WO2020240623A1 - Optical computing element and multi-layer neural network - Google Patents
Optical computing element and multi-layer neural network Download PDFInfo
- Publication number
- WO2020240623A1 WO2020240623A1 PCT/JP2019/020696 JP2019020696W WO2020240623A1 WO 2020240623 A1 WO2020240623 A1 WO 2020240623A1 JP 2019020696 W JP2019020696 W JP 2019020696W WO 2020240623 A1 WO2020240623 A1 WO 2020240623A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- optical
- refractive index
- matching agent
- path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/08—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F3/00—Optical logic elements; Optical bistable devices
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06E—OPTICAL COMPUTING DEVICES; COMPUTING DEVICES USING OTHER RADIATIONS WITH SIMILAR PROPERTIES
- G06E3/00—Devices not provided for in group G06E1/00, e.g. for processing analogue or hybrid data
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/067—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using optical means
Definitions
- the present invention relates to an optical arithmetic element and a multi-layer neural network that constitute an optical neural network.
- the optical neural network models the nerve cell network in the human brain as a unit consisting of two neurons, an input layer neuron and an output layer neuron, and synapses connecting each neuron, and networked using optical signals. It is a thing.
- An optical neural network is generally configured by connecting neuron elements that perform multiply-accumulate operations and non-linear operations and having multiple layers (for example, Non-Patent Document 1).
- the connection of neurons was realized, for example, by using a directional optical coupler using a photochromic material.
- the on / off of the output light of an optical neural network is determined by the intensity of the input light and the amount of photochromic material corresponding to the magnitude of the bias term.
- the present invention has been made in view of this problem, and an object of the present invention is to provide an optical arithmetic element and a multi-layer neural network in which the bias term can be easily adjusted.
- the optical calculation element includes a first light deforming member that deforms according to the intensity of input light, and a first deformation that is connected to the first light deforming member and deformed by the first light deforming member.
- a second optical waveguide that is arranged on the extension line of the above and outputs the external light that has passed through the path, a second light deforming member that deforms according to the intensity of the bias adjusting light, and the second light deforming member.
- a second deformable lid that is connected and deformed by the second light deforming member, a bias adjusting liquid pool that is covered with the second deformable lid and filled with the refractive index matching agent, the matching agent pool, and the above. It is a gist to provide a connection path filled with the refractive index matching agent for connecting the bias adjusting liquid pool portion.
- the gist is that the input light of the optical arithmetic element of the first layer includes the output light of the optical arithmetic element of the n-1th layer.
- FIG. 1 It is sectional drawing which shows typically the structural example of the optical arithmetic element which concerns on 1st Embodiment of this invention. It is a figure which shows typically the relationship between the light beam propagating through the first optical waveguide shown in FIG. 1 and reaching the path, and the refractive index matching agent moving in the path, and (a) the relationship between the light beam and refraction.
- the schematic diagram shown, (b) is a diagram showing an example of the relationship between the input light and the output light. It is a figure which shows the model of the nerve cell which the bias term can adjust. It is a figure which shows typically the example in which two optical arithmetic elements shown in FIG. 1 are connected vertically.
- FIG. 1 It is a figure which shows typically the example which formed the multi-layer neural network by connecting the optical arithmetic elements shown in FIG. 1 in multi-layer. It is a figure which shows typically the example which arranged the optical component between the two optical arithmetic elements shown in FIG. It is a perspective view which shows typically the structural example of the optical arithmetic element which concerns on 2nd Embodiment of this invention.
- FIG. 1 is a cross-sectional view schematically showing a configuration example of an optical calculation element according to the first embodiment of the present invention.
- the optical arithmetic element 1 shown in FIG. 1 is an optical arithmetic element that can amplify light without using photoelectric conversion and can easily adjust the bias term.
- FIG. 1 is a diagram showing a cross section in the long side direction cut near the center of the short sides of the housings 10 and 12 arranged in the vertical direction.
- the housings 10 and 12 and the connection path 90 are made of, for example, an organic molecular polymer or quartz. In addition, these may be constructed using other materials (for example, metal).
- the housing 10 includes a first light deforming member 30a, a first deforming lid 40a, a matching agent reservoir 50a, a refractive index matching agent 60, a path 70, a first optical waveguide 80a, and a second optical waveguide 80b.
- the inside of the matching agent reservoir 50a is filled with the refractive index matching agent 60.
- the housing 12 includes a second light deforming member 30b, a second deforming lid 40b, and a bias adjusting liquid pool portion 50b.
- the inside of the bias adjusting liquid pool 50b is filled with the refractive index matching agent 60.
- the bias adjusting liquid pool 50b and the matching agent pool 50a are connected by a connection path 90 filled with the refractive index matching agent 60.
- FIG. 1 shows an example in which two rectangular parallelepipeds of the housing 10 and 12 are combined to form one optical calculation element 1, but the optical calculation element 1 may be configured in one housing.
- the shapes of the housings 10 and 12 are not limited to the rectangular parallelepiped.
- the housings 10 and 12 may be formed of a frame. That is, it is not necessary to hold each component in a solid shape such as a rectangular parallelepiped.
- An opening 20a is provided on one end side of the housing 10.
- the opening 20a in this example has a quadrangular plane and penetrates in the height direction of the housing 10.
- the input light A of the optical signal is input to the opening 20.
- the direction is defined for the sake of explanation.
- the opening 20a side of the housing 10 is the rear side, and the opposite side is the front side.
- the central portion of the inner wall on the front side of the opening 20a is hollowed out in a columnar shape to form a matching agent reservoir 50a.
- the first deformation lid 40a is fitted on the opening 20a side (rear side) of the matching agent reservoir 50a.
- the first deformable lid 40a is made of a flexible material and deforms when a force is input.
- the first deformable lid 40a is made of, for example, rubber.
- a locking portion 41a having a U-shaped flat surface is formed in the central portion of the first deformable lid 40a.
- a locking portion 11a having the same shape is also formed on the inner wall on the rear side of the opening 20a on which the locking portion 41a faces.
- the first light deforming member 30a is hung between the locking portion 11a and the locking portion 41a, and both ends of the first light deforming member 30a are fixed to the locking portion 11a and the locking portion 41a, respectively.
- the first photodeformable member 30a connects the first deformable lid 40a and the inner wall (rear side) of the opening 20a while holding a predetermined tension.
- the first light deforming member 30a is deformed according to the intensity of the input light A.
- a crosslinked polymer having diarylethene, cyclodextrin, and azobenzene can be used.
- the inside of the matching agent reservoir 50a is filled with the refractive index matching agent 60 and sealed with the first deformation lid 40a.
- a path 70 having a rectangular cross section is formed from the central portion of the front end surface of the matching agent reservoir 50.
- the refractive index matching agent 60 for example, silicone oil can be used.
- the refractive index of the refractive index matching agent 60 is, for example, 1.485 (25 ° C.), and has substantially the same refractive index as the first optical waveguide 80a and the second optical waveguide 80b.
- the path 70 has, for example, a rectangular cross section in a direction orthogonal to the front-rear direction, and horizontally penetrates from the front end face of the matching agent reservoir 50a to the front end face of the housing 10 and the tip is open.
- the refractive index matching agent 60 is derived from the matching agent collecting portion 50a, and is filled with the refractive index matching agent 60 up to a position about half of the path 70 in the front-rear direction.
- the tip portion of the refractive index matching agent 60 in the path 70 moves in the front-rear direction in response to the first light deforming member 30a being deformed according to the intensity of the input light A.
- the derivation direction of the route 70 is not limited to the horizontal direction.
- the refractive index matching agent 60 in the path 70 is almost unaffected by gravity due to its surface tension. Therefore, the derivation direction of the path 70 may be any of the vertical direction up and down, the diagonal up and down direction, and the like.
