WO2020146861A1 - Module de guidage et de suivi d'objet basé sur la vision artificielle - Google Patents
Module de guidage et de suivi d'objet basé sur la vision artificielle Download PDFInfo
- Publication number
- WO2020146861A1 WO2020146861A1 PCT/US2020/013280 US2020013280W WO2020146861A1 WO 2020146861 A1 WO2020146861 A1 WO 2020146861A1 US 2020013280 W US2020013280 W US 2020013280W WO 2020146861 A1 WO2020146861 A1 WO 2020146861A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- assembly
- mount body
- camera
- channel
- board
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/181—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a plurality of remote sources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/70—Circuitry for compensating brightness variation in the scene
- H04N23/74—Circuitry for compensating brightness variation in the scene by influencing the scene brightness using illuminating means
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
- G06Q10/083—Shipping
- G06Q10/0833—Tracking
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/08—Logistics, e.g. warehousing, loading or distribution; Inventory or stock management
- G06Q10/083—Shipping
- G06Q10/0836—Recipient pick-ups
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/50—Depth or shape recovery
- G06T7/521—Depth or shape recovery from laser ranging, e.g. using interferometry; from the projection of structured light
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19617—Surveillance camera constructional details
- G08B13/19619—Details of casing
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B13/00—Burglar, theft or intruder alarms
- G08B13/18—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
- G08B13/189—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems
- G08B13/194—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems
- G08B13/196—Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength using passive radiation detection systems using image scanning and comparing systems using television cameras
- G08B13/19617—Surveillance camera constructional details
- G08B13/1963—Arrangements allowing camera rotation to change view, e.g. pivoting camera, pan-tilt and zoom [PTZ]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/10—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
- H04N23/13—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths with multiple sensors
- H04N23/16—Optical arrangements associated therewith, e.g. for beam-splitting or for colour correction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/50—Constructional details
- H04N23/54—Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/56—Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/61—Control of cameras or camera modules based on recognised objects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/695—Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
Definitions
- the invention relates generally to computer-vision-based object tracking and guidance apparatuses.
- the invention is related to an apparatus comprising a mount body by which to secure the apparatus to a structure and a camera assembly fixed to the mount body.
- the camera assembly includes an image sensor that captures images within its field of view.
- the apparatus further comprises a lighting assembly rotatably connected to the mount body.
- the lighting assembly houses one or more light sources including a directional light source secured to a laser assembly.
- a control-board assembly fixed to the mount body, houses control boards that are in electrical communication with the camera assembly to acquire the images captured by the image sensor and with the lighting assembly to control operation of the one or more light sources.
- the control boards include one or more processors configured to acquire information about an object, to associate a location within the field of view of the image sensor with the object, to point light emitted by the directional light source at the location associated with the object by rotating the lighting assembly and turning the laser assembly, and, based on an image acquired from the camera assembly, to detect change within the field of view of the image sensor corresponding to placement or removal of the object.
- the camera assembly further comprises a depth sensor fixed to a mounting surface and a plurality of support mounts of different heights attached to a frame of the camera assembly, and the image sensor is mounted to a board held by the plurality of support mounts at a non-zero offset angle relative to the mounting surface upon which the depth sensor is fixed.
- the support mounts can have rivet holes, and the camera assembly can further comprise push rivets that pass through the board into the rivet holes of the support mounts to secure the image sensor within the camera assembly.
- the mount body has a channel extending therethrough.
- the channel has opposing upper and lower surfaces and a side wall therebetween.
- the sidewall has two angled surfaces that determine a full range of angles at which the mount body can be mounted to a rail.
- One of the surfaces of the channel has a retaining boss extending therefrom.
- the retaining boss is located on the one surface to align with a groove of the rail.
- the retaining boss has a size that fits closely within the groove of the rail.
- the apparatus may further comprise a bracket with two arms and a mounting surface, and a channel bar attached between ends of the two arms.
- the channel bar has dimensions adapted to fit closely within and pass through the channel of the mount body.
- the bracket has two opposing walls and a sidewall disposed therebetween, and the mount body includes a pair of flanges, one flange of the pair on each side of the mount body, each flange having an opening therein.
- a first wall of the two walls of the bracket enters the channel of the mount body and has openings that align with the openings of the flanges for receiving fasteners therethrough that secure the first wall to the flanges.
- a second wall of the two walls has openings therein for receiving fasteners therethrough that secure the second wall to a surface .
- the invention is related to an apparatus comprising a mount body, a lighting assembly, attached to the mount body, that houses a directional light source, and a camera assembly, attached to the mount body, that houses an RGB (read green blue) camera and a depth camera that capture image information within their fields of view.
- the camera assembly has a mounting surface upon which the depth camera is fixed and a plurality of support mounts of different heights attached to a frame of the camera assembly.
- the RGB camera is mounted to a board supported by the plurality of support mounts of different heights and held at a non-zero offset angle relative to the mounting surface upon which the depth camera is fixed.
- the apparatus further comprises a control-board assembly that is attached to the mount body.
- the control-board assembly is in communication with the camera assembly to receive image information captured by the cameras and with the lighting assembly to control operation of the directional light source.
- the control-board assembly houses control boards that include a processor configured to receive and process images captured by the camera assembly and to operate the directional light source in response to the processed images.
- the support mounts may have rivet holes, and the camera assembly may further comprise push rivets that pass through the board into the rivet holes of the support mounts to secure the RGB camera within the camera assembly.
- the mount body may have a channel extending therethrough.
- the channel has opposing upper and lower surfaces and a side wall therebetween.
- the sidewall has two angled surfaces that determine a full range of angles at which the mount body can be mounted to a rail.
- One of the surfaces of the channel may have a retaining boss extending therefrom. The retaining boss is located and sized to align with and fit within a groove of the rail.
- the apparatus may further comprise a bracket with two arms that meet at a mounting surface, and a channel bar attached between ends of the two arms.
- the channel bar has dimensions adapted to fit closely within and pass through the channel of the mount body.
- the bracket has two opposing walls and a sidewall disposed therebetween, and the mount body includes a pair of flanges, one flange of the pair on each side of the mount body, each flange having an opening therein.
- a first wall of the two walls of the bracket enters the channel of the mount body and has openings that align with the openings of the flanges for receiving fasteners therethrough that secure the first wall to the flanges.
- a second wall of the two walls has openings therein for receiving fasteners therethrough that secure the second wall to a surface.
- the invention is related to an apparatus comprising a mount body by which to secure the apparatus to a rail.
- the mount body has a channel sized to receive the rail therethrough.
- the channel has a sidewall disposed between opposing walls.
- the sidewall has multiple angled surfaces that determine a full range of angles at which the rail can be secured to the mount body.
- the apparatus further comprises a camera assembly housing a camera, a light-guidance assembly, and a control-board assembly.
- the camera assembly is attached to the mount body such that the camera has a field of view that faces downwards when the apparatus is secured to the rail.
- the light-guidance assembly is rotatably attached to the mount body and houses one or more light sources.
- the control- board assembly is attached to the mount body and is in communication with the camera assembly to receive image information captured by the cameras and with the lighting assembly to control operation of the one or more light sources.
- the control -board assembly houses control boards configured to receive and process images captured by the camera assembly and to rotate the light- guidance assembly and operate the one or more light sources in response to the processed images.
- One of the surfaces of the channel may have a retaining boss extending therefrom.
- the retaining boss is located and sized to align with and fit within a groove of the rail.
- the apparatus may further comprise a bracket with two arms that end at a mounting surface, and a channel bar attached between ends of the two arms.
- the channel bar has dimensions adapted to fit closely within and pass through the channel of the mount body.
- the bracket has two opposing walls and a sidewall disposed therebetween, and the mount body includes a pair of flanges, one flange of the pair on each side of the mount body, each flange having an opening therein.
- a first wall of the two walls of the bracket enters the channel of the mount body and has openings that align with the openings of the flanges for receiving fasteners therethrough that secure the first wall to the flanges.
- a second wall of the two walls has openings therein for receiving fasteners therethrough that secure the second wall to a surface.
- the camera assembly has a depth sensor fixed to a mounting surface and a plurality of support mounts of different heights attached to a frame of the camera assembly, and wherein the image sensor is mounted to a board supported by the plurality of support mounts and held at a non-zero offset angle relative to the mounting surface to which the depth sensor is fixed.
- the support mounts may have rivet holes, and the camera assembly may further comprise push rivets that pass through the board into the rivet holes of the support mounts to secure the image sensor within the camera assembly.
- the one or more light sources includes a directional light source fixed to a laser assembly
- the apparatus further comprises a first motor operably coupled to the lighting assembly to pan the directional light source horizontally and a second motor operably coupled to the laser assembly to tilt the directional light source vertically.
- FIG. 1 is an isometric right-side view of an embodiment of a computer-vision-based object tracking and guidance module, including a control-board assembly, a camera assembly, a mount body, and a lighting assembly.
- FIG. 2 is a detail view of a panel on one side of the control -board assembly of FIG. 1.
- FIG. 3 is a detail view of a snap hook used to join a dome-shaped cover of the lighting assembly with a laser tilt base.
- FIG. 4 is a left side view of the embodiment of the module of FIG. 1 secured to a mounting rail.
- FIG. 5 is a diagram of the region of the module that secures to the mounting rail.
- FIG. 6 is bottom view of a section of the mount body having two angled surfaces that determine the range of possible angles at which the module can attach to the mounting rail.
- FIG. 7 is a top-down view of the module mounted on the rail at a first angle (e.g., -25 degrees) for the camera assembly to be directionally pointed towards the module’s left.
- a first angle e.g., -25 degrees
- FIG. 8 is a top-down view of the module mounted on the rail at a second angle (e.g., 0 degrees) for the camera assembly to be directionally pointed forward of the module .
- a second angle e.g., 0 degrees
- FIG. 9 is a top-down view of the module mounted on the rail at a third angle (e.g., 25 degrees) for the camera assembly to be directionally pointed towards the module’s right.
- FIG. 10 is a bottom view of the module, with the laser slot in the dome-shaped cover continuing along the bottom or crown of the dome.
- FIG. 11 is a top-down view of the module with a section line bisecting the module through the camera assembly, the mount body, lighting assembly, and the control-board assembly.
- FIG. 12 is a section view of the module in accordance with the section line of FIG. 11.
- FIG. 13 is an exploded view the module including the control-board assembly, the mount body, the camera assembly, and the lighting assembly.
- FIG. 14 is an exploded view of the control-board assembly including a processor core board, a POE+ board, a motor control board, and a spacer board.
- FIG. 15 is a front view of the camera assembly, including the RGB camera and the depth sensor, with a section line passing lengthwise through the housing of the camera assembly.
- FIG. 16 is a section view of the camera assembly in accordance with the section line of FIG. 15.
- FIG. 17 is a detail view of the RGB camera mounted at an offset angle relative to a mounting surface of the depth camera.
- FIG. 18 is an exploded view of the pan mount assembly, including the circular pan pivot base, an optical sensor board, and the stepper motor.
- FIG. 19 is an exploded view of a laser assembly, including a hub for receiving the shaft of a stepper motor, a laser pivot base, a laser pivot top, and the laser.
- FIG. 20 is an exploded view of the laser tilt assembly, including a laser mount upright, a laser tilt base, a hub, an optical sensor board, a stepper motor, and the laser assembly of FIG. 19.
- FIG. 21 is an isometric view of an embodiment of a bracket by which to mount the module to an overhead rail.
- FIG. 22 is an isometric view of another embodiment of a bracket by which to mount the module in a variety of configurations.
- FIG. 23 is an isometric view of another embodiment of a bracket by which to mount the module to a surface, for example, a shelf.
- FIG. 24 is an isometric view of the bracket of FIG. 21 attached to the module.
- FIG. 25 is an isometric view of the bracket of FIG. 22 attached to the module in a first configuration.
- FIG. 26 is an isometric view of the bracket of FIG. 23 attached to the module.
- Computer-vision-based object tracking and guidance apparatuses described herein can be used to provide a secure, self-service, buy-online-pickup-in-store (BOPIS) solution without the
- a module can register and track objects within a module’s field of view and, additionally or alternatively, guide users to specific objects using light, audio, or both.
- the module is comprised of a computer-vision system connected to and controlling a guidance system.
- the computer-vision system includes an image sensor, a depth sensor, or both, connected to a data processing unit capable of executing image-processing algorithms.
- the guidance system contains a directional light source and a mechanical and/or electrical system for the operation and orienting of the directional light source or audio system.
- the data processing unit acquires information or data about an object.
