WO2019233085A1 - Phosphorus-containing polycarboxylate superplasticizer and preparation method therefor - Google Patents
Phosphorus-containing polycarboxylate superplasticizer and preparation method therefor Download PDFInfo
- Publication number
- WO2019233085A1 WO2019233085A1 PCT/CN2018/122569 CN2018122569W WO2019233085A1 WO 2019233085 A1 WO2019233085 A1 WO 2019233085A1 CN 2018122569 W CN2018122569 W CN 2018122569W WO 2019233085 A1 WO2019233085 A1 WO 2019233085A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phosphate
- hydroxynaphthalene
- acid
- hydroxymethylnaphthalene
- reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F230/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
- C08F230/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B24/00—Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
- C04B24/24—Macromolecular compounds
- C04B24/243—Phosphorus-containing polymers
- C04B24/246—Phosphorus-containing polymers containing polyether side chains
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2103/00—Function or property of ingredients for mortars, concrete or artificial stone
- C04B2103/30—Water reducers, plasticisers, air-entrainers, flow improvers
- C04B2103/302—Water reducers
Definitions
- the invention belongs to the technical field of building admixtures, and particularly relates to a phosphorus-containing polycarboxylic acid water reducing agent and a preparation method thereof.
- Polycarboxylic acid water reducing agent as a new type of high performance water reducing agent, has low dosage, high water reduction rate, good slump retention, small shrinkage rate, relatively good adaptability to cement and admixtures, and enhanced effects. Obviously waiting for a series of outstanding performance. At the same time, the production process is environmentally friendly and has been widely used in various engineering fields. However, due to the rapid development of China's real estate market and infrastructure construction, a large number of engineering constructions have consumed huge amounts of cement and sand and stone, which has increased the tight supply of sand and stone resources. Natural sand and stone resources in many regions of the country are increasingly scarce.
- the purpose of the present invention is to overcome the defects of the prior art and provide a phosphorus-containing polycarboxylic acid water reducing agent.
- Another object of the present invention is to provide a method for preparing the phosphorus-containing polycarboxylic acid water reducing agent.
- a phosphorus-containing polycarboxylic acid water reducing agent the molecular weight of which is 10,000 to 150,000, and its structural formula is as follows:
- R 1 is H or CH 3
- R 2 is an alkyl group of 1 to 4 carbons
- R 3 is an alkyl group of 1 to 4 carbons
- R 4 is an alkyl group of 1 to 4 carbons
- R 5 is H or COOM
- R 6 is H or CH 3
- R 7 is H or COOM
- R 8 is H or CH 3
- R 9 is an empty or 1 to 4 carbon alkyl group
- R 10 is an alkyl group having one alkane In the naphthalene ring of the phosphate substituent
- M is H, Na, K or NH 4 ; the relationship between R 3 and R 4 relative to the benzene ring is ortho, meta or para.
- the preparation method of the above-mentioned phosphorus-containing polycarboxylic acid water reducing agent includes the following steps:
- the first esterification reaction the unsaturated polyether and the first compound are mixed, and the temperature is increased to 70-90 ° C under the protection of nitrogen, and then a catalyst is added, and the reaction is maintained for 0.5-3.0h, during which a vacuum or nitrogen is passed.
- the method with water is used to remove water, and after the reaction is completed, the temperature is lowered to room temperature to obtain a first mixture containing an esterified product and an unreacted unsaturated polyether.
- the unsaturated polyether is an allyl polyethylene with a molecular weight of 600 to 5000. At least one of alcohol, 3-methyl-3-butene-1-polyethylene glycol, and 2-methylallyl polyethylene glycol; the structural formula of the first compound is as follows:
- the second esterification reaction mixed unsaturated carboxylic acid or unsaturated carboxylic anhydride, hydroxynaphthalene phosphoric acid and polymerization inhibitor, heated under nitrogen protection to 90-120 ° C, and then added a catalyst, and kept the reaction at 0.5-3.0 h, during the period of time, the water is removed by vacuum or nitrogen gas, and the temperature is reduced to room temperature after the reaction, to obtain a second mixture containing the esterified product and unreacted unsaturated carboxylic acid or unsaturated carboxylic anhydride;
- the acid or unsaturated carboxylic anhydride is at least one of acrylic acid, methacrylic acid, maleic acid, and maleic anhydride;
- the hydroxynaphthalene phosphate is 1-hydroxynaphthalene-4 phosphate, 1-hydroxynaphthalene-5 phosphate, and 1-hydroxyl Naphthalene-6 phosphate, 1-hydroxynaphthalene-7 phosphate, 2-hydroxynaphthalene-4 phosphate, 2-hydroxyn
- step (3) The copolymerized product obtained in step (3) is adjusted to a pH of 5 to 7 with an alkali to obtain the phosphorus-containing polycarboxylic acid water reducing agent.
