WO2019235367A1 - 断層画像予測装置および断層画像予測方法 - Google Patents
断層画像予測装置および断層画像予測方法 Download PDFInfo
- Publication number
- WO2019235367A1 WO2019235367A1 PCT/JP2019/021637 JP2019021637W WO2019235367A1 WO 2019235367 A1 WO2019235367 A1 WO 2019235367A1 JP 2019021637 W JP2019021637 W JP 2019021637W WO 2019235367 A1 WO2019235367 A1 WO 2019235367A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tomographic image
- brain
- prediction
- input
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0033—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room
- A61B5/004—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
- A61B5/0042—Features or image-related aspects of imaging apparatus, e.g. for MRI, optical tomography or impedance tomography apparatus; Arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4058—Detecting, measuring or recording for evaluating the nervous system for evaluating the central nervous system
- A61B5/4064—Evaluating the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/40—Detecting, measuring or recording for evaluating the nervous system
- A61B5/4076—Diagnosing or monitoring particular conditions of the nervous system
- A61B5/4088—Diagnosing of monitoring cognitive diseases, e.g. Alzheimer, prion diseases or dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7264—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
- A61B5/7267—Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7271—Specific aspects of physiological measurement analysis
- A61B5/7275—Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
- A61B6/037—Emission tomography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/50—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
- A61B6/501—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the head, e.g. neuroimaging or craniography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/52—Devices using data or image processing specially adapted for radiation diagnosis
- A61B6/5211—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
- A61B6/5217—Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/042—Knowledge-based neural networks; Logical representations of neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H30/00—ICT specially adapted for the handling or processing of medical images
- G16H30/40—ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2576/00—Medical imaging apparatus involving image processing or analysis
- A61B2576/02—Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
- A61B2576/026—Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the brain
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/46—Arrangements for interfacing with the operator or the patient
- A61B6/461—Displaying means of special interest
- A61B6/463—Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10088—Magnetic resonance imaging [MRI]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10104—Positron emission tomography [PET]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10072—Tomographic images
- G06T2207/10108—Single photon emission computed tomography [SPECT]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30016—Brain
Definitions
- the present disclosure relates to an apparatus and a method for predicting a tomographic image.
- Patent Document 1 discloses a technique for diagnosing the state of a subject's brain from a tomographic image of the subject's brain using a neural network.
- Patent Document 1 diagnoses the current degree of dementia from a tomographic image of a subject's current brain. If the current degree of dementia of a subject can be diagnosed, it is useful for the care or treatment of the subject. However, just knowing a subject's current degree of dementia is not sufficient to develop a care, treatment or prevention policy for the subject from now to the future.
- the object of the present invention is to provide a tomographic image prediction apparatus and a tomographic image prediction method that are useful for planning a future treatment policy for a subject.
- the embodiment of the present invention is a tomographic image prediction apparatus.
- the tomographic image prediction apparatus includes (1) an input unit that inputs a tomographic image of a subject's brain, and (2) when the tomographic image is acquired by a deep neural network based on the tomographic image of the brain input to the input unit.
- a prediction unit that predicts a later tomographic image of the brain of the subject, and (3) an output unit that outputs a result of prediction by the prediction unit.
- the embodiment of the present invention is a tomographic image prediction method.
- the tomographic image prediction method includes (1) an input step of inputting a tomographic image of a subject's brain, and (2) a time when the tomographic image is acquired by a deep neural network based on the tomographic image of the brain input in the input step. A prediction step of predicting a later tomographic image of the brain of the subject, and (3) an output step of outputting a prediction result in the prediction step.
- a more effective policy can be established for the care, treatment, or prevention of the subject from the present to the future.
- FIG. 1 is a diagram showing the configuration of the tomographic image prediction apparatus 1.
- FIG. 2 is a diagram illustrating a configuration of the tomographic image prediction apparatus 1 in which the deep neural network has been learned.
- FIG. 3 is a diagram illustrating a configuration of the tomographic image prediction apparatus 1A.
- FIG. 4 is a diagram illustrating an example of a tomographic image (input image I1) input to the input unit 11, output images I2a to I2d output from the output unit 13, and a difference image output from the output unit 13. .
- FIG. 5 is a diagram showing a comparison between an actual tomographic image and a predicted tomographic image.
- FIG. 6 is a diagram showing a comparison between tomographic images predicted in the worst scenario and the best scenario.
- FIG. 7 is a diagram showing a configuration of the tomographic image prediction apparatus 1B.
- FIG. 8 is a diagram illustrating a configuration of the tomographic image prediction apparatus 1C.
- FIG. 1 is a diagram showing a configuration of the tomographic image prediction apparatus 1.
- the tomographic image prediction apparatus 1 inputs a tomographic image of the subject's brain as an input image I1, predicts the tomographic image of the subject's brain after the acquisition of the tomographic image by a deep neural network, and the predicted tomographic image.
- the image is output as an output image I2.
- the tomographic image prediction apparatus 1 can learn a deep neural network using the tomographic image database 15.
- the tomographic image prediction apparatus 1 is configured using, for example, a computer and includes an input unit 11, a prediction unit (processing unit) 12, an output unit 13, and a learning unit 14.
- the input unit 11 inputs a tomographic image of the subject's brain as an input image I1.
- the tomographic image is, for example, a PET image acquired by a PET (Positron Emission Tomography) apparatus, a SPECT image acquired by a SPECT (Single Photon Emission Computed Tomography) apparatus, and an MRI image acquired by an MRI (Magnetic Resonance Imaging) apparatus. Any of these may be used.
- the tomographic image may be a two-dimensional tomographic image of one slice or a plurality of slices, or may be a three-dimensional tomographic image.
- the prediction unit 12 uses a deep neural network to obtain a tomographic image of the subject's brain after the tomographic image is acquired. Etc.
- the prediction unit 12 may also be configured to predict the brain health of the subject based on the predicted brain tomographic image of the subject.
- the brain health status is, for example, the degree of dementia, and can be expressed as a numerical Z score, or it can be expressed as a risk level (necessary examination, attention required, follow-up observation, etc.). .
- the deep neural network may be a convolutional neural network.
- a convolution layer for extracting a feature amount and a pooling layer for compressing the feature amount are alternately provided.
- the prediction unit 12 may perform processing in the deep neural network by a CPU (Central Processing Unit), but is preferably performed by a DSP (Digital Signal Processor) or GPU (Graphics Processing Unit) capable of higher speed processing. It is.
- DSP Digital Signal Processor
- GPU Graphics Processing Unit
- the output unit 13 outputs the result of prediction by the prediction unit 12.
- the output unit 13 outputs the tomographic image of the brain of the subject predicted by the prediction unit 12 as the output image I2.
- the output unit 13 also outputs the brain health of the subject predicted by the prediction unit 12.
- the output unit 13 may include a display that displays an image.
- the learning unit 14 uses the tomographic image database 15 to learn the deep neural network of the prediction unit 12.
- the tomographic image database 15 stores brain tomographic image data acquired at a plurality of time points for a plurality of subjects.
