WO2020050192A1 - 流体漏洩診断装置、流体漏洩診断システム、流体漏洩診断方法、及び、流体漏洩診断プログラムが格納された記録媒体 - Google Patents
流体漏洩診断装置、流体漏洩診断システム、流体漏洩診断方法、及び、流体漏洩診断プログラムが格納された記録媒体 Download PDFInfo
- Publication number
- WO2020050192A1 WO2020050192A1 PCT/JP2019/034337 JP2019034337W WO2020050192A1 WO 2020050192 A1 WO2020050192 A1 WO 2020050192A1 JP 2019034337 W JP2019034337 W JP 2019034337W WO 2020050192 A1 WO2020050192 A1 WO 2020050192A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vibration
- fluid leakage
- pipe
- parameter
- signal processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17D—PIPE-LINE SYSTEMS; PIPE-LINES
- F17D5/00—Protection or supervision of installations
- F17D5/02—Preventing, monitoring, or locating loss
- F17D5/06—Preventing, monitoring, or locating loss using electric or acoustic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/04—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
- G01M3/24—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
- G01M3/243—Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
Definitions
- the present invention relates to a technique for diagnosing fluid leakage in a pipe based on vibration propagating through the pipe.
- Patent Literature 1 discloses a leak position that detects a position where a fluid leaks from an underground piping network for transporting a fluid by using a signal of a leak sound detected by a vibration sensor.
- a detection method is disclosed.
- a plurality of pipe-installed vibration sensors are installed at intervals in a part of a pipe, and one or more ground-installed vibration sensors are installed on the ground surface or in the ground in order to measure ground vibration.
- noise other than the leak sound included in the signal captured by the pipe installation vibration sensor is removed using the signal captured by the ground installation vibration sensor.
- the leakage position is specified by calculating the difference between the time when the obtained leak sound signal reaches each of the plurality of pipe installation vibration sensors.
- Patent Document 2 discloses a noise removal method for removing external noise other than leak sound regardless of work time or location when detecting leakage.
- a signal in which leakage noise and external noise measured by a vibration sensor installed on the ground or a wall are mixed, and a signal mainly composed of external noise by a microphone installed at an appropriate position on the ground are each subjected to fast Fourier transform.
- a composite signal in which an external noise component is attenuated is generated by performing an arithmetic process on two signals including frequency components generated by Fourier transform.
- an output signal from which external noise has been removed is generated by subjecting the synthesized signal to fast inverse Fourier transform.
- Patent Document 3 discloses a leak detection method for a buried pipeline in which a leaked sound is identified by separating the leaked sound from the noise even when a continuous sound that becomes noise with respect to the leaked sound is generated. It has been disclosed.
- a first vibration sensor for detecting a vibration sound caused by fluid leakage from a buried conduit
- a second vibration sensor for detecting waveform information for subtracting a noise component from waveform information detected by the first vibration sensor
- the first vibration sensor is installed on an exposed portion of the pipe member of the buried conduit, and the second vibration sensor is near the first vibration sensor and does not contact the piping member of the buried conduit. Installed in place.
- Patent Document 4 discloses a leak detection device including a first detection unit and a second detection unit in order to suppress the influence of extraneous vibration and increase the accuracy of leak inspection.
- the first detector is installed in a pipe through which the fluid flows, detects the vibration in the first direction, and outputs a first signal indicating the magnitude of the vibration in the first direction.
- the second detector is installed in the pipe, detects vibration in a second direction different from the first direction, and outputs a second signal indicating the magnitude of the vibration in the second direction. Then, this device performs arithmetic processing using the first signal and the second signal.
- Patent Document 1 For example, in the leak position detection method disclosed in Patent Document 1 described above, a sensor is installed in a disturbance source in addition to a pipe to be diagnosed, and adaptive signal processing using an adaptive digital filter is performed to obtain a component of disturbance vibration ( Noise (other than leaked sound) is suppressed (removed).
- Noise other than leaked sound
- the higher the performance of suppressing the component of the disturbance vibration by the adaptive signal processing the higher the accuracy of diagnosing the fluid leakage. Therefore, in order to efficiently increase the accuracy of diagnosing fluid leakage, it is necessary to efficiently increase the performance of suppressing the component of disturbance vibration, that is, to change the values of parameters such as the filter order and the step size in adaptive signal processing, The challenge is to set the settings efficiently and appropriately.
- Patent Documents 1 to 4 do not particularly mention this problem.
- a main object of the present invention is to provide a fluid leak diagnosis device or the like that solves this problem.
- the fluid leakage diagnosis device diagnoses a fluid leak related to the pipe by suppressing a component of disturbance vibration included in vibration measured at a predetermined location in the pipe using adaptive signal processing.
- the acquisition means for acquiring distribution information representing the actual distribution of parameter values in the adaptive signal processing when the performance of suppressing the disturbance vibration component satisfies a criterion, associated with the characteristics of the piping, Based on the distribution information, estimating means for estimating a probability density at which the value of the parameter satisfying the performance is a criterion, based on the probability density estimated by the estimating means, the parameter in the adaptive signal processing Deciding means for deciding a range in which to search for the value of.
- a fluid leakage diagnosis method suppresses a component of disturbance vibration included in vibration measured at a predetermined location in piping using adaptive signal processing.
- the parameter of the adaptive signal processing when the performance of suppressing the component of the disturbance vibration, which is related to the characteristics of the pipe, satisfies a standard.
- the fluid leakage diagnosis program uses adaptive signal processing to detect a component of disturbance vibration included in vibration measured at a predetermined location in piping.
- adaptive signal processing uses adaptive signal processing to detect a component of disturbance vibration included in vibration measured at a predetermined location in piping.
- the invention of the present application can also be realized by a computer-readable, non-volatile recording medium in which the fluid leakage diagnosis program (computer program) is stored.
- the present invention makes it possible to efficiently increase the accuracy of diagnosis when diagnosing fluid leakage related to piping by suppressing the component of disturbance vibration included in the vibration measured in the piping using adaptive signal processing.
- FIG. 1 is a block diagram illustrating a configuration of a fluid leak diagnosis system 1 according to a first embodiment of the present invention.
- FIG. 5 is a block diagram illustrating an LMS algorithm used by the suppression unit 14 according to the first embodiment of the present invention to suppress disturbance vibration components.
- FIG. 3 is a diagram illustrating distribution information 110 according to the first embodiment of the present invention.
- FIG. 4 is a diagram illustrating an example of a probability density function 120 estimated by the estimating unit 12 according to the first embodiment of the present invention with respect to the piping type 1 based on the distribution information 110 illustrated in FIG. 3. It is a figure which illustrates the search range 130 regarding piping type 1 which the determination part 12 concerning 1st Embodiment of this invention determined based on the probability density function 120 illustrated in FIG.
- 5 is a flowchart showing an operation of the fluid leak diagnosis apparatus 10 according to the first embodiment of the present invention for determining a parameter value search range 130 in adaptive signal processing.
- 5 is a flowchart showing an operation in which the fluid leakage diagnosis device 10 according to the first embodiment of the present invention diagnoses fluid leakage in the pipe 30 by acquiring parameter values in adaptive signal processing based on a search range 130.
- It is a block diagram showing composition of fluid leak diagnostic equipment 40 concerning a 2nd embodiment of the present invention.
- composition of information processor 900 which can perform a fluid leak diagnostic device concerning each embodiment of the present invention.
- the component of disturbance vibration with respect to the number of parameter value searches is suppressed.
- 5 is a graph illustrating performance.
- FIG. 1 is a block diagram showing a configuration of a fluid leak diagnosis system 1 according to a first embodiment of the present invention.
- the fluid leak diagnosis system 1 is a system that diagnoses a fluid leak related to a pipe (pipeline) 30 based on vibration propagating through the pipe 30.
- the pipe 30 is, for example, a water pipe or a gas pipe.
- the pipe 30 may have a more complicated shape than the shape illustrated in FIG. 1, for example, a shape branched into a plurality of pipes.
- the fluid leak diagnosis system 1 roughly includes a fluid leak diagnosis device 10 and vibration sensors 21 to 23 (measuring units).
- the fluid leak diagnostic device 10 and the vibration sensors 21 to 23 are communicably connected by wire or wirelessly.
- the vibration sensors 21 to 23 are, for example, a piezoelectric acceleration sensor, a dynamic acceleration sensor, a capacitance acceleration sensor, an optical speed sensor, a dynamic strain sensor, and the like.
- the number of vibration sensors included in the fluid leakage diagnosis system 1 is not limited to three, and may include, for example, four or more vibration sensors.
- the vibration sensor 21 is installed near the disturbance source 31 (vibration source), and measures the disturbance vibration generated by the disturbance source 31.
- the vibration sensors 22 and 23 are installed at both ends of the section to be investigated for fluid leakage in the pipe 30, and measure vibration propagating through the pipe 30.
- the vibration propagating through the pipe 30 is the vibration in which the disturbance vibration generated by the disturbance source 31 is superimposed on the vibration (leak vibration) generated by the leakage of the fluid from the leak hole 32. Become.
- the vibration sensors 21 to 23 transmit data (information) representing the measured vibration to the fluid leak diagnosis device 10.
- the fluid leakage diagnosis device 10 manages the vibration data received from the vibration sensors 21 to 23 in association with the time at which the data was received (the time at which the data was measured) in order to perform the processing described below.
- the fluid leakage diagnosis device 10 includes an acquisition unit 11, an estimation unit 12, a determination unit 13, a suppression unit 14, and a determination unit 15.
- the suppression unit 14 suppresses a component of the disturbance vibration superimposed on the vibration measured by the vibration sensors 22 and 23 by performing adaptive signal processing using data representing the disturbance vibration measured by the vibration sensor 21 ( Remove.
