[go: up one dir, main page]

WO2020090290A1 - Image classifying device, image inspecting device, and image classifying method - Google Patents

Image classifying device, image inspecting device, and image classifying method Download PDF

Info

Publication number
WO2020090290A1
WO2020090290A1 PCT/JP2019/037441 JP2019037441W WO2020090290A1 WO 2020090290 A1 WO2020090290 A1 WO 2020090290A1 JP 2019037441 W JP2019037441 W JP 2019037441W WO 2020090290 A1 WO2020090290 A1 WO 2020090290A1
Authority
WO
WIPO (PCT)
Prior art keywords
class
image
classifier
classification
classified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2019/037441
Other languages
French (fr)
Japanese (ja)
Inventor
藤枝 紫朗
真嗣 栗田
池田 泰之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corp, Omron Tateisi Electronics Co filed Critical Omron Corp
Publication of WO2020090290A1 publication Critical patent/WO2020090290A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to an image classification device, an image inspection device, and an image classification method.
  • an inspection / classification device of an image classification device a defect detection unit that performs a defect inspection of image data of an inspection target area and generates defect image data when a defect is detected, and a defect image using a classifier.
  • a device including a classification control unit that classifies into any one of a plurality of defect classes see Patent Document 1).
  • the classifier of this inspection / classification apparatus includes M (M is an integer of 2 or more) core classifiers and one voting unit, and classifies into N (N is an integer of 2 or more) defect classes. is doing.
  • an image may be neither defective nor defective, that is, an intermediate class (gray class) may exist between a defective class and a non-defective class.
  • this intermediate class exists, for example, when classifying a target image into a first class with a defect, a second class without a defect, and an intermediate class into a third class, It becomes necessary to set two thresholds, a threshold between the third class and a threshold between the first class and the third class.
  • the boundary of the intermediate class is not clear, it is difficult to adjust these two threshold values. Depending on the two threshold values, too many images are classified into the third class (excessive classification), Alternatively, the number of images classified into the third class may be too small (underclassified).
  • an object of the present invention is to provide an image classification device and an image classification method that can suppress excessive classification and underclassification of images into intermediate classes.
  • An image classification device is a first classifier that classifies an image into a first class or another class, and an image classified into the first class may have the first class possibility.
  • a second classifier that classifies an image into a second class or another class, including a certain class of The image is an intermediate class between the first class and the second class based on the second classifier, which includes the And a determination unit that determines whether or not there is.
  • the image is an intermediate class between the first class and the second class based on the classification result of the first classifier and the classification result of the second classifier. ..
  • the first classifier classifies an image into the first class or another class
  • the image classified into the first class by the first classifier includes a possibility of the first class.
  • the threshold value of can be easily set in comparison with the threshold value when the image is classified into the intermediate class between the first class and the second class.
  • the second classifier may classify the image into the second class or another class.
  • the threshold for classifying can be easily set in comparison with the threshold for classifying an image into an intermediate class between the first class and the second class. Then, the inventor of the present invention has found that an image can be classified into an intermediate class based on the classification result of the first classifier and the classification result of the second classifier. Therefore, it is determined whether the image is an intermediate class between the first class and the second class based on the classification result of the first classifier and the classification result of the second classifier. It is possible to suppress over-classification and under-classification into intermediate classes.
  • the determining unit determines that the image is an intermediate class when the image is classified into the first class by the first classifier and classified into the second class by the second classifier. Good.
  • the image when the image is classified into the first class by the first classifier and the second class by the second classifier, the image is determined to be the intermediate class.
  • the first classifier classifies the class as a first class including a possibility of the first class
  • the second classifier classifies as a second class including a possibility of the second class.
  • the inventor of the present invention has found that the classified images have a high probability of being an intermediate class between the first class and the second class. Therefore, when the image is classified into the first class by the first classifier and is classified into the second class by the second classifier, it is determined that the image is the intermediate class, and thus the image is classified into the intermediate class. The accuracy of classification can be improved.
  • the determining unit determines that the image is the first class when the image is classified into the first class by the first classifier and is classified into the other class by the second classifier. You may.
  • the image when the image is classified into the first class by the first classifier and is classified into the other class by the second classifier, the image is determined to be the first class.
  • an image classified by the first classifier as a first class including a possibility of the first class and classified by the second classifier as other than the second class is a first class.
  • the inventor of the present invention has found that there is a high probability. Therefore, when the image is classified into the first class by the first classifier and is classified into the class other than the second class by the second classifier, the image is classified into the first class, and thus the image is classified into the first class.
  • the accuracy of classifying into one class can be improved.
  • the determining unit determines that the image is the second class when the image is classified into the other class by the first classifier and the second class by the second classifier. You may.
  • the image when the image is classified into the other class by the first classifier and the second class by the second classifier, the image is determined to be the second class.
  • an image classified by the first classifier as a class other than the first class and classified by the second classifier as a second class including a possibility of the second class is a second class.
  • the inventor of the present invention has found that there is a high probability. Therefore, when the image is classified into a class other than the first class by the first classifier and is classified into the second class by the second classifier, the image is classified into the second class, and thus the image is classified into the second class.
  • the accuracy of classifying into two classes can be improved.
  • each of the first classifier and the second classifier may be a two-class classifier.
  • each of the first classifier and the second classifier is a two-class classifier. Accordingly, it is possible to easily and easily generate the first classifier and the second classifier with high classification accuracy as compared with a multi-class classifier having three or more classes.
  • a third classifier that classifies an image into a third class or another class, and the images classified into the third class include those that are likely to be the third class.
  • the determination unit further includes a third classifier, and the determination unit determines that the image is a first class, a second class, based on the classification result of the first classifier, the classification result of the second classifier, and the classification result of the third classifier. It may be determined whether or not it is an intermediate class between at least two of the third and third classes.
  • the image is classified into the first class, the second class, and the third class based on the classification result of the first classifier, the classification result of the second classifier, and the classification result of the third classifier.
  • the image classified into the third class by the third classifier includes a possibility of the third class
  • when the third classifier classifies the image into the third class or another class. Can be easily set in comparison with the threshold when classifying an image into an intermediate class between at least two of the first class, the second class and the third class. it can.
  • the classification result of the third classifier and the classification result of the first classifier and the classification result of the second classifier it is possible to classify an image into an intermediate class.
  • the image has at least two of the first class, the second class, and the third class.
  • each further comprises a third classifier to an m-th classifier (m is an integer of 4 or more), the third classifier classifies the image into a third class or another class, and
  • the images classified into the class include those having the possibility of the third class, and the m-th classifier classifies the image into the m-th class or another class, and the image classified into the m-th class is Are included in the m-th class, and the determination unit determines that the image is classified from the first class to the m-th class based on the classification result of the first classifier to the m-th classifier. May be determined to be an intermediate class between at least two of the above.
  • the image classified into the third class by the third classifier includes a possibility of the third class
  • the third classifier classifies the image into the third class or another class.
  • the threshold value of can be easily set in comparison with the threshold value when the image is classified into the intermediate class between at least two of the first class to the m-th class.
  • the m-th classifier classifies an image into the m-th class or any other class, if the m-th classifier includes an m-th class possible image.
  • the threshold value of can be easily set in comparison with the threshold value when the image is classified into the intermediate class between at least two of the first class to the m-th class. Then, the image can be classified into the intermediate class based on the classification result of the third classifier to the classification result of the m-th classifier, and the classification result of the first classifier and the classification result of the second classifier.
  • the inventor of the present invention has found that Therefore, it is determined whether or not the image is an intermediate class between at least two of the first class to the m-th class based on the classification result of the first classifier to the classification result of the m-th classifier. With this, it is possible to suppress excessive classification and underclassification of the image into the intermediate class.
  • An image inspection apparatus includes the above-described image classification device, and inspects the image of the inspection object using the image classification device.
  • the image of the inspection object is inspected using the image classification device described above. Accordingly, it is possible to easily realize an image inspection apparatus that suppresses over-classification and under-classification of images into intermediate classes.
  • An image classification method is a first classification step in which a first classifier classifies an image into a first class or another class, and the image is classified into the first class.
  • a first classification step that includes the possible first classes
  • a second classification step in which the second classifier classifies the image into a second class or another class
  • the images classified into are included in the images that have the possibility of the second class.
  • the second classification step and the determination unit are based on the classification result of the first classification step and the classification result of the second classification step.
  • a determination step of determining whether or not the image is an intermediate class between the first class and the second class.
  • the image is an intermediate class between the first class and the second class based on the classification result of the first classification step and the classification result of the second classification step. ..
  • the first classifier classifies an image into the first class or another class
  • the image classified into the first class by the first classifier includes a possibility of the first class.
  • the threshold value of can be easily set in comparison with the threshold value when the image is classified into the intermediate class between the first class and the second class.
  • the second classifier may classify the image into the second class or another class.
  • the threshold for classifying can be easily set in comparison with the threshold for classifying an image into an intermediate class between the first class and the second class. Then, the inventor of the present invention has found that an image can be classified into an intermediate class based on the classification result of the first classifier and the classification result of the second classifier. Therefore, it is determined whether the image is an intermediate class between the first class and the second class based on the classification result of the first classification step and the classification result of the second classification step. It is possible to suppress over-classification and under-classification into intermediate classes.
  • the determining step determines that the image is the intermediate class when the image is classified into the first class in the first classifying step and the second class in the second classifying step. The determination may be included.
  • the image when the image is classified into the first class in the first classification step and classified into the second class in the second classification step, the image is determined to be the intermediate class.
  • the first classifier classifies the class as a first class including a possibility of the first class
  • the second classifier classifies as a second class including a possibility of the second class.
  • the inventor of the present invention has found that the classified images have a high probability of being an intermediate class between the first class and the second class. Therefore, when the image is classified into the first class in the first classifying step and is classified into the second class in the second classifying step, the image is classified into the intermediate class by determining that the image is the intermediate class. The accuracy of classification can be improved.
  • the determining unit classifies the image into the first class. It may include determining that there is.
  • the image when the image is classified into the first class in the first classification step and classified into other classes in the second classifier, the image is determined to be the first class.
  • an image classified by the first classifier as a first class including a possibility of the first class and classified by the second classifier as other than the second class is a first class.
  • the inventor of the present invention has found that there is a high probability. Therefore, when the image is classified into the first class in the first classifying step and is classified into a class other than the second class in the second classifying step, the image is classified into the first class, and thus the image is classified into the first class.
  • the accuracy of classifying into one class can be improved.
  • the determination unit classifies the image into the second class. It may include determining that there is.
  • the image when the image is classified into the other class in the first classification step and the second class in the second classification step, the image is determined to be the second class.
  • an image classified by the first classifier as a class other than the first class and classified by the second classifier as a second class including a possibility of the second class is a second class.
  • the inventor of the present invention has found that there is a high probability. Therefore, when the image is classified into a class other than the first class in the first classification step and classified into the second class in the second classification step, the image is determined to be the second class, and thus the image is classified into the second class.
  • the accuracy of classifying into two classes can be improved.
  • the third classifying step is a third classifying step of classifying an image into a third class or another class, and the image classified into the third class may have the third class.
  • the determination unit further includes a third classification step that includes an image, and the determination unit includes an image based on the classification result of the first classification step, the classification result of the second classification step, and the classification result of the third classification step. May include determining if it is an intermediate class between at least two of the first class, the second class, and the third class.
  • the image is classified into the first class, the second class, and the third class based on the classification result of the first classification step, the classification result of the second classification step, and the classification result of the third classification step.
  • the image classified into the third class by the third classifier includes a possibility of the third class
  • when the third classifier classifies the image into the third class or another class. Can be easily set in comparison with the threshold when classifying an image into an intermediate class between at least two of the first class, the second class and the third class. it can.
  • the image has at least two of the first class, the second class, and the third class.
  • the method further includes each of a third classification step to an m-th (m is an integer of 4 or more) classification step, wherein the third classifier classifies the image into a third class or another class.
  • the images classified into the third class include those that are likely to be in the third class, and the m-th classifying step includes the m-th classifier classifying the image into the m-th class or other.
  • the image classified into the m-th class includes an image having a possibility of being in the m-th class. It includes determining whether the image is an intermediate class between at least two of the first class to the m-th class based on the classification result of the m classification step.
  • whether the image is an intermediate class between at least two of the first class to the m-th class based on the classification result of the first classification step to the classification result of the m-th classification step. Is determined.
  • the image classified into the third class by the third classifier includes a possibility of the third class
  • the threshold value of can be easily set in comparison with the threshold value when the image is classified into the intermediate class between at least two of the first class to the m-th class.
  • the m-th classifier classifies an image into the m-th class or any other class, if the m-th classifier includes an m-th class possible image.
  • the threshold value of can be easily set in comparison with the threshold value when the image is classified into the intermediate class between at least two of the first class to the m-th class. Then, the image can be classified into the intermediate class based on the classification result of the third classifier to the classification result of the m-th classifier, and the classification result of the first classifier and the classification result of the second classifier.
  • the inventor of the present invention has found that Therefore, it is determined whether or not the image is an intermediate class between at least two of the first class to the m-th class based on the classification result of the first classification step to the classification result of the m-th classification step. With this, it is possible to suppress excessive classification and underclassification of the image into the intermediate class.
  • FIG. 1 is a configuration diagram illustrating a schematic configuration of an image processing apparatus according to an embodiment.
  • FIG. 2 is a block diagram illustrating a configuration of the classification unit and the determination unit illustrated in FIG.
  • FIG. 3 is a Venn diagram illustrating an intermediate class between the first class and the second class.
  • FIG. 4 is a table illustrating the results of the determination unit shown in FIG.
  • FIG. 5 is a diagram illustrating the first classifier shown in FIG. 2 and the generation of the first classifier.
  • FIG. 6 is a flow chart illustrating a schematic operation of the image inspection apparatus according to the first embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an inspection image and a classification result of the image inspection apparatus shown in FIG. FIG.
  • FIG. 8 is a graph in which the inspection image of the image inspection device shown in FIG. 7 is mapped by the feature amount.
  • FIG. 9 is a configuration diagram illustrating a schematic configuration of the image inspection apparatus according to the second embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating the configuration of the classification unit and the determination unit illustrated in FIG.
  • FIG. 11 is a Venn diagram illustrating an intermediate class between at least two of the first class, the second class, and the third class.
  • FIG. 12 is a table exemplifying the result of the determination unit shown in FIG.
  • FIG. 13 is a block diagram illustrating a modification of the configurations of the classification unit and the determination unit illustrated in FIG.
  • FIG. 1 is a configuration diagram illustrating a schematic configuration of an image inspection apparatus 100 according to the first embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating the configuration of the classification unit 31 and the determination unit 32 illustrated in FIG.
  • FIG. 3 is a Venn diagram illustrating an intermediate class IC between the first class CL1 and the second class CL2.
  • FIG. 4 is a table illustrating the result RE of the determination unit 32 shown in FIG.
  • FIG. 5 is a diagram illustrating generation of the first classifier 31a and the second classifier 31b illustrated in FIG.
  • the image inspection device 100 is for inspecting whether or not the inspection object includes a defect from an image obtained by photographing the inspection object.
  • the defect is not particularly limited, but for example, it can be visually recognized such as a scratch, a crack, a chip, a burr, an adhering substance, a foreign substance, a dent, unevenness in color, dirt, a faint print, a misalignment in print, etc. Including those.
  • the image inspection device 100 includes an image classification device 50, an imaging device 60, an input device 70, an output device 80, and a line device 90.
  • the image inspection device 100 captures an image of the inspection object on the line device 90 by the image capturing device 60, and inspects the image of the inspection object (hereinafter referred to as “inspection image”) using the image classification device 50. Is configured.
  • the image classification device 50 is, for example, an information processing device such as a computer.
  • the image classification device 50 includes an input / output I / F (interface) 10, a storage unit 20, and a control unit 30.
  • the image classification device 50 further includes a bus 40 configured to transmit signals and data between the respective units of the image classification device 50.
  • the input / output I / F 10 is an interface between the image classification device 50 and external devices.
  • the input / output I / F 10 is configured to exchange data and signals with external devices.
  • the input / output I / F 10 is also configured to control communication with an external device.
  • the input / output I / F 10 is configured to include standardized interface connection terminals such as USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Mutimedia Interface), and IEEE 1394.
  • USB Universal Serial Bus
  • HDMI registered trademark
  • IEEE 1394 IEEE 1394
  • the storage unit 20 is configured to store programs and data.
  • the storage unit 20 includes, for example, a hard disk drive, a solid state drive, and the like.
  • the storage unit 20 stores various programs executed by the control unit 30 and data necessary for executing the programs in advance. Further, the storage unit 20 stores the inspection image 21 input from the imaging device 60 via the input / output I / F 10.
  • the control unit 30 is configured to control the operation of each unit of the image classification device 50, such as the input / output I / F 10 and the storage unit 20. Further, the control unit 30 is configured to realize each function described below by executing a program stored in the storage unit 20 or the like.
  • the control unit 30 includes a processor such as a CPU (Central Processing Unit), a memory such as a ROM (Read Only Memory), a RAM (Random Access Memory), and a buffer storage device such as a buffer.
  • the control unit 30 includes, for example, a classification unit 31 and a determination unit 32 as its functional configuration.
  • the classification unit 31 includes a first classifier 31a and a second classifier 31b.
  • the first classifier 31a is configured to classify the input image into the first class or another class.
  • the images classified into the first class include those that are likely to be in the first class. As a result, an image that is not the first class is definitely classified into the other classes (classes other than the first class).
  • the inspection image 21 stored in the storage unit 20 is input to the first classifier 31a, and the first classifier 31a outputs the classification result CR1.
  • the second classifier 31b is configured to classify the input image into the second class or another class.
  • the images classified into the second class include those that are likely to be in the second class. As a result, an image that is not the second class is reliably classified into the other classes (classes other than the second class).
  • the inspection image 21 stored in the storage unit 20 is input to the second classifier 31b, and the second classifier 31b outputs the classification result CR2.
  • the determination unit 32 determines that the inspection image 21 input to the first classifier 31a and the second classifier 31b is It is configured to determine whether the class is an intermediate class between the first class and the second class.
  • the classification result CR1 of the first classifier 31a and the classification result CR2 of the second classifier 31b are input to the determination unit 32, and the determination unit 32 outputs a result RE according to the determination result.
  • the first classifier 31a converts the inspection image 21 into the first class or other cases. Can be easily set in comparison with the threshold when the inspection image 21 is classified into the intermediate class between the first class and the second class. ..
  • the second classifier 31b converts the inspection image 21 into the second class.
  • the threshold value when classifying into another class is set easily in comparison with the threshold value when classifying the inspection image 21 into an intermediate class between the first class and the second class. be able to.
  • the inventor of the present invention has found that the inspection image 21 can be classified into the intermediate class based on the classification result CR1 of the first classifier 31a and the classification result CR2 of the second classifier 31b. .. Therefore, it is determined whether the inspection image 21 is an intermediate class between the first class and the second class based on the classification result CR1 of the first classifier 31a and the classification result CR2 of the second classifier 31b. By doing so, it is possible to suppress over-classification and under-classification of the inspection image 21 into intermediate classes.
  • the first class CL1 is a class whose inspection image 21 is “OK” and the second class CL2 is a class whose inspection image 21 is “NG”, the first class CL1
  • the intermediate class IC includes an inspection image 21 that is “OK” in the first classifier 31a and “NG” in the second classifier 31b, and the inspection image 21 is both “OK” and “NG”. It is a gray image that cannot be classified.
