[go: up one dir, main page]

WO2020039493A1 - Dispositif, procédé et programme d'optimisation de calcul - Google Patents

Dispositif, procédé et programme d'optimisation de calcul Download PDF

Info

Publication number
WO2020039493A1
WO2020039493A1 PCT/JP2018/030769 JP2018030769W WO2020039493A1 WO 2020039493 A1 WO2020039493 A1 WO 2020039493A1 JP 2018030769 W JP2018030769 W JP 2018030769W WO 2020039493 A1 WO2020039493 A1 WO 2020039493A1
Authority
WO
WIPO (PCT)
Prior art keywords
value
arithmetic
explanatory variable
objective function
accuracy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2018/030769
Other languages
English (en)
Japanese (ja)
Inventor
芙美代 鷹野
竹中 崇
誠也 柴田
浩明 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2020537921A priority Critical patent/JP6973651B2/ja
Priority to PCT/JP2018/030769 priority patent/WO2020039493A1/fr
Publication of WO2020039493A1 publication Critical patent/WO2020039493A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/06Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
    • G06N3/063Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means

Definitions

  • the operation optimization device of the present invention determines the operation accuracy of each layer in a discrimination model in which a plurality of layers each composed of one or more units are combined.
  • a discrimination model is a neural network.
  • the discrimination model is not limited to the neural network.
  • FIG. 3 is a schematic diagram showing an example of the above processing apparatus.
  • the processing device 18 includes, for example, a low-precision arithmetic circuit 5, a high-precision arithmetic circuit 6, a first memory 7, a second memory 8, and a third memory 9.
  • the low-precision arithmetic circuit 5, the high-precision arithmetic circuit 6, the first memory 7, the second memory 8, and the third memory 9 are connected via, for example, a bus 10.
  • the explanatory variable value acquiring unit 23 acquires the values of the explanatory variables (in this example, “inference accuracy” and “processing speed”).
  • the explanatory variable value obtaining unit 23 causes the actually existing processing device 18 (see FIG. 3) to execute the inference process, and obtains the values of “inference accuracy” and “processing speed” by actual measurement. It is.
  • the second mode is a mode in which the explanatory variable value obtaining unit 23 obtains the values of “inference accuracy” and “processing speed” by simulation. That is, the first mode is a mode in which the value of the explanatory variable is obtained by actual measurement, and the second mode is a mode in which the value of the explanatory variable is obtained by simulation.
  • the explanatory variable value acquisition unit 23 processes the number of the arithmetic units, the memory access amount derived based on the selected applied pattern, and the data transfer amount between the low precision arithmetic circuit 5 and the high precision arithmetic circuit 6.
  • the value of the processing speed may be calculated by substituting the value into the speed function. As a result, the explanatory variable value acquisition unit 23 can acquire the value of the processing speed based on the simulation.
  • the explanatory variable value acquiring unit 23 may acquire the value of the explanatory variable by actual measurement or by simulation. In any case, the explanatory variable value acquiring unit 23 acquires the values of the explanatory variables (in this example, “inference accuracy” and “processing speed”) for each application pattern.
  • the arithmetic accuracy of each layer of the neural network is determined by the first arithmetic accuracy (for example, It is possible to determine whether to use an 8-bit integer operation by the low-precision operation circuit 5 or to use the second operation accuracy (for example, a 32-bit floating-point operation by the high-precision operation circuit 6).
  • the explanatory variable value acquisition unit 23, the objective function calculation unit 25, and the application pattern determination unit 27 are realized by, for example, a CPU (Central Processing Unit) of a computer that operates according to an operation optimization program.
  • the CPU reads the operation optimization program from a program recording medium such as a program storage device. Then, the CPU may operate as the explanatory variable value acquisition unit 23, the objective function calculation unit 25, and the applied pattern determination unit 27 according to the operation optimization program.
  • a CPU Central Processing Unit
  • the explanatory variable value acquisition unit 23 also acquires a value of “circuit scale” in addition to “inference accuracy” and “processing speed”.
  • the design information stored in the design information storage unit 19 includes a design value of the number of arithmetic units included in the low-precision arithmetic circuit 5 and a design value of the number of arithmetic units included in the high-precision arithmetic circuit 6.
  • the design information stored in the design information storage unit 19 includes a design value of the number of arithmetic units included in the low-precision arithmetic circuit 5 and a design value of the number of arithmetic units included in the high-precision arithmetic circuit 6.
  • What is necessary is just to include a value and a design value of how many arithmetic units included in the low-precision arithmetic circuit 5 correspond to one arithmetic unit included in the high-precision arithmetic circuit 6.
  • one arithmetic unit included in the high-precision arithmetic circuit 6 will be described as equivalent to J arithmetic units included in the low-precision arithmetic circuit 5.
  • is a coefficient of “power consumption” and is determined in advance.
  • is defined as a positive value.
  • FIG. 12 is a schematic block diagram showing a configuration example of a computer according to the embodiment of the present invention or its modification.
  • the computer 1000 includes a CPU 1001, a main storage device 1002, an auxiliary storage device 1003, and an interface 1004.
  • the plurality of information processing devices, circuits, and the like may be centrally arranged or may be distributed.
  • the information processing device, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client and server system or a cloud computing system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Theoretical Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Neurology (AREA)
  • Image Analysis (AREA)