- the suppression unit 14 performs a process using, for example, a least mean square (LMS (LeastLMean Square) method) known as one of typical adaptive signal processes.
- LMS least mean square
- FIG. 2 is a block diagram illustrating an LMS algorithm used by the suppression unit 14 according to the present embodiment to suppress disturbance vibration components.
- Suppression unit 14 as shown in Equation 1 and Equation 2, to update the filter coefficients w k in the LMS algorithm.
- k is an integer representing a time series.
- u k is the data vector [u k, u k-1 , ⁇ , u k-K + 1] representing the disturbance vibration measured by the vibration sensor 21 is T
- K is Filter order.
- ⁇ is a step size (a positive constant that determines the update amount of the filter coefficient) in the LMS algorithm.
- the xi] k, the vibration sensor 22 (or the vibration sensor 23) is suppressed already vibration component is suppressed by disturbance vibration from the vibration measured by.
- d k is a desired signal representing the vibration measured by the vibration sensor 22 (or the vibration sensor 23).
- T in Equation 2 is a code representing a transposed vector.
- suppression section 14 in the filter coefficient w ⁇ (2, such as vibration w k T u k due to disturbance vibration u k is consistent with the desired signal d k, the symbol " ⁇ " just above the W Is calculated using the LMS algorithm, it is possible to suppress (remove) a component of disturbance vibration superimposed on the vibration measured by the vibration sensors 22 and 23.
- the suppression unit 14 specifies a parameter value in the LMS algorithm when performing processing using the LMS algorithm.
- Representative parameters include the step size ⁇ and the filter order K described above.
- the suppression unit 14 may perform adaptive signal processing with a time shift between the vibration sensors 21 to 23 in order to improve the disturbance suppression performance without excessively increasing the filter order K.
- the acquiring unit 11, the estimating unit 12, and the determining unit 13 according to the present embodiment have the disturbance suppression performance satisfying the criterion (for example, the maximum) when the suppressing unit 14 performs the adaptive signal processing using the LMS method or the like. ) Is provided for efficiently obtaining an appropriate (optimal) parameter value.
- the acquisition unit 11 acquires the distribution information 110 from the outside, for example.
- the distribution information 110 may be input to the acquisition unit 11 by, for example, an input operation on a management terminal device (not shown) by an administrator of the fluid leakage diagnosis device 10.
- the acquisition unit 11 may store the acquired distribution information 110 in a storage device (not shown) such as an electronic memory or a magnetic disk included in the fluid leakage diagnosis device 10 or an external device.
- the distribution information 110 is information indicating the performance of a combination of parameter values that satisfy the criterion for disturbance suppression performance in association with the type of the pipe 30 (piping type).
- the pipe type represents a classification based on physical characteristics of the pipe 30.
- the physical characteristics of the pipe 30 include, for example, the diameter, the material, and the length of the pipe 30.
- the filter order K is related to the vibration propagation characteristics of the pipe 30 from the disturbance source 31 to the vibration sensor 22 (or the vibration sensor 23).
- the vibration propagation characteristics of the pipe 30 greatly depend on the physical characteristics of the pipe 30 described above. Therefore, the values of the parameters whose disturbance suppression performance satisfies the standard generally vary greatly depending on the piping type.
- FIG. 3 is a diagram exemplifying distribution information 110 according to the present embodiment using a graph.
- the distribution information 110 indicates the results of the combination of the appropriate values of the parameter A and the value of the parameter B so that the disturbance suppression performance satisfies the standard, in association with the three pipe types. (Plotted).
- the parameters A and B in FIG. 3 are, for example, the above-described step size ⁇ and filter order K.
- the estimating unit 12 estimates a function (probability density function 120) that represents a probability density having an appropriate combination of parameter values that makes the disturbance suppression performance satisfy the criterion for each pipe type. I do.
- the estimating unit 12 estimates the probability density function 120 by using, for example, a maximum likelihood estimation method or a kernel density estimation method. Since the maximum likelihood estimation method and the kernel density estimation method are well-known methods, detailed descriptions thereof are omitted in the present application.
- FIG. 4 is a diagram illustrating a probability density function 120 estimated by the estimating unit 12 according to the present embodiment with respect to the piping type 1 based on the distribution information 110 illustrated in FIG.
- the estimating unit 12 estimates the probability density function 120 represented as, for example, a contour line related to the probability density (a plurality of lines represented by a set of points having the same value of the probability density).
- the probability density function 120 illustrated in FIG. 4 indicates that the closer to the center, the higher the probability density among a plurality of ellipses forming the contour line.
- the estimating unit 12 estimates the probability density function 120 for the piping types 2 and 3 as in the case of the piping type 1.
- the determination unit 13 determines a range (search range 130) in which the suppression unit 14 searches for parameter values set in adaptive signal processing using the LMS algorithm based on the probability density function 120.
- FIG. 5 is a diagram exemplifying a search range 130 related to the piping type 1 determined by the determining unit 13 according to the embodiment based on the probability density function 120 illustrated in FIG.
- the determination unit 13 divides (for example, equally divides) a parameter space in which a combination of the value of the parameter A and the value of the parameter B is distributed. At this time, the determination unit 13 only needs to target a rectangular area in which the contour line represented by the probability density function 120 exists, and divides the parameter space into nine areas in the example shown in FIG.
- the nine divided areas are defined as the X-axis direction and the Y-axis direction.
- An area (X, Y) is represented by a value for identifying a section in the axial direction.
- the determination unit 13 calculates an average value of the probability density calculated by the probability density function 120 for each of the divided areas.
- the region having the highest average value is the region (2, 2) located at the center of the division target region.
- the area having the second highest average value is an area (2, 1), an area (2, 3), an area (1, 3) located above, below, left and right of the area (2, 2) on the XY plane representing the parameter space. 2) area (3, 2).
- the area having the third highest average value is located on the XY plane representing the parameter space, on the area (3, 1) located on the upper right of the area (2, 2) and on the lower left of the area (2, 2).
- the areas with the lowest average value are the area (1, 1) located at the upper left of the area (2, 2) and the area (3, 3) located at the lower right of the area (2, 2).
- the determination unit 13 determines the search range 130 represented as a “+” mark in the parameter space for each region based on the average value of the probability density function 120 calculated as described above. For example, the determination unit 13 determines the value of the parameter in each region based on the maximum number of searches that the suppression unit 14 searches for the value of the parameter given in advance and the average value of the probability density function 120 for each region. Is determined (the number of search points represented as “+” marks).
- the maximum search number is 19 pieces.
- the deciding unit 13 distributes the 19 search points to the 9 regions so as to be proportional to the average value of the probability density function 120 of each region. That is, the determination unit 13 allocates nine search points to the area (2, 2), and sets the area (2, 1), the area (2, 3), the area (1, 2), and the area (3). , 2), and two search points are allocated to the area (3, 1) and the area (1, 3). The determination unit 13 does not allocate search points to the area (1, 1) and the area (3, 3).
- the deciding unit 13 arranges, for example, the search points uniformly (equally) in the XY plane representing the parameter space in each area.
- the determination unit 13 also determines the search range 130 for the piping type 2 and the piping type 3 as in the case of the piping type 1.
- the determination unit 13 may store the search range 130 indicating the search point for each pipe type in the fluid leak diagnosis device 10 or a storage device provided in an external device.
- the suppressing unit 14 performs the adaptive signal processing using the combination of the parameter values indicated by the search points ("+" marks) in FIG. Then, the suppression unit 14 adopts a result in which the disturbance suppression performance satisfies a criterion (for example, becomes maximum). Accordingly, the suppression unit 14 generates data representing the suppressed vibration ⁇ k 22 in which the disturbance vibration component included in the vibration measured by the vibration sensor 22 is suppressed, and is included in the vibration measured by the vibration sensor 23. generating data representative of a suppression already vibration xi] k 23 which suppresses the components of the disturbance vibration.
- Determination unit 15 shown in FIG. 1 was produced by the suppression unit 14, using the data representing the suppression already vibration xi] k 22 and suppression already vibration xi] k 23, as shown in Equation 3, and suppression already vibration xi] k 22 calculating a cross-correlation R (i) relating to suppression already vibration xi] k 23 Prefecture.
- Equation 3 Cov represents covariance, and Var represents variance.
- i is an integer indicating a time difference regarding the time series k. If fluid from leaking hole 32 is leaked vibrations generated by leakage include common to the suppression already vibration xi] k 22 and suppress already vibration xi] k 23, leaking vibrations from leaking hole 32 to the vibration sensor 22 and 23 Have a higher value of the cross-correlation R (i) with respect to the time difference at which. On the other hand, common vibration as leakage vibration is not included in the suppression already vibration xi] k 22 and suppression already vibration xi] k 23 (i.e., fluid leakage has not occurred), the value of the cross-correlation R (i) Lower. Thereby, the determination unit 15 determines whether there is a fluid leak in the pipe 30 based on the calculated cross-correlation R (i).
- the determination unit 15 performs, for example, discriminant analysis based on the actual value of the cross-correlation with respect to the existing piping in which the occurrence of the fluid leakage has been confirmed and the actual value of the cross-correlation with respect to the existing piping in which the occurrence of the fluid leakage has not occurred. This makes it possible to determine the presence or absence of fluid leakage.
- FIG. 6 is a flowchart showing an operation in which the fluid leak diagnosis device 10 according to the present embodiment determines the parameter value search range 130 in adaptive signal processing.
- the acquisition unit 11 acquires the distribution information 110 indicating the actual distribution of the parameter values in the adaptive signal processing when the performance of suppressing the disturbance vibration component with respect to the type of the pipe 30 satisfies the criterion (Step S101).