- the information may include, for example, a product description, package dimensions, addressor and addressee data.
- a code reader may acquire the information from a label affixed to or adjacent the object and transmit that information to the module. This object may be in the process of being placed within or being picked up from the module’s field of view, typically on a shelf or other support surface.
- the guidance system can direct light at or illuminate the location where the object should be placed and/or play audio that instructs the user to where the object should be placed.
- the computer-vision system can then detect a presence and location of an object within the module’s field of view based on changes detected in one or more images captured by the camera assembly and determine whether the placement of the object occurred as expected. If object placement is correct, the data-processing unit registers the object at the placement location.
- the module can further signify correct placement by illuminating a green light (LED), for example, or audibly announcing successful placement. Conversely, the module can further signify incorrect placement by illuminating a red light (LED), for example, or audibly announcing detection of an error.
- LED green light
- red light LED
- the data-processing unit determines the registered location of the object being picked up based on the information acquired about the object, and the light-guidance system can direct light at or illuminate the object at that location or audibly direct a user to the location.
- the computer-vis on system can then detect whether the object has been removed from that location based on changes detected in the one or more images captured by the camera assembly.
- the computer-vision system can also determine whether the wrong package has been removed.
- the module can use light-guidance (e.g., illuminate a red or green light) to signify success or failure.
- the module 100 includes a control-board assembly 102 connected to a top side of a mount body 104, a camera assembly 106 connected to a front side of the mount body 104, and a lighting assembly 108 rotatably connected to a bottom side of the mount body 104.
- the dimensions of the module 100 are approximately 260mm x 150mm x 225mm.
- the control-board assembly 102 has a panel 110 (encircled by circle A) with various electrical connectors 112 for communicating with control boards housed within the control -board assembly 102.
- the control boards perform the operations of object registration, image processing, object tracking, and light guidance.
- the mount body 104 has in the shown embodiment two joined sections: an upper mount section 114 and a lower mount section 116.
- the joined sections of the mount body form a channel 118 that receives a rail (not shown).
- the channel 118 is defined by opposing upper and lower interior surfaces of the upper and lower mount sections 114, 116, respectively, and a side wall disposed therebetween. This side wall has two angled surfaces (described in FIG. 6) that determine different angles at which the module 100 may be mounted to the rail.
- the upper mount section 114 has two mounting flanges 120-1, 120-2 (generally 120) on opposite sides of the section 114, each flange 120 having a kidney shaped opening 122 through which a fastener 124 extends when attaching the module to the rail.
- the upper mount section 114 also has an arm 126 to which the camera assembly 106 is fastened.
- sections of the mount body 104 may be one section of unitary, indivisible construction.
- the camera assembly 106 has an RGB camera (i.e., image sensor) 128, a depth sensor 130, and side vents 132 that allow heat generated by the internal optical sensor(s) 128, 130 to leave the assembly.
- the RGB camera 128 provides color information
- the depth sensor 130 provides estimated depth for each pixel of a captured image.
- the slant of the raised arm 126 holds the camera assembly such that the field of view of the RGB camera 128 and that of the depth sensor 130 face forward and generally downwards.
- One embodiment of the camera assembly 106 has no depth sensor 130.
- references made herein to the field of view of the camera assembly or to the field of view of the module corresponds to the field of view of the camera 128 or to the intersection (i.e., overlap) of the fields of view of the camera 128 and depth sensor 130.
- the camera 128 and depth sensor 130 are each capable of data acquisition at 3 meters, and the module 100 monitors a 4-foot wide by 8-foot high by 1.5-foot deep zone, depending on the distance of the module from its target viewing area and/or on the fields of view of the RGB camera and depth sensor. This zone is monitored for changes in depth and/or color.
- the control boards of the control-board assembly 102 are in communication with the camera and optional depth sensor (via wiring that runs from the camera assembly directly to a camera receptacle 202 (FIG. 2) to acquire the color and pixel information captured by these optical sensors.
- the RGB camera 128 can be an ELP 5megapixel USB camera module, manufactured by Ailipu Technology Co., Ltd of Shenzhen, Guangdong, China, and the depth camera can be an INTEL® REALSENSETM Depth Camera D435, manufactured by Intel Corp, of Santa Clara, CA.
- the lighting assembly 108 has a translucent dome-shaped cover 134 with a frontally located slot 136.
- the slot 136 runs vertically along the side of the cover 134 and extends along the bottom (or crown) of the dome-shaped cover 134.
- Directed light e.g., laser
- the control boards are in communication with one or more light sources (not shown) in the lighting assembly (via wiring that runs from the lighting assembly, through the mount body, and into an opening in the base of the control-board assembly), to control each light source in order to provide light guidance to certain objects or areas within the field of view of the camera assembly 106, depending upon the object or region of interest.
- a pan pivot base 138 is fixed to the lower mount section 116.
- the lighting assembly 108 further comprises a laser tilt base 139 which is rotatably coupled to the pan pivot base 138.
- the dome-shaped cover 134 is removably secured to the laser tilt base 139 by three snap hooks 140 (only two are visible in FIG. 1).
- the snap hooks 140 are evenly spaced (120 degrees apart) around the circumference of the laser tilt base 139 and the dome-shaped cover 134.
- One of the latches 140 (surrounded by circle B) is directly in line with the laser slot 136.
- the dome-shaped cover 134 has three tabs (of which tabs 142-1 and 142-2 (generally, 142) are shown).
- the third tab is located on the far side of the dome -shaped cover, directly opposite the laser slot.
- the two tabs 142-1, 142-2 are spaced 135 degrees apart from the far side tab, one on either side of the third tab.
- the uneven spacing between the tabs ensures there is only one way to attach the cover 134 to the laser tilt base 139, to ensure correct assembly of the dome-shaped cover.
- the dome shaped cover 134 is effectively keyed by its three indexing tabs 142.
- the laser tilt base 139 When the laser slot 136 faces forward, in line with the camera assembly 106, the laser tilt base 139 is considered to be at center.
- the rotatable laser tilt base 139 can rotate a total of 60°; 30° to either side of center.
- the internally located laser not shown
- the dome -shaped cover rotates with it, thereby changing the direction in which the laser points and towards which the laser slot faces.
- the module 100 When deployed for operation, the module 100 is mounted in a fixed position with its RGB camera 128 and optional depth camera 130 facing a target area of interest, for example, a supporting surface or an object-holding area.
- the supporting surface include, but are not limited to, desktops tables, shelves, and floor space.
- the object-holding area can be in a store, supermarket, warehouse, business enterprise, inventory, room, closet, hallway, cupboards, lockers, each with or without secured access.
- identified and tracked objects include, but are not limited to, packages, parcels, boxes, equipment, tools, food products, bottles, jars, and cans. (People may also be identified and tracked.)
- Each separate optical sensor 128, 130 has its own perspective of the area and of the objects placed on the supporting surface.
- Modules 100 may be adjustably mounted, for example, on a sliding rail in a surveillance configuration so that all comers of an enterprise are covered. Although particularly suited for mounting to an overhead rail, modules can also be secured to other types of structures, for example, walls, posts, shelves, and pillars. In general, these modules are small and non-intrusive and can track the identifications and paths of individuals through the enterprise, for example, as described in U.S. Pat. Pub. No. US-2018-0164103-A1, published June 14, 2018, titled“System and Method of
- FIG. 2 shows a detail view of the region surrounded by the circle A in FIG. 1, which includes the panel 110 on one side of the control-board assembly 102.
- the panel 110 has ports for various electrical receptacles, including a POE+ (power over Ethernet) port 200 for Internet communications, an RGB camera receptacle 202, a motor/optical sensor receptacle 204, a lighting assembly receptacle 206, and a depth sensor receptacle 208.
- POE+ power over Ethernet
- the module 100 can be added to a network and remotely communicated with over the Internet.
- the module may communicate with one or more servers (i.e., server system), which may perform third- party services, such as“cloud services” for the module.
- server system i.e., server system
- the“cloud” refers to software and services that run on a remote network, such as the Internet.
- power is supplied to the module by the POE+ connection and other operations can be performed, for example firmware updates, and remote troubleshooting.
- a device e.g., computer
- the motor/optical sensor receptacle 204 allows a device to communicate with and control pan and tilt stepper motors and optical sensor boards for pan and tilt motion of a laser gimbal (see 1310 in FIG. 13).
- the lighting assembly receptacle 206 communications can be had directly with the directional light source and light-emitting diodes housed within the lighting assembly 108, to test their operation.
- the depth sensor receptacle 208 Above the RJ45 receptacle 200 are the depth sensor receptacle 208, an HDMI (High-definition Multimedia Interface) port 210, a 5v DC power input port 212, and a power button 214.
- the depth sensor receptacle 208 enables communication with the depth sensor 130 of the camera assembly 106.
- the HDMI port 210 the module 100 can transmit streams of audio and video to another device (e.g., a high-definition television or display).
- the power button 214 turns power on and off to the processor board (not shown) within the control -board assembly 102.
- FIG. 3 shows a detail view of the region surrounded by circle B in FIG. 1.
- a pin 300 extends from a receded edge of the laser tilt base 139.
- the pin 300 ends with a tip 301 that is larger than the diameter of the pin’s needle.
- Located on the base edge of the dome-shaped cover 134 is a pair of opposing, resilient snap hooks 302 with a gap 304 therebetween positioned to receive the tip of the pin 300 (when the dome-shaped cover 134 is properly aligned with the laser tilt base 139).
- the hook- ends of the snap hooks lean toward each other and form a V -shape entry for guiding the tip of the pin into the gap.
- the tip of the pin 300 enters the gap 304 between snap hooks 302, the tip urges the two snap hooks 302 away from each other.
- the snap hooks 302 snap towards each other, grasping the pin at the neck just behind the tip.
- the edge of the laser tilt base 139 meets with the edge of the dome-shaped cover 134 when the tip of the pin has fully entered the gap between the snap hooks.
- a slot 306 to the left of each snap hook is used to disconnect the dome-shaped cover 134 by inserting and rotating the flat end of a screwdriver, forcing the snap hooks to disengage and release.
- FIG. 4 shows a left side view of the module 100 having a mounting rail 400 (cross-section shown) disposed in the channel 118 defined by the upper and lower mount sections 114, 116, respectively, of the mount body 104.
- the upper mount section 114 has two angled surfaces that provide hard stops for determining the angle installation range of the mounting rail 400. Only one of the two angled surfaces 402 is visible in FIG. 4; the other angled surface is on the other side of the mount body 104, opposite and symmetric to the visible angled surface 402.
- a retaining boss 404 extends into the channel 118 from a surface of the upper mount section 114.
- the mounting rail 400 has a lengthwise groove 406; the retaining boss 404 is sized to fit closely within the groove 406 when one end of the rail 400 enters and slides through the channel 118. Disposed above the upper mount section 114, directly above where the rail 400 passes through the channel 118, is the control-board assembly 102; the placement of the control -board housing 102 provides room for the wiring that comes up through the module without the wiring having to rotate and bend.
- the arm 126 of the mount body 104 Extending from the upper mount section 114 is the arm 126 of the mount body 104.
- the arm 126 holds the camera assembly 106 at a fixed downwards facing slant.
- the downward-facing slant accommodates the installation of such modules at an elevated position relative to the object-holding area, to place as much of the object-holding area as possible within the fields of view of the cameras 128, 130 housed in the camera assembly 106.
- the arm 126 is movable to allow for a manual or automated change in the mounting angle of the camera assembly.
- FIG. 5 shows a detail view of the region surrounded by circle C in FIG. 4, the region in which the module 100 is secured to the mounting rail 400.
- the rail 400 is fixed at a location in front of or alongside of the object-holding area and is of sufficient length to ensure that installation of the module at any location along the rail will achieve the desired coverage of the object-holding area in the field of view of the camera assembly.
- the width of the rail 400 is small enough to fit within the channel 118 of the mount body 104.
- the retaining boss 404 projects into the groove 406 of the mounting rail 400.
- the retaining boss guides and holds the mounting rail 400 to the module before screws 124 (FIG. 1) pass through the flanges 120 (FIG. 1) of the mount body 104 into T-nuts in the rail and tighten to hold the module 100 in place.
- FIG. 6 shows a bottom view of the upper mount section 114 with the two angled surfaces 402-1, 402-2 (generally, 402).
- the angled surfaces 402 are offset from each other by 50 degrees. These surfaces 402 determine the range of possible angles at which the module 100 can attach to the mounting rail 400.
- the retaining boss 404 resides generally central to that half of the upper mount section 114 that secures to the rail 400.