  • the inspection image 21 is “OK” for the first class CL1
  • the inspection image 21 is “NG” for the second class CL2, and the first class CL1.
  • the intermediate class IC existing between the second class CL2 is "gray".
  • the determination unit 32 makes a determination according to the table shown in FIG.
  • the upper line represents negation
  • the upper line of “OK” means other than “OK”
  • the upper line of “NG” means other than “NG”.
  • other than "OK” may be referred to as "? OK”
  • other than "NG” may be referred to as "? NG”.
  • the determination unit 32 sets the inspection image 21 to the intermediate class. It is determined that the IC is IC, and “gray” indicating the intermediate class IC is output as the result RE.
  • the first classifier 31a classifies the class as a first class including a possibility of the first class
  • the second classifier 31b classifies a second class including a possibility of the second class.
  • the inventor of the present invention has found that the inspection image 21 classified as a certain one is highly likely to be an intermediate class between the first class and the second class.
  • the inspection image 21 is classified as “OK” by the first classifier 31a and “NG” by the second classifier 31b, the inspection image 21 is determined to be the intermediate class IC. Thereby, the accuracy of classifying the inspection image 21 into “gray” can be improved.
  • the determination unit 32 sets the inspection image 21 to the first class. It is determined to be CL1, and “OK” indicating the first class CL1 is output as the result RE.
  • the inspection image 21 classified by the first classifier 31a as a first class including a possibility of the first class and classified by the second classifier 31b as other than the second class is:
  • the inventor of the present invention has found that the probability of being in the first class is high. Therefore, when the inspection image 21 is classified as “OK” by the first classifier 31a and is classified as other than “NG” by the second classifier 31b, the inspection image 21 is determined to be the first class CL1. By doing so, the accuracy with which the inspection image 21 is classified into “OK” can be improved.
  • the determination unit 32 classifies the inspection image 21 into the second class. It is determined to be CL2, and “NG” indicating the second class CL2 is output as the result RE.
  • the inspection image 21 classified by the first classifier 31a as a class other than the first class and classified by the second classifier 31b as a second class including a possibility of the second class is: The inventor of the present invention has found that the probability of being in the second class is high.
  • the inspection image 21 is classified as other than “OK” by the first classifier 31a and is classified as “NG” by the second classifier 31b, the inspection image 21 is determined to be the second class CL2. By doing so, the accuracy of classifying the inspection image 21 into “NG” can be improved.
  • the inspection image 21 is classified by the first classifier 31a other than "OK” and by the second classifier 31b other than "NG"
  • the inspection image 21 is in the example shown in FIG. It belongs to the area outside the first class CL1 and outside the second class CL2. That is, since such an inspection image 21 is an image that cannot be classified by the image classification device 50A, the determination unit 32 outputs "unknown" as the result RE.
  • the first classifier 31a and the second classifier 31b are two-class classifiers. As a result, it is possible to easily and easily generate the first classifier 31a and the second classifier 31b with high classification accuracy as compared with a multi-class classifier having three or more classes.
  • the first classifier 31a and the second classifier 31b are generated using an arbitrary machine learning model algorithm.
  • the first classifier 31a is generated using the first neural network NW1 and the second classifier 31b is generated using the second neural network NW2.
  • each of the first neural network NW1 and the second neural network NW2 is a convolutional neural network (CNN: Convolutional Neural Network).
  • the first neural network NW1 and the second neural network NW2 are, for example, a convolutional filter layer / pooling layer which is a combination of a convolutional filter layer and a pooling layer, respectively, and a feature amount extracted by the convolutional filter layer / pooling layer, It includes a fully connected layer and an output.
  • a plurality of learning images LG are given as inputs to the first neural network NW1 and the second neural network NW2.
  • An annotation, that is, related information is added to each learning image LG. That is, when each learning image LG is input to the first neural network NW1, the first label LA1 is given to each learning image LG, and each learning image LG is input when inputting each learning image LG to the second neural network NW2. Is attached with the second label LA2.
  • the first label LA1 is “OK”, which is the first class, or “ ⁇ OK”, which is the other class.
  • the second label LA2 is “NG” which is the second class or “ ⁇ NG” which is the other class.
  • the first label LA1 and the second label LA2 are set, for example, by the user viewing and classifying each learning image LG.
  • the first classifier 31a and the second classifier 31b are generated using the first neural network NW1 and the second neural network NW2, but the present invention is not limited to this.
  • the machine learning model algorithm for generating the first classifier 31a and the second classifier 31b for example, a support vector machine, a logistic regression, a deep neural network, or the like may be used.
  • each function of the control unit 30 can be realized by a program executed by a computer (microprocessor). Therefore, each function of the control unit 30 can be realized by hardware, software, or a combination of hardware and software, and is not limited to either case.
  • control unit 30 When each function of the control unit 30 is realized by software or a combination of hardware and software, the processing can be executed by multitasking, multithreading, or both multitasking and multithreading. It is not limited to such cases.
  • the imaging device 60 is configured to capture an image and record it as data.
  • the imaging device 60 is a digital camera, and is configured to include, for example, optical system components such as a lens and electronic system components such as an image sensor (light receiving element).
  • the optical system component may include a plurality of lenses.
  • the electronic component may include a light emitting device such as a flash.
  • the imaging device 60 is arranged above the line device 90, photographs the inspection object on the line device 90, and outputs the photographed image to the image classification device 50 via the input / output I / F 10.
  • the control unit 30 performs necessary processing on the image input from the imaging device 60 to generate a file of the inspection image 21, and causes the storage unit 20 to store the generated file of the inspection image 21.
  • the input device 70 is configured to be able to input information by a user (user) operation.
  • the input device 70 includes, for example, a keyboard, a keypad, a mouse, a trackball, a touch panel, a microphone, and the like. It is possible to For example, when the user operates a keyboard, a keypad, a mouse, a trackball, a touch panel, a microphone, etc. (including a voice operation using a microphone), the input device 70 outputs data or a signal corresponding to the operation. It outputs to the image classification device 50 via the input / output I / F 10.
  • the control unit 30 can input information to the image classification device 50 by generating data based on this data or signal.
  • the output device 80 is configured to output information.
  • the output device 80 is configured to include a display device such as a liquid crystal display, an EL (Electro Luminescence) display, and a plasma display.
  • a display device such as a liquid crystal display, an EL (Electro Luminescence) display, and a plasma display.
  • the output device 80 displays the image data input from the image classification device 50 via the input / output I / F 10 on the display device, the information can be output.
  • the line device 90 is configured to convey the inspection object.
  • the line device 90 is configured to include a transportation unit such as a belt conveyor.
  • the line device 90 moves, stops, or excludes the inspection object on the line device 90, for example, based on a control signal input from the image classification device 50 via the input / output I / F 10. It will be possible.
  • FIG. 6 is a flowchart illustrating a schematic operation of the image inspection apparatus 100 according to the first embodiment of the present invention.
  • FIG. 7 is a diagram illustrating the inspection image 21 and the classification result of the image inspection apparatus 100 shown in FIG.
  • FIG. 8 is a graph in which the inspection image 21 of the image inspection apparatus 100 shown in FIG. 7 is mapped by the feature amount.
  • the image inspection device 100 executes the image inspection process S200 shown in FIG. 6 when activated by, for example, a user's operation.
  • the first classifier 31a reads the inspection image 21 stored in the storage unit 20 and classifies the inspection image 21 into “OK” or other than “OK” (S201). Note that step S201 corresponds to the "first classification step” of the present invention.
  • step S202 classifies the inspection image 21 read in step S201 into “NG” or other than “NG” (S202). Note that step S202 corresponds to the "second classification step” of the present invention.
  • step S203 corresponds to the "determination step” of the present invention.
  • the control unit 30 displays the inspection image 21 on the output device 80 via the I / F 10 and re-inspects the inspection image 21 by the visual inspection of the user (S204). The user sees the inspection image 21 displayed on the output device 80 and operates the input device 70 to input “OK” or “NG” to the inspection image 21.
  • the determination unit 32 determines whether the inspection image 21 is “OK” which is the first class (S205).
  • the control unit 30 When the inspection image 21 is “OK” as a result of the determination in step S205, it is considered that the inspection target object corresponding to the inspection image 21 is ready to be shipped as a product, for example. Therefore, the control unit 30 outputs a control signal to the line device 90 via the I / F 10, and the line device 90 conveys and ships the inspection object corresponding to the inspection image 21 (S206).
  • the determination unit 32 determines whether the inspection image 21 is the second class "NG" (S207).
  • the control unit 30 outputs a control signal to the line device 90 via the I / F 10, and the line device 90 excludes the inspection object corresponding to the inspection image 21 from the line (S208).
  • step S207 when the inspection image 21 is not “NG”, it is considered that the determination unit 32 cannot classify the image by the image classification device 50 like “unknown” shown in FIG. Therefore, the control unit 30 outputs a warning together with the inspection image 21 to the output device 80 via the I / F 10 (S209), for example.
  • the user sees the inspection image and the warning output to the output device 80, and stops the line device 90 or operates the input device 70 to give “OK” or “NG” to the inspection image 21. Or type.
  • step 204 After step 204, step 206, step 208, or step 209, the control unit 30 repeats steps S201 to S209 until the image inspection apparatus 100 stops, for example.
  • each inspection image 21 includes defects such as stains and stains like the inspection image 21 of No. 5
  • the first classifier 31a determines that the No. 1 to No.
  • the inspection image 21 of No. 5 is classified into “OK” and No. 4 to No.
  • the inspection image 21 of No. 5 is classified into “ ⁇ OK” (other than “OK”).
  • the second classifier 31b is No. 1 to No.
  • the inspection image 21 of No. 2 is classified as “NG” and No. 3 to No.
  • the inspection image 21 of No. 5 is classified into “ ⁇ NG” (other than “NG”).
  • each inspection image 21 includes a defect such as a crack or a scratch like the inspection image 21 of No. 10
  • the first classifier 31a determines that the No. 6 to No.
  • the inspection image 21 of No. 7 is classified as “OK” and No. 8 to No.
  • the inspection images 21 of 10 are classified into “ ⁇ OK” (other than “OK”).
  • the second classifier 31b is No.
  • the inspection image 21 of No. 6 is classified as “NG” and No. 7 to No.
  • the inspection images 21 of 10 are classified into “ ⁇ NG” (other than “NG”).
  • each inspection image 21 includes a defect
  • the determination unit 32 determines No. based on the classification result of the first classifier 31a and the classification result of the second classifier 31b shown in FIG. 1, No. 2 and No. It is determined that the inspection image 21 of No. 6 is the first class CL1 surrounded by the broken line in FIG. Further, the determination unit 32 determines the No. based on the classification result of the first classifier 31a and the classification result of the second classifier 31b shown in FIG. 4, No. 5, and No. 8 to No.
  • the inspection image 21 of 10 is the second class CL2 surrounded by the one-dot chain line in FIG. Further, based on the classification result of the first classifier 31a and the classification result of the second classifier 31b shown in FIG. 3 and No. It is determined that the inspection image 21 of No. 7 is an intermediate class IC in which the first class CL1 and the second class CL2 overlap.
  • the inspection images 21 are classified into the first class CL1 and the second class CL1 based on the classification result of the first classifier 31a and the classification result of the second classifier 31b. It can be determined whether or not it is an intermediate class IC with the class CL2. it can.
  • FIG. 9 is a configuration diagram illustrating a schematic configuration of an image inspection apparatus 100A according to the second embodiment of the present invention.
  • FIG. 10 is a block diagram illustrating the configuration of the classification unit 31A and the determination unit 32A illustrated in FIG.
  • FIG. 11 is a Venn diagram illustrating an intermediate class IC between at least two of the first class CL1, the second class CL2, and the third class CL3.
  • FIG. 12 is a table exemplifying the result RE of the determination unit 32A shown in FIG. FIG.
  • FIG. 13 is a block diagram illustrating a modification of the configurations of the classification unit 31A and the determination unit 32A illustrated in FIG. Note that the same or similar reference numerals are given to the same or similar configurations as those of the first embodiment. The points different from the first embodiment will be described below. In addition, similar operational effects due to the similar configuration will not be sequentially described.
  • control unit 30 includes a classification unit 31A and a determination unit 32A.
  • the image inspection apparatus 100 and the image classification apparatus 50 according to the present invention are different.
  • the classification unit 31A further includes a third classifier 31c in addition to the first classifier 31a and the second classifier 31b.
  • the classification result CR3 of the third classifier 31c is input to the determination unit 32A.
  • the third classifier 31c is configured to classify the input image into the third class or another class.
  • the images classified into the third class include those that may be in the third class. As a result, an image that is not the third class is definitely classified into the other classes (classes other than the third class).
  • the inspection image 21 stored in the storage unit 20 is input to the third classifier 31c, and the third classifier 31c outputs the classification result CR3.
  • the determination unit 32A based on the classification result CR1 of the first classifier 31a, the classification result CR2 of the second classifier 31b, and the classification result CR3 of the third classifier 31c, the first classifier 31a and the second classifier 31b. , And the inspection image 21 input to the third classifier 31c is configured to determine whether the inspection image 21 is an intermediate class between at least two of the first class, the second class, and the third class. ing.
  • the determination unit 32A outputs the result RE according to the determination result.
  • the third classifier 31c converts the inspection image 21 into the third class or other cases.
  • the threshold value for classifying the inspection image 21 is compared with the threshold value for classifying the inspection image 21 into an intermediate class between at least two of the first class, the second class, and the third class. And can be easily set. Then, the inspection image 21 can be classified into the intermediate class based on the classification result CR3 of the third classifier 31c, the classification result CR1 of the first classifier 31a, and the classification result CR2 of the second classifier 31b.
  • the inventor of the present invention has found that there is.
  • the inspection image 21 includes the first class, the second class, and the By determining whether the inspection image 21 is an intermediate class between at least two of the three classes, it is possible to suppress excessive classification and underclassification of the inspection image 21 into the intermediate classes.
  • the first class CL1 is a class whose inspection image 21 is “A”
  • the second class CL2 is a class whose inspection image 21 is “B”
  • the third class CL3 is
  • the inspection image 21 is a class of “C”
  • between the first class CL1 and the second class CL2 between the first class CL1 and the third class CL3, and between the second class CL2 and the third class CL3.
  • Intermediate class ICs exist between the first class CL1, the second class CL2, and the third class CL3.
  • the inspection image 21 included in the intermediate class IC is a gray image that cannot be classified into any of “A”, “B”, and “C”.
  • the inspection image 21 is “A” for the first class CL1
  • the inspection image 21 is “B” for the second class CL2
  • the third class CL3 is The intermediate class IC in which the inspection image 21 exists between at least two of “C”, the first class CL1, the second class CL2, and the third class CL3 is “gray”.
  • the determination unit 32A makes a determination according to the table shown in FIG.
  • the upper line represents negation
  • the upper line of “A” means other than “A”
  • the upper line of “B” is “B”.
  • Means other than, and the upper line of "C” means other than "C”.
  • other than "A” may be expressed as " ⁇ A”
  • other than "B” may be expressed as " ⁇ B”
  • other than "C” may be expressed as " ⁇ C”.
  • the determination unit 32A determines that the inspection image 21 is the intermediate class IC, and outputs “gray” indicating the intermediate class IC as the result RE. Further, when the inspection image 21 is classified into “A” by the first classifier 31a, classified into “B” by the second classifier 31b, and classified into other than “C” by the third classifier 31c, The determination unit 32A determines that the inspection image 21 is the intermediate class IC, and outputs “gray” indicating the intermediate class IC as the result RE.
  • the determination unit 32A determines that the inspection image 21 is the intermediate class IC, and outputs “gray” indicating the intermediate class IC as the result RE.
  • the determination unit 32A determines that the inspection image 21 is the intermediate class IC, and outputs “gray” indicating the intermediate class IC as the result RE.
  • the inspection image 21 is classified as "A” by the first classifier 31a, classified as other than “B” by the second classifier 31b, and classified as other than “C” by the third classifier 31c.
  • the determination unit 32A determines that the inspection image 21 is the first class CL1 and outputs “A” indicating the first class CL1 as the result RE.
  • the determination unit 32A determines that the inspection image 21 is the second class CL2, and outputs “B” indicating the second class CL2 as the result RE.
  • the determining unit 32A determines that the inspection image 21 is the third class CL3, and outputs “C” indicating the third class CL3 as the result RE.
  • the inspection image 21 was classified by the first classifier 31a as other than "A”, by the second classifier 31b as other than "B", and by the third classifier 31c as other than "C". At this time, the inspection image 21 belongs to the area outside the first class CL1, outside the second class CL2, and outside the third class CL3 in the example shown in FIG. That is, since such an inspection image 21 is an image that cannot be classified by the image classification device 50A, the determination unit 32A outputs “unknown” as the result RE.
  • the third classifier 31c is a two-class classifier, like the first classifier 31a and the second classifier 31b. Further, the third classifier 31c may be generated by using a neural network similarly to the first classifier 31a and the second classifier 31b, or may be generated by a support vector machine, logistic regression, deep neural network, or the like. It may be generated using an algorithm of a machine learning model.
  • the operation of the image inspection apparatus 100A according to the second embodiment of the present invention is, for example, the general operation of the image inspection apparatus 100 shown in FIG. Only the step of classifying into other classes (corresponding to the third classifying step of the present invention) and the step of determining whether or not the inspection image 21 is the third class are added. Therefore, illustration and description of the operation of the image inspection apparatus 100A are omitted.
  • the classification unit 31A may further include each of the third classifier 31c to the m-th (m is an integer of 4 or more) classifier 31x.
  • the m-th classifier 31x is configured to classify the input image into the m-th class or another class.
  • the images classified into the m-th class include those that may be in the m-th class. As a result, an image that is not the m-th class is definitely classified into the other classes (classes other than the m-th class).
  • the determination unit 32A determines that the inspection image 21 is between at least two of the first class to the m-th class based on the classification result CR1 of the first classifier 31a to the classification result CRm of the m-th classifier 31x. Determine if it is an intermediate class.
  • the third classifier 31c converts the inspection image 21 into the third class or other classes.
  • the threshold for classifying the inspection image 21 should be easily set in comparison with the threshold for classifying the inspection image 21 into an intermediate class between at least two of the first class to the m-th class. You can Similarly, when the image classified into the m-th class by the m-th classifier 31x includes a possible m-th class image, the m-th classifier 31x converts the inspection image 21 into the m-th class or another class.
  • the threshold for classifying the inspection image 21 should be easily set in comparison with the threshold for classifying the inspection image 21 into an intermediate class between at least two of the first class to the m-th class. You can Then, based on the classification result CR3 of the third classifier 31c to the classification result CRm of the m-th classifier 31x, the classification result CR1 of the first classifier 31a, and the classification result CR2 of the second classifier 31b.
  • the inventor of the present invention has found that images can be classified into intermediate classes. Therefore, based on the classification result CR1 of the first classifier 31a to the classification result CRm of the mth classifier 31x, is the inspection image 21 an intermediate class between at least two of the first class to the mth class? By determining whether or not the inspection image 21 is over-classified or under-classified into the intermediate class.
  • the determination unit 32A determines that the inspection image 21 is the intermediate class.
  • the determination unit 32A determines the inspection image 21 as the first class. It is determined to be n class.
  • the inspection image 21 is classified into the first class based on the classification result CR1 of the first classifier 31a and the classification result CR2 of the second classifier 31b. It is determined whether the class is an intermediate class between the second class and the second class.
  • the first classifier 31a converts the inspection image 21 into the first class or other cases. Can be easily set in comparison with the threshold when the inspection image 21 is classified into the intermediate class between the first class and the second class. ..
  • the second classifier 31b converts the inspection image 21 into the second class.
  • the threshold value when classifying into another class is set easily in comparison with the threshold value when classifying the inspection image 21 into an intermediate class between the first class and the second class. be able to.
  • the inventor of the present invention has found that the inspection image 21 can be classified into the intermediate class based on the classification result CR1 of the first classifier 31a and the classification result CR2 of the second classifier 31b. ..
  • the inspection image 21 is an intermediate class between the first class and the second class based on the classification result CR1 of the first classifier 31a and the classification result CR2 of the second classifier 31b. By doing so, it is possible to suppress over-classification and under-classification of the inspection image 21 into intermediate classes.
  • the inspection image 21 is classified into the intermediate class between the first class and the second class based on the classification result of step S201 and the classification result of step S202. Is determined.
  • the first classifier classifies an image into the first class or another class
  • the image classified into the first class by the first classifier includes a possibility of the first class.
  • the threshold value of can be easily set in comparison with the threshold value when the image is classified into the intermediate class between the first class and the second class.
  • the second classifier may classify the image into the second class or another class.
  • the threshold for classifying can be easily set in comparison with the threshold for classifying an image into an intermediate class between the first class and the second class. Then, the inventor of the present invention has found that an image can be classified into an intermediate class based on the classification result of the first classifier and the classification result of the second classifier. Therefore, based on the classification result of step S201 and the classification result of step S202, it is determined whether the inspection image 21 is an intermediate class between the first class and the second class. It can be overclassified or underclassified into intermediate classes.
  • a first classifier (31a) for classifying the inspection image (21) into a first class or a class other than the first class, and the images classified into the first class include those which may be the first class.
  • a first classifier (31a), A second classifier (31b) for classifying the inspection image (21) into a second class or a class other than the second class, and the images classified into the second class include those which may be the second class.
  • a second classifier (31b) Based on the classification result (CR1) of the first classifier (31a) and the classification result (CR2) of the second classifier (31b), the inspection image (21) is an intermediate image between the first class and the second class.
  • a first classification step which includes A second classifying step in which the second classifier (31b) classifies the inspection image (21) into the second class or another class, and the image classified into the second class has a possibility of being in the second class.
  • a second classification step which includes Based on the classification result (CR1) of the first classification step and the classification result (CR2) of the second classification step, the determination unit (32) determines that the inspection image (21) is between the first class and the second class.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)

Abstract

The objective of the present invention is to suppress over-classification and under-classification of images into an intermediate class. This image classifying device is provided with: a first classifier for classifying an inspection image into a first class or into another class, where images classified into the first class include those which possibly may be in the first class; a second classifier for classifying the inspection image into a second class or into another class, where images classified into the second class include those which possibly may be in the second class; and a determining unit for determining, on the basis of the result of the classification by the first classifier and the result of the classification by the second classifier, whether the inspection image is in an intermediate class between the first class and the second class.