- the molar ratio of the unsaturated polyether and the first compound is 1 to 1.5: 1, and the amount of the catalyst is the unsaturated polyether and the first compound. 0.05 to 0.3% of the total mass.
- the molar ratio of the unsaturated carboxylic acid or unsaturated carboxylic anhydride to hydroxynaphthalene phosphate is 2 to 7: 1, and the amount of the catalyst used is The total mass of the saturated carboxylic acid or unsaturated carboxylic anhydride and hydroxynaphthalene phosphoric acid is 0.03 to 0.3%; the amount of the polymerization inhibitor is 0.2 to 3.0% of the total mass of the unsaturated carboxylic acid or unsaturated carboxylic anhydride and hydroxynaphthalene phosphoric acid.
- the total amount of water used in step (3) and step (4) is such that the mass concentration of the copolymerization product is 20 to 70%, and the amount of the initiator is the copolymerization. 0.5 to 3.0% of the total mass of the solute in the monomer mixture solution, and the amount of the molecular weight modifier is 0.2 to 2.0% of the total mass of the solute in the comonomer mixture solution.
- the catalyst is at least one of pyromellitic acid, nitrogen sulfur acid, and trinitrobenzenesulfonic acid.
- the polymerization inhibitor is at least one of hydroquinone, phenothiazine, and diphenylamine.
- the initiator is a water-soluble redox initiator system or a water-soluble azo initiator.
- the molecular weight modifier is at least one of mercaptoacetic acid, mercaptopropionic acid, mercaptoethanol, isopropanol, sodium hypophosphite, trisodium phosphate, sodium formate, sodium acetate, and dodecanethiol.
- the present invention uses an esterified product of an unsaturated polyether monomer and a first compound for the synthesis of a polycarboxylic acid water reducing agent.
- a benzene ring and a phosphate group structure are introduced at the branched end of the polycarboxylic acid water reducing agent molecule.
- the benzene ring structure makes the steric hindrance effect of the molecular branches of the polycarboxylic acid superplasticizer enhanced, and the phosphate group structure makes the molecular branches of the polycarboxylic acid superplasticizer not only have a steric hindrance effect, but also have an electrostatic repulsive effect, making The water reduction rate of the prepared polycarboxylic acid water reducing agent is higher.
- a naphthalene phosphate side is introduced into the main chain of a polycarboxylic acid water reducing agent molecule by using an esterified product of an unsaturated carboxylic acid or an unsaturated carboxylic acid anhydride and a hydroxynaphthalene phosphate for the synthesis of a polycarboxylic acid water reducing agent. It changes the adsorption effect of polycarboxylic acid water reducing agent on cement, mud, and stone powder, so that the prepared polycarboxylic acid water reducing agent has the effect of low sensitivity to mud and powder content in concrete aggregate.
- the ester structure in the polycarboxylic acid water reducing agent of the present invention will gradually hydrolyze and release part of the carboxylic acid group with water reducing effect under the alkaline environment of concrete, so that the prepared polycarboxylic acid water reducing agent also has Has a certain slump effect.
- the molecular weight of the phosphorus-containing polycarboxylic acid water reducing agent obtained in the following examples is 10,000 to 150,000, and its structural formula is as follows:
- R 1 is H or CH 3
- R 2 is an alkyl group of 1 to 4 carbons
- R 3 is an alkyl group of 1 to 4 carbons
- R 4 is an alkyl group of 1 to 4 carbons
- R 5 is H or COOM
- R 6 is H or CH 3
- R 7 is H or COOM
- R 8 is H or CH 3
- R 9 is an empty or 1 to 4 carbon alkyl group
- R 10 is an alkyl group having one alkane In the naphthalene ring of the phosphate substituent
- M is H, Na, K or NH 4 ; the relationship between R 3 and R 4 relative to the benzene ring is ortho, meta or para.
- the first esterification reaction 600.00 g of allyl polyethylene glycol with a molecular weight of 1000 and 100.00 g of ortho-carboxybenzene phosphoric acid are mixed, and the temperature is increased to 75 ° C. under nitrogen protection, and then 0.38 g of pyromellitic acid is added, and the temperature is maintained. The reaction was carried out for 2.0 hours. During the reaction, water was removed by vacuuming or passing nitrogen through water. After the reaction, the temperature was reduced to room temperature to obtain a first mixture containing an esterified product and unreacted allyl polyethylene glycol.
- the first esterification reaction 1050.00 g of 3-methyl-3-butene-1-polyethylene glycol with a molecular weight of 2000 and 100.00 g of m-carboxymethylbenzenephosphoric acid are mixed, and the temperature is increased to 75 under the protection of nitrogen. °C, then add 1.50g of nitrogen sulfur sulfuric acid, keep the reaction for 1.5h, remove the water by vacuum or nitrogen water during the reaction, after the reaction is completed, reduce to room temperature to obtain the esterified product and unreacted 3-methyl A first mixture of 3-butene-1-polyethylene glycol.