- FIG. 7 shows a top-down view of the module 100 mounted on the rail 400 at a first angle (here, - 25 degrees) for the camera assembly 106 to be directionally pointed towards the module’s left.
- a first angle here, - 25 degrees
- the side of the rail 400 rests flush against the angled surface 402-2 (FIG. 6).
- Mounting screws 124 secure the module to the rail 400, each screw entering the same groove 406 in the rail as the retaining boss 404 (FIG. 4).
- Rectangular receptacles 700-1 and 700-2 connect to the pan motor and optical sensor board wiring (described in FIG. 18).
- a large circular opening 702 in the mount body is for wiring to pass through for the LED board, laser, tilt motor, and optical sensor board that are part of the lighting assembly 108, as described in connection with FIG. 12.
- FIG. 8 shows a top-down view of the module 100 mounted on the rail 400 at a second angle (e.g., 0 degrees) wherein the camera assembly 106 is directionally pointed forward of the module.
- the rail 400 tangentially touches the point of intersection between the two angled surfaces 402-1, 402-2 (FIG. 6).
- the mounting screws 124 are centrally located in the flanges’ kidney -shaped openings 122. The ends of the screws enter the rail groove 406.
- Fasteners 800, 802 (e.g., screws) secure the arm 126 to the camera assembly 106.
- FIG. 9 shows a top-down view of the module 100 mounted on the rail 400 at a third angle (e.g.,
- Mounting screws 124 pass through the flanges 120 and secure the module to the rail 400. Each screw enters the same groove 406 in the rail as the retaining boss (not shown).
- the module can be installed at any angle between those shown in FIG. 6 and FIG. 8, its full range being 50 degrees.
- the different mounting angles allow the module to be placed anywhere along the mounting rail in front of a shelf and have a field of view that covers the shelf. For example, consider a mounting rail that runs parallel to the full width of shelving in front of it. A module facing the shelving and mounted on the far left of the rail (and thus of the shelving) can be angled to face towards the right; a module mounted at the center of the rail can be angled to face forward; and a module mounted at the far right of the rail can be angled to face left.
- FIG. 10 shows a bottom view of the module 100, with the laser slot 136 in the dome -shaped cover 134 continuing along the bottom or crown of the dome-shaped cover.
- Directional light e.g., laser light
- the laser slot can point directly below the dome-shaped cover and, thus, immediately below and slightly behind (the camera assembly 106 being considered at the front) the module.
- FIG. 11 shows a top-down view of the module 100 with a section line AA bisecting the module 100 through the camera assembly 106, the mount body 104, the lighting assembly 108 (scarcely visible in the figure), and the control-board assembly 102.
- FIG. 12 shows a section view of the module 100 in accordance with the section line AA of FIG.
- control-board assembly 102 the mount body 104, the camera assembly 106, and the lighting assembly 108.
- the control-board assembly 102 houses a complex of control boards 1200-1, 1200-2, 1200-3 (generally, 1200), and a spacer board 1200-4 in a tower arrangement.
- Control board 1200-1 atop the tower, is the processor core board 1200-1 that provides the computational power to run algorithms and process images.
- a processor (not shown) which executes the algorithms and performs image processing.
- a heat sink 1202. Mounted to the processor core board 1200-1 is a heat sink 1202.
- the control board 1200-2 Disposed below the control board 1200-1 is the control board 1200-2, also referred to as the POE+ board.
- the POE+ board includes the RJ45 receptacle 200 (FIG.
- a component 1204 e.g., a chipset, integrated circuit
- a component 1204 e.g., a chipset, integrated circuit
- the control board 1200-3 which connects the complex of control boards 1200 to the stepper motors, optical sensor boards, the RGB camera 128, and the laser 1206 and LED board 1208 of the lighting assembly 108.
- the control board 1200-4 Disposed between the processor control board 1200-1 and the POE+ board 1200-2 is the control board 1200-4, also referred to as the spacer board.
- the spacer board 1200-4 provides communication among the processor core board 1200-1, the POE+ board 1200-2, and the motor control board 1200-3.
- a component on the spacer board 1200-4 converts power from 9v to 5v for the processor control board 1200-1.
- the mount body 104 includes the upper mount section 114, the lower mount section 116, and the arm 126.
- the upper mount section 114 includes the retaining boss 404, which projects into the channel 118 between the sections 114, 116.
- Fasteners 1210 (only one of three shown) secure the control-board assembly 102 to the upper mount section 114
- fasteners 1212 (only one of three shown) secure the upper mount section 114 to the lower mount section 116
- fasteners 1214 (only one of three shown) secure the lower mount section 116 to the pan pivot base 138.
- Bosses in the lower mount section 116 ensure assembly can occur in only one manner.
- Two electrical connections 1216 pass through the two sections 114, 116, for the pan motor and accompanying optical sensor board.
- the lower mount section 116 includes a cavity 1218, within which a stepper motor 1220 is disposed.
- the shaft 1222 of the stepper motor 1220 projects into the laser tilt base 139, by which the stepper motor 1220 rotates the laser tilt base 139, and thus the lighting assembly 108.
- the laser tilt base 139 can rotate a total of 60°, 30° to either side of center.
- the camera assembly 106 houses the RGB camera 128 and the depth sensor 130. Because of the slant at which the arm 126 holds the camera assembly 106, the lower mount section 116 has a recessed region 1224 that allows the bottom of the camera assembly 106 to extend into it.
- the lighting assembly 108 houses a laser tilt assembly 1225, which includes a wheel-shaped laser assembly 1226 with the laser 1206 housed therein.
- the laser 1206 is a class IIIR red laser.
- the light-emitting end of the laser 1206 is at the circumference of the wheel-shaped laser assembly 1226.
- the laser assembly 1226 rotates about an axis 1228 that is perpendicular to the drawn page. Rotating the laser assembly 1226 tilts the laser and, thus, the pointing direction of the laser; the laser tilts vertically, in accordance with the rotation of the laser assembly.
- the full range by which laser assembly can tilt the laser is 135 degrees.
- Below the laser assembly 1226 is the LED board 1208 having an array of LEDs.
- the LED board 1208 produces RGB light. Under control of the processor, the LED board can provide a variety of signals, for example, red is a warning, green is success, blinking is an attractive alert.
- FIG. 13 shows an exploded view the module 100 including the control -board assembly 102, the mount body 104, the camera assembly 106, and a rotatable laser gimbal 1310, which includes the lighting assembly 108 with the laser tilt base 139.
- the exploded view illustrates the connectivity among the various assemblies of the module 100.
- the control-board assembly 102 includes a cover 1300 that houses a tower of control boards 1200. Fasteners 1210, three in all, pass through the cover 1300 and the base 1304 of the control-board assembly 102 and attach to the upper mount section 114 of the mount body 104.
- Three fasteners 1212 secure the upper mount section to the lower mount section 116 of the mount body 104; fasteners 800, 802 secure the camera assembly 106 to the arm 126 of the mount body 104; and a fastener 1214 (FIG. 12) secures the lower mount section 116 to a pan mount assembly 1306, which includes the pan stepper motor 1220.
- the shaft 1222 of the pan stepper motor 1220 couples to the laser tilt base 139 disposed within the lighting assembly 108.
- FIG. 14 shows an exploded view of one embodiment of the control-board assembly 102 (cover omitted) including the processor core board 1200-1, the POE board 1200-2, the motor control board 1200-3, and the spacer board 1200-4.
- the exploded view illustrates the connectivity among the various boards 1200 (collectively) of the control-board assembly 102.
- the processor core board 1200-1 includes the heat sink 1202, the depth sensor receptacle 208, the HDMI receptacle 210, and the power input 212.
- the POE board 1200-2 includes the RJ45 receptacle 200, the POE+ integrated circuit 1204, and the electronic component 1205 (FIG. 12).
- the motor control board 1200-3 includes the camera receptacle 202, motor/optical sensor receptacle 204, and lighting assembly receptacle 206.
- the motor control board 1200-3 connects the board stack to the stepper motors, optical sensor boards, RGB camera, laser, and LED board.
- the tower of control boards 1200 is built on the base 1304, which includes a lower portion of the side panel 110.
- the cover 1300 (FIG. 13) couples to the base 1304. Pin connectors 1400 electrically connect each pair of neighboring boards 1200 and provide electrical connectivity throughout the tower.
- FIG. 15 shows a front view of the camera assembly 106 with the RGB camera 128 adjacent to the depth sensor 130 (which includes an IR (infrared) projector and two IR cameras offset from the projector by different distances to enable three-dimensional readings).
- the depth sensor 130 which includes an IR (infrared) projector and two IR cameras offset from the projector by different distances to enable three-dimensional readings.
- Some commercially available depth cameras i.e., depth sensors
- the dimensions of the field of view of the accompanying RGB camera do not match and may be smaller than those of the depth camera, and thus may be less suitable for object-tracking applications. Accordingly, the separate RGB camera 128 is selected to have a field of view with dimensions that closely match those of the depth sensor 130.
- Section line B passes lengthwise through the housing of the camera assembly 106.
- FIG. 16 shows the section view of the camera assembly 106 in accordance with the section line BB of FIG. 15.
- the RGB camera 128 is mounted to a printed circuit board (PCB) 1600.
- the RGB camera 128 is mounted at a non-zero-degree offset angle relative to the depth camera 130. Because the RGB camera and depth camera, being adjacent each other, have fields of view that are spatially offset from each other, the non-zero-degree offset angle increases the overlap of their fields of view.
- the offset angle makes mounting the camera with screws difficult because the bearing surfaces of the screws do not contact the PCB board 1600 uniformly.
- plastic push rivets 1602 are used to fasten the RGB camera to the housing frame 1604. The plastic push rivets allow for the misalignment of the hole axis with the mounting surface.
- FIG. 17 shows a detail view of the region surrounded by circle D in FIG. 16.
- the RGB camera 128 is mounted at a 3 -degree offset angle 1700 relative to a mounting surface 1702 of the depth camera 130.
- the offset angle 1700 tilts the RGB camera towards the depth camera 130.
- the technique includes two pairs of support mounts 1704-1, 1704-2 (generally 1704) of different heights (support mounts 1704-2 being the shorter of the two pair).
- each pair of support mounts has one support mount in the foreground obscuring the other in the background.
- the support mounts 1704 support the board 1600 that holds the RGB camera 128 at the non-zero-degree angle.
- the support mounts have rivet holes to receive the plastic push rivets.
- FIG. 18 shows an exploded view of one embodiment of the pan mount assembly 1306, including the circular pan pivot base 138, an optical sensor board 1800, and the stepper motor 1220 (FIG. 12). The exploded view is of the underside of the pan mount assembly 1306.
- the shaft 1222 of the stepper motor passes through a central opening 1802 of the pan pivot base 138 from the topside of the pan mount assembly 1306; the optical sensor board 1800 attaches to the underside, with a four-pin wiring connector of the sensor 1804 extending through a rectangular aperture 1806.
- the optical sensor 1800 determines when the stepper motor has rotated the pan pivot base 138 to a specific location. This specific location corresponds to when two projections, referred to as bosses 2024 on the laser tilt base 139 (FIG. 20) interrupt a light beam sent out by the emitting diode portions 1810 of the optical sensor 1800.
- the pan pivot base 138 includes a pair of arcuate openings 1808-1, 1808-2 (generally 1808) through which wires pass.
- Wires passing through opening 1808-1 are for the laser and LED hoard; wires passing through 1808-2 are for the tilt motor and tilt optical sensor board.
- Each of the arcuate openings 1808 spans 80 degrees, 40 degrees each side of center, which gives room for the wires to travel 60 degrees, 30 degrees each side of center.
- FIG. 19 shows an exploded view of one embodiment of the laser assembly 1226, including a 3- screw hub 1900 (for receiving the shaft of a stepper motor - not shown), a laser pivot base 1902, a laser pivot top 1904, and the laser 1206 (e.g., FIG. 12).
- the hub 1900 fits closely into a compartment 1906 on one side of the laser pivot base 1902 and is secured therein by three fasteners 1908 that enter the hub from the other side of the laser pivot base 1902.
- the hub 1900 can be assembled in only one way because of a notch.
- Fasteners 1910 join the laser pivot base 1902 to the laser pivot top 1904.
- the laser pivot top 1904 has a compartment 1912 for holding the laser 1206 in position where the light-emitting end 1914 of the laser is at an opening 1916 formed by the joined laser pivot base and top. Wiring to the laser 1206 exits through the center hole 1905.
- a set screw 1918 which passes through a press-fit expansion thread 1922, secures the laser 1206 within the laser assembly 1226.