- the position of the tip portion of the refractive index matching agent 60 in the path 70 is mainly determined by the amount of deformation of the first deformation lid 40a due to the expansion and contraction of the first light deformation member 30a.
- the first optical waveguide 80a is arranged so as to be inclined with respect to the path 70 of the portion where the tip portion of the refractive index matching agent 60 moves in the front-rear direction, and the tip portion thereof is in contact with the path 70.
- External light B is input from the side opposite to the path 70 of the first optical waveguide 80a.
- the external light B is the ambient light in the environment in which the optical calculation element 1 is arranged.
- the external light B is maintained at a constant intensity (illuminance).
- the intensity of the external light B may vary to some extent.
- the second optical waveguide 80b is arranged on an extension line of the first optical waveguide 80a with the path 70 in between.
- the second optical waveguide 80b outputs the external light B transmitted through the path 70 to the outside (output light C).
- the first optical waveguide 80a and the second optical waveguide 80b are made of a material having a higher refractive index than the other housings 10 when the housing 10 is made of an organic molecular polymer.
- the refractive index of the first optical waveguide 80a and the second optical waveguide 80b is, for example, 1.49.
- An opening 20b is provided on one end side of the housing 12 as in the housing 10.
- the opening 20b in this example has a quadrangular plane and penetrates in the height direction of the housing 12.
- Bias adjustment light D of an optical signal is input to the opening 20b.
- a light-shielding plate (not shown) is provided between the openings 20a and 20b so that the bias adjusting light D does not affect the first light deformation member 30a.
- the optical calculation element 1 may be configured so that the openings 20a and 20b do not overlap in the vertical direction without providing a light-shielding plate.
- the central portion of the inner wall on the front side of the opening 20b is hollowed out in a columnar shape to form the bias adjusting liquid pool portion 50b.
- a second deformation lid 40b is fitted on the opening 20b side (rear side) of the bias adjusting liquid pool 50b.
- the shapes and materials of the bias adjusting liquid pool portion 50b, the second deformable lid 40b, the second light deforming member 30b, the locking portion 11b, and the locking portion 41a are provided in the housing 10 corresponding to the numbers of reference numerals. Same as the component.
- the inside of the bias adjusting liquid reservoir 50b is the same as the matching material reservoir 50a in that it is filled with the refractive index matching material 60.
- the bias adjusting liquid pool 50b and the matching material pool 50a are connected by a connection path 90 filled with the refractive index matching material 60.
- the housings 10 and 12, the matching agent reservoir 50a, the bias adjusting liquid reservoir 50b, and the path 70 are formed by, for example, processing rectangular parallelepiped quartz by a well-known semiconductor process and micromachine processing technique.
- the optical calculation element 1 is connected to the first light deforming member 30a that deforms according to the intensity of the input light and the first light deforming member 30a, and is connected by the first light deforming member 30a.
- the second optical waveguide 80b which is arranged on the extension line of the first optical waveguide 80a with the path 70 in between and outputs the external light B transmitted through the path 70, and the bias adjusting light D are deformed according to the intensity.
- the second light deforming member 30b, the second deformable lid 40b connected to the second light deforming member 30b and deformed by the second light deforming member 30b, and the second deformable lid 40b are covered with the refractive index matching agent 60. It includes a filled bias adjusting liquid pool 50b and a connection path 90 filled with a refractive index matching agent 60 that connects the matching agent pool 50a and the bias adjusting liquid pool 50b.
- FIG. 2 is a diagram schematically showing the relationship between the light beam propagating through the first optical waveguide 80a and reaching the path 70 and the refractive index matching agent 60 moving in the path 70.
- FIG. 2A shows a schematic diagram showing the relationship between the light beam and the refractive index matching agent 60
- FIG. 3B shows an example of the relationship between the input light A and the output light C.
- the ellipse 81 shown in FIG. 3A schematically represents a light beam (hereinafter, light beam 81) that propagates through the first optical waveguide 80a and reaches the path 70. Since the first optical waveguide 80a is inclined and in contact with the path 70, the shape of the light beam 81 is elliptical.
- the tip of the refractive index matching agent 60 that moves in the path 70 due to the change in the intensity of the input light A is located at the front end ⁇ of the light beam 81 when the intensity of the input light A is maximum.
- the light beam 81 is adjusted so as to be located at the rear end ⁇ when the intensity of the input light A is the minimum.
- the tip of the refractive index matching agent 60 is located at the rear end ⁇ of the light beam 81, for example, when the intensity of the input light A is maximum. It is adjusted so that it is located at the front end ⁇ of the light beam 81 when the intensity of the input light A is the minimum. That is, the logic with respect to the intensity of the input light A can be reversed depending on the deformation direction of the first light deforming member 30a.
- the amount of the refractive index matching agent 60 existing inside the path 70 and the matching agent collecting portion 50a can be adjusted by the intensity of the bias adjusting light D. Since the volume of the matching agent reservoir 50a is fixed, the position of the tip of the refractive index matching agent 60 in the path 70 can be changed by changing the intensity of the bias adjusting light D. That is, the bias term can be adjusted.
- the position of the tip of the refractive index matching agent 60 when the intensity of the bias adjusting light D is the minimum is the end ⁇ of the above-mentioned light beam 81. Then, the second light deforming member 30b is also stretched as the intensity of the bias adjusting light D increases, similarly to the first light deforming member 30a.
- the position of the tip of the refractive index matching agent 60 when the intensity of the bias adjusting light D is the minimum is defined as the end ⁇ of the light beam 81. Further, the position of the tip of the refractive index matching agent 60 when the intensity of the bias adjusting light D is maximum is set to ⁇ 3 in the light beam 81. Further, the position of the tip of the refractive index matching agent 60 when the intensity of the bias adjusting light D is half of the maximum and the minimum is defined as ⁇ 2 in the light beam 81.
- the tip portion of the refractive index matching agent 60 is located at ⁇ shown in FIG. 3A. Therefore, the light beam 81 and the refractive index matching agent 60 do not overlap. Therefore, since the refractive index of the first optical waveguide 80a and the refractive index of the path 70 do not match, most of the external light B is reflected by the path 70. Therefore, the intensity of the output light C is minimized (origin in FIG. 3B).
- the tip portion of the refractive index matching agent 60 is located at ⁇ shown in FIG. 3A. Therefore, since the refractive index matching agent 60 occupies the entire area of the light beam 81, the refractive index of the first optical waveguide 80a and the refractive index of the path 70 match within that range. Therefore, most of the external light B passes through the path 70, and the intensity of the output light C is maximized. In this way, the intensity of the output light C can be changed (proportional in this example) in accordance with the change in the intensity of the input light A. The characteristics in this case are shown by the solid line in FIG. 3 (b).
- the intensity of the input light A is the minimum
- the intensity of the vise adjustment light D is slightly increased from the minimum.
- the second light deforming member 30b is stretched, and the refractive index matching agent 60 in the bias adjusting liquid pooling portion 50b is pushed out to the matching agent pooling portion 50a via the connection path 90.
- the position of the tip portion of the refractive index matching agent 60 in the path 70 moves to the front side.
- the position of the tip portion of the refractive index matching agent 60 when the intensity of the bias adjusting light D is slightly increased from the minimum is ⁇ 1 shown in FIG. 3A.
- the position of the tip portion of the refractive index matching agent 60 is ⁇ 1
- the refractive indexes of a part of the light beam 81 are matched.
- the intensity of the output light C becomes the intensity corresponding to the position of ⁇ 1 of the light beam 81 ( ⁇ 1 on the y-axis of FIG. 3B).
- the relationship between the input light A and the output light C when the intensity of the bias adjusting light D is slightly increased from the minimum is the characteristic shown by the alternate long and short dash line in FIG. 3 (b). That is, the output light C has a characteristic biased by ⁇ 1.
- the intensity of the input light A is the minimum
- the intensity of the bias adjusting light D is reduced to half the size of the minimum and the maximum.