- the first esterification reaction 1140.00 g of 2-methylallyl polyethylene glycol having a molecular weight of 2400 and 100.00 g of p-carboxyethyl phenylphosphoric acid are mixed, and the temperature is increased to 85 ° C. under the protection of nitrogen, and then 2.80 is added. g Trinitrobenzenesulfonic acid, holding the reaction for 1.5h, during which the water is removed by evacuation or nitrogen flow with water. After the reaction, the temperature is reduced to room temperature to obtain an esterified product and unreacted 2-methylallyl group. A first mixture of polyethylene glycol.
- the phosphorus-containing polycarboxylic acid water-reducing agents prepared in Examples 1 to 5 were tested.
- the solid content was 0.2% (relative to the amount of cement)
- the water reduction rates were higher than
- the compressive strength ratios at 45% and 28d were all greater than 140%, and the shrinkage ratios at 28d were less than 110%.
- Minfu PO 42.5 ordinary Portland cement is used.
- the concrete mix ratio is: cement 300kg / m 3 , fly ash 100kg / m 3 , mineral powder 100kg / m 3 , sand 690kg / m 3 , stone 1050kg / m 3 , water 160kg / m 3 , and adding 3.5% of bentonite (relative to the amount of cement), the phosphorus-containing polycarboxylic acid water reducing agent and commercially available polycarboxylic acid water reducing agent (PCE) prepared in Examples 1 to 5 were added in accordance with Folding solid content of 0.15% for performance testing. Test the initial slump and spread of the concrete, 2h slump and spread.
- a phosphorus-containing polycarboxylic acid water reducing agent the molecular weight of which is 10,000 to 150,000, and its structural formula is as follows:
- R 1 is H or CH 3
- R 2 is an alkyl group of 1 to 4 carbons
- R 3 is an alkyl group of 1 to 4 carbons
- R 4 is an alkyl group of 1 to 4 carbons
- R 5 is H or COOM
- R 6 is H or CH 3
- R 7 is H or COOM
- R 8 is H or CH 3
- R 9 is an empty or 1 to 4 carbon alkyl group
- R 10 is an alkyl group having one alkane In the naphthalene ring of the phosphate substituent
- M is H, Na, K or NH 4 ; the relationship between R 3 and R 4 relative to the benzene ring is ortho, meta or para.
- the preparation method of the above-mentioned phosphorus-containing polycarboxylic acid water reducing agent includes the following steps:
- the first esterification reaction the unsaturated polyether and the first compound are mixed, and the temperature is increased to 70-90 ° C under the protection of nitrogen, and then a catalyst is added, and the reaction is maintained for 0.5-3.0h, during which a vacuum or nitrogen is passed.
- the method with water is used to remove water, and after the reaction is completed, the temperature is lowered to room temperature to obtain a first mixture containing an esterified product and an unreacted unsaturated polyether.
- the unsaturated polyether is an allyl polyethylene with a molecular weight of 600 to 5000. At least one of alcohol, 3-methyl-3-butene-1-polyethylene glycol, and 2-methylallyl polyethylene glycol; the structural formula of the first compound is as follows:
- the second esterification reaction mixed unsaturated carboxylic acid or unsaturated carboxylic anhydride, hydroxynaphthalene phosphoric acid and polymerization inhibitor, heated under nitrogen protection to 90-120 ° C, and then added a catalyst, and kept the reaction at 0.5-3.0 h, during the period of time, the water is removed by vacuum or nitrogen gas, and the temperature is reduced to room temperature after the reaction, to obtain a second mixture containing the esterified product and unreacted unsaturated carboxylic acid or unsaturated carboxylic anhydride;
- the acid or unsaturated carboxylic anhydride is at least one of acrylic acid, methacrylic acid, maleic acid, and maleic anhydride;
- the hydroxynaphthalene phosphate is 1-hydroxynaphthalene-4 phosphate, 1-hydroxynaphthalene-5 phosphate, and 1-hydroxyl Naphthalene-6 phosphate, 1-hydroxynaphthalene-7 phosphate, 2-hydroxynaphthalene-4 phosphate, 2-hydroxyn
- step (3) The copolymerized product obtained in step (3) is adjusted to a pH of 5 to 7 with an alkali to obtain the phosphorus-containing polycarboxylic acid water reducing agent.
- the molar ratio of the unsaturated polyether to the first compound is 1 to 1.5: 1, and the amount of the catalyst used is 0.05 to 0.3% of the total mass of the unsaturated polyether and the first compound.