- the tomographic image database 15 stores, for example, the tomographic image data of the brain of each subject acquired at intervals of approximately one year.
- the learning unit 14 uses a tomographic image acquired in a certain year of each subject as an input image I1, and acquires the output image I2 corresponding to the input image I1 and the next year of the subject (or a year after a certain number of years have elapsed). Based on the obtained tomographic image, the deep neural network of the prediction unit 12 is learned. Such learning of a deep neural network is called deep learning.
- the tomographic image prediction method using such a tomographic image prediction apparatus 1 includes an input step by the input unit 11, a prediction step by the prediction unit 12, an output step by the output unit 13, and a learning step by the learning unit 14.
- a tomographic image of the subject's brain is input as the input image I1.
- the prediction step based on the tomographic image of the brain (input image I1) input in the input step, the tomographic image of the subject's brain after the acquisition of the tomographic image is predicted by the deep neural network. Moreover, it is good also as a structure which also estimates the healthy state of the test subject's brain based on the predicted tomographic image of the test subject's brain in the prediction step.
- the tomographic image of the brain of the subject predicted in the prediction step is output as an output image I2, and the health state of the brain of the subject predicted in the prediction step is also output.
- the deep neural network is learned using the tomographic image database 15.
- the input, prediction, and output steps can be repeated thereafter, so the learning step is performed each time the input, prediction, and output steps are performed. There is no need to do.
- the learning unit 14 is not necessary if the deep neural network has already been learned. However, even when the deep neural network has already been learned, there may be a learning step and learning unit 14 when further learning is performed in order to enable prediction with higher accuracy.
- FIG. 2 is a diagram showing a configuration of the tomographic image prediction apparatus 1 in which the deep neural network has already been learned.
- the tomographic image prediction apparatus 1 inputs a tomographic image of the subject's brain as an input image I1, and the tomographic image of the subject's brain after the acquisition of the tomographic image (for example, one year later, after a certain number of years has elapsed).
- the image can be predicted by the deep neural network and output as the output image I2, and the health condition of the subject's brain can also be predicted based on the predicted tomographic image of the subject's brain. Since the tomographic image of the subject's future brain (and brain health) can be predicted, a more effective policy can be made for the care, treatment or prevention of the subject from the present to the future.
- the following measures can be taken.
- the symptoms can be improved by brain surgical treatment.
- the abnormality is a thyroid hormone abnormality
- symptoms can be improved by medical treatment.
- the progression of symptoms can be delayed by administration of a drug.
- the tomographic image prediction apparatus 1 and the tomographic image prediction method are not limited to a mode in which one input image I1 is input and one output image I2 is output, and various modes are possible. Hereinafter, another aspect of the tomographic image prediction apparatus will be described.
- FIG. 3 is a diagram showing a configuration of the tomographic image prediction apparatus 1A.
- the predicting unit 12A predicts brain tomographic images at a plurality of time points after the acquisition of the brain tomographic image (input image I1) input to the input unit 11.
- the output unit 13 may individually display the brain tomographic images (output images I2a to I2e) at each of the plurality of time points predicted by the prediction unit 12A, and preferably, the brain at each of the plurality of time points. You may display a moving image by displaying a tomographic image in order.
- the output image I2a is a predicted image after one year has elapsed since the acquisition of the input image I1.
- the output image I2b is a predicted image after two years have elapsed since the acquisition of the input image I1.
- the output image I2c is a predicted image after three years have elapsed since the acquisition of the input image I1.
- the output image I2d is a predicted image four years after the input image I1 is acquired.
- the output image I2e is a predicted image after five years from the acquisition of the input image I1.
- the prediction unit 12A predicts an output image I2a from the input image I1, predicts an output image I2b from the output image I2a, predicts an output image I2c from the output image I2b, and predicts an output image I2d from the output image I2c.
- the output image I2e may be predicted from the output image I2d.
- the deep neural network may be learned so that the output images I2a to I2e can be predicted from the input image I1.
- FIG. 4 is a diagram illustrating an example of a tomographic image (input image I1) input to the input unit 11, output images I2a to I2d output from the output unit 13, and a difference image output from the output unit 13. .
- the output unit 13 includes a brain tomographic image (output images I2a to I2d and the like) predicted by the prediction unit 12A and a brain tomographic image (input image I1) input to the input unit 11. It is also possible to obtain a difference image (I2a-I1, I2b-I1, I2c-I1, I2d-I1, etc.) representing the difference between and output this difference image.
- a difference image I2a-I1, I2b-I1, I2c-I1, I2d-I1, etc.
- FIG. 5 is a diagram showing a comparison between an actual tomographic image and a predicted tomographic image.
- a deep neural network was trained using a tomographic image database storing 470 sets of PET image data, with a set of PET images at a certain time point and a PET image one year later.
- This figure shows the actual PET images from the first year to the fifth year of the brain of a particular subject, and the predicted PET images from the first year to the fifth year of that particular subject's brain. Is also shown.
- This figure also shows a difference image representing the difference between the actual PET image of the fifth year and the PET image of the first year, and between the predicted PET image of the fifth year and the PET image of the first year. A difference image representing the difference is also shown.
- the portion where the activity was reduced was common between the actual PET image of a certain year and the predicted PET image of the same year. Moreover, the site
- FIG. 6 is a diagram showing a comparison between tomographic images predicted in the worst scenario and the best scenario.
- the prediction unit 12A may be configured to predict a brain tomographic image after the acquisition of the brain tomographic image input to the input unit 11 for each of the worst scenario and the best scenario.
- the deep neural network learns using the tomographic image databases having different temporal change speeds among the tomographic image databases.
- a deep neural network is trained using a database of tomographic images that change rapidly over time (eg, tomographic images of subjects close to Alzheimer's dementia), it is possible to predict tomographic images of the future brain in the worst scenario. .
- a deep neural network is trained using a database of tomographic images that change slowly over time (for example, tomographic images of healthy subjects)
- a future brain tomographic image can be predicted in the best scenario.
- various policies for care, treatment, or prevention from the present to the future of the subject can be established.
- FIG. 7 is a diagram showing a configuration of the tomographic image prediction apparatus 1B.
- the input unit 11B inputs a plurality of tomographic images (input images I1a and I1b) of the subject's brain.
- the prediction unit 12B predicts a tomographic image of the brain after the time of acquisition of the tomographic images based on the plurality of tomographic images of the brain of the subject input to the input unit 11B.
- the deep neural network is trained so that the output images I2a to I2e can be predicted from a plurality of tomographic images (input images I1a and I1b) of the subject's brain.
- the tomographic images of the subject's brain are tomographic images of the subject's brain acquired at each of a plurality of time points (for example, a tomographic image acquired in a certain year and a tomographic image acquired in the following year). is there.
- the plurality of tomographic images of the subject's brain are tomographic images (for example, PET images, SPECT images, and MRI images) of the subject's brain acquired by each of a plurality of types of tomographic image acquisition devices.
- prediction accuracy can be improved by predicting a future brain tomographic image based on a plurality of tomographic images of the subject's brain.
- FIG. 8 is a diagram showing a configuration of the tomographic image prediction apparatus 1C.