- the estimating unit 12 estimates the probability density function 120 representing the probability density at which the parameter value exists, by using the maximum likelihood estimation method or the kernel density estimation method based on the distribution information 110 (step S102).
- the determination unit 13 divides the parameter space in which the parameter values in the adaptive signal processing are distributed into a plurality of regions (Step S103).
- the determining unit 13 calculates an average value of the probability density for each region using the probability density function 120 (Step S104).
- the determination unit 13 calculates the number of parameter value searches in each region based on the maximum number of searches for searching for parameter values given in advance and the average value of the probability density for each region (step S105). ). The determination unit 13 determines the search range 130 by arranging search points in the parameter space based on the number of searches in each area (step S106), and the entire process ends.
- FIG. 7 is a flowchart showing an operation in which the fluid leak diagnostic device 10 according to the present embodiment diagnoses fluid leak in the pipe 30 by acquiring values of parameters in adaptive signal processing based on the search range 130.
- the fluid leakage diagnosis device 10 receives the vibration data measured by the vibration sensors 21 to 23 (Step S201).
- the suppression unit 14 acquires the pipe type of the pipe 30 for which the fluid leakage is to be diagnosed from the outside (Step S202).
- the suppression unit 14 acquires the search range 130 related to the pipe type of the pipe 30 (Step S203).
- the suppression unit 14 acquires the value of the parameter in the adaptive signal processing by searching the search range 130 (Step S204).
- the suppression unit 14 suppresses a disturbance vibration component included in the received vibration data by performing adaptive signal processing using the acquired parameter values (step S205).
- step S206 If the search for the search range 130 by the suppression unit 14 has not been completed (No in step S206), the process returns to step S204.
- the determination unit 15 calculates the cross-correlation based on the data representing the suppressed vibration in which the disturbance vibration component is suppressed (step S206). S207). The determination unit 15 determines whether there is a fluid leak in the pipe 30 based on the cross-correlation (step S208), and the entire process ends.
- the fluid leakage diagnosis device 10 is capable of diagnosing a fluid leak related to a pipe by suppressing a component of disturbance vibration included in vibration measured in the pipe using adaptive signal processing. Can be efficiently increased.
- the reason is that the fluid leakage diagnosis device 10 estimates the probability density that the value of the parameter that satisfies the criterion exists based on the distribution result of the parameter value in the adaptive signal processing when the disturbance suppression performance satisfies the criterion. Then, based on the estimated probability density, the range in which to search for the value of the parameter is determined.
- a method of detecting the leak position by installing a sensor at the disturbance source in addition to the piping for which fluid leakage is to be diagnosed, performing adaptive signal processing using an adaptive digital filter, and suppressing the components of the disturbance vibration. is there.
- the higher the performance of suppressing the components of the disturbance vibration by the adaptive signal processing the higher the accuracy of diagnosing the fluid leakage. Therefore, in order to efficiently increase the accuracy of diagnosing fluid leakage, it is necessary to efficiently increase disturbance suppression performance, that is, to efficiently and appropriately set values of parameters such as a filter order and a step size in adaptive signal processing. The challenge is to do it.
- the fluid leak diagnosis device 10 includes the acquisition unit 11, the estimation unit 12, and the determination unit 13, and is described above with reference to, for example, FIGS. Works as expected. That is, the fluid leak diagnosis device 10 is a device that diagnoses a fluid leak related to the pipe 30 by suppressing a component of disturbance vibration included in vibration measured at a predetermined location in the pipe 30 using adaptive signal processing. is there.
- the acquisition unit 11 acquires distribution information 110 that is associated with the characteristics of the pipe 30 and that represents the actual distribution of parameter values in adaptive signal processing when the performance of suppressing disturbance vibration components satisfies a criterion.
- the estimating unit 12 estimates, based on the distribution information 110, a probability density (probability density function 120) at which a parameter value whose performance satisfies the criterion exists. Then, the determination unit 13 determines a range (search range 130) in which to search for a parameter value in adaptive signal processing based on the probability density estimated by the estimation unit 12.
- FIG. 10 is a diagram exemplifying a parameter value search range by a general fluid leak diagnosis device that uniformly searches for parameter values without estimating the above-described probability density.
- a “+” mark represents a search point in the parameter space.
- a general fluid leakage diagnosis apparatus that shows a parameter value search range in FIG. 10 searches for a parameter value in a parameter space including a region where high disturbance suppression performance cannot be expected.
- the fluid leak diagnostic apparatus 10 according to the present embodiment in which the parameter value search range is shown in FIG. 5, searches the parameter value densely in a region where high disturbance suppression performance can be expected in the parameter space. . That is, the fluid leakage diagnosis device 10 according to the present embodiment efficiently searches for a parameter value at which high disturbance suppression performance can be expected.
- FIG. 11 illustrates a case where the parameter value is searched based on the estimated probability density (the fluid leak diagnosis device 10 according to the present embodiment) and a case where the parameter value is uniformly searched without estimating the probability density ( 6 is a graph illustrating the disturbance suppression performance with respect to the number of parameter value searches for a general fluid leak diagnosis device).
- the fluid leakage diagnosis device 10 according to the present embodiment can obtain high disturbance suppression performance even with a small number of searches as compared with a general fluid leakage diagnosis device.
- the fluid leakage diagnosis device 10 can efficiently and appropriately set the values of the parameters such as the filter order and the step size in the adaptive signal processing.
- the accuracy of diagnosis can be efficiently increased.
- the fluid leakage diagnosis device 10 divides a parameter space in which parameter values are distributed into a plurality of regions, calculates an average value of probability densities for each region, and calculates a region based on the calculated average value. Determine the search range for each. Thereby, the fluid leak diagnosis device 10 can more efficiently set the values of the parameters in the adaptive signal processing.
- the parameter space in which the fluid leakage diagnosis device 10 searches for parameter values is a two-dimensional space, but the parameter space may be a multidimensional space including three or more parameters.
- FIG. 8 is a block diagram showing a configuration of a fluid leak diagnosis device 40 according to the second embodiment of the present invention.
- the fluid leakage diagnosis device 40 suppresses a component 52 of a disturbance vibration included in a vibration 51 measured at a predetermined location in the pipe 50 by using adaptive signal processing, thereby obtaining a fluid leakage related to the pipe 50. It is a device that diagnoses.
- the fluid leak diagnosis device 40 includes an acquisition unit 41, an estimation unit 42, and a determination unit 43.
- the acquisition unit 41 acquires distribution information 410, which is associated with the characteristics of the pipe 50 and represents the actual distribution of parameter values in adaptive signal processing when the performance of suppressing the disturbance vibration component 52 satisfies the standard.
- the estimation unit 42 estimates, based on the distribution information 410, a probability density 420 in which there is a parameter value whose performance satisfies the criterion.
- the determination unit 43 determines a range 430 in which to search for a parameter value in adaptive signal processing based on the probability density 420 estimated by the estimation unit 42.
- the fluid leakage diagnosis apparatus 40 is capable of diagnosing a fluid leak related to a pipe by suppressing a component of disturbance vibration included in vibration measured in the pipe using adaptive signal processing. Can be efficiently increased. The reason is that the fluid leakage diagnosis device 40 determines that the value of the parameter whose performance satisfies the criterion is This is because the existing probability density 420 is estimated, and the range 430 in which the value of the parameter is searched is determined based on the estimated probability density 420.
- each unit in the fluid leakage diagnostic device shown in FIGS. 1 and 8 can be realized by a dedicated HW (Hardware) (electronic circuit).
- HW Hardware
- FIGS. 1 and 8 at least the following configuration can be regarded as a function (processing) unit (software module) of a software program. Acquisition units 11 and 41, The estimation units 12 and 42, Determination units 13 and 43, ⁇ Suppression unit 14, A determination unit 15;
- FIG. 9 is a diagram exemplarily illustrating a configuration of an information processing device 900 (computer) capable of executing the fluid leakage diagnosis device according to each embodiment of the present invention. That is, FIG. 9 shows a configuration of a computer (information processing device) capable of realizing the fluid leakage diagnosis device shown in FIGS. 1 and 8, and a hardware environment capable of realizing each function in the above-described embodiment. Represents
- the information processing apparatus 900 shown in FIG. 9 includes the following as constituent elements.
- CPU Central_Processing_Unit
- ROM Read_Only_Memory
- RAM Random_Access_Memory
- a hard disk storage device
- Communication interface 905 A bus 906 (communication line)
- a reader / writer 908 capable of reading and writing data stored in a recording medium 907 such as a CD-ROM (Compact_Disc_Read_Only_Memory);
- An input / output interface 909 such as a monitor, a speaker, and a keyboard.
- the information processing apparatus 900 including the above components is a general computer in which these components are connected via the bus 906.
- the information processing device 900 may include a plurality of CPUs 901 or may include a CPU 901 configured by a multi-core.
- a computer program capable of realizing the following functions is supplied to the information processing apparatus 900 illustrated in FIG.
- the function is the above-described configuration in the block diagram (FIGS. 1 and 8) or the function of the flowchart (FIGS. 6 and 7) referred to in the description of the embodiment.
- the present invention is achieved by reading the computer program into the CPU 901 of the hardware, interpreting and executing the computer program.
- the computer program supplied to the apparatus may be stored in a readable and writable volatile memory (RAM 903) or a nonvolatile storage device such as the ROM 902 and the hard disk 904.
- a method of supplying a computer program to the hardware can employ a general procedure at present.
- the procedure for example, there are a method of installing in the device via various recording media 907 such as a CD-ROM and a method of downloading from outside via a communication line such as the Internet.