- FIG. 20 shows an exploded view of one embodiment of the laser tilt assembly 1225, including a laser mount upright 2000, the laser tilt base 139, a 3 -screw hub 2004, an optical sensor board 2006, a stepper motor 2008, and the laser assembly 1226 of FIG. 19.
- the laser tilt base 139 has a
- the laser tilt base 139 is adapted to couple to the pan pivot base 138 (FIG. 18). When the shaft 1222 of the stepper motor 1220 (FIG. 18) turns, the laser tilt base 139 rotates with it, thereby panning the direction of the laser light horizontally.
- the laser tilt base 139 also has recesses 2011 sized, shaped, and appropriately spaced apart to receive the tabs 142 (FIG. 1) of the dome-shaped cover 134 (FIG. 1).
- the shaft 2014 of the stepper motor 2008 passes through an opening 2016 in the laser mount upright 2000 and enters the central keyed opening of the hub 1900 (FIG. 19) of the laser assembly 1226.
- a set screw 2018 holds the shaft 2014 in place within the hub 1900.
- fasteners 2020 secure the stepper motor 2008 to the laser mount upright 2000.
- fasteners 2022 secure the optical sensor board 2006 to the laser mount upright 2000.
- the optical sensor 2006 determines when the stepper motor 2008 has rotated the laser assembly 1226 (FIG. 19) to a specific location that corresponds to when two projections 1920 (FIG. 19) on the laser assembly 1226 interrupt a light beam sent out by the emitting diode portions 2026 of the optical sensor board 2006.
- Bosses 2024 interrupt the pan motion optical sensor board 2006.
- Fasteners 2028 secure the laser mount upright 2000 to the laser tilt base 139.
- Pin receptacles 2030 provide electrical connectivity between the motor control board 1200-3 (FIG. 14) and the stepper motor 2008, the LED board 1208 (FIG. 12), and the laser 1206 (FIG. 19).
- FIG. 21 shows an alternative embodiment by which to mount the module 100 to an overhead rail.
- a v-shaped bracket 2100 with two arms 2102-1, 2102-2 that secure to opposite sides of a channel bar 2104.
- the channel bar 2104 is placed within the channel 118 of the module (e.g., as shown in FIG. 24).
- Flange bolts 124 (FIG. 1) secure the module to the channel bar.
- the mounting surface 2106 has holes 2110 for receiving mounting bolts to secure the bracket 2100 to an overhead rail.
- the overhead rail runs generally perpendicular to the channel bar 2104. In another embodiment, the overhead rail runs parallel to the channel bar.
- elliptical openings 2108 that provide space to enable an alien key to reach the screws 124 (FIG. 1) to tighten the module in place.
- FIG. 22 shows another embodiment by which to mount the module 100 to a structure, such as a rail, a post, or a flat surface.
- a rectangular-shaped bracket 2200 has two opposing sides 2202-1, 2202-2, a channel bar 2204, and a fastening surface 2206.
- the fastening surface 2206 has holes of different shapes and sizes including holes 2208, small and large arcuate openings 2210, a circular opening 2212, and slots 2214.
- the holes 2208 can be used to receive mounting bolts to secure the bracket to the structure.
- the large arcuate openings provide clearance for the grommet used to protect the POE+ cable coming from the rail to which the bracket is mounted.
- the small arcuate openings provide space for the fastening bolts to pass through surface 2206 and secure the bracket 2200.
- the circular opening 2212 is used for when the bracket 2200 is mounted with the channel bar 2204 perpendicular to the rail (i.e., boom), and the arcuate openings of the same diameter are for when the bracket 2200 is mounted on the rail at an angle.
- the sides 2202-1, 2202-2 each has several punch-out holes of two different sizes: holes 2216-1, 2216-2, and 2216-3 are near an edge of the side 2202-1 and are larger in size than holes 2218-1, 2218-2, 2218-3, and 2218-4, which form a rectangular constellation.
- the rectangular-shaped bracket 2200 can be mounted in at least six different ways. FIG.
- FIG. 25 shows a first configuration in which to mount the bracket 2200 under a rail or under a shelf.
- bolts 2222 fasten the channel bar 2204 at both of its ends to the opposing side surfaces 2202-1, 2202-2.
- the channel bar 2204 is placed within the channel 118 of the module 100 and flange bolts 124 (FIG. 1) secure the module to the channel bar.
- an overhead rail runs generally perpendicular to the channel bar 2204.
- the bracket 2200 can be mounted against a wall or similar surface by fastening the surface 2206 flush against the surface using four bolts through slots 2214.
- the channel bar 2204 is mounted in holes 2216-3 and 2216-2, or in holes 2216-2 and 2216-1, with the groove in the channel bar 2204 parallel to and facing the panel 2220. Before mounting, the inner material of the two selected holes is punched out to allow the bolts 2222 to pass through them and into the channel bar 2204.
- the bracket 2200 can be mounted with either the side 2202- 1 or side 2202-2 pressed flush against a surface, using holes 2218-1, 2218-2, 2218-3, and 2218-4 to mount to the surface or to a circular tube measuring 1" in diameter using U-bolts.
- the bracket 2200 can be mounted with the surface 2206 flush on top of a surface or shelf and fastened using bolts and the slots 22.14.
- the bracket 2200 is upside down from that shown in FIG. 22, with the bolts 2222 fastening the channel bar 2204 to the sides 2202-1, 2202-2 as shown in FIG 22, but with the channel bar 2204 rotated 180 degrees so that groove in the channel bar is parallel to and facing away from the opposing surface 2206.
- the bracket 2200 can be mounted on a vertical rail or on a vertical surface using holes 2208 to fasten the bracket to the rail or surface.
- the channel rail 2204 is mounted either in holes 2216-3 and 2216-2 or in holes 2216-2 and 2216-1 with the groove in the channel bar being parallel to and facing the panel 2220.
- FIG. 23 shows an embodiment of a U-shaped bracket 2300 by which to attach the module 100 to a surface, for example, a shelf. Unlike the brackets 2100, 2200 of FIG. 21 and FIG. 22, respectively, this embodiment of bracket 2300 does not have a channel bar for attaching to the module.
- the bracket 2300 includes opposing walls 2302-1, 2302-2 (generally, 2302) and an orthogonal sidewall 2304 disposed therebetween. The spacing between the walls 2302, which corresponds to the height of the sidewall 2304, is wide enough to fit the lighting assembly therebetween, as shown in FIG. 26.
- the wall 2302-1 that couples to the module 100 includes a middle opening 2306 and two outer openings 2308-1, 2308-2 (generally, 2308), one outer opening 2308 on each side of the middle opening 2306.
- the middle opening 2306 is to allow for clearance of the boss 404 (FIG. 5).
- the locations of the outer openings 2308 align with the flanges 120 (FIG. 1) of the module; the size of the openings 2308 are designed to receive hardware (i.e., fasteners 124 of FIG. 1) that secure the bracket 2300 to the flanges 120.
- the openings 2308 allow fasteners 124 (FIG.
- the opposite wall 2302-2 which couples to a flat surface, has two pairs of openings 2310-1, 2310-2 for receiving hardware or fasteners that couple the bracket 2300 (and the module 100) to that surface.
- the bracket 2300 can attach to the module as shown in FIG. 26, with the wall 2302-1 passing below the flanges 120, part of the way into the channel 118. While the module 100 faces directly forward in FIG. 26, the kidney-shaped openings in the flanges 120 allow the module to be coupled at an angle facing left or right.
- aspects of the present invention may be embodied as a system, method, and apparatus.
- some aspects of the present invention may be embodied entirely in hardware, entirely in software (including, but not limited to, firmware, program code, resident software, microcode), or in a combination of hardware and software.
- references to "one embodiment” or “an embodiment” or“another embodiment” means that a feature, structure or characteristic described in connection with the embodiment is included in at least one embodiment described herein. References to one embodiment within the specification do not necessarily all refer to the same embodiment. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments.
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Economics (AREA)
- Theoretical Computer Science (AREA)
- Quality & Reliability (AREA)
- Development Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Optics & Photonics (AREA)
- Studio Devices (AREA)
- Accessories Of Cameras (AREA)
Abstract
L'invention concerne un appareil qui comprend un corps de montage à l'aide duquel l'appareil est fixé à une structure. Un ensemble caméra, fixé au corps de monture, comprend un capteur d'image conçu pour capturer des images dans son champ de vision. Un ensemble d'éclairage, relié rotatif au corps de monture, loge une ou plusieurs sources de lumière comprenant une source de lumière directionnelle. Un ensemble carte de commande, fixé au corps de montage, loge des cartes de commande comprenant un ou plusieurs processeurs configurés pour acquérir des informations concernant un objet, pour associer un emplacement dans le champ de vision du capteur d'image à l'objet, à la lumière ponctuelle émise par la source de lumière directionnelle au niveau de l'emplacement associé à l'objet par rotation de l'ensemble d'éclairage et rotation de l'ensemble laser, et, sur la base d'une image acquise à partir de l'ensemble caméra, pour détecter un changement dans le champ de vision du capteur d'image correspondant au placement ou au retrait de l'objet.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201962791413P | 2019-01-11 | 2019-01-11 | |
| US62/791,413 | 2019-01-11 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2020146861A1 true WO2020146861A1 (fr) | 2020-07-16 |
Family
ID=71516265
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2020/013280 Ceased WO2020146861A1 (fr) | 2019-01-11 | 2020-01-13 | Module de guidage et de suivi d'objet basé sur la vision artificielle |
Country Status (2)
| Country | Link |
|---|---|
| US (3) | US11089232B2 (fr) |
| WO (1) | WO2020146861A1 (fr) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CA3161662A1 (fr) | 2020-01-24 | 2021-07-29 | Position Imaging, Inc. | Kiosque ayant des capacites d'identification, d'enregistrement et de suivi d'objets avec un guidage de lumiere et/ou audio |
| CN114157787B (zh) * | 2021-11-30 | 2023-06-30 | 杭州海康威视数字技术股份有限公司 | 摄像机安装组件及摄像机 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080183328A1 (en) * | 2007-01-26 | 2008-07-31 | Danelski Darin L | Laser Guided System for Picking or Sorting |
| US20110166694A1 (en) * | 2008-06-24 | 2011-07-07 | John Philip Griffits | Computer controlled object locating system |
| US20130293684A1 (en) * | 2011-04-15 | 2013-11-07 | Faro Technologies, Inc. | Three-dimensional coordinate scanner and method of operation |
| US20170313514A1 (en) * | 2015-06-02 | 2017-11-02 | Alert Innovation Inc. | Order fulfillment system |
| US20180108134A1 (en) * | 2016-10-17 | 2018-04-19 | Conduent Business Services, Llc | Store shelf imaging system and method using a vertical lidar |
