07 1999-01-05 Iowa-India Investments Co. Limited Stent valve and stent graft for percutaneous surgery
US6245102B1 (en) 1997-05-07 2001-06-12 Iowa-India Investments Company Ltd. Stent, stent graft and stent valve
US6395024B1 (en) 1997-05-20 2002-05-28 Triflo Medical, Inc. Mechanical heart valve
CA2424551A1 (en) 1997-05-27 1998-11-27 Schneider (Usa) Inc. Stent and stent-graft for treating branched vessels
US6203536B1 (en) 1997-06-17 2001-03-20 Medtronic, Inc. Medical device for delivering a therapeutic substance and method therefor
US6500174B1 (en) 1997-07-08 2002-12-31 Atrionix, Inc. Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member
US5919226A (en) 1997-07-22 1999-07-06 Medtronic, Inc. Mechanical heart valve prosthesis
US5906619A (en) 1997-07-24 1999-05-25 Medtronic, Inc. Disposable delivery device for endoluminal prostheses
US5925063A (en) 1997-09-26 1999-07-20 Khosravi; Farhad Coiled sheet valve, filter or occlusive device and methods of use
US6042606A (en) 1997-09-29 2000-03-28 Cook Incorporated Radially expandable non-axially contracting surgical stent
US6161399A (en) 1997-10-24 2000-12-19 Iowa-India Investments Company Limited Process for manufacturing a wire reinforced monolayer fabric stent
US5931865A (en) 1997-11-24 1999-08-03 Gore Enterprise Holdings, Inc. Multiple-layered leak resistant tube
US6626939B1 (en) 1997-12-18 2003-09-30 Boston Scientific Scimed, Inc. Stent-graft with bioabsorbable structural support
CA2315211A1 (en) 1997-12-29 1999-07-08 The Cleveland Clinic Foundation System for minimally invasive insertion of a bioprosthetic heart valve
US6190406B1 (en) 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
EP0935978A1 (en) 1998-02-16 1999-08-18 Medicorp S.A. Angioplasty and stent delivery catheter
US6746422B1 (en) 2000-08-23 2004-06-08 Norborn Medical, Inc. Steerable support system with external ribs/slots that taper
US6488701B1 (en) 1998-03-31 2002-12-03 Medtronic Ave, Inc. Stent-graft assembly with thin-walled graft component and method of manufacture
US6174327B1 (en) 1998-02-27 2001-01-16 Scimed Life Systems, Inc. Stent deployment apparatus and method
US6042588A (en) 1998-03-03 2000-03-28 Scimed Life Systems, Inc Stent delivery system
US5935162A (en) 1998-03-16 1999-08-10 Medtronic, Inc. Wire-tubular hybrid stent
EP0943300A1 (en) 1998-03-17 1999-09-22 Medicorp S.A. Reversible action endoprosthesis delivery device.
US20040254635A1 (en) 1998-03-30 2004-12-16 Shanley John F. Expandable medical device for delivery of beneficial agent
US5935163A (en) 1998-03-31 1999-08-10 Shelhigh, Inc. Natural tissue heart valve prosthesis
JP4222655B2 (en) 1998-04-06 2009-02-12 ジャパンゴアテックス株式会社 Medical tube
EP1089676A2 (en) 1998-06-24 2001-04-11 Sulzer Carbomedics Inc. Altering heart valve leaflet attachment geometry to influence the location and magnitude of maximum loaded stress on the leaflet
US6117169A (en) 1998-06-24 2000-09-12 Sulzer Carbomedics Inc. Living hinge attachment of leaflet to a valve body
US6217609B1 (en) 1998-06-30 2001-04-17 Schneider (Usa) Inc Implantable endoprosthesis with patterned terminated ends and methods for making same
US6527979B2 (en) 1999-08-27 2003-03-04 Corazon Technologies, Inc. Catheter systems and methods for their use in the treatment of calcified vascular occlusions
US6755856B2 (en) 1998-09-05 2004-06-29 Abbott Laboratories Vascular Enterprises Limited Methods and apparatus for stenting comprising enhanced embolic protection, coupled with improved protection against restenosis and thrombus formation
US7815763B2 (en) 2001-09-28 2010-10-19 Abbott Laboratories Vascular Enterprises Limited Porous membranes for medical implants and methods of manufacture
NO984143L (en) 1998-09-09 2000-03-10 Norsk Hydro As New process for producing surface modifying substances
US6254564B1 (en) 1998-09-10 2001-07-03 Percardia, Inc. Left ventricular conduit with blood vessel graft
US6334873B1 (en) 1998-09-28 2002-01-01 Autogenics Heart valve having tissue retention with anchors and an outer sheath
US6322585B1 (en) 1998-11-16 2001-11-27 Endotex Interventional Systems, Inc. Coiled-sheet stent-graft with slidable exo-skeleton
US6540780B1 (en) 1998-11-23 2003-04-01 Medtronic, Inc. Porous synthetic vascular grafts with oriented ingrowth channels
US6336937B1 (en) 1998-12-09 2002-01-08 Gore Enterprise Holdings, Inc. Multi-stage expandable stent-graft
US6733523B2 (en) 1998-12-11 2004-05-11 Endologix, Inc. Implantable vascular graft
DE19857887B4 (en) 1998-12-15 2005-05-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring support for a heart valve prosthesis
FR2788217A1 (en) 1999-01-12 2000-07-13 Brice Letac PROSTHETIC VALVE IMPLANTABLE BY CATHETERISM, OR SURGICAL
US6350277B1 (en) 1999-01-15 2002-02-26 Scimed Life Systems, Inc. Stents with temporary retaining bands
US7049380B1 (en) 1999-01-19 2006-05-23 Gore Enterprise Holdings, Inc. Thermoplastic copolymer of tetrafluoroethylene and perfluoromethyl vinyl ether and medical devices employing the copolymer
ES2259996T3 (en) 1999-01-22 2006-11-01 Gore Enterprise Holdings, Inc. ENDOPROTESIS COVER.
US6673102B1 (en) 1999-01-22 2004-01-06 Gore Enterprises Holdings, Inc. Covered endoprosthesis and delivery system
US6558418B2 (en) 1999-01-26 2003-05-06 Edwards Lifesciences Corporation Flexible heart valve
US6736845B2 (en) 1999-01-26 2004-05-18 Edwards Lifesciences Corporation Holder for flexible heart valve
IL144298A0 (en) 1999-01-26 2002-05-23 Edwards Lifesciences Corp Flexible heart valve
US6896690B1 (en) 2000-01-27 2005-05-24 Viacor, Inc. Cardiac valve procedure methods and devices
WO2000047271A1 (en) 1999-02-11 2000-08-17 Gore Enterprise Holdings, Inc. Multiple-layered leak-resistant tube
US6425916B1 (en) 1999-02-10 2002-07-30 Michi E. Garrison Methods and devices for implanting cardiac valves
DE19907646A1 (en) 1999-02-23 2000-08-24 Georg Berg Valve for blood vessels uses flap holders and counterpart holders on stent to latch together in place and all channeled for guide wire.
US6210408B1 (en) 1999-02-24 2001-04-03 Scimed Life Systems, Inc. Guide wire system for RF recanalization of vascular blockages
US6245012B1 (en) 1999-03-19 2001-06-12 Nmt Medical, Inc. Free standing filter
US6325825B1 (en) 1999-04-08 2001-12-04 Cordis Corporation Stent with variable wall thickness
CA2369641C (en) 1999-04-09 2009-02-10 Evalve, Inc. Methods and apparatus for cardiac valve repair
US6283995B1 (en) 1999-04-15 2001-09-04 Sulzer Carbomedics Inc. Heart valve leaflet with scalloped free margin
US6666885B2 (en) 1999-04-16 2003-12-23 Carbomedics Inc. Heart valve leaflet
US6231602B1 (en) 1999-04-16 2001-05-15 Edwards Lifesciences Corporation Aortic annuloplasty ring
US6283994B1 (en) 1999-04-16 2001-09-04 Sulzer Carbomedics Inc. Heart valve leaflet
EP1171059B1 (en) 1999-04-23 2005-11-02 St. Jude Medical ATG, Inc. Artificial heart valve attachment apparatus
US6712836B1 (en) 1999-05-13 2004-03-30 St. Jude Medical Atg, Inc. Apparatus and methods for closing septal defects and occluding blood flow
US6790229B1 (en) 1999-05-25 2004-09-14 Eric Berreklouw Fixing device, in particular for fixing to vascular wall tissue
US6287339B1 (en) 1999-05-27 2001-09-11 Sulzer Carbomedics Inc. Sutureless heart valve prosthesis
EP1057460A1 (en) 1999-06-01 2000-12-06 Numed, Inc. Replacement valve assembly and method of implanting same
GB2352205A (en) 1999-06-28 2001-01-24 Nestle Sa Chilled roller for moulding a food product
US20020055773A1 (en) 1999-07-12 2002-05-09 Louis A. Campbell Polymer heart valve with insert molded fabric sewing cuff
US6174331B1 (en) 1999-07-19 2001-01-16 Sulzer Carbomedics Inc. Heart valve leaflet with reinforced free margin
US6312465B1 (en) 1999-07-23 2001-11-06 Sulzer Carbomedics Inc. Heart valve prosthesis with a resiliently deformable retaining member
US6890350B1 (en) 1999-07-28 2005-05-10 Scimed Life Systems, Inc. Combination self-expandable, balloon-expandable endoluminal device
US6299637B1 (en) 1999-08-20 2001-10-09 Samuel M. Shaolian Transluminally implantable venous valve
IT1307268B1 (en) 1999-09-30 2001-10-30 Sorin Biomedica Cardio Spa DEVICE FOR HEART VALVE REPAIR OR REPLACEMENT.
EP1253873A2 (en) 1999-10-16 2002-11-06 Sumit Roy Low-profile, non-stented prosthesis for transluminal implantation
US6440164B1 (en) 1999-10-21 2002-08-27 Scimed Life Systems, Inc. Implantable prosthetic valve
US6749560B1 (en) 1999-10-26 2004-06-15 Circon Corporation Endoscope shaft with slotted tube
US8016877B2 (en) 1999-11-17 2011-09-13 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
FR2800984B1 (en) 1999-11-17 2001-12-14 Jacques Seguin DEVICE FOR REPLACING A HEART VALVE PERCUTANEOUSLY
US20070043435A1 (en) 1999-11-17 2007-02-22 Jacques Seguin Non-cylindrical prosthetic valve system for transluminal delivery
US7018406B2 (en) 1999-11-17 2006-03-28 Corevalve Sa Prosthetic valve for transluminal delivery
US8579966B2 (en) 1999-11-17 2013-11-12 Medtronic Corevalve Llc Prosthetic valve for transluminal delivery
FR2815844B1 (en) 2000-10-31 2003-01-17 Jacques Seguin TUBULAR SUPPORT FOR THE PERCUTANEOUS POSITIONING OF A REPLACEMENT HEART VALVE
DE19955490A1 (en) 1999-11-18 2001-06-13 Thermamed Gmbh Medical heating device
US6458153B1 (en) 1999-12-31 2002-10-01 Abps Venture One, Ltd. Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
US6673107B1 (en) 1999-12-06 2004-01-06 Advanced Cardiovascular Systems, Inc. Bifurcated stent and method of making
US20030097175A1 (en) 1999-12-08 2003-05-22 O'connor Bernard Heart valve prosthesis and method of manufacture
GB0114345D0 (en) 2001-06-13 2001-08-08 Aortech Europ Ltd Heart valve prosthesis and method of manufacture
GB9928905D0 (en) 1999-12-08 2000-02-02 Aortech Europ Ltd Prosthesis
US6575959B1 (en) 1999-12-27 2003-06-10 Scimed Life Systems, Inc. Catheter incorporating an insert molded hub and method of manufacturing
CN1404376A (en) 2000-01-27 2003-03-19 3F治疗有限公司 Prosthetic heart valve
DE20122916U1 (en) 2000-01-31 2009-12-10 Cook Biotech, Inc., West Lafayette stent valve
US6821297B2 (en) 2000-02-02 2004-11-23 Robert V. Snyders Artificial heart valve, implantation instrument and method therefor
CA2398948C (en) 2000-02-02 2009-08-11 Robert V. Snyders Artificial heart valve
US6740962B1 (en) 2000-02-24 2004-05-25 Micron Technology, Inc. Tape stiffener, semiconductor device component assemblies including same, and stereolithographic methods for fabricating same
US6756094B1 (en) 2000-02-28 2004-06-29 Scimed Life Systems, Inc. Balloon structure with PTFE component
DE10010073B4 (en) 2000-02-28 2005-12-22 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Anchoring for implantable heart valve prostheses
DE10010074B4 (en) 2000-02-28 2005-04-14 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device for fastening and anchoring heart valve prostheses
AU4543201A (en) 2000-03-03 2001-09-17 Patricia E Thorpe Bulbous valve and stent for treating vascular reflux
US6379382B1 (en) 2000-03-13 2002-04-30 Jun Yang Stent having cover with drug delivery capability
US6436132B1 (en) 2000-03-30 2002-08-20 Advanced Cardiovascular Systems, Inc. Composite intraluminal prostheses
US6454799B1 (en) 2000-04-06 2002-09-24 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
US6729356B1 (en) 2000-04-27 2004-05-04 Endovascular Technologies, Inc. Endovascular graft for providing a seal with vasculature
US6352552B1 (en) 2000-05-02 2002-03-05 Scion Cardio-Vascular, Inc. Stent
US6610088B1 (en) 2000-05-03 2003-08-26 Shlomo Gabbay Biologically covered heart valve prosthesis
US7419678B2 (en) 2000-05-12 2008-09-02 Cordis Corporation Coated medical devices for the prevention and treatment of vascular disease
US8252044B1 (en) 2000-11-17 2012-08-28 Advanced Bio Prosthestic Surfaces, Ltd. Device for in vivo delivery of bioactive agents and method of manufacture thereof
US8366769B2 (en) 2000-06-01 2013-02-05 Edwards Lifesciences Corporation Low-profile, pivotable heart valve sewing ring
US6358277B1 (en) 2000-06-21 2002-03-19 The International Heart Institute Of Montana Foundation Atrio-ventricular valvular device
US6676698B2 (en) 2000-06-26 2004-01-13 Rex Medicol, L.P. Vascular device with valve for approximating vessel wall
US6527800B1 (en) 2000-06-26 2003-03-04 Rex Medical, L.P. Vascular device and method for valve leaflet apposition
US6695878B2 (en) 2000-06-26 2004-02-24 Rex Medical, L.P. Vascular device for valve leaflet apposition
JP5178984B2 (en) 2000-07-24 2013-04-10 グレイゼル、ジェフリー Stiffening balloon catheter for dilatation and stenting
WO2002019951A1 (en) 2000-09-07 2002-03-14 Viacor, Inc. Fixation band for affixing a prosthetic heart valve to tissue
WO2002022054A1 (en) 2000-09-12 2002-03-21 Gabbay S Valvular prosthesis and method of using same
US7510572B2 (en) 2000-09-12 2009-03-31 Shlomo Gabbay Implantation system for delivery of a heart valve prosthesis
DE10046550A1 (en) 2000-09-19 2002-03-28 Adiam Life Science Ag Prosthetic mitral heart valve consists of support housing with base ring and two stanchions
US6893459B1 (en) 2000-09-20 2005-05-17 Ample Medical, Inc. Heart valve annulus device and method of using same
US8784482B2 (en) 2000-09-20 2014-07-22 Mvrx, Inc. Method of reshaping a heart valve annulus using an intravascular device
JP2004510471A (en) 2000-09-21 2004-04-08 セント・ジュード・メディカル・インコーポレーテッド Valve prostheses with enhanced polymer leaflets
US6461382B1 (en) 2000-09-22 2002-10-08 Edwards Lifesciences Corporation Flexible heart valve having moveable commissures
DE10049814B4 (en) 2000-10-09 2006-10-19 Universitätsklinikum Freiburg Device for supporting surgical procedures within a vessel, in particular for minimally invasive explantation and implantation of heart valves
DE10049815B4 (en) 2000-10-09 2005-10-13 Universitätsklinikum Freiburg Device for local ablation of an aortic valve on the human or animal heart
DE10049813C1 (en) 2000-10-09 2002-04-18 Universitaetsklinikum Freiburg Instrument for the local removal of built-up matter at an aortic valve, in a human or animal heart, is a hollow catheter with a cutting unit at the far end within a closure cap for minimum invasion
DE10049812B4 (en) 2000-10-09 2004-06-03 Universitätsklinikum Freiburg Device for filtering out macroscopic particles from the bloodstream during local removal of an aortic valve on the human or animal heart
US7163552B2 (en) 2000-10-13 2007-01-16 Medtronic Vascular, Inc. Stent delivery system with hydraulic deployment
US6482228B1 (en) 2000-11-14 2002-11-19 Troy R. Norred Percutaneous aortic valve replacement
US6974476B2 (en) 2003-05-05 2005-12-13 Rex Medical, L.P. Percutaneous aortic valve
EP1335683B1 (en) 2000-11-21 2005-08-10 Rex Medical, LP Percutaneous aortic valve
US6953332B1 (en) 2000-11-28 2005-10-11 St. Jude Medical, Inc. Mandrel for use in forming valved prostheses having polymer leaflets by dip coating
US6494909B2 (en) 2000-12-01 2002-12-17 Prodesco, Inc. Endovascular valve
US8690910B2 (en) 2000-12-07 2014-04-08 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
GB2369981B (en) 2000-12-13 2004-05-26 Alexander James Sandall Horticultural chamber
DE10061936A1 (en) 2000-12-13 2002-07-04 Valentin Kramer Object from ePTFE and method of manufacturing the same
DE60115280T2 (en) 2000-12-15 2006-08-10 Angiomed Gmbh & Co. Medizintechnik Kg STENT WITH HEARTLAP
US6454798B1 (en) 2000-12-21 2002-09-24 Sulzer Carbomedics Inc. Polymer heart valve with helical coaption surface
US7083642B2 (en) 2000-12-22 2006-08-01 Avantec Vascular Corporation Delivery of therapeutic capable agents
US6468660B2 (en) 2000-12-29 2002-10-22 St. Jude Medical, Inc. Biocompatible adhesives
US6488704B1 (en) 2001-05-07 2002-12-03 Biomed Solutions, Llc Implantable particle measuring apparatus
US6916338B2 (en) 2001-03-16 2005-07-12 Mayo Foundation For Medical Education And Research Synthetic leaflets for heart valve repair or replacement