- the present invention can be considered to be constituted by a code constituting the computer program or a recording medium 907 storing the code.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Examining Or Testing Airtightness (AREA)
Abstract
流体漏洩診断装置40は、配管50における所定の場所において測定された振動51に含まれる外乱振動の成分52を、適応信号処理を用いて抑制することによって、配管50に関する流体漏洩を診断する場合において、配管50の特性に関連付けられた、外乱振動の成分52を抑制する性能が基準を満たすときの適応信号処理におけるパラメータの値の分布実績を表す分布情報410を取得する取得部41と、分布情報410に基づいて、当該性能が基準を満たすパラメータの値が存在する確率密度420を推定する推定部42と、推定部42により推定された確率密度420に基づいて、適応信号処理におけるパラメータの値を探索する範囲430を決定する決定部43と、を備えることによって、配管において測定された振動に含まれる外乱振動の成分を、適応信号処理を用いて抑制することによって配管の流体漏洩を診断する場合に、その診断精度を効率的に高める。
Description
本願発明は、配管の流体漏洩を、配管を伝播する振動に基づいて診断する技術に関する。
現代社会においては、インフラの老朽化が重大な社会問題となっている。例えば、水、石油、ガスなどの資源を輸送する配管網において、耐用年数を超えて使用されている配管が多く存在し、これらの配管の劣化に伴う流体漏洩や配管が破裂する事故などが問題となっている。
このような問題を早期に発見して被害を未然に防止すると共に、被害が発生した場合でもその被害を最小限に抑えるためには、配管に対して流体漏洩を定期的に診断することが必要である。流体漏洩を診断する一般的な方法の一つとして、配管を伝搬する振動を利用する方法がある。この方法では配管からの流体漏洩により生じた振動が配管を伝搬し、所定の場所まで伝搬した振動を振動センサ等により検出することによって流体漏洩を検知する。このような振動を用いる方法は、流体が漏洩した地点からある程度離れた場所においても、漏洩を検知可能であるという利点がある。しかしながら、配管に対する外乱振動を発生する外乱源(振動発生源)が存在する場合、漏洩に起因する振動に外乱振動が重畳するので、このような方法では漏洩を検知することが困難になるという問題がある。したがって、このような外乱源が存在する環境においても漏洩を検知可能とする技術が期待されている。
このような技術に関連する技術として、特許文献1には、流体を輸送する地中埋設配管網から流体が漏洩した位置を、振動センサによって検出された漏洩音の信号を用いて検知する漏洩位置検知方法が開示されている。この方法では、配管の一部に間隔をおいて複数の配管設置振動センサを設置するとともに、地盤の振動を測定するために地表または地中に1個以上の地盤設置振動センサを設置する。この方法では、配管設置振動センサが捉えた信号中に含まれる漏洩音以外の雑音を、地盤設置振動センサが捉えた信号を用いて除去する。そして、この方法では、得られた漏洩音の信号が、複数の配管設置振動センサのそれぞれに到達する時間の差を算出することによって、漏洩位置を特定する。
また、特許文献2には、漏洩探知をする際において、作業時間や場所にかかわらず、漏洩音以外の外来雑音を除去する雑音除去方法が開示されている。この方法では、地面又は壁面に設置した振動センサにより測定された漏洩音及び外来雑音が混在した信号、及び、地上の適宜位置に設置されたマイクロフォンによる主として外来雑音から成る信号を、各々高速フーリエ変換する。この方法では、フーリエ変換により生成された、周波数成分から成る2つの信号を演算処理することによって、外来雑音成分を減衰させた合成信号を生成する。そしてこの方法では、その合成信号を高速逆フーリエ変換することによって、外来雑音を除去した出力信号を生成する。
また、特許文献3には、漏洩音に対してノイズとなる連続音が発生している場合においても、漏洩音とノイズとを切り分けることによって漏洩音を識別する、埋設管路に対する漏洩検出方法が開示されている。この方法では、埋設管路からの流体漏洩によって生じる振動音を検知する第1振動センサと、第1振動センサにより検知された波形情報からノイズ分を差し引くための波形情報を検知する第2振動センサとを備える。そして、第1振動センサは、当該埋設管路の配管部材における露出部に設置されており、第2振動センサは、第1振動センサの近傍であってかつ当該埋設管路の配管部材に接しない場所に設置されている。
また、特許文献4には、外来振動の影響を抑制し、漏洩検査の精度を高めるために、第1検知部と第2検知部とを備えた漏洩検知装置が開示されている。この装置において、第1検知部は、流体が流れる配管に設置され、第1方向の振動を検知し、第1方向の振動の大きさを示す第1信号を出力する。第2検知部は、配管に設置され、第1方向とは異なる第2方向の振動を検知し、第2方向の振動の大きさを示す第2信号を出力する。そしてこの装置は、第1信号と第2信号とを利用した演算処理を行う。
例えば上述した特許文献1が示す漏洩位置検知方法では、診断対象である配管に加えて外乱源にもセンサを設置し、適応ディジタルフィルタを用いた適応信号処理を行うことによって、外乱振動の成分(漏洩音以外の雑音)を抑制(除去)する。この場合、適応信号処理によって外乱振動の成分を抑制する性能が高くなるほど、流体漏洩を診断する精度が高くなる。したがって、流体漏洩を診断する精度を効率的に高めるためには、外乱振動の成分を抑制する性能を効率的に高めること、即ち、適応信号処理におけるフィルタ次数やステップサイズ等のパラメータの値を、効率的に適切に設定することが課題である。特許文献1乃至4は、この課題については特に言及していない。本願発明の主たる目的は、この課題を解決する流体漏洩診断装置等を提供することである。
本願発明の一態様に係る流体漏洩診断装置は、配管における所定の場所において測定された振動に含まれる外乱振動の成分を、適応信号処理を用いて抑制することによって、前記配管に関する流体漏洩を診断する場合において、前記配管の特性に関連付けられた、前記外乱振動の成分を抑制する性能が基準を満たすときの前記適応信号処理におけるパラメータの値の分布実績を表す分布情報を取得する取得手段と、前記分布情報に基づいて、前記性能が基準を満たす前記パラメータの値が存在する確率密度を推定する推定手段と、前記推定手段により推定された前記確率密度に基づいて、前記適応信号処理における前記パラメータの値を探索する範囲を決定する決定手段と、を備える。
上記目的を達成する他の見地において、本願発明の一態様に係る流体漏洩診断方法は、配管における所定の場所において測定された振動に含まれる外乱振動の成分を、適応信号処理を用いて抑制することによって、前記配管に関する流体漏洩を診断する場合において、情報処理装置によって、前記配管の特性に関連付けられた、前記外乱振動の成分を抑制する性能が基準を満たすときの前記適応信号処理におけるパラメータの値の分布実績を表す分布情報を取得し、前記分布情報に基づいて、前記性能が基準を満たす前記パラメータの値が存在する確率密度を推定し、推定した前記確率密度に基づいて、前記適応信号処理における前記パラメータの値を探索する範囲を決定する。
また、上記目的を達成する更なる見地において、本願発明の一態様に係る流体漏洩診断プログラムは、配管における所定の場所において測定された振動に含まれる外乱振動の成分を、適応信号処理を用いて抑制することによって、前記配管に関する流体漏洩を診断する場合において、前記配管の特性に関連付けられた、前記外乱振動の成分を抑制する性能が基準を満たすときの前記適応信号処理におけるパラメータの値の分布実績を表す分布情報を取得する取得処理と、前記分布情報に基づいて、前記性能が基準を満たす前記パラメータの値が存在する確率密度を推定する推定処理と、前記推定処理により推定された前記確率密度に基づいて、前記適応信号処理における前記パラメータの値を探索する範囲を決定する決定処理と、をコンピュータに実行させる。
更に、本願発明は、係る流体漏洩診断プログラム(コンピュータプログラム)が格納された、コンピュータ読み取り可能な、不揮発性の記録媒体によっても実現可能である。
本願発明は、配管において測定された振動に含まれる外乱振動の成分を、適応信号処理を用いて抑制することによって配管に関する流体漏洩を診断する場合に、その診断精度を効率的に高めることを可能とする。
以下、本願発明の実施の形態について図面を参照して詳細に説明する。
<第1の実施形態>
図1は、本願発明の第1の実施の形態に係る流体漏洩診断システム1の構成を示すブロック図である。流体漏洩診断システム1は、配管(管路)30に関する流体漏洩を、配管30を伝播する振動に基づいて診断するシステムである。但し、配管30は、例えば水道管、あるいはガス管等である。また、配管30は、例えば、複数の配管に分岐する形状など、図1に例示する形状よりも複雑な形状を有してもよい。
図1は、本願発明の第1の実施の形態に係る流体漏洩診断システム1の構成を示すブロック図である。流体漏洩診断システム1は、配管(管路)30に関する流体漏洩を、配管30を伝播する振動に基づいて診断するシステムである。但し、配管30は、例えば水道管、あるいはガス管等である。また、配管30は、例えば、複数の配管に分岐する形状など、図1に例示する形状よりも複雑な形状を有してもよい。
本実施形態に係る流体漏洩診断システム1は、大別して、流体漏洩診断装置10、及び、振動センサ21乃至23(測定部)を有する。流体漏洩診断装置10と、振動センサ21乃至23とは、有線あるいは無線により、通信可能に接続されている。振動センサ21乃至23は、具体的には、例えば、圧電型加速度センサ、動電型加速度センサ、静電容量型加速度センサ、光学式速度センサ、動ひずみセンサ等である。尚、流体漏洩診断システム1が有する振動センサの数は3個に限定されず、例えば4個以上の振動センサを有してもよい。
振動センサ21は、外乱源31(振動発生源)の近傍に設置され、外乱源31により発生した外乱振動を測定する。振動センサ22及び23は、配管30における流体漏洩の調査対象区間の両端に設置され、配管30を伝播する振動を測定する。配管30に漏洩孔32が存在する場合、配管30を伝播する振動は、漏洩孔32から流体が漏洩することによって発生した振動(漏洩振動)に外乱源31により発生した外乱振動が重畳した振動となる。
振動センサ21乃至23は、測定した振動を表すデータ(情報)を、流体漏洩診断装置10へ送信する。流体漏洩診断装置10は、後述する処理を行うために、振動センサ21乃至23から受信した振動データを、受信した時刻(データが測定された時刻)と関連付けて管理する。
流体漏洩診断装置10は、取得部11、推定部12、決定部13、抑制部14、及び、判定部15を備える。