Description

画像分類装置、画像検査装置、及び画像分類方法Image classification device, image inspection device, and image classification method

 本発明は、画像分類装置、画像検査装置、及び画像分類方法に関する。 The present invention relates to an image classification device, an image inspection device, and an image classification method.

 従来、画像分類装置の検査・分類装置として、検査対象領域の画像データの欠陥検査を行い、欠陥が検出されると欠陥画像のデータを生成する欠陥検出部と、分類器を用いて欠陥画像を複数の欠陥クラスのいずれかに分類する分類制御部と、を備えたものが知られている(特許文献1参照)。この検査・分類装置の分類器は、M個(Mは2以上の整数)のコア分類器と、1個の投票部とを含み、N個(Nは2以上の整数)の欠陥クラスに分類している。 Conventionally, as an inspection / classification device of an image classification device, a defect detection unit that performs a defect inspection of image data of an inspection target area and generates defect image data when a defect is detected, and a defect image using a classifier. There is known a device including a classification control unit that classifies into any one of a plurality of defect classes (see Patent Document 1). The classifier of this inspection / classification apparatus includes M (M is an integer of 2 or more) core classifiers and one voting unit, and classifies into N (N is an integer of 2 or more) defect classes. is doing.

特開2016-40650号公報JP, 2016-40650, A

 ここで、ある画像について、例えば、欠陥ありと欠陥なしとのどちらともいえない、つまり、欠陥ありのクラスと欠陥なしのクラスとの間に中間クラス(グレークラス)が存在する場合がある。 Here, for example, an image may be neither defective nor defective, that is, an intermediate class (gray class) may exist between a defective class and a non-defective class.

 この中間クラスが存在する状況において、例えば、対象となる画像について、欠陥ありを第1クラスに、欠陥なしを第2クラスに、中間クラスを第3クラスに、それぞれ分類する場合、第1クラスと第3クラスとの間のしきい値と、第1クラスと第3クラスとの間のしきい値との2つしきい値を設定する必要が生じる。 In the situation where this intermediate class exists, for example, when classifying a target image into a first class with a defect, a second class without a defect, and an intermediate class into a third class, It becomes necessary to set two thresholds, a threshold between the third class and a threshold between the first class and the third class.

 しかしながら、中間クラスの境界ははっきりしないため、これらの2つのしきい値の調整は困難であり、2つのしきい値次第では、第3クラスに分類される画像が多過ぎたり(過多分類)、あるいは第3クラスに分類される画像が少な過ぎたり(過少分類)することがあった。 However, since the boundary of the intermediate class is not clear, it is difficult to adjust these two threshold values. Depending on the two threshold values, too many images are classified into the third class (excessive classification), Alternatively, the number of images classified into the third class may be too small (underclassified).

 そこで、本発明は、画像の中間クラスへの過多分類及び過少分類を抑制することのできる画像分類装置及び画像分類方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an image classification device and an image classification method that can suppress excessive classification and underclassification of images into intermediate classes.

 本発明の一態様に係る画像分類装置は、画像を第1クラス又はそれ以外のクラスに分類する第1分類器であって、第1クラスに分類される画像には該第1クラスの可能性のあるものが含まれる、第1分類器と、画像を第2クラス又はそれ以外のクラスに分類する第2分類器であって、第2クラスに分類される画像には該第2クラスの可能性のあるものが含まれる、第2分類器と、第1分類器の分類結果と第2分類器の分類結果とに基づいて、画像が第1クラスと第2クラスとの間の中間クラスであるか否かを判定する判定部と、を備える。 An image classification device according to an aspect of the present invention is a first classifier that classifies an image into a first class or another class, and an image classified into the first class may have the first class possibility. A second classifier that classifies an image into a second class or another class, including a certain class of The image is an intermediate class between the first class and the second class based on the second classifier, which includes the And a determination unit that determines whether or not there is.

 この態様によれば、第1分類器の分類結果と第2分類器の分類結果とに基づいて、画像は第1クラスと第2クラスとの間の中間クラスであるか否かが判定される。ここで、第1分類器によって第1クラスに分類される画像に第1クラスの可能性のあるものが含まれる場合、第1分類器が画像を第1クラス又はそれ以外のクラスに分類する際のしきい値は、画像を第1クラスと第2クラスとの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。同様に、第2分類器によって第2クラスに分類される画像に第2クラスの可能性のあるものが含まれるようにする場合、第2分類器が画像を第2クラス又はそれ以外のクラスに分類する際のしきい値は、画像を第1クラスと第2クラスとの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。そして、このような第1分類器の分類結果及び第2分類器の分類結果に基づいて、画像を中間クラスに分類可能であることを、本発明の発明者は見出した。よって、第1分類器の分類結果と第2分類器の分類結果とに基づいて、画像が第1クラスと第2クラスとの間の中間クラスであるか否かを判定することにより、画像の中間クラスへの過多分類及び過少分類を抑制することができる。 According to this aspect, it is determined whether or not the image is an intermediate class between the first class and the second class based on the classification result of the first classifier and the classification result of the second classifier. .. Here, when the first classifier classifies an image into the first class or another class, if the image classified into the first class by the first classifier includes a possibility of the first class. The threshold value of can be easily set in comparison with the threshold value when the image is classified into the intermediate class between the first class and the second class. Similarly, if the images classified by the second classifier into the second class include the possible second class, the second classifier may classify the image into the second class or another class. The threshold for classifying can be easily set in comparison with the threshold for classifying an image into an intermediate class between the first class and the second class. Then, the inventor of the present invention has found that an image can be classified into an intermediate class based on the classification result of the first classifier and the classification result of the second classifier. Therefore, it is determined whether the image is an intermediate class between the first class and the second class based on the classification result of the first classifier and the classification result of the second classifier. It is possible to suppress over-classification and under-classification into intermediate classes.

 前述した態様において、判定部は、画像が、第1分類器によって第1クラスに分類され、第2分類器によって第2クラスに分類されたときに、該画像を中間クラスであると判定してもよい。 In the above-described aspect, the determining unit determines that the image is an intermediate class when the image is classified into the first class by the first classifier and classified into the second class by the second classifier. Good.

 この態様によれば、画像が、第1分類器によって第1クラスに分類され、第2分類器によって第2クラスに分類されたときに、当該画像は中間クラスであると判定される。ここで、第1分類器によって第1クラスの可能性のあるものを含む第1クラスであると分類され、第2分類器によって第2クラスの可能性のあるものを含む第2クラスであると分類された画像は、第1クラスと第2クラスとの間にある中間クラスである蓋然性が高いことを、本発明の発明者は見出した。よって、画像が、第1分類器によって第1クラスに分類され、第2分類器によって第2クラスに分類されたときに、当該画像を中間クラスであると判定することにより、画像を中間クラスに分類する精度を向上させることができる。 According to this aspect, when the image is classified into the first class by the first classifier and the second class by the second classifier, the image is determined to be the intermediate class. Here, the first classifier classifies the class as a first class including a possibility of the first class, and the second classifier classifies as a second class including a possibility of the second class. The inventor of the present invention has found that the classified images have a high probability of being an intermediate class between the first class and the second class. Therefore, when the image is classified into the first class by the first classifier and is classified into the second class by the second classifier, it is determined that the image is the intermediate class, and thus the image is classified into the intermediate class. The accuracy of classification can be improved.

 前述した態様において、判定部は、画像が、第1分類器によって第1クラスに分類され、第2分類器によってそれ以外のクラスに分類されたときに、該画像を第1クラスであると判定してもよい。 In the above-described aspect, the determining unit determines that the image is the first class when the image is classified into the first class by the first classifier and is classified into the other class by the second classifier. You may.

 この態様によれば、画像が、第1分類器によって第1クラスに分類され、第2分類器によってそれ以外のクラスに分類されたときに、当該画像は第1クラスであると判定される。ここで、第1分類器によって第1クラスの可能性のあるものを含む第1クラスであると分類され、第2分類器によって第2クラス以外であると分類された画像は、第1クラスである蓋然性が高いことを、本発明の発明者は見出した。よって、画像が、第1分類器によって第1クラスに分類され、第2分類器によって第2クラス以外に分類されたときに、当該画像を第1クラスであると判定することにより、画像を第1クラスに分類する精度を向上させることができる。 According to this aspect, when the image is classified into the first class by the first classifier and is classified into the other class by the second classifier, the image is determined to be the first class. Here, an image classified by the first classifier as a first class including a possibility of the first class and classified by the second classifier as other than the second class is a first class. The inventor of the present invention has found that there is a high probability. Therefore, when the image is classified into the first class by the first classifier and is classified into the class other than the second class by the second classifier, the image is classified into the first class, and thus the image is classified into the first class. The accuracy of classifying into one class can be improved.

 前述した態様において、判定部は、画像が、第1分類器によってそれ以外のクラスに分類され、第2分類器によって第2クラスに分類されたときに、該画像を第2クラスであると判定してもよい。 In the above-described aspect, the determining unit determines that the image is the second class when the image is classified into the other class by the first classifier and the second class by the second classifier. You may.

 この態様によれば、画像が、第1分類器によってそれ以外のクラスに分類され、第2分類器によって第2クラスに分類されたときに、当該画像は第2クラスであると判定される。ここで、第1分類器によって第1クラス以外であると分類され、第2分類器によって第2クラスの可能性のあるものを含む第2クラスであると分類された画像は、第2クラスである蓋然性が高いことを、本発明の発明者は見出した。よって、画像が、第1分類器によって第1クラス以外に分類され、第2分類器によって第2クラスに分類されたときに、当該画像を第2クラスであると判定することにより、画像を第2クラスに分類する精度を向上させることができる。 According to this aspect, when the image is classified into the other class by the first classifier and the second class by the second classifier, the image is determined to be the second class. Here, an image classified by the first classifier as a class other than the first class and classified by the second classifier as a second class including a possibility of the second class is a second class. The inventor of the present invention has found that there is a high probability. Therefore, when the image is classified into a class other than the first class by the first classifier and is classified into the second class by the second classifier, the image is classified into the second class, and thus the image is classified into the second class. The accuracy of classifying into two classes can be improved.

 前述した態様において、第1分類器及び第2分類器は、それぞれ2クラス分類器であってもよい。 In the above-mentioned aspect, each of the first classifier and the second classifier may be a two-class classifier.

 この態様によれば、第1分類器及び第2分類器は、それぞれ2クラス分類器である。これにより、3クラス以上の多クラス分類器と比較して、簡単かつ容易に、分類精度の高い第1分類器及び第2分類器を生成することができる。 According to this aspect, each of the first classifier and the second classifier is a two-class classifier. Accordingly, it is possible to easily and easily generate the first classifier and the second classifier with high classification accuracy as compared with a multi-class classifier having three or more classes.

 前述した態様において、画像を第3クラス又はそれ以外のクラスに分類する第3分類器であって、第3クラスに分類される画像には該第3クラスの可能性のあるものが含まれる、第3分類器をさらに備え、判定部は、第1分類器の分類結果と第2分類器の分類結果と第3分類器の分類結果とに基づいて、画像が第1クラス、第2クラス、及び第3クラスのうちの少なくとも2つの間の中間クラスであるか否かを判定してもよい。 In the above-described aspect, a third classifier that classifies an image into a third class or another class, and the images classified into the third class include those that are likely to be the third class. The determination unit further includes a third classifier, and the determination unit determines that the image is a first class, a second class, based on the classification result of the first classifier, the classification result of the second classifier, and the classification result of the third classifier. It may be determined whether or not it is an intermediate class between at least two of the third and third classes.

 この態様によれば、第1分類器の分類結果と第2分類器の分類結果と第3分類器の分類結果とに基づいて、画像は第1クラス、第2クラス、及び第3クラスのうちの少なくとも2つの間の中間クラスであるか否かが判定される。ここで、第3分類器によって第3クラスに分類される画像に第3クラスの可能性のあるものが含まれる場合、第3分類器が画像を第3クラス又はそれ以外のクラスに分類する際のしきい値は、画像を第1クラス、第2クラス、及び第3クラスのうちの少なくとも2つの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。そして、このような第3分類器の分類結果と、第1分類器の分類結果及び第2分類器の分類結果とに基づいて、画像を中間クラスに分類可能であることを、本発明の発明者は見出した。よって、第1分類器の分類結果と第2分類器の分類結果と第3分類器の分類結果とに基づいて、画像が第1クラス、第2クラス、及び第3クラスのうちの少なくとも2つの間の中間クラスであるか否かを判定することにより、画像の中間クラスへの過多分類及び過少分類を抑制することができる。 According to this aspect, the image is classified into the first class, the second class, and the third class based on the classification result of the first classifier, the classification result of the second classifier, and the classification result of the third classifier. Is an intermediate class between at least two of the above. Here, when the image classified into the third class by the third classifier includes a possibility of the third class, when the third classifier classifies the image into the third class or another class. Can be easily set in comparison with the threshold when classifying an image into an intermediate class between at least two of the first class, the second class and the third class. it can. Then, based on the classification result of the third classifier and the classification result of the first classifier and the classification result of the second classifier, it is possible to classify an image into an intermediate class. The person found. Therefore, based on the classification result of the first classifier, the classification result of the second classifier, and the classification result of the third classifier, the image has at least two of the first class, the second class, and the third class. By determining whether or not the image is an intermediate class, it is possible to suppress excessive classification and under-classification of an image into intermediate classes.

 前述した態様において、第3分類器から第m(mは4以上の整数)分類器までのそれぞれをさらに備え、第3分類器は画像を第3クラス又はそれ以外のクラスに分類し、第3クラスに分類される画像には該第3クラスの可能性のあるものが含まれ、第m分類器は画像を第mクラス又はそれ以外のクラスに分類し、第mクラスに分類される画像には該第mクラスの可能性のあるものが含まれ、判定部は、第1分類器の分類結果から第m分類器の分類結果までに基づいて、画像が第1クラスから第mクラスのうちの少なくとも2つの間の中間クラスであるか否かを判定してもよい。 In the above-mentioned aspect, each further comprises a third classifier to an m-th classifier (m is an integer of 4 or more), the third classifier classifies the image into a third class or another class, and The images classified into the class include those having the possibility of the third class, and the m-th classifier classifies the image into the m-th class or another class, and the image classified into the m-th class is Are included in the m-th class, and the determination unit determines that the image is classified from the first class to the m-th class based on the classification result of the first classifier to the m-th classifier. May be determined to be an intermediate class between at least two of the above.

 この態様によれば、第1分類器の分類結果から第m分類器の分類結果までに基づいて、画像は第1クラスから第mクラスのうちの少なくとも2つの間の中間クラスであるか否かが判定される。ここで、第3分類器によって第3クラスに分類される画像に第3クラスの可能性のあるものが含まれる場合、第3分類器が画像を第3クラス又はそれ以外のクラスに分類する際のしきい値は、画像を第1クラスから第mクラスのうちの少なくとも2つの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。同様に、第m分類器によって第mクラスに分類される画像に第mクラスの可能性のあるものが含まれる場合、第m分類器が画像を第mクラス又はそれ以外のクラスに分類する際のしきい値は、画像を第1クラスから第mクラスのうちの少なくとも2つの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。そして、このような第3分類器の分類結果から第m分類器の分類結果までと、第1分類器の分類結果及び第2分類器の分類結果とに基づいて、画像を中間クラスに分類可能であることを、本発明の発明者は見出した。よって、第1分類器の分類結果から第m分類器の分類結果までに基づいて、画像が第1クラスから第mクラスのうちの少なくとも2つの間の中間クラスであるか否かを判定することにより、画像の中間クラスへの過多分類及び過少分類を抑制することができる。 According to this aspect, whether or not the image is an intermediate class between at least two of the first class to the m-th class based on the classification result of the first classifier to the classification result of the m-th classifier. Is determined. Here, when the image classified into the third class by the third classifier includes a possibility of the third class, when the third classifier classifies the image into the third class or another class. The threshold value of can be easily set in comparison with the threshold value when the image is classified into the intermediate class between at least two of the first class to the m-th class. Similarly, when the m-th classifier classifies an image into the m-th class or any other class, if the m-th classifier includes an m-th class possible image. The threshold value of can be easily set in comparison with the threshold value when the image is classified into the intermediate class between at least two of the first class to the m-th class. Then, the image can be classified into the intermediate class based on the classification result of the third classifier to the classification result of the m-th classifier, and the classification result of the first classifier and the classification result of the second classifier. The inventor of the present invention has found that Therefore, it is determined whether or not the image is an intermediate class between at least two of the first class to the m-th class based on the classification result of the first classifier to the classification result of the m-th classifier. With this, it is possible to suppress excessive classification and underclassification of the image into the intermediate class.

 また、本発明の他の態様に係る画像検査装置は、前述した画像分類装置を備え、画像分類装置を用いて検査対象物の画像を検査する。 An image inspection apparatus according to another aspect of the present invention includes the above-described image classification device, and inspects the image of the inspection object using the image classification device.