US6733525B2 (en) 2001-03-23 2004-05-11 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
US7556646B2 (en) 2001-09-13 2009-07-07 Edwards Lifesciences Corporation Methods and apparatuses for deploying minimally-invasive heart valves
US7374571B2 (en) 2001-03-23 2008-05-20 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of manufacture
US6761733B2 (en) 2001-04-11 2004-07-13 Trivascular, Inc. Delivery system and method for bifurcated endovascular graft
US6733521B2 (en) 2001-04-11 2004-05-11 Trivascular, Inc. Delivery system and method for endovascular graft
DE10121210B4 (en) 2001-04-30 2005-11-17 Universitätsklinikum Freiburg Anchoring element for the intraluminal anchoring of a heart valve replacement and method for its production
US6936067B2 (en) 2001-05-17 2005-08-30 St. Jude Medical Inc. Prosthetic heart valve with slit stent
US6716207B2 (en) 2001-05-22 2004-04-06 Scimed Life Systems, Inc. Torqueable and deflectable medical device shaft
US6716239B2 (en) 2001-07-03 2004-04-06 Scimed Life Systems, Inc. ePTFE graft with axial elongation properties
CA2450683A1 (en) 2001-07-16 2003-01-30 Edwards Lifesciences Corporation Tissue engineered heart valve
US7377938B2 (en) 2001-07-19 2008-05-27 The Cleveland Clinic Foundation Prosthetic cardiac value and method for making same
US20030055494A1 (en) 2001-07-27 2003-03-20 Deon Bezuidenhout Adventitial fabric reinforced porous prosthetic graft
FR2828091B1 (en) 2001-07-31 2003-11-21 Seguin Jacques ASSEMBLY ALLOWING THE PLACEMENT OF A PROTHETIC VALVE IN A BODY DUCT
US7288105B2 (en) 2001-08-01 2007-10-30 Ev3 Endovascular, Inc. Tissue opening occluder
FR2828263B1 (en) 2001-08-03 2007-05-11 Philipp Bonhoeffer DEVICE FOR IMPLANTATION OF AN IMPLANT AND METHOD FOR IMPLANTATION OF THE DEVICE
US6562069B2 (en) 2001-09-19 2003-05-13 St. Jude Medical, Inc. Polymer leaflet designs for medical devices
US6827737B2 (en) 2001-09-25 2004-12-07 Scimed Life Systems, Inc. EPTFE covering for endovascular prostheses and method of manufacture
CA2981561C (en) 2001-10-04 2020-08-25 Neovasc Medical Ltd. Flow reducing implant
US6893460B2 (en) 2001-10-11 2005-05-17 Percutaneous Valve Technologies Inc. Implantable prosthetic valve
US6541589B1 (en) 2001-10-15 2003-04-01 Gore Enterprise Holdings, Inc. Tetrafluoroethylene copolymer
US6726715B2 (en) 2001-10-23 2004-04-27 Childrens Medical Center Corporation Fiber-reinforced heart valve prosthesis
GB0125925D0 (en) 2001-10-29 2001-12-19 Univ Glasgow Mitral valve prosthesis
US6740105B2 (en) 2001-11-23 2004-05-25 Mind Guard Ltd. Expandable delivery appliance particularly for delivering intravascular devices
US7182779B2 (en) 2001-12-03 2007-02-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US20030176914A1 (en) 2003-01-21 2003-09-18 Rabkin Dmitry J. Multi-segment modular stent and methods for manufacturing stents
US20030105517A1 (en) 2001-12-05 2003-06-05 White Geoffrey Hamilton Non-foreshortening stent
US6755857B2 (en) 2001-12-12 2004-06-29 Sulzer Carbomedics Inc. Polymer heart valve with perforated stent and sewing cuff
US7014653B2 (en) 2001-12-20 2006-03-21 Cleveland Clinic Foundation Furcated endovascular prosthesis
US7201771B2 (en) 2001-12-27 2007-04-10 Arbor Surgical Technologies, Inc. Bioprosthetic heart valve
US7189258B2 (en) 2002-01-02 2007-03-13 Medtronic, Inc. Heart valve system
US7033390B2 (en) 2002-01-02 2006-04-25 Medtronic, Inc. Prosthetic heart valve system
US20030130729A1 (en) 2002-01-04 2003-07-10 David Paniagua Percutaneously implantable replacement heart valve device and method of making same
US7887573B2 (en) 2002-02-22 2011-02-15 Boston Scientific Scimed, Inc. Method and apparatus for deployment of an endoluminal device
US6946173B2 (en) 2002-03-21 2005-09-20 Advanced Cardiovascular Systems, Inc. Catheter balloon formed of ePTFE and a diene polymer
US7163556B2 (en) 2002-03-21 2007-01-16 Providence Health System - Oregon Bioprosthesis and method for suturelessly making same
WO2003082076A2 (en) 2002-03-25 2003-10-09 Nmt Medical, Inc. Patent foramen ovale (pfo) closure clips
US20030199971A1 (en) 2002-04-23 2003-10-23 Numed, Inc. Biological replacement valve assembly
EP2067499B1 (en) 2002-04-25 2012-05-16 The Board of Trustees of The Leland Stanford Junior University Expandable guide sheath and apparatus and methods using such sheaths
WO2003092554A1 (en) 2002-05-03 2003-11-13 The General Hospital Corporation Involuted endovascular valve and method of construction
US7141064B2 (en) 2002-05-08 2006-11-28 Edwards Lifesciences Corporation Compressed tissue for heart valve leaflets
US7270675B2 (en) 2002-05-10 2007-09-18 Cordis Corporation Method of forming a tubular membrane on a structural frame
US20030220683A1 (en) 2002-05-22 2003-11-27 Zarouhi Minasian Endoluminal device having barb assembly and method of using same
US20030229394A1 (en) 2002-06-06 2003-12-11 Ogle Matthew F. Processed tissue for medical device formation
US7264632B2 (en) 2002-06-07 2007-09-04 Medtronic Vascular, Inc. Controlled deployment delivery system
US7789908B2 (en) 2002-06-25 2010-09-07 Boston Scientific Scimed, Inc. Elastomerically impregnated ePTFE to enhance stretch and recovery properties for vascular grafts and coverings
US20040024448A1 (en) 2002-08-05 2004-02-05 Chang James W. Thermoplastic fluoropolymer-coated medical devices
US20040026245A1 (en) 2002-08-09 2004-02-12 Vivek Agarwal High temperature oleophobic materials
DE10362367B3 (en) 2002-08-13 2022-02-24 Jenavalve Technology Inc. Device for anchoring and aligning prosthetic heart valves
WO2004022150A1 (en) 2002-08-23 2004-03-18 Japan As Represented By President Of National Cardiovascular Center Stent and process for producing the same
US7273492B2 (en) 2002-08-27 2007-09-25 Advanced Cardiovascular Systems Inc. Stent for treating vulnerable plaque
CA2827984A1 (en) 2002-08-28 2004-03-11 Heart Leaflet Technologies, Inc. Method and device for treating diseased valve
US6878162B2 (en) 2002-08-30 2005-04-12 Edwards Lifesciences Ag Helical stent having improved flexibility and expandability
US8518096B2 (en) 2002-09-03 2013-08-27 Lifeshield Sciences Llc Elephant trunk thoracic endograft and delivery system
US7879085B2 (en) 2002-09-06 2011-02-01 Boston Scientific Scimed, Inc. ePTFE crimped graft
US6875231B2 (en) 2002-09-11 2005-04-05 3F Therapeutics, Inc. Percutaneously deliverable heart valve
US7137184B2 (en) 2002-09-20 2006-11-21 Edwards Lifesciences Corporation Continuous heart valve support frame and method of manufacture
CO5500017A1 (en) 2002-09-23 2005-03-31 3F Therapeutics Inc MITRAL PROTESTIC VALVE
CA2498030A1 (en) 2002-10-01 2004-04-15 Ample Medical, Inc. Devices, systems, and methods for reshaping a heart valve annulus
US7001425B2 (en) 2002-11-15 2006-02-21 Scimed Life Systems, Inc. Braided stent method for its manufacture
US7485143B2 (en) 2002-11-15 2009-02-03 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
US7105018B1 (en) 2002-12-30 2006-09-12 Advanced Cardiovascular Systems, Inc. Drug-eluting stent cover and method of use
US9125733B2 (en) 2003-01-14 2015-09-08 The Cleveland Clinic Foundation Branched vessel endoluminal device
GB2398245B (en) 2003-02-06 2007-03-28 Great Ormond Street Hospital F Valve prosthesis
KR100991167B1 (en) 2003-02-19 2010-11-02 듀폰-미쯔이 플루오로케미칼 가부시끼가이샤 Process for manufacturing a heat-meltable fluoropolymer composite composition and a heat-meltable fluoropolymer composite composition
US20070207816A1 (en) 2003-02-24 2007-09-06 Polaris Wireless, Inc. Location Estimation of Wireless Terminals Based on Combinations of Signal-Strength Measurements and Geometry-of-Arrival Measurements
EP1603492B1 (en) 2003-03-12 2009-12-23 Cook Incorporated Prosthetic valve that permits retrograde flow
US7381210B2 (en) 2003-03-14 2008-06-03 Edwards Lifesciences Corporation Mitral valve repair system and method for use
US7524332B2 (en) 2003-03-17 2009-04-28 Cook Incorporated Vascular valve with removable support component
US7399315B2 (en) 2003-03-18 2008-07-15 Edwards Lifescience Corporation Minimally-invasive heart valve with cusp positioners
US7175656B2 (en) 2003-04-18 2007-02-13 Alexander Khairkhahan Percutaneous transcatheter heart valve replacement
CA2523262C (en) 2003-04-24 2012-01-24 Cook Incorporated Artificial valve prosthesis with improved flow dynamics
US7658759B2 (en) 2003-04-24 2010-02-09 Cook Incorporated Intralumenally implantable frames
US7717952B2 (en) 2003-04-24 2010-05-18 Cook Incorporated Artificial prostheses with preferred geometries
EP1472996B1 (en) 2003-04-30 2009-09-30 Medtronic Vascular, Inc. Percutaneously delivered temporary valve
DE602004021799D1 (en) 2003-05-19 2009-08-13 Cook Inc IMPLANTABLE MEDICAL DEVICE WITH LIMITED EXPANSION
JP2006526464A (en) 2003-06-05 2006-11-24 フローメディカ,インコーポレイテッド System and method for performing bilateral intervention or diagnosis in a branched body lumen
US7011646B2 (en) 2003-06-24 2006-03-14 Advanced Cardiovascular Systems, Inc. Balloon catheter having a balloon with a thickened wall portion
US7201772B2 (en) 2003-07-08 2007-04-10 Ventor Technologies, Ltd. Fluid flow prosthetic device
US7429269B2 (en) 2003-07-08 2008-09-30 Ventor Technologies Ltd. Aortic prosthetic devices
DE602004023095D1 (en) 2003-07-21 2009-10-22 Univ Pennsylvania PERCUTANEOUS HEADLAP
US7153324B2 (en) 2003-07-31 2006-12-26 Cook Incorporated Prosthetic valve devices and methods of making such devices
US20050075725A1 (en) 2003-10-02 2005-04-07 Rowe Stanton J. Implantable prosthetic valve with non-laminar flow
US20050075717A1 (en) 2003-10-06 2005-04-07 Nguyen Tuoc Tan Minimally invasive valve replacement system
US20060259137A1 (en) 2003-10-06 2006-11-16 Jason Artof Minimally invasive valve replacement system
US7967829B2 (en) 2003-10-09 2011-06-28 Boston Scientific Scimed, Inc. Medical device delivery system
US7553324B2 (en) 2003-10-14 2009-06-30 Xtent, Inc. Fixed stent delivery devices and methods
US7192440B2 (en) 2003-10-15 2007-03-20 Xtent, Inc. Implantable stent delivery devices and methods
US7635382B2 (en) 2003-10-22 2009-12-22 Medtronic Vascular, Inc. Delivery system for long self-expanding stents
US7740656B2 (en) 2003-11-17 2010-06-22 Medtronic, Inc. Implantable heart valve prosthetic devices having intrinsically conductive polymers
FR2863160B1 (en) 2003-12-09 2006-03-03 Perouse Laboratoires DEVICE FOR TREATING A BLOOD VESSEL AND METHOD FOR PREPARING THE SAME
US7186265B2 (en) 2003-12-10 2007-03-06 Medtronic, Inc. Prosthetic cardiac valves and systems and methods for implanting thereof
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7763011B2 (en) 2003-12-22 2010-07-27 Boston Scientific Scimed, Inc. Variable density braid stent
US7261732B2 (en) 2003-12-22 2007-08-28 Henri Justino Stent mounted valve
US8840663B2 (en) 2003-12-23 2014-09-23 Sadra Medical, Inc. Repositionable heart valve method
US7824443B2 (en) 2003-12-23 2010-11-02 Sadra Medical, Inc. Medical implant delivery and deployment tool
US8343213B2 (en) 2003-12-23 2013-01-01 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
JP4842144B2 (en) 2003-12-23 2011-12-21 サドラ・メディカル・インコーポレーテッド Redeployable heart valve
WO2005070343A1 (en) 2003-12-23 2005-08-04 Laboratoires Perouse Kit which is intended to be implanted in a conduit
US7748389B2 (en) 2003-12-23 2010-07-06 Sadra Medical, Inc. Leaflet engagement elements and methods for use thereof
US20120041550A1 (en) 2003-12-23 2012-02-16 Sadra Medical, Inc. Methods and Apparatus for Endovascular Heart Valve Replacement Comprising Tissue Grasping Elements
US7329279B2 (en) 2003-12-23 2008-02-12 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
CN100589779C (en) 2003-12-23 2010-02-17 萨德拉医学公司 repositionable heart valve
US7445631B2 (en) 2003-12-23 2008-11-04 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a patient's heart valve
US8182528B2 (en) 2003-12-23 2012-05-22 Sadra Medical, Inc. Locking heart valve anchor
US7381219B2 (en) 2003-12-23 2008-06-03 Sadra Medical, Inc. Low profile heart valve and delivery system
US9005273B2 (en) 2003-12-23 2015-04-14 Sadra Medical, Inc. Assessing the location and performance of replacement heart valves
US20050137691A1 (en) 2003-12-23 2005-06-23 Sadra Medical Two piece heart valve and anchor
US20050137686A1 (en) 2003-12-23 2005-06-23 Sadra Medical, A Delaware Corporation Externally expandable heart valve anchor and method
US7780725B2 (en) 2004-06-16 2010-08-24 Sadra Medical, Inc. Everting heart valve
ES2586132T3 (en) 2003-12-23 2016-10-11 Boston Scientific Scimed, Inc. Replaceable heart valve
US20050137687A1 (en) 2003-12-23 2005-06-23 Sadra Medical Heart valve anchor and method
US7959666B2 (en) 2003-12-23 2011-06-14 Sadra Medical, Inc. Methods and apparatus for endovascularly replacing a heart valve
US8287584B2 (en) 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
US8052749B2 (en) 2003-12-23 2011-11-08 Sadra Medical, Inc. Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements
US20050137694A1 (en) 2003-12-23 2005-06-23 Haug Ulrich R. Methods and apparatus for endovascularly replacing a patient's heart valve
US7871435B2 (en) 2004-01-23 2011-01-18 Edwards Lifesciences Corporation Anatomically approximate prosthetic mitral heart valve
US7862610B2 (en) 2004-01-23 2011-01-04 James Quintessenza Bicuspid vascular valve and methods for making and implanting same
AU2005213458B2 (en) 2004-02-05 2010-04-22 Children's Medical Center Corporation Transcatheter delivery of a replacement heart valve
US7311730B2 (en) 2004-02-13 2007-12-25 Shlomo Gabbay Support apparatus and heart valve prosthesis for sutureless implantation
US7247167B2 (en) 2004-02-19 2007-07-24 Shlomo Gabbay Low profile heart valve prosthesis
CN101010047B (en) 2004-02-27 2010-12-15 奥尔特克斯公司 prosthetic heart valve delivery system
JP4712029B2 (en) 2004-03-02 2011-06-29 ボストン サイエンティフィック サイムド,インコーポレイテッド Medical device including metal film and method for producing the same
ITTO20040135A1 (en) 2004-03-03 2004-06-03 Sorin Biomedica Cardio Spa CARDIAC VALVE PROSTHESIS
WO2005087140A1 (en) 2004-03-11 2005-09-22 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous heart valve prosthesis
NL1025830C2 (en) 2004-03-26 2005-02-22 Eric Berreklouw Prosthesis e.g. heart valve secured in place by ring with shape memory material anchor, includes anchor temperature control system
EA009163B1 (en) 2004-04-08 2007-10-26 Ага Медикал Корпорейшн FLANGE OCCLUSION DEVICES AND METHODS
US20060004323A1 (en) 2004-04-21 2006-01-05 Exploramed Nc1, Inc. Apparatus and methods for dilating and modifying ostia of paranasal sinuses and other intranasal or paranasal structures
CN101052359A (en) 2004-04-23 2007-10-10 3F医疗有限公司 Implantable prosthetic valve
US7534259B2 (en) 2004-05-05 2009-05-19 Direct Flow Medical, Inc. Nonstented heart valves with formed in situ support
US20060122693A1 (en) 2004-05-10 2006-06-08 Youssef Biadillah Stent valve and method of manufacturing same
US20060095115A1 (en) 2004-05-10 2006-05-04 Youssef Bladillah Stent and method of manufacturing same
US7794490B2 (en) 2004-06-22 2010-09-14 Boston Scientific Scimed, Inc. Implantable medical devices with antimicrobial and biodegradable matrices
US20050288766A1 (en) 2004-06-28 2005-12-29 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
US7462191B2 (en) 2004-06-30 2008-12-09 Edwards Lifesciences Pvt, Inc. Device and method for assisting in the implantation of a prosthetic valve
US7276078B2 (en) 2004-06-30 2007-10-02 Edwards Lifesciences Pvt Paravalvular leak detection, sealing, and prevention
WO2006014592A1 (en) 2004-07-07 2006-02-09 Cook Incorporated Graft, stent graft and method for manufacture
US20060008497A1 (en) 2004-07-09 2006-01-12 Shlomo Gabbay Implantable apparatus having improved biocompatibility and process of making the same
US8308789B2 (en) 2004-07-16 2012-11-13 W. L. Gore & Associates, Inc. Deployment system for intraluminal devices