Abstract

Un moyen d'acquisition de valeur variable explicative 73 réalise un calcul à l'aide d'un modèle de discrimination obtenu par combinaison de multiples couches composées chacune d'une ou de plusieurs unités, pour acquérir une certaine valeur variable explicative pour chaque modèle de modèles d'application qui sont des informations spécifiant une couche à laquelle doit être appliqué un premier circuit de calcul pour réaliser un calcul avec une première précision de calcul, et une couche à laquelle doit être appliqué un second circuit de calcul pour réaliser un calcul avec une seconde précision de calcul plus élevée que la première précision de calcul. Un moyen de calcul de fonction objectif 75 calcule, pour le modèle d'application, la valeur d'une fonction objectif exprimée avec la certaine variable explicative. Un moyen de détermination de modèle d'application 77 détermine un tel modèle d'application pour lequel la valeur de la fonction objectif devient minimale parmi les modèles d'application.
PCT/JP2018/030769 2018-08-21 2018-08-21 Dispositif, procédé et programme d'optimisation de calcul Ceased WO2020039493A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020537921A JP6973651B2 (ja) 2018-08-21 2018-08-21 演算最適化装置、方法およびプログラム
PCT/JP2018/030769 WO2020039493A1 (fr) 2018-08-21 2018-08-21 Dispositif, procédé et programme d'optimisation de calcul

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/030769 WO2020039493A1 (fr) 2018-08-21 2018-08-21 Dispositif, procédé et programme d'optimisation de calcul

Publications (1)

Publication Number Publication Date
WO2020039493A1 true WO2020039493A1 (fr) 2020-02-27

Family

ID=69592083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030769 Ceased WO2020039493A1 (fr) 2018-08-21 2018-08-21 Dispositif, procédé et programme d'optimisation de calcul

Country Status (2)

Country Link
JP (1) JP6973651B2 (fr)
WO (1) WO2020039493A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114004968A (zh) * 2020-07-28 2022-02-01 富泰华工业(深圳)有限公司 图像处理方法、装置、电子设备及存储介质
JP2022034897A (ja) * 2020-08-19 2022-03-04 富士通株式会社 情報処理装置、機械学習方法及び機械学習プログラム

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018010618A (ja) * 2016-05-03 2018-01-18 イマジネイション テクノロジーズ リミテッド 畳み込みニューラルネットワークハードウエア構成

