WO2020039493A1 - Dispositif, procédé et programme d'optimisation de calcul - Google Patents
Dispositif, procédé et programme d'optimisation de calcul Download PDFInfo
- Publication number
- WO2020039493A1 WO2020039493A1 PCT/JP2018/030769 JP2018030769W WO2020039493A1 WO 2020039493 A1 WO2020039493 A1 WO 2020039493A1 JP 2018030769 W JP2018030769 W JP 2018030769W WO 2020039493 A1 WO2020039493 A1 WO 2020039493A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- arithmetic
- explanatory variable
- objective function
- accuracy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
Definitions
- the operation optimization device of the present invention determines the operation accuracy of each layer in a discrimination model in which a plurality of layers each composed of one or more units are combined.
- a discrimination model is a neural network.
- the discrimination model is not limited to the neural network.
- FIG. 3 is a schematic diagram showing an example of the above processing apparatus.
- the processing device 18 includes, for example, a low-precision arithmetic circuit 5, a high-precision arithmetic circuit 6, a first memory 7, a second memory 8, and a third memory 9.
- the low-precision arithmetic circuit 5, the high-precision arithmetic circuit 6, the first memory 7, the second memory 8, and the third memory 9 are connected via, for example, a bus 10.
- the explanatory variable value acquiring unit 23 acquires the values of the explanatory variables (in this example, “inference accuracy” and “processing speed”).
- the explanatory variable value obtaining unit 23 causes the actually existing processing device 18 (see FIG. 3) to execute the inference process, and obtains the values of “inference accuracy” and “processing speed” by actual measurement. It is.
- the second mode is a mode in which the explanatory variable value obtaining unit 23 obtains the values of “inference accuracy” and “processing speed” by simulation. That is, the first mode is a mode in which the value of the explanatory variable is obtained by actual measurement, and the second mode is a mode in which the value of the explanatory variable is obtained by simulation.
- the explanatory variable value acquisition unit 23 processes the number of the arithmetic units, the memory access amount derived based on the selected applied pattern, and the data transfer amount between the low precision arithmetic circuit 5 and the high precision arithmetic circuit 6.
- the value of the processing speed may be calculated by substituting the value into the speed function. As a result, the explanatory variable value acquisition unit 23 can acquire the value of the processing speed based on the simulation.
- the explanatory variable value acquiring unit 23 may acquire the value of the explanatory variable by actual measurement or by simulation. In any case, the explanatory variable value acquiring unit 23 acquires the values of the explanatory variables (in this example, “inference accuracy” and “processing speed”) for each application pattern.
- the arithmetic accuracy of each layer of the neural network is determined by the first arithmetic accuracy (for example, It is possible to determine whether to use an 8-bit integer operation by the low-precision operation circuit 5 or to use the second operation accuracy (for example, a 32-bit floating-point operation by the high-precision operation circuit 6).
- the explanatory variable value acquisition unit 23, the objective function calculation unit 25, and the application pattern determination unit 27 are realized by, for example, a CPU (Central Processing Unit) of a computer that operates according to an operation optimization program.
- the CPU reads the operation optimization program from a program recording medium such as a program storage device. Then, the CPU may operate as the explanatory variable value acquisition unit 23, the objective function calculation unit 25, and the applied pattern determination unit 27 according to the operation optimization program.
- a CPU Central Processing Unit
- the explanatory variable value acquisition unit 23 also acquires a value of “circuit scale” in addition to “inference accuracy” and “processing speed”.
- the design information stored in the design information storage unit 19 includes a design value of the number of arithmetic units included in the low-precision arithmetic circuit 5 and a design value of the number of arithmetic units included in the high-precision arithmetic circuit 6.
- the design information stored in the design information storage unit 19 includes a design value of the number of arithmetic units included in the low-precision arithmetic circuit 5 and a design value of the number of arithmetic units included in the high-precision arithmetic circuit 6.