| DE102017205958A1 (de) * | 2017-04-07 | 2018-10-11 | Robert Bosch Gmbh | Verfahren zur Unterstützung bei einem Be- oder Entladevorgang eines Fahrzeugs, Steuervorrichtung und Vorrichtung zur Unterstützung bei einem Be- oder Entladevorgang eines Fahrzeugs |
Family Cites Families (309)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2408122A (en) | 1940-11-15 | 1946-09-24 | Collins Radio Co | Heterodyne direction finder with single receiver |
| CH565376A5 (fr) | 1972-08-15 | 1975-08-15 | Haas Paul | |
| US3824596A (en) | 1972-09-27 | 1974-07-16 | Southwest Res Inst | Automatic sector indicating direction finder system |
| US4018029A (en) | 1975-10-07 | 1977-04-19 | Hayssen Manufacturing Co. | Packaging apparatus |
| US4328499A (en) | 1979-10-24 | 1982-05-04 | The Marconi Company Limited | Radio direction finding systems |
| US4570416A (en) | 1983-10-03 | 1986-02-18 | Federal Express Corporation | Overnight package |
| FI78566C (fi) | 1988-04-26 | 1989-08-10 | Vaisala Oy | Foerfarande och anordning vid antenn- och mottagningssystem av en radioteodolit. |
| US5592180A (en) | 1992-08-20 | 1997-01-07 | Nexus1994 Limited | Direction finding and mobile location system for trunked mobile radio systems |
| US5343212A (en) | 1992-12-11 | 1994-08-30 | Litton Industries, Inc. | (AOA/LBI) emitter ranging method and apparatus |
| US5426438A (en) | 1992-12-30 | 1995-06-20 | Delfin Systems | Method and apparatus for adaptively determining the bearing angle of a radio frequency signal |
| US5510800A (en) | 1993-04-12 | 1996-04-23 | The Regents Of The University Of California | Time-of-flight radio location system |
| EP0673182B1 (fr) | 1994-03-18 | 2000-03-29 | Lg Electronics Inc. | Procédé de commande automatique d'un four à micro-ondes |
| US5600330A (en) | 1994-07-12 | 1997-02-04 | Ascension Technology Corporation | Device for measuring position and orientation using non-dipole magnet IC fields |
| ES2124023T3 (es) | 1994-10-14 | 1999-01-16 | United Parcel Service Inc | Sistema de seguimiento de paquetes multifase. |
| US5671362A (en) | 1995-04-04 | 1997-09-23 | Cowe; Alan B. | Materials monitoring systems, materials management systems and related methods |
| US5574468A (en) | 1995-04-20 | 1996-11-12 | Litton Systems, Inc. | Phase-equivalent interferometer arrays |
| US7295925B2 (en) | 1997-10-22 | 2007-11-13 | Intelligent Technologies International, Inc. | Accident avoidance systems and methods |
| US6720920B2 (en) | 1997-10-22 | 2004-04-13 | Intelligent Technologies International Inc. | Method and arrangement for communicating between vehicles |
| US6619550B1 (en) * | 1995-12-18 | 2003-09-16 | Metrologic Instruments, Inc. | Automated tunnel-type laser scanning system employing corner-projected orthogonal laser scanning patterns for enhanced reading of ladder and picket fence oriented bar codes on packages moving therethrough |
| US20020014533A1 (en) * | 1995-12-18 | 2002-02-07 | Xiaxun Zhu | Automated object dimensioning system employing contour tracing, vertice detection, and forner point detection and reduction methods on 2-d range data maps |
| US5657026A (en) | 1996-01-26 | 1997-08-12 | Electronic Tracking Systems, Inc. | Beacon signal receiving system |
| US5923286A (en) | 1996-10-23 | 1999-07-13 | Honeywell Inc. | GPS/IRS global position determination method and apparatus with integrity loss provisions |
| US6088653A (en) | 1996-12-31 | 2000-07-11 | Sheikh; Suneel I. | Attitude determination method and system |
| US6101178A (en) | 1997-07-10 | 2000-08-08 | Ksi Inc. | Pseudolite-augmented GPS for locating wireless telephones |
| US7028899B2 (en) | 1999-06-07 | 2006-04-18 | Metrologic Instruments, Inc. | Method of speckle-noise pattern reduction and apparatus therefore based on reducing the temporal-coherence of the planar laser illumination beam before it illuminates the target object by applying temporal phase modulation techniques during the transmission of the plib towards the target |
| US5953683A (en) | 1997-10-09 | 1999-09-14 | Ascension Technology Corporation | Sourceless orientation sensor |
| JP3305644B2 (ja) | 1998-01-30 | 2002-07-24 | 株式会社エヌ・ティ・ティ・ドコモ | 無線呼出符号化制御装置 |
| US6176837B1 (en) | 1998-04-17 | 2001-01-23 | Massachusetts Institute Of Technology | Motion tracking system |
| US6336587B1 (en) | 1998-10-19 | 2002-01-08 | Symbol Technologies, Inc. | Optical code reader for producing video displays and measuring physical parameters of objects |
| US6167347A (en) | 1998-11-04 | 2000-12-26 | Lin; Ching-Fang | Vehicle positioning method and system thereof |
| US20030158699A1 (en) | 1998-12-09 | 2003-08-21 | Christopher P. Townsend | Orientation sensor |
| US6331835B1 (en) | 1999-02-02 | 2001-12-18 | The Charles Stark Draper Laboratory, Inc. | Deeply-integrated adaptive GPS-based navigator with extended-range code tracking |
| AU760936C (en) | 1999-05-14 | 2004-04-08 | Auckland Uniservices Limited | Improvements in and relating to position estimation systems |
| US6744436B1 (en) | 1999-05-25 | 2004-06-01 | Anthony Chirieleison, Jr. | Virtual reality warehouse management system complement |
| JP2000349932A (ja) | 1999-06-02 | 2000-12-15 | Full Time System:Kk | 情報表示装置 |
| AU6217100A (en) | 1999-07-15 | 2001-02-05 | Pinpoint Corporation | Method and apparatus for mobile tag reading |
| US6782277B1 (en) | 1999-09-30 | 2004-08-24 | Qualcomm Incorporated | Wireless communication system with base station beam sweeping |
| US6988079B1 (en) | 2000-01-11 | 2006-01-17 | Zvi Or-Bach | System and method for amalgamating multiple shipping companies using reusable containers and wide area networks |
| US6255991B1 (en) | 2000-01-19 | 2001-07-03 | Trw Inc. | Low cost angle of arrival measurement system |
| FR2805614B1 (fr) | 2000-02-25 | 2003-08-22 | Thomson Csf | Procede de localisation de sources radioelectriques au moyen d'un radiogoniometre haute resolution deux voies |
| US6924787B2 (en) | 2000-04-17 | 2005-08-02 | Immersion Corporation | Interface for controlling a graphical image |
| US6417802B1 (en) | 2000-04-26 | 2002-07-09 | Litton Systems, Inc. | Integrated inertial/GPS navigation system |
| US6593885B2 (en) | 2000-04-27 | 2003-07-15 | Wherenet Corp | Low cost DTOA location processing system based on multiple readers-to-single processor architecture |
| US7248841B2 (en) | 2000-06-13 | 2007-07-24 | Agee Brian G | Method and apparatus for optimization of wireless multipoint electromagnetic communication networks |
| US6300872B1 (en) | 2000-06-20 | 2001-10-09 | Philips Electronics North America Corp. | Object proximity/security adaptive event detection |
| US20050275626A1 (en) | 2000-06-21 | 2005-12-15 | Color Kinetics Incorporated | Entertainment lighting system |
| US8825535B2 (en) | 2000-08-24 | 2014-09-02 | Martin Herman Weik, III | Management and control system for a designated functional space having at least one portal |
| JP2002077092A (ja) | 2000-09-01 | 2002-03-15 | Sony Corp | 多重装置、受信装置及び多重伝送方法 |
| US6496778B1 (en) | 2000-09-14 | 2002-12-17 | American Gnc Corporation | Real-time integrated vehicle positioning method and system with differential GPS |
| GB0031016D0 (en) * | 2000-12-20 | 2001-01-31 | Alphafox Systems Ltd | Security systems |
| US20020095353A1 (en) | 2000-12-26 | 2002-07-18 | Razumov Sergey N. | System for preventing unauthorized access to products in retail system |
| US7031875B2 (en) | 2001-01-24 | 2006-04-18 | Geo Vector Corporation | Pointing systems for addressing objects |
| US8766773B2 (en) | 2001-03-20 | 2014-07-01 | Lightwaves Systems, Inc. | Ultra wideband radio frequency identification system, method, and apparatus |
| US7072668B2 (en) | 2001-05-22 | 2006-07-04 | Geospatial Technologies, Inc. | Durable global asset-tracking device and a method of using the same |
| CA2447809C (fr) | 2001-06-04 | 2011-08-02 | Novatel Inc. | Systeme de navigation par inertie/gps |
| US6861982B2 (en) | 2001-08-16 | 2005-03-01 | Itt Manufacturing Enterprises, Inc. | System for determining position of an emitter |
| US20030040944A1 (en) | 2001-08-22 | 2003-02-27 | Hileman Ryan M. | On-demand transportation system |
| US7269427B2 (en) | 2001-10-09 | 2007-09-11 | General Electric Company | Transmitter location for ultra-wideband, transmitted-reference CDMA communication system |
| AU2002366164A1 (en) | 2001-11-20 | 2003-06-10 | Integrinautics Corporation | Multiple antenna multi-frequency measurement system |
| US20030115162A1 (en) | 2001-12-14 | 2003-06-19 | Konick Michael Edward | System and method for mail processing with verified sender identity |
| US20030120425A1 (en) | 2001-12-26 | 2003-06-26 | Kevin Stanley | Self-correcting wireless inertial navigation system and method |
| US6697736B2 (en) | 2002-02-06 | 2004-02-24 | American Gnc Corporation | Positioning and navigation method and system thereof |
| US6891500B2 (en) | 2002-03-18 | 2005-05-10 | Christopher J. Hall | Method and apparatus for geolocating a wireless communications device |
| US6920330B2 (en) | 2002-03-26 | 2005-07-19 | Sun Microsystems, Inc. | Apparatus and method for the use of position information in wireless applications |
| US20030184649A1 (en) | 2002-04-01 | 2003-10-02 | Mann W. Stephen G. | Telemedicine booking station for mass casualty intake facility, relocation center, or the like, arising from bioterror hostage standoff, civil disobedience, or the like |
| US6978167B2 (en) | 2002-07-01 | 2005-12-20 | Claron Technology Inc. | Video pose tracking system and method |
| US7414571B2 (en) | 2002-08-19 | 2008-08-19 | Q-Track Corporation | Low frequency asset tag tracking system and method |
| US6634804B1 (en) | 2002-11-15 | 2003-10-21 | Pelco | Camera enclosure wall mount |
| US6867774B1 (en) | 2002-12-02 | 2005-03-15 | Ngrain (Canada) Corporation | Method and apparatus for transforming polygon data to voxel data for general purpose applications |
| US6975959B2 (en) | 2002-12-03 | 2005-12-13 | Robert Bosch Gmbh | Orientation and navigation for a mobile device using inertial sensors |
| NO329096B1 (no) | 2002-12-04 | 2010-08-23 | Sonitor Technologies As | Ultralyd sporings- og lokaliseringssystem |
| US7193559B2 (en) | 2003-01-21 | 2007-03-20 | Novatel, Inc. | Inertial GPS navigation system with modified kalman filter |
| US6750816B1 (en) | 2003-02-12 | 2004-06-15 | Novatel, Inc. | Integrated GPS-inertial system |
| US7009561B2 (en) | 2003-03-11 | 2006-03-07 | Menache, Llp | Radio frequency motion tracking system and method |
| US20040267640A1 (en) | 2003-06-26 | 2004-12-30 | United Parcel Service Of America, Inc. | Inventory management utilizing unattended pick up and return systems with a service parts facility |
| US20050001712A1 (en) | 2003-07-03 | 2005-01-06 | Yarbrough Craig D. | RF ID tag |
| GB0316402D0 (en) | 2003-07-12 | 2003-08-13 | Qinetiq Ltd | Direction finding |
| US6925403B2 (en) | 2003-09-15 | 2005-08-02 | Eaton Corporation | Method and system for calibrating a sensor |
| US7369681B2 (en) | 2003-09-18 | 2008-05-06 | Pitney Bowes Inc. | System and method for tracking positions of objects in space, time as well as tracking their textual evolution |
| US7574067B2 (en) | 2003-10-03 | 2009-08-11 | General Electric Company | Surface reconstruction and registration with a helmholtz reciprocal image pair |