US20060154365A1 (en) 2004-08-30 2006-07-13 Anthony Ratcliffe Cultured three dimensional tissues and uses thereof
FR2874812B1 (en) 2004-09-07 2007-06-15 Perouse Soc Par Actions Simpli INTERCHANGEABLE PROTHETIC VALVE
US20060052867A1 (en) 2004-09-07 2006-03-09 Medtronic, Inc Replacement prosthetic heart valve, system and method of implant
WO2006032051A2 (en) 2004-09-14 2006-03-23 Edwards Lifesciences Ag Device and method for treatment of heart valve regurgitation
CA3050938C (en) 2004-10-02 2021-10-19 Edwards Lifesciences Cardiaq Llc Methods and devices for repair or replacement of heart valves or adjacent tissue without the need for full cardiopulmonary support
WO2006055982A2 (en) 2004-11-22 2006-05-26 Avvrx Ring-shaped valve prosthesis attachment device
US8029563B2 (en) 2004-11-29 2011-10-04 Gore Enterprise Holdings, Inc. Implantable devices with reduced needle puncture site leakage
US8262720B2 (en) 2004-12-02 2012-09-11 Nitinol Development Corporation Prosthesis comprising dual tapered stent
US7758640B2 (en) 2004-12-16 2010-07-20 Valvexchange Inc. Cardiovascular valve assembly
US7402151B2 (en) 2004-12-17 2008-07-22 Biocardia, Inc. Steerable guide catheters and methods for their use
US20060135985A1 (en) 2004-12-21 2006-06-22 Cox Daniel L Vulnerable plaque modification methods and apparatuses
US20060161241A1 (en) 2005-01-14 2006-07-20 Denise Barbut Methods and devices for treating aortic atheroma
DE102005003632A1 (en) 2005-01-20 2006-08-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Catheter for the transvascular implantation of heart valve prostheses
WO2011034628A1 (en) 2005-02-07 2011-03-24 Evalve, Inc. Methods, systems and devices for cardiac valve repair
ITTO20050074A1 (en) 2005-02-10 2006-08-11 Sorin Biomedica Cardio Srl CARDIAC VALVE PROSTHESIS
US20060195183A1 (en) 2005-02-18 2006-08-31 The Cleveland Clinic Foundation Apparatus and methods for replacing a cardiac valve
US20060190070A1 (en) 2005-02-23 2006-08-24 Dieck Martin S Rail stent and methods of use
US7955385B2 (en) 2005-02-28 2011-06-07 Medtronic Vascular, Inc. Device, system, and method for aiding valve annuloplasty
US8303647B2 (en) 2005-03-03 2012-11-06 Cook Medical Technologies Llc Medical valve leaflet structures with peripheral region receptive to tissue ingrowth
US7579381B2 (en) 2005-03-25 2009-08-25 Edwards Lifesciences Corporation Treatment of bioprosthetic tissues to mitigate post implantation calcification
US8062359B2 (en) 2005-04-06 2011-11-22 Edwards Lifesciences Corporation Highly flexible heart valve connecting band
US7513909B2 (en) 2005-04-08 2009-04-07 Arbor Surgical Technologies, Inc. Two-piece prosthetic valves with snap-in connection and methods for use
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
EP1893131A1 (en) 2005-04-20 2008-03-05 The Cleveland Clinic Foundation Apparatus and method for replacing a cardiac valve
SE531468C2 (en) 2005-04-21 2009-04-14 Edwards Lifesciences Ag An apparatus for controlling blood flow
US7914569B2 (en) 2005-05-13 2011-03-29 Medtronics Corevalve Llc Heart valve prosthesis and methods of manufacture and use
EP1887980B1 (en) 2005-05-17 2012-09-05 Cook Medical Technologies LLC Frameless valve prosthesis and system for its deployment
CA2609022C (en) 2005-05-20 2010-07-20 The Cleveland Clinic Foundation Apparatus and methods for repairing the function of a diseased valve and method for making same
CA2607744C (en) 2005-05-24 2015-11-24 Edwards Lifesciences Corporation Rapid deployment prosthetic heart valve
AU2006251938B2 (en) 2005-05-27 2011-09-29 Hlt, Inc. Stentless support structure
US8663312B2 (en) 2005-05-27 2014-03-04 Hlt, Inc. Intravascular cuff
US20060276883A1 (en) 2005-06-01 2006-12-07 Cook Incorporated Tapered and distally stented elephant trunk stent graft
US7238200B2 (en) 2005-06-03 2007-07-03 Arbor Surgical Technologies, Inc. Apparatus and methods for making leaflets and valve prostheses including such leaflets
US8267993B2 (en) 2005-06-09 2012-09-18 Coroneo, Inc. Expandable annuloplasty ring and associated ring holder
US7780723B2 (en) 2005-06-13 2010-08-24 Edwards Lifesciences Corporation Heart valve delivery system
FR2887139B1 (en) 2005-06-15 2008-04-25 Perouse Soc Par Actions Simpli DEVICE FOR TREATING A BLOOD VESSEL.
US20080058856A1 (en) 2005-06-28 2008-03-06 Venkatesh Ramaiah Non-occluding dilation device
US7531611B2 (en) 2005-07-05 2009-05-12 Gore Enterprise Holdings, Inc. Copolymers of tetrafluoroethylene
US7306729B2 (en) 2005-07-18 2007-12-11 Gore Enterprise Holdings, Inc. Porous PTFE materials and articles produced therefrom
US20090112309A1 (en) 2005-07-21 2009-04-30 The Florida International University Board Of Trustees Collapsible Heart Valve with Polymer Leaflets
US8790396B2 (en) 2005-07-27 2014-07-29 Medtronic 3F Therapeutics, Inc. Methods and systems for cardiac valve delivery
WO2007016251A2 (en) 2005-07-28 2007-02-08 Cook Incorporated Implantable thromboresistant valve
EP2179709B1 (en) 2005-08-17 2011-10-05 C. R. Bard, Inc. Variable speed stent delivery system
WO2007025028A1 (en) 2005-08-25 2007-03-01 The Cleveland Clinic Foundation Percutaneous atrioventricular valve and method of use
US7455689B2 (en) 2005-08-25 2008-11-25 Edwards Lifesciences Corporation Four-leaflet stented mitral heart valve
US20070078297A1 (en) 2005-08-31 2007-04-05 Medtronic Vascular, Inc. Device for Treating Mitral Valve Regurgitation
US7530253B2 (en) 2005-09-09 2009-05-12 Edwards Lifesciences Corporation Prosthetic valve crimping device
US20070129794A1 (en) 2005-10-05 2007-06-07 Fidel Realyvasquez Method and apparatus for prosthesis attachment using discrete elements
US8956400B2 (en) 2005-10-14 2015-02-17 Flexible Stenting Solutions, Inc. Helical stent
US8167932B2 (en) 2005-10-18 2012-05-01 Edwards Lifesciences Corporation Heart valve delivery system with valve catheter
US7563277B2 (en) 2005-10-24 2009-07-21 Cook Incorporated Removable covering for implantable frame projections
DE102005051849B4 (en) 2005-10-28 2010-01-21 JenaValve Technology Inc., Wilmington Device for implantation and attachment of heart valve prostheses
US20070100439A1 (en) 2005-10-31 2007-05-03 Medtronic Vascular, Inc. Chordae tendinae restraining ring
DE102005052628B4 (en) 2005-11-04 2014-06-05 Jenavalve Technology Inc. Self-expanding, flexible wire mesh with integrated valvular prosthesis for the transvascular heart valve replacement and a system with such a device and a delivery catheter
US8092520B2 (en) 2005-11-10 2012-01-10 CardiAQ Technologies, Inc. Vascular prosthesis connecting stent
US8764820B2 (en) 2005-11-16 2014-07-01 Edwards Lifesciences Corporation Transapical heart valve delivery system and method
WO2007062320A2 (en) 2005-11-18 2007-05-31 Innovia, Llc Trileaflet heart valve
US20070142907A1 (en) 2005-12-16 2007-06-21 Micardia Corporation Adjustable prosthetic valve implant
US20070213813A1 (en) 2005-12-22 2007-09-13 Symetis Sa Stent-valves for valve replacement and associated methods and systems for surgery
EP2316381B2 (en) 2005-12-22 2018-05-23 Symetis SA Cardiac valve prosthesis
US7947074B2 (en) 2005-12-23 2011-05-24 Attila Meretei Implantable prosthetic valve
US7862607B2 (en) 2005-12-30 2011-01-04 C. R. Bard, Inc. Stent with bio-resorbable connector and methods
WO2007079413A2 (en) 2005-12-30 2007-07-12 C.R. Bard Inc. Embolus blood clot filter with bio-resorbable coated filter members
US20070156224A1 (en) 2006-01-04 2007-07-05 Iulian Cioanta Handle system for deploying a prosthetic implant
US9681948B2 (en) 2006-01-23 2017-06-20 V-Wave Ltd. Heart anchor device
FR2896405B1 (en) 2006-01-24 2008-04-18 Perouse Soc Par Actions Simpli DEVICE FOR TREATING A BLOOD CIRCULATION CONDUIT AND METHOD OF PREPARING THE SAME
EP1988851A2 (en) 2006-02-14 2008-11-12 Sadra Medical, Inc. Systems and methods for delivering a medical implant
WO2008029296A2 (en) 2006-02-16 2008-03-13 Endocor Pte Ltd. Minimally invasive heart valve replacement
ES2335520T3 (en) 2006-02-24 2010-03-29 National University Of Ireland, Galway MINIMALLY INVASIVE INTRAVASCULAR TREATMENT DEVICE.
US8591516B2 (en) 2006-02-27 2013-11-26 Biomet Manufacturing, Llc Patient-specific orthopedic instruments
US8147541B2 (en) 2006-02-27 2012-04-03 Aortx, Inc. Methods and devices for delivery of prosthetic heart valves and other prosthetics
EP1991164B1 (en) 2006-02-28 2017-06-14 Angiomed GmbH & Co. Medizintechnik KG Flexible stretch stent-graft
US8025693B2 (en) 2006-03-01 2011-09-27 Boston Scientific Scimed, Inc. Stent-graft having flexible geometries and methods of producing the same
US7648527B2 (en) 2006-03-01 2010-01-19 Cook Incorporated Methods of reducing retrograde flow
US8219229B2 (en) 2006-03-02 2012-07-10 Edwards Lifesciences Corporation Virtual heart valve
US8585753B2 (en) 2006-03-04 2013-11-19 John James Scanlon Fibrillated biodegradable prosthesis
US8075615B2 (en) 2006-03-28 2011-12-13 Medtronic, Inc. Prosthetic cardiac valve formed from pericardium material and methods of making same
CN101045022B (en) 2006-03-30 2010-08-25 温宁 Self-expanding stent axial wire-drawing tensioning mechanism
US8721704B2 (en) 2006-04-21 2014-05-13 W. L. Gore & Associates, Inc. Expandable stent with wrinkle-free elastomeric cover
US8425584B2 (en) 2006-04-21 2013-04-23 W. L. Gore & Associates, Inc. Expandable covered stent with wide range of wrinkle-free deployed diameters
US8652201B2 (en) 2006-04-26 2014-02-18 The Cleveland Clinic Foundation Apparatus and method for treating cardiovascular diseases
US20070255394A1 (en) 2006-04-28 2007-11-01 Medtronic, Inc. Method and apparatus for cardiac valve replacement
EP1849440A1 (en) 2006-04-28 2007-10-31 Younes Boudjemline Vascular stents with varying diameter
US20070254012A1 (en) 2006-04-28 2007-11-01 Ludwig Florian N Controlled degradation and drug release in stents
JP5016667B2 (en) 2006-04-29 2012-09-05 メドトロニック,インコーポレイテッド Multi-membered prosthetic heart valve assembly, apparatus using the same, and method of using the same
JP2009536074A (en) 2006-05-05 2009-10-08 チルドレンズ・メディカル・センター・コーポレイション Transcatheter heart valve
US9114194B2 (en) 2006-05-12 2015-08-25 W. L. Gore & Associates, Inc. Immobilized biologically active entities having high biological activity following mechanical manipulation
US8932348B2 (en) 2006-05-18 2015-01-13 Edwards Lifesciences Corporation Device and method for improving heart valve function
AU2006343882A1 (en) 2006-05-23 2007-11-29 Allvascular Pty Ltd Endovenous valve transfer stent
WO2007138571A2 (en) 2006-06-01 2007-12-06 Mor Research Applications Ltd. Membrane augmentation, such as of for treatment of cardiac valves, and fastening devices for membrane augmentation
US20080021546A1 (en) 2006-07-18 2008-01-24 Tim Patz System for deploying balloon-expandable heart valves
US20090306768A1 (en) 2006-07-28 2009-12-10 Cardiaq Valve Technologies, Inc. Percutaneous valve prosthesis and system and method for implanting same
US20080026190A1 (en) 2006-07-28 2008-01-31 General Electric Company Durable membranes and methods for improving membrane durability
US20080140173A1 (en) 2006-08-07 2008-06-12 Sherif Eskaros Non-shortening wrapped balloon
US7785290B2 (en) 2006-08-07 2010-08-31 Gore Enterprise Holdings, Inc. Non-shortening high angle wrapped balloons
US8882826B2 (en) 2006-08-22 2014-11-11 Abbott Cardiovascular Systems Inc. Intravascular stent
US8500793B2 (en) 2006-09-07 2013-08-06 C. R. Bard, Inc. Helical implant having different ends
CA2642350C (en) 2006-09-08 2015-02-24 Edwards Lifesciences Corporation Integrated heart valve delivery system
US8834564B2 (en) 2006-09-19 2014-09-16 Medtronic, Inc. Sinus-engaging valve fixation member
US8052750B2 (en) 2006-09-19 2011-11-08 Medtronic Ventor Technologies Ltd Valve prosthesis fixation techniques using sandwiching
CA2663573C (en) 2006-09-21 2015-04-07 Cleveny Technologies A specially configured and surface modified medical device with certain design features that utilize the intrinsic properties of tungsten, zirconium, tantalum and/or niobium
US20080097401A1 (en) 2006-09-22 2008-04-24 Trapp Benjamin M Cerebral vasculature device
EP2068764A4 (en) 2006-09-28 2016-07-27 Heart Leaflet Technologies Inc Delivery tool for percutaneous delivery of a prosthesis
FR2906454B1 (en) 2006-09-28 2009-04-10 Perouse Soc Par Actions Simpli IMPLANT INTENDED TO BE PLACED IN A BLOOD CIRCULATION CONDUIT.
ATE544428T1 (en) 2006-09-28 2012-02-15 Cook Medical Technologies Llc DEVICE FOR REPAIRING AORTIC ANEURYSMS IN THE CHEST
US7534261B2 (en) 2006-10-02 2009-05-19 Edwards Lifesciences Corporation Sutureless heart valve attachment
US8029556B2 (en) 2006-10-04 2011-10-04 Edwards Lifesciences Corporation Method and apparatus for reshaping a ventricle
EP2083901B1 (en) 2006-10-16 2017-12-27 Medtronic Ventor Technologies Ltd. Transapical delivery system with ventriculo-arterial overflow bypass
US20080097582A1 (en) 2006-10-18 2008-04-24 Conor Medsystems, Inc. Stent with flexible hinges
US20080097583A1 (en) 2006-10-18 2008-04-24 Conor Medsystems, Inc. Stent with flexible hinges
US8007992B2 (en) 2006-10-27 2011-08-30 Edwards Lifesciences Corporation Method of treating glutaraldehyde-fixed pericardial tissue with a non-aqueous mixture of glycerol and a C1-C3 alcohol
CN101172059B (en) 2006-10-31 2010-12-08 温宁 Bracket valve with internal layer ligule structure and method for knitting bracket
DE102006052564B3 (en) 2006-11-06 2007-12-13 Georg Lutter Mitral valve stent for surgical implantation and fixation of heart valve prosthesis to heart, has stent clips arranged distally, where one of stent clips forms section that is externally rolled in unfolded condition of stent
CA2664557C (en) 2006-11-07 2015-05-26 David Stephen Celermajer Devices and methods for the treatment of heart failure
US8052732B2 (en) 2006-11-14 2011-11-08 Medtronic Vascular, Inc. Delivery system for stent-graft with anchoring pins
US9622888B2 (en) 2006-11-16 2017-04-18 W. L. Gore & Associates, Inc. Stent having flexibly connected adjacent stent elements
EP2088969B1 (en) 2006-11-30 2014-08-20 Cook Medical Technologies LLC Implant release mechanism
US9084621B2 (en) 2006-12-01 2015-07-21 Boston Scientific Scimed, Inc. Guide tube systems and methods
AU2007329243B2 (en) 2006-12-06 2014-04-03 Medtronic CV Luxembourg S.a.r.l System and method for transapical delivery of an annulus anchored self-expanding valve
FR2909857B1 (en) 2006-12-14 2009-03-06 Perouse Soc Par Actions Simpli Endovalve.
DE602006013167D1 (en) 2006-12-19 2010-05-06 Sorin Biomedica Cardio Srl Instrument for in situ insertion of heart valve prostheses
ES2708789T3 (en) 2006-12-19 2019-04-11 St Jude Medical Method for manufacturing a prosthetic heart valve that includes a structure of endoprostheses and tissue leaflets
US8070799B2 (en) 2006-12-19 2011-12-06 Sorin Biomedica Cardio S.R.L. Instrument and method for in situ deployment of cardiac valve prostheses
US8236045B2 (en) 2006-12-22 2012-08-07 Edwards Lifesciences Corporation Implantable prosthetic valve assembly and method of making the same
WO2008091493A1 (en) 2007-01-08 2008-07-31 California Institute Of Technology In-situ formation of a valve
US8105375B2 (en) 2007-01-19 2012-01-31 The Cleveland Clinic Foundation Method for implanting a cardiovascular valve
EP2111190B1 (en) 2007-01-19 2013-10-09 Medtronic, Inc. Stented heart valve devices for atrioventricular valve replacement
US7731783B2 (en) 2007-01-24 2010-06-08 Pratt & Whitney Rocketdyne, Inc. Continuous pressure letdown system
US9415567B2 (en) 2007-02-05 2016-08-16 Boston Scientific Scimed, Inc. Synthetic composite structures
US7967853B2 (en) 2007-02-05 2011-06-28 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
WO2008097592A2 (en) 2007-02-05 2008-08-14 Boston Scientific Limited Synthetic composite structures