- the molar ratio of the unsaturated carboxylic acid or unsaturated carboxylic anhydride to hydroxynaphthalene phosphoric acid is 2 to 7: 1, and the amount of the catalyst used is unsaturated carboxylic acid or unsaturated carboxylic anhydride and hydroxy 0.03 to 0.3% of the total mass of naphthalene phosphate; the amount of the polymerization inhibitor is 0.2 to 3.0% of the total mass of unsaturated carboxylic acid or unsaturated carboxylic anhydride and hydroxynaphthalene phosphate.
- the total amount of water used in step (3) and step (4) is such that the mass concentration of the copolymerization product is 20 to 70%, and the amount of the initiator is equal to the total mass of the solute in the comonomer mixture solution. 0.5 to 3.0%, and the amount of the molecular weight modifier is 0.2 to 2.0% of the total mass of the solute in the comonomer mixture solution.
- the catalyst is at least one of pyromellitic acid, nitrogen sulfur acid, and trinitrobenzenesulfonic acid.
- the polymerization inhibitor is at least one of hydroquinone, phenothiazine, and diphenylamine.
- the initiator is a water-soluble redox initiator system or a water-soluble azo initiator.
- the molecular weight modifier is at least one of mercaptoacetic acid, mercaptopropionic acid, mercaptoethanol, isopropanol, sodium hypophosphite, trisodium phosphate, sodium formate, sodium acetate, and dodecyl mercaptan.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
Abstract
Description
本发明属于建筑外加剂技术领域,具体涉及一种含磷聚羧酸减水剂及其制备方法。The invention belongs to the technical field of building admixtures, and particularly relates to a phosphorus-containing polycarboxylic acid water reducing agent and a preparation method thereof.
聚羧酸减水剂作为新型的高性能减水剂,具有掺量低、减水率高、坍落度保持性好、收缩率小、与水泥和掺合料适应性相对较好、增强效果明显等一系列突出的性能。同时,生产过程环保,目前已广泛应用于各项工程领域中。但是,由于我国房地产市场和基础设施建设高速发展,大量的工程建设耗费了巨量的水泥、砂石,加剧了砂石资源供应的紧张局面,全国不少地区的天然砂、石资源日益匮乏,砂石材料供不应求,导致砂石材料极不稳定以及砂石含泥量高且不稳定,聚羧酸减水剂应用于混凝土,出现减水率不足,保坍不好,敏感性问题日益突出。因此,开发出一种高减水,高保坍,且对材料含泥量不敏感的减水剂意义重大。Polycarboxylic acid water reducing agent, as a new type of high performance water reducing agent, has low dosage, high water reduction rate, good slump retention, small shrinkage rate, relatively good adaptability to cement and admixtures, and enhanced effects. Obviously waiting for a series of outstanding performance. At the same time, the production process is environmentally friendly and has been widely used in various engineering fields. However, due to the rapid development of China's real estate market and infrastructure construction, a large number of engineering constructions have consumed huge amounts of cement and sand and stone, which has increased the tight supply of sand and stone resources. Natural sand and stone resources in many regions of the country are increasingly scarce. The supply of sandstone materials is in short supply, resulting in extremely unstable sandstone materials and high and unstable mud content of sandstone. Polycarboxylic acid water reducing agents are applied to concrete, which results in insufficient water reduction rate, poor slump retention, and increasing sensitivity issues. Therefore, it is of great significance to develop a water-reducing agent with high water reduction, high collapse resistance, and insensitivity to the mud content of the material.
发明内容Summary of the Invention
本发明的目的在于克服现有技术缺陷,提供一种含磷聚羧酸减水剂。The purpose of the present invention is to overcome the defects of the prior art and provide a phosphorus-containing polycarboxylic acid water reducing agent.
本发明的另一目的在于提供上述含磷聚羧酸减水剂的制备方法。Another object of the present invention is to provide a method for preparing the phosphorus-containing polycarboxylic acid water reducing agent.
本发明的技术方案如下:The technical scheme of the present invention is as follows:
一种含磷聚羧酸减水剂,其分子量为10000~150000,且其结构式如下:A phosphorus-containing polycarboxylic acid water reducing agent, the molecular weight of which is 10,000 to 150,000, and its structural formula is as follows:
其中,R 1为H或CH 3,R 2为1~4个碳的烷基,R 3为空或1~4个碳的烷基,R 4为空或1~4个碳的烷基,R 5为H或COOM,R 6为H或CH 3,R 7为H或COOM,R 8为H或CH 3,R 9为空或1~4个碳的烷基,R 10为具有一个烷基磷酸盐取代基的萘环,M为H、Na、K或NH 4;R 3与R 4相对所在苯环的关系为邻位、间位或对位。 Wherein R 1 is H or CH 3 , R 2 is an alkyl group of 1 to 4 carbons, R 3 is an alkyl group of 1 to 4 carbons, R 4 is an alkyl group of 1 to 4 carbons, R 5 is H or COOM, R 6 is H or CH 3 , R 7 is H or COOM, R 8 is H or CH 3 , R 9 is an empty or 1 to 4 carbon alkyl group, and R 10 is an alkyl group having one alkane In the naphthalene ring of the phosphate substituent, M is H, Na, K or NH 4 ; the relationship between R 3 and R 4 relative to the benzene ring is ortho, meta or para.