- the input unit 11C not only inputs a tomographic image (input image I1) of the subject's brain, but also inputs other information related to the subject.
- the prediction unit 12C predicts a tomographic image of the brain after the acquisition of the tomographic image based on the tomographic image of the brain of the subject input to the input unit 11C and other information related to the subject.
- the deep neural network is trained so that the output images I2a to I2e can be predicted from the tomographic image of the subject's brain and other information related to the subject.
- Other information regarding the subject is information that may be related to the health condition of the brain, for example, information such as age, sex, genetic information, medical history, lifestyle habits, and the like.
- the prediction accuracy can be improved by predicting the future brain tomographic image based on the tomographic image of the brain of the subject and other information relating to the subject.
- the present invention is not limited to the above embodiment and configuration examples, and various modifications are possible. For example, you may combine the arbitrary aspects of the various aspects demonstrated so far.
- a medical institution that includes a tomographic image acquisition apparatus (PET apparatus, SPECT apparatus, MRI apparatus) to acquire a tomographic image of the subject's brain, and an institution that includes a tomographic image prediction apparatus to predict a tomographic image of the subject's future brain ( (Hereinafter referred to as “prediction organization”) may be separate.
- the tomographic image of the subject's brain acquired in the medical institution is sent to the prediction institution via the communication line between the medical institution and the prediction institution, and the future brain tomographic image predicted in the prediction institution is the medical institution.
- a doctor or the like can make an effective policy for care, treatment, or prevention from the present to the future of the subject based on a future brain tomographic image sent from the prediction institution.
- the tomographic image prediction apparatus includes (1) an input unit that inputs a tomographic image of a subject's brain, and (2) a tomographic image of the brain based on the tomographic image of the brain input to the input unit.
- a prediction unit that predicts a tomographic image of the brain of the subject after the image is acquired, and (3) an output unit that outputs a result of prediction by the prediction unit.
- the above-described tomographic image prediction apparatus may further include a learning unit that learns a deep neural network using a database of brain tomographic images acquired at a plurality of time points for a plurality of subjects.
- the prediction unit may be configured to predict the health state of the subject's brain based on the predicted tomographic image of the subject's brain.
- the prediction unit may be configured to predict a brain tomographic image at each of a plurality of time points after the acquisition of the brain tomographic image input to the input unit.
- the output unit may display a brain tomographic image at each of a plurality of time points predicted by the prediction unit as a moving image.
- the output unit obtains a difference image representing a difference between the tomographic image of the brain predicted by the prediction unit and the tomographic image of the brain input to the input unit, and calculates the difference image. It may be configured to output.
- the predicting unit learns using a tomographic image database having a different temporal change speed from a database of brain tomographic images acquired at a plurality of time points for a plurality of subjects.
- a configuration in which a tomographic image of the brain after the acquisition of the tomographic image of the brain input to the input unit is predicted by a neural network may be employed.
- the prediction unit may be configured to predict a tomographic image of the brain after the acquisition of the tomographic images based on the tomographic images of the brain of the subject acquired at each of a plurality of time points. good.
- the prediction unit may be configured to predict a tomographic image of the brain after the time of acquisition of the tomographic images based on the tomographic images of the brain of the subject acquired by each of the plurality of types of tomographic image acquisition devices.
- the predicting unit may be configured to predict a tomographic image of the brain after the acquisition of the tomographic image based on the tomographic image of the brain input to the input unit and other information about the subject.
- the tomographic image prediction method includes (1) an input step of inputting a tomographic image of a subject's brain, and (2) a tomographic image of the brain by a deep neural network based on the tomographic image of the brain input in the input step.
- a prediction step of predicting a tomographic image of the subject's brain after the image acquisition time and (3) an output step of outputting a prediction result in the prediction step are provided.
- the above-described tomographic image prediction method may further include a learning step of learning a deep neural network using a brain tomographic image database acquired at a plurality of time points for a plurality of subjects.
- the prediction step may be configured to predict the health state of the subject's brain based on the predicted tomographic image of the subject's brain.
- the prediction step may be configured to predict a brain tomographic image at each of a plurality of time points after the acquisition of the brain tomographic image input in the input step.
- the output step may display a brain tomographic image at each of a plurality of time points predicted in the prediction step as a moving image.
- the output step obtains a difference image representing a difference between the brain tomographic image predicted in the prediction step and the brain tomographic image input in the input step, It may be configured to output.
- the step of predicting is a deep layer learned using a database of tomographic images having different speeds of temporal change from a database of tomographic images of the brain acquired at a plurality of time points for a plurality of subjects.
- a configuration in which a tomographic image of the brain after the acquisition of the tomographic image of the brain input in the input step is predicted by a neural network may be adopted.
- the prediction step may be configured to predict a tomographic image of the brain after the acquisition of the tomographic images based on the tomographic images of the subject's brain acquired at each of a plurality of time points. good.
- the prediction step may be configured to predict a tomographic image of the brain after the acquisition of the tomographic images based on the tomographic images of the brain of the subject acquired by each of the plurality of types of tomographic image acquisition devices.
- the prediction step may be configured to predict a tomographic image of the brain after the tomographic image is acquired based on the tomographic image of the brain input in the input step and other information about the subject.