- the position of the tip portion of the refractive index matching agent 60 is assumed to be ⁇ 2 shown in FIG. 3 (a).
- the external light B having a half area of the light beam 81 is transmitted to become the output light C ( ⁇ 2 on the y-axis in FIG. 3B).
- the relationship between the input light A and the output light C when the intensity of the bias adjusting light D is halved from the minimum and the maximum is the characteristic shown by the alternate long and short dash line in FIG. 3 (b). That is, the output light C has a characteristic biased by ⁇ 2.
- the intensity of the external light B can be changed with respect to the change in the intensity of the input light A. Further, the bias amount of the output light C can be changed depending on the intensity of the bias adjusting light D.
- the intensity of external light B is constant. Therefore, by setting the intensity of the external light B to be higher than the maximum intensity of the input light A, the output light B in which the input light A is amplified can be output.
- the light intensity of the input light A can be amplified without using photoelectric conversion. Further, since the optical arithmetic element 1 does not perform photoelectric conversion, it does not cause power loss and speed loss associated therewith.
- FIG. 3 is a diagram showing a model of a nerve cell using the optical arithmetic element 1 according to the present embodiment.
- x1 to xn are inputs
- w1 to wn are coupling weights
- b is a bias term.
- the optical arithmetic element 1 it is possible to realize a model of a nerve cell that can be expressed by the following equation.
- the adjustment of b can be easily performed by changing the intensity of the bias adjustment light D.
- FIG. 4 is a diagram schematically showing a configuration in which two optical arithmetic elements 1 according to the present embodiment are connected in cascade.
- the description of the housing 12 and the configuration provided therein is omitted.
- the description of the housing 12 and the configuration provided therein, which are not necessary for explanation, will be omitted.
- the optical signal output from the second optical waveguide 80b of the first optical arithmetic element 11 is input to the opening 202 of the second optical arithmetic element 12.
- External light B having a constant light intensity is input to the first optical waveguide 80b1 and the first optical waveguide 80b2 of the optical calculation element 11 and the optical calculation element 12, respectively.
- a multi-layer neural network can be constructed by connecting two or more optical arithmetic elements 1 in a sequential manner.
- FIG. 5 is a diagram schematically showing a configuration example of a multi-layer neural network according to the present embodiment.
- the multilayer neural network 100 shown in FIG. 5 is formed by connecting two or more layers of the above optical arithmetic elements 1 in a longitudinal manner.
- the input light of the optical arithmetic element 11 of the first layer is the sum of the outputs of the two multipliers 101 and 1021 by the adder 1031.
- the bias adjustment light D is represented by D input to the adder 1031.
- the bias term can be adjusted for each layer.
- the output light Z1 of the first layer optical calculation element 11 is input to the multiplier 1012 that generates the input light of the second layer optical calculation element 12.
- the multiplier 1012 multiplies the output light Z1 by the weight w3 and outputs it to one input of the adder 1032.
- the adder 1032 adds the output of the multiplier 1012 and the output of the multiplier 1022 to generate the input light of the optical arithmetic element 12.
- the output of the multiplier 1022 is obtained by multiplying the output light Z2 of an optical arithmetic element (not shown) by the weight w4.
- the optical arithmetic element 12 of the second layer generates the output light Z3 obtained by converting the external light B taken in from the outside by the product-sum signal output by the adder 1032 corresponding to the input light A.
- the output light Z5 generated by the optical calculation element 13 of the third and subsequent layers also has the same configuration for generating the output light Z5 as the optical calculation element 12 of the second layer.
- the reference code numbers in the figures are updated and described, and the description thereof will be omitted.
- the input light An of the optical arithmetic element of the layer) includes the output light Zn-1 of the optical arithmetic element of the n-1th layer.
- optical components may be arranged between the optical arithmetic elements 1n of each layer.
- the optical component for example, an optical filter and a coupler can be considered.
- FIG. 6 is a diagram schematically showing an example in which, for example, an optical filter 95 is arranged between the optical arithmetic element 11 and the optical arithmetic element 12 shown in FIG.
- the optical filter 95 may be replaced with a coupler that branches an optical signal.
- a multi-layer neural network may be configured so that the optical fluter to be generated is arranged. According to this, the degree of freedom in designing the multi-layer neural network can be improved.
- FIG. 7 is a perspective view schematically showing a configuration example of an optical calculation element according to a second embodiment of the present invention.
- FIG. 7 is a diagram corresponding to FIG.
- the optical calculation element 2 shown in FIG. 7 is different from the optical calculation element 1 (FIG. 1) in that the third optical waveguide 80c is provided.
- the third optical waveguide 80c is for deriving the reflected light reflected by the path 70 to the outside.
- reflected light reflected by the path 70 there are two types of reflected light reflected by the path 70: a reflected light that propagates through the first optical waveguide 80a and returns to the input side, and a reflected wave that repeats reflection until it disappears near the path 70.
- the latter reflected wave may deteriorate the signal-to-noise ratio of the calculation of the optical signal.
- the optical arithmetic element 2 has a reflection angle of the same angle as the incident angle of the first optical waveguide 80a with respect to the path 70, and the tip portion is brought into contact with the tip portion of the first optical waveguide 80a. It is equipped with 80c. As a result, the external light B reflected by the path 70 is led out to the outside by the third optical waveguide 80c. Therefore, since the reflected wave that repeats reflection near the path 70 is reduced, the SN ratio of the calculation of the optical signal can be improved.
- the optical arithmetic elements 1 and 2 of the present embodiment it is possible to construct a multi-layered optical neural network without performing photoelectric conversion. Further, according to the multi-layer neural network 100 of the present embodiment, since the external light B is introduced from the outside into each of the layers, it is not necessary to alternately perform the calculation using the optical signal and the electric signal. As a result, the calculation can be reduced in power. Moreover, it is possible to adjust the bias term for each layer.
- the first and second photodeformable members 30a and 30b of the present invention have been described with the example of the so-called string-shaped form, but the present invention is not limited to this example.
- These light deforming members may be, for example, strip-shaped or knitted strings.
- the photodeformable member may be any one as long as it deforms such as expansion, bending, and extension.
- the present invention is not limited to the above-described embodiment, and can be modified within the scope of the gist thereof.
- Optical arithmetic elements 10 Housing 20a, 20b: Opening 30a: First light deforming member 30b: Second light deforming member 40a: First deforming lid 40b: Second deforming lid 50a : Matching agent pool 50b: Bias adjusting liquid pool 60: Refractive index matching agent 70: Path 80a: First optical waveguide 80b: Second optical waveguide 80c: Third optical waveguide 90: Connection path 95: Optical filter or coupler 100 : Multilayer neural network A: Input light B: External light C: Output light D: Bias adjustment light
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computing Systems (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Data Mining & Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Artificial Intelligence (AREA)
- Nonlinear Science (AREA)
- Neurology (AREA)
- Optical Couplings Of Light Guides (AREA)
Abstract
Description
本発明は、光ニューラルネットワークを構成する光演算素子と多層ニューラルネットワークに関する。 The present invention relates to an optical arithmetic element and a multi-layer neural network that constitute an optical neural network.
光ニューラルネットワークは、人間の脳内にある神経細胞網を入力層ニューロンと出力層ニューロンの二つのニューロンと、それぞれのニューロンを連結するシナプスから成る単位でモデル化し、光信号を用いてネットワーク化したものである。 The optical neural network models the nerve cell network in the human brain as a unit consisting of two neurons, an input layer neuron and an output layer neuron, and synapses connecting each neuron, and networked using optical signals. It is a thing.