上述含磷聚羧酸减水剂制备方法,包括如下步骤:The preparation method of the above-mentioned phosphorus-containing polycarboxylic acid water reducing agent includes the following steps:
(1)第一酯化反应:将不饱聚醚和第一化合物混合,在氮气保护下,升温至70~90℃,再加入催化剂,保温反应0.5~3.0h,期间用抽真空或通氮气带水的方法除去水,反应结束后降至室温,得到含有酯化产物和未反应的不饱聚醚的第一混合物;上述不饱聚醚为分子量为600~5000的烯丙基聚乙二醇、3-甲基-3-丁烯-1-聚乙二醇、2-甲基烯丙基聚乙二醇中的至少一种;上述第一化合物的结构式如下:(1) The first esterification reaction: the unsaturated polyether and the first compound are mixed, and the temperature is increased to 70-90 ° C under the protection of nitrogen, and then a catalyst is added, and the reaction is maintained for 0.5-3.0h, during which a vacuum or nitrogen is passed. The method with water is used to remove water, and after the reaction is completed, the temperature is lowered to room temperature to obtain a first mixture containing an esterified product and an unreacted unsaturated polyether. The unsaturated polyether is an allyl polyethylene with a molecular weight of 600 to 5000. At least one of alcohol, 3-methyl-3-butene-1-polyethylene glycol, and 2-methylallyl polyethylene glycol; the structural formula of the first compound is as follows:
(2)第二酯化反应:将不饱和羧酸或不饱和羧酸酐、羟基萘磷酸和阻聚剂混合,在氮气保护下,升温至90~120℃,再加入催化剂,保温反应0.5~3.0h,期间用抽真空或通氮气带水的方法除去水,反应结束后降至室温,得到含有酯化产物和未反应的不饱和羧酸或不饱和羧酸酐的第二混合物;上述不饱和羧酸或不饱和羧酸酐为丙烯酸、甲基丙烯酸、马来酸、马来酸酐中的至少一种;上述羟基萘磷酸为1-羟基萘-4磷酸、1-羟基萘-5磷酸、1-羟基萘-6磷酸、1-羟基萘-7磷酸、2-羟基萘-4磷酸、2-羟基萘-5磷酸、2-羟基萘-6磷酸、2-羟基萘-7磷酸、1-羟甲基萘-4磷酸、1-羟甲基萘-5磷酸、1-羟甲基萘-6磷酸、1-羟甲基萘-7磷酸、2-羟甲基萘-4磷酸、2-羟甲基萘-5磷酸、2-羟甲基萘-6磷酸、2-羟甲基萘-7磷酸、1-羟基萘-4甲基磷酸、1-羟基萘-5甲基磷酸、1-羟基萘-6甲基磷酸、1-羟基萘-7甲基磷酸、2-羟基萘-4甲基磷酸、2-羟基萘-5甲基磷酸、2-羟基萘-6甲基磷酸、2-羟基萘-7甲基磷酸、1-羟甲基萘-4甲基磷酸、1-羟甲基萘-5甲基磷酸、1-羟甲基萘-6甲基磷酸、1-羟甲基萘-7甲基磷酸、2-羟甲基萘-4甲基磷酸、2-羟甲基萘-5甲基磷酸、2-羟甲基萘-6甲基磷酸、2-羟甲基萘-7甲基磷酸中的至少一种:(2) The second esterification reaction: mixed unsaturated carboxylic acid or unsaturated carboxylic anhydride, hydroxynaphthalene phosphoric acid and polymerization inhibitor, heated under nitrogen protection to 90-120 ° C, and then added a catalyst, and kept the reaction at 0.5-3.0 h, during the period of time, the water is removed by vacuum or nitrogen gas, and the temperature is reduced to room temperature after the reaction, to obtain a second mixture containing the esterified product and unreacted unsaturated carboxylic acid or unsaturated carboxylic anhydride; The acid or unsaturated carboxylic anhydride is at least one of acrylic acid, methacrylic acid, maleic acid, and maleic anhydride; the hydroxynaphthalene phosphate is 1-hydroxynaphthalene-4 phosphate, 1-hydroxynaphthalene-5 phosphate, and 1-hydroxyl Naphthalene-6 phosphate, 1-hydroxynaphthalene-7 phosphate, 2-hydroxynaphthalene-4 phosphate, 2-hydroxynaphthalene-5 phosphate, 2-hydroxynaphthalene-6 phosphate, 2-hydroxynaphthalene-7 phosphate, 1-hydroxymethyl Naphthalene-4 phosphate, 1-hydroxymethylnaphthalene-5 phosphate, 1-hydroxymethylnaphthalene-6 phosphate, 1-hydroxymethylnaphthalene-7 phosphate, 2-hydroxymethylnaphthalene-4 phosphate, 