- the present invention can be used as a tomographic image predicting apparatus and a tomographic image predicting method useful for planning a future treatment policy for a subject.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Artificial Intelligence (AREA)
- Theoretical Computer Science (AREA)
- Neurology (AREA)
- High Energy & Nuclear Physics (AREA)
- Physiology (AREA)
- Data Mining & Analysis (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Mathematical Physics (AREA)
- Epidemiology (AREA)
- Primary Health Care (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Psychiatry (AREA)
- Computing Systems (AREA)
- Computational Linguistics (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Neurosurgery (AREA)
- Databases & Information Systems (AREA)
- Fuzzy Systems (AREA)
- Oral & Maxillofacial Surgery (AREA)
Abstract
断層画像予測装置1は、入力部11、予測部12、出力部13および学習部14を備える。断層画像予測装置1は、被験者の脳の断層画像を入力画像I1として入力し、その断層画像の取得時より後の該被験者の脳の断層画像を予測部12の深層ニューラルネットワークにより予測して、その予測した断層画像を出力画像I2として出力する。断層画像予測装置1は、断層画像データベース15を用いて深層ニューラルネットワークを学習させることができる。これにより、被験者の将来の治療等の方針の立案に有用な断層画像予測装置および断層画像予測方法が実現される。
Description
本開示は、断層画像を予測する装置および方法に関するものである。
高齢化が進み認知症患者の数が増加しつつあり、被験者の認知症の程度を診断する技術が求められている。被験者の認知症の程度は、その被験者の言動から診断することができる他、脳の断層画像を医師が見ることにより診断することもできる。特許文献1には、ニューラルネットワークを用いて被験者の脳の断層画像から該被験者の脳の状態を診断する技術が開示されている。
特許文献1に開示された技術は、被験者の現在の脳の断層画像から現在の認知症の程度を診断する。被験者の現在の認知症の程度を診断することができれば、該被験者の介護または治療に有用である。しかし、被験者の現在の認知症の程度が分かるのみでは、該被験者の現在から将来に亘る介護、治療または予防の方針を立てるには十分ではない。
本発明は、被験者の将来の治療等の方針の立案に有用な断層画像予測装置および断層画像予測方法を提供することを目的とする。
本発明の実施形態は、断層画像予測装置である。断層画像予測装置は、(1)被験者の脳の断層画像を入力する入力部と、(2)入力部に入力された脳の断層画像に基づいて、深層ニューラルネットワークにより、その断層画像の取得時より後の被験者の脳の断層画像を予測する予測部と、(3)予測部による予測の結果を出力する出力部と、を備える。
本発明の実施形態は、断層画像予測方法である。断層画像予測方法は、(1)被験者の脳の断層画像を入力する入力ステップと、(2)入力ステップで入力された脳の断層画像に基づいて、深層ニューラルネットワークにより、その断層画像の取得時より後の被験者の脳の断層画像を予測する予測ステップと、(3)予測ステップにおける予測の結果を出力する出力ステップと、を備える。
本発明の実施形態によれば、被験者の将来の脳の断層画像を予測することで、該被験者の現在から将来に亘る介護、治療または予防について、より有効な方針を立てることができる。
以下、添付図面を参照して、本発明を実施するための形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。本発明は、これらの例示に限定されるものではない。
図1は、断層画像予測装置1の構成を示す図である。断層画像予測装置1は、被験者の脳の断層画像を入力画像I1として入力し、その断層画像の取得時より後の該被験者の脳の断層画像を深層ニューラルネットワークにより予測して、その予測した断層画像を出力画像I2として出力する。また、断層画像予測装置1は、断層画像データベース15を用いて深層ニューラルネットワークを学習させることができる。断層画像予測装置1は、例えばコンピュータを用いて構成され、入力部11、予測部(処理部)12、出力部13および学習部14を備える。
入力部11は、被験者の脳の断層画像を入力画像I1として入力する。断層画像は例えば、PET(Positron Emission Tomography)装置により取得されるPET画像、SPECT(Single Photon Emission Computed Tomography)装置により取得されるSPECT画像、および、MRI(Magnetic Resonance Imaging)装置により取得されるMRI画像の何れであってもよい。また、断層画像は、1スライスまたは複数スライスの二次元断層画像であってもよいし、三次元断層画像であってもよい。
予測部12は、入力部11に入力された脳の断層画像(入力画像I1)に基づいて、深層ニューラルネットワーク(Deep Neural Network)により、その断層画像の取得時より後の被験者の脳の断層画像等を予測する。また、予測部12は、その予測した被験者の脳の断層画像に基づいて該被験者の脳の健康状態をも予測する構成としても良い。脳の健康状態は、例えば認知症の程度であり、数値化されたZスコアで表すことができ、或いは、危険度レベル(要精密検査、要注意、要経過観察、等)で表すこともできる。
この深層ニューラルネットワークは、畳み込みニューラルネットワーク(Convolutional Neural Network)であっても良い。畳み込みニューラルネットワークでは、特徴量を抽出する畳み込み層と、特徴量を圧縮するプーリング層とが、交互に設けられている。予測部12は、深層ニューラルネットワークにおける処理を、CPU(Central Processing Unit)により行ってもよいが、より高速な処理が可能なDSP(Digital Signal Processor)またはGPU(Graphics Processing Unit)により行うのが好適である。
出力部13は、予測部12による予測の結果を出力する。出力部13は、予測部12が予測した被験者の脳の断層画像を出力画像I2として出力する。また、予測部12が被験者の脳の健康状態をも予測する場合には、出力部13は、予測部12が予測した被験者の脳の健康状態をも出力する。出力部13は、画像を表示するディスプレイを含む構成としても良い。
学習部14は、断層画像データベース15を用いて予測部12の深層ニューラルネットワークを学習させる。断層画像データベース15は、複数の被験者について複数の時点それぞれに取得された脳の断層画像データを格納している。断層画像データベース15は、例えば、略1年間隔で取得した各被験者の脳の断層画像データを格納している。学習部14は、各被験者の或る年に取得された断層画像を入力画像I1とし、その入力画像I1に対する出力画像I2および該被験者の次の年(または、一定年数経過後の年)に取得された断層画像に基づいて、予測部12の深層ニューラルネットワークを学習させる。このような深層ニューラルネットワークの学習は、深層学習(Deep Learning)と呼ばれる。
このような断層画像予測装置1を用いた断層画像予測方法は、入力部11による入力ステップ、予測部12による予測ステップ、出力部13による出力ステップ、および、学習部14による学習ステップを備える。
すなわち、入力ステップにおいて、被験者の脳の断層画像を入力画像I1として入力する。予測ステップにおいて、入力ステップで入力された脳の断層画像(入力画像I1)に基づいて、深層ニューラルネットワークにより、その断層画像の取得時より後の被験者の脳の断層画像等を予測する。また、予測ステップにおいて、その予測した被験者の脳の断層画像に基づいて該被験者の脳の健康状態をも予測する構成としても良い。出力ステップにおいて、予測ステップで予測した被験者の脳の断層画像を出力画像I2として出力し、また、予測ステップで予測した被験者の脳の健康状態をも出力する。学習ステップにおいて、断層画像データベース15を用いて深層ニューラルネットワークを学習させる。
学習ステップにおいて深層ニューラルネットワークの学習を一度行っておけば、以降は入力、予測および出力の一連のステップを繰り返して行うことができるので、入力、予測および出力の一連のステップを行う度に学習ステップを行う必要はない。同様の理由で、深層ニューラルネットワークが学習済みであれば学習部14は必要ではない。ただし、深層ニューラルネットワークが学習済みであっても、更に高精度の予測を可能にする為に更に学習を行う場合には、学習ステップおよび学習部14があってもよい。