光ニューラルネットワークは、一般的に積和演算と非線形演算を実行するニューロン素子を結合し、多層化されて構成される(例えば非特許文献1)。ニューロンの連結は、例えばフォトクロミック材料を用いた方向性光結合器を用いて実現していた。光ニューラルネットワークの出力光のオン/オフは、入力光の強度と、バイアス項の大きさに相当するフォトクロミック材料の量で決定される。 An optical neural network is generally configured by connecting neuron elements that perform multiply-accumulate operations and non-linear operations and having multiple layers (for example, Non-Patent Document 1). The connection of neurons was realized, for example, by using a directional optical coupler using a photochromic material. The on / off of the output light of an optical neural network is determined by the intensity of the input light and the amount of photochromic material corresponding to the magnitude of the bias term.
しかしながら、バイアス項の大きさは、フォトクロミック材料の量の増減に依存するため、調整するのが困難であるという課題がある。つまり、バイアス項は、光演算素子が備えるフォトクロミック材料の量によって決定されるので、光演算素子の形状が確定した後に変更することができない。バイアス項を調整するには、光演算素子の形状を変える必要がある。 However, there is a problem that it is difficult to adjust the size of the bias term because it depends on the increase or decrease in the amount of the photochromic material. That is, since the bias term is determined by the amount of the photochromic material included in the optical arithmetic element, it cannot be changed after the shape of the optical arithmetic element is determined. In order to adjust the bias term, it is necessary to change the shape of the optical arithmetic element.
本発明は、この課題に鑑みてなされたものであり、バイアス項の調整が容易に行える光演算素子と多層ニューラルネットワークを提供することを目的とする。 The present invention has been made in view of this problem, and an object of the present invention is to provide an optical arithmetic element and a multi-layer neural network in which the bias term can be easily adjusted.
本発明の一態様に係る光演算素子は、入力光の強度に応じて変形する第1光変形部材と、前記第1光変形部材と連結され該第1光変形部材によって変形させられる第1変形蓋と、屈折率を整合させて外部から導入される外部光を透過させる屈折率整合剤と、前記第1変形蓋で蓋をされ前記屈折率整合剤で満たされた整合剤溜まり部と、前記整合剤溜まり部から前記屈折率整合剤を導出する先端が開口された経路と、前記経路に対して傾斜し前記外部光を伝搬させる第1光導波路と、前記経路を挟んで前記第1光導波路の延長線上に配置され前記経路を透過して来た前記外部光を出力する第2光導波路と、バイアス調整光の強度に応じて変形する第2光変形部材と、前記第2光変形部材と連結され該第2光変形部材によって変形させられる第2変形蓋と、前記第2変形蓋で蓋をされ前記屈折率整合剤で満たされたバイアス調整液溜まり部と、前記整合剤溜まり部と前記バイアス調整液溜まり部を接続する前記屈折率整合剤で満たされた接続経路とを備えることを要旨とする。 The optical calculation element according to one aspect of the present invention includes a first light deforming member that deforms according to the intensity of input light, and a first deformation that is connected to the first light deforming member and deformed by the first light deforming member. The lid, the refractive index matching agent that matches the refractive index and transmits external light introduced from the outside, the matching agent reservoir that is covered with the first modified lid and filled with the refractive index matching agent, and the above. A path having an open tip for deriving the refractive index matching agent from the matching agent reservoir, a first optical waveguide that is inclined with respect to the path and propagates the external light, and the first optical waveguide that sandwiches the path. A second optical waveguide that is arranged on the extension line of the above and outputs the external light that has passed through the path, a second light deforming member that deforms according to the intensity of the bias adjusting light, and the second light deforming member. A second deformable lid that is connected and deformed by the second light deforming member, a bias adjusting liquid pool that is covered with the second deformable lid and filled with the refractive index matching agent, the matching agent pool, and the above. It is a gist to provide a connection path filled with the refractive index matching agent for connecting the bias adjusting liquid pool portion.
また、本発明の一態様に係る多層ニューラルネットワークは、上記の光演算素子をN(N≧2)個縦続接続させた多層ニューラルネットワークであって、n(n=2,3,…,N)層目の光演算素子の前記入力光は、n-1層目の光演算素子の出力光を含むことを要旨とする。 Further, the multi-layer neural network according to one aspect of the present invention is a multi-layer neural network in which N (N ≧ 2) optical arithmetic elements are connected in cascade, and n (n = 2,3, ..., N). The gist is that the input light of the optical arithmetic element of the first layer includes the output light of the optical arithmetic element of the n-1th layer.
本発明によれば、バイアス項の調整が容易に行える光演算素子と多層ニューラルネットワークを提供することができる。 According to the present invention, it is possible to provide an optical arithmetic element and a multi-layer neural network in which the bias term can be easily adjusted.
以下、本発明の実施形態について図面を用いて説明する。複数の図面中同一のものに
は同じ参照符号を付し、説明は繰り返さない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The same reference numerals are given to the same objects in a plurality of drawings, and the description is not repeated.
〔第1実施形態〕
図1は、本発明の第1実施形態に係る光演算素子の構成例を模式的に示す断面図である。図1に示す光演算素子1は、光電変換を用いずに光を増幅でき、バイアス項の調整が容易に行える光演算素子である。
[First Embodiment]
FIG. 1 is a cross-sectional view schematically showing a configuration example of an optical calculation element according to the first embodiment of the present invention. The optical
(光演算素子の構成)
図1に示す光演算素子1は、例えば2つの直方体の筐体10と12が接続経路90で接続されて一つの光演算素子を構成する。図1は、上下方向に配置された筐体10と12の短辺の中央付近で切断した長辺方向の断面を示す図である。
(Structure of optical arithmetic element)
In the optical
筐体10と12、及び接続経路90は、例えば有機分子ポリマーあるいは石英で構成される。なお、これらは他の材料(例えば金属)を用いて構成してもよい。
The
筐体10は、第1光変形部材30a、第1変形蓋40a、整合剤溜まり部50a、屈折率整合剤60、経路70、第1光導波路80a、及び第2光導波路80bを備える。整合剤溜まり部50aの内部は、屈折率整合剤60で満たされている。