| US7336078B1 (en) | 2003-10-04 | 2008-02-26 | Seektech, Inc. | Multi-sensor mapping omnidirectional sonde and line locators |
| GB0325622D0 (en) | 2003-11-03 | 2003-12-10 | Cambridge Consultants | System for determining positional information |
| KR100532589B1 (ko) | 2003-12-26 | 2005-12-01 | 한국전자통신연구원 | 무선인식/위성측위/관성항법을 결합한 통합 측위 장치 및그 방법 |
| US20050154685A1 (en) | 2004-01-08 | 2005-07-14 | United Parcel Service Of America, Inc. | Methods and systems providing the capability to track intra-organizational packages |
| JP4443939B2 (ja) | 2004-01-13 | 2010-03-31 | 日本信号株式会社 | 受信時刻計測装置及びこれを用いた距離計測装置 |
| US7409290B2 (en) | 2004-04-17 | 2008-08-05 | American Gnc Corporation | Positioning and navigation method and system thereof |
| EP1610146A1 (fr) | 2004-06-25 | 2005-12-28 | International Business Machines Corporation | Méthode et système d'affichage vidéo reconnaissant l'utilisateur |
| WO2006015265A2 (fr) | 2004-07-30 | 2006-02-09 | G2 Microsystems Pty Ltd. | Procede et systeme de determination d'emplacement pour dispositifs de suivi de biens |
| US7667575B2 (en) | 2004-07-30 | 2010-02-23 | Reva Systems Corporation | Location virtualization in an RFID system |
| US7168618B2 (en) | 2004-08-12 | 2007-01-30 | International Business Machines Corporation | Retail store method and system |
| US7292189B2 (en) | 2004-09-10 | 2007-11-06 | Worcester Polytechnic Institute | Methods and apparatus for high resolution positioning |
| WO2006039117A2 (fr) | 2004-09-21 | 2006-04-13 | Skyfence Inc. | Systeme de positionnement utilisant des signaux provenant d'une source ponctuelle |
| US7190309B2 (en) | 2004-09-24 | 2007-03-13 | Hill Edward L | Radio signal transmitter with multiple antennas for improved position detection |
| US20060066485A1 (en) | 2004-09-24 | 2006-03-30 | Guohua Min | Wireless tracking system based upon phase differences |
| FR2878965B1 (fr) | 2004-12-02 | 2007-02-16 | Commissariat Energie Atomique | Systeme et procede de positionnement local |
| US7236091B2 (en) | 2005-02-10 | 2007-06-26 | Pinc Solutions | Position-tracking system |
| US7689465B1 (en) | 2005-03-10 | 2010-03-30 | Amazon Technologies, Inc. | System and method for visual verification of order processing |
| CA2600708C (fr) | 2005-03-14 | 2012-06-05 | The Alfred E. Mann Foundation For Scientific Research | Systeme et procede pour localiser des objets et pour communiquer avec eux |
| JP4528208B2 (ja) | 2005-06-10 | 2010-08-18 | 富士通株式会社 | アレイアンテナの校正装置及び校正方法 |
| KR100682062B1 (ko) | 2005-06-23 | 2007-02-15 | 삼성전자주식회사 | 리더기, 태그, 전파식별(rfid) 시스템 및 전파 식별방법 |
| JP4794957B2 (ja) | 2005-09-14 | 2011-10-19 | 任天堂株式会社 | ゲームプログラム、ゲーム装置、ゲームシステム、およびゲーム処理方法 |
| US7969311B2 (en) | 2005-12-15 | 2011-06-28 | Invisitrack, Inc. | Multi-path mitigation in rangefinding and tracking objects using reduced attenuation RF technology |
| WO2007075958A2 (fr) | 2005-12-20 | 2007-07-05 | United States Postal Service | Procede et systeme d'interrogation et de traitement de codes |
| US7446658B2 (en) | 2006-03-09 | 2008-11-04 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Identification (ID) system and method of operation thereof |
| CN101375129B (zh) | 2006-03-15 | 2012-05-23 | 高通股份有限公司 | 基于传感器的定向系统 |
| US7844507B2 (en) | 2006-03-22 | 2010-11-30 | Laundry Locker, Inc. | Handling household tasks |
| US8044773B2 (en) | 2006-03-23 | 2011-10-25 | Intel Corporation | Parallel RFID system using CDMA |
| US20070237356A1 (en) | 2006-04-07 | 2007-10-11 | John Dwinell | Parcel imaging system and method |
| US9857476B2 (en) | 2006-04-28 | 2018-01-02 | Telecommuncation Systems, Inc. | GNSS long-code acquisition, ambiguity resolution, and signal validation |
| US7868760B2 (en) | 2006-06-05 | 2011-01-11 | Bp Corporation North America Inc. | Method for accounting for people in emergencies in industrial settings |
| US20080007398A1 (en) | 2006-07-05 | 2008-01-10 | General Electric Company | System and method for tracking assets |
| US20080035390A1 (en) * | 2006-08-09 | 2008-02-14 | Wurz David A | Dimensioning and weighing system |
| US20100158331A1 (en) | 2006-08-22 | 2010-06-24 | Jacobs James P | System and method for determining absolute position using a multiple wavelength signal |
| US7626544B2 (en) | 2006-10-17 | 2009-12-01 | Ut-Battelle, Llc | Robust low-frequency spread-spectrum navigation system |
| US9269221B2 (en) | 2006-11-13 | 2016-02-23 | John J. Gobbi | Configuration of interfaces for a location detection system and application |
| US20080156619A1 (en) * | 2006-12-01 | 2008-07-03 | Mehul Patel | Range finder |
| KR20090106520A (ko) | 2006-12-13 | 2009-10-09 | 크라운 이큅먼트 코포레이션 | 차대 관리 시스템 |
| US8838481B2 (en) | 2011-07-26 | 2014-09-16 | Golba Llc | Method and system for location based hands-free payment |
| US8294554B2 (en) | 2006-12-18 | 2012-10-23 | Radiofy Llc | RFID location systems and methods |
| US7629887B2 (en) | 2006-12-21 | 2009-12-08 | The Boeing Company | Method and apparatus for optimized work flow monitoring |
| US7933730B2 (en) | 2006-12-21 | 2011-04-26 | General Electric Co. | Method and system for restoration of a navigation data loss in image-guided navigation |
| TWI317807B (en) | 2006-12-27 | 2009-12-01 | Ind Tech Res Inst | Positioning apparatus and method |
| US8295542B2 (en) | 2007-01-12 | 2012-10-23 | International Business Machines Corporation | Adjusting a consumer experience based on a 3D captured image stream of a consumer response |
| US20080174485A1 (en) | 2007-01-24 | 2008-07-24 | Carani Sherry L | Tracking System and Method with Asset Tool Bar for Polling, Message, Historic Report, Location, Map and Geo Fence Features |
| EP1950892A1 (fr) | 2007-01-26 | 2008-07-30 | Sony Deutschland Gmbh | Interface utilisateur basée sur une induction magnétique |
| US20090017910A1 (en) | 2007-06-22 | 2009-01-15 | Broadcom Corporation | Position and motion tracking of an object |
| US7872637B2 (en) | 2007-04-25 | 2011-01-18 | Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. | System and method for tracking a laser spot on a projected computer screen image |
| US8319634B2 (en) | 2007-05-09 | 2012-11-27 | International Business Machines Corporation | Method and system for the tracking of articles |
| CA2589820A1 (fr) | 2007-05-24 | 2008-11-24 | Penguin Automated Systems Inc. | Systeme de positionnement souterrain pour surveillance de masse souterraine en mouvement et methode |
| US7965866B2 (en) | 2007-07-03 | 2011-06-21 | Shoppertrak Rct Corporation | System and process for detecting, tracking and counting human objects of interest |
| DE602007004841D1 (de) | 2007-07-08 | 2010-04-01 | Univ Liege | Extraktor für visuellen Hintergrund |
| SG183690A1 (en) | 2007-08-06 | 2012-09-27 | Trx Systems Inc | Locating, tracking, and/or monitoring personnel and/or assets both indoors and outdoors |
| US7659972B2 (en) * | 2007-08-22 | 2010-02-09 | Kld Labs, Inc. | Rail measurement system |
| JP4416022B2 (ja) | 2007-08-23 | 2010-02-17 | ソニー株式会社 | 撮像装置、撮像方法 |
| US8189855B2 (en) | 2007-08-31 | 2012-05-29 | Accenture Global Services Limited | Planogram extraction based on image processing |
| US20090095047A1 (en) * | 2007-10-16 | 2009-04-16 | Mehul Patel | Dimensioning and barcode reading system |
| US8825200B2 (en) | 2007-11-07 | 2014-09-02 | Siemens Industry, Inc. | Method and system for tracking of items |
| US8091782B2 (en) | 2007-11-08 | 2012-01-10 | International Business Machines Corporation | Using cameras to monitor actual inventory |
| WO2009076156A2 (fr) | 2007-12-07 | 2009-06-18 | Christian Steele | Système et procédé de détermination de position |
| GB2492247B (en) | 2008-03-03 | 2013-04-10 | Videoiq Inc | Dynamic object classification |
| JP2009214949A (ja) | 2008-03-07 | 2009-09-24 | Toshiba Tec Corp | 物品管理システム及び情報処理装置 |
| US7800541B2 (en) | 2008-03-31 | 2010-09-21 | Golba Llc | Methods and systems for determining the location of an electronic device |
| WO2009143259A2 (fr) | 2008-05-20 | 2009-11-26 | 5I Sciences | Dispositif et procédé pour ouvrir une voie respiratoire |
| US8219438B1 (en) | 2008-06-30 | 2012-07-10 | Videomining Corporation | Method and system for measuring shopper response to products based on behavior and facial expression |
| US20100019905A1 (en) | 2008-07-25 | 2010-01-28 | John Bennett Boddie | System for inventory tracking and theft deterrence |
| US8854252B2 (en) | 2008-09-12 | 2014-10-07 | Propagation Research Associates, Inc. | Multi-mode, multi-static interferometer utilizing pseudo orthogonal codes |
| US8406783B2 (en) | 2008-10-10 | 2013-03-26 | Qualcomm Incorporated | Geographical boundary based tracking |
| US20100097208A1 (en) | 2008-10-20 | 2010-04-22 | G-Tracking, Llc | Method and System for Tracking Assets |
| US20100103173A1 (en) | 2008-10-27 | 2010-04-29 | Minkyu Lee | Real time object tagging for interactive image display applications |
| KR101568128B1 (ko) | 2008-11-14 | 2015-11-12 | 삼성전자주식회사 | 모션 센서 기반의 ui 운용 방법 및 이를 이용한 단말기 |
| US8768344B2 (en) | 2008-12-22 | 2014-07-01 | Qualcomm Incorporated | Post-deployment calibration for wireless position determination |
| JP4542207B1 (ja) | 2009-01-09 | 2010-09-08 | パナソニック株式会社 | 移動体検出方法および移動体検出装置 |
| CN102334142A (zh) | 2009-02-24 | 2012-01-25 | 三菱电机株式会社 | 人物追踪装置以及人物追踪程序 |
| US8201737B1 (en) | 2009-07-21 | 2012-06-19 | Amazon Technologies, Inc. | Validating item placement |
| KR20110016098A (ko) | 2009-08-11 | 2011-02-17 | 삼성전자주식회사 | 휴대용 단말기에서 물품 정보를 제공하기 위한 장치 및 방법 |
| US20110264520A1 (en) | 2009-12-10 | 2011-10-27 | John Christopher Puhakka | Findit product locator |
| US8188908B2 (en) | 2010-01-29 | 2012-05-29 | Amtech Systems, LLC | System and method for measurement of distance to a tag by a modulated backscatter RFID reader |
| US20110208481A1 (en) | 2010-02-19 | 2011-08-25 | Vladimir Slastion | Extended range interferometric methods and systems |
| US8400292B2 (en) | 2010-03-01 | 2013-03-19 | Andrew Llc | System and method for location of mobile devices in confined environments |
| EP2543002A4 (fr) | 2010-03-01 | 2016-12-28 | Innovative Timing Systems Llc | Systèmes et procédés de lecture d'étiquette rfid à points multiples d'espacement variable |
| US8749433B2 (en) | 2010-04-02 | 2014-06-10 | Position Imaging, Inc. | Multiplexing receiver system |
| EP2585846B1 (fr) | 2010-06-25 | 2016-08-03 | Innovationszentrum für Telekommunikationstechnik GmbH IZT | Procédé et système de détermination d'une différence de temps, procédé et système de recherche d'une position d'un émetteur |
| US8786495B2 (en) | 2010-07-14 | 2014-07-22 | Zebra Enterprise Solutions Corp. | Frequency channel diversity for real-time locating systems, methods, and computer program products |
| KR101030763B1 (ko) * | 2010-10-01 | 2011-04-26 | 위재영 | 이미지 획득 유닛, 방법 및 연관된 제어 유닛 |
| US8903119B2 (en) | 2010-10-11 | 2014-12-02 | Texas Instruments Incorporated | Use of three-dimensional top-down views for business analytics |
| US11175375B2 (en) | 2010-11-12 | 2021-11-16 | Position Imaging, Inc. | Position tracking system and method using radio signals and inertial sensing |
| US10416276B2 (en) | 2010-11-12 | 2019-09-17 | Position Imaging, Inc. | Position tracking system and method using radio signals and inertial sensing |
| US8957812B1 (en) | 2010-11-12 | 2015-02-17 | Position Imaging, Inc. | Position tracking system and method using radio signals and inertial sensing |