図2は、深層ニューラルネットワークが学習済みである断層画像予測装置1の構成を示す図である。断層画像予測装置1は、被験者の脳の断層画像を入力画像I1として入力し、その断層画像の取得時より後(例えば、一年後、一定年数経過後、等)の該被験者の脳の断層画像を深層ニューラルネットワークにより予測して出力画像I2として出力することができ、また、その予測した被験者の脳の断層画像に基づいて該被験者の脳の健康状態をも予測することができる。被験者の将来の脳の断層画像(および脳の健康状態)を予測することができるので、該被験者の現在から将来に亘る介護、治療または予防について、より有効な方針を立てることができる。
被験者の将来の脳の断層画像(および脳の健康状態)を予測することで、例えば次のような対処が可能となる。予測された断層画像から、正常圧水頭症、脳腫瘍、慢性硬膜下血腫などの疑いがあると判断される場合には、脳外科的処置により症状を改善することができる。また、甲状腺ホルモンの異常が原因であると判断される場合は、内科的処置により症状を改善することができる。予測された断層画像からアルツハイマー型の疑いがあると判断される場合には、薬の投与により症状の進行を遅らせることができる。早期発見により、将来に生じる可能性がある生活上の障害等のトラブルに事前に対応することができ、早期に今後の治療、終末医療、介護などの方針を決めることができる。
断層画像予測装置1および断層画像予測方法は、1つの入力画像I1を入力して1つの出力画像I2を出力する態様に限られるものではなく、様々な態様が可能である。以下では、断層画像予測装置の他の態様について説明する。
図3は、断層画像予測装置1Aの構成を示す図である。断層画像予測装置1Aでは、予測部12Aは、入力部11に入力された脳の断層画像(入力画像I1)の取得時より後の複数の時点それぞれの脳の断層画像を予測する。出力部13は、予測部12Aにより予測された複数の時点それぞれの脳の断層画像(出力画像I2a~I2e)を個々に表示してもよいし、好適には、これら複数の時点それぞれの脳の断層画像を順に表示することで動画表示してもよい。
例えば、出力画像I2aは、入力画像I1の取得時より1年経過後の予測画像である。出力画像I2bは、入力画像I1の取得時より2年経過後の予測画像である。出力画像I2cは、入力画像I1の取得時より3年経過後の予測画像である。出力画像I2dは、入力画像I1の取得時より4年経過後の予測画像である。また、出力画像I2eは、入力画像I1の取得時より5年経過後の予測画像である。このように将来の複数の時点それぞれにおける脳の断層画像を予測することで、脳の健康状態の変化の把握が容易となる。
予測部12Aは、入力画像I1から出力画像I2aを予測し、この出力画像I2aから出力画像I2bを予測し、この出力画像I2bから出力画像I2cを予測し、この出力画像I2cから出力画像I2dを予測し、この出力画像I2dから出力画像I2eを予測してもよい。或いは、入力画像I1から出力画像I2a~I2eを予測することができるように、深層ニューラルネットワークを学習させておいてもよい。
図4は、入力部11に入力される断層画像(入力画像I1)、出力部13から出力される出力画像I2a~I2d、および、出力部13から出力される差分画像の例を示す図である。この図に示されるように、出力部13は、予測部12Aにより予測された脳の断層画像(出力画像I2a~I2d等)と入力部11に入力された脳の断層画像(入力画像I1)との間の差分を表す差分画像(I2a-I1、I2b-I1、I2c-I1、I2d-I1、等)を求めて、この差分画像を出力する構成としても良い。このように将来の複数の時点それぞれにおける脳の差分画像を表示することで、脳の健康状態の変化の把握(例えば悪化していく場所および様子の把握)が更に容易となる。
図5は、実際の断層画像と予測された断層画像とを対比して示す図である。ここでは、或る時点のPET画像と1年後のPET画像とを1組として、470組のPET画像データを格納する断層画像データベースを用い、深層ニューラルネットワークを学習させた。この図は、或る特定の被験者の脳の実際の1年目から5年目までのPET画像を示すとともに、その特定の被験者の脳の予測された1年目から5年目までのPET画像をも示す。また、この図は、実際の5年目のPET画像と1年目のPET画像との差分を表す差分画像を示すとともに、予測された5年目のPET画像と1年目のPET画像との差分を表す差分画像をも示す。
実際と予測とを対比すると、実際の或る年のPET画像と、予測された同年のPET画像との間で、活性が低下している部位が共通していた。また、その活性が低下する部位は、被験者によって異なっていた。このことは、或る時点の脳の断層画像から将来の脳の断層画像を被験者毎に予測することが可能であることを示している。このような結果は、従来の統計的な処理では困難である。
図6は、最悪シナリオおよび最良シナリオそれぞれで予測された断層画像を対比して示す図である。この図に示されるように、予測部12Aは、最悪シナリオおよび最良シナリオそれぞれについて、入力部11に入力された脳の断層画像の取得時より後の脳の断層画像を予測する構成としても良い。このとき、深層ニューラルネットワークは、断層画像データベースのうち経時変化の速さが互いに異なる断層画像のデータベースを用いて学習している。
経時変化が速い断層画像(例えば、アルツハイマー型認知症に近い被験者の断層画像)のデータベースを用いて深層ニューラルネットワークを学習させておけば、最悪シナリオで将来の脳の断層画像を予測することができる。経時変化が遅い断層画像(例えば、健常者の断層画像)のデータベースを用いて深層ニューラルネットワークを学習させておけば、最良シナリオで将来の脳の断層画像を予測することができる。このように最悪シナリオおよび最良シナリオそれぞれで被験者の将来の脳の断層画像を予測することにより、該被験者の現在から将来に亘る介護、治療または予防について様々な方針を立てることができる。
図7は、断層画像予測装置1Bの構成を示す図である。断層画像予測装置1Bでは、入力部11Bは、被験者の脳の複数の断層画像(入力画像I1a,I1b)を入力する。予測部12Bは、入力部11Bに入力された被験者の脳の複数の断層画像に基づいて、それらの断層画像の取得時より後の脳の断層画像を予測する。被験者の脳の複数の断層画像(入力画像I1a,I1b)から出力画像I2a~I2eを予測することができるように、深層ニューラルネットワークを学習させておく。
被験者の脳の複数の断層画像とは、複数の時点それぞれに取得された被験者の脳の断層画像(例えば、或る年に取得された断層画像と、次の年に取得された断層画像)である。或いは、被験者の脳の複数の断層画像とは、複数種類の断層画像取得装置それぞれにより取得された被験者の脳の断層画像(例えば、PET画像、SPECT画像、MRI画像)である。このように、被験者の脳の複数の断層画像に基づいて将来の脳の断層画像を予測することにより、予測の精度を向上させることができる。
図8は、断層画像予測装置1Cの構成を示す図である。断層画像予測装置1Cでは、入力部11Cは、被験者の脳の断層画像(入力画像I1)を入力するだけでなく、該被験者に関する他の情報をも入力する。予測部12Cは、入力部11Cに入力された被験者の脳の断層画像および該被験者に関する他の情報に基づいて、その断層画像の取得時より後の脳の断層画像を予測する。被験者の脳の断層画像および該被験者に関する他の情報から出力画像I2a~I2eを予測することができるように、深層ニューラルネットワークを学習させておく。
被験者に関する他の情報とは、脳の健康状態と関係があり得る情報であり、例えば、年齢、性別、遺伝子情報、既往歴、生活習慣等の情報である。このように、被験者の脳の断層画像および該被験者に関する他の情報に基づいて将来の脳の断層画像を予測することにより、予測の精度を向上させることができる。
本発明は、上記実施形態及び構成例に限定されるものではなく、種々の変形が可能である。例えば、これまでに説明した様々な態様のうちの任意の態様を組み合わせてもよい。
断層画像取得装置(PET装置、SPECT装置、MRI装置)を備えて被験者の脳の断層画像を取得する医療機関と、断層画像予測装置を備えて被験者の将来の脳の断層画像を予測する機関(以下「予測機関」という)とは、別個であってもよい。
この場合、医療機関と予測機関との間の通信回線により、医療機関において取得された被験者の脳の断層画像が予測機関へ送られ、予測機関において予測された将来の脳の断層画像が医療機関へ送られる。そして、医療機関では、医師等は、予測機関から送られてきた将来の脳の断層画像に基づいて、被験者の現在から将来に亘る介護、治療または予防について有効な方針を立てることができる。
上記実施形態による断層画像予測装置は、(1)被験者の脳の断層画像を入力する入力部と、(2)入力部に入力された脳の断層画像に基づいて、深層ニューラルネットワークにより、その断層画像の取得時より後の被験者の脳の断層画像を予測する予測部と、(3)予測部による予測の結果を出力する出力部と、を備える構成としている。
上記の断層画像予測装置では、複数の被験者について複数の時点それぞれに取得された脳の断層画像のデータベースを用いて深層ニューラルネットワークを学習させる学習部を更に備える構成としても良い。
上記の断層画像予測装置では、予測部は、予測した被験者の脳の断層画像に基づいて被験者の脳の健康状態を予測する構成としても良い。
上記の断層画像予測装置では、予測部は、入力部に入力された脳の断層画像の取得時より後の複数の時点それぞれの脳の断層画像を予測する構成としても良い。また、この場合、出力部は、予測部により予測された複数の時点それぞれの脳の断層画像を動画として表示する構成としても良い。
上記の断層画像予測装置では、出力部は、予測部により予測された脳の断層画像と入力部に入力された脳の断層画像との間の差分を表す差分画像を求めて、この差分画像を出力する構成としても良い。