The
筐体12は、第2光変形部材30b、第2変形蓋40b、及びバイアス調整液溜まり部50bを備える。バイアス調整液溜まり部50bの内部は、屈折率整合剤60で満たされている。バイアス調整液溜まり部50bと整合剤溜まり部50aは、屈折率整合剤60で満たされた接続経路90で接続される。
The
図1は、筐体10と12の2つ直方体を組み合わせて一つの光演算素子1を構成する例を示すが、一つの筐体で光演算素子1を構成するようにしてもよい。図1に示すように各構成部が組み合わされて光演算素子1が構成されれば、筐体10と12の形状は直方体に限られない。また、筐体10と12はフレームで構成してもよい。つまり、各構成部を、直方体等の立体で保持する必要もない。
FIG. 1 shows an example in which two rectangular parallelepipeds of the
筐体10の一方の端部側には、開口部20aが設けられる。この例の開口部20aは、平面が四角形であり、筐体10の高さ方向を貫通している。開口部20は、光信号の入力光Aが入力される。ここで、説明のために方向を定義する。筐体10の開口部20a側を後、その反対側を前とする。
An opening 20a is provided on one end side of the
開口部20aの前側の内壁の中央部分は、円柱状に刳り抜かれ、整合剤溜まり部50aが形成される。整合剤溜まり部50aの開口部20a側(後側)は、第1変形蓋40aが嵌められている。
The central portion of the inner wall on the front side of the opening 20a is hollowed out in a columnar shape to form a
第1変形蓋40aは、柔軟性を持つ素材で構成され、力が入力されることで変形する。第1変形蓋40aは、例えばゴムで構成される。
The first
第1変形蓋40aの中央部分には、平面がU字状の係止部41aが形成されている。係止部41aが対向する開口部20aの後側の内壁にも、同形状の係止部11aが形成されている。
A
係止部11aと係止部41aの間に第1光変形部材30aが掛け渡され、第1光変形部材30aの両端部は、係止部11aと係止部41aにそれぞれ固定される。第1光変形部材30aは所定の張力を保持した状態で、第1変形蓋40aと開口部20aの内壁(後側)を接続させる。
The first
第1光変形部材30aは、入力光Aの強度に応じて変形する。第1光変形部材30aは、例えばジアリールエテン、シクロデキストリン、及びアゾベンゼンを有する架橋ポリマー等を用いることができる。
The first
整合剤溜まり部50aの内部は、屈折率整合剤60で満たされて第1変形蓋40aで密閉される。整合剤溜まり部50の前側の端面の中央部分から、断面が長方形の経路70が形成される。
The inside of the matching
屈折率整合剤60は、例えば、シリコンオイルを用いることができる。屈折率整合剤60の屈折率は、例えば1.485(25℃)であり、第1光導波路80a及び第2光導波路80bとほぼ同じ屈折率を持つ。
As the refractive
経路70は、前後方向と直交する向きの断面が例えば長方形であり、整合剤溜まり部50aの前側の端面から、筐体10の前側の端面まで水平に貫通し先端は開放されている。経路70の内部は、整合剤溜まり部50aから屈折率整合剤60が導出され、経路70の前後方向の半分程度の位置まで屈折率整合剤60で満たされている。屈折率整合剤60の経路70内の先端部分は、第1光変形部材30aが入力光Aの強度に応じて変形するのに対応して前後方向に移動する。
The
なお、経路70の導出方向は、水平方向に限られない。経路70内の屈折率整合剤60は、その表面張力によって重力の影響をほとんど受けない。したがって、経路70の導出方向は、鉛直方向の上下、又は斜め上下方向等の何れで有ってもよい。経路70内の屈折率整合剤60の先端部分の位置は、主に第1光変形部材30aの伸縮に伴う第1変形蓋40aの変形量によって決定される。
The derivation direction of the
第1光導波路80aは、屈折率整合剤60の先端部分が前後方向に移動する部分の経路70に対して傾斜して配置され、その先端部分は経路70に当接されている。第1光導波路80aの経路70と反対側から、外部光Bが入力される。外部光Bは、光演算素子1が配置された環境の環境光のことである。外部光Bは一定の強度(照度)に保たれている。なお、外部光Bの強度は、ある程度変動しても構わない。
The first
第2光導波路80bは、経路70を挟んで第1光導波路80aの延長線上に配置される。第2光導波路80bは、経路70を透過して来た外部光Bを外部に出力する(出力光C)。
The second
第1光導波路80aと第2光導波路80bは、筐体10を有機分子ポリマーで構成した場合、他の筐体10の部分よりも屈折率が高い材料で構成される。第1光導波路80aと第2光導波路80bの屈折率は、例えば1.49である。
The first
筐体12の一方の端部側には、筐体10と同様に開口部20bが設けられる。この例の開口部20bは、平面が四角形であり、筐体12の高さ方向を貫通している。開口部20bは、光信号のバイアス調整光Dが入力される。バイアス調整光Dが、第1光変形部材30aに影響を与えないように、開口部20aと20bの間には遮光板(図示せず)が設けられる。なお、遮光板を設けずとも開口部20aと20bが上下方向に重ならないように光演算素子1を構成するようにしてもよい。
An
開口部20bの前側の内壁の中央部分は、円柱状に刳り抜かれ、バイアス調整液溜まり部50bが形成される。バイアス調整液溜まり部50bの開口部20b側(後側)は、第2変形蓋40bが嵌められている。なお、バイアス調整液溜まり部50b、第2変形蓋40b、第2光変形部材30b、係止部11b、及び係止部41aの形状と材料は、参照符号の数字で対応する筐体10に備わる構成部分と同じである。
The central portion of the inner wall on the front side of the
バイアス調整液溜まり部50bの内部は、屈折率整合材60で満たされている点で整合材溜まり部50aと同じである。バイアス調整液溜まり部50bと整合材溜まり部50aは、屈折率整合材60で満たされた接続経路90で接続される。
The inside of the bias adjusting
筐体10,12、整合剤溜まり部50a、バイアス調整液溜まり部50b、及び経路70は、周知の半導体プロセス及びマイクロマシン加工技術によって、例えば直方体の石英を加工することで形成される。
The
以上述べたように本実施形態に係る光演算素子1は、入力光の強度に応じて変形する第1光変形部材30aと、第1光変形部材30aと連結され該第1光変形部材30aによって変形させられる第1変形蓋40aと、屈折率を整合させて外部から導入される外部光Bを透過させる屈折率整合剤60と、第1変形蓋40aで蓋をされ屈折率整合剤60で満たされた整合剤溜まり部50aと、整合剤溜まり部50aから屈折率整合剤60を導出する先端が開口された経路70と、経路70に対して傾斜し外部光Bを伝搬させる第1光導波路80aと、経路70を挟んで第1光導波路80aの延長線上に配置され経路70を透過して来た外部光Bを出力する第2光導波路80bと、バイアス調整光Dの強度に応じて変形する第2光変形部材30bと、第2光変形部材30bと連結され該第2光変形部材30bによって変形させられる第2変形蓋40bと、第2変形蓋40bで蓋をされ屈折率整合剤60で満たさたバイアス調整液溜まり部50bと、整合剤溜まり部50aとバイアス調整液溜まり部50bを接続する屈折率整合剤60で満たされた接続経路90とを備える。
As described above, the
(光演算素子の作用)
図2は、第1光導波路80aを伝搬して経路70に到達する光ビームと経路70内を移動する屈折率整合剤60との関係を模式的に示す図である。図2(a)は光ビームと屈折率整合剤60の関係を示す模式図、図3(b)は入力光Aと出力光Cの関係の一例を示す。
(Action of optical arithmetic element)
FIG. 2 is a diagram schematically showing the relationship between the light beam propagating through the first
図3(a)に示す楕円81は、第1光導波路80aを伝搬して経路70に到達する光ビーム(以降、光ビーム81)を模式的に表す。第1光導波路80aは、経路70に対して傾斜して接するので光ビーム81の形状は楕円形になる。
The
ここで、入力光Aの強度の変化によって経路70内を移動する屈折率整合剤60の先端は、入力光Aの強度が最大の場合に光ビーム81の前側の端部γに位置するように調整されていると仮定する。また、入力光Aの強度が最小の場合に光ビーム81の後側の端部αに位置するように調整されていると仮定する。
Here, the tip of the refractive
この仮定は、第1光変形部材30aが入力光Aの強度が大きいと伸張する場合に成立する。第1光変形部材30aが変形する方向が逆であれば、屈折率整合剤60の先端は、例えば入力光Aの強度が最大の場合に光ビーム81の後側の端部αに位置するように調整され、入力光Aの強度が最小の場合に光ビーム81の前側の端部γに位置するように調整される。つまり、第1光変形部材30aの変形する方向によって、入力光Aの強度に対する論理を反転させることができる。
This assumption holds when the first
また、経路70と整合剤溜まり部50aの内部に存在するの屈折率整合剤60の量は、バイアス調整光Dの強度によって調整することができる。整合剤溜まり部50aの容積は固定であるので、バイアス調整光Dの強度を変えることで屈折率整合剤60の経路70内の先端の位置を変化させることができる。つまり、バイアス項を調整することができる。
Further, the amount of the refractive
ここで、バイアス調整光Dの強度が最小の場合の屈折率整合剤60の先端の位置を、上記の光ビーム81の端部αと仮定する。そして、第2光変形部材30bも、第1光変形部材30aと同様にバイアス調整光Dの強度が大きくなると伸張するものとする。
Here, it is assumed that the position of the tip of the refractive
更に、バイアス調整光Dの強度が最小の場合の屈折率整合剤60の先端の位置を光ビーム81の端部αとする。また、バイアス調整光Dの強度が最大の場合の屈折率整合剤60の先端の位置を光ビーム81内のβ3とする。また、バイアス調整光Dの強度が最大と最小の半分の場合の屈折率整合剤60の先端の位置を光ビーム81内のβ2とする。
Further, the position of the tip of the refractive
上記の仮定において、入力光A,外部光B、出力光C、及びバイアス調整光Dの関係について説明する。まず、バイアス調整光Dの強度が最小の場合について説明する。 In the above assumption, the relationship between the input light A, the external light B, the output light C, and the bias adjusting light D will be described. First, the case where the intensity of the bias adjusting light D is the minimum will be described.