 この態様によれば、前述した画像分類装置を用いて検査対象物の画像を検査される。これにより、画像の中間クラスへの過多分類及び過少分類を抑制する画像検査装置を容易に実現することができる。 According to this aspect, the image of the inspection object is inspected using the image classification device described above. Accordingly, it is possible to easily realize an image inspection apparatus that suppresses over-classification and under-classification of images into intermediate classes.

 また、本発明の他の態様に係る画像分類方法は、第1分類器が画像を第1クラス又はそれ以外のクラスに分類する第1分類ステップであって、第1クラスに分類される画像には該第1クラスの可能性のあるものが含まれる、第1分類ステップと、第2分類器が画像を第2クラス又はそれ以外のクラスに分類する第2分類ステップであって、第2クラスに分類される画像には該第2クラスの可能性のあるものが含まれる、第2分類ステップと、判定部が、第1分類ステップの分類結果と第2分類ステップの分類結果とに基づいて、画像は第1クラスと第2クラスとの間の中間クラスであるか否かを判定する判定ステップと、を含む。 An image classification method according to another aspect of the present invention is a first classification step in which a first classifier classifies an image into a first class or another class, and the image is classified into the first class. Is a first classification step that includes the possible first classes and a second classification step in which the second classifier classifies the image into a second class or another class, the second class The images classified into are included in the images that have the possibility of the second class. The second classification step and the determination unit are based on the classification result of the first classification step and the classification result of the second classification step. , A determination step of determining whether or not the image is an intermediate class between the first class and the second class.

 この態様によれば、第1分類ステップの分類結果と第2分類ステップの分類結果とに基づいて、画像は第1クラスと第2クラスとの間の中間クラスであるか否かが判定される。ここで、第1分類器によって第1クラスに分類される画像に第1クラスの可能性のあるものが含まれる場合、第1分類器が画像を第1クラス又はそれ以外のクラスに分類する際のしきい値は、画像を第1クラスと第2クラスとの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。同様に、第2分類器によって第2クラスに分類される画像に第2クラスの可能性のあるものが含まれるようにする場合、第2分類器が画像を第2クラス又はそれ以外のクラスに分類する際のしきい値は、画像を第1クラスと第2クラスとの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。そして、このような第1分類器の分類結果及び第2分類器の分類結果に基づいて、画像を中間クラスに分類可能であることを、本発明の発明者は見出した。よって、第1分類ステップの分類結果と第2分類ステップの分類結果とに基づいて、画像が第1クラスと第2クラスとの間の中間クラスであるか否かを判定することにより、画像の中間クラスへの過多分類及び過少分類を抑制することができる。 According to this aspect, it is determined whether the image is an intermediate class between the first class and the second class based on the classification result of the first classification step and the classification result of the second classification step. .. Here, when the first classifier classifies an image into the first class or another class, if the image classified into the first class by the first classifier includes a possibility of the first class. The threshold value of can be easily set in comparison with the threshold value when the image is classified into the intermediate class between the first class and the second class. Similarly, if the images classified by the second classifier into the second class include the possible second class, the second classifier may classify the image into the second class or another class. The threshold for classifying can be easily set in comparison with the threshold for classifying an image into an intermediate class between the first class and the second class. Then, the inventor of the present invention has found that an image can be classified into an intermediate class based on the classification result of the first classifier and the classification result of the second classifier. Therefore, it is determined whether the image is an intermediate class between the first class and the second class based on the classification result of the first classification step and the classification result of the second classification step. It is possible to suppress over-classification and under-classification into intermediate classes.

 前述した態様において、判定ステップは、画像が、第1分類ステップにおいて第1クラスに分類され、第2分類ステップにおいて第2クラスに分類されたときに、判定部が該画像を中間クラスであると判定することを含んでもよい。 In the above-described aspect, the determining step determines that the image is the intermediate class when the image is classified into the first class in the first classifying step and the second class in the second classifying step. The determination may be included.

 この態様によれば、画像が、第1分類ステップにおいて第1クラスに分類され、第2分類ステップにおいて第2クラスに分類されたときに、当該画像は中間クラスであると判定される。ここで、第1分類器によって第1クラスの可能性のあるものを含む第1クラスであると分類され、第2分類器によって第2クラスの可能性のあるものを含む第2クラスであると分類された画像は、第1クラスと第2クラスとの間にある中間クラスである蓋然性が高いことを、本発明の発明者は見出した。よって、画像が、第1分類ステップにおいて第1クラスに分類され、第2分類ステップによって第2クラスに分類されたときに、当該画像を中間クラスであると判定することにより、画像を中間クラスに分類する精度を向上させることができる。 According to this aspect, when the image is classified into the first class in the first classification step and classified into the second class in the second classification step, the image is determined to be the intermediate class. Here, the first classifier classifies the class as a first class including a possibility of the first class, and the second classifier classifies as a second class including a possibility of the second class. The inventor of the present invention has found that the classified images have a high probability of being an intermediate class between the first class and the second class. Therefore, when the image is classified into the first class in the first classifying step and is classified into the second class in the second classifying step, the image is classified into the intermediate class by determining that the image is the intermediate class. The accuracy of classification can be improved.

 前述した態様において、判定ステップは、画像が、第1分類ステップにおいて第1クラスに分類され、第2分類ステップにおいてそれ以外のクラスに分類されたときに、判定部が該画像を第1クラスであると判定することを含んでもよい。 In the above-described aspect, in the determining step, when the image is classified into the first class in the first classifying step and into the other class in the second classifying step, the determining unit classifies the image into the first class. It may include determining that there is.

 この態様によれば、画像が、第1分類ステップにおいて第1クラスに分類され、第2分類器においてそれ以外のクラスに分類されたときに、当該画像は第1クラスであると判定される。ここで、第1分類器によって第1クラスの可能性のあるものを含む第1クラスであると分類され、第2分類器によって第2クラス以外であると分類された画像は、第1クラスである蓋然性が高いことを、本発明の発明者は見出した。よって、画像が、第1分類ステップにおいて第1クラスに分類され、第2分類ステップにおいて第2クラス以外に分類されたときに、当該画像を第1クラスであると判定することにより、画像を第1クラスに分類する精度を向上させることができる。 According to this aspect, when the image is classified into the first class in the first classification step and classified into other classes in the second classifier, the image is determined to be the first class. Here, an image classified by the first classifier as a first class including a possibility of the first class and classified by the second classifier as other than the second class is a first class. The inventor of the present invention has found that there is a high probability. Therefore, when the image is classified into the first class in the first classifying step and is classified into a class other than the second class in the second classifying step, the image is classified into the first class, and thus the image is classified into the first class. The accuracy of classifying into one class can be improved.

 前述した態様において、判定ステップは、画像が、第1分類ステップにおいてそれ以外のクラスに分類され、第2分類ステップにおいて第2クラスに分類されたときに、判定部が該画像を第2クラスであると判定することを含んでもよい。 In the above-described aspect, in the determination step, when the image is classified into the other class in the first classification step and the second class in the second classification step, the determination unit classifies the image into the second class. It may include determining that there is.

 この態様によれば、画像が、第1分類ステップにおいてそれ以外のクラスに分類され、第2分類ステップにおいて第2クラスに分類されたときに、当該画像は第2クラスであると判定される。ここで、第1分類器によって第1クラス以外であると分類され、第2分類器によって第2クラスの可能性のあるものを含む第2クラスであると分類された画像は、第2クラスである蓋然性が高いことを、本発明の発明者は見出した。よって、画像が、第1分類ステップにおいて第1クラス以外に分類され、第2分類ステップにおいて第2クラスに分類されたときに、当該画像を第2クラスであると判定することにより、画像を第2クラスに分類する精度を向上させることができる。 According to this aspect, when the image is classified into the other class in the first classification step and the second class in the second classification step, the image is determined to be the second class. Here, an image classified by the first classifier as a class other than the first class and classified by the second classifier as a second class including a possibility of the second class is a second class. The inventor of the present invention has found that there is a high probability. Therefore, when the image is classified into a class other than the first class in the first classification step and classified into the second class in the second classification step, the image is determined to be the second class, and thus the image is classified into the second class. The accuracy of classifying into two classes can be improved.

 前述した態様において、第3分類器が画像を第3クラス又はそれ以外のクラスに分類する第3分類ステップであって、第3クラスに分類される画像には該第3クラスの可能性のあるものが含まれる、第3分類ステップをさらに含み、判定ステップは、判定部が、第1分類ステップの分類結果と第2分類ステップの分類結果と第3分類ステップの分類結果とに基づいて、画像は第1クラス、第2クラス、及び第3クラスのうちの少なくとも2つの間の中間クラスであるか否かを判定することを含んでもよい。 In the above-mentioned aspect, the third classifying step is a third classifying step of classifying an image into a third class or another class, and the image classified into the third class may have the third class. The determination unit further includes a third classification step that includes an image, and the determination unit includes an image based on the classification result of the first classification step, the classification result of the second classification step, and the classification result of the third classification step. May include determining if it is an intermediate class between at least two of the first class, the second class, and the third class.

 この態様によれば、第1分類ステップの分類結果と第2分類ステップの分類結果と第3分類ステップの分類結果とに基づいて、画像は第1クラス、第2クラス、及び第3クラスのうちの少なくとも2つの間の中間クラスであるか否かが判定される。ここで、第3分類器によって第3クラスに分類される画像に第3クラスの可能性のあるものが含まれる場合、第3分類器が画像を第3クラス又はそれ以外のクラスに分類する際のしきい値は、画像を第1クラス、第2クラス、及び第3クラスのうちの少なくとも2つの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。そして、このような第3分類器の分類結果CR3と、第1分類器の分類結果及び第2分類器の分類結果とに基づいて、画像を中間クラスに分類可能であることを、本発明の発明者は見出した。よって、第1分類ステップの分類結果と第2分類ステップの分類結果と第3分類ステップの分類結果とに基づいて、画像が第1クラス、第2クラス、及び第3クラスのうちの少なくとも2つの間の中間クラスであるか否かを判定することにより、画像の中間クラスへの過多分類及び過少分類を抑制することができる。 According to this aspect, the image is classified into the first class, the second class, and the third class based on the classification result of the first classification step, the classification result of the second classification step, and the classification result of the third classification step. Is an intermediate class between at least two of the above. Here, when the image classified into the third class by the third classifier includes a possibility of the third class, when the third classifier classifies the image into the third class or another class. Can be easily set in comparison with the threshold when classifying an image into an intermediate class between at least two of the first class, the second class and the third class. it can. Then, based on the classification result CR3 of the third classifier and the classification result of the first classifier and the classification result of the second classifier, it is possible to classify the image into the intermediate class. The inventor found out. Therefore, based on the classification result of the first classification step, the classification result of the second classification step, and the classification result of the third classification step, the image has at least two of the first class, the second class, and the third class. By determining whether or not the image is an intermediate class, it is possible to suppress excessive classification and under-classification of an image into intermediate classes.

 前述した態様において、第3分類ステップから第m(mは4以上の整数)分類ステップまでのそれぞれをさらに含み、第3分類ステップは、第3分類器が画像を第3クラス又はそれ以外のクラスに分類することを含み、第3クラスに分類される画像には該第3クラスの可能性のあるものが含まれ、第m分類ステップは、第m分類器が画像を第mクラス又はそれ以外のクラスに分類することを含み、第mクラスに分類される画像には該第mクラスの可能性のあるものが含まれ、判定ステップは、判定部が、第1分類ステップの分類結果から第m分類ステップの分類結果までに基づいて、画像は第1クラスから第mクラスのうちの少なくとも2つの間の中間クラスであるか否かを判定することを含む。 In the above-mentioned aspect, the method further includes each of a third classification step to an m-th (m is an integer of 4 or more) classification step, wherein the third classifier classifies the image into a third class or another class. , The images classified into the third class include those that are likely to be in the third class, and the m-th classifying step includes the m-th classifier classifying the image into the m-th class or other. The image classified into the m-th class includes an image having a possibility of being in the m-th class. It includes determining whether the image is an intermediate class between at least two of the first class to the m-th class based on the classification result of the m classification step.

 この態様によれば、第1分類ステップの分類結果から第m分類ステップの分類結果までに基づいて、画像は第1クラスから第mクラスのうちの少なくとも2つの間の中間クラスであるか否かが判定される。ここで、第3分類器によって第3クラスに分類される画像に第3クラスの可能性のあるものが含まれる場合、第3分類器が画像を第3クラス又はそれ以外のクラスに分類する際のしきい値は、画像を第1クラスから第mクラスのうちの少なくとも2つの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。同様に、第m分類器によって第mクラスに分類される画像に第mクラスの可能性のあるものが含まれる場合、第m分類器が画像を第mクラス又はそれ以外のクラスに分類する際のしきい値は、画像を第1クラスから第mクラスのうちの少なくとも2つの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。そして、このような第3分類器の分類結果から第m分類器の分類結果までと、第1分類器の分類結果及び第2分類器の分類結果とに基づいて、画像を中間クラスに分類可能であることを、本発明の発明者は見出した。よって、第1分類ステップの分類結果から第m分類ステップの分類結果までに基づいて、画像が第1クラスから第mクラスのうちの少なくとも2つの間の中間クラスであるか否かを判定することにより、画像の中間クラスへの過多分類及び過少分類を抑制することができる。 According to this aspect, whether the image is an intermediate class between at least two of the first class to the m-th class based on the classification result of the first classification step to the classification result of the m-th classification step. Is determined. Here, when the image classified into the third class by the third classifier includes a possibility of the third class, when the third classifier classifies the image into the third class or another class. The threshold value of can be easily set in comparison with the threshold value when the image is classified into the intermediate class between at least two of the first class to the m-th class. Similarly, when the m-th classifier classifies an image into the m-th class or any other class, if the m-th classifier includes an m-th class possible image. The threshold value of can be easily set in comparison with the threshold value when the image is classified into the intermediate class between at least two of the first class to the m-th class. Then, the image can be classified into the intermediate class based on the classification result of the third classifier to the classification result of the m-th classifier, and the classification result of the first classifier and the classification result of the second classifier. The inventor of the present invention has found that Therefore, it is determined whether or not the image is an intermediate class between at least two of the first class to the m-th class based on the classification result of the first classification step to the classification result of the m-th classification step. With this, it is possible to suppress excessive classification and underclassification of the image into the intermediate class.

 本発明によれば、画像の中間クラスへの過多分類及び過少分類を抑制することができる。 According to the present invention, it is possible to suppress over-classification and under-classification of images into intermediate classes.

図1は、一実施形態に係る画像処理装置の概略構成を例示する構成図である。FIG. 1 is a configuration diagram illustrating a schematic configuration of an image processing apparatus according to an embodiment. 図2は、図1に示した分類部及び判定部の構成を例示するブロック図である。FIG. 2 is a block diagram illustrating a configuration of the classification unit and the determination unit illustrated in FIG. 図3は、第1クラスと第2クラスとの間の中間クラスを例示するベン図である。FIG. 3 is a Venn diagram illustrating an intermediate class between the first class and the second class. 図4は、図1に示した判定部の結果を例示する表である。FIG. 4 is a table illustrating the results of the determination unit shown in FIG. 図5は、図2に示した第1分類器及び第1分類器の生成を例示する図である。FIG. 5 is a diagram illustrating the first classifier shown in FIG. 2 and the generation of the first classifier. 図6は、本発明の第1実施形態に係る画像検査装置の概略動作を例示するフローチャートである。FIG. 6 is a flow chart illustrating a schematic operation of the image inspection apparatus according to the first embodiment of the present invention. 図7は、図1に示した画像検査装置の検査画像と分類結果を例示する図である。FIG. 7 is a diagram illustrating an inspection image and a classification result of the image inspection apparatus shown in FIG. 図8は、図7に示した画像検査装置の検査画像を特徴量によってマッピングしたグラフである。FIG. 8 is a graph in which the inspection image of the image inspection device shown in FIG. 7 is mapped by the feature amount. 図9は、本発明の第2実施形態に係る画像検査装置の概略構成を例示する構成図である。FIG. 9 is a configuration diagram illustrating a schematic configuration of the image inspection apparatus according to the second embodiment of the present invention. 図10は、図9に示した分類部及び判定部の構成を例示するブロック図である。FIG. 10 is a block diagram illustrating the configuration of the classification unit and the determination unit illustrated in FIG. 図11は、第1クラス、第2クラス、及び第3クラスのうちの少なくとも2つの間の中間クラスを例示するベン図である。FIG. 11 is a Venn diagram illustrating an intermediate class between at least two of the first class, the second class, and the third class. 図12は、図10に示した判定部の結果を例示する表である。FIG. 12 is a table exemplifying the result of the determination unit shown in FIG. 図13は、図9に示した分類部及び判定部の構成の変形例を例示するブロック図である。FIG. 13 is a block diagram illustrating a modification of the configurations of the classification unit and the determination unit illustrated in FIG.

 添付図面を参照して、本発明の好適な実施形態について説明する。なお、各図において、同一の符号を付したものは、同一又は同様の構成を有する。 A preferred embodiment of the present invention will be described with reference to the accompanying drawings. In addition, in each of the drawings, components denoted by the same reference numerals have the same or similar configurations.

 <第1実施形態>
 まず、図1から図5を参照しつつ、本発明の第1実施形態に係る画像検査装置及び画像分類装置の構成の一例について説明する。図1は、本発明の第1実施形態に係る画像検査装置100の概略構成を例示する構成図である。図2は、図1に示した分類部31及び判定部32の構成を例示するブロック図である。図3は、第1クラスCL1と第2クラスCL2との間の中間クラスICを例示するベン図である。図4は、図1に示した判定部32の結果REを例示する表である。図5は、図2に示した第1分類器31a及び第2分類器31bの生成を例示する図である。
<First Embodiment>
First, an example of the configurations of the image inspection apparatus and the image classification apparatus according to the first embodiment of the present invention will be described with reference to FIGS. 1 to 5. FIG. 1 is a configuration diagram illustrating a schematic configuration of an image inspection apparatus 100 according to the first embodiment of the present invention. FIG. 2 is a block diagram illustrating the configuration of the classification unit 31 and the determination unit 32 illustrated in FIG. FIG. 3 is a Venn diagram illustrating an intermediate class IC between the first class CL1 and the second class CL2. FIG. 4 is a table illustrating the result RE of the determination unit 32 shown in FIG. FIG. 5 is a diagram illustrating generation of the first classifier 31a and the second classifier 31b illustrated in FIG.

 画像検査装置100は、検査対象物を撮影した画像から検査対象物が欠陥を含むか否かを検査するためのものである。欠陥は、特に限定されるものではないが、例えば、傷、クラック、欠け、バリ、付着物、異物、打痕、色等のムラ、汚れ、印字のかすれ、印字等の位置ずれ等の視認可能なものを含む。 The image inspection device 100 is for inspecting whether or not the inspection object includes a defect from an image obtained by photographing the inspection object. The defect is not particularly limited, but for example, it can be visually recognized such as a scratch, a crack, a chip, a burr, an adhering substance, a foreign substance, a dent, unevenness in color, dirt, a faint print, a misalignment in print, etc. Including those.

 図1に示すように、画像検査装置100は、画像分類装置50と、撮像装置60と、入力装置70と、出力装置80と、ライン装置90と、を備える。画像検査装置100は、例えば、ライン装置90の上の検査対象物を撮像装置60によって撮像し、画像分類装置50を用いて検査対象物の画像(以下、「検査画像」という)を検査するように構成されている。 As shown in FIG. 1, the image inspection device 100 includes an image classification device 50, an imaging device 60, an input device 70, an output device 80, and a line device 90. The image inspection device 100 captures an image of the inspection object on the line device 90 by the image capturing device 60, and inspects the image of the inspection object (hereinafter referred to as “inspection image”) using the image classification device 50. Is configured.