US9526642B2 (en) 2007-02-09 2016-12-27 Taheri Laduca Llc Vascular implants and methods of fabricating the same
AU2008216670B2 (en) 2007-02-15 2013-10-17 Medtronic, Inc. Multi-layered stents and methods of implanting
US7871436B2 (en) 2007-02-16 2011-01-18 Medtronic, Inc. Replacement prosthetic heart valves and methods of implantation
US8070802B2 (en) 2007-02-23 2011-12-06 The Trustees Of The University Of Pennsylvania Mitral valve system
US7753949B2 (en) 2007-02-23 2010-07-13 The Trustees Of The University Of Pennsylvania Valve prosthesis systems and methods
US20080208327A1 (en) 2007-02-27 2008-08-28 Rowe Stanton J Method and apparatus for replacing a prosthetic valve
US7914807B2 (en) 2007-03-05 2011-03-29 Boston Scientific Scimed, Inc. Medical devices having improved performance
US8092523B2 (en) 2007-03-12 2012-01-10 St. Jude Medical, Inc. Prosthetic heart valves with flexible leaflets
US9138315B2 (en) 2007-04-13 2015-09-22 Jenavalve Technology Gmbh Medical device for treating a heart valve insufficiency or stenosis
US9295551B2 (en) 2007-04-13 2016-03-29 Jenavalve Technology Gmbh Methods of implanting an endoprosthesis
US7896915B2 (en) 2007-04-13 2011-03-01 Jenavalve Technology, Inc. Medical device for treating a heart valve insufficiency
WO2008125153A1 (en) 2007-04-13 2008-10-23 Jenavalve Technology Inc. Medical device for treating a heart valve insufficiency or stenosis
US8409274B2 (en) 2007-04-26 2013-04-02 St. Jude Medical, Inc. Techniques for attaching flexible leaflets of prosthetic heart valves to supporting structures
FR2915678B1 (en) 2007-05-02 2010-04-16 Lapeyre Ind Llc MECHANICAL PROTHETIC CARDIAC VALVE
US20080294247A1 (en) 2007-05-25 2008-11-27 Medical Entrepreneurs Ii, Inc. Prosthetic Heart Valve
CN100502811C (en) 2007-05-29 2009-06-24 中国人民解放军第二军医大学 A kind of pulmonary artery stent with valve
ES2788453T3 (en) 2007-06-04 2020-10-21 St Jude Medical Llc Prosthetic heart valves
BRPI0813773A2 (en) 2007-06-26 2017-05-16 St Jude Medical apparatus for providing a protein heart valve in a patient.
US8057531B2 (en) 2007-06-29 2011-11-15 Abbott Cardiovascular Systems Inc. Stent having circumferentially deformable struts
US7815677B2 (en) 2007-07-09 2010-10-19 Leman Cardiovascular Sa Reinforcement device for a biological valve and reinforced biological valve
US8006535B2 (en) 2007-07-12 2011-08-30 Sorin Biomedica Cardio S.R.L. Expandable prosthetic valve crimping device
CN101091675B (en) 2007-07-19 2010-06-16 中国人民解放军第二军医大学 Double disc atrioventricular valve stent with prosthetic valve
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US7988723B2 (en) 2007-08-02 2011-08-02 Flexible Stenting Solutions, Inc. Flexible stent
WO2009023590A1 (en) 2007-08-10 2009-02-19 Micardia Corporation Adjustable annuloplasty ring and activation system
US8747458B2 (en) 2007-08-20 2014-06-10 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
DE202008018557U1 (en) 2007-08-21 2015-10-26 Symetis Sa A replacement flap
JP5329542B2 (en) 2007-08-23 2013-10-30 ダイレクト フロウ メディカル、 インク. Transluminally implantable heart valve with in-place forming support
ES2384199T3 (en) 2007-08-24 2012-07-02 St. Jude Medical, Inc. Prosthetic aortic heart valves
US8114154B2 (en) 2007-09-07 2012-02-14 Sorin Biomedica Cardio S.R.L. Fluid-filled delivery system for in situ deployment of cardiac valve prostheses
DE102007043830A1 (en) 2007-09-13 2009-04-02 Lozonschi, Lucian, Madison Heart valve stent
US8220121B2 (en) 2007-09-14 2012-07-17 Cook Medical Technologies Llc Device for loading a self-expandable prosthesis into a sheath
ES3040462T3 (en) 2007-09-26 2025-10-31 St Jude Medical Llc Collapsible prosthetic heart valves
US8454686B2 (en) 2007-09-28 2013-06-04 St. Jude Medical, Inc. Two-stage collapsible/expandable prosthetic heart valves and anchoring systems
WO2009045334A1 (en) 2007-09-28 2009-04-09 St. Jude Medical, Inc. Collapsible/expandable prosthetic heart valves with native calcified leaflet retention features
US7803186B1 (en) 2007-09-28 2010-09-28 St. Jude Medical, Inc. Prosthetic heart valves with flexible leaflets and leaflet edge clamping
US8637144B2 (en) 2007-10-04 2014-01-28 W. L. Gore & Associates, Inc. Expandable TFE copolymers, method of making, and porous, expended articles thereof
US20090138079A1 (en) 2007-10-10 2009-05-28 Vector Technologies Ltd. Prosthetic heart valve for transfemoral delivery
WO2009052188A1 (en) 2007-10-15 2009-04-23 Edwards Lifesciences Corporation Transcatheter heart valve with micro-anchors
US8679519B2 (en) 2007-10-23 2014-03-25 Abbott Cardiovascular Systems Inc. Coating designs for the tailored release of dual drugs from polymeric coatings
BRPI0819217B8 (en) 2007-10-25 2021-06-22 Symetis Sa replacement valve for use within a human body, system for replacing a valve within a human body, and heart valve release system with stent
ATE543461T1 (en) 2007-11-05 2012-02-15 St Jude Medical FOLDABLE AND EXTENDABLE HEART VALVE PROSTHESIS WITH NON-EXTENDABLE STENT COLUMNS AND RECOLLECTION FUNCTION
ES2782379T5 (en) 2007-12-14 2025-02-10 Edwards Lifesciences Corp Prosthetic valve
US8357387B2 (en) 2007-12-21 2013-01-22 Edwards Lifesciences Corporation Capping bioprosthetic tissue to reduce calcification
US20090171456A1 (en) 2007-12-28 2009-07-02 Kveen Graig L Percutaneous heart valve, system, and method
US8317857B2 (en) 2008-01-10 2012-11-27 Telesis Research, Llc Biodegradable self-expanding prosthesis
US8926688B2 (en) 2008-01-11 2015-01-06 W. L. Gore & Assoc. Inc. Stent having adjacent elements connected by flexible webs
JP5591120B2 (en) 2008-01-16 2014-09-17 セント ジュード メディカル インコーポレイテッド Collapsible / expandable prosthetic heart valve delivery and retrieval system
US8157853B2 (en) 2008-01-24 2012-04-17 Medtronic, Inc. Delivery systems and methods of implantation for prosthetic heart valves
WO2009094500A1 (en) 2008-01-24 2009-07-30 Medtronic Vascular Inc. Infundibular reducer device delivery system and related methods
EP2254513B1 (en) 2008-01-24 2015-10-28 Medtronic, Inc. Stents for prosthetic heart valves
EP3572045B1 (en) 2008-01-24 2022-12-21 Medtronic, Inc. Stents for prosthetic heart valves
ES2988220T3 (en) 2008-02-05 2024-11-19 Silk Road Medical Inc Systems for establishing retrograde blood flow in the carotid artery
US8465540B2 (en) 2008-02-26 2013-06-18 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis
US8398704B2 (en) 2008-02-26 2013-03-19 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9044318B2 (en) 2008-02-26 2015-06-02 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis
US8317858B2 (en) 2008-02-26 2012-11-27 Jenavalve Technology, Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
US9168130B2 (en) 2008-02-26 2015-10-27 Jenavalve Technology Gmbh Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
EP2262447B1 (en) 2008-02-28 2015-08-12 Medtronic, Inc. Prosthetic heart valve systems
US9241792B2 (en) 2008-02-29 2016-01-26 Edwards Lifesciences Corporation Two-step heart valve implantation
CA2714605C (en) 2008-02-29 2017-05-02 Edwards Lifesciences Corporation Expandable member for deploying a prosthetic device
DE102008012113A1 (en) 2008-03-02 2009-09-03 Transcatheter Technologies Gmbh Implant e.g. heart-valve-carrying stent, for e.g. arresting blood vessel, has fiber by which section of implant is reducible according to increasing of implant at extended diameter by unfolding or expansion of diameter with expansion unit
US8313525B2 (en) 2008-03-18 2012-11-20 Medtronic Ventor Technologies, Ltd. Valve suturing and implantation procedures
EP2106820A1 (en) 2008-03-31 2009-10-07 Torsten Heilmann Expansible biocompatible coats comprising a biologically active substance
US7815673B2 (en) 2008-04-01 2010-10-19 Medtronic Vascular, Inc. Double-walled stent system
US8312825B2 (en) 2008-04-23 2012-11-20 Medtronic, Inc. Methods and apparatuses for assembly of a pericardial prosthetic heart valve
DK3967274T4 (en) 2008-04-23 2025-08-25 Medtronic Inc HEART VALVE DEVICES WITH STENT
CA2722366C (en) 2008-04-23 2016-08-30 Medtronic, Inc. Stented heart valve devices
US8136218B2 (en) 2008-04-29 2012-03-20 Medtronic, Inc. Prosthetic heart valve, prosthetic heart valve assembly and method for making same
US20090276040A1 (en) 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
US20090276027A1 (en) 2008-05-01 2009-11-05 Medtronic Vasscular, Inc. Stent Graft Delivery System and Method of Use
US9061119B2 (en) 2008-05-09 2015-06-23 Edwards Lifesciences Corporation Low profile delivery system for transcatheter heart valve
ES2386239T3 (en) 2008-05-16 2012-08-14 Sorin Biomedica Cardio S.R.L. Atraumatic cardiovalvular prosthesis
US20090287305A1 (en) 2008-05-19 2009-11-19 Amalaha Leonard D Wholly implantable non-natural heart for humans
WO2009148594A1 (en) 2008-06-04 2009-12-10 Gore Enterprise Holdings, Inc. Controlled deployable medical device and method of making the same
HUE047246T2 (en) 2008-06-06 2020-04-28 Edwards Lifesciences Corp Low profile transcatheter heart valve
US8323335B2 (en) 2008-06-20 2012-12-04 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves and methods for using
US20110160836A1 (en) 2008-06-20 2011-06-30 Vysera Biomedical Limited Valve device
JP2011524776A (en) 2008-06-20 2011-09-08 ヴィセラ・バイオメディカル・リミテッド Esophageal valve
ES2749741T3 (en) 2008-06-30 2020-03-23 Bolton Medical Inc Abdominal aortic aneurysm systems
ES2584315T5 (en) 2008-07-15 2024-09-17 St Jude Medical Llc Collapsible and re-expandable prosthetic heart valve cuff designs and complementary technological applications
AU2009271574B2 (en) 2008-07-15 2015-05-21 St. Jude Medical, Inc. Axially anchoring collapsible and re-expandable prosthetic heart valves for various disease states
CN102119013B (en) 2008-07-17 2014-12-03 Nvt股份公司 Cardiac valve prosthesis system
PL2145917T3 (en) 2008-07-17 2012-11-30 Gore W L & Ass Gmbh Polymer coating comprising a complex of an ionic fluoropolyether and a counter ionic agent
US20100023114A1 (en) 2008-07-24 2010-01-28 Cook Incorporated Valve device with biased leaflets
CN102164626B (en) 2008-07-29 2014-08-13 联合护理207公司 Closed suction catheter adapter with flush arrangement
US8652202B2 (en) 2008-08-22 2014-02-18 Edwards Lifesciences Corporation Prosthetic heart valve and delivery apparatus
CA2736649A1 (en) 2008-09-10 2010-03-18 Ev3 Inc. Stents and catheters having improved stent deployment
US8721714B2 (en) 2008-09-17 2014-05-13 Medtronic Corevalve Llc Delivery system for deployment of medical devices
EP4541320A3 (en) 2008-09-29 2025-07-09 Edwards Lifesciences CardiAQ LLC Heart valve
EP2845569A1 (en) 2008-10-01 2015-03-11 Cardiaq Valve Technologies, Inc. Delivery system for vascular implant
US9149376B2 (en) 2008-10-06 2015-10-06 Cordis Corporation Reconstrainable stent delivery system
EP2349125B1 (en) 2008-10-10 2017-04-05 OrbusNeich Medical, Inc. Bioabsorbable polymeric medical device
US8790387B2 (en) 2008-10-10 2014-07-29 Edwards Lifesciences Corporation Expandable sheath for introducing an endovascular delivery device into a body
EP2340075B1 (en) 2008-10-10 2013-03-06 Sadra Medical, Inc. Medical devices and delivery systems for delivering medical devices
US8690936B2 (en) 2008-10-10 2014-04-08 Edwards Lifesciences Corporation Expandable sheath for introducing an endovascular delivery device into a body
US8137398B2 (en) 2008-10-13 2012-03-20 Medtronic Ventor Technologies Ltd Prosthetic valve having tapered tip when compressed for delivery
US8470013B2 (en) 2008-10-20 2013-06-25 Imds Corporation Systems and methods for aneurysm treatment and vessel occlusion
US20100114305A1 (en) 2008-10-30 2010-05-06 Wei-Chang Kang Implantable Valvular Prosthesis
US8556960B2 (en) 2008-11-06 2013-10-15 Cook Medical Technologies Llc Frameless vascular valve
US10166014B2 (en) 2008-11-21 2019-01-01 Percutaneous Cardiovascular Solutions Pty Ltd Heart valve prosthesis and method
US8591573B2 (en) 2008-12-08 2013-11-26 Hector Daniel Barone Prosthetic valve for intraluminal implantation
US7968190B2 (en) 2008-12-19 2011-06-28 Gore Enterprise Holdings, Inc. PTFE fabric articles and method of making same
US8764813B2 (en) 2008-12-23 2014-07-01 Cook Medical Technologies Llc Gradually self-expanding stent
EP2682072A1 (en) 2008-12-23 2014-01-08 Sorin Group Italia S.r.l. Expandable prosthetic valve having anchoring appendages
WO2010096347A1 (en) 2009-02-20 2010-08-26 Boston Scientific Scimed, Inc. Asymmetric dual directional steerable catheter sheath
US20100217382A1 (en) 2009-02-25 2010-08-26 Edwards Lifesciences Mitral valve replacement with atrial anchoring
AU2010209672A1 (en) 2009-02-25 2011-09-01 Jenavalve Technology Inc. Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
WO2010106438A2 (en) 2009-03-17 2010-09-23 Biomedxl Heart valve prosthesis with collapsible valve and method of delivery thereof
US9139669B2 (en) 2009-03-24 2015-09-22 W. L. Gore & Associates, Inc. Expandable functional TFE copolymer fine powder, the expandable functional products obtained therefrom and reaction of the expanded products
US8416643B2 (en) 2009-03-24 2013-04-09 Texas Instruments Incorporated Receive beamformer for ultrasound having delay value sorting
GB0905444D0 (en) 2009-03-30 2009-05-13 Ucl Business Plc Heart valve prosthesis
CN101919750A (en) 2009-03-30 2010-12-22 卡迪万蒂奇医药公司 Transplantation methods without suture-free pulmonary or mitral valves
US9980818B2 (en) 2009-03-31 2018-05-29 Edwards Lifesciences Corporation Prosthetic heart valve system with positioning markers
US20100256723A1 (en) 2009-04-03 2010-10-07 Medtronic Vascular, Inc. Prosthetic Valve With Device for Restricting Expansion
GB0906065D0 (en) 2009-04-07 2009-05-20 Angiomed Ag Delivery system for a prosthesis
US8888836B2 (en) 2009-04-07 2014-11-18 Medtronic Vascular, Inc. Implantable temporary flow restrictor device
JP2012523894A (en) 2009-04-15 2012-10-11 カルディアック バルブ テクノロジーズ,インコーポレーテッド Vascular implant and its placement system
US9011524B2 (en) 2009-04-24 2015-04-21 Medtronic, Inc. Prosthetic heart valves and methods of attaching same
US20100286760A1 (en) 2009-04-24 2010-11-11 Bradley Beach Flexible devices
EP2429455B8 (en) 2009-04-29 2021-12-15 Edwards Lifesciences Corporation Apparatus for replacing a diseased cardiac valve
US8353953B2 (en) 2009-05-13 2013-01-15 Sorin Biomedica Cardio, S.R.L. Device for the in situ delivery of heart valves
WO2010132707A1 (en) 2009-05-14 2010-11-18 Orbusneich Medical, Inc. Self-expanding stent with polygon transition zone
US8075611B2 (en) 2009-06-02 2011-12-13 Medtronic, Inc. Stented prosthetic heart valves
WO2010150208A2 (en) 2009-06-23 2010-12-29 Endospan Ltd. Vascular prostheses for treating aneurysms
US8728103B2 (en) 2009-06-26 2014-05-20 Cook Medical Technologies Llc Linear clamps for anastomosis
DE102009037739A1 (en) 2009-06-29 2010-12-30 Be Innovative Gmbh Percutaneously implantable valve stent, device for its application and method for producing the valve stent
WO2011002996A2 (en) 2009-07-02 2011-01-06 The Cleveland Clinic Foundation Apparatus and method for replacing a diseased cardiac valve
US9327060B2 (en) 2009-07-09 2016-05-03 CARDINAL HEALTH SWITZERLAND 515 GmbH Rapamycin reservoir eluting stent
US8475522B2 (en) 2009-07-14 2013-07-02 Edwards Lifesciences Corporation Transapical delivery system for heart valves
US8936634B2 (en) 2009-07-15 2015-01-20 W. L. Gore & Associates, Inc. Self constraining radially expandable medical devices
US8435282B2 (en) 2009-07-15 2013-05-07 W. L. Gore & Associates, Inc. Tube with reverse necking properties
US8845722B2 (en) 2009-08-03 2014-09-30 Shlomo Gabbay Heart valve prosthesis and method of implantation thereof
US20110054515A1 (en) 2009-08-25 2011-03-03 John Bridgeman Device and method for occluding the left atrial appendage
AU2010286587B2 (en) 2009-08-27 2013-10-17 Medtronic Inc. Transcatheter valve delivery systems and methods