上記の断層画像予測装置では、予測部は、複数の被験者について複数の時点それぞれに取得された脳の断層画像のデータベースのうち経時変化の速さが互いに異なる断層画像のデータベースを用いて学習した深層ニューラルネットワークにより、入力部に入力された脳の断層画像の取得時より後の脳の断層画像を予測する構成としても良い。
上記の断層画像予測装置では、予測部は、複数の時点それぞれに取得された被験者の脳の断層画像に基づいて、それらの断層画像の取得時より後の脳の断層画像を予測する構成としても良い。また、予測部は、複数種類の断層画像取得装置それぞれにより取得された被験者の脳の断層画像に基づいて、それらの断層画像の取得時より後の脳の断層画像を予測する構成としても良い。また、予測部は、入力部に入力された脳の断層画像および被験者に関する他の情報に基づいて、その断層画像の取得時より後の脳の断層画像を予測する構成としても良い。
上記実施形態による断層画像予測方法は、(1)被験者の脳の断層画像を入力する入力ステップと、(2)入力ステップで入力された脳の断層画像に基づいて、深層ニューラルネットワークにより、その断層画像の取得時より後の被験者の脳の断層画像を予測する予測ステップと、(3)予測ステップにおける予測の結果を出力する出力ステップと、を備える構成としている。
上記の断層画像予測方法では、複数の被験者について複数の時点それぞれに取得された脳の断層画像のデータベースを用いて深層ニューラルネットワークを学習させる学習ステップを更に備える構成としても良い。
上記の断層画像予測方法では、予測ステップは、予測した被験者の脳の断層画像に基づいて被験者の脳の健康状態を予測する構成としても良い。
上記の断層画像予測方法では、予測ステップは、入力ステップで入力された脳の断層画像の取得時より後の複数の時点それぞれの脳の断層画像を予測する構成としても良い。また、この場合、出力ステップは、予測ステップで予測された複数の時点それぞれの脳の断層画像を動画として表示する構成としても良い。
上記の断層画像予測方法では、出力ステップは、予測ステップで予測された脳の断層画像と入力ステップで入力された脳の断層画像との間の差分を表す差分画像を求めて、この差分画像を出力する構成としても良い。
上記の断層画像予測方法では、予測ステップは、複数の被験者について複数の時点それぞれに取得された脳の断層画像のデータベースのうち経時変化の速さが互いに異なる断層画像のデータベースを用いて学習した深層ニューラルネットワークにより、入力ステップで入力された脳の断層画像の取得時より後の脳の断層画像を予測する構成としても良い。
上記の断層画像予測方法では、予測ステップは、複数の時点それぞれに取得された被験者の脳の断層画像に基づいて、それらの断層画像の取得時より後の脳の断層画像を予測する構成としても良い。また、予測ステップは、複数種類の断層画像取得装置それぞれにより取得された被験者の脳の断層画像に基づいて、それらの断層画像の取得時より後の脳の断層画像を予測する構成としても良い。また、予測ステップは、入力ステップで入力された脳の断層画像および被験者に関する他の情報に基づいて、その断層画像の取得時より後の脳の断層画像を予測する構成としても良い。
本発明は、被験者の将来の治療等の方針の立案に有用な断層画像予測装置および断層画像予測方法として利用可能である。
1,1A~1C…断層画像予測装置、11,11B,11C…入力部、12,12A~12C…予測部、13…出力部、14…学習部、15…断層画像データベース。
Claims (20)
- 被験者の脳の断層画像を入力する入力部と、
前記入力部に入力された脳の断層画像に基づいて、深層ニューラルネットワークにより、その断層画像の取得時より後の前記被験者の脳の断層画像を予測する予測部と、
前記予測部による予測の結果を出力する出力部と、
を備える、断層画像予測装置。 - 複数の被験者について複数の時点それぞれに取得された脳の断層画像のデータベースを用いて前記深層ニューラルネットワークを学習させる学習部を更に備える、請求項1に記載の断層画像予測装置。
- 前記予測部は、予測した前記被験者の脳の断層画像に基づいて前記被験者の脳の健康状態を予測する、請求項1または2に記載の断層画像予測装置。
- 前記予測部は、前記入力部に入力された脳の断層画像の取得時より後の複数の時点それぞれの脳の断層画像を予測する、請求項1~3の何れか1項に記載の断層画像予測装置。
- 前記出力部は、前記予測部により予測された複数の時点それぞれの脳の断層画像を動画として表示する、請求項4に記載の断層画像予測装置。
- 前記出力部は、前記予測部により予測された脳の断層画像と前記入力部に入力された脳の断層画像との間の差分を表す差分画像を求めて、この差分画像を出力する、請求項1~5の何れか1項に記載の断層画像予測装置。
- 前記予測部は、複数の被験者について複数の時点それぞれに取得された脳の断層画像のデータベースのうち経時変化の速さが互いに異なる断層画像のデータベースを用いて学習した前記深層ニューラルネットワークにより、前記入力部に入力された脳の断層画像の取得時より後の脳の断層画像を予測する、請求項1~6の何れか1項に記載の断層画像予測装置。
- 前記予測部は、複数の時点それぞれに取得された前記被験者の脳の断層画像に基づいて、それらの断層画像の取得時より後の脳の断層画像を予測する、請求項1~7の何れか1項に記載の断層画像予測装置。
- 前記予測部は、複数種類の断層画像取得装置それぞれにより取得された前記被験者の脳の断層画像に基づいて、それらの断層画像の取得時より後の脳の断層画像を予測する、請求項1~8の何れか1項に記載の断層画像予測装置。
- 前記予測部は、前記入力部に入力された脳の断層画像および前記被験者に関する他の情報に基づいて、その断層画像の取得時より後の脳の断層画像を予測する、請求項1~9の何れか1項に記載の断層画像予測装置。
- 被験者の脳の断層画像を入力する入力ステップと、
前記入力ステップで入力された脳の断層画像に基づいて、深層ニューラルネットワークにより、その断層画像の取得時より後の前記被験者の脳の断層画像を予測する予測ステップと、
前記予測ステップにおける予測の結果を出力する出力ステップと、
を備える、断層画像予測方法。 - 複数の被験者について複数の時点それぞれに取得された脳の断層画像のデータベースを用いて前記深層ニューラルネットワークを学習させる学習ステップを更に備える、請求項11に記載の断層画像予測方法。
- 前記予測ステップは、予測した前記被験者の脳の断層画像に基づいて前記被験者の脳の健康状態を予測する、請求項11または12に記載の断層画像予測方法。
- 前記予測ステップは、前記入力ステップで入力された脳の断層画像の取得時より後の複数の時点それぞれの脳の断層画像を予測する、請求項11~13の何れか1項に記載の断層画像予測方法。
- 前記出力ステップは、前記予測ステップで予測された複数の時点それぞれの脳の断層画像を動画として表示する、請求項14に記載の断層画像予測方法。
- 前記出力ステップは、前記予測ステップで予測された脳の断層画像と前記入力ステップで入力された脳の断層画像との間の差分を表す差分画像を求めて、この差分画像を出力する、請求項11~15の何れか1項に記載の断層画像予測方法。
- 前記予測ステップは、複数の被験者について複数の時点それぞれに取得された脳の断層画像のデータベースのうち経時変化の速さが互いに異なる断層画像のデータベースを用いて学習した前記深層ニューラルネットワークにより、前記入力ステップで入力された脳の断層画像の取得時より後の脳の断層画像を予測する、請求項11~16の何れか1項に記載の断層画像予測方法。
- 前記予測ステップは、複数の時点それぞれに取得された前記被験者の脳の断層画像に基づいて、それらの断層画像の取得時より後の脳の断層画像を予測する、請求項11~17の何れか1項に記載の断層画像予測方法。
- 前記予測ステップは、複数種類の断層画像取得装置それぞれにより取得された前記被験者の脳の断層画像に基づいて、それらの断層画像の取得時より後の脳の断層画像を予測する、請求項11~18の何れか1項に記載の断層画像予測方法。
- 前記予測ステップは、前記入力ステップで入力された脳の断層画像および前記被験者に関する他の情報に基づいて、その断層画像の取得時より後の脳の断層画像を予測する、請求項11~19の何れか1項に記載の断層画像予測方法。
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP19815564.0A EP3805807A4 (en) | 2018-06-04 | 2019-05-30 | TOMOGRAPHIC IMAGE PREDICTION DEVICE AND TOMOGRAPHIC IMAGE PREDICTION METHOD |
| CN201980037277.2A CN112219138A (zh) | 2018-06-04 | 2019-05-30 | 断层图像预测装置及断层图像预测方法 |
| KR1020207032270A KR20210018214A (ko) | 2018-06-04 | 2019-05-30 | 단층 화상 예측 장치 및 단층 화상 예측 방법 |
| US15/734,318 US20210196125A1 (en) | 2018-06-04 | 2019-05-30 | Tomographic image prediction device and tomographic image prediction method |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2018-106908 | 2018-06-04 | ||