 画像分類装置50は、例えば、コンピュータ等の情報処理装置である。画像分類装置50は、入出力I/F(インターフェース)10と、記憶部20と、制御部30と、を備える。また、画像分類装置50は、画像分類装置50の各部の間で信号やデータを伝送するように構成されたバス40をさらに備える。 The image classification device 50 is, for example, an information processing device such as a computer. The image classification device 50 includes an input / output I / F (interface) 10, a storage unit 20, and a control unit 30. In addition, the image classification device 50 further includes a bus 40 configured to transmit signals and data between the respective units of the image classification device 50.

 入出力I/F10は、画像分類装置50と外部の機器とのインターフェースである。入出力I/F10は、外部の機器との間でデータや信号をやり取りするように構成されている。また、入出力I/F10は、外部の機器との通信を制御するように構成されている。入出力I/F10は、例えば、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Mutimedia Interface)、IEEE1394等の規格化されたインターフェースの接続端子を含んで構成される。入出力I/F10は、撮像装置60、入力装置70、及び出力装置80に接続されている。 The input / output I / F 10 is an interface between the image classification device 50 and external devices. The input / output I / F 10 is configured to exchange data and signals with external devices. The input / output I / F 10 is also configured to control communication with an external device. The input / output I / F 10 is configured to include standardized interface connection terminals such as USB (Universal Serial Bus), HDMI (registered trademark) (High-Definition Mutimedia Interface), and IEEE 1394. The input / output I / F 10 is connected to the imaging device 60, the input device 70, and the output device 80.

 記憶部20は、プログラムやデータ等を記憶するように構成されている。記憶部20は、例えば、ハードディスクドライブ、ソリッドステートドライブ等を含んで構成される。記憶部20は、制御部30が実行する各種プログラムやプログラムの実行に必要なデータ等をあらかじめ記憶している。また、記憶部20は、撮像装置60から入出力I/F10を介して入力される検査画像21を記憶する。 The storage unit 20 is configured to store programs and data. The storage unit 20 includes, for example, a hard disk drive, a solid state drive, and the like. The storage unit 20 stores various programs executed by the control unit 30 and data necessary for executing the programs in advance. Further, the storage unit 20 stores the inspection image 21 input from the imaging device 60 via the input / output I / F 10.

 制御部30は、入出力I/F10及び記憶部20等、画像分類装置50の各部の動作を制御するように構成されている。また、制御部30は、記憶部20に記憶されたプログラムを実行する等によって、後述する各機能を実現するように構成されている。制御部30は、例えば、CPU(Central Processing Unit)等のプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)等のメモリ、及びバッファ等の緩衝記憶装置を含んで構成される。制御部30は、その機能構成として、例えば、分類部31と、判定部32と、を備える。 The control unit 30 is configured to control the operation of each unit of the image classification device 50, such as the input / output I / F 10 and the storage unit 20. Further, the control unit 30 is configured to realize each function described below by executing a program stored in the storage unit 20 or the like. The control unit 30 includes a processor such as a CPU (Central Processing Unit), a memory such as a ROM (Read Only Memory), a RAM (Random Access Memory), and a buffer storage device such as a buffer. The control unit 30 includes, for example, a classification unit 31 and a determination unit 32 as its functional configuration.

 図2に示すように、分類部31は、第1分類器31aと、第2分類器31bと、を備える。 As shown in FIG. 2, the classification unit 31 includes a first classifier 31a and a second classifier 31b.

 第1分類器31aは、入力される画像を、第1クラス又はそれ以外のクラスに分類するように構成されている。第1クラスに分類される画像には、当該第1クラスの可能性のあるものが含まれる。この結果、それ以外のクラス(第1クラス以外のクラス)には、確実に第1クラスではない画像が分類される。第1分類器31aには記憶部20に記憶された検査画像21が入力され、第1分類器31aは分類結果CR1を出力する。 The first classifier 31a is configured to classify the input image into the first class or another class. The images classified into the first class include those that are likely to be in the first class. As a result, an image that is not the first class is definitely classified into the other classes (classes other than the first class). The inspection image 21 stored in the storage unit 20 is input to the first classifier 31a, and the first classifier 31a outputs the classification result CR1.

 第2分類器31bは、入力される画像を、第2クラス又はそれ以外のクラスに分類するように構成されている。第2クラスに分類される画像には、当該第2クラスの可能性のあるものが含まれる。この結果、それ以外のクラス(第2クラス以外のクラス)には、確実に第2クラスではない画像が分類される。第2分類器31bには記憶部20に記憶された検査画像21が入力され、第2分類器31bは分類結果CR2を出力する。 The second classifier 31b is configured to classify the input image into the second class or another class. The images classified into the second class include those that are likely to be in the second class. As a result, an image that is not the second class is reliably classified into the other classes (classes other than the second class). The inspection image 21 stored in the storage unit 20 is input to the second classifier 31b, and the second classifier 31b outputs the classification result CR2.

 判定部32は、第1分類器31aの分類結果CR1と第2分類器31bの分類結果CR2とに基づいて、第1分類器31a及び第2分類器31bに入力される検査画像21が、第1クラスと第2クラスとの間の中間クラスであるか否かを判定するように構成されている。判定部32には、第1分類器31aの分類結果CR1及び第2分類器31bの分類結果CR2が入力され、判定部32は判定結果に従う結果REを出力する。 Based on the classification result CR1 of the first classifier 31a and the classification result CR2 of the second classifier 31b, the determination unit 32 determines that the inspection image 21 input to the first classifier 31a and the second classifier 31b is It is configured to determine whether the class is an intermediate class between the first class and the second class. The classification result CR1 of the first classifier 31a and the classification result CR2 of the second classifier 31b are input to the determination unit 32, and the determination unit 32 outputs a result RE according to the determination result.

 ここで、第1分類器31aによって第1クラスに分類される検査画像21に第1クラスの可能性のあるものが含まれる場合、第1分類器31aが検査画像21を第1クラス又はそれ以外のクラスに分類する際のしきい値は、検査画像21を第1クラスと第2クラスとの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。同様に、第2分類器31bによって第2クラスに分類される検査画像21に第2クラスの可能性のあるものが含まれるようにする場合、第2分類器31bが検査画像21を第2クラス又はそれ以外のクラスに分類する際のしきい値は、検査画像21を第1クラスと第2クラスとの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。そして、このような第1分類器31aの分類結果CR1及び第2分類器31bの分類結果CR2に基づいて、検査画像21を中間クラスに分類可能であることを、本発明の発明者は見出した。よって、第1分類器31aの分類結果CR1と第2分類器31bの分類結果CR2とに基づいて、検査画像21が第1クラスと第2クラスとの間の中間クラスであるか否かを判定することにより、検査画像21の中間クラスへの過多分類及び過少分類を抑制することができる。 Here, when the inspection image 21 classified into the first class by the first classifier 31a includes a possibility of the first class, the first classifier 31a converts the inspection image 21 into the first class or other cases. Can be easily set in comparison with the threshold when the inspection image 21 is classified into the intermediate class between the first class and the second class. .. Similarly, when the inspection images 21 classified by the second classifier 31b into the second class include those having the possibility of the second class, the second classifier 31b converts the inspection image 21 into the second class. Alternatively, the threshold value when classifying into another class is set easily in comparison with the threshold value when classifying the inspection image 21 into an intermediate class between the first class and the second class. be able to. The inventor of the present invention has found that the inspection image 21 can be classified into the intermediate class based on the classification result CR1 of the first classifier 31a and the classification result CR2 of the second classifier 31b. .. Therefore, it is determined whether the inspection image 21 is an intermediate class between the first class and the second class based on the classification result CR1 of the first classifier 31a and the classification result CR2 of the second classifier 31b. By doing so, it is possible to suppress over-classification and under-classification of the inspection image 21 into intermediate classes.

 例えば、図3に示すように、第1クラスCL1は検査画像21が「OK」であるクラスであり、第2クラスCL2は検査画像21が「NG」であるクラスである場合、第1クラスCL1と第2クラスCL2との間に、中間クラスICが存在する。中間クラスICには、第1分類器31aでは「OK」であり、第2分類器31bでは「NG」である検査画像21が含まれ、当該検査画像21は、「OK」とも「NG」とも分類できないグレーな画像である。 For example, as shown in FIG. 3, when the first class CL1 is a class whose inspection image 21 is “OK” and the second class CL2 is a class whose inspection image 21 is “NG”, the first class CL1 There is an intermediate class IC between the second class CL2 and the second class CL2. The intermediate class IC includes an inspection image 21 that is “OK” in the first classifier 31a and “NG” in the second classifier 31b, and the inspection image 21 is both “OK” and “NG”. It is a gray image that cannot be classified.

 以下の説明において、特に明示する場合を除き、図3に示すように、第1クラスCL1は検査画像21が「OK」、第2クラスCL2は検査画像21が「NG」、第1クラスCL1と第2クラスCL2との間に存在する中間クラスICは「グレー」とする。 In the following description, unless otherwise specified, as shown in FIG. 3, the inspection image 21 is “OK” for the first class CL1, the inspection image 21 is “NG” for the second class CL2, and the first class CL1. The intermediate class IC existing between the second class CL2 is "gray".

 図3に示す例の場合、判定部32は、図4に示す表に従って判定する。なお、図4の表では、上線は否定を表しており、「OK」の上線は「OK」以外を意味し、「NG」の上線は「NG」以外を意味する。以下の説明において、「OK」以外を「¬OK」と表記し、「NG」以外を「¬NG」と表記する場合がある。 In the case of the example shown in FIG. 3, the determination unit 32 makes a determination according to the table shown in FIG. In the table of FIG. 4, the upper line represents negation, the upper line of “OK” means other than “OK”, and the upper line of “NG” means other than “NG”. In the following description, other than "OK" may be referred to as "? OK", and other than "NG" may be referred to as "? NG".

 詳細には、検査画像21が、第1分類器31aによって「OK」に分類され、第2分類器31bによって「NG」に分類されたときに、判定部32は、当該検査画像21を中間クラスICであると判定し、結果REとして中間クラスICを示す「グレー」を出力する。ここで、第1分類器31aによって第1クラスの可能性のあるものを含む第1クラスであると分類され、第2分類器31bによって第2クラスの可能性のあるものを含む第2クラスであると分類された検査画像21は、第1クラスと第2クラスとの間にある中間クラスである蓋然性が高いことを、本発明の発明者は見出した。よって、検査画像21が、第1分類器31aによって「OK」に分類され、第2分類器31bによって「NG」に分類されたときに、当該検査画像21を中間クラスICであると判定することにより、検査画像21を「グレー」に分類する精度を向上させることができる。 Specifically, when the inspection image 21 is classified as “OK” by the first classifier 31a and is classified as “NG” by the second classifier 31b, the determination unit 32 sets the inspection image 21 to the intermediate class. It is determined that the IC is IC, and “gray” indicating the intermediate class IC is output as the result RE. Here, the first classifier 31a classifies the class as a first class including a possibility of the first class, and the second classifier 31b classifies a second class including a possibility of the second class. The inventor of the present invention has found that the inspection image 21 classified as a certain one is highly likely to be an intermediate class between the first class and the second class. Therefore, when the inspection image 21 is classified as “OK” by the first classifier 31a and “NG” by the second classifier 31b, the inspection image 21 is determined to be the intermediate class IC. Thereby, the accuracy of classifying the inspection image 21 into “gray” can be improved.

 また、検査画像21が、第1分類器31aによって「OK」に分類され、第2分類器31bによって「NG」以外に分類されたときに、判定部32は、当該検査画像21を第1クラスCL1であると判定し、結果REとして第1クラスCL1を示す「OK」を出力する。ここで、第1分類器31aによって第1クラスの可能性のあるものを含む第1クラスであると分類され、第2分類器31bによって第2クラス以外であると分類された検査画像21は、第1クラスである蓋然性が高いことを、本発明の発明者は見出した。よって、検査画像21が、第1分類器31aによって「OK」に分類され、第2分類器31bによって「NG」以外に分類されたときに、当該検査画像21を第1クラスCL1であると判定することにより、検査画像21を「OK」に分類する精度を向上させることができる。 Further, when the inspection image 21 is classified as “OK” by the first classifier 31a and is classified as other than “NG” by the second classifier 31b, the determination unit 32 sets the inspection image 21 to the first class. It is determined to be CL1, and “OK” indicating the first class CL1 is output as the result RE. Here, the inspection image 21 classified by the first classifier 31a as a first class including a possibility of the first class and classified by the second classifier 31b as other than the second class is: The inventor of the present invention has found that the probability of being in the first class is high. Therefore, when the inspection image 21 is classified as “OK” by the first classifier 31a and is classified as other than “NG” by the second classifier 31b, the inspection image 21 is determined to be the first class CL1. By doing so, the accuracy with which the inspection image 21 is classified into “OK” can be improved.

 さらに、検査画像21が、第1分類器31aによって「OK」以外に分類され、第2分類器31bによって「NG」に分類されたときに、判定部32は、当該検査画像21を第2クラスCL2であると判定し、結果REとして第2クラスCL2を示す「NG」を出力する。ここで、第1分類器31aによって第1クラス以外であると分類され、第2分類器31bによって第2クラスの可能性のあるものを含む第2クラスであると分類された検査画像21は、第2クラスである蓋然性が高いことを、本発明の発明者は見出した。よって、検査画像21が、第1分類器31aによって「OK」以外に分類され、第2分類器31bによって「NG」に分類されたときに、当該検査画像21を第2クラスCL2であると判定することにより、検査画像21を「NG」に分類する精度を向上させることができる。 Further, when the inspection image 21 is classified by the first classifier 31a as other than “OK” and is classified as “NG” by the second classifier 31b, the determination unit 32 classifies the inspection image 21 into the second class. It is determined to be CL2, and “NG” indicating the second class CL2 is output as the result RE. Here, the inspection image 21 classified by the first classifier 31a as a class other than the first class and classified by the second classifier 31b as a second class including a possibility of the second class is: The inventor of the present invention has found that the probability of being in the second class is high. Therefore, when the inspection image 21 is classified as other than “OK” by the first classifier 31a and is classified as “NG” by the second classifier 31b, the inspection image 21 is determined to be the second class CL2. By doing so, the accuracy of classifying the inspection image 21 into “NG” can be improved.

 なお、検査画像21が、第1分類器31aによって「OK」以外に分類され、第2分類器31bによって「NG」以外に分類されたとき、当該検査画像21は、図3に示す例において、第1クラスCL1の外側かつ第2クラスCL2の外側の領域に属することになる。すなわち、このような検査画像21は、画像分類装置50Aでは分類できない画像であるから、判定部32は、結果REとして「不明」を出力する。 When the inspection image 21 is classified by the first classifier 31a other than "OK" and by the second classifier 31b other than "NG", the inspection image 21 is in the example shown in FIG. It belongs to the area outside the first class CL1 and outside the second class CL2. That is, since such an inspection image 21 is an image that cannot be classified by the image classification device 50A, the determination unit 32 outputs "unknown" as the result RE.

 第1分類器31a及び第2分類器31bは、それぞれ2クラス分類器である。これにより、3クラス以上の多クラス分類器と比較して、簡単かつ容易に、分類精度の高い第1分類器31a及び第2分類器31bを生成することができる。 The first classifier 31a and the second classifier 31b are two-class classifiers. As a result, it is possible to easily and easily generate the first classifier 31a and the second classifier 31b with high classification accuracy as compared with a multi-class classifier having three or more classes.

 第1分類器31a及び第2分類器31bは、任意の機械学習モデルのアルゴリズムを用いて生成される。例えば、図5に示すように、第1分類器31aは第1ニューラルネットワークNW1を用いて生成され、第2分類器31bは第2ニューラルネットワークNW2を用いて生成される。図5に示す例では、第1ニューラルネットワークNW1及び第2ニューラルネットワークNW2は、それぞれ、畳み込みニューラルネットワーク(CNN:Convolutional Neural Network)である。 The first classifier 31a and the second classifier 31b are generated using an arbitrary machine learning model algorithm. For example, as shown in FIG. 5, the first classifier 31a is generated using the first neural network NW1 and the second classifier 31b is generated using the second neural network NW2. In the example shown in FIG. 5, each of the first neural network NW1 and the second neural network NW2 is a convolutional neural network (CNN: Convolutional Neural Network).

第1ニューラルネットワークNW1及び第2ニューラルネットワークNW2は、例えば、それぞれ、畳み込みフィルタ層とプーリング層との組み合わせである畳み込みフィルタ層/プーリング層と、畳み込みフィルタ層/プーリング層によって抽出される特徴量と、全結合層と、出力と、を含んでいる。 The first neural network NW1 and the second neural network NW2 are, for example, a convolutional filter layer / pooling layer which is a combination of a convolutional filter layer and a pooling layer, respectively, and a feature amount extracted by the convolutional filter layer / pooling layer, It includes a fully connected layer and an output.

 第1ニューラルネットワークNW1及び第2ニューラルネットワークNW2には、入力として複数の学習画像LGが与えられる。各学習画像LGには、アノテーション、つまり、関連情報が付与されている。すなわち、第1ニューラルネットワークNW1に各学習画像LGを入力する際、各学習画像LGには第1ラベルLA1が付与され、第2ニューラルネットワークNW2に各学習画像LGを入力する際、各学習画像LGには第2ラベルLA2が付与される。第1ラベルLA1は、第1クラスである「OK」又はそれ以外のクラスである「¬OK」である。一方、第2ラベルLA2は、第2クラスである「NG」又はそれ以外のクラスである「¬NG」である。第1ラベルLA1及び第2ラベルLA2は、例えばユーザが、各学習画像LGを見て分類することによって設定される。 A plurality of learning images LG are given as inputs to the first neural network NW1 and the second neural network NW2. An annotation, that is, related information is added to each learning image LG. That is, when each learning image LG is input to the first neural network NW1, the first label LA1 is given to each learning image LG, and each learning image LG is input when inputting each learning image LG to the second neural network NW2. Is attached with the second label LA2. The first label LA1 is “OK”, which is the first class, or “¬OK”, which is the other class. On the other hand, the second label LA2 is “NG” which is the second class or “−NG” which is the other class. The first label LA1 and the second label LA2 are set, for example, by the user viewing and classifying each learning image LG.

 図5に示す例では、第1ニューラルネットワークNW1及び第2ニューラルネットワークNW2を用いて第1分類器31a及び第2分類器31bを生成する例を示したが、これに限定されるものではない。第1分類器31a及び第2分類器31bを生成する機械学習モデルのアルゴリズムとして、例えば、サポートベクターマシン、ロジスティック回帰、ディープニューラルネットワーク等を用いるようにしてもよい。 In the example shown in FIG. 5, the first classifier 31a and the second classifier 31b are generated using the first neural network NW1 and the second neural network NW2, but the present invention is not limited to this. As the machine learning model algorithm for generating the first classifier 31a and the second classifier 31b, for example, a support vector machine, a logistic regression, a deep neural network, or the like may be used.

 図1に戻り、制御部30の各機能は、コンピュータ(マイクロプロセッサ)で実行されるプログラムによって実現することが可能である。したがって、制御部30が備える各機能は、ハードウェア、ソフトウェア、若しくはハードウェア及びソフトウェアの組み合わせによって実現可能であり、いずれかの場合に限定されるものではない。 Returning to FIG. 1, each function of the control unit 30 can be realized by a program executed by a computer (microprocessor). Therefore, each function of the control unit 30 can be realized by hardware, software, or a combination of hardware and software, and is not limited to either case.