2-hydroxymethyl Naphthalene-5 phosphate, 2-hydroxymethylnaphthalene-6 phosphate, 2-hydroxymethylnaphthalene-7 phosphate, 1-hydroxynaphthalene-4 methylphosphate, 1-hydroxynaphthalene-5methylphosphate, 1-hydroxynaphthalene- 6 methyl phosphate, 1-hydroxynaphthalene-7 methyl Acid, 2-hydroxynaphthalene-4 methyl phosphate, 2-hydroxynaphthalene-5 methyl phosphate, 2-hydroxynaphthalene-6 methyl phosphate, 2-hydroxynaphthalene-7 methyl phosphate, 1-hydroxymethylnaphthalene-4 Methyl phosphate, 1-hydroxymethylnaphthalene-5 methyl phosphate, 1-hydroxymethylnaphthalene-6 methyl phosphate, 1-hydroxymethylnaphthalene-7 methyl phosphate, 2-hydroxymethylnaphthalene-4 methyl At least one of phosphoric acid, 2-hydroxymethylnaphthalene-5methylphosphoric acid, 2-hydroxymethylnaphthalene-6methylphosphoric acid, 2-hydroxymethylnaphthalene-7methylphosphoric acid:
(3)单体共混:将步骤(1)制得的第一混合物和步骤(2)制得的第二混合物以100:6~18的质量比混合,并加入水使得其溶解,得到共聚单体混合物溶液;(3) monomer blending: mixing the first mixture obtained in step (1) and the second mixture obtained in step (2) at a mass ratio of 100: 6 to 18, and adding water to dissolve them to obtain copolymerization Monomer mixture solution;
(4)共聚反应:将上述共聚单体混合物溶液、引发剂水溶液及分子量调节剂水溶液滴入水中进行反应,反应温度为10~60℃,滴加时间为0.2~6.0h,滴加完毕后保温0~3.0h,得共聚产物;(4) Copolymerization reaction: The above comonomer mixture solution, initiator aqueous solution and molecular weight regulator aqueous solution are dropped into water for reaction. The reaction temperature is 10-60 ° C, and the dropping time is 0.2-6.0h. After the dropwise addition, the temperature is maintained. 0 ~ 3.0h, copolymerization product is obtained;
(5)中和反应:将步骤(3)制得的共聚产物用碱调节pH至5~7,即得所述一种含磷聚羧酸减水剂。(5) Neutralization reaction: The copolymerized product obtained in step (3) is adjusted to a pH of 5 to 7 with an alkali to obtain the phosphorus-containing polycarboxylic acid water reducing agent.
在本发明的一个优选实施方案中,所述步骤(1)中,所述不饱聚醚和第一化合物的摩尔比为1~1.5:1,催化剂的用量为不饱聚醚和第一化合物总质量的0.05~0.3%。In a preferred embodiment of the present invention, in the step (1), the molar ratio of the unsaturated polyether and the first compound is 1 to 1.5: 1, and the amount of the catalyst is the unsaturated polyether and the first compound. 0.05 to 0.3% of the total mass.
在本发明的一个优选实施方案中,所述步骤(2)中,所述不饱和羧酸或不饱和羧酸 酐和羟基萘磷酸的摩尔比为2~7:1,所述催化剂的用量为不饱和羧酸或不饱和羧酸酐和羟基萘磷酸总质量的0.03~0.3%;所述阻聚剂用量为不饱和羧酸或不饱和羧酸酐和羟基萘磷酸总质量的0.2~3.0%%。In a preferred embodiment of the present invention, in the step (2), the molar ratio of the unsaturated carboxylic acid or unsaturated carboxylic anhydride to hydroxynaphthalene phosphate is 2 to 7: 1, and the amount of the catalyst used is The total mass of the saturated carboxylic acid or unsaturated carboxylic anhydride and hydroxynaphthalene phosphoric acid is 0.03 to 0.3%; the amount of the polymerization inhibitor is 0.2 to 3.0% of the total mass of the unsaturated carboxylic acid or unsaturated carboxylic anhydride and hydroxynaphthalene phosphoric acid.