JP5906553B2 (en) 2009-08-28 2016-04-20 メドトロニック 3エフ セラピュティックス インコーポレイテッド Surgical delivery device and method of use
US8479380B2 (en) 2009-08-28 2013-07-09 Medtronic 3F Therapeutics, Inc. Crimping device and method of use
US9757107B2 (en) 2009-09-04 2017-09-12 Corvia Medical, Inc. Methods and devices for intra-atrial shunts having adjustable sizes
US8591932B2 (en) 2009-09-17 2013-11-26 W. L. Gore & Associates, Inc. Heparin entities and methods of use
AU2010295291B2 (en) 2009-09-21 2013-10-24 Medtronic Inc. Stented transcatheter prosthetic heart valve delivery system and method
US8652203B2 (en) 2010-09-23 2014-02-18 Cardiaq Valve Technologies, Inc. Replacement heart valves, delivery devices and methods
US9730790B2 (en) 2009-09-29 2017-08-15 Edwards Lifesciences Cardiaq Llc Replacement valve and method
US20110087318A1 (en) 2009-10-09 2011-04-14 Daugherty John R Bifurcated highly conformable medical device branch access
CN102725012B (en) 2009-10-29 2016-01-06 W.L.戈尔及同仁股份有限公司 The syringe plug of coating intumescent PTFE
US10376359B2 (en) 2009-11-02 2019-08-13 Symetis Sa Aortic bioprosthesis and systems for delivery thereof
JP5746200B2 (en) 2009-11-03 2015-07-08 クック・メディカル・テクノロジーズ・リミテッド・ライアビリティ・カンパニーCook Medical Technologies Llc Flat clamp for anastomosis
CN102665612B (en) 2009-11-05 2015-04-08 宾夕法尼亚大学理事会 Valve prosthesis
GR1007028B (en) 2009-11-11 2010-10-22 Ευσταθιος-Ανδρεας Αγαθος SUPPORT OF BIO-ADDITIONAL VALVES WITH DIAGNOSTIC HEART SHAPE
DE102009055969A1 (en) 2009-11-27 2011-06-01 Transcatheter Technologies Gmbh Device and set for folding or unfolding a medical implant and method
US8449599B2 (en) 2009-12-04 2013-05-28 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US20130190861A1 (en) 2012-01-23 2013-07-25 Tendyne Holdings, Inc. Prosthetic Valve for Replacing Mitral Valve
US8870950B2 (en) 2009-12-08 2014-10-28 Mitral Tech Ltd. Rotation-based anchoring of an implant
CN102858272B (en) 2009-12-15 2015-07-15 爱德华兹生命科学公司 Expansion device for treatment of vascular passageways
WO2011081997A1 (en) 2009-12-30 2011-07-07 Wilson-Cook Medical Inc. Proximal release delivery device
US9504562B2 (en) 2010-01-12 2016-11-29 Valve Medical Ltd. Self-assembling modular percutaneous valve and methods of folding, assembly and delivery
WO2011098565A1 (en) 2010-02-12 2011-08-18 Aesculap Ag Medical device made of eptfe partially coated with an antimicrobial material
US8518106B2 (en) 2010-02-17 2013-08-27 Medtronic, Inc. Catheter assembly with valve crimping accessories
US8475523B2 (en) 2010-02-17 2013-07-02 Medtronic, Inc. Distal tip assembly for a heart valve delivery catheter
US8926693B2 (en) 2010-02-17 2015-01-06 Medtronic, Inc. Heart valve delivery catheter with safety button
US9226826B2 (en) 2010-02-24 2016-01-05 Medtronic, Inc. Transcatheter valve structure and methods for valve delivery
US9522062B2 (en) 2010-02-24 2016-12-20 Medtronic Ventor Technologies, Ltd. Mitral prosthesis and methods for implantation
US10433956B2 (en) 2010-02-24 2019-10-08 Medtronic Ventor Technologies Ltd. Mitral prosthesis and methods for implantation
EP3028672A1 (en) 2010-03-01 2016-06-08 Colibri Heart Valve LLC Percutaneously deliverable heart valve and method associated therewith
US8795354B2 (en) 2010-03-05 2014-08-05 Edwards Lifesciences Corporation Low-profile heart valve and delivery system
US8679404B2 (en) 2010-03-05 2014-03-25 Edwards Lifesciences Corporation Dry prosthetic heart valve packaging system
US20110224785A1 (en) 2010-03-10 2011-09-15 Hacohen Gil Prosthetic mitral valve with tissue anchors
US8551021B2 (en) 2010-03-31 2013-10-08 Boston Scientific Scimed, Inc. Guidewire with an improved flexural rigidity profile
US8491650B2 (en) 2010-04-08 2013-07-23 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system and method with stretchable stability tube
US8512400B2 (en) 2010-04-09 2013-08-20 Medtronic, Inc. Transcatheter heart valve delivery system with reduced area moment of inertia
US8998980B2 (en) 2010-04-09 2015-04-07 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with recapturing feature and method
US8512401B2 (en) 2010-04-12 2013-08-20 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with funnel recapturing feature and method
US8579963B2 (en) 2010-04-13 2013-11-12 Medtronic, Inc. Transcatheter prosthetic heart valve delivery device with stability tube and method
US9833314B2 (en) 2010-04-16 2017-12-05 Abiomed, Inc. Percutaneous valve deployment
US8623075B2 (en) 2010-04-21 2014-01-07 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system and method with controlled expansion of prosthetic heart valve
US8740976B2 (en) 2010-04-21 2014-06-03 Medtronic, Inc. Transcatheter prosthetic heart valve delivery system with flush report
US8623079B2 (en) 2010-04-23 2014-01-07 Medtronic, Inc. Stents for prosthetic heart valves
US8876893B2 (en) 2010-04-27 2014-11-04 Medtronic, Inc. Transcatheter prosthetic heart valve delivery device with passive trigger release
US8852271B2 (en) 2010-04-27 2014-10-07 Medtronic Vascular, Inc. Transcatheter prosthetic heart valve delivery device with biased release features
RU2434604C1 (en) 2010-04-30 2011-11-27 Лео Антонович Бокерия Aortal tricusp prosthesis of heart valve
US8579964B2 (en) 2010-05-05 2013-11-12 Neovasc Inc. Transcatheter mitral valve prosthesis
US8986374B2 (en) 2010-05-10 2015-03-24 Edwards Lifesciences Corporation Prosthetic heart valve
CA2799459A1 (en) 2010-05-25 2011-12-01 Jenavalve Technology Inc. Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent
US9387077B2 (en) 2010-05-27 2016-07-12 Medtronic Vascular Galway Catheter assembly with prosthesis crimping and prosthesis retaining accessories
EP4018966A1 (en) 2010-06-21 2022-06-29 Edwards Lifesciences CardiAQ LLC Replacement heart valve
FI126855B (en) 2010-07-08 2017-06-30 Aalto-Korkeakoulusäätiö Process and apparatus for producing organic solvents and alcohols with microbes
CN101926699A (en) 2010-07-13 2010-12-29 北京迈迪顶峰医疗科技有限公司 Atrial septal pore-forming scaffold and conveyor thereof
JP5919456B2 (en) 2010-07-15 2016-05-18 合同会社アシスト技研 Electrostatic coating equipment
JP5978131B2 (en) 2010-07-20 2016-08-24 株式会社 京都医療設計 Stent device
US9132009B2 (en) 2010-07-21 2015-09-15 Mitraltech Ltd. Guide wires with commissural anchors to advance a prosthetic valve
EP2598044B1 (en) 2010-07-27 2019-03-13 Incept, LLC Apparatus for treating neurovascular venous outflow obstruction
US9700411B2 (en) 2010-08-17 2017-07-11 St. Jude Medical, Inc. Delivery system for collapsible heart valve
CN201744060U (en) 2010-08-17 2011-02-16 天健医疗科技(苏州)有限公司 Step-type artery balloon expansion conduit
AU2011300644B2 (en) 2010-09-10 2015-08-20 Symetis Sa Valve replacement devices and a system comprising the valve replacement device and a delivery device therefor
US9370418B2 (en) 2010-09-10 2016-06-21 Edwards Lifesciences Corporation Rapidly deployable surgical heart valves
US8808848B2 (en) 2010-09-10 2014-08-19 W. L. Gore & Associates, Inc. Porous article
US10321998B2 (en) 2010-09-23 2019-06-18 Transmural Systems Llc Methods and systems for delivering prostheses using rail techniques
AU2011305153A1 (en) 2010-09-23 2013-05-02 Colibri Heart Valve Llc Percutaneously deliverable heart or blood vessel valve with frame having abluminally situated tissue membrane
US20120078360A1 (en) 2010-09-23 2012-03-29 Nasser Rafiee Prosthetic devices, systems and methods for replacing heart valves
US8845720B2 (en) 2010-09-27 2014-09-30 Edwards Lifesciences Corporation Prosthetic heart valve frame with flexible commissures
CN105380730B (en) 2010-10-05 2018-08-17 爱德华兹生命科学公司 Heart valve prosthesis
HUE050018T2 (en) 2010-10-05 2020-11-30 Edwards Lifesciences Corp Prosthetic heart valve
JP5995110B2 (en) 2010-10-21 2016-09-21 メドトロニック,インコーポレイテッド Intraventricular low profile prosthetic mitral valve
US8562663B2 (en) 2010-10-26 2013-10-22 Medtronic Ventor Technologies Ltd. Devices and methods for loading a prosthesis onto a delivery system
US9072872B2 (en) 2010-10-29 2015-07-07 Medtronic, Inc. Telescoping catheter delivery system for left heart endocardial device placement
GB2485338B (en) 2010-11-02 2012-12-05 Cook Medical Technologies Llc Introducer assembly and dilator tip therefor
US20120116498A1 (en) 2010-11-05 2012-05-10 Chuter Timothy A Aortic valve prostheses
US20120116496A1 (en) 2010-11-05 2012-05-10 Chuter Timothy A Stent structures for use with valve replacements
US9468547B2 (en) 2010-11-11 2016-10-18 W. L. Gore & Associates, Inc. Deployment of endoluminal devices
JP2014507179A (en) 2010-12-14 2014-03-27 コリブリ ハート バルブ エルエルシー Percutaneously deliverable heart valve including folded membrane cusps with integrated leaflets
DE102010061371A1 (en) 2010-12-20 2012-06-21 Transcatheter Technologies Gmbh Individual shaft fiber device and kit for folding or deploying a medical implant and method
US9198787B2 (en) 2010-12-31 2015-12-01 Cook Medical Technologies Llc Conformable prosthesis delivery system and method for deployment thereof
EP2474287A1 (en) 2011-01-11 2012-07-11 Symetis Sa Delivery catheter for stent-valve, and sub-assembly therefor
ES2710002T3 (en) 2011-01-11 2019-04-22 Hans Reiner Figulla Valvular prosthesis to replace an atrioventricular valve of the heart
WO2013037505A1 (en) 2011-01-11 2013-03-21 Symetis Sa Method and apparatus useful for transcatheter aortic valve implantation
EP2663256A1 (en) 2011-01-13 2013-11-20 Innovia LLC Endoluminal drug applicator and method of treating diseased vessels of the body
US9839540B2 (en) 2011-01-14 2017-12-12 W. L. Gore & Associates, Inc. Stent
WO2012099979A1 (en) 2011-01-18 2012-07-26 Loma Vista Medical, Inc. Inflatable medical devices
EP2667822A4 (en) 2011-01-25 2018-03-28 Emory University Systems, devices and methods for surgical and percutaneous replacement of a valve
GB2488530A (en) 2011-02-18 2012-09-05 David J Wheatley Heart valve
US9155619B2 (en) 2011-02-25 2015-10-13 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
EP2683420B1 (en) 2011-03-11 2018-05-23 W. L. Gore & Associates, Inc. Improvements to immobilised biological entities
EP4119095A1 (en) 2011-03-21 2023-01-18 Cephea Valve Technologies, Inc. Disk-based valve apparatus
US8945212B2 (en) 2011-04-01 2015-02-03 W. L. Gore & Associates, Inc. Durable multi-layer high strength polymer composite suitable for implant and articles produced therefrom
US9801712B2 (en) 2011-04-01 2017-10-31 W. L. Gore & Associates, Inc. Coherent single layer high strength synthetic polymer composites for prosthetic valves
US9055937B2 (en) 2011-04-01 2015-06-16 Edwards Lifesciences Corporation Apical puncture access and closure system
US9554900B2 (en) 2011-04-01 2017-01-31 W. L. Gore & Associates, Inc. Durable high strength polymer composites suitable for implant and articles produced therefrom
US9744033B2 (en) 2011-04-01 2017-08-29 W.L. Gore & Associates, Inc. Elastomeric leaflet for prosthetic heart valves
US20140163673A1 (en) 2011-04-01 2014-06-12 W. L. Gore & Associates, Inc. Prosthetic heart valve leaflet adapted for external imaging
US8961599B2 (en) 2011-04-01 2015-02-24 W. L. Gore & Associates, Inc. Durable high strength polymer composite suitable for implant and articles produced therefrom
US20140163671A1 (en) 2011-04-01 2014-06-12 W. L. Gore & Associates, Inc. Leaflet and valve apparatus
US9554897B2 (en) 2011-04-28 2017-01-31 Neovasc Tiara Inc. Methods and apparatus for engaging a valve prosthesis with tissue
US9308087B2 (en) 2011-04-28 2016-04-12 Neovasc Tiara Inc. Sequentially deployed transcatheter mitral valve prosthesis
EP2520251A1 (en) 2011-05-05 2012-11-07 Symetis SA Method and Apparatus for Compressing Stent-Valves
EP2522308B1 (en) 2011-05-10 2015-02-25 Biotronik AG Mechanical transcatheter heart valve prosthesis
EP2709711B8 (en) 2011-05-18 2017-03-22 Vatrix Medical, Inc. Coated balloons for blood vessel stabilization
US8945209B2 (en) 2011-05-20 2015-02-03 Edwards Lifesciences Corporation Encapsulated heart valve
US9289282B2 (en) 2011-05-31 2016-03-22 Edwards Lifesciences Corporation System and method for treating valve insufficiency or vessel dilatation
US10117765B2 (en) 2011-06-14 2018-11-06 W.L. Gore Associates, Inc Apposition fiber for use in endoluminal deployment of expandable implants
WO2012175483A1 (en) 2011-06-20 2012-12-27 Jacques Seguin Prosthetic leaflet assembly for repairing a defective cardiac valve and methods of using the same
EP3964176B1 (en) 2011-06-21 2025-05-14 Twelve, Inc. Prosthetic heart valve devices
US10016579B2 (en) 2011-06-23 2018-07-10 W.L. Gore & Associates, Inc. Controllable inflation profile balloon cover apparatus
WO2012178115A2 (en) 2011-06-24 2012-12-27 Rosenbluth, Robert Percutaneously implantable artificial heart valve system and associated methods and devices
WO2013005878A1 (en) 2011-07-07 2013-01-10 Lee Whang Ho Method for laminating natural leather and a sponge
US8795357B2 (en) 2011-07-15 2014-08-05 Edwards Lifesciences Corporation Perivalvular sealing for transcatheter heart valve
JP2014524814A (en) 2011-07-20 2014-09-25 ボストン サイエンティフィック サイムド,インコーポレイテッド Heart valve replacement
US20130023984A1 (en) 2011-07-20 2013-01-24 Edwards Lifesciences Corporation Commissure modification of prosthetic heart valve frame for improved leaflet attachment
US8852272B2 (en) 2011-08-05 2014-10-07 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
WO2013021374A2 (en) 2011-08-05 2013-02-14 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
US20140324164A1 (en) 2011-08-05 2014-10-30 Mitraltech Ltd. Techniques for percutaneous mitral valve replacement and sealing
EP2739214B1 (en) 2011-08-05 2018-10-10 Cardiovalve Ltd Percutaneous mitral valve replacement and sealing
CA2844746C (en) 2011-08-11 2018-02-20 Tendyne Holdings, Inc. Improvements for prosthetic valves and related inventions
US9216076B2 (en) 2011-09-09 2015-12-22 Endoluminal Sciences Pty. Ltd. Means for controlled sealing of endovascular devices
US20130331929A1 (en) 2011-09-09 2013-12-12 Endoluminal Sciences Pty Ltd. Means for Controlled Sealing of Endovascular Devices
AU2012307772B2 (en) 2011-09-12 2016-08-04 Highlife Sas Transcatheter valve prosthesis
US8956404B2 (en) 2011-09-12 2015-02-17 Highlife Sas Transcatheter valve prosthesis
WO2013131069A1 (en) 2012-03-02 2013-09-06 Mehr Medical Llc Prostheses
US9549817B2 (en) 2011-09-22 2017-01-24 Transmural Systems Llc Devices, systems and methods for repairing lumenal systems
EP2758000A4 (en) 2011-09-23 2015-05-27 Zeus Ind Products Inc Composite prosthetic shunt device
US9730726B2 (en) 2011-10-07 2017-08-15 W. L. Gore & Associates, Inc. Balloon assemblies having controllably variable topographies
WO2013059743A1 (en) 2011-10-19 2013-04-25 Foundry Newco Xii, Inc. Devices, systems and methods for heart valve replacement
CN103974674B (en) 2011-10-19 2016-11-09 托尔福公司 Prosthetic heart valve device, prosthetic mitral valve, and related systems and methods
US9763780B2 (en) 2011-10-19 2017-09-19 Twelve, Inc. Devices, systems and methods for heart valve replacement
US9039757B2 (en) 2011-10-19 2015-05-26 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US9655722B2 (en) 2011-10-19 2017-05-23 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
US8778020B2 (en) 2011-11-08 2014-07-15 Boston Scientific Scimed, Inc. Replacement heart valve leaflet stitching method and device
WO2013074990A1 (en) 2011-11-16 2013-05-23 Bolton Medical, Inc. Device and method for aortic branched vessel repair
US9168131B2 (en) 2011-12-09 2015-10-27 Edwards Lifesciences Corporation Prosthetic heart valve having improved commissure supports
US8652145B2 (en) 2011-12-14 2014-02-18 Edwards Lifesciences Corporation System and method for crimping a prosthetic valve
US9277993B2 (en) 2011-12-20 2016-03-08 Boston Scientific Scimed, Inc. Medical device delivery systems
DK2793750T3 (en) 2011-12-23 2024-03-04 Abiomed Inc PROSTHETIC HEART VALVE WITH OPEN STENT