 また、制御部30の各機能が、ソフトウェア、若しくはハードウェア及びソフトウェアの組み合わせによって実現される場合、その処理は、マルチタスク、マルチスレッド、若しくはマルチタスク及びマルチスレッドの両方で実行可能であり、いずれかの場合に限定されるものではない。 When each function of the control unit 30 is realized by software or a combination of hardware and software, the processing can be executed by multitasking, multithreading, or both multitasking and multithreading. It is not limited to such cases.

 撮像装置60は、画像を撮影してデータとして記録するように構成されている。撮像装置60は、デジタルカメラであり、例えば、レンズ等の光学系部品と、撮像素子(受光素子)等の電子系部品とを含んで構成される。なお、光学系部品は、複数のレンズを備えていてもよい。また、電子系部品は、フラッシュ等の発光装置を備えていてもよい。撮像装置60は、ライン装置90の上方に配置されており、ライン装置90上の検査対象物を撮影し、撮影した画像を入出力I/F10を介して画像分類装置50に出力する。制御部30は、撮像装置60から入力された画像に必要な処理を施して検査画像21のファイルを生成し、生成した検査画像21のファイルを記憶部20に記憶させる。 The imaging device 60 is configured to capture an image and record it as data. The imaging device 60 is a digital camera, and is configured to include, for example, optical system components such as a lens and electronic system components such as an image sensor (light receiving element). The optical system component may include a plurality of lenses. Further, the electronic component may include a light emitting device such as a flash. The imaging device 60 is arranged above the line device 90, photographs the inspection object on the line device 90, and outputs the photographed image to the image classification device 50 via the input / output I / F 10. The control unit 30 performs necessary processing on the image input from the imaging device 60 to generate a file of the inspection image 21, and causes the storage unit 20 to store the generated file of the inspection image 21.

 入力装置70は、利用者(ユーザ)の操作によって情報を入力できるように構成されている。入力装置70は、例えば、キーボード、キーパッド、マウス、トラックボール、タッチパネル、マイク等を含んで構成される。することが可能である。例えば、利用者が、キーボード、キーパッド、マウス、トラックボール、タッチパネル、マイク等を操作(マイクを用いた音声操作を含む)したときに、入力装置70は、当該操作に対応するデータ又は信号を入出力I/F10を介して画像分類装置50に出力する。制御部30が、このデータまた信号に基づいてデータを生成することで、画像分類装置50に情報を入力することが可能になる。 The input device 70 is configured to be able to input information by a user (user) operation. The input device 70 includes, for example, a keyboard, a keypad, a mouse, a trackball, a touch panel, a microphone, and the like. It is possible to For example, when the user operates a keyboard, a keypad, a mouse, a trackball, a touch panel, a microphone, etc. (including a voice operation using a microphone), the input device 70 outputs data or a signal corresponding to the operation. It outputs to the image classification device 50 via the input / output I / F 10. The control unit 30 can input information to the image classification device 50 by generating data based on this data or signal.

 出力装置80は、情報を出力するように構成されている。出力装置80は、例えば、液晶ディスプレイ、EL(Electro Luminescence)ディスプレイ、プラズマディスプレイ等の表示装置を含んで構成される。例えば、画像分類装置50から入出力I/F10を介して入力される画像データを、出力装置80が表示装置に表示することで、情報を出力することが可能になる。 The output device 80 is configured to output information. The output device 80 is configured to include a display device such as a liquid crystal display, an EL (Electro Luminescence) display, and a plasma display. For example, when the output device 80 displays the image data input from the image classification device 50 via the input / output I / F 10 on the display device, the information can be output.

 ライン装置90は、検査対象物を搬送するように構成されている。ライン装置90は、例えばベルトコンベヤ等の搬送手段を含んで構成される。ライン装置90は、画像分類装置50から入出力I/F10を介して入力される制御信号に基づいて、例えば、ライン装置90上の検査対象物を移動させたり、停止させたり、除外したりすることが可能になる。 The line device 90 is configured to convey the inspection object. The line device 90 is configured to include a transportation unit such as a belt conveyor. The line device 90 moves, stops, or excludes the inspection object on the line device 90, for example, based on a control signal input from the image classification device 50 via the input / output I / F 10. It will be possible.

 次に、図6から図8を参照しつつ、本発明の第1実施形態に係る画像検査装置100の動作について説明する。図6は、本発明の第1実施形態に係る画像検査装置100の概略動作を例示するフローチャートである。図7は、図1に示した画像検査装置100の検査画像21と分類結果を例示する図である。図8は、図7に示した画像検査装置100の検査画像21を特徴量によってマッピングしたグラフである。 Next, the operation of the image inspection apparatus 100 according to the first embodiment of the present invention will be described with reference to FIGS. 6 to 8. FIG. 6 is a flowchart illustrating a schematic operation of the image inspection apparatus 100 according to the first embodiment of the present invention. FIG. 7 is a diagram illustrating the inspection image 21 and the classification result of the image inspection apparatus 100 shown in FIG. FIG. 8 is a graph in which the inspection image 21 of the image inspection apparatus 100 shown in FIG. 7 is mapped by the feature amount.

 画像検査装置100は、例えば利用者(ユーザ)の操作によって起動すると、図6に示す画像検査処理S200を実行する。 The image inspection device 100 executes the image inspection process S200 shown in FIG. 6 when activated by, for example, a user's operation.

 最初に、第1分類器31aは、記憶部20に記憶された検査画像21を読み出し、当該検査画像21を「OK」又は「OK」以外に分類する(S201)。なお、ステップS201は、本発明の「第1分類ステップ」に相当する。 First, the first classifier 31a reads the inspection image 21 stored in the storage unit 20 and classifies the inspection image 21 into “OK” or other than “OK” (S201). Note that step S201 corresponds to the "first classification step" of the present invention.

 次に、第2分類器31bは、ステップS201で読み出した検査画像21を「NG」又は「NG」以外に分類する(S202)。なお、ステップS202は、本発明の「第2分類ステップ」に相当する。 Next, the second classifier 31b classifies the inspection image 21 read in step S201 into “NG” or other than “NG” (S202). Note that step S202 corresponds to the "second classification step" of the present invention.

 次に、判定部32は、ステップS201の分類結果とステップS202の分類結果とに基づいて、ステップS201で読み出した検査画像21が中間クラスである「グレー」であるか否かを判定する(S203)。なお、ステップS203は、本発明の「判定ステップ」に相当する。 Next, the determination unit 32 determines whether the inspection image 21 read in step S201 is the intermediate class “gray” based on the classification result in step S201 and the classification result in step S202 (S203). ). Note that step S203 corresponds to the "determination step" of the present invention.

 ステップS203の判定の結果、検査画像21が「グレー」である場合、当該検査画像21を再検査する必要があると考えられる。よって、制御部30は、例えば、検査画像21をI/F10を介して出力装置80に表示させ、利用者の目視によって検査画像21を再検査する(S204)。利用者は、出力装置80に表示された検査画像21を見て、入力装置70を操作することによって、当該検査画像21に対して「OK」又は「NG」を入力する。 If the inspection image 21 is “gray” as a result of the determination in step S203, it is considered necessary to re-inspect the inspection image 21. Therefore, for example, the control unit 30 displays the inspection image 21 on the output device 80 via the I / F 10 and re-inspects the inspection image 21 by the visual inspection of the user (S204). The user sees the inspection image 21 displayed on the output device 80 and operates the input device 70 to input “OK” or “NG” to the inspection image 21.

 一方、ステップS203の判定の結果、判定部32は、検査画像21が「グレー」でない場合、検査画像21が第1クラスである「OK」であるか否かを判定する(S205)。 On the other hand, when the inspection image 21 is not “gray” as a result of the determination in step S203, the determination unit 32 determines whether the inspection image 21 is “OK” which is the first class (S205).

 ステップS205の判定の結果、検査画像21が「OK」である場合、当該検査画像21に対応する検査対象物は、例えば製品として出荷可能な状態であると考えられる。よって、制御部30は、I/F10を介してライン装置90に制御信号を出力し、ライン装置90が、当該検査画像21に対応する検査対象物を搬送し、出荷する(S206)。 When the inspection image 21 is “OK” as a result of the determination in step S205, it is considered that the inspection target object corresponding to the inspection image 21 is ready to be shipped as a product, for example. Therefore, the control unit 30 outputs a control signal to the line device 90 via the I / F 10, and the line device 90 conveys and ships the inspection object corresponding to the inspection image 21 (S206).

 一方、ステップS205の判定の結果、判定部32は、検査画像21が「OK」でない場合、検査画像21が第2クラスである「NG」であるか否かを判定する(S207)。 On the other hand, when the inspection image 21 is not "OK" as a result of the determination in step S205, the determination unit 32 determines whether the inspection image 21 is the second class "NG" (S207).

 ステップS207の判定の結果、検査画像21が「NG」である場合、当該検査画像21に対応する検査対象物は、例えば欠陥を含み、製品として出荷不能な状態であると考えられる。よって、制御部30は、I/F10を介してライン装置90に制御信号を出力し、ライン装置90が、当該検査画像21に対応する検査対象物をライン上から除外する(S208)。 If the inspection image 21 is “NG” as a result of the determination in step S207, it is considered that the inspection target corresponding to the inspection image 21 contains defects, for example, and cannot be shipped as a product. Therefore, the control unit 30 outputs a control signal to the line device 90 via the I / F 10, and the line device 90 excludes the inspection object corresponding to the inspection image 21 from the line (S208).

 一方、ステップS207の判定の結果、判定部32は、検査画像21が「NG」でない場合、図4に示した「不明」のように、画像分類装置50によって分類できないものと考えられる。よって、制御部30は、例えば、I/F10を介して出力装置80に、検査画像21とともに警告を出力する(S209)。利用者は、出力装置80に出力された検査画像及び警告を見て、ライン装置90を停止させたり、入力装置70を操作することによって当該検査画像21に対して「OK」又は「NG」を入力したりする。 On the other hand, as a result of the determination in step S207, when the inspection image 21 is not “NG”, it is considered that the determination unit 32 cannot classify the image by the image classification device 50 like “unknown” shown in FIG. Therefore, the control unit 30 outputs a warning together with the inspection image 21 to the output device 80 via the I / F 10 (S209), for example. The user sees the inspection image and the warning output to the output device 80, and stops the line device 90 or operates the input device 70 to give “OK” or “NG” to the inspection image 21. Or type.

 ステップ204、ステップ206、ステップ208、又はステップ209の後、制御部30は、例えば画像検査装置100が停止するまで、ステップS201からステップS209の各ステップを繰り返す。 After step 204, step 206, step 208, or step 209, the control unit 30 repeats steps S201 to S209 until the image inspection apparatus 100 stops, for example.

 ここで、図7におけるNo.1からNo.5の検査画像21のように、各検査画像21が汚れやシミ等の欠陥を含む場合、第1分類器31aは、No.1からNo.5の検査画像21について「OK」に分類し、No.4からNo.5の検査画像21について「¬OK」(「OK」以外)に分類する。一方、第2分類器31bは、No.1からNo.2の検査画像21について「NG」に分類し、No.3からNo.5の検査画像21について「¬NG」(「NG」以外)に分類する。 Here, No. in FIG. 1 to No. When each inspection image 21 includes defects such as stains and stains like the inspection image 21 of No. 5, the first classifier 31a determines that the No. 1 to No. The inspection image 21 of No. 5 is classified into “OK” and No. 4 to No. The inspection image 21 of No. 5 is classified into “¬OK” (other than “OK”). On the other hand, the second classifier 31b is No. 1 to No. The inspection image 21 of No. 2 is classified as “NG” and No. 3 to No. The inspection image 21 of No. 5 is classified into “¬NG” (other than “NG”).

 また、図7におけるNo.6からNo.10の検査画像21のように、各検査画像21がクラックやキズ等の欠陥を含む場合、第1分類器31aは、No.6からNo.7の検査画像21について「OK」に分類し、No.8からNo.10の検査画像21について「¬OK」(「OK」以外)に分類する。一方、第2分類器31bは、No.6の検査画像21について「NG」に分類し、No.7からNo.10の検査画像21について「¬NG」(「NG」以外)に分類する。 Also, in FIG. 6 to No. When each inspection image 21 includes a defect such as a crack or a scratch like the inspection image 21 of No. 10, the first classifier 31a determines that the No. 6 to No. The inspection image 21 of No. 7 is classified as “OK” and No. 8 to No. The inspection images 21 of 10 are classified into “¬OK” (other than “OK”). On the other hand, the second classifier 31b is No. The inspection image 21 of No. 6 is classified as “NG” and No. 7 to No. The inspection images 21 of 10 are classified into “¬NG” (other than “NG”).

 このように、各検査画像21が欠陥を含む場合、欠陥の種類は多種多様であり、欠陥を含む各検査画像21はそれぞれに異なる特徴を有することがある。 As described above, when each inspection image 21 includes a defect, there are various types of defects, and each inspection image 21 including a defect may have different characteristics.

 図7に示すNo.1からNo.10の検査画像21に含まれる欠陥を、例えば、「面積」という特徴と、「長さ」という特徴とによってマッピングすると、図8に示すようになる。判定部32は、図7に示した第1分類器31aの分類結果と第2分類器31bの分類結果とに基づいて、No.1、No.2、及びNo.6の検査画像21を図8において破線で囲う第1クラスCL1であると判定する。また、判定部32は、図7に示した第1分類器31aの分類結果と第2分類器31bの分類結果とに基づいて、No.4、No.5、及びNo.8からNo.10の検査画像21を図8において一点鎖線で囲う第2クラスCL2であると判定する。さらに、図7に示した第1分類器31aの分類結果と第2分類器31bの分類結果とに基づいて、No.3及びNo.7の検査画像21を第1クラスCL1と第2クラスCL2とが重複する中間クラスICであると判定する。 No. shown in FIG. 1 to No. When the defects included in the ten inspection images 21 are mapped by, for example, the feature of "area" and the feature of "length", the result is as shown in FIG. The determination unit 32 determines No. based on the classification result of the first classifier 31a and the classification result of the second classifier 31b shown in FIG. 1, No. 2 and No. It is determined that the inspection image 21 of No. 6 is the first class CL1 surrounded by the broken line in FIG. Further, the determination unit 32 determines the No. based on the classification result of the first classifier 31a and the classification result of the second classifier 31b shown in FIG. 4, No. 5, and No. 8 to No. It is determined that the inspection image 21 of 10 is the second class CL2 surrounded by the one-dot chain line in FIG. Further, based on the classification result of the first classifier 31a and the classification result of the second classifier 31b shown in FIG. 3 and No. It is determined that the inspection image 21 of No. 7 is an intermediate class IC in which the first class CL1 and the second class CL2 overlap.

 このように、複数の検査画像21が異なる特徴を有する場合でも、第1分類器31aの分類結果と第2分類器31bの分類結果とに基づいて、検査画像21を第1クラスCL1と第2クラスCL2との間の中間クラスICであるか否かを判定することができる。
できる。
As described above, even when the plurality of inspection images 21 have different characteristics, the inspection images 21 are classified into the first class CL1 and the second class CL1 based on the classification result of the first classifier 31a and the classification result of the second classifier 31b. It can be determined whether or not it is an intermediate class IC with the class CL2.
it can.

 <第2実施形態>
 次に、図9から図13を参照しつつ、本発明の第2実施形態に係る画像検査装置及び画像分類装置について説明する。図9は、本発明の第2実施形態に係る画像検査装置100Aの概略構成を例示する構成図である。図10は、図9に示した分類部31A及び判定部32Aの構成を例示するブロック図である。図11は、第1クラスCL1、第2クラスCL2、及び第3クラスCL3のうちの少なくとも2つの間の中間クラスICを例示するベン図である。図12は、図10に示した判定部32Aの結果REを例示する表である。図13は、図9に示した分類部31A及び判定部32Aの構成の変形例を例示するブロック図である。なお、第1実施形態と同一又は類似の構成について同一又は類似の符号を付している。以下、第1実施形態と異なる点について説明する。また、同様の構成による同様の作用効果については、逐次言及しない。
<Second Embodiment>
Next, an image inspection apparatus and an image classification apparatus according to the second embodiment of the present invention will be described with reference to FIGS. 9 to 13. FIG. 9 is a configuration diagram illustrating a schematic configuration of an image inspection apparatus 100A according to the second embodiment of the present invention. FIG. 10 is a block diagram illustrating the configuration of the classification unit 31A and the determination unit 32A illustrated in FIG. FIG. 11 is a Venn diagram illustrating an intermediate class IC between at least two of the first class CL1, the second class CL2, and the third class CL3. FIG. 12 is a table exemplifying the result RE of the determination unit 32A shown in FIG. FIG. 13 is a block diagram illustrating a modification of the configurations of the classification unit 31A and the determination unit 32A illustrated in FIG. Note that the same or similar reference numerals are given to the same or similar configurations as those of the first embodiment. The points different from the first embodiment will be described below. In addition, similar operational effects due to the similar configuration will not be sequentially described.

 図9に示すように、本発明の第2実施形態に係る画像検査装置100A及び画像分類装置50Aは、制御部30が分類部31Aと判定部32Aを備える点で、本発明の第2実施形態に係る画像検査装置100及び画像分類装置50と相違する。 As shown in FIG. 9, in the image inspection apparatus 100A and the image classification apparatus 50A according to the second embodiment of the present invention, the control unit 30 includes a classification unit 31A and a determination unit 32A. The image inspection apparatus 100 and the image classification apparatus 50 according to the present invention are different.

 すなわち、分類部31Aは、第1分類器31a及び第2分類器31bに加え、第3分類器31cをさらに備える。また、判定部32Aには、分類結果CR1及び分類結果CR2に加え、第3分類器31cの分類結果CR3が入力される。 That is, the classification unit 31A further includes a third classifier 31c in addition to the first classifier 31a and the second classifier 31b. In addition to the classification result CR1 and the classification result CR2, the classification result CR3 of the third classifier 31c is input to the determination unit 32A.

 第3分類器31cは、入力される画像を、第3クラス又はそれ以外のクラスに分類するように構成されている。第3クラスに分類される画像には、当該第3クラスの可能性のあるものが含まれる。この結果、それ以外のクラス(第3クラス以外のクラス)には、確実に第3クラスではない画像が分類される。第3分類器31cには記憶部20に記憶された検査画像21が入力され、第3分類器31cは分類結果CR3を出力する。 The third classifier 31c is configured to classify the input image into the third class or another class. The images classified into the third class include those that may be in the third class. As a result, an image that is not the third class is definitely classified into the other classes (classes other than the third class). The inspection image 21 stored in the storage unit 20 is input to the third classifier 31c, and the third classifier 31c outputs the classification result CR3.

 判定部32Aは、第1分類器31aの分類結果CR1と第2分類器31bの分類結果CR2と第3分類器31cの分類結果CR3とに基づいて、第1分類器31a、第2分類器31b、及び第3分類器31cに入力される検査画像21が、第1クラス、第2クラス、及び第3クラスのうちの少なくとも2つの間の中間クラスであるか否かを判定するように構成されている。判定部32Aは、判定結果に従う結果REを出力する。 The determination unit 32A, based on the classification result CR1 of the first classifier 31a, the classification result CR2 of the second classifier 31b, and the classification result CR3 of the third classifier 31c, the first classifier 31a and the second classifier 31b. , And the inspection image 21 input to the third classifier 31c is configured to determine whether the inspection image 21 is an intermediate class between at least two of the first class, the second class, and the third class. ing. The determination unit 32A outputs the result RE according to the determination result.