バイアス調整光Dと入力光Aの強度が最小の場合は、屈折率整合剤60の先端部分が図3(a)に示すαに位置する。よって、光ビーム81と屈折率整合剤60は重ならない。よって、第1光導波路80aの屈折率と経路70の屈折率が整合しないので、外部光Bのほとんどが経路70で反射する。よって、出力光Cの強度は最小になる(図3(b)の原点)。
When the intensities of the bias adjusting light D and the input light A are the minimum, the tip portion of the refractive
バイアス調整光Dの強度が最小で且つ入力光Aの強度が最大の場合は、屈折率整合剤60の先端部分が図3(a)に示すγに位置する。よって、光ビーム81の面積の全てを屈折率整合剤60が占めるので、その範囲内で第1光導波路80aの屈折率と経路70の屈折率が整合する。よって、外部光Bのほとんどは、経路70を透過し、出力光Cの強度は最大になる。このように、入力光Aの強度の変化に対応させて出力光Cの強度を変化(この例では比例)させることができる。この場合の特性を、図3(b)の実線で示す。
When the intensity of the bias adjusting light D is the minimum and the intensity of the input light A is the maximum, the tip portion of the refractive
次に、バイアス調整光Dの強度を変えた場合について説明する。 Next, the case where the intensity of the bias adjusting light D is changed will be described.
入力光Aの強度が最小の場合にバイス調整光Dの強度を最小から少し大きくする。そうすると、第2光変形部材30bが伸張し、バイアス調整液溜まり部50b内の屈折率整合剤60は接続経路90を介して整合剤溜まり部50aに押し出される。その結果、屈折率整合剤60の経路70内の先端部分の位置は前側に移動する。
When the intensity of the input light A is the minimum, the intensity of the vise adjustment light D is slightly increased from the minimum. Then, the second
バイアス調整光Dの強度を最小から少し大きくした場合の屈折率整合剤60の先端部分の位置を、図3(a)に示すβ1と仮定する。屈折率整合剤60の先端部分の位置がβ1の場合は、光ビーム81の一部の屈折率が整合する。その結果、出力光Cの強度は光ビーム81のβ1の位置に対応する強度になる(図3(b)のy軸のβ1)。
It is assumed that the position of the tip portion of the refractive
したがって、バイアス調整光Dの強度を最小から少し大きくした場合の入力光Aと出力光Cの関係は、図3(b)の一点鎖線で示す特性になる。つまり、出力光Cがβ1の分バイアスされた特性になる。 Therefore, the relationship between the input light A and the output light C when the intensity of the bias adjusting light D is slightly increased from the minimum is the characteristic shown by the alternate long and short dash line in FIG. 3 (b). That is, the output light C has a characteristic biased by β1.
また、入力光Aの強度が最小の場合にバイアス調整光Dの強度を最小と最大の半分の大きさにする。その場合の屈折率整合剤60の先端部分の位置を、図3(a)に示すβ2と仮定する。屈折率整合剤60の先端部分の位置がβ2の場合は、光ビーム81の半分の面積の外部光Bが透過して出力光Cとなる(図3(b)のy軸のβ2)。
Also, when the intensity of the input light A is the minimum, the intensity of the bias adjusting light D is reduced to half the size of the minimum and the maximum. In that case, the position of the tip portion of the refractive
したがって、バイアス調整光Dの強度を最小と最大の半分にした場合の入力光Aと出力光Cの関係は、図3(b)の二点鎖線で示す特性になる。つまり、出力光Cがβ2の分バイアスされた特性になる。 Therefore, the relationship between the input light A and the output light C when the intensity of the bias adjusting light D is halved from the minimum and the maximum is the characteristic shown by the alternate long and short dash line in FIG. 3 (b). That is, the output light C has a characteristic biased by β2.
バイアス調整光Dの強度を最大にした場合の入力光Aと出力光Cの関係は、図3(b)の破線で示す特性になる。詳しい説明は、他の場合と同じであるので省略する。 The relationship between the input light A and the output light C when the intensity of the bias adjusting light D is maximized is the characteristic shown by the broken line in FIG. 3 (b). The detailed description is the same as in other cases and will be omitted.
以上説明したように、外部光Bの強度を、入力光Aの強度の変化に対して変化させることができる。また、バイアス調整光Dの強度によって、出力光Cのバイアス量を変化させることができる。 As described above, the intensity of the external light B can be changed with respect to the change in the intensity of the input light A. Further, the bias amount of the output light C can be changed depending on the intensity of the bias adjusting light D.
外部光Bの強度は一定である。よって、外部光Bの強度を入力光Aの最大強度よりも大きな強度に設定しておくことで、入力光Aを増幅した出力光Bを出力することができる。 The intensity of external light B is constant. Therefore, by setting the intensity of the external light B to be higher than the maximum intensity of the input light A, the output light B in which the input light A is amplified can be output.
つまり、本実施形態に係る光演算素子1によれば、光電変換を用いずに入力光Aの光強度を増幅することができる。また、光演算素子1は、光電変換を行わないのでそれに伴う電力損失と速度損失を生じさせない。
That is, according to the
また、一定の外部光Bを、多層(複数を縦続)に接続された光演算素子1のそれぞれに与える(照射する)ことで、光信号の強度の損失が生じさせない多層ニューラルネットワークを構成することができる。
Further, by applying (irradiating) a certain amount of external light B to each of the optical
図3は、本実施形態に係る光演算素子1を用いた神経細胞のモデルを示す図である。図3において、x1~xnは入力、w1~wnは結合重み、及びbはバイアス項である。光演算素子1によれば、次式で表せる神経細胞のモデルを実現することができる。
FIG. 3 is a diagram showing a model of a nerve cell using the optical
bの調整は、バイアス調整光Dの強度を変えることで容易に行える。 The adjustment of b can be easily performed by changing the intensity of the bias adjustment light D.