抑制部14は、振動センサ21により測定された外乱振動を表すデータを用いて、振動センサ22及び23により測定された振動に重畳された外乱振動の成分を、適応信号処理を行うことによって抑制(除去)する。抑制部14は、例えば、代表的な適応信号処理の一つとして知られている最小二乗平均(以降本願では、LMS(Least Mean Square)と称する)法を用いた処理を行う。
図2は、本実施形態に係る抑制部14が外乱振動の成分を抑制するために用いるLMSアルゴリズムを説明するブロック図である。抑制部14は、式1及び式2に示す通り、LMSアルゴリズムにおけるフィルタ係数wkを更新する。但し、kは時系列を表す整数である。
但し、式1及び式2において、ukは、振動センサ21により測定された外乱振動を表すデータベクトル[uk,uk-1,・・・,uk-K+1]Tであり、Kはフィルタ次数である。式1において、μは、LMSアルゴリズムにおけるステップサイズ(フィルタ係数の更新量を決定する正の定数)である。式1及び式2において、ξkは、振動センサ22(あるいは振動センサ23)により測定される振動から外乱振動の成分が抑制された抑制済振動である。式2において、dkは振動センサ22(あるいは振動センサ23)により測定される振動を表す所望信号である。式2におけるTは転置ベクトルを表す符号である。
図1及び図2に示す通り、外乱源31において発生した(振動センサ21により測定された)外乱振動ukは、フィルタ係数wkにより振動の伝播特性が表される、配管30における伝播経路Wによる影響を受けて、振動センサ22(あるいは振動センサ23)まで伝播したのち、wk
Tukとなる。即ち、振動センサ22(あるいは振動センサ23)によって測定される振動は、wk
Tukと、漏洩孔32において発生した流体漏洩に起因する漏洩振動lkとが重なった振動である。したがって、抑制部14は、外乱振動ukに起因する振動wk
Tukが所望信号dkと一致するようなフィルタ係数w^(図2においては、記号“^”をWの真上に記載)を、LMSアルゴリズムを用いて算出することによって、振動センサ22及び23により測定された振動に重畳された外乱振動の成分を抑制(除去)することができる。
抑制部14は、LMSアルゴリズムを用いた処理を行うにあたり、LMSアルゴリズムにおけるパラメータの値を指定する。代表的なパラメータとしては、上述したステップサイズμとフィルタ次数Kとがある。そして、LMSアルゴリズムを用いた処理によって実現される外乱振動の成分を抑制する性能(外乱抑制性能)は、これらのパラメータの値に大きく依存する。
例えば、フィルタ次数Kを大きくするほど、外乱源31から振動センサ22(あるいは振動センサ23)までの伝播経路Wが有する振動の伝播特性をより正確に表すことができる一方、フィルタ次数Kを過剰に大きくした場合、外乱抑制性能は、かえって低下することが一般的に知られている。したがって、抑制部14は、フィルタ次数Kを過剰に大きくすることなく、外乱抑制性能を向上させるため、振動センサ21乃至23間において、時間をシフトした適応信号処理を行うようにしてもよい。
本実施形態に係る取得部11、推定部12、及び、決定部13は、抑制部14がLMS法等を用いた適応信号処理を行う際に、外乱抑制性能が基準を満たす(例えば最大となる)ようにする適切な(最適な)パラメータの値を効率よく取得することを実現する機能を備える。
取得部11は、例えば外部から分布情報110を取得する。分布情報110は、例えば、流体漏洩診断装置10の管理者による管理端末装置(不図示)への入力操作によって、取得部11に入力されてもよい。取得部11は、取得した分布情報110を、流体漏洩診断装置10あるいは外部の装置が備える、例えば電子メモリや磁気ディスク等の記憶デバイス(不図示)に格納してもよい。
分布情報110は、配管30のタイプ(配管タイプ)と関連付けて、外乱抑制性能が基準を満たすパラメータの値の組み合わせに関する実績を表す情報である。但し、配管タイプとは、配管30が備える物理的な特性に基づく分類を表す。配管30が備える物理的な特性は、例えば、配管30に関する、口径、あるいは材質、あるいは配管長などである。
配管30に対する流体漏洩の診断におけるLMSアルゴリズムでは、外乱抑制性能が基準を満たすようにする適切なパラメータは、配管30が備える物理的な特性と関係がある。例えば、フィルタ次数Kは、外乱源31から振動センサ22(あるいは振動センサ23)までの配管30の振動伝播特性と関係がある。そして配管30の振動伝播特性は、上述した配管30が備える物理的な特性に大きく依存する。したがって、外乱抑制性能が基準を満たすパラメータの値は、一般的に、配管タイプ毎に大きく異なる。
図3は、本実施形態に係る分布情報110をグラフによって例示した図である。図3に例示する通り、分布情報110は、外乱抑制性能が基準を満たすようにする適切なパラメータAの値とパラメータBの値との組み合わせに関する実績を、3つの配管タイプと関連付けて示している(プロットしている)。図3におけるパラメータA及びパラメータBは、例えば、上述したステップサイズμ及びフィルタ次数Kである。
推定部12は、分布情報110に基づいて、配管タイプ毎に、外乱抑制性能が基準を満たすようにする適切なパラメータの値の組み合わせが存在する確率密度を表す関数(確率密度関数120)を推定する。推定部12は、例えば、最尤推定法あるいはカーネル密度推定法などを用いることによって、確率密度関数120を推定する。最尤推定法及びカーネル密度推定法は周知の手法であるので、本願ではその詳細な説明を省略する。
図4は、本実施形態に係る推定部12が、図3に例示する分布情報110に基づいて、配管タイプ1に関して推定した確率密度関数120を例示する図である。図4に例示する通り、推定部12は、例えば、確率密度に関する等高線(確率密度が同じ値となる点の集合により表される複数の線)として表される確率密度関数120を推定する。図4に例示する確率密度関数120は、等高線を構成する複数の楕円のうち、中心に近くなるほど、確率密度が高くなることを示している。推定部12は、配管タイプ2及び3に関しても、配管タイプ1と同様に、確率密度関数120を推定する。
決定部13は、確率密度関数120に基づいて、抑制部14がLMSアルゴリズムを用いた適応信号処理において設定するパラメータの値を探索する範囲(探索範囲130)を決定する。
図5は、実施形態に係る決定部13が、図4に例示する確率密度関数120に基づいて決定した、配管タイプ1に関する探索範囲130を例示する図である。
図5に例示する通り、決定部13は、パラメータAの値とパラメータBの値との組み合わせが分布するパラメータ空間を、複数の領域に分割(例えば等分割)する。決定部13は、この際、確率密度関数120が表す等高線が存在する矩形領域を分割対象とすればよく、図5に示す例では、パラメータ空間を、9個の領域に分割している。尚、本願では以降、パラメータAの値に関する正方向をX軸方向とし、パラメータBの値に関する負方向をY軸方向と定義することによって、分割された9個の領域を、X軸方向及びY軸方向における区間を識別する値により、領域(X,Y)と表すこととする。
決定部13は、分割された領域毎に、確率密度関数120によって算出される確率密度の平均値を算出する。図5に例示する確率密度関数120が表す等高線によれば、当該平均値が最も高い領域は、分割対象領域の中心に位置する領域(2,2)である。そして当該平均値が2番目に高い領域は、パラメータ空間を表すXY平面において、領域(2,2)の上下左右に位置する領域(2,1)、領域(2,3)、領域(1,2)、領域(3,2)である。そして当該平均値が3番目に高い領域は、パラメータ空間を表すXY平面において、領域(2,2)の右上に位置する領域(3,1)、及び領域(2,2)の左下に位置する領域(1,3)である。そして当該平均値が最も低い領域は、領域(2,2)の左上に位置する領域(1,1)、及び領域(2,2)の右下に位置する領域(3,3)である。
決定部13は、上述の通り算出した確率密度関数120の平均値に基づいて、領域毎に、パラメータ空間における「+」印として表される探索範囲130を決定する。決定部13は、例えば、事前に与えられている、抑制部14がパラメータの値を探索する最大探索数と、領域毎の確率密度関数120の平均値とに基づいて、各領域におけるパラメータの値の探索数(「+」印として表される探索ポイントの数)を決定する。
図5に示す例では、当該最大探索数は19個である。決定部13は、各領域の確率密度関数120の平均値と比例するように、19個の探索ポイントを9個の領域に配分する。即ち、決定部13は、領域(2,2)に対しては9個の探索ポイントを配分し、領域(2,1)、領域(2,3)、領域(1,2)、領域(3,2)に対しては2個の探索ポイントを配分し、領域(3,1)、及び領域(1,3)に対しては1個の探索ポイントを配分する。決定部13は、領域(1,1)、及び領域(3,3)に対しては探索ポイントを配分しない。決定部13は、各領域内においては、例えば探索ポイントを、パラメータ空間を表すXY平面において一様に(均等に)配置する。決定部13は、配管タイプ2及び配管タイプ3に関しても、配管タイプ1と同様に、探索範囲130を決定する。決定部13は、配管タイプ毎の探索ポイントを表す探索範囲130を、流体漏洩診断装置10あるいは外部の装置が備える記憶デバイスに格納してもよい。
抑制部14は、配管30のタイプが配管タイプ1である場合、図5における探索ポイント(「+」印)が示すパラメータの値の組み合わせを用いて適応信号処理を行う。そして抑制部14は、外乱抑制性能が基準を満たす(例えば最大となる)結果を採用する。これにより、抑制部14は、振動センサ22によって測定された振動に含まれる外乱振動の成分を抑制した抑制済振動ξk
22を表すデータを生成し、振動センサ23によって測定された振動に含まれる外乱振動の成分を抑制した抑制済振動ξk
23を表すデータを生成する。
図1に示す判定部15は、抑制部14により生成された、抑制済振動ξk
22及び抑制済振動ξk
23を表すデータを用いて、式3に示す通り、抑制済振動ξk
22と抑制済振動ξk
23とに関する相互相関R(i)を算出する。
但し、式3において、Covは共分散を表し、Varは分散を表す。式3において、iは、時系列kに関する時間差を示す整数である。漏洩孔32から流体が漏洩することによって発生した漏洩振動が、抑制済振動ξk 22と抑制済振動ξk 23とに共通して含まれる場合、漏洩孔32から振動センサ22及び23まで漏洩振動が到達する時間差に関する相互相関R(i)の値は高くなる。一方、漏洩振動のような共通する振動が抑制済振動ξk 22及び抑制済振動ξk 23に含まれない(即ち、流体漏洩が発生していない)場合、相互相関R(i)の値は低くなる。これにより、判定部15は、算出した相互相関R(i)に基づいて、配管30における流体漏洩の有無を判定する。
判定部15は、例えば、流体漏洩の発生が確認されている既存の配管に関する相互相関の実績値と、流体漏洩が発生していない既存の配管に関する相互相関の実績値とに基づく判別分析を行うことによって、流体漏洩の有無を判定することができる。
次に図6及び図7のフローチャートを参照して、本実施形態に係る流体漏洩診断装置10の動作(処理)について詳細に説明する。