| US10120446B2 (en) | 2010-11-19 | 2018-11-06 | Apple Inc. | Haptic input device |
| US9208365B2 (en) | 2011-01-12 | 2015-12-08 | Intermec Ip Corp. | Method and apparatus to mitigate multipath in RFID |
| US9146296B2 (en) | 2011-01-14 | 2015-09-29 | Qualcomm Incorporated | Methods and apparatuses for use in providing positioning assistance data to mobile stations via a self-organizing network |
| CN103189898B (zh) | 2011-03-22 | 2016-01-20 | 松下电器产业株式会社 | 移动体检测装置以及移动体检测方法 |
| US20120257061A1 (en) | 2011-04-05 | 2012-10-11 | Honeywell International Inc. | Neighborhood Camera Linking System |
| US8406470B2 (en) | 2011-04-19 | 2013-03-26 | Mitsubishi Electric Research Laboratories, Inc. | Object detection in depth images |
| US20120286933A1 (en) | 2011-05-12 | 2012-11-15 | Knowledge Access, Inc. | First responder team tracking system and method |
| US9143703B2 (en) | 2011-06-10 | 2015-09-22 | Flir Systems, Inc. | Infrared camera calibration techniques |
| WO2013006822A1 (fr) | 2011-07-06 | 2013-01-10 | Visa International Service Association | Mappage de produits sur la base d'images |
| JP5247854B2 (ja) | 2011-07-06 | 2013-07-24 | 株式会社インスピーディア | 集荷システムおよび集荷方法 |
| US20130018582A1 (en) | 2011-07-13 | 2013-01-17 | Miller Paul A | Inertial Navigation Common Azimuth Reference Determination System and Method |
| JP5803374B2 (ja) | 2011-07-21 | 2015-11-04 | セイコーエプソン株式会社 | 記録装置 |
| US10368796B2 (en) | 2011-07-22 | 2019-08-06 | Tc13-Pressure Applications Llc | Systems and methods for monitoring and providing therapeutic support for a user |
| WO2013040256A2 (fr) | 2011-09-13 | 2013-03-21 | Eagile, Inc. | Portail muni d'un lecteur d'étiquettes rfid et d'une fonctionnalité de reconnaissance d'objets |
| US8843231B2 (en) | 2011-09-13 | 2014-09-23 | United Parcel Service Of America, Inc. | Sort systems and methods |
| US8457655B2 (en) | 2011-09-19 | 2013-06-04 | Qualcomm Incorporated | Hybrid time of arrival based positioning system |
| US9690266B2 (en) | 2011-09-19 | 2017-06-27 | Siemens Industry, Inc. | Building automation system control with motion sensing |
| WO2013067526A1 (fr) | 2011-11-04 | 2013-05-10 | Remote TelePointer, LLC | Procédé et système pour une interface utilisateur pour des dispositifs interactifs utilisant un dispositif mobile |
| US9945940B2 (en) | 2011-11-10 | 2018-04-17 | Position Imaging, Inc. | Systems and methods of wireless position tracking |
| US9933509B2 (en) | 2011-11-10 | 2018-04-03 | Position Imaging, Inc. | System for tracking an object using pulsed frequency hopping |
| US20140022058A1 (en) | 2011-12-27 | 2014-01-23 | The Gillette Company | Apparatus and Method for Providing Product Information |
| US9141194B1 (en) | 2012-01-04 | 2015-09-22 | Google Inc. | Magnetometer-based gesture sensing with a wearable device |
| US9530060B2 (en) | 2012-01-17 | 2016-12-27 | Avigilon Fortress Corporation | System and method for building automation using video content analysis with depth sensing |
| US20130191193A1 (en) | 2012-01-23 | 2013-07-25 | Bank Of America Corporation | Shopping plan management |
| WO2013126391A1 (fr) | 2012-02-22 | 2013-08-29 | Bar Code Specialties, Inc. (Dba Bcs Solutions) | Système de localisation d'inventaire en direct d'antenne suspendue |
| US10848731B2 (en) * | 2012-02-24 | 2020-11-24 | Matterport, Inc. | Capturing and aligning panoramic image and depth data |
| US20130226655A1 (en) | 2012-02-29 | 2013-08-29 | BVI Networks, Inc. | Method and system for statistical analysis of customer movement and integration with other data |
| US8619144B1 (en) | 2012-03-14 | 2013-12-31 | Rawles Llc | Automatic camera calibration |
| US8792906B2 (en) | 2012-04-24 | 2014-07-29 | Cellco Partnership | Providing derived location information for customer relationship in response to receipt of short range wireless beacon |
| US9587804B2 (en) | 2012-05-07 | 2017-03-07 | Chia Ming Chen | Light control systems and methods |
| US8860611B1 (en) | 2012-05-15 | 2014-10-14 | The United States Of America As Represented By The Secretary Of The Navy | RFID-based mobile vehicle localization |
| US9400902B2 (en) | 2012-05-22 | 2016-07-26 | Trimble Navigation Limited | Multi-modal entity tracking and display |
| KR20130139622A (ko) | 2012-06-13 | 2013-12-23 | 한국전자통신연구원 | 융합보안 관제 시스템 및 방법 |
| US9782669B1 (en) | 2012-06-14 | 2017-10-10 | Position Imaging, Inc. | RF tracking with active sensory feedback |
| US10269182B2 (en) | 2012-06-14 | 2019-04-23 | Position Imaging, Inc. | RF tracking with active sensory feedback |
| US20130335318A1 (en) | 2012-06-15 | 2013-12-19 | Cognimem Technologies, Inc. | Method and apparatus for doing hand and face gesture recognition using 3d sensors and hardware non-linear classifiers |
| US9519344B1 (en) | 2012-08-14 | 2016-12-13 | Position Imaging, Inc. | User input system for immersive interaction |
| DE102012214946A1 (de) | 2012-08-22 | 2014-02-27 | Deutsche Post Ag | Verfahren und Anordnung zum Transportieren von quaderförmigen Gegenständen |
| US10180490B1 (en) | 2012-08-24 | 2019-01-15 | Position Imaging, Inc. | Radio frequency communication system |
| US9596024B2 (en) | 2012-09-21 | 2017-03-14 | Spatial Digital Systems, Inc. | Multi-channel communication optimization methods and systems |
| US20140108136A1 (en) | 2012-10-12 | 2014-04-17 | Ebay Inc. | Augmented reality for shipping |
| US9239627B2 (en) | 2012-11-07 | 2016-01-19 | Panasonic Intellectual Property Corporation Of America | SmartLight interaction system |
| KR101995581B1 (ko) | 2012-11-12 | 2019-07-02 | 엘지전자 주식회사 | 오일 분리기 및 이를 사용한 공기조화기 |
| US9538325B2 (en) | 2012-11-25 | 2017-01-03 | Pixie Technology Inc. | Rotation based alignment of a group of wireless tags |
| US10234539B2 (en) | 2012-12-15 | 2019-03-19 | Position Imaging, Inc. | Cycling reference multiplexing receiver system |
| US9482741B1 (en) | 2013-01-18 | 2016-11-01 | Position Imaging, Inc. | System and method of locating a radio frequency (RF) tracking device using a calibration routine |
| WO2014136559A1 (fr) | 2013-03-04 | 2014-09-12 | 日本電気株式会社 | Système de gestion d'article, dispositif de traitement d'informations, et procédé de commande et programme de commande correspondants |
| US9795997B2 (en) | 2013-03-15 | 2017-10-24 | United States Postal Service | Systems, methods and devices for item processing |
| US9269022B2 (en) | 2013-04-11 | 2016-02-23 | Digimarc Corporation | Methods for object recognition and related arrangements |
| KR20160004320A (ko) | 2013-04-22 | 2016-01-12 | 테라노스, 인코포레이티드 | 자료의 안전한 운반을 위한 방법, 장치 및 시스템 |
| US20140330407A1 (en) | 2013-05-01 | 2014-11-06 | Thomas Corder | Intelligent Reconfigurable Locker System |
| WO2014182701A1 (fr) | 2013-05-06 | 2014-11-13 | The Johns Hopkins University | Système pour empêcher la rétention d'instrument |
| US9275308B2 (en) | 2013-05-31 | 2016-03-01 | Google Inc. | Object detection using deep neural networks |
| WO2014197497A2 (fr) | 2013-06-03 | 2014-12-11 | The Morey Corporation | Systèmes, procédés et appareils de traçage de bien géospatial, pour acquérir, manipuler et présenter des métadonnées télématiques |
| US10268983B2 (en) | 2013-06-26 | 2019-04-23 | Amazon Technologies, Inc. | Detecting item interaction and movement |
| US10176456B2 (en) | 2013-06-26 | 2019-01-08 | Amazon Technologies, Inc. | Transitioning items from a materials handling facility |
| IL227285A0 (en) | 2013-07-01 | 2013-12-31 | Rami Goldreich | Multipath interference reduction for geo-location based on time-of-arrival |
| US9479298B2 (en) | 2013-07-08 | 2016-10-25 | Intel IP Corporation | Demodulation reference signals (DMRS)for side information for interference cancellation |
| US10290031B2 (en) | 2013-07-24 | 2019-05-14 | Gregorio Reid | Method and system for automated retail checkout using context recognition |
| US9473747B2 (en) | 2013-07-25 | 2016-10-18 | Ncr Corporation | Whole store scanner |
| US9594983B2 (en) | 2013-08-02 | 2017-03-14 | Digimarc Corporation | Learning systems and methods |
| US9269012B2 (en) | 2013-08-22 | 2016-02-23 | Amazon Technologies, Inc. | Multi-tracker object tracking |
| US20150059374A1 (en) | 2013-09-04 | 2015-03-05 | Logan Hebel | System for Monitoring the Contents of a Refrigerator |
| US10082664B2 (en) | 2013-09-23 | 2018-09-25 | Samsung Electronics Co., Ltd. | Tracking optics for a mobile device |
| US9171278B1 (en) | 2013-09-25 | 2015-10-27 | Amazon Technologies, Inc. | Item illumination based on image recognition |
| US9810764B2 (en) | 2013-09-30 | 2017-11-07 | AT&T Intellectual Preoperty I, L.P. | Systems and methods for high precision indoor location tracking |
| US9373057B1 (en) | 2013-11-01 | 2016-06-21 | Google Inc. | Training a neural network to detect objects in images |
| US20150134418A1 (en) | 2013-11-08 | 2015-05-14 | Chon Hock LEOW | System and Method for Providing Real-time Location Previews |
| CN105723445B (zh) | 2013-11-12 | 2018-12-14 | 富士胶片株式会社 | 显示装置及其控制方法 |
| US9936340B2 (en) | 2013-11-14 | 2018-04-03 | At&T Mobility Ii Llc | Wirelessly receiving information related to a mobile device at which another mobile device is pointed |
| US10634761B2 (en) | 2013-12-13 | 2020-04-28 | Position Imaging, Inc. | Tracking system with mobile reader |
| US9349076B1 (en) | 2013-12-20 | 2016-05-24 | Amazon Technologies, Inc. | Template-based target object detection in an image |
| US20150202770A1 (en) * | 2014-01-17 | 2015-07-23 | Anthony Patron | Sidewalk messaging of an autonomous robot |
| US9497728B2 (en) | 2014-01-17 | 2016-11-15 | Position Imaging, Inc. | Wireless relay station for radio frequency-based tracking system |
| US10139495B2 (en) | 2014-01-24 | 2018-11-27 | Hand Held Products, Inc. | Shelving and package locating systems for delivery vehicles |
| US10200819B2 (en) | 2014-02-06 | 2019-02-05 | Position Imaging, Inc. | Virtual reality and augmented reality functionality for mobile devices |
| US20150227890A1 (en) | 2014-02-07 | 2015-08-13 | Kristin Kaye Bednarek | Communications system and smart device apps supporting segmented order distributed distribution system |
| US9659225B2 (en) | 2014-02-12 | 2017-05-23 | Microsoft Technology Licensing, Llc | Restaurant-specific food logging from images |
| US9626766B2 (en) | 2014-02-28 | 2017-04-18 | Microsoft Technology Licensing, Llc | Depth sensing using an RGB camera |
| US9120621B1 (en) | 2014-03-25 | 2015-09-01 | Amazon Technologies, Inc. | Verifying bin content in an automated materials handling facility |
| US20150278759A1 (en) | 2014-03-26 | 2015-10-01 | Go Taxi Truck, LLC | System and Method for Vehicle Delivery Tracking Service |
| US10163149B1 (en) | 2014-03-28 | 2018-12-25 | Amazon Technologies, Inc. | Providing item pick and place information to a user |
| US20170066597A1 (en) | 2014-03-28 | 2017-03-09 | Nec Corporation | Information processing device, information processing system, distribution system, information processing method, and program storage medium |
| US9639887B2 (en) | 2014-04-23 | 2017-05-02 | Sony Corporation | In-store object highlighting by a real world user interface |
| US10051196B2 (en) | 2014-05-20 | 2018-08-14 | Lenovo (Singapore) Pte. Ltd. | Projecting light at angle corresponding to the field of view of a camera |
| US9971985B2 (en) | 2014-06-20 | 2018-05-15 | Raj Abhyanker | Train based community |