WO2013106585A1 (en) 2012-01-10 2013-07-18 White Jennifer K Articulated support structure with secondary strut features
US20130183515A1 (en) 2012-01-16 2013-07-18 Charles F. White Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils
US9510935B2 (en) 2012-01-16 2016-12-06 W. L. Gore & Associates, Inc. Articles including expanded polytetrafluoroethylene membranes with serpentine fibrils and having a discontinuous fluoropolymer layer thereon
RU2587183C2 (en) 2012-01-16 2016-06-20 В. Л. Гор Энд Ассошиейтс, Инк. Articles, including membranes made from expanded polytetrafluoroethylene with winding thin fibres and containing discontinuous layer of fluoropolymer on membranes
EP2809272B1 (en) 2012-02-01 2017-01-04 Hlt, Inc. Invertible tissue valve
US20140100651A1 (en) 2012-02-21 2014-04-10 California Institute Of Technology Medical Device Fastener Mechanisms
US9375308B2 (en) 2012-03-13 2016-06-28 W. L. Gore & Associates, Inc. External steerable fiber for use in endoluminal deployment of expandable devices
GB2500432A (en) 2012-03-22 2013-09-25 Stephen Brecker Replacement heart valve with resiliently deformable securing means
US20130274873A1 (en) 2012-03-22 2013-10-17 Symetis Sa Transcatheter Stent-Valves and Methods, Systems and Devices for Addressing Para-Valve Leakage
ES2675936T3 (en) 2012-03-23 2018-07-13 Sorin Group Italia S.R.L. Folding valve prosthesis
US8926694B2 (en) 2012-03-28 2015-01-06 Medtronic Vascular Galway Limited Dual valve prosthesis for transcatheter valve implantation
CN102764169B (en) 2012-04-19 2015-07-29 杭州启明医疗器械有限公司 Cardiac valve prosthesis and valve bracket thereof
US9445897B2 (en) 2012-05-01 2016-09-20 Direct Flow Medical, Inc. Prosthetic implant delivery device with introducer catheter
US9277990B2 (en) 2012-05-04 2016-03-08 St. Jude Medical, Cardiology Division, Inc. Hypotube shaft with articulation mechanism
SI2852354T1 (en) 2012-05-20 2020-09-30 Tel Hashomer Medical Research Infrastructure And Services Ltd. Prosthetic mitral valve
CN102652694B (en) 2012-05-24 2014-06-25 上海欣吉特生物科技有限公司 Prosthetic heart valve
US9883941B2 (en) 2012-06-19 2018-02-06 Boston Scientific Scimed, Inc. Replacement heart valve
US9554902B2 (en) 2012-06-28 2017-01-31 St. Jude Medical, Cardiology Division, Inc. Leaflet in configuration for function in various shapes and sizes
FR2993070B1 (en) 2012-07-09 2014-07-18 Commissariat Energie Atomique METHOD OF EXECUTING, WITHIN A MULTITASTIC INBOARD SYSTEM, AN APPLICATION CADATED BY SEVERAL DIFFERENT TIME DOMAINS INCLUDING AN INTERRUPTION MANAGEMENT
US9283072B2 (en) 2012-07-25 2016-03-15 W. L. Gore & Associates, Inc. Everting transcatheter valve and methods
WO2014022124A1 (en) 2012-07-28 2014-02-06 Tendyne Holdings, Inc. Improved multi-component designs for heart valve retrieval device, sealing structures and stent assembly
ES2735536T3 (en) 2012-08-10 2019-12-19 Sorin Group Italia Srl A valve prosthesis and a kit
US10206775B2 (en) 2012-08-13 2019-02-19 Medtronic, Inc. Heart valve prosthesis
US9232995B2 (en) 2013-01-08 2016-01-12 Medtronic, Inc. Valve prosthesis and method for delivery
CN105078615B (en) 2012-09-21 2018-10-09 上海微创心通医疗科技有限公司 Interior tube assembly for implant delivery system
EP2712633B1 (en) 2012-10-02 2015-04-29 Biotronik AG Bioprosthetic components for an implant, in particular partly crosslinked biological heart valves
US20140106951A1 (en) 2012-10-15 2014-04-17 W. L. Gore & Associates, Inc. Methods and systems for securing a sleeve for endoluminal devices
US12053378B2 (en) 2012-11-07 2024-08-06 Transmural Systems Llc Devices, systems and methods for repairing lumenal systems
US9931193B2 (en) 2012-11-13 2018-04-03 W. L. Gore & Associates, Inc. Elastic stent graft
US8628571B1 (en) 2012-11-13 2014-01-14 Mitraltech Ltd. Percutaneously-deliverable mechanical valve
US10327901B2 (en) 2012-11-20 2019-06-25 Innovheart S.R.L. Device for the deployment of a system of guide wires within a cardiac chamber for implanting a prosthetic heart valve
CN102973332B (en) 2012-11-23 2015-01-21 杭州启明医疗器械有限公司 Thrombus filter and using method thereof
US9872851B2 (en) 2012-12-12 2018-01-23 The Charlotte-Mecklenburg Hospital Authority Methods of treating portal hypertension
US9144492B2 (en) 2012-12-19 2015-09-29 W. L. Gore & Associates, Inc. Truncated leaflet for prosthetic heart valves, preformed valve
EP2745812B1 (en) 2012-12-19 2017-01-18 Cook Medical Technologies LLC Repositionable diameter constraints
US10279084B2 (en) 2012-12-19 2019-05-07 W. L. Gore & Associates, Inc. Medical balloon devices and methods
US10321986B2 (en) 2012-12-19 2019-06-18 W. L. Gore & Associates, Inc. Multi-frame prosthetic heart valve
US9968443B2 (en) 2012-12-19 2018-05-15 W. L. Gore & Associates, Inc. Vertical coaptation zone in a planar portion of prosthetic heart valve leaflet
US10966820B2 (en) 2012-12-19 2021-04-06 W. L. Gore & Associates, Inc. Geometric control of bending character in prosthetic heart valve leaflets
US9737398B2 (en) 2012-12-19 2017-08-22 W. L. Gore & Associates, Inc. Prosthetic valves, frames and leaflets and methods thereof
US9398952B2 (en) 2012-12-19 2016-07-26 W. L. Gore & Associates, Inc. Planar zone in prosthetic heart valve leaflet
US10039638B2 (en) 2012-12-19 2018-08-07 W. L. Gore & Associates, Inc. Geometric prosthetic heart valves
US9101469B2 (en) 2012-12-19 2015-08-11 W. L. Gore & Associates, Inc. Prosthetic heart valve with leaflet shelving
CA2896333C (en) 2012-12-27 2021-01-12 Transcatheter Technologies Gmbh Apparatus and set for folding or unfolding a medical implant comprising a clamping mechanism
US9066801B2 (en) 2013-01-08 2015-06-30 Medtronic, Inc. Valve prosthesis and method for delivery
US9132007B2 (en) 2013-01-10 2015-09-15 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage components for a transcatheter valve prosthesis
ES2934670T3 (en) 2013-01-24 2023-02-23 Cardiovalve Ltd Ventricularly Anchored Prosthetic Valves
US9675451B2 (en) 2013-02-01 2017-06-13 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage component for a transcatheter valve prosthesis
US10413401B2 (en) 2013-02-01 2019-09-17 Medtronic CV Luxembourg S.a.r.l. Anti-paravalvular leakage component for a transcatheter valve prosthesis
US9439763B2 (en) 2013-02-04 2016-09-13 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
US9844435B2 (en) 2013-03-01 2017-12-19 St. Jude Medical, Cardiology Division, Inc. Transapical mitral valve replacement
US10654200B2 (en) 2013-03-07 2020-05-19 S.M. Scienzia Machinale S.R.L. Apparatus and method for producing a biocompatible three-dimensional object
US9119713B2 (en) 2013-03-11 2015-09-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter valve replacement
US10583002B2 (en) 2013-03-11 2020-03-10 Neovasc Tiara Inc. Prosthetic valve with anti-pivoting mechanism
US10314698B2 (en) * 2013-03-12 2019-06-11 St. Jude Medical, Cardiology Division, Inc. Thermally-activated biocompatible foam occlusion device for self-expanding heart valves
US9333077B2 (en) 2013-03-12 2016-05-10 Medtronic Vascular Galway Limited Devices and methods for preparing a transcatheter heart valve system
WO2014143126A1 (en) 2013-03-12 2014-09-18 St. Jude Medical, Cardiology Division, Inc. Self-actuating sealing portions for paravalvular leak protection
US9636222B2 (en) 2013-03-12 2017-05-02 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak protection
US8986375B2 (en) 2013-03-12 2015-03-24 Medtronic, Inc. Anti-paravalvular leakage component for a transcatheter valve prosthesis
US10271949B2 (en) 2013-03-12 2019-04-30 St. Jude Medical, Cardiology Division, Inc. Paravalvular leak occlusion device for self-expanding heart valves
US20140350668A1 (en) 2013-03-13 2014-11-27 Symetis Sa Prosthesis Seals and Methods for Sealing an Expandable Prosthesis
AU2014250034A1 (en) 2013-03-13 2015-08-13 W. L. Gore & Associates, Inc. Durable high strength polymer composites suitable for implant and articles produced therefrom
WO2014164364A1 (en) 2013-03-13 2014-10-09 Aortic Innovations, Llc Dual frame stent and valve devices and implantation
US9730791B2 (en) 2013-03-14 2017-08-15 Edwards Lifesciences Cardiaq Llc Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
EP2777616B1 (en) 2013-03-14 2020-08-19 Edwards Lifesciences CardiAQ LLC Prosthesis for atraumatically grasping intralumenal tissue
US20140277427A1 (en) 2013-03-14 2014-09-18 Cardiaq Valve Technologies, Inc. Prosthesis for atraumatically grasping intralumenal tissue and methods of delivery
US9681951B2 (en) 2013-03-14 2017-06-20 Edwards Lifesciences Cardiaq Llc Prosthesis with outer skirt and anchors
US10905539B2 (en) 2013-03-15 2021-02-02 W. L. Gore & Associates, Inc. Self-expanding, balloon expandable stent-grafts
EP2777617B1 (en) 2013-03-15 2022-09-14 Edwards Lifesciences CardiAQ LLC Prosthesis with outer skirt
HK1215999A1 (en) 2013-03-15 2016-10-07 W. L. Gore & Associates, Inc. Improved leaflet and valve apparatus
US9232994B2 (en) 2013-03-15 2016-01-12 Medtronic Vascular Galway Limited Stented prosthetic heart valve and methods for making
JP6637409B2 (en) 2013-03-15 2020-01-29 ナヴィゲート カーディアック ストラクチャーズ インコーポレイテッドNavigate Cardiac Structures, Inc. Catheter guide replacement valve device and method
CN103190968B (en) 2013-03-18 2015-06-17 杭州启明医疗器械有限公司 Bracket and stably-mounted artificial valve displacement device with same
US20140296969A1 (en) 2013-04-02 2014-10-02 Tendyne Holdlings, Inc. Anterior Leaflet Clip Device for Prosthetic Mitral Valve
US9486306B2 (en) 2013-04-02 2016-11-08 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
US9572665B2 (en) 2013-04-04 2017-02-21 Neovasc Tiara Inc. Methods and apparatus for delivering a prosthetic valve to a beating heart
GB2513194A (en) 2013-04-19 2014-10-22 Strait Access Tech Holdings Pty Ltd A valve
EP2991586A1 (en) 2013-05-03 2016-03-09 Medtronic Inc. Valve delivery tool
JP2016517748A (en) 2013-05-03 2016-06-20 メドトロニック,インコーポレイテッド Medical device and related methods for implantation in a valve
US9375311B2 (en) 2013-05-03 2016-06-28 Medtronic, Inc. Prosthetic valves and associated appartuses, systems and methods
ES2855198T3 (en) 2013-05-09 2021-09-23 Gyrus Acmi Inc D B A Olympus Surgical Tech America Multimodal Oscillating Lithotripter
WO2014189977A1 (en) 2013-05-20 2014-11-27 Edwards Lifesciences Corporation Prosthetic heart valve delivery apparatus
EP2999411B1 (en) 2013-05-23 2020-10-07 Cardiosonic Ltd. Devices for renal denervation and assessment thereof
US20140358224A1 (en) 2013-05-30 2014-12-04 Tendyne Holdlings, Inc. Six cell inner stent device for prosthetic mitral valves
US9610159B2 (en) 2013-05-30 2017-04-04 Tendyne Holdings, Inc. Structural members for prosthetic mitral valves
US9788943B2 (en) 2013-06-11 2017-10-17 Medtronic, Inc. Delivery system with inline sheath
US9468527B2 (en) 2013-06-12 2016-10-18 Edwards Lifesciences Corporation Cardiac implant with integrated suture fasteners
US20140371844A1 (en) 2013-06-18 2014-12-18 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve and delivery system
US10321991B2 (en) 2013-06-19 2019-06-18 St. Jude Medical, Cardiology Division, Inc. Collapsible valve having paravalvular leak protection
WO2014210124A1 (en) 2013-06-25 2014-12-31 Mark Christianson Thrombus management and structural compliance features for prosthetic heart valves
US9668856B2 (en) 2013-06-26 2017-06-06 St. Jude Medical, Cardiology Division, Inc. Puckering seal for reduced paravalvular leakage
US10524904B2 (en) 2013-07-11 2020-01-07 Medtronic, Inc. Valve positioning device
ITRM20130408A1 (en) 2013-07-12 2015-01-13 Evoluzione Srl CUTTING GROUP FOR MEAT GRINDING IN A MEAT PROCESSING PLANT AND IN PARTICULAR FOR THE PRODUCTION OF BAGS.
WO2015004625A1 (en) 2013-07-12 2015-01-15 Payu Payment Solutions (Proprietary) Limited Systems for storing cardholder data and processing transactions
EP2826443B1 (en) 2013-07-16 2017-06-28 Venus MedTech (HangZhou), Inc. Set comprising an apparatus and a medical implant
US9561103B2 (en) 2013-07-17 2017-02-07 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
EP3016595B1 (en) 2013-07-26 2018-12-19 Edwards Lifesciences CardiAQ LLC Systems for sealing openings in an anatomical wall
EP2832316B1 (en) 2013-07-31 2017-03-29 Venus MedTech (HangZhou), Inc. Handle assembly for implant delivery apparatus comprising a displacement limiter, a force limiter and/or a brake frame assembly
US20160250051A1 (en) 2013-07-31 2016-09-01 Transcatheter Technologies Gmbh Set comprising a catheter and a valve supporting implant
EP2918246B1 (en) 2014-03-14 2018-08-08 Venus MedTech (HangZhou), Inc. Heart valve assembly comprising twofold sealing
EP2832315B1 (en) 2013-07-31 2017-11-22 Venus MedTech (HangZhou), Inc. Handle assembly for implant delivery apparatus comprising a brake frame assembly, a force limiter and/or a displacement limiter
EP2832318B1 (en) 2013-07-31 2017-04-05 Venus MedTech (HangZhou), Inc. Handle assembly for implant delivery apparatus comprising a force limiter, a displacement limiter and/or a brake frame assembly
WO2015028209A1 (en) 2013-08-30 2015-03-05 Jenavalve Technology Gmbh Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame
EP3046511B1 (en) 2013-09-16 2018-03-28 Symetis SA Method and apparatus for compressing/loading stent-valves
CA2910602C (en) 2013-09-20 2020-03-10 Edwards Lifesciences Corporation Heart valves with increased effective orifice area
WO2015045002A1 (en) 2013-09-24 2015-04-02 富士機械製造株式会社 Mounting apparatus
US9839511B2 (en) 2013-10-05 2017-12-12 Sino Medical Sciences Technology Inc. Device and method for mitral valve regurgitation treatment
US9393111B2 (en) 2014-01-15 2016-07-19 Sino Medical Sciences Technology Inc. Device and method for mitral valve regurgitation treatment
WO2015057407A1 (en) 2013-10-05 2015-04-23 Sino Medical Sciences Technology, Inc. Device and method for mitral valve regurgitation method
US10226333B2 (en) 2013-10-15 2019-03-12 Cedars-Sinai Medical Center Anatomically-orientated and self-positioning transcatheter mitral valve
US9622895B2 (en) 2013-10-15 2017-04-18 Boston Scientific Scimed, Inc. Methods and systems for loading and delivering a stent
US9925045B2 (en) 2013-10-21 2018-03-27 Medtronic Vascular Galway Systems, devices and methods for transcatheter valve delivery
US9839765B2 (en) 2013-11-12 2017-12-12 St. Jude Medical, Cardiology Division, Inc. Transfemoral mitral valve repair delivery device
EP3071149B1 (en) 2013-11-19 2022-06-01 St. Jude Medical, Cardiology Division, Inc. Sealing structures for paravalvular leak protection
US9622863B2 (en) 2013-11-22 2017-04-18 Edwards Lifesciences Corporation Aortic insufficiency repair device and method
US10842918B2 (en) 2013-12-05 2020-11-24 W.L. Gore & Associates, Inc. Length extensible implantable device and methods for making such devices
US9504565B2 (en) 2013-12-06 2016-11-29 W. L. Gore & Associates, Inc. Asymmetric opening and closing prosthetic valve leaflet
US20150209141A1 (en) 2014-01-24 2015-07-30 St. Jude Medical, Cardiology Division, Inc. Stationary intra-annular halo designs for paravalvular leak (pvl) reduction-passive channel filling cuff designs
US10004599B2 (en) 2014-02-21 2018-06-26 Edwards Lifesciences Cardiaq Llc Prosthesis, delivery device and methods of use
EP2918249B1 (en) 2014-03-14 2020-04-29 Venus MedTech (HangZhou), Inc. Supraclavicular catheter system for transseptal access to the left atrium and left ventricle
WO2015148241A1 (en) 2014-03-26 2015-10-01 St. Jude Medical, Cardiology Division, Inc. Transcatheter mitral valve stent frames
CN106170270B (en) 2014-04-17 2019-09-17 美敦力瓦斯科尔勒戈尔韦公司 Articulated transcatheter prosthetic articular heart valve delivery system
EA033440B1 (en) 2014-05-06 2019-10-31 Dsm Ip Assets Bv Prosthetic valve and method of making same