- What is necessary is just to include a value and a design value of how many arithmetic units included in the low-precision arithmetic circuit 5 correspond to one arithmetic unit included in the high-precision arithmetic circuit 6.
- one arithmetic unit included in the high-precision arithmetic circuit 6 will be described as equivalent to J arithmetic units included in the low-precision arithmetic circuit 5.
- ⁇ is a coefficient of “power consumption” and is determined in advance.
- ⁇ is defined as a positive value.
- FIG. 12 is a schematic block diagram showing a configuration example of a computer according to the embodiment of the present invention or its modification.
- the computer 1000 includes a CPU 1001, a main storage device 1002, an auxiliary storage device 1003, and an interface 1004.
- the plurality of information processing devices, circuits, and the like may be centrally arranged or may be distributed.
- the information processing device, the circuit, and the like may be realized as a form in which each is connected via a communication network, such as a client and server system or a cloud computing system.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Theoretical Computer Science (AREA)
- Evolutionary Computation (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Neurology (AREA)
- Image Analysis (AREA)
Abstract
Un moyen d'acquisition de valeur variable explicative 73 réalise un calcul à l'aide d'un modèle de discrimination obtenu par combinaison de multiples couches composées chacune d'une ou de plusieurs unités, pour acquérir une certaine valeur variable explicative pour chaque modèle de modèles d'application qui sont des informations spécifiant une couche à laquelle doit être appliqué un premier circuit de calcul pour réaliser un calcul avec une première précision de calcul, et une couche à laquelle doit être appliqué un second circuit de calcul pour réaliser un calcul avec une seconde précision de calcul plus élevée que la première précision de calcul. Un moyen de calcul de fonction objectif 75 calcule, pour le modèle d'application, la valeur d'une fonction objectif exprimée avec la certaine variable explicative. Un moyen de détermination de modèle d'application 77 détermine un tel modèle d'application pour lequel la valeur de la fonction objectif devient minimale parmi les modèles d'application.
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2020537921A JP6973651B2 (ja) | 2018-08-21 | 2018-08-21 | 演算最適化装置、方法およびプログラム |
| PCT/JP2018/030769 WO2020039493A1 (fr) | 2018-08-21 | 2018-08-21 | Dispositif, procédé et programme d'optimisation de calcul |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2018/030769 WO2020039493A1 (fr) | 2018-08-21 | 2018-08-21 | Dispositif, procédé et programme d'optimisation de calcul |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2020039493A1 true WO2020039493A1 (fr) | 2020-02-27 |
Family
ID=69592083
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2018/030769 Ceased WO2020039493A1 (fr) | 2018-08-21 | 2018-08-21 | Dispositif, procédé et programme d'optimisation de calcul |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP6973651B2 (fr) |
| WO (1) | WO2020039493A1 (fr) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114004968A (zh) * | 2020-07-28 | 2022-02-01 | 富泰华工业(深圳)有限公司 | 图像处理方法、装置、电子设备及存储介质 |
| JP2022034897A (ja) * | 2020-08-19 | 2022-03-04 | 富士通株式会社 | 情報処理装置、機械学習方法及び機械学習プログラム |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2018010618A (ja) * | 2016-05-03 | 2018-01-18 | イマジネイション テクノロジーズ リミテッド | 畳み込みニューラルネットワークハードウエア構成 |