| JP2018106908A JP7114347B2 (ja) | 2018-06-04 | 2018-06-04 | 断層画像予測装置および断層画像予測方法 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2019235367A1 true WO2019235367A1 (ja) | 2019-12-12 |
Family
ID=68769302
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2019/021637 Ceased WO2019235367A1 (ja) | 2018-06-04 | 2019-05-30 | 断層画像予測装置および断層画像予測方法 |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US20210196125A1 (ja) |
| EP (1) | EP3805807A4 (ja) |
| JP (1) | JP7114347B2 (ja) |
| KR (1) | KR20210018214A (ja) |
| CN (1) | CN112219138A (ja) |
| TW (1) | TWI827610B (ja) |
| WO (1) | WO2019235367A1 (ja) |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP6679017B1 (ja) * | 2019-12-20 | 2020-04-15 | 株式会社Splink | 認知症リスクの提示システムおよび方法 |
| KR102582293B1 (ko) * | 2020-09-09 | 2023-09-25 | 사회복지법인 삼성생명공익재단 | 내이기관의 내림프수종 비율 측정 방법 및 그 장치 |
| JP7777398B2 (ja) * | 2021-04-05 | 2025-11-28 | 浜松ホトニクス株式会社 | 断層画像推測装置および断層画像推測方法 |
| WO2023053462A1 (ja) * | 2021-10-01 | 2023-04-06 | 株式会社CogSmart | 認知症予防支援装置、認知症予防支援プログラムおよび認知症予防支援方法 |
| JP2023064539A (ja) * | 2021-10-26 | 2023-05-11 | 株式会社Splink | コンピュータプログラム、情報処理装置、情報処理方法及び学習モデル生成方法 |
| WO2023153839A1 (ko) * | 2022-02-09 | 2023-08-17 | 사회복지법인 삼성생명공익재단 | 2차원 mri를 이용한 치매 정보 산출 방법 및 분석장치 |
| CN115661152B (zh) * | 2022-12-27 | 2023-04-07 | 四川大学华西医院 | 基于模型预测的目标发展情况分析方法 |
| WO2025126343A1 (ja) * | 2023-12-12 | 2025-06-19 | 株式会社Nttドコモ | 情報処理装置および情報処理方法 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008056638A1 (fr) | 2006-11-06 | 2008-05-15 | Fujifilm Ri Pharma Co., Ltd. | Procédé d'aide au diagnostic à partir d'une image du cerveau, logiciel, et procédé d'enregistrement |
| JP2008157640A (ja) * | 2006-12-20 | 2008-07-10 | Fujifilm Ri Pharma Co Ltd | 脳画像データに関する時系列データの解析方法、プログラムおよび記録媒体 |
| US20130116540A1 (en) * | 2010-03-15 | 2013-05-09 | Shi-Jiang Li | Systems and methods for detection and prediction of brain disorders based on neural network interaction |
| WO2017106645A1 (en) * | 2015-12-18 | 2017-06-22 | The Regents Of The University Of California | Interpretation and quantification of emergency features on head computed tomography |
| US20180144466A1 (en) * | 2016-11-23 | 2018-05-24 | General Electric Company | Deep learning medical systems and methods for image acquisition |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6577700B1 (en) * | 2001-06-22 | 2003-06-10 | Liang-Shih Fan | Neural network based multi-criteria optimization image reconstruction technique for imaging two- and three-phase flow systems using electrical capacitance tomography |
| US9492114B2 (en) * | 2004-06-18 | 2016-11-15 | Banner Health Systems, Inc. | Accelerated evaluation of treatments to prevent clinical onset of alzheimer's disease |
| US7929737B2 (en) * | 2005-09-29 | 2011-04-19 | General Electric Company | Method and system for automatically generating a disease severity index |
| WO2007062135A2 (en) * | 2005-11-23 | 2007-05-31 | Junji Shiraishi | Computer-aided method for detection of interval changes in successive whole-body bone scans and related computer program product and system |
| EP2976003A4 (en) * | 2013-03-20 | 2016-12-14 | Univ Cornell | METHOD AND TOOLS FOR ANALYZING BRAIN IMAGES |
| US9700219B2 (en) * | 2013-10-17 | 2017-07-11 | Siemens Healthcare Gmbh | Method and system for machine learning based assessment of fractional flow reserve |
| WO2015134665A1 (en) * | 2014-03-04 | 2015-09-11 | SignalSense, Inc. | Classifying data with deep learning neural records incrementally refined through expert input |
| US10546233B1 (en) * | 2014-07-23 | 2020-01-28 | Hrl Laboratories, Llc | Method and system to predict and interpret conceptual knowledge in the brain |
| EP3295374B8 (en) * | 2015-05-11 | 2023-10-18 | Siemens Healthcare GmbH | Method and system for landmark detection in medical images using deep neural networks |
| CN107530043B (zh) * | 2015-07-08 | 2020-07-10 | 株式会社日立制作所 | 图像运算装置、图像运算方法及断层图像拍摄装置 |
| CN105718952B (zh) * | 2016-01-22 | 2018-10-30 | 武汉科恩斯医疗科技有限公司 | 使用深度学习网络对断层医学影像进行病灶分类的系统 |
| WO2017223560A1 (en) | 2016-06-24 | 2017-12-28 | Rensselaer Polytechnic Institute | Tomographic image reconstruction via machine learning |
| US10878219B2 (en) * | 2016-07-21 | 2020-12-29 | Siemens Healthcare Gmbh | Method and system for artificial intelligence based medical image segmentation |
| CN107451609A (zh) * | 2017-07-24 | 2017-12-08 | 上海交通大学 | 基于深度卷积神经网络的肺结节图像识别系统 |