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10621486B2 (en) * 2016-08-12 2020-04-14 Beijing Deephi Intelligent Technology Co., Ltd. Method for optimizing an artificial neural network (ANN)

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018010618A (ja) * 2016-05-03 2018-01-18 イマジネイション テクノロジーズ リミテッド 畳み込みニューラルネットワークハードウエア構成

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIN, DARRYL D. ET AL.: "Fixed Point Quantization of Deep Convolutional Networks", ARXIV, 2 June 2016 (2016-06-02), XP055561866, Retrieved from the Internet <URL:https://arxiv.org/abs/1511.06393v3> [retrieved on 20180831] *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114004968A (zh) * 2020-07-28 2022-02-01 富泰华工业(深圳)有限公司 图像处理方法、装置、电子设备及存储介质
CN114004968B (zh) * 2020-07-28 2025-07-04 富泰华工业(深圳)有限公司 图像处理方法、装置、电子设备及存储介质
US12475374B2 (en) 2020-07-28 2025-11-18 Hon Hai Precision Industry Co., Ltd. Image processing method, electronic device and storage medium
JP2022034897A (ja) * 2020-08-19 2022-03-04 富士通株式会社 情報処理装置、機械学習方法及び機械学習プログラム
JP7524667B2 (ja) 2020-08-19 2024-07-30 富士通株式会社 情報処理装置、機械学習方法及び機械学習プログラム

Also Published As

Publication number Publication date
JP6973651B2 (ja) 2021-12-01
JPWO2020039493A1 (ja) 2021-04-30

Similar Documents

Publication Publication Date Title
Rothmann et al. A survey of domain-specific architectures for reinforcement learning
Da Silva et al. Parallel implementation of reinforcement learning Q-learning technique for FPGA
US10540145B2 (en) Method and processing apparatus for performing arithmetic operation
JP7287397B2 (ja) 情報処理方法、情報処理装置及び情報処理プログラム
CN112052958A (zh) 模型训练的方法、装置、设备及计算机可读存储介质
CN110689138A (zh) 运算方法、装置及相关产品
US10146248B2 (en) Model calculation unit, control unit and method for calibrating a data-based function model
CN107169807A (zh) 一种期权定价的方法、装置及系统
CN115374916A (zh) 硬件加速器和硬件加速器方法
CN115577798A (zh) 基于随机加速梯度下降的半联邦学习方法及装置
WO2020039493A1 (fr) Dispositif, procédé et programme d&#39;optimisation de calcul
CN114492742A (zh) 神经网络结构搜索、模型发布方法、电子设备和存储介质
CN115238200A (zh) 多路二分网络链路预测方法及装置
CN113011577B (zh) 处理单元、处理器核、神经网络训练机及方法
RU2679225C2 (ru) Способ и устройство для определения градиента основанной на данных функциональной модели
Pan et al. An Improved Quantum-behaved Particle Swarm Optimization Algorithm Based on Random Weight.
CN115392594B (zh) 一种基于神经网络和特征筛选的用电负荷模型训练方法
CN111582346A (zh) 一种图像识别方法、设备、电子设备和存储介质
CN115598967A (zh) 参数整定模型训练、参数确定方法、装置、设备及介质
WO2022260171A1 (fr) Dispositif d&#39;estimation et procédé de génération de modèle
Nozdrzykowski et al. Testing the significance of parameters of models estimating execution time of parallel program loops according to the Open MPI Standard
CN116910793B (zh) 一种基于神经网络的数据加密方法、装置及存储介质
CN114418065B (zh) 模型处理方法、装置、电子设备及可读介质
JP2019102066A (ja) 移動経路推定装置、移動経路推定方法、およびプログラム
WO2020008642A1 (fr) Dispositif d&#39;apprentissage, circuit d&#39;apprentissage, procédé d&#39;apprentissage et programme d&#39;apprentissage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18930836

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020537921

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18930836

Country of ref document: EP

Kind code of ref document: A1