図6は、本実施形態に係る流体漏洩診断装置10が、適応信号処理におけるパラメータの値の探索範囲130を決定する動作を示すフローチャートである。
取得部11は、配管30の配管タイプに関する、外乱振動の成分を抑制する性能が基準を満たすときの適応信号処理におけるパラメータの値の分布実績を表す分布情報110を取得する(ステップS101)。推定部12は、分布情報110に基づいて、最尤推定法、あるいは、カーネル密度推定法を用いることによって、パラメータの値が存在する確率密度を表す確率密度関数120を推定する(ステップS102)。
決定部13は、適応信号処理におけるパラメータの値が分布するパラメータ空間を、複数の領域に分割する(ステップS103)。決定部13は、確率密度関数120を用いて、領域毎に確率密度の平均値を算出する(ステップS104)。
決定部13は、事前に与えられているパラメータの値を探索する最大探索数と、領域毎の確率密度の平均値とに基づいて、各領域におけるパラメータの値の探索数を算出する(ステップS105)。決定部13は、各領域の探索数に基づいて、パラメータ空間に探索ポイントを配置することによって、探索範囲130を決定し(ステップS106)、全体の処理は終了する。
図7は、本実施形態に係る流体漏洩診断装置10が、探索範囲130に基づいて適応信号処理におけるパラメータの値を取得することによって、配管30における流体漏洩を診断する動作を示すフローチャートである。
流体漏洩診断装置10は、振動センサ21乃至23によって測定された振動データを受信する(ステップS201)。抑制部14は、流体漏洩を診断する対象である配管30の配管タイプを外部から取得する(ステップS202)。抑制部14は、配管30の配管タイプに関する探索範囲130を取得する(ステップS203)。
抑制部14は、探索範囲130を探索することによって、適応信号処理におけるパラメータの値を取得する(ステップS204)。抑制部14は、取得したパラメータの値を用いた適応信号処理を行うことによって、受信した振動データに含まれる外乱振動の成分を抑制する(ステップS205)。
抑制部14による探索範囲130の探索が終了していない場合(ステップS206でNo)、処理はステップS204へ戻る。抑制部14による探索範囲130の探索が終了した場合(ステップS206でYes)、判定部15は、外乱振動の成分が抑制された抑制済振動を表すデータに基づいて、相互相関を算出する(ステップS207)。判定部15は、相互相関に基づいて、配管30における流体漏洩の有無を判定し(ステップS208)、全体の処理は終了する。
本実施形態に係る流体漏洩診断装置10は、配管において測定された振動に含まれる外乱振動の成分を、適応信号処理を用いて抑制することによって配管に関する流体漏洩を診断する場合に、その診断精度を効率的に高めることができる。その理由は、流体漏洩診断装置10は、外乱抑制性能が基準を満たすときの適応信号処理におけるパラメータの値の分布実績に基づいて、当該性能が基準を満たすパラメータの値が存在する確率密度を推定し、推定した確率密度に基づいて、パラメータの値を探索する範囲を決定するからである。
以下に、本実施形態に係る流体漏洩診断装置10によって実現される効果について、詳細に説明する。
流体漏洩を診断する対象である配管に加えて外乱源にもセンサを設置し、適応ディジタルフィルタを用いた適応信号処理を行い、外乱振動の成分を抑制することによって、漏洩位置を検知する方法がある。この方法では、適応信号処理によって外乱振動の成分を抑制する性能が高くなればなるほど、流体漏洩を診断する精度が高くなる。したがって、流体漏洩を診断する精度を効率的に高めるためには、外乱抑制性能を効率的に高めること、即ち、適応信号処理におけるフィルタ次数やステップサイズ等のパラメータの値を効率的に適切に設定することが課題である。
このような課題に対して、本実施形態に係る流体漏洩診断装置10は、取得部11と、推定部12と、決定部13と、を備え、例えば図1乃至図7を参照して上述した通り動作する。即ち、流体漏洩診断装置10は、配管30における所定の場所において測定された振動に含まれる外乱振動の成分を、適応信号処理を用いて抑制することによって、配管30に関する流体漏洩を診断する装置である。取得部11は、配管30の特性に関連付けられた、外乱振動の成分を抑制する性能が基準を満たすときの適応信号処理におけるパラメータの値の分布実績を表す分布情報110を取得する。推定部12は、分布情報110に基づいて、当該性能が基準を満たすパラメータの値が存在する確率密度(確率密度関数120)を推定する。そして決定部13は、推定部12により推定された確率密度に基づいて、適応信号処理におけるパラメータの値を探索する範囲(探索範囲130)を決定する。
図10は、上述した確率密度を推定せずにパラメータの値を一様に探索する一般的な流体漏洩診断装置による、パラメータの値の探索範囲を例示する図である。図10において、「+」印は、パラメータ空間における探索ポイントを表す。図10にパラメータの値の探索範囲を示す一般的な流体漏洩診断装置は、パラメータ空間において、高い外乱抑制性能が期待できない領域も含めて、パラメータの値を探索する。これに対して、図5にパラメータの値の探索範囲を示す本実施形態に係る流体漏洩診断装置10は、パラメータ空間において、高い外乱抑制性能が期待できる領域を密に、パラメータの値を探索する。即ち、本実施形態に係る流体漏洩診断装置10は、高い外乱抑制性能が期待できるパラメータの値を効率的に探索する。
図11は、推定した確率密度に基づいてパラメータの値を探索した場合(本実施形態に係る流体漏洩診断装置10)と、確率密度を推定せずにパラメータの値を一様に探索した場合(一般的な流体漏洩診断装置)とに関して、パラメータの値の探索数に対する外乱抑制性能を例示するグラフである。図11に示す通り、本実施形態に係る流体漏洩診断装置10は、一般的な流体漏洩診断装置と比較して、少ない探索数であっても、高い外乱抑制性能を得ることができる。
以上のことから、本実施形態に係る流体漏洩診断装置10は、適応信号処理におけるフィルタ次数やステップサイズ等のパラメータの値を効率的に適切に設定することができるので、配管30に関する流体漏洩を診断する精度を効率的に高めることができる。
また、本実施形態に係る流体漏洩診断装置10は、パラメータの値が分布するパラメータ空間を複数の領域に分割し、領域ごとに確率密度の平均値を算出し、算出した平均値に基づいて領域ごとの探索する範囲を決定する。これにより、流体漏洩診断装置10は、適応信号処理におけるパラメータの値を適切に設定することを、より効率的に行うことができる。
また、上述した本実施形態では、流体漏洩診断装置10がパラメータの値を探索するパラメータ空間は二次元空間であるが、パラメータ空間は3つ以上のパラメータによる多次元空間であってもよい。
<第2の実施形態>
図8は、本願発明の第2の実施形態に係る流体漏洩診断装置40の構成を示すブロック図である。
図8は、本願発明の第2の実施形態に係る流体漏洩診断装置40の構成を示すブロック図である。
本実施形態に係る流体漏洩診断装置40は、配管50における所定の場所において測定された振動51に含まれる外乱振動の成分52を、適応信号処理を用いて抑制することによって、配管50に関する流体漏洩を診断する装置である。
本実施形態に係る流体漏洩診断装置40は、取得部41、推定部42、及び、決定部43を備えている。
取得部41は、配管50の特性に関連付けられた、外乱振動の成分52を抑制する性能が基準を満たすときの適応信号処理におけるパラメータの値の分布実績を表す分布情報410を取得する。
推定部42は、分布情報410に基づいて、当該性能が基準を満たすパラメータの値が存在する確率密度420を推定する。
決定部43は、推定部42により推定された確率密度420に基づいて、適応信号処理におけるパラメータの値を探索する範囲430を決定する。
本実施形態に係る流体漏洩診断装置40は、配管において測定された振動に含まれる外乱振動の成分を、適応信号処理を用いて抑制することによって配管に関する流体漏洩を診断する場合に、その診断精度を効率的に高めることができる。その理由は、流体漏洩診断装置40は、外乱振動の成分52を抑制する性能が基準を満たすときの適応信号処理におけるパラメータの値の分布実績に基づいて、当該性能が基準を満たすパラメータの値が存在する確率密度420を推定し、推定した確率密度420に基づいて、パラメータの値を探索する範囲430を決定するからである。
<ハードウェア構成例>
上述した各実施形態において図1、及び、図8に示した流体漏洩診断装置における各部は、専用のHW(HardWare)(電子回路)によって実現することができる。また、図1、及び、図8において、少なくとも、下記構成は、ソフトウェアプログラムの機能(処理)単位(ソフトウェアモジュール)と捉えることができる。
・取得部11及び41、
・推定部12及び42、
・決定部13及び43、
・抑制部14、
・判定部15。
上述した各実施形態において図1、及び、図8に示した流体漏洩診断装置における各部は、専用のHW(HardWare)(電子回路)によって実現することができる。また、図1、及び、図8において、少なくとも、下記構成は、ソフトウェアプログラムの機能(処理)単位(ソフトウェアモジュール)と捉えることができる。
・取得部11及び41、
・推定部12及び42、
・決定部13及び43、
・抑制部14、
・判定部15。
但し、これらの図面に示した各部の区分けは、説明の便宜上の構成であり、実装に際しては、様々な構成が想定され得る。この場合のハードウェア環境の一例を、図9を参照して説明する。
図9は、本願発明の各実施形態に係る流体漏洩診断装置を実行可能な情報処理装置900(コンピュータ)の構成を例示的に説明する図である。即ち、図9は、図1、及び、図8に示した流体漏洩診断装置を実現可能なコンピュータ(情報処理装置)の構成であって、上述した実施形態における各機能を実現可能なハードウェア環境を表す。
図9に示した情報処理装置900は、構成要素として下記を備えている。
・CPU(Central_Processing_Unit)901、
・ROM(Read_Only_Memory)902、
・RAM(Random_Access_Memory)903、
・ハードディスク(記憶装置)904、
・通信インタフェース905、
・バス906(通信線)、
・CD-ROM(Compact_Disc_Read_Only_Memory)等の記録媒体907に格納されたデータを読み書き可能なリーダライタ908、
・モニターやスピーカ、キーボード等の入出力インタフェース909。
・CPU(Central_Processing_Unit)901、
・ROM(Read_Only_Memory)902、
・RAM(Random_Access_Memory)903、
・ハードディスク(記憶装置)904、
・通信インタフェース905、
・バス906(通信線)、
・CD-ROM(Compact_Disc_Read_Only_Memory)等の記録媒体907に格納されたデータを読み書き可能なリーダライタ908、
・モニターやスピーカ、キーボード等の入出力インタフェース909。