在本发明的一个优选实施方案中,所述步骤(3)和步骤(4)所用水的总量使得所述共聚产物的质量浓度为20~70%,所述引发剂的用量为所述共聚单体混合物溶液中溶质的总质量的0.5~3.0%,所述分子量调节剂的用量为所述共聚单体混合物溶液中溶质的总质量的0.2~2.0%。In a preferred embodiment of the present invention, the total amount of water used in step (3) and step (4) is such that the mass concentration of the copolymerization product is 20 to 70%, and the amount of the initiator is the copolymerization. 0.5 to 3.0% of the total mass of the solute in the monomer mixture solution, and the amount of the molecular weight modifier is 0.2 to 2.0% of the total mass of the solute in the comonomer mixture solution.
进一步优选的,所述催化剂为苯六甲酸,氮硫方酸和三硝基苯磺酸中的至少一种。Further preferably, the catalyst is at least one of pyromellitic acid, nitrogen sulfur acid, and trinitrobenzenesulfonic acid.
进一步优选的,所述阻聚剂为对苯二酚、吩噻嗪和二苯胺中的至少一种。Further preferably, the polymerization inhibitor is at least one of hydroquinone, phenothiazine, and diphenylamine.
进一步优选的,所述引发剂为水溶性氧化还原引发体系或水溶性偶氮引发剂。Further preferably, the initiator is a water-soluble redox initiator system or a water-soluble azo initiator.
进一步优选的,所述分子量调节剂为巯基乙酸、巯基丙酸、巯基乙醇、异丙醇、次磷酸钠、磷酸三钠、甲酸钠、乙酸钠和十二硫醇中的至少一种。Further preferably, the molecular weight modifier is at least one of mercaptoacetic acid, mercaptopropionic acid, mercaptoethanol, isopropanol, sodium hypophosphite, trisodium phosphate, sodium formate, sodium acetate, and dodecanethiol.
本发明的有益效果是:The beneficial effects of the present invention are:
1、本发明通过将不饱和聚醚单体和第一化合物的酯化产物用于聚羧酸减水剂的合成在聚羧酸减水剂分子的支链末端引入了苯环及磷酸基结构,苯环结构使得聚羧酸减水剂分子支链的空间位阻效应得到了增强,磷酸基结构使得聚羧酸减水剂分子支链不仅具有空间位阻效应,还具有静电斥力效应,使得制备的聚羧酸减水剂减水率更高。1. The present invention uses an esterified product of an unsaturated polyether monomer and a first compound for the synthesis of a polycarboxylic acid water reducing agent. A benzene ring and a phosphate group structure are introduced at the branched end of the polycarboxylic acid water reducing agent molecule. The benzene ring structure makes the steric hindrance effect of the molecular branches of the polycarboxylic acid superplasticizer enhanced, and the phosphate group structure makes the molecular branches of the polycarboxylic acid superplasticizer not only have a steric hindrance effect, but also have an electrostatic repulsive effect, making The water reduction rate of the prepared polycarboxylic acid water reducing agent is higher.
2、本发明通过将不饱和羧酸或不饱和羧酸酐和羟基萘磷酸的酯化产物用于聚羧酸减水剂的合成在聚羧酸减水剂分子的主链上引入了萘磷酸侧基,改变了聚羧酸减水剂在水泥、泥、石粉上的吸附效果,使得制备的聚羧酸减水剂具有对混凝土骨料中含泥和含粉量敏感性低的效果。2. In the present invention, a naphthalene phosphate side is introduced into the main chain of a polycarboxylic acid water reducing agent molecule by using an esterified product of an unsaturated carboxylic acid or an unsaturated carboxylic acid anhydride and a hydroxynaphthalene phosphate for the synthesis of a polycarboxylic acid water reducing agent. It changes the adsorption effect of polycarboxylic acid water reducing agent on cement, mud, and stone powder, so that the prepared polycarboxylic acid water reducing agent has the effect of low sensitivity to mud and powder content in concrete aggregate.
3、本发明的聚羧酸减水剂中的酯基结构在混凝土的碱性环境下还会逐渐水解释放出部分具有减水效果的羧酸基团,使得制备的聚羧酸减水剂也具有一定的保坍效果。3. The ester structure in the polycarboxylic acid water reducing agent of the present invention will gradually hydrolyze and release part of the carboxylic acid group with water reducing effect under the alkaline environment of concrete, so that the prepared polycarboxylic acid water reducing agent also has Has a certain slump effect.
以下通过具体实施方式对本发明的技术方案进行进一步的说明和描述。The technical solutions of the present invention are further illustrated and described below through specific embodiments.