WO2015171743A2 (en) 2014-05-07 2015-11-12 Baylor College Of Medicine Artificial, flexible valves and methods of fabricating and serially expanding the same
EP3142603B1 (en) 2014-05-14 2018-03-07 Sorin Group Italia S.r.l. Implant device and implantation kit
US10231835B2 (en) 2014-05-16 2019-03-19 Trueleaf Medical Ltd. Replacement heart valve
CA3161000A1 (en) 2014-05-19 2015-11-26 Edwards Lifesciences Cardiaq Llc Replacement mitral valve with annular flap
WO2015179473A1 (en) 2014-05-22 2015-11-26 St. Jude Medical, Cardiology Division, Inc. Stents with anchoring sections
EP3134033B1 (en) 2014-05-29 2018-04-04 Edwards Lifesciences CardiAQ LLC Prosthesis and delivery device
US9974647B2 (en) 2014-06-12 2018-05-22 Caisson Interventional, LLC Two stage anchor and mitral valve assembly
CA2914094C (en) 2014-06-20 2021-01-05 Edwards Lifesciences Corporation Surgical heart valves identifiable post-implant
CA2953727C (en) 2014-06-30 2021-02-23 Advantek International Corporation Slurrification and disposal of waste by pressure pumping into a subsurface formation
JP6586648B2 (en) 2014-06-30 2019-10-09 静岡県 Anti-proglucagon antibody
CN106535773A (en) 2014-07-15 2017-03-22 皇家飞利浦有限公司 Devices and methods for intrahepatic shunting
US10524910B2 (en) 2014-07-30 2020-01-07 Mitraltech Ltd. 3 Ariel Sharon Avenue Articulatable prosthetic valve
BR112017003339A2 (en) 2014-08-18 2017-11-28 Gore & Ass integral seamed structure for protective valves
CN105471553B (en) 2014-09-12 2020-05-05 中兴通讯股份有限公司 Method for realizing parallel multi-user data transmission and main node
US9827094B2 (en) 2014-09-15 2017-11-28 W. L. Gore & Associates, Inc. Prosthetic heart valve with retention elements
US10507101B2 (en) 2014-10-13 2019-12-17 W. L. Gore & Associates, Inc. Valved conduit
US9750607B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
US9750605B2 (en) 2014-10-23 2017-09-05 Caisson Interventional, LLC Systems and methods for heart valve therapy
ES2989081T3 (en) 2014-11-26 2024-11-25 Edwards Lifesciences Corp Transcatheter prosthetic heart valve and delivery system
EP3028668B1 (en) 2014-12-05 2024-10-30 Nvt Ag Prosthetic heart valve system and delivery system therefor
EP3232989B1 (en) 2014-12-18 2020-05-06 W. L. Gore & Associates, Inc. Prosthetic valves with mechanically coupled leaflets
US9855141B2 (en) 2014-12-18 2018-01-02 W. L. Gore & Associates, Inc. Prosthetic valves with mechanically coupled leaflets
EP3037064B1 (en) 2014-12-23 2018-03-14 Venus MedTech (HangZhou), Inc. Minimally invasive mitral valve replacement with brim
US9861477B2 (en) 2015-01-26 2018-01-09 Boston Scientific Scimed Inc. Prosthetic heart valve square leaflet-leaflet stitch
EP3253333B1 (en) 2015-02-05 2024-04-03 Cardiovalve Ltd Prosthetic valve with axially-sliding frames
US9974651B2 (en) 2015-02-05 2018-05-22 Mitral Tech Ltd. Prosthetic valve with axially-sliding frames
US20160235525A1 (en) 2015-02-12 2016-08-18 Medtronic, Inc. Integrated valve assembly and method of delivering and deploying an integrated valve assembly
EP3273911A1 (en) 2015-03-24 2018-01-31 St. Jude Medical, Cardiology Division, Inc. Prosthetic mitral valve
US9782256B2 (en) 2015-04-27 2017-10-10 Venus Medtech (Hangzhou) Inc Heart valve assembly
US10376363B2 (en) 2015-04-30 2019-08-13 Edwards Lifesciences Cardiaq Llc Replacement mitral valve, delivery system for replacement mitral valve and methods of use
WO2016183523A1 (en) 2015-05-14 2016-11-17 Cephea Valve Technologies, Inc. Cardiac valve delivery devices and systems
WO2016186909A1 (en) 2015-05-18 2016-11-24 Mayo Foundation For Medical Education And Research Percutaneously-deployable prosthetic tricuspid valve
JP6736269B2 (en) 2015-07-09 2020-08-05 日東電工株式会社 Resin film
CA2995603C (en) 2015-08-14 2023-10-31 Caisson Interventional Llc Systems and methods for heart valve therapy
US10575951B2 (en) 2015-08-26 2020-03-03 Edwards Lifesciences Cardiaq Llc Delivery device and methods of use for transapical delivery of replacement mitral valve
US10117744B2 (en) 2015-08-26 2018-11-06 Edwards Lifesciences Cardiaq Llc Replacement heart valves and methods of delivery
US10350066B2 (en) 2015-08-28 2019-07-16 Edwards Lifesciences Cardiaq Llc Steerable delivery system for replacement mitral valve and methods of use
JP6470150B2 (en) 2015-09-03 2019-02-13 日本ライフライン株式会社 Stents and medical devices
US9789294B2 (en) 2015-10-07 2017-10-17 Edwards Lifesciences Corporation Expandable cardiac shunt
US10456243B2 (en) 2015-10-09 2019-10-29 Medtronic Vascular, Inc. Heart valves prostheses and methods for percutaneous heart valve replacement
US10004617B2 (en) 2015-10-20 2018-06-26 Cook Medical Technologies Llc Woven stent device and manufacturing method
CN107405194B (en) * 2015-11-06 2021-02-02 麦克尔有限公司 mitral valve prosthesis
US10470876B2 (en) 2015-11-10 2019-11-12 Edwards Lifesciences Corporation Transcatheter heart valve for replacing natural mitral valve
US10583007B2 (en) 2015-12-02 2020-03-10 Edwards Lifesciences Corporation Suture deployment of prosthetic heart valve
CA3005908A1 (en) 2015-12-03 2017-06-08 Tendyne Holdings, Inc. Frame features for prosthetic mitral valves
US9931204B2 (en) 2015-12-10 2018-04-03 Medtronic, Inc. Transcatheter heart valve replacement systems, heart valve prostheses, and methods for percutaneous heart valve replacement
EP3389566B1 (en) 2015-12-14 2024-05-08 Medtronic Vascular, Inc. Devices for transcatheter valve loading and implantation
AU2016380259B2 (en) 2015-12-28 2020-10-22 Tendyne Holdings, Inc. Atrial pocket closures for prosthetic heart valves
US10433952B2 (en) 2016-01-29 2019-10-08 Neovasc Tiara Inc. Prosthetic valve for avoiding obstruction of outflow
US10278852B2 (en) 2016-03-10 2019-05-07 Medtronic Vascular, Inc. Steerable catheter with multiple bending radii via a steering mechanism with telescoping tubular components
CN109069257B (en) 2016-04-21 2021-08-24 W.L.戈尔及同仁股份有限公司 Diameter-adjustable endoprostheses and related systems and methods
US10299921B2 (en) 2016-05-12 2019-05-28 St. Jude Medical, Cardiology Division, Inc. Mitral heart valve replacement
EP3454788B1 (en) 2016-05-13 2020-02-05 St. Jude Medical, Cardiology Division, Inc. Mitral valve delivery device
US10449044B2 (en) 2016-06-02 2019-10-22 Medtronic Vascular, Inc. Transcatheter valve delivery system with septum hole closure tip assembly
US10758350B2 (en) 2016-06-06 2020-09-01 Medtronic Vascular, Inc. Transcatheter prosthetic heart valve delivery system with protective feature
US10639147B2 (en) 2016-06-24 2020-05-05 Edwards Lifesciences Corporation System and method for crimping a prosthetic valve
US10990198B2 (en) 2016-06-30 2021-04-27 Intel Corporation Wireless stylus with grip force expression capability
US10661052B2 (en) 2016-07-29 2020-05-26 Cephea Valve Technologies, Inc. Intravascular device delivery sheath
EP3964173B1 (en) 2016-08-26 2024-04-10 Edwards Lifesciences Corporation Multi-portion replacement heart valve prosthesis
US11045315B2 (en) 2016-08-29 2021-06-29 Cephea Valve Technologies, Inc. Methods of steering and delivery of intravascular devices
US10758348B2 (en) 2016-11-02 2020-09-01 Edwards Lifesciences Corporation Supra and sub-annular mitral valve delivery system
US10368988B2 (en) * 2016-11-09 2019-08-06 Medtronic Vascular, Inc. Valve delivery system having an integral displacement component for managing chordae tendineae in situ and methods of use thereof
AU2018203053B2 (en) 2017-01-23 2020-03-05 Cephea Valve Technologies, Inc. Replacement mitral valves
JP7046078B2 (en) 2017-01-23 2022-04-01 セフィア・バルブ・テクノロジーズ,インコーポレイテッド Replacement mitral valve
US10729880B2 (en) 2017-02-01 2020-08-04 Cook Medical Technologies Llc Packaged intravascular medical device with variable viscosity intravenous liquid solution
WO2018213209A1 (en) 2017-05-14 2018-11-22 Navigate Cardiac Structures, Inc. Valved stent for orthotopic replacement of dysfunctional cardiac valve and delivery system
US10709591B2 (en) 2017-06-06 2020-07-14 Twelve, Inc. Crimping device and method for loading stents and prosthetic heart valves
CN109009568B (en) 2017-06-09 2023-10-31 上海微创心通医疗科技有限公司 Mitral valve prosthesis, tricuspid valve prosthesis and stent thereof
WO2019010303A1 (en) 2017-07-06 2019-01-10 Edwards Lifesciences Corporation Steerable delivery system and components
US11173032B2 (en) 2017-08-28 2021-11-16 Edwards Lifesciences Corporation Transcatheter device for treating mitral regurgitation
CA3182971A1 (en) 2017-09-12 2019-03-21 W.L. Gore & Associates, Inc. Leaflet frame attachment for prosthetic valves
US11020221B2 (en) 2017-09-27 2021-06-01 W. L. Gore & Associates, Inc. Prosthetic valve with expandable frame and associated systems and methods
WO2019067220A1 (en) 2017-09-27 2019-04-04 W. L. Gore & Associates, Inc. Prosthetic valves with mechanically coupled leaflets
JP7136901B2 (en) 2017-10-09 2022-09-13 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド harmonized stent cover
US11090153B2 (en) 2017-10-13 2021-08-17 W. L. Gore & Associates, Inc. Telescoping prosthetic valve and delivery system
BR112020008158A2 (en) 2017-10-24 2020-11-03 Venus Medtech (Hangzhou) Inc. easy-to-control interventionist instrument delivery device
JP7052032B2 (en) 2017-10-31 2022-04-11 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Medical valves and valve membranes that promote inward tissue growth
JP7072062B2 (en) 2017-10-31 2022-05-19 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Transcatheter placement system and related methods
CN114831777A (en) 2017-10-31 2022-08-02 W.L.戈尔及同仁股份有限公司 Prosthetic heart valve
US11154397B2 (en) 2017-10-31 2021-10-26 W. L. Gore & Associates, Inc. Jacket for surgical heart valve
CN111655199B (en) 2018-01-22 2023-09-26 爱德华兹生命科学公司 Heart-shaped maintenance anchor
WO2019147846A2 (en) 2018-01-25 2019-08-01 Edwards Lifesciences Corporation Delivery system for aided replacement valve recapture and repositioning post- deployment
US11051934B2 (en) 2018-02-28 2021-07-06 Edwards Lifesciences Corporation Prosthetic mitral valve with improved anchors and seal
CN108578016B (en) 2018-04-26 2020-09-08 赛诺医疗科学技术股份有限公司 Trans-apex implantable mitral valve device
JP7724611B2 (en) 2018-06-20 2025-08-18 ダブリュ.エル.ゴア アンド アソシエイツ,インコーポレイティド Support structure for implantable devices having regions of enhanced compressive stiffness - Patent Application 20070122999
US11083571B2 (en) 2018-06-27 2021-08-10 Edwards Lifesciences Corporation Frame for prosthetic heart valve
WO2020018385A1 (en) 2018-07-16 2020-01-23 Adam Groothuis Systems and methods for treating lumenal valves
US11931525B2 (en) 2018-10-04 2024-03-19 Edwards Lifesciences Corporation Stabilizer for a delivery system
USD926322S1 (en) 2018-11-07 2021-07-27 W. L. Gore & Associates, Inc. Heart valve cover
WO2020112622A1 (en) 2018-11-29 2020-06-04 Edwards Lifesciences Corporation Catheterization method and apparatus
US20200179663A1 (en) 2018-12-11 2020-06-11 W. L. Gore & Associates, Inc. Medical devices for shunts, occluders, fenestrations and related systems and methods
WO2020163031A1 (en) 2019-02-04 2020-08-13 Edwards Lifesciences Corporation Guide wire apparatuses and methods
CN119606604A (en) 2019-02-27 2025-03-14 爱德华兹生命科学公司 Double heart valve anchoring
US11497601B2 (en) 2019-03-01 2022-11-15 W. L. Gore & Associates, Inc. Telescoping prosthetic valve with retention element
US11452628B2 (en) 2019-04-15 2022-09-27 4C Medical Technologies, Inc. Loading systems for collapsible prosthetic heart valve devices and methods thereof
JP7515515B2 (en) 2019-04-23 2024-07-12 エドワーズ ライフサイエンシーズ コーポレイション Powered Implant Delivery System
WO2021021368A1 (en) 2019-07-29 2021-02-04 Edwards Lifesciences Corporation Delivery system for medical implant
WO2021022211A1 (en) 2019-08-01 2021-02-04 W. L. Gore & Associates, Inc. Transcatheter prosthetic valve with multi-part frame subcomponent transverse deformation resistance
CN114585329A (en) 2019-10-23 2022-06-03 爱德华兹生命科学公司 System and method for tricuspid valve treatment
EP4096589A1 (en) 2020-01-28 2022-12-07 Edwards Lifesciences Corporation Apparatus and methods for loading and deploying implants from delivery apparatuses
EP4647042A2 (en) 2020-03-24 2025-11-12 Edwards Lifesciences Corporation Delivery system configurations
CN111756903B (en) 2020-07-01 2022-05-20 维沃移动通信有限公司 Speaker assembly and electronic device
CN116171142A (en) 2020-08-28 2023-05-26 爱德华兹生命科学公司 Prosthetic valve for implantation
WO2022061017A1 (en) 2020-09-18 2022-03-24 Edwards Lifesciences Corporation Prosthetic valve systems, apparatuses, and methods
CA3210659A1 (en) 2021-02-10 2022-08-18 Edwards Lifesciences Corporation Prosthetic valve systems, components, and methods
EP4271329A1 (en) 2021-02-11 2023-11-08 Edwards Lifesciences Corporation Dual-frame replacement heart valves
CA3217200A1 (en) 2021-04-21 2022-10-27 Edwards Lifesciences Corporation Textiles for implantation
CN115680906A (en) 2021-07-30 2023-02-03 张�荣 Integrated throttle valve assembly and engine module with same
WO2023076103A1 (en) 2021-10-27 2023-05-04 Edwards Lifesciences Corporation System and method for crimping and loading a prosthetic heart valve
WO2023081236A1 (en) 2021-11-04 2023-05-11 Edwards Lifesciences Corporation Adaptable heart valve delivery systems
CA3237479A1 (en) 2021-11-22 2023-05-25 Edwards Lifesciences Corporation Systems and methods for implant deployment
CA3237476A1 (en) 2021-11-23 2023-06-01 Edwards Lifesciences Corporation Prosthetic valves for implantation
JP2025506149A (en) 2022-02-09 2025-03-07 エドワーズ ライフサイエンシーズ コーポレイション Systems and methods for force reduction in delivery systems - Patents.com
JP2025511791A (en) 2022-04-07 2025-04-16 エドワーズ ライフサイエンシーズ コーポレイション Prosthetic valve for deployment
WO2023244454A1 (en) 2022-06-15 2023-12-21 Edwards Lifesciences Corporation Universal stabilizer for a delivery system
WO2023244767A1 (en) 2022-06-16 2023-12-21 Edwards Lifesciences Corporation Prosthetic heart valve that reduces native annulus
WO2023250114A1 (en) 2022-06-24 2023-12-28 Edwards Lifesciences Corporation Prosthetic valves for implantation in calcified native valves
CN117353876A (en) 2022-06-27 2024-01-05 中兴通讯股份有限公司 Signal detection method, equipment and storage medium thereof
US12134487B2 (en) 2022-06-29 2024-11-05 Whisper Aero Inc. Ultra-quiet aircraft
WO2024010739A1 (en) 2022-07-06 2024-01-11 Edwards Lifesciences Corporation Systems and devices of valvular prosthetics
JP7771006B2 (en) 2022-07-08 2025-11-17 株式会社日立製作所 Data processing path management system and data processing path management method
CN115193048A (en) 2022-07-08 2022-10-18 网易(杭州)网络有限公司 Virtual item processing method and device, storage medium and electronic equipment
CN119816263A (en) 2022-08-04 2025-04-11 爱德华兹生命科学公司 Mechanical actuation of the catheter
US20240091000A1 (en) 2022-09-21 2024-03-21 St. Jude Medical, Cardiology Division, Inc. Prosthetic Tricuspid Heart Valve
AU2023204303B1 (en) 2023-05-09 2023-11-09 Venus Medtech (Hangzhou) Inc. Expandable sheath for transcatheter delivery system and delivery system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10166128B2 (en) 2011-01-14 2019-01-01 W. L. Gore & Associates. Inc. Lattice
US20140031927A1 (en) * 2012-07-27 2014-01-30 W. L. Gore & Associates, Inc. Multi-frame prosthetic valve apparatus and methods
US20140277413A1 (en) * 2013-03-15 2014-09-18 Valve Medical Ltd. System and method for sealing percutaneous valve
WO2014144937A2 (en) * 2013-03-15 2014-09-18 Twelve, Inc. Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
CN107690323A (en) * 2015-04-16 2018-02-13 爱德华兹生命科学公司 For replacing mitral small profile heart valve prosthesis
WO2016172349A1 (en) * 2015-04-21 2016-10-27 Edwards Lifesciences Corporation Percutaneous mitral valve replacement device
US20180021129A1 (en) * 2016-07-21 2018-01-25 Edwards Lifesciences Corporation Replacement heart valve prosthesis