 ここで、第3分類器31cによって第3クラスに分類される検査画像21に第3クラスの可能性のあるものが含まれる場合、第3分類器31cが検査画像21を第3クラス又はそれ以外のクラスに分類する際のしきい値は、検査画像21を第1クラス、第2クラス、及び第3クラスのうちの少なくとも2つの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。そして、このような第3分類器31cの分類結果CR3と、第1分類器31aの分類結果CR1及び第2分類器31bの分類結果CR2とに基づいて、検査画像21を中間クラスに分類可能であることを、本発明の発明者は見出した。よって、第1分類器31aの分類結果CR1と第2分類器31bの分類結果CR2と第3分類器31cの分類結果CR3とに基づいて、検査画像21が第1クラス、第2クラス、及び第3クラスのうちの少なくとも2つの間の中間クラスであるか否かを判定することにより、検査画像21の中間クラスへの過多分類及び過少分類を抑制することができる。 Here, when the inspection image 21 classified into the third class by the third classifier 31c includes an image having a possibility of the third class, the third classifier 31c converts the inspection image 21 into the third class or other cases. The threshold value for classifying the inspection image 21 is compared with the threshold value for classifying the inspection image 21 into an intermediate class between at least two of the first class, the second class, and the third class. And can be easily set. Then, the inspection image 21 can be classified into the intermediate class based on the classification result CR3 of the third classifier 31c, the classification result CR1 of the first classifier 31a, and the classification result CR2 of the second classifier 31b. The inventor of the present invention has found that there is. Therefore, based on the classification result CR1 of the first classifier 31a, the classification result CR2 of the second classifier 31b, and the classification result CR3 of the third classifier 31c, the inspection image 21 includes the first class, the second class, and the By determining whether the inspection image 21 is an intermediate class between at least two of the three classes, it is possible to suppress excessive classification and underclassification of the inspection image 21 into the intermediate classes.

 例えば、図11に示すように、第1クラスCL1は検査画像21が「A」であるクラスであり、第2クラスCL2は検査画像21が「B」であるクラスであり、第3クラスCL3は検査画像21が「C」であるクラスである場合、第1クラスCL1と第2クラスCL2との間、第1クラスCL1と第3クラスCL3との間、第2クラスCL2と第3クラスCL3との間、及び第1クラスCL1と第2クラスCL2と第3クラスCL3との間に、それぞれ中間クラスICが存在する。中間クラスICに含まれる検査画像21は、「A」、「B」、及び「C」のいずれにも分類できないグレーな画像である。 For example, as shown in FIG. 11, the first class CL1 is a class whose inspection image 21 is “A”, the second class CL2 is a class whose inspection image 21 is “B”, and the third class CL3 is When the inspection image 21 is a class of “C”, between the first class CL1 and the second class CL2, between the first class CL1 and the third class CL3, and between the second class CL2 and the third class CL3. Intermediate class ICs exist between the first class CL1, the second class CL2, and the third class CL3. The inspection image 21 included in the intermediate class IC is a gray image that cannot be classified into any of “A”, “B”, and “C”.

 以下の説明において、特に明示する場合を除き、図11に示すように、第1クラスCL1は検査画像21が「A」、第2クラスCL2は検査画像21が「B」、第3クラスCL3は検査画像21が「C」、第1クラスCL1、第2クラスCL2、及び第3クラスCL3のうちの少なくとも2つの間に存在する中間クラスICは「グレー」とする。 In the following description, unless otherwise specified, as shown in FIG. 11, the inspection image 21 is “A” for the first class CL1, the inspection image 21 is “B” for the second class CL2, and the third class CL3 is The intermediate class IC in which the inspection image 21 exists between at least two of “C”, the first class CL1, the second class CL2, and the third class CL3 is “gray”.

 図11に示す例の場合、判定部32Aは、図12に示す表に従って判定する。なお、図12に示す表では、図4に示した表と同様に、上線は否定を表しており、「A」の上線は「A」以外を意味し、「B」の上線は「B」以外を意味、「C」の上線は「C」以外を意味する。以下の説明において、「A」以外を「¬A」と表記し、「B」以外を「¬B」と表記し、「C」以外を「¬C」と表記する場合がある。 In the case of the example shown in FIG. 11, the determination unit 32A makes a determination according to the table shown in FIG. In the table shown in FIG. 12, like the table shown in FIG. 4, the upper line represents negation, the upper line of “A” means other than “A”, and the upper line of “B” is “B”. Means other than, and the upper line of "C" means other than "C". In the following description, other than "A" may be expressed as "¬A", other than "B" may be expressed as "¬B", and other than "C" may be expressed as "¬C".

 詳細には、検査画像21が、第1分類器31aによって「A」に分類され、第2分類器31bによって「B」に分類され、第3分類器31cによって「C」に分類されたときに、判定部32Aは、当該検査画像21を中間クラスICであると判定し、結果REとして中間クラスICを示す「グレー」を出力する。また、検査画像21が、第1分類器31aによって「A」に分類され、第2分類器31bによって「B」に分類され、第3分類器31cによって「C」以外に分類されたときに、判定部32Aは、当該検査画像21を中間クラスICであると判定し、結果REとして中間クラスICを示す「グレー」を出力する。また、検査画像21が、第1分類器31aによって「A」に分類され、第2分類器31bによって「B」以外に分類され、第3分類器31cによって「C」に分類されたときに、判定部32Aは、当該検査画像21を中間クラスICであると判定し、結果REとして中間クラスICを示す「グレー」を出力する。また、検査画像21が、第1分類器31aによって「A」以外に分類され、第2分類器31bによって「B」に分類され、第3分類器31cによって「C」に分類されたときに、判定部32Aは、当該検査画像21を中間クラスICであると判定し、結果REとして中間クラスICを示す「グレー」を出力する。 Specifically, when the inspection image 21 is classified into “A” by the first classifier 31a, classified into “B” by the second classifier 31b, and classified into “C” by the third classifier 31c. The determination unit 32A determines that the inspection image 21 is the intermediate class IC, and outputs “gray” indicating the intermediate class IC as the result RE. Further, when the inspection image 21 is classified into “A” by the first classifier 31a, classified into “B” by the second classifier 31b, and classified into other than “C” by the third classifier 31c, The determination unit 32A determines that the inspection image 21 is the intermediate class IC, and outputs “gray” indicating the intermediate class IC as the result RE. Further, when the inspection image 21 is classified into “A” by the first classifier 31a, classified into other than “B” by the second classifier 31b, and classified into “C” by the third classifier 31c, The determination unit 32A determines that the inspection image 21 is the intermediate class IC, and outputs “gray” indicating the intermediate class IC as the result RE. In addition, when the inspection image 21 is classified by the first classifier 31a other than "A", by the second classifier 31b as "B", and by the third classifier 31c as "C", The determination unit 32A determines that the inspection image 21 is the intermediate class IC, and outputs “gray” indicating the intermediate class IC as the result RE.

 これに対し、検査画像21が、第1分類器31aによって「A」に分類され、第2分類器31bによって「B」以外に分類され、第3分類器31cによって「C」以外に分類されたときに、判定部32Aは、当該検査画像21を第1クラスCL1であると判定し、結果REとして第1クラスCL1を示す「A」を出力する。 On the other hand, the inspection image 21 is classified as "A" by the first classifier 31a, classified as other than "B" by the second classifier 31b, and classified as other than "C" by the third classifier 31c. At this time, the determination unit 32A determines that the inspection image 21 is the first class CL1 and outputs “A” indicating the first class CL1 as the result RE.

 また、検査画像21が、第1分類器31aによって「A」以外に分類され、第2分類器31bによって「B」に分類され、第3分類器31cによって「C」以外に分類されたときに、判定部32Aは、当該検査画像21を第2クラスCL2であると判定し、結果REとして第2クラスCL2を示す「B」を出力する。 When the inspection image 21 is classified by the first classifier 31a other than "A", by the second classifier 31b as "B", and by the third classifier 31c other than "C". The determination unit 32A determines that the inspection image 21 is the second class CL2, and outputs “B” indicating the second class CL2 as the result RE.

 さらに、検査画像21が、第1分類器31aによって「A」以外に分類され、第2分類器31bによって「B」以外に分類され、第3分類器31cによって「C」に分類されたときに、判定部32Aは、当該検査画像21を第3クラスCL3であると判定し、結果REとして第3クラスCL3を示す「C」を出力する。 Further, when the inspection image 21 is classified by the first classifier 31a other than "A", classified by the second classifier 31b other than "B", and classified by the third classifier 31c as "C". The determining unit 32A determines that the inspection image 21 is the third class CL3, and outputs “C” indicating the third class CL3 as the result RE.

 なお、検査画像21が、第1分類器31aによって「A」以外に分類され、第2分類器31bによって「B」以外に分類され、第3分類器31cによって「C」以外に分類されたたとき、当該検査画像21は、図11に示す例において、第1クラスCL1の外側、第2クラスCL2の外側、かつ第3クラスCL3の外側の領域に属することになる。すなわち、このような検査画像21は画像分類装置50Aでは分類できない画像であるから、判定部32Aは、結果REとして「不明」を出力する。 The inspection image 21 was classified by the first classifier 31a as other than "A", by the second classifier 31b as other than "B", and by the third classifier 31c as other than "C". At this time, the inspection image 21 belongs to the area outside the first class CL1, outside the second class CL2, and outside the third class CL3 in the example shown in FIG. That is, since such an inspection image 21 is an image that cannot be classified by the image classification device 50A, the determination unit 32A outputs “unknown” as the result RE.

 なお、第3分類器31cは、第1分類器31a及び第2分類器31bと同様に、2クラス分類器である。また、第3分類器31cは、第1分類器31a及び第2分類器31bと同様に、ニューラルネットワークを用いて生成されてもよいし、サポートベクターマシン、ロジスティック回帰、ディープニューラルネットワーク等の他の機械学習モデルのアルゴリズムを用いて生成してもよい。 The third classifier 31c is a two-class classifier, like the first classifier 31a and the second classifier 31b. Further, the third classifier 31c may be generated by using a neural network similarly to the first classifier 31a and the second classifier 31b, or may be generated by a support vector machine, logistic regression, deep neural network, or the like. It may be generated using an algorithm of a machine learning model.

 また、本発明の第2実施形態に係る画像検査装置100Aの動作は、例えば、図6に示した画像検査装置100の概略動作に、第3分類器31cが検査画像21を第3クラス又はそれ以外のクラスに分類するステップ(本発明の第3分類ステップに相当する)と、検査画像21が第3クラスであるか否かを判定するステップとが加わるのみである。よって、画像検査装置100Aの動作については、図示及びその説明を省略する。 Further, the operation of the image inspection apparatus 100A according to the second embodiment of the present invention is, for example, the general operation of the image inspection apparatus 100 shown in FIG. Only the step of classifying into other classes (corresponding to the third classifying step of the present invention) and the step of determining whether or not the inspection image 21 is the third class are added. Therefore, illustration and description of the operation of the image inspection apparatus 100A are omitted.

 本実施形態では、分類部31Aが第3分類器31cをさらに備える例を示したが、これに限定されるものではない。例えば、図13に示すように、分類部31Aは、第3分類器31cから第m(mは4以上の整数)分類器31xまでのそれぞれを、さらに備えるようにしてもよい。この場合、第m分類器31xは、入力される画像を、第mクラス又はそれ以外のクラスに分類するように構成されている。第mクラスに分類される画像には、当該第mクラスの可能性のあるものが含まれる。この結果、それ以外のクラス(第mクラス以外のクラス)には、確実に第mクラスではない画像が分類される。また、判定部32Aは、第1分類器31aの分類結果CR1から第m分類器31xの分類結果CRmまでに基づいて、検査画像21が第1クラスから第mクラスのうちの少なくとも2つの間の中間クラスであるか否かを判定する。 In the present embodiment, an example in which the classification unit 31A further includes the third classifier 31c has been shown, but the present invention is not limited to this. For example, as shown in FIG. 13, the classification unit 31A may further include each of the third classifier 31c to the m-th (m is an integer of 4 or more) classifier 31x. In this case, the m-th classifier 31x is configured to classify the input image into the m-th class or another class. The images classified into the m-th class include those that may be in the m-th class. As a result, an image that is not the m-th class is definitely classified into the other classes (classes other than the m-th class). Further, the determination unit 32A determines that the inspection image 21 is between at least two of the first class to the m-th class based on the classification result CR1 of the first classifier 31a to the classification result CRm of the m-th classifier 31x. Determine if it is an intermediate class.

 ここで、第3分類器31cによって第3クラスに分類される画像に第3クラスの可能性のあるものが含まれる場合、第3分類器31cが検査画像21を第3クラス又はそれ以外のクラスに分類する際のしきい値は、検査画像21を第1クラスから第mクラスのうちの少なくとも2つの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。同様に、第m分類器31xによって第mクラスに分類される画像に第mクラスの可能性のあるものが含まれる場合、第m分類器31xが検査画像21を第mクラス又はそれ以外のクラスに分類する際のしきい値は、検査画像21を第1クラスから第mクラスのうちの少なくとも2つの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。そして、このような第3分類器31cの分類結果CR3から第m分類器31xの分類結果CRmまでと、第1分類器31aの分類結果CR1及び第2分類器31bの分類結果CR2とに基づいて、画像を中間クラスに分類可能であることを、本発明の発明者は見出した。よって、第1分類器31aの分類結果CR1から第m分類器31xの分類結果CRmまでに基づいて、検査画像21が第1クラスから第mクラスのうちの少なくとも2つの間の中間クラスであるか否かを判定することにより、検査画像21の中間クラスへの過多分類及び過少分類することができる。 Here, when the images classified into the third class by the third classifier 31c include those having the possibility of the third class, the third classifier 31c converts the inspection image 21 into the third class or other classes. The threshold for classifying the inspection image 21 should be easily set in comparison with the threshold for classifying the inspection image 21 into an intermediate class between at least two of the first class to the m-th class. You can Similarly, when the image classified into the m-th class by the m-th classifier 31x includes a possible m-th class image, the m-th classifier 31x converts the inspection image 21 into the m-th class or another class. The threshold for classifying the inspection image 21 should be easily set in comparison with the threshold for classifying the inspection image 21 into an intermediate class between at least two of the first class to the m-th class. You can Then, based on the classification result CR3 of the third classifier 31c to the classification result CRm of the m-th classifier 31x, the classification result CR1 of the first classifier 31a, and the classification result CR2 of the second classifier 31b. The inventor of the present invention has found that images can be classified into intermediate classes. Therefore, based on the classification result CR1 of the first classifier 31a to the classification result CRm of the mth classifier 31x, is the inspection image 21 an intermediate class between at least two of the first class to the mth class? By determining whether or not the inspection image 21 is over-classified or under-classified into the intermediate class.

 詳細には、検査画像21が、第1分類器31aから第m分類器31xのうちの2つ以上において、第n(nは1からmまでの整数)クラスであると分類されたときに、判定部32Aは、当該検査画像21を中間クラスであると判定する。 Specifically, when the inspection image 21 is classified as the n-th (n is an integer from 1 to m) class in two or more of the first classifier 31a to the m-th classifier 31x, The determination unit 32A determines that the inspection image 21 is the intermediate class.

 これに対し、検査画像21が、第n分類器によって第nクラスに分類され、その他の全ての分類器においてそれ以外のクラスに分類されたときに、判定部32Aは、当該検査画像21を第nクラスであると判定する。 On the other hand, when the inspection image 21 is classified into the nth class by the nth classifier and is classified into other classes in all the other classifiers, the determination unit 32A determines the inspection image 21 as the first class. It is determined to be n class.

 以上、本発明の例示的な実施形態について説明した。本発明の一実施形態に係る画像分類装置50,50Aによれば、第1分類器31aの分類結果CR1と第2分類器31bの分類結果CR2とに基づいて、検査画像21は第1クラスと第2クラスとの間の中間クラスであるか否かが判定される。ここで、第1分類器31aによって第1クラスに分類される検査画像21に第1クラスの可能性のあるものが含まれる場合、第1分類器31aが検査画像21を第1クラス又はそれ以外のクラスに分類する際のしきい値は、検査画像21を第1クラスと第2クラスとの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。同様に、第2分類器31bによって第2クラスに分類される検査画像21に第2クラスの可能性のあるものが含まれるようにする場合、第2分類器31bが検査画像21を第2クラス又はそれ以外のクラスに分類する際のしきい値は、検査画像21を第1クラスと第2クラスとの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。そして、このような第1分類器31aの分類結果CR1及び第2分類器31bの分類結果CR2に基づいて、検査画像21を中間クラスに分類可能であることを、本発明の発明者は見出した。よって、第1分類器31aの分類結果CR1と第2分類器31bの分類結果CR2とに基づいて、検査画像21が第1クラスと第2クラスとの間の中間クラスであるか否かを判定することにより、検査画像21の中間クラスへの過多分類及び過少分類を抑制することができる。 The exemplary embodiments of the present invention have been described above. According to the image classification devices 50 and 50A according to the embodiment of the present invention, the inspection image 21 is classified into the first class based on the classification result CR1 of the first classifier 31a and the classification result CR2 of the second classifier 31b. It is determined whether the class is an intermediate class between the second class and the second class. Here, when the inspection image 21 classified into the first class by the first classifier 31a includes a possibility of the first class, the first classifier 31a converts the inspection image 21 into the first class or other cases. Can be easily set in comparison with the threshold when the inspection image 21 is classified into the intermediate class between the first class and the second class. .. Similarly, when the inspection images 21 classified by the second classifier 31b into the second class include those having the possibility of the second class, the second classifier 31b converts the inspection image 21 into the second class. Alternatively, the threshold value when classifying into another class is set easily in comparison with the threshold value when classifying the inspection image 21 into an intermediate class between the first class and the second class. be able to. The inventor of the present invention has found that the inspection image 21 can be classified into the intermediate class based on the classification result CR1 of the first classifier 31a and the classification result CR2 of the second classifier 31b. .. Therefore, it is determined whether the inspection image 21 is an intermediate class between the first class and the second class based on the classification result CR1 of the first classifier 31a and the classification result CR2 of the second classifier 31b. By doing so, it is possible to suppress over-classification and under-classification of the inspection image 21 into intermediate classes.

 また、本発明の一実施形態に係る画像分類方法によれば、ステップS201の分類結果とステップS202の分類結果とに基づいて、検査画像21は第1クラスと第2クラスとの間の中間クラスであるか否かが判定される。ここで、第1分類器によって第1クラスに分類される画像に第1クラスの可能性のあるものが含まれる場合、第1分類器が画像を第1クラス又はそれ以外のクラスに分類する際のしきい値は、画像を第1クラスと第2クラスとの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。同様に、第2分類器によって第2クラスに分類される画像に第2クラスの可能性のあるものが含まれるようにする場合、第2分類器が画像を第2クラス又はそれ以外のクラスに分類する際のしきい値は、画像を第1クラスと第2クラスとの間にある中間クラスに分類するときのしきい値と比較して、容易に設定することができる。そして、このような第1分類器の分類結果及び第2分類器の分類結果に基づいて、画像を中間クラスに分類可能であることを、本発明の発明者は見出した。よって、ステップS201の分類結果とステップS202の分類結果とに基づいて、検査画像21は第1クラスと第2クラスとの間の中間クラスであるか否かを判定することにより、検査画像21の中間クラスへの過多分類及び過少分類することができる。 Further, according to the image classification method according to the embodiment of the present invention, the inspection image 21 is classified into the intermediate class between the first class and the second class based on the classification result of step S201 and the classification result of step S202. Is determined. Here, when the first classifier classifies an image into the first class or another class, if the image classified into the first class by the first classifier includes a possibility of the first class. The threshold value of can be easily set in comparison with the threshold value when the image is classified into the intermediate class between the first class and the second class. Similarly, if the images classified by the second classifier into the second class include the possible second class, the second classifier may classify the image into the second class or another class. The threshold for classifying can be easily set in comparison with the threshold for classifying an image into an intermediate class between the first class and the second class. Then, the inventor of the present invention has found that an image can be classified into an intermediate class based on the classification result of the first classifier and the classification result of the second classifier. Therefore, based on the classification result of step S201 and the classification result of step S202, it is determined whether the inspection image 21 is an intermediate class between the first class and the second class. It can be overclassified or underclassified into intermediate classes.