即ち、上記構成要素を備える情報処理装置900は、これらの構成がバス906を介して接続された一般的なコンピュータである。情報処理装置900は、CPU901を複数備える場合もあれば、マルチコアにより構成されたCPU901を備える場合もある。
そして、上述した実施形態を例に説明した本願発明は、図9に示した情報処理装置900に対して、次の機能を実現可能なコンピュータプログラムを供給する。その機能とは、その実施形態の説明において参照したブロック構成図(図1、及び、図8)における上述した構成、或いはフローチャート(図6及び図7)の機能である。本願発明は、その後、そのコンピュータプログラムを、当該ハードウェアのCPU901に読み出して解釈し実行することによって達成される。また、当該装置内に供給されたコンピュータプログラムは、読み書き可能な揮発性のメモリ(RAM903)、または、ROM902やハードディスク904等の不揮発性の記憶デバイスに格納すれば良い。
また、前記の場合において、当該ハードウェア内へのコンピュータプログラムの供給方法は、現在では一般的な手順を採用することができる。その手順としては、例えば、CD-ROM等の各種記録媒体907を介して当該装置内にインストールする方法や、インターネット等の通信回線を介して外部よりダウンロードする方法等がある。そして、このような場合において、本願発明は、係るコンピュータプログラムを構成するコード或いは、そのコードが格納された記録媒体907によって構成されると捉えることができる。
以上、上述した実施形態を模範的な例として本願発明を説明した。しかしながら、本願発明は、上述した実施形態には限定されない。即ち、本願発明は、本願発明のスコープ内において、当業者が理解し得る様々な態様を適用することができる。
この出願は、2018年9月4日に出願された日本出願特願2018-165442を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 流体漏洩診断システム
10 流体漏洩診断装置
11 取得部
110 分布情報
12 推定部
120 確率密度関数
13 決定部
130 探索範囲
14 抑制部
15 判定部
21乃至23 振動センサ
30 配管
31 外乱源
32 漏洩孔
40 流体漏洩診断装置
41 取得部
410 分布情報
42 推定部
420 確率密度
43 決定部
430 探索する範囲
50 配管
51 振動
52 外乱振動の成分
900 情報処理装置
901 CPU
902 ROM
903 RAM
904 ハードディスク(記憶装置)
905 通信インタフェース
906 バス
907 記録媒体
908 リーダライタ
909 入出力インタフェース
10 流体漏洩診断装置
11 取得部
110 分布情報
12 推定部
120 確率密度関数
13 決定部
130 探索範囲
14 抑制部
15 判定部
21乃至23 振動センサ
30 配管
31 外乱源
32 漏洩孔
40 流体漏洩診断装置
41 取得部
410 分布情報
42 推定部
420 確率密度
43 決定部
430 探索する範囲
50 配管
51 振動
52 外乱振動の成分
900 情報処理装置
901 CPU
902 ROM
903 RAM
904 ハードディスク(記憶装置)
905 通信インタフェース
906 バス
907 記録媒体
908 リーダライタ
909 入出力インタフェース
Claims (10)
- 配管における所定の場所において測定された振動に含まれる外乱振動の成分を、適応信号処理を用いて抑制することによって、前記配管に関する流体漏洩を診断する場合において、
前記配管の特性に関連付けられた、前記外乱振動の成分を抑制する性能が基準を満たすときの前記適応信号処理におけるパラメータの値の分布実績を表す分布情報を取得する取得手段と、
前記分布情報に基づいて、前記性能が基準を満たす前記パラメータの値が存在する確率密度を推定する推定手段と、
前記推定手段により推定された前記確率密度に基づいて、前記適応信号処理における前記パラメータの値を探索する範囲を決定する決定手段と、
を備える流体漏洩診断装置。 - 前記推定手段は、最尤推定法、あるいは、カーネル密度推定法を用いることによって、前記確率密度を推定する、
請求項1に記載の流体漏洩診断装置。 - 前記決定手段は、前記パラメータの値が分布するパラメータ空間を複数の領域に分割し、前記領域ごとに前記確率密度の平均値を算出し、算出した前記平均値に基づいて前記領域ごとの前記探索する範囲を決定する、
請求項1または請求項2に記載の流体漏洩診断装置。 - 前記配管の特性は、前記配管に関する、口径、あるいは材質、あるいは配管長である、
請求項1乃至請求項3のいずれか一項に記載の流体漏洩診断装置。 - 前記決定手段によって決定された前記範囲を探索することによって前記パラメータの値を取得し、取得した前記パラメータの値を用いた前記適応信号処理を行うことによって、前記測定された振動に含まれる前記外乱振動の成分を抑制する抑制手段をさらに備える、
請求項1乃至請求項4のいずれか一項に記載の流体漏洩診断装置。 - 前記抑制手段は、前記適応信号処理として、最小二乗平均法を用いる、
請求項5に記載の流体漏洩診断装置。 - 複数の前記所定の場所に関する、前記測定された振動に含まれる前記外乱振動の成分が抑制された抑制済振動に基づいて相互相関を算出し、算出した相互相関に基づいて、前記流体漏洩の有無を判定する判定手段をさらに備える。
請求項1乃至請求項6のいずれか一項に記載の流体漏洩診断装置。 - 請求項1乃至請求項7のいずれか一項に記載の流体漏洩診断装置と、
前記配管に対する調査対象区間におけるいずれかの場所、及び、前記外乱振動の発生源に設置された、前記振動を測定する測定手段と、
を備える、流体漏洩診断システム。 - 配管における所定の場所において測定された振動に含まれる外乱振動の成分を、適応信号処理を用いて抑制することによって、前記配管に関する流体漏洩を診断する場合において、
情報処理装置によって、
前記配管の特性に関連付けられた、前記外乱振動の成分を抑制する性能が基準を満たすときの前記適応信号処理におけるパラメータの値の分布実績を表す分布情報を取得し、
前記分布情報に基づいて、前記性能が基準を満たす前記パラメータの値が存在する確率密度を推定し、
推定した前記確率密度に基づいて、前記適応信号処理における前記パラメータの値を探索する範囲を決定する、
流体漏洩診断方法。 - 配管における所定の場所において測定された振動に含まれる外乱振動の成分を、適応信号処理を用いて抑制することによって、前記配管に関する流体漏洩を診断する場合において、
前記配管の特性に関連付けられた、前記外乱振動の成分を抑制する性能が基準を満たすときの前記適応信号処理におけるパラメータの値の分布実績を表す分布情報を取得する取得処理と、
前記分布情報に基づいて、前記性能が基準を満たす前記パラメータの値が存在する確率密度を推定する推定処理と、
前記推定処理により推定された前記確率密度に基づいて、前記適応信号処理における前記パラメータの値を探索する範囲を決定する決定処理と、
をコンピュータに実行させるための流体漏洩診断プログラムが格納された記録媒体。
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2020541196A JP6943343B2 (ja) | 2018-09-04 | 2019-09-02 | 流体漏洩診断装置、流体漏洩診断システム、流体漏洩診断方法、及び、流体漏洩診断プログラム |
| EP19858510.1A EP3848689B1 (en) | 2018-09-04 | 2019-09-02 | Fluid leakage diagnosing device, fluid leakage diagnosing system, fluid leakage diagnosing method, and fluid leakage diagnosing program |
| US17/272,394 US11703189B2 (en) | 2018-09-04 | 2019-09-02 | Fluid leakage diagnosing device, fluid leakage diagnosing system, fluid leakage diagnosing method, and recording medium storing fluid leakage diagnosing program |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2018165442 | 2018-09-04 | ||
| JP2018-165442 | 2018-09-04 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2020050192A1 true WO2020050192A1 (ja) | 2020-03-12 |
Family
ID=69722318
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2019/034337 Ceased WO2020050192A1 (ja) | 2018-09-04 | 2019-09-02 | 流体漏洩診断装置、流体漏洩診断システム、流体漏洩診断方法、及び、流体漏洩診断プログラムが格納された記録媒体 |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US11703189B2 (ja) |
| EP (1) | EP3848689B1 (ja) |
| JP (1) | JP6943343B2 (ja) |
| WO (1) | WO2020050192A1 (ja) |
Families Citing this family (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20240110878A1 (en) * | 2022-10-04 | 2024-04-04 | Chevron U.S.A. Inc. | Integrated fluid leak detection using multiple sensors |
| US20240403672A1 (en) * | 2023-06-02 | 2024-12-05 | Chevron U.S.A. Inc. | Integration of stranded sensor data for fluid leak detection |
| CN119222509B (zh) * | 2024-12-03 | 2025-03-18 | 成都秦川物联网科技股份有限公司 | 基于监管物联网的燃气管道安全监测方法、系统和介质 |
Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2003076393A (ja) * | 2001-08-31 | 2003-03-14 | Inst Of Systems Information Technologies Kyushu | 騒音環境下における音声推定方法および音声認識方法 |