(多層ニューラルネットワーク)
図4は、本実施形態に係る光演算素子1を2個縦続接続させた構成を模式的に示す図である。図4において、筐体12及びそれが備える構成の表記は省略している。以降において説明に必要のない筐体12及びそれが備える構成の表記は省略する。
(Multilayer neural network)
FIG. 4 is a diagram schematically showing a configuration in which two optical
1個目の光演算素子11の第2光導波路80bから出力された光信号を、2個目の光演算素子12の開口部202に入力させる。光演算素子11と光演算素子12の第1光導波路80b1と第1光導波路80b2には、一定の光強度の外部光Bがそれぞれ入力される。
The optical signal output from the second
2個以上の光演算素子1を縦続接続することで多層ニューラルネットワークを構成することができる。
A multi-layer neural network can be constructed by connecting two or more optical
図5は、本実施形態に係る多層ニューラルネットワークの構成例を模式的に示す図である。図5に示す多層ニューラルネットワーク100は、上記の光演算素子1を2層以上、縦続に接続したものである。
FIG. 5 is a diagram schematically showing a configuration example of a multi-layer neural network according to the present embodiment. The multilayer
1層目の光演算素子11の入力光は、2つの乗算器1011,1021のそれぞれの出力を加算器1031で加算したものである。ここでバイアス調整光Dは、加算器1031に入力されるDで表している。2層目と3層目の光演算素子12,13でも同様である。層ごとにバイアス項の調整が可能である。
The input light of the optical
1層目の光演算素子11の出力光Z1は、2層目の光演算素子12の入力光を生成する乗算器1012に入力される。乗算器1012は、出力光Z1に重みw3を乗じて加算器1032の一方の入力に出力する。
The output light Z1 of the first layer
加算器1032は、乗算器1012の出力と乗算器1022の出力を加算して光演算素子12の入力光を生成する。乗算器1022の出力は、図示しない光演算素子の出力光Z2に重みw4を乗じたものである。
The
2層目の光演算素子12は、外部から取り込む外部光Bを、入力光Aに相当する加算器1032が出力する積和信号で変換した出力光Z3を生成する。3層目以降の光演算素子13が生成する出力光Z5についても、当該出力光Z5を生成するための構成は、2層目の光演算素子12と同じである。図中の参照符号の番号を更新して表記し、その説明は省略する。
The optical
以上説明したように本実施形態に係る多層ニューラルネットワーク100は、光演算素子1をN(N≧2)個縦続接続させた多層ニューラルネットワークであって、n(n=2,3,…,N)層目の光演算素子の入力光Anは、n-1層目の光演算素子の出力光Zn-1を含む。
As described above, the multi-layer
この構成によれば、各層の光演算素子1nのそれぞれに一定強度の外部光Bが入力され、該外部光Bが前層n-1の光演算素子1n-1の出力光Zn-1で変換された出力光Znを生成する。したがって、多層に縦続接続された後方の光演算素子1nの出力光Znの強度は減衰しない。その結果、光電変換が不要であり、多層ニューラルネットワークを無電力化することができる。 According to this configuration, external light B having a constant intensity is input to each of the optical arithmetic elements 1n of each layer, and the external light B is converted by the output light Zn-1 of the optical arithmetic element 1n-1 of the front layer n-1. The output light Zn is generated. Therefore, the intensity of the output light Zn of the rear optical arithmetic element 1n connected in multiple layers is not attenuated. As a result, photoelectric conversion is not required, and the multi-layer neural network can be depowered.
各層の光演算素子1nの間に他の光学部品を配置するようにしてもよい。光学部品は、例えば光フィルター及びカプラー等が考えられる。 Other optical components may be arranged between the optical arithmetic elements 1n of each layer. As the optical component, for example, an optical filter and a coupler can be considered.
図6は、図4に示した光演算素子11と光演算素子12の間に例えば光フィルター95を配置した例を模式的に示す図である。光フィルター95は、光信号を分岐させるカプラーに置き換えてもよい。
FIG. 6 is a diagram schematically showing an example in which, for example, an
このようにn(n=2,3,…,N)層目の光演算素子とn+1層目の光演算素子の間に、n個目の光演算素子の出力光を、分岐させるカプラー又は変調させる光フルターが配置されるように多層ニューラルネットワークを構成してもよい。これによれば多層ニューラルネットワークの設計の自由度を向上させることができる。 In this way, a coupler or modulation that branches the output light of the nth optical arithmetic element between the n (n = 2,3, ..., N) layer optical arithmetic element and the n + 1th layer optical arithmetic element. A multi-layer neural network may be configured so that the optical fluter to be generated is arranged. According to this, the degree of freedom in designing the multi-layer neural network can be improved.
〔第2実施形態〕
図7は、本発明の第2実施形態に係る光演算素子の構成例を模式的に示す斜視図である。図7は図1に対応する図である。
[Second Embodiment]
FIG. 7 is a perspective view schematically showing a configuration example of an optical calculation element according to a second embodiment of the present invention. FIG. 7 is a diagram corresponding to FIG.
図7に示す光演算素子2は、第3光導波路80cを備える点で光演算素子1(図1)と異なる。第3光導波路80cは、経路70で反射した反射光を外部に導出させるものである。
The optical calculation element 2 shown in FIG. 7 is different from the optical calculation element 1 (FIG. 1) in that the third
経路70で反射した反射光は、第1光導波路80aを伝搬して入力側に戻る反射光と、経路70付近で消失するまで反射を繰り返す反射波の2つが存在すると考えられる。後者の反射波は、光信号の演算のSN比を劣化させる場合がある。
It is considered that there are two types of reflected light reflected by the path 70: a reflected light that propagates through the first
そこで本実施形態に係る光演算素子2は、第1光導波路80aの経路70に対する入射角度と同じ角度の反射角度を持ち、先端部を第1光導波路80aの先端部に接触させる第3光導波路80cを備える。これにより、経路70で反射された外部光Bは、第3光導波路80cによって外部に導出される。したがって、経路70付近で反射を繰り返す反射波が減少するので、光信号の演算のSN比を向上させることができる。
Therefore, the optical arithmetic element 2 according to the present embodiment has a reflection angle of the same angle as the incident angle of the first
また、第3光導波路80cから導出される反射光を演算に用いることも可能である。第3光導波路80cから出力される反射光を演算に用いることで多層ニューラルネットワークの設計の自由度を向上させることができる。
It is also possible to use the reflected light derived from the third
以上説明したように本実施形態の光演算素子1,2によれば、光電変換を行うことなく、多層化した光ニューラルネットワークを構築できる。また、本実施形態の多層ニューラルネットワーク100によれば、各層のそれぞれに外部から外部光Bが導入されるので、光信号と電気信号を用いた演算を交互に行う必要がない。その結果、演算を無電力化することができる。また、層ごとにバイアス項の調整を行うことが可能である。
As described above, according to the optical
また、非金属製の材料で構成することが可能なので無電力であることも含め、従来の半導体チップを利用したIoTデバイスの適用が困難な利用場面での光演算素子の活用を可能にする。また、光電変換を行わないことによる部品点数の削減によるコストダウン及び故障リスクを減少させるという効果も奏する。 In addition, since it can be composed of a non-metal material, it can be used in situations where it is difficult to apply an IoT device using a conventional semiconductor chip, including the fact that it is powerless. In addition, it also has the effect of reducing the cost and the risk of failure by reducing the number of parts by not performing photoelectric conversion.
なお、本発明の第1・第2光変形部材30a,30bは、いわゆる紐状の形態の例で説明したが、この例に限定されない。これらの光変形部材は、例えば帯状であっても紐を編んだものであってもよい。要するに光変形部材は、膨張、屈曲、及び伸張等の変形が生じるものであれば何でも構わない。このように本発明は、上記の実施形態に限定されるものではなく、その要旨の範囲内で変形が可能である。
The first and second
なお、光演算素子1,2の加工方法について具体例を示した説明を行わなかったが、当該加工については既存の半導体プロセス及びマイクロマシン加工技術の全てを用いることができる。
Although the processing method of the optical
1、11~13、2:光演算素子
10,12:筐体
20a,20b:開口部
30a:第1光変形部材
30b:第2光変形部材
40a:第1変形蓋
40b:第2変形蓋
50a:整合剤溜まり部
50b:バイアス調整液溜まり部
60: 屈折率整合剤
70:経路
80a:第1光導波路
80b:第2光導波路
80c:第3光導波路
90:接続経路
95:光フィルター又はカプラー
100:多層ニューラルネットワーク
A:入力光
B:外部光
C:出力光
D:バイアス調整光
1, 11-13, 2: Optical
Claims (5)
前記第1光変形部材と連結され該第1光変形部材によって変形させられる第1変形蓋と、
屈折率を整合させて外部から導入される外部光を透過させる屈折率整合剤と、
前記第1変形蓋で蓋をされ前記屈折率整合剤で満たされた整合剤溜まり部と、
前記整合剤溜まり部から前記屈折率整合剤を導出する先端が開口された経路と、
前記経路に対して傾斜し前記外部光を伝搬させる第1光導波路と、
前記経路を挟んで前記第1光導波路の延長線上に配置され前記経路を透過して来た前記外部光を出力する第2光導波路と、
バイアス調整光の強度に応じて変形する第2光変形部材と、
前記第2光変形部材と連結され該第2光変形部材によって変形させられる第2変形蓋と、
前記第2変形蓋で蓋をされ前記屈折率整合剤で満たされたバイアス調整液溜まり部と、
前記整合剤溜まり部と前記バイアス調整液溜まり部を接続する前記屈折率整合剤で満たされた接続経路と
を備えることを特徴とする光演算素子。 The first light deforming member that deforms according to the intensity of the input light,
A first deformable lid that is connected to the first light deforming member and deformed by the first light deforming member.