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2024502934A (en) * 2020-12-04 2024-01-24 ハンチョウ セコイア メディカル デバイス カンパニー リミテッド Artificial heart valve devices, systems and methods

Also Published As

Publication number Publication date
EP3952790A1 (en) 2022-02-16
JP7381601B2 (en) 2023-11-15
AU2020270993A1 (en) 2021-11-25
US20220183831A1 (en) 2022-06-16
CN114007546A (en) 2022-02-01
CA3131177C (en) 2024-02-13
US12447014B2 (en) 2025-10-21
AU2020270993B2 (en) 2023-11-23
US20250177128A1 (en) 2025-06-05
CA3131177A1 (en) 2020-10-15
JP2022526188A (en) 2022-05-23

Similar Documents

Publication Publication Date Title
US20250177128A1 (en) Valve with multi-part frame and associated resilient bridging features
US12090046B2 (en) Telescoping prosthetic valve with retention element
US20220273426A1 (en) Transcatheter prosthetic valve with multi-part frame subcomponent transverse deformation resistance
CN106999273B (en) Segmented transcatheter valve prosthesis with unsupported valve segment
CN112638327A (en) Support structure for implantable device having region of enhanced compressive stiffness
US20230105063A1 (en) Transcatheter tissue cutting system
CN114867432A (en) Support structure for implantable devices with regions of enhanced compressive stiffness
AU2020267416B2 (en) Valved conduit with expandable frame
EP4536149A2 (en) Systems, devices and methods for replacement valves comprising unibody stent structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20722947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3131177

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021560035

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020722947

Country of ref document: EP

Effective date: 20211112

ENP Entry into the national phase

Ref document number: 2020270993

Country of ref document: AU

Date of ref document: 20200413

Kind code of ref document: A

WWG Wipo information: grant in national office

Ref document number: 17603256

Country of ref document: US