| US6567006B1 (en) * | 1999-11-19 | 2003-05-20 | Flow Metrix, Inc. | Monitoring vibrations in a pipeline network |
| JP2003230012A (ja) * | 2002-01-10 | 2003-08-15 | Ricoh Co Ltd | ヘッダ情報に基づく画像処理方法 |
| JP2004125628A (ja) | 2002-10-02 | 2004-04-22 | Jfe Steel Kk | 配管の漏洩位置検知方法および装置 |
| JP2006138638A (ja) | 2004-11-10 | 2006-06-01 | Akira Koda | 漏洩探知における雑音除去方法 |
| WO2014051036A1 (ja) | 2012-09-28 | 2014-04-03 | 日本電気株式会社 | 漏洩検知装置、漏洩検知方法及びプログラム |
| JP2014219342A (ja) | 2013-05-10 | 2014-11-20 | 積水化学工業株式会社 | 埋設管路の漏洩検出方法および装置 |
| US20150300907A1 (en) * | 2012-12-20 | 2015-10-22 | Eni S.P.A. | Method and system for continuous remote monitoring of the integrity of pressurized pipelines and properties of the fluids transported |
| JP2018165442A (ja) | 2017-03-28 | 2018-10-25 | Toto株式会社 | 圧送装置、およびトイレ装置 |
Family Cites Families (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5416724A (en) * | 1992-10-09 | 1995-05-16 | Rensselaer Polytechnic Institute | Detection of leaks in pipelines |
| US6725705B1 (en) * | 2003-05-15 | 2004-04-27 | Gas Technology Institute | Enhanced acoustic detection of gas leaks in underground gas pipelines |
| JP6773026B2 (ja) * | 2015-03-25 | 2020-10-21 | 日本電気株式会社 | 漏洩検知装置、漏洩検知システム、漏洩検知方法及びコンピュータ読み取り可能記録媒体 |
| CN108506742B (zh) * | 2018-03-10 | 2020-07-03 | 西安电子科技大学 | 一种自适应有效信号判定流体管道泄漏定位方法 |
-
2019
- 2019-09-02 US US17/272,394 patent/US11703189B2/en active Active
- 2019-09-02 EP EP19858510.1A patent/EP3848689B1/en active Active
- 2019-09-02 JP JP2020541196A patent/JP6943343B2/ja active Active
- 2019-09-02 WO PCT/JP2019/034337 patent/WO2020050192A1/ja not_active Ceased
Patent Citations (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6567006B1 (en) * | 1999-11-19 | 2003-05-20 | Flow Metrix, Inc. | Monitoring vibrations in a pipeline network |
| JP2003076393A (ja) * | 2001-08-31 | 2003-03-14 | Inst Of Systems Information Technologies Kyushu | 騒音環境下における音声推定方法および音声認識方法 |
| JP2003230012A (ja) * | 2002-01-10 | 2003-08-15 | Ricoh Co Ltd | ヘッダ情報に基づく画像処理方法 |
| JP2004125628A (ja) | 2002-10-02 | 2004-04-22 | Jfe Steel Kk | 配管の漏洩位置検知方法および装置 |
| JP2006138638A (ja) | 2004-11-10 | 2006-06-01 | Akira Koda | 漏洩探知における雑音除去方法 |
| WO2014051036A1 (ja) | 2012-09-28 | 2014-04-03 | 日本電気株式会社 | 漏洩検知装置、漏洩検知方法及びプログラム |
| US20150300907A1 (en) * | 2012-12-20 | 2015-10-22 | Eni S.P.A. | Method and system for continuous remote monitoring of the integrity of pressurized pipelines and properties of the fluids transported |
| JP2014219342A (ja) | 2013-05-10 | 2014-11-20 | 積水化学工業株式会社 | 埋設管路の漏洩検出方法および装置 |
| JP2018165442A (ja) | 2017-03-28 | 2018-10-25 | Toto株式会社 | 圧送装置、およびトイレ装置 |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP3848689A4 |
Also Published As
| Publication number | Publication date |
|---|---|
| JP6943343B2 (ja) | 2021-09-29 |
| US20210325005A1 (en) | 2021-10-21 |
| EP3848689A1 (en) | 2021-07-14 |
| JPWO2020050192A1 (ja) | 2021-08-26 |
| US11703189B2 (en) | 2023-07-18 |
| EP3848689A4 (en) | 2021-10-27 |
| EP3848689B1 (en) | 2024-04-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Lee et al. | Oil and gas pipeline failure prediction system using long range ultrasonic transducers and Euclidean-Support Vector Machines classification approach | |
| JP6943343B2 (ja) | 流体漏洩診断装置、流体漏洩診断システム、流体漏洩診断方法、及び、流体漏洩診断プログラム | |
| Bao et al. | Vibration‐based structural health monitoring of offshore pipelines: numerical and experimental study | |
| CN109416408B (zh) | 震中距估计装置、震中距估计方法以及计算机可读记录介质 | |
| JPWO2015146082A1 (ja) | 漏洩検知装置、漏洩検知方法、およびプログラム | |
| KR102473194B1 (ko) | 음향방출센서를 이용한 누설 위치 추정장치 및 그 방법 | |
| KR101381469B1 (ko) | 매설배관 누설 탐지용 상호상관함수기법의 정확도 향상을 위한 기계 잡음 제거 방법 | |
| CN113792585A (zh) | 一种管道振动信号监测方法、系统、电子设备及介质 | |
| WO2016084366A1 (ja) | 位置推定装置、位置推定システム、位置推定方法及びコンピュータ読み取り可能記録媒体 | |
| JPWO2017188074A1 (ja) | 漏洩箇所分析システム、漏洩箇所分析方法、漏洩箇所分析装置及びコンピュータプログラム | |
| KR20130064403A (ko) | 매설배관 누설 탐지용 상호상관함수기법의 정확도 향상을 위한 기계 잡음 제거 방법 | |
| JPWO2018164102A1 (ja) | 診断コスト出力装置、診断コスト出力方法及びコンピュータ読み取り可能記録媒体 | |
| JP6773026B2 (ja) | 漏洩検知装置、漏洩検知システム、漏洩検知方法及びコンピュータ読み取り可能記録媒体 | |
| CN117292706B (zh) | 管道气体泄漏声音诊断方法、系统、设备和介质 | |
| CN113432661B (zh) | 一种监控流量数据的方法、装置及介质 | |
| JP7070540B2 (ja) | 計測時間特定装置、検知装置、計測時間特定方法及びプログラム | |
| KR101106888B1 (ko) | 배관의 충격 위치 탐지방법 | |
| JP7095743B2 (ja) | 流体漏洩診断装置、流体漏洩診断システム、流体漏洩診断方法、及び、流体漏洩診断プログラム | |
| CN116481820B (zh) | 一种发动机半阶次振动的飞轮动态确定方法及装置 | |
| JP2017083292A (ja) | 管路の異常の判定方法 | |
| Yu et al. | Methods for measuring the speed of sound in the fluid in fluid transmission pipes | |
| JP6856124B2 (ja) | 分析装置、分析方法及びコンピュータプログラム | |
| CN116241807B (zh) | 一种基于负压波和超声导波的管道泄漏监测方法及系统 | |
| CN108593296B (zh) | 一种基于倒谱伪边距的轴承单点故障诊断方法 | |
| WO2014050990A1 (ja) | 漏洩判定方法、漏洩判定装置、測定端末及びプログラム |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19858510 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2020541196 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2019858510 Country of ref document: EP Effective date: 20210406 |