A refractive index matching agent that matches the refractive index and transmits external light introduced from the outside,
The matching agent reservoir, which is covered with the first deformation lid and filled with the refractive index matching agent,
A path with an open tip for deriving the refractive index matching agent from the matching agent reservoir,
A first optical waveguide that is inclined with respect to the path and propagates the external light,
A second optical waveguide that is arranged on an extension of the first optical waveguide with the path in between and outputs the external light that has passed through the path.
A second light deforming member that deforms according to the intensity of the bias adjustment light,
A second deformable lid that is connected to the second light deforming member and deformed by the second light deforming member.
A bias adjusting liquid pool that is covered with the second deformable lid and filled with the refractive index matching agent.
An optical calculation element including a connection path filled with the refractive index matching agent that connects the matching agent pooling portion and the bias adjusting liquid pooling portion.
備えることを特徴とする請求項1に記載の光演算素子。 The first aspect of claim 1, wherein the third optical waveguide has a reflection angle of the same angle as the incident angle of the first optical waveguide with respect to the path, and the tip portion is brought into contact with the tip portion of the first optical waveguide. Optical computing element.
ことを特徴とする請求項1又は2に記載の光演算素子。 The optical calculation element according to claim 1 or 2, wherein the external light is shielded when the intensity of the input light is the minimum.
n(n=2,3,…,N)層目の光演算素子の前記入力光は、n-1層目の光演算素子の出力光を含む
ことを特徴とする多層ニューラルネットワーク。 A multi-layer neural network in which N (N ≧ 2) optical arithmetic elements according to any one of claims 1 to 3 are connected in cascade.
A multi-layer neural network characterized in that the input light of the optical arithmetic element of the n (n = 2,3, ..., N) layer includes the output light of the optical arithmetic element of the n-1th layer.
ことを特徴とする請求項4に記載の多層ニューラルネットワーク。
A coupler that branches or modulates the output light of the nth optical arithmetic element between the n (n = 2,3, ..., N) layer optical arithmetic element and the n + 1th layer optical arithmetic element. The multi-layer neural network according to claim 4, wherein is arranged.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2019/020696 WO2020240623A1 (en) | 2019-05-24 | 2019-05-24 | Optical computing element and multi-layer neural network |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2019/020696 WO2020240623A1 (en) | 2019-05-24 | 2019-05-24 | Optical computing element and multi-layer neural network |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2020240623A1 true WO2020240623A1 (en) | 2020-12-03 |
Family
ID=73553092
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2019/020696 Ceased WO2020240623A1 (en) | 2019-05-24 | 2019-05-24 | Optical computing element and multi-layer neural network |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2020240623A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12235526B2 (en) | 2020-04-21 | 2025-02-25 | University Of Washington | Phase-change metasurface for programmable waveguide mode conversion |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS542146A (en) * | 1977-05-31 | 1979-01-09 | Ets Pieeru Anjiniyuu Sa | Optical device |
| JPH05303048A (en) * | 1992-04-27 | 1993-11-16 | Fujikura Ltd | Optical path switching device |
| JPH09159943A (en) * | 1995-12-12 | 1997-06-20 | Hitachi Cable Ltd | Waveguide optical switch and method of manufacturing the same |
| WO2002069016A2 (en) * | 2001-02-28 | 2002-09-06 | Lightwave Microsystems Corporation | Microfluid control for waveguide optical switches, variable attenuators, and other optical devices |
| JP2003161895A (en) * | 2001-09-17 | 2003-06-06 | Agilent Technol Inc | Total reflection light switch |
| JP2019101887A (en) * | 2017-12-06 | 2019-06-24 | 日本電信電話株式会社 | Optical computing element and multilayer neural network |
-
2019
- 2019-05-24 WO PCT/JP2019/020696 patent/WO2020240623A1/en not_active Ceased
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPS542146A (en) * | 1977-05-31 | 1979-01-09 | Ets Pieeru Anjiniyuu Sa | Optical device |
| JPH05303048A (en) * | 1992-04-27 | 1993-11-16 | Fujikura Ltd | Optical path switching device |
| JPH09159943A (en) * | 1995-12-12 | 1997-06-20 | Hitachi Cable Ltd | Waveguide optical switch and method of manufacturing the same |
| WO2002069016A2 (en) * | 2001-02-28 | 2002-09-06 | Lightwave Microsystems Corporation | Microfluid control for waveguide optical switches, variable attenuators, and other optical devices |
| JP2003161895A (en) * | 2001-09-17 | 2003-06-06 | Agilent Technol Inc | Total reflection light switch |
| JP2019101887A (en) * | 2017-12-06 | 2019-06-24 | 日本電信電話株式会社 | Optical computing element and multilayer neural network |
Non-Patent Citations (1)
| Title |
|---|
| OTSUKA, TAKUYA ET AL. ET AL.: "Study of Neuron Elements for DNNs Passively Operated Using External Light", PROCEEDINGS OF 2018 IEICE GENERAL CONFERENCE (COMMUNICATION 2), 6 March 2018 (2018-03-06) * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12235526B2 (en) | 2020-04-21 | 2025-02-25 | University Of Washington | Phase-change metasurface for programmable waveguide mode conversion |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Fu et al. | Optical neural networks: progress and challenges | |
| TWI831932B (en) | Hybrid analog-digital processors and method performed therein | |
| Shen et al. | Deep learning with coherent nanophotonic circuits | |
| JP7026057B2 (en) | Equipment and methods for optical neural networks | |
| Ong et al. | Photonic convolutional neural networks using integrated diffractive optics | |
| CN110703385A (en) | Patterned multimode interference coupler based on light scattering, design method and application | |
| US11843182B2 (en) | Computation with adjustable resonant optical metamaterials | |
| Zang et al. | Electro-optical neural networks based on time-stretch method | |
| CN115641494B (en) | Neural network image processing system based on micro-ring modulator | |
| CN114819131A (en) | Photon diffraction neuron based on super surface on optical sheet and implementation method thereof | |
| US20250068032A1 (en) | All-optical non-linear activation device, system and method | |
| Montes McNeil et al. | Fundamentals and recent developments of free-space optical neural networks | |
| Moghaddaszadeh et al. | Mechanical intelligence via fully reconfigurable elastic neuromorphic metasurfaces | |
| WO2020240623A1 (en) | Optical computing element and multi-layer neural network | |
| US11934936B2 (en) | Optical computing element and multi-neural network | |
| US20230251189A1 (en) | Pulse shaping using diffractive network device with modular diffractive layers | |
| Sadeghzadeh et al. | Free-space optical neural network based on optical nonlinearity and pooling operations | |
| JP6882686B2 (en) | Optical computing elements and multi-layer neural networks | |
| CN117057407B (en) | Training method for crosstalk-oriented wavelength division multiplexing optical neural network | |
| WO2020225873A1 (en) | Optical operation element and multilayer neural network | |
| WO2020105459A1 (en) | Optical arithmetic operation element and multi-layered neural network | |
| Cauchon et al. | BraggNet: Complex photonic integrated circuit reconstruction using deep learning | |
| JP6534987B2 (en) | Perturbation learning device and its method | |
| JP7560760B2 (en) | Optical signal processing device | |
| CN116911368A (en) | A photonic convolutional neural network chip that implements BN layer |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19930357 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 19930357 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: JP |