 以上説明した各実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。各実施形態が備える各要素並びにその配置、材料、条件、形状及びサイズ等は、例示したものに限定されるわけではなく適宜変更することができる。また、異なる実施形態で示した構成同士を部分的に置換し又は組み合わせることが可能である。 The embodiments described above are for facilitating the understanding of the present invention and are not for limiting the interpretation of the present invention. Each element provided in each embodiment and the arrangement, material, condition, shape, size, and the like thereof are not limited to the exemplified ones, but can be appropriately changed. Further, the configurations shown in different embodiments can be partially replaced or combined.

 (附記)
 1.検査画像(21)を第1クラス又はそれ以外のクラスに分類する第1分類器(31a)であって、第1クラスに分類される画像には該第1クラスの可能性のあるものが含まれる、第1分類器(31a)と、
 検査画像(21)を第2クラス又はそれ以外のクラスに分類する第2分類器(31b)であって、第2クラスに分類される画像には該第2クラスの可能性のあるものが含まれる、第2分類器(31b)と、
 第1分類器(31a)の分類結果(CR1)と第2分類器(31b)の分類結果(CR2)とに基づいて、検査画像(21)が第1クラスと第2クラスとの間の中間クラスであるか否かを判定する判定部(32)と、を備える、
 画像分類装置(50)。
 9.第1分類器(31a)が検査画像(21)を第1クラス又はそれ以外のクラスに分類する第1分類ステップであって、第1クラスに分類される画像には該第1クラスの可能性のあるものが含まれる、第1分類ステップと、
 第2分類器(31b)が検査画像(21)を第2クラス又はそれ以外のクラスに分類する第2分類ステップであって、第2クラスに分類される画像には該第2クラスの可能性のあるものが含まれる、第2分類ステップと、
 判定部(32)が、第1分類ステップの分類結果(CR1)と第2分類ステップの分類結果(CR2)とに基づいて、検査画像(21)は第1クラスと第2クラスとの間の中間クラスであるか否かを判定する判定ステップと、を含む、
 画像分類方法。
(Appendix)
1. A first classifier (31a) for classifying the inspection image (21) into a first class or a class other than the first class, and the images classified into the first class include those which may be the first class. A first classifier (31a),
A second classifier (31b) for classifying the inspection image (21) into a second class or a class other than the second class, and the images classified into the second class include those which may be the second class. A second classifier (31b),
Based on the classification result (CR1) of the first classifier (31a) and the classification result (CR2) of the second classifier (31b), the inspection image (21) is an intermediate image between the first class and the second class. A determination unit (32) for determining whether the class is a class,
Image classification device (50).
9. A first classifying step in which the first classifier (31a) classifies the inspection image (21) into a first class or another class, and the image classified into the first class has a possibility of being in the first class. A first classification step, which includes
A second classifying step in which the second classifier (31b) classifies the inspection image (21) into the second class or another class, and the image classified into the second class has a possibility of being in the second class. A second classification step, which includes
Based on the classification result (CR1) of the first classification step and the classification result (CR2) of the second classification step, the determination unit (32) determines that the inspection image (21) is between the first class and the second class. A determination step of determining whether or not it is an intermediate class,
Image classification method.

 10…入出力I/F、20…記憶部、21…検査画像、30…制御部、31,31A…分類部、31a…第1分類器、31b…第2分類器、31c…第3分類器、31x…第m分類器、32,32A…判定部、40…バス、50,50A…画像分類装置、60…撮像装置、70…入力装置、80…出力装置、90…ライン装置、100,100A…画像検査装置、CL1…第1クラス、CL2…第2クラス、CL3…第3クラス、CR1,CR2,CR3,CRm…分類結果、IC…中間クラス、LA1…第1ラベル、LA2…第2ラベル、LG…学習画像、NW1…第1ニューラルネットワーク、NW2…第2ニューラルネットワーク、RE…結果、S200…画像検査処理。 10 ... Input / output I / F, 20 ... Storage part, 21 ... Inspection image, 30 ... Control part, 31, 31A ... Classification part, 31a ... 1st classifier, 31b ... 2nd classifier, 31c ... 3rd classifier , 31x ... mth classifier, 32, 32A ... Judgment unit, 40 ... Bus, 50, 50A ... Image classification device, 60 ... Imaging device, 70 ... Input device, 80 ... Output device, 90 ... Line device, 100, 100A Image inspection apparatus, CL1 ... First class, CL2 ... Second class, CL3 ... Third class, CR1, CR2, CR3, CRm ... Classification result, IC ... Intermediate class, LA1 ... First label, LA2 ... Second label , LG ... Learning image, NW1 ... First neural network, NW2 ... Second neural network, RE ... Result, S200 ... Image inspection processing.

Claims (14)

 画像を第1クラス又はそれ以外のクラスに分類する第1分類器であって、前記第1クラスに分類される画像には該第1クラスの可能性のあるものが含まれる、第1分類器と、
 前記画像を第2クラス又はそれ以外のクラスに分類する第2分類器であって、前記第2クラスに分類される画像には該第2クラスの可能性のあるものが含まれる、第2分類器と、
 前記第1分類器の分類結果と前記第2分類器の分類結果とに基づいて、前記画像が前記第1クラスと前記第2クラスとの間の中間クラスであるか否かを判定する判定部と、を備える、
 画像分類装置。
A first classifier for classifying an image into a first class or another class, wherein the images classified into the first class include those that may be of the first class. When,
A second classifier for classifying the image into a second class or another class, wherein the images classified into the second class include those that are likely to be in the second class. A vessel,
A determination unit that determines whether the image is an intermediate class between the first class and the second class based on the classification result of the first classifier and the classification result of the second classifier. And,
Image classifier.
 前記判定部は、前記画像が、前記第1分類器によって前記第1クラスに分類され、前記第2分類器によって前記第2クラスに分類されたときに、該画像を前記中間クラスであると判定する、
 請求項1に記載の画像分類装置。
The determination unit determines that the image is the intermediate class when the image is classified into the first class by the first classifier and classified into the second class by the second classifier. To do
The image classification device according to claim 1.
 前記判定部は、前記画像が、前記第1分類器によって前記第1クラスに分類され、前記第2分類器によってそれ以外のクラスに分類されたときに、該画像を前記第1クラスであると判定する、
 請求項1又は2に記載の画像分類装置。
The determining unit determines that the image is the first class when the image is classified into the first class by the first classifier and is classified into another class by the second classifier. judge,
The image classification device according to claim 1.
 前記判定部は、前記画像が、前記第1分類器によってそれ以外のクラスに分類され、前記第2分類器によって前記第2クラスに分類されたときに、該画像を前記第2クラスであると判定する、
 請求項1から3のいずれか一項に記載の画像分類装置。
The determining unit determines that the image is the second class when the image is classified into another class by the first classifier and is classified into the second class by the second classifier. judge,
The image classification device according to any one of claims 1 to 3.
 前記第1分類器及び前記第2分類器は、それぞれ2クラス分類器である、
 請求項1から4のいずれか一項に記載の画像分類装置。
Each of the first classifier and the second classifier is a two-class classifier,
The image classification device according to claim 1.
 前記画像を第3クラス又はそれ以外のクラスに分類する第3分類器であって、前記第3クラスに分類される画像には該第3クラスの可能性のあるものが含まれる、第3分類器をさらに備え、
 前記判定部は、前記第1分類器の分類結果と前記第2分類器の分類結果と前記第3分類器の分類結果とに基づいて、前記画像が前記第1クラス、前記第2クラス、及び前記第3クラスのうちの少なくとも2つの間の中間クラスであるか否かを判定する、
 請求項1から5のいずれか一項に記載の画像分類装置。
A third classifier for classifying the image into a third class or any other class, wherein the images classified into the third class include those having a possibility of the third class. Further equipped with
The determination unit determines that the image is the first class, the second class, and the second classifier based on the classification result of the first classifier, the classification result of the second classifier, and the classification result of the third classifier. Determining whether it is an intermediate class between at least two of the third classes,
The image classification device according to claim 1.
 第3分類器から第m(mは4以上の整数)分類器までのそれぞれをさらに備え、
 前記第3分類器は前記画像を第3クラス又はそれ以外のクラスに分類し、前記第3クラスに分類される画像には該第3クラスの可能性のあるものが含まれ、
 前記第m分類器は前記画像を第mクラス又はそれ以外のクラスに分類し、前記第mクラスに分類される画像には該第mクラスの可能性のあるものが含まれ、
 前記判定部は、前記第1分類器の分類結果から前記第m分類器の分類結果までに基づいて、前記画像が前記第1クラスから前記第mクラスのうちの少なくとも2つの間の中間クラスであるか否かを判定する、
 請求項1から5のいずれか一項に記載の画像分類装置。
Further comprising each of a third classifier to an m-th classifier (m is an integer of 4 or more),
The third classifier classifies the image into a third class or any other class, and the images classified into the third class include the possible ones of the third class,
The m-th classifier classifies the image into the m-th class or any other class, and the images classified into the m-th class include those that may be in the m-th class.
The determination unit determines that the image is an intermediate class between at least two of the first class to the m-th class based on the classification result of the first classifier to the classification result of the m-th classifier. Determine whether there is,
The image classification device according to claim 1.
 請求項1から7のいずれか一項に記載の画像分類装置を備え、
 前記画像分類装置を用いて検査対象物の前記画像を検査する、
 画像検査装置。
An image classification device according to any one of claims 1 to 7,
Inspecting the image of the inspection object using the image classification device,
Image inspection device.
 第1分類器が画像を第1クラス又はそれ以外のクラスに分類する第1分類ステップであって、前記第1クラスに分類される画像には該第1クラスの可能性のあるものが含まれる、第1分類ステップと、
 第2分類器が前記画像を第2クラス又はそれ以外のクラスに分類する第2分類ステップであって、前記第2クラスに分類される画像には該第2クラスの可能性のあるものが含まれる、第2分類ステップと、
 判定部が、前記第1分類ステップの分類結果と前記第2分類ステップの分類結果とに基づいて、前記画像は前記第1クラスと前記第2クラスとの間の中間クラスであるか否かを判定する判定ステップと、を含む、
 画像分類方法。
A first classifying step in which a first classifier classifies an image into a first class or another class, and the images classified into the first class include those that are likely to be in the first class. , The first classification step,
A second classifying step in which a second classifier classifies the image into a second class or another class, wherein the images classified into the second class include those that are likely to be in the second class. The second classification step,
The determination unit determines whether the image is an intermediate class between the first class and the second class based on the classification result of the first classification step and the classification result of the second classification step. A determination step of determining,
Image classification method.
 前記判定ステップは、前記画像が、前記第1分類ステップにおいて前記第1クラスに分類され、前記第2分類ステップにおいて前記第2クラスに分類されたときに、前記判定部が該画像を前記中間クラスであると判定することを含む、
 請求項9に記載の画像分類方法。
In the determining step, when the image is classified into the first class in the first classifying step and classified into the second class in the second classifying step, the judging section classifies the image into the intermediate class. Including determining that
The image classification method according to claim 9.
 前記判定ステップは、前記画像が、前記第1分類ステップにおいて前記第1クラスに分類され、前記第2分類ステップにおいてそれ以外のクラスに分類されたときに、前記判定部が該画像を前記第1クラスであると判定することを含む、
 請求項9又は10に記載の画像分類方法。
In the determining step, when the image is classified into the first class in the first classifying step and is classified into another class in the second classifying step, the determining section determines the image to be the first class. Including determining that it is a class,
The image classification method according to claim 9.
 前記判定ステップは、前記画像が、前記第1分類ステップにおいてそれ以外のクラスに分類され、前記第2分類ステップにおいて前記第2クラスに分類されたときに、前記判定部が該画像を前記第2クラスであると判定することを含む、
 請求項9から11のいずれか一項に記載の画像分類方法。
In the determining step, when the image is classified into the other class in the first classifying step and is classified into the second class in the second classifying step, the determining unit determines the image to be the second class. Including determining that it is a class,
The image classification method according to any one of claims 9 to 11.
 第3分類器が前記画像を第3クラス又はそれ以外のクラスに分類する第3分類ステップであって、前記第3クラスに分類される画像には該第3クラスの可能性のあるものが含まれる、第3分類ステップをさらに含み、
 前記判定ステップは、前記判定部が、前記第1分類ステップの分類結果と前記第2分類ステップの分類結果と前記第3分類ステップの分類結果とに基づいて、前記画像は前記第1クラス、前記第2クラス、及び前記第3クラスのうちの少なくとも2つの間の中間クラスであるか否かを判定することを含む、
 請求項9から12のいずれか一項に記載の画像分類方法。
A third classifying step in which a third classifier classifies the image into a third class or another class, and the images classified into the third class include those that are likely to be in the third class. Further comprising a third classification step,
In the determining step, the determining unit determines, based on the classification result of the first classification step, the classification result of the second classification step, and the classification result of the third classification step, that the image is the first class, Determining whether the class is an intermediate class between at least two of the second class and the third class,
The image classification method according to claim 9.
 第3分類ステップから第m(mは4以上の整数)分類ステップまでのそれぞれをさらに含み、
 前記第3分類ステップは、第3分類器が前記画像を第3クラス又はそれ以外のクラスに分類することを含み、前記第3クラスに分類される画像には該第3クラスの可能性のあるものが含まれ、
 前記第m分類ステップは、第m分類器が前記画像を第mクラス又はそれ以外のクラスに分類することを含み、前記第mクラスに分類される画像には該第mクラスの可能性のあるものが含まれ、
 前記判定ステップは、前記判定部が、前記第1分類ステップの分類結果から前記第m分類ステップの分類結果までに基づいて、前記画像は前記第1クラスから前記第mクラスのうちの少なくとも2つの間の中間クラスであるか否かを判定することを含む、
 請求項9から12のいずれか一項に記載の画像分類方法。
Further including each of the third classification step to the m-th (m is an integer of 4 or more) classification step,
The third classifying step includes a third classifier classifying the image into a third class or another class, and images classified into the third class may be in the third class. Stuff included,
The m-th classifying step includes the m-th classifier classifying the image into an m-th class or another class, and an image classified into the m-th class may be in the m-th class. Stuff included,
In the determination step, the determination unit determines that the image is at least two of the first class to the m-th class based on the classification result of the first classification step to the classification result of the m-th classification step. Including determining whether it is an intermediate class between
The image classification method according to claim 9.
PCT/JP2019/037441 2018-10-30 2019-09-25 Image classifying device, image inspecting device, and image classifying method Ceased WO2020090290A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-203838 2018-10-30
JP2018203838A JP7070334B2 (en) 2018-10-30 2018-10-30 Image classification device, image inspection device, and image classification method

Publications (1)

Publication Number Publication Date
WO2020090290A1 true WO2020090290A1 (en) 2020-05-07

Family

ID=70463937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037441 Ceased WO2020090290A1 (en) 2018-10-30 2019-09-25 Image classifying device, image inspecting device, and image classifying method

Country Status (2)

Country Link
JP (1) JP7070334B2 (en)
WO (1) WO2020090290A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023095416A1 (en) * 2021-11-25 2023-06-01 株式会社ジャパンディスプレイ Display device inspection method, and information processing device
JP7759475B2 (en) * 2022-03-16 2025-10-23 株式会社フジクラ Inspection device, inspection method, and inspection program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331306A (en) * 2005-05-30 2006-12-07 Sony Corp Image processing apparatus, image processing method, and image processing program
WO2008059624A1 (en) * 2006-11-13 2008-05-22 Fujitsu Limited Two-class classifying/predicting model making method, classifying/predicting model making program, and two-class classifying/predicting model making device
JP2008187328A (en) * 2007-01-29 2008-08-14 Sony Corp Network equipment, network system and surveillance camera system
JP2017107313A (en) * 2015-12-08 2017-06-15 株式会社Screenホールディングス Teacher data creation support method, image classification method, teacher data creation support device and image classification device
JP2017162232A (en) * 2016-03-10 2017-09-14 株式会社Screenホールディングス Teacher data creation support device, image classification device, teacher data creation support method, and image classification method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006331306A (en) * 2005-05-30 2006-12-07 Sony Corp Image processing apparatus, image processing method, and image processing program
WO2008059624A1 (en) * 2006-11-13 2008-05-22 Fujitsu Limited Two-class classifying/predicting model making method, classifying/predicting model making program, and two-class classifying/predicting model making device
JP2008187328A (en) * 2007-01-29 2008-08-14 Sony Corp Network equipment, network system and surveillance camera system
JP2017107313A (en) * 2015-12-08 2017-06-15 株式会社Screenホールディングス Teacher data creation support method, image classification method, teacher data creation support device and image classification device
JP2017162232A (en) * 2016-03-10 2017-09-14 株式会社Screenホールディングス Teacher data creation support device, image classification device, teacher data creation support method, and image classification method

Also Published As

Publication number Publication date
JP7070334B2 (en) 2022-05-18
JP2020071582A (en) 2020-05-07

Similar Documents

Publication Publication Date Title
JP6955211B2 (en) Identification device, identification method and program
CN110658198B (en) Optical detection method, optical detection device and optical detection system
US10885618B2 (en) Inspection apparatus, data generation apparatus, data generation method, and data generation program
JP7087397B2 (en) Substrate defect inspection equipment, substrate defect inspection method and storage medium
CN109978817B (en) Information processing device, identification system, setting method and storage medium
JP6576059B2 (en) Information processing, information processing method, program
JP7054436B2 (en) Detection system, information processing device, evaluation method and program
JP6113024B2 (en) Classifier acquisition method, defect classification method, defect classification device, and program
JP2016181098A (en) Region detection apparatus and region detection method
JP7070334B2 (en) Image classification device, image inspection device, and image classification method
JP2018004272A (en) Pattern inspection device and pattern inspection method
US20210049396A1 (en) Optical quality control
KR102686135B1 (en) Method of inspecting defect using artificial intelligence and apparatus for inspecting defect using artificial intelligence
KR102107362B1 (en) Method for inspecting defects of substrates
JP2011232302A (en) Image inspection method and image inspection device
US20240112325A1 (en) Automatic Optical Inspection Using Hybrid Imaging System
JP7449739B2 (en) Inspection system, learning device, learning program, learning method, inspection device, inspection program, inspection method
JP7711637B2 (en) Wafer evaluation method, evaluation program, evaluation device, wafer manufacturing method, and wafer
JP7675504B2 (en) Inspection system, inspection device, inspection program, and inspection method
JP4829542B2 (en) Film inspection apparatus and film inspection method
JP2022156999A (en) Inspection method, inspection device
WO2021192627A1 (en) Inspection system, learning device, learning program, learning method, inspection device, inspection program, and inspection method
JP2006266845A (en) Image determination device and image determination method
CN115876775A (en) Inspection device and inspection method
CN115335688A (en) Image processing system and computer program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19879165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19879165

Country of ref document: EP

Kind code of ref document: A1