| US20150371319A1 (en) | 2014-06-24 | 2015-12-24 | Wal-Mart Stores, Inc. | Providing voice directions to a customer within a store |
| US9174746B1 (en) | 2014-06-26 | 2015-11-03 | Rockwell Collins, Inc. | Visual aid generating system, device, and method |
| US9092898B1 (en) | 2014-07-03 | 2015-07-28 | Federico Fraccaroli | Method, system and apparatus for the augmentation of radio emissions |
| US9536293B2 (en) | 2014-07-30 | 2017-01-03 | Adobe Systems Incorporated | Image assessment using deep convolutional neural networks |
| US9928542B2 (en) | 2014-08-29 | 2018-03-27 | Wal-Mart Stores, Inc. | Real-time congestion avoidance in a retail environment |
| US9641964B2 (en) | 2014-09-03 | 2017-05-02 | CloudLeaf, Inc. | Systems, methods and devices for asset status determination |
| US9544551B2 (en) | 2014-09-29 | 2017-01-10 | Tyco Fire & Security Gmbh | Store intelligence platform using proximity sensing |
| US10445687B2 (en) | 2014-10-02 | 2019-10-15 | Luxer Corporation | Method and system for implementing electronic storage areas |
| EP3204871A1 (fr) | 2014-10-09 | 2017-08-16 | Microsoft Technology Licensing, LLC | Détection d'objet générique dans des images |
| CN110826530B (zh) | 2014-11-15 | 2023-06-30 | 北京旷视科技有限公司 | 使用机器学习进行面部检测 |
| US20160150196A1 (en) | 2014-11-25 | 2016-05-26 | Jon Patrik Horvath | Movement and distance triggered image recording system |
| US9996818B1 (en) | 2014-12-19 | 2018-06-12 | Amazon Technologies, Inc. | Counting inventory items using image analysis and depth information |
| US9435877B2 (en) | 2014-12-22 | 2016-09-06 | Datalogic Ip Tech S.R.L. | Ultra-wideband location engine for self-shopping devices |
| EP3237953A1 (fr) | 2014-12-26 | 2017-11-01 | CY Vision Inc. | Dispositif d'affichage près de l'oeil à résolution variable |
| EP3243190B1 (fr) | 2015-01-05 | 2020-11-18 | LocatorX, Inc. | Localisateur de ressource global |
| US10642560B2 (en) | 2015-02-13 | 2020-05-05 | Position Imaging, Inc. | Accurate geographic tracking of mobile devices |
| US10324474B2 (en) | 2015-02-13 | 2019-06-18 | Position Imaging, Inc. | Spatial diversity for relative position tracking |
| US10142538B2 (en) * | 2015-02-24 | 2018-11-27 | Redrock Microsystems, Llc | LIDAR assisted focusing device |
| JP5988225B2 (ja) | 2015-02-25 | 2016-09-07 | パナソニックIpマネジメント株式会社 | モニタリング装置およびモニタリング方法 |
| US10332066B1 (en) | 2015-03-30 | 2019-06-25 | Amazon Technologies, Inc. | Item management system using weight |
| US10853757B1 (en) | 2015-04-06 | 2020-12-01 | Position Imaging, Inc. | Video for real-time confirmation in package tracking systems |
| US10148918B1 (en) | 2015-04-06 | 2018-12-04 | Position Imaging, Inc. | Modular shelving systems for package tracking |
| US10891584B2 (en) | 2015-04-10 | 2021-01-12 | Smiotex, Inc. | Devices, systems, and methods for storing items |
| WO2016187169A2 (fr) | 2015-05-15 | 2016-11-24 | Overhaul Group, Inc. | Interfaçage transporteur/expéditeur et infrastructure de suivi de cargaison destinés à la planification et au transport efficaces d'un chargement, présentant un contrôle de sécurité et un paiement efficace pour les transporteurs |
| US9656749B1 (en) | 2015-06-09 | 2017-05-23 | Amazon Technologies, Inc. | Unmanned aerial vehicle physical metrics acquisition |
| US10518791B2 (en) * | 2015-10-20 | 2019-12-31 | Sameer Singh | Integrated rail and track condition monitoring system with imaging and inertial sensors |
| US10049949B2 (en) * | 2015-10-22 | 2018-08-14 | Fei Company | In-situ packaging decapsulation feature for electrical fault localization |
| US10192194B2 (en) | 2015-11-18 | 2019-01-29 | Hand Held Products, Inc. | In-vehicle package location identification at load and delivery times |
| EP3192373A1 (fr) * | 2016-01-18 | 2017-07-19 | Marel A/S | Procédé et système pour constituer des lots d'articles alimentaires à taille ajustée |
| EP3408848A4 (fr) | 2016-01-29 | 2019-08-28 | Pointivo Inc. | Systèmes et procédés d'extraction d'informations concernant des objets à partir d'informations de scène |
| CA3016220A1 (fr) | 2016-02-29 | 2017-09-08 | Mohamed R. Mahfouz | Environnement de soins de sante connecte |
| US10444323B2 (en) | 2016-03-08 | 2019-10-15 | Position Imaging, Inc. | Expandable, decentralized position tracking systems and methods |
| US9860692B2 (en) | 2016-03-22 | 2018-01-02 | Cisco Technology, Inc. | Determining location via current and previous wireless signal attributes |
| CN109311590A (zh) | 2016-04-11 | 2019-02-05 | 包裹解决方案公司 | 包裹室系统和方法 |
| WO2017196822A1 (fr) | 2016-05-09 | 2017-11-16 | Grabango Co. | Système et procédé pour des applications informatiques commandées par la vision dans un environnement |
| US10330483B2 (en) | 2016-06-07 | 2019-06-25 | International Business Machines Corporation | Controller profile based control of a cargo vehicle |
| KR20170138867A (ko) | 2016-06-08 | 2017-12-18 | 삼성에스디에스 주식회사 | 광원을 이용한 카메라 캘리브레이션 방법 및 그 장치 |
| US9872151B1 (en) | 2016-08-25 | 2018-01-16 | Leantegra Inc. | System and method for discovery and collection of real-time location data |
| US10089452B2 (en) * | 2016-09-02 | 2018-10-02 | International Business Machines Corporation | Three-dimensional fingerprint scanner |
| US11436553B2 (en) | 2016-09-08 | 2022-09-06 | Position Imaging, Inc. | System and method of object tracking using weight confirmation |
| DE112016007202T5 (de) * | 2016-10-04 | 2019-06-13 | Ford Motor Company | Transportwagen mit automatisierter höhenanpassung |
| US20180094936A1 (en) | 2016-10-05 | 2018-04-05 | Wal-Mart Stores, Inc. | Systems and methods for determining or improving product placement and/or store layout by estimating customer paths using limited information |
| US10634503B2 (en) | 2016-12-12 | 2020-04-28 | Position Imaging, Inc. | System and method of personalized navigation inside a business enterprise |
| US10455364B2 (en) | 2016-12-12 | 2019-10-22 | Position Imaging, Inc. | System and method of personalized navigation inside a business enterprise |
| US11120392B2 (en) | 2017-01-06 | 2021-09-14 | Position Imaging, Inc. | System and method of calibrating a directional light source relative to a camera's field of view |
| US20180197139A1 (en) | 2017-01-06 | 2018-07-12 | Position Imaging, Inc. | Package delivery sharing systems and methods |
| US20180197218A1 (en) | 2017-01-12 | 2018-07-12 | Verizon Patent And Licensing Inc. | System and method for object detection in retail environment |
| ES2745066T3 (es) * | 2017-09-06 | 2020-02-27 | Sick Ag | Dispositivo de cámara y método para grabar un flujo de objetos |
| US10346720B2 (en) | 2017-11-08 | 2019-07-09 | Bae Systems Information And Electronic Systems Integration Inc. | Rotation variant object detection in Deep Learning |
| US10972717B2 (en) | 2018-06-26 | 2021-04-06 | Solaroid Corporation | Automated feature analysis of a structure |
| US11244222B2 (en) | 2018-06-27 | 2022-02-08 | Sony Corporation | Artificial intelligence-enabled device for network connectivity independent delivery of consumable information |
| US10748035B2 (en) | 2018-07-05 | 2020-08-18 | Mitsubishi Electric Research Laboratories, Inc. | Visually aided active learning for training object detector |
| US10373322B1 (en) | 2018-07-16 | 2019-08-06 | Accel Robotics Corporation | Autonomous store system that analyzes camera images to track people and their interactions with items |
| CA3111595A1 (fr) | 2018-09-21 | 2020-03-26 | Position Imaging, Inc. | Systeme et procede d'identification d'objet a auto-amelioration assistes par apprentissage automatique |
| US10399778B1 (en) * | 2018-10-25 | 2019-09-03 | Grey Orange Pte. Ltd. | Identification and planning system and method for fulfillment of orders |
-
2020
- 2020-01-13 WO PCT/US2020/013280 patent/WO2020146861A1/fr not_active Ceased
- 2020-01-13 US US16/740,679 patent/US11089232B2/en active Active
-
2021
- 2021-07-09 US US17/371,479 patent/US11637962B2/en active Active
-
2023
- 2023-04-20 US US18/303,809 patent/US20230308772A1/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080183328A1 (en) * | 2007-01-26 | 2008-07-31 | Danelski Darin L | Laser Guided System for Picking or Sorting |
| US20110166694A1 (en) * | 2008-06-24 | 2011-07-07 | John Philip Griffits | Computer controlled object locating system |
| US20130293684A1 (en) * | 2011-04-15 | 2013-11-07 | Faro Technologies, Inc. | Three-dimensional coordinate scanner and method of operation |
| US20170313514A1 (en) * | 2015-06-02 | 2017-11-02 | Alert Innovation Inc. | Order fulfillment system |
| US20180108134A1 (en) * | 2016-10-17 | 2018-04-19 | Conduent Business Services, Llc | Store shelf imaging system and method using a vertical lidar |
| DE102017205958A1 (de) * | 2017-04-07 | 2018-10-11 | Robert Bosch Gmbh | Verfahren zur Unterstützung bei einem Be- oder Entladevorgang eines Fahrzeugs, Steuervorrichtung und Vorrichtung zur Unterstützung bei einem Be- oder Entladevorgang eines Fahrzeugs |
Also Published As
| Publication number | Publication date |
|---|---|
| US20200228697A1 (en) | 2020-07-16 |
| US11637962B2 (en) | 2023-04-25 |
| US11089232B2 (en) | 2021-08-10 |
| US20230308772A1 (en) | 2023-09-28 |
| US20210337103A1 (en) | 2021-10-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20230308772A1 (en) | Computer-vision-based object tracking and guidance module | |
| JP2023015102A (ja) | 効率的配置のための直列構成カメラアレイ | |
| US10169677B1 (en) | Counting stacked inventory using image analysis | |
| US8528752B2 (en) | Display system | |
| US10001402B1 (en) | Instrumented item stowage system with modular elements | |
| US12475703B2 (en) | Kiosk with object identification, registration, and tracking capabilities with light and/or audio guidance | |
| US5198650A (en) | Hands free/hand held bar code scanner | |
| US10365684B2 (en) | Display device housing and form-fitted configuration | |
| US7983039B1 (en) | Reversible airflow fan tray design for electronic device in a data center | |
| US8526168B2 (en) | Power outlet box for electronic displays in a retail environment | |
| US10671856B1 (en) | Detecting item actions and inventory changes at an inventory location | |
| CN114503178A (zh) | 用于货架支架的成像设备和包含该成像设备的货架系统 | |
| US20230386307A1 (en) | Simplified self-checkout scanning systems and related methods | |
| US10922507B2 (en) | Data reader with front-facing connector panel | |
| US11984000B2 (en) | Fixed retail scanner heat management system for multi-port network switch and related methods | |
| US9642477B2 (en) | Modular support column | |
| US10769969B2 (en) | Electronic shelf display tag and powered shelf support track system, apparatus and method of use | |
| US20110286152A1 (en) | Mechanical and electrical system for powering shelf-edge electronic displays in a retail environment | |
| US9584753B2 (en) | Interactive display fixture | |
| US12437169B1 (en) | Indicia reader and indicia reader system | |
| CN219285853U (zh) | 一种视觉感知教学实训平台及实训车辆 | |
| US20250285563A1 (en) | Display apparatus | |
| CN216388203U (zh) | 自助售卖装置 | |
| US20060055292A1 (en) | Integrated clam shell PC platform | |
| JP2001218657A (ja) | ショーケース |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20739075 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 20739075 Country of ref document: EP Kind code of ref document: A1 |