| CN107616796B (zh) * | 2017-08-31 | 2020-09-11 | 北京医拍智能科技有限公司 | 基于深度神经网络的肺结节良恶性检测方法及装置 |
| US11918333B2 (en) * | 2017-12-29 | 2024-03-05 | Analytics For Life Inc. | Method and system to assess disease using phase space tomography and machine learning |
| US12032658B2 (en) * | 2018-06-18 | 2024-07-09 | Google Llc | Method and system for improving cancer detection using deep learning |
-
2018
- 2018-06-04 JP JP2018106908A patent/JP7114347B2/ja active Active
-
2019
- 2019-05-30 US US15/734,318 patent/US20210196125A1/en not_active Abandoned
- 2019-05-30 EP EP19815564.0A patent/EP3805807A4/en not_active Withdrawn
- 2019-05-30 WO PCT/JP2019/021637 patent/WO2019235367A1/ja not_active Ceased
- 2019-05-30 CN CN201980037277.2A patent/CN112219138A/zh active Pending
- 2019-05-30 KR KR1020207032270A patent/KR20210018214A/ko not_active Ceased
- 2019-06-04 TW TW108119283A patent/TWI827610B/zh active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2008056638A1 (fr) | 2006-11-06 | 2008-05-15 | Fujifilm Ri Pharma Co., Ltd. | Procédé d'aide au diagnostic à partir d'une image du cerveau, logiciel, et procédé d'enregistrement |
| JP2008157640A (ja) * | 2006-12-20 | 2008-07-10 | Fujifilm Ri Pharma Co Ltd | 脳画像データに関する時系列データの解析方法、プログラムおよび記録媒体 |
| US20130116540A1 (en) * | 2010-03-15 | 2013-05-09 | Shi-Jiang Li | Systems and methods for detection and prediction of brain disorders based on neural network interaction |
| WO2017106645A1 (en) * | 2015-12-18 | 2017-06-22 | The Regents Of The University Of California | Interpretation and quantification of emergency features on head computed tomography |
| US20180144466A1 (en) * | 2016-11-23 | 2018-05-24 | General Electric Company | Deep learning medical systems and methods for image acquisition |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP3805807A4 |
Also Published As
| Publication number | Publication date |
|---|---|
| US20210196125A1 (en) | 2021-07-01 |
| EP3805807A4 (en) | 2022-02-23 |
| CN112219138A (zh) | 2021-01-12 |
| TW202011895A (zh) | 2020-04-01 |
| KR20210018214A (ko) | 2021-02-17 |
| TWI827610B (zh) | 2024-01-01 |
| JP7114347B2 (ja) | 2022-08-08 |
| JP2019211307A (ja) | 2019-12-12 |
| EP3805807A1 (en) | 2021-04-14 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2019235367A1 (ja) | 断層画像予測装置および断層画像予測方法 | |
| US20240274249A1 (en) | Diagnosis support system, information processing method, and program | |
| EP3596697B1 (en) | Generalizable medical image analysis using segmentation and classification neural networks | |
| CN108784655B (zh) | 针对医疗患者的快速评估和后果分析 | |
| US9265441B2 (en) | Assessment of traumatic brain injury | |
| US11730420B2 (en) | Maternal-fetal sepsis indicator | |
| CN113261939A (zh) | 根据医学数据针对围手术期心肌梗塞或并发症的基于机器的风险预测 | |
| JP2022527571A (ja) | 病状によって影響を受ける可能性がある被験者を識別するための方法およびシステム | |
| CN112530575B (zh) | 诊疗辅助装置 | |
| US11915414B2 (en) | Medical image processing apparatus, method, and program | |
| Garbarino et al. | Differences in topological progression profile among neurodegenerative diseases from imaging data | |
| JP2019101485A (ja) | 情報処理方法、情報処理装置、情報処理システム及びプログラム | |
| WO2020158717A1 (ja) | 学習済みモデル、学習方法、及びプログラム、並びに医用情報取得装置、方法、及びプログラム | |
| Combès et al. | A clinically-compatible workflow for computer-aided assessment of brain disease activity in multiple sclerosis patients | |
| JP7457292B2 (ja) | 脳画像解析装置、制御方法、及びプログラム | |
| US11328414B2 (en) | Priority judgement device, method, and program | |
| US11551351B2 (en) | Priority judgement device, method, and program | |
| WO2023190880A1 (ja) | 脳画像データ解析装置、脳画像データ解析方法および脳画像データ解析プログラム | |
| EP3813075A1 (en) | System and method for automating medical images screening and triage | |
| US20180004901A1 (en) | Systems and methods for holistic analysis of medical conditions | |
| JP2021104140A (ja) | 医用情報処理装置、医用情報処理方法、及び医用情報処理プログラム | |
| JP7313165B2 (ja) | アルツハイマー病生存分析装置及びアルツハイマー病生存分析プログラム | |
| KR20220082869A (ko) | 진단 툴 | |
| US12423809B2 (en) | Medical image processing apparatus, method, and program for detecting abnormal region by setting threshold | |
| Powell et al. | Mild traumatic brain injury history is associated with lower brain network resilience in soldiers |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19815564 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2019815564 Country of ref document: EP Effective date: 20210111 |