Family Cites Families (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10621486B2 (en) * | 2016-08-12 | 2020-04-14 | Beijing Deephi Intelligent Technology Co., Ltd. | Method for optimizing an artificial neural network (ANN) |
-
2018
- 2018-08-21 JP JP2020537921A patent/JP6973651B2/ja active Active
- 2018-08-21 WO PCT/JP2018/030769 patent/WO2020039493A1/fr not_active Ceased
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2018010618A (ja) * | 2016-05-03 | 2018-01-18 | イマジネイション テクノロジーズ リミテッド | 畳み込みニューラルネットワークハードウエア構成 |
Non-Patent Citations (1)
| Title |
|---|
| LIN, DARRYL D. ET AL.: "Fixed Point Quantization of Deep Convolutional Networks", ARXIV, 2 June 2016 (2016-06-02), XP055561866, Retrieved from the Internet <URL:https://arxiv.org/abs/1511.06393v3> [retrieved on 20180831] * |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN114004968A (zh) * | 2020-07-28 | 2022-02-01 | 富泰华工业(深圳)有限公司 | 图像处理方法、装置、电子设备及存储介质 |
| CN114004968B (zh) * | 2020-07-28 | 2025-07-04 | 富泰华工业(深圳)有限公司 | 图像处理方法、装置、电子设备及存储介质 |
| US12475374B2 (en) | 2020-07-28 | 2025-11-18 | Hon Hai Precision Industry Co., Ltd. | Image processing method, electronic device and storage medium |
| JP2022034897A (ja) * | 2020-08-19 | 2022-03-04 | 富士通株式会社 | 情報処理装置、機械学習方法及び機械学習プログラム |
| JP7524667B2 (ja) | 2020-08-19 | 2024-07-30 | 富士通株式会社 | 情報処理装置、機械学習方法及び機械学習プログラム |
Also Published As
| Publication number | Publication date |
|---|---|
| JP6973651B2 (ja) | 2021-12-01 |
| JPWO2020039493A1 (ja) | 2021-04-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Rothmann et al. | A survey of domain-specific architectures for reinforcement learning | |
| Da Silva et al. | Parallel implementation of reinforcement learning Q-learning technique for FPGA | |
| US10540145B2 (en) | Method and processing apparatus for performing arithmetic operation | |
| JP7287397B2 (ja) | 情報処理方法、情報処理装置及び情報処理プログラム | |
| CN112052958A (zh) | 模型训练的方法、装置、设备及计算机可读存储介质 | |
| CN110689138A (zh) | 运算方法、装置及相关产品 | |
| US10146248B2 (en) | Model calculation unit, control unit and method for calibrating a data-based function model | |
| CN107169807A (zh) | 一种期权定价的方法、装置及系统 | |
| CN115374916A (zh) | 硬件加速器和硬件加速器方法 | |
| CN115577798A (zh) | 基于随机加速梯度下降的半联邦学习方法及装置 | |
| WO2020039493A1 (fr) | Dispositif, procédé et programme d'optimisation de calcul | |
| CN114492742A (zh) | 神经网络结构搜索、模型发布方法、电子设备和存储介质 | |
| CN115238200A (zh) | 多路二分网络链路预测方法及装置 | |
| CN113011577B (zh) | 处理单元、处理器核、神经网络训练机及方法 | |
| RU2679225C2 (ru) | Способ и устройство для определения градиента основанной на данных функциональной модели | |
| Pan et al. | An Improved Quantum-behaved Particle Swarm Optimization Algorithm Based on Random Weight. | |
| CN115392594B (zh) | 一种基于神经网络和特征筛选的用电负荷模型训练方法 | |
| CN111582346A (zh) | 一种图像识别方法、设备、电子设备和存储介质 | |
| CN115598967A (zh) | 参数整定模型训练、参数确定方法、装置、设备及介质 | |
| WO2022260171A1 (fr) | Dispositif d'estimation et procédé de génération de modèle | |
| Nozdrzykowski et al. | Testing the significance of parameters of models estimating execution time of parallel program loops according to the Open MPI Standard | |
| CN116910793B (zh) | 一种基于神经网络的数据加密方法、装置及存储介质 | |
| CN114418065B (zh) | 模型处理方法、装置、电子设备及可读介质 | |
| JP2019102066A (ja) | 移動経路推定装置、移動経路推定方法、およびプログラム | |
| WO2020008642A1 (fr) | Dispositif d'apprentissage, circuit d'apprentissage, procédé d'apprentissage et programme d'apprentissage |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18930836 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2020537921 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 18930836 Country of ref document: EP Kind code of ref document: A1 |