下述实施例所制得的含磷聚羧酸减水剂的分子量为10000~150000,且其结构式如下:The molecular weight of the phosphorus-containing polycarboxylic acid water reducing agent obtained in the following examples is 10,000 to 150,000, and its structural formula is as follows:
其中,R 1为H或CH 3,R 2为1~4个碳的烷基,R 3为空或1~4个碳的烷基,R 4为空或1~4个碳的烷基,R 5为H或COOM,R 6为H或CH 3,R 7为H或COOM,R 8为H或CH 3,R 9为空或1~4个碳的烷基,R 10为具有一个烷基磷酸盐取代基的萘环,M为H、Na、K或NH 4;R 3与R 4相对所在苯环的关系为邻位、间位或对位。 Wherein R 1 is H or CH 3 , R 2 is an alkyl group of 1 to 4 carbons, R 3 is an alkyl group of 1 to 4 carbons, R 4 is an alkyl group of 1 to 4 carbons, R 5 is H or COOM, R 6 is H or CH 3 , R 7 is H or COOM, R 8 is H or CH 3 , R 9 is an empty or 1 to 4 carbon alkyl group, and R 10 is an alkyl group having one alkane In the naphthalene ring of the phosphate substituent, M is H, Na, K or NH 4 ; the relationship between R 3 and R 4 relative to the benzene ring is ortho, meta or para.
实施例1Example 1
(1)第一酯化反应:将600.00g分子量为1000的烯丙基聚乙二醇和100.00g邻羧基苯磷酸混合,在氮气保护下,升温至75℃,再加入0.38g苯六甲酸,保温反应2.0h,期间用抽真空或通氮气带水的方法除去水,反应结束后降至室温,得到含有酯化产物和未反应的烯丙基聚乙二醇的第一混合物。(1) The first esterification reaction: 600.00 g of allyl polyethylene glycol with a molecular weight of 1000 and 100.00 g of ortho-carboxybenzene phosphoric acid are mixed, and the temperature is increased to 75 ° C. under nitrogen protection, and then 0.38 g of pyromellitic acid is added, and the temperature is maintained. The reaction was carried out for 2.0 hours. During the reaction, water was removed by vacuuming or passing nitrogen through water. After the reaction, the temperature was reduced to room temperature to obtain a first mixture containing an esterified product and unreacted allyl polyethylene glycol.
(2)第二酯化反应:将75.00g丙烯酸、100.00g1-羟基萘-4磷酸和1.80g对苯二酚混合,在氮气保护下,升温至105℃,再加入0.15g苯六甲酸,保温反应2.0h,期间用抽真空或通氮气带水的方法除去水,反应结束后降至室温,得到含有酯化产物和未反应的丙烯酸的第二混合物;(2) The second esterification reaction: 75.00 g of acrylic acid, 100.00 g of 1-hydroxynaphthalene-4 phosphoric acid, and 1.80 g of hydroquinone are mixed, and the temperature is increased to 105 ° C. under the protection of nitrogen, and 0.15 g of pyrohexacarboxylic acid is added, and the temperature is maintained The reaction was carried out for 2.0 hours. During the reaction, water was removed by vacuum or nitrogen gas. After the reaction, the temperature was reduced to room temperature to obtain a second mixture containing the esterified product and unreacted acrylic acid.
(3)单体共混:将100.00g步骤(1)制得的第一混合物、11.00g步骤(2)制得的第二混合物混合,并加入40.00g水使得其溶解,得到共聚单体混合物溶液;(3) monomer blending: 100.00 g of the first mixture obtained in step (1) and 11.00 g of the second mixture obtained in step (2) are mixed, and 40.00 g of water is added to dissolve it to obtain a comonomer mixture Solution
(4)共聚反应:将上述共聚单体混合物溶液、双氧水水溶液(其中双氧水0.90g,水10.00g)、抗坏血酸水溶液(其中0.20g,水10.00g)及巯基乙酸水溶液(其中巯基乙酸0.70g,水10.00g)滴入40.00g水中进行反应,反应温度为40℃,滴加时间为3.0h,滴加完毕后保温1.5h,得共聚产物;(4) Copolymerization reaction: the above comonomer mixture solution, hydrogen peroxide aqueous solution (wherein 0.90 g of hydrogen peroxide and 10.00 g of water), aqueous ascorbic acid solution (of which 0.20 g, water 10.00 g) and aqueous thioglycolic acid solution (wherein 0.70 g of thioglycolic acid, water 10.00g) dropwise into 40.00g of water to carry out the reaction, the reaction temperature is 40 ° C, the dropping time is 3.0h, and the temperature is maintained for 1.5h after the dropwise addition, to obtain a copolymer product;
(5)中和反应:将步骤(4)制得的共聚产物用碱调节pH至5~7,即得所述含磷聚羧酸减水剂PCE-1。(5) Neutralization reaction: Adjust the pH of the copolymerized product obtained in step (4) to 5 to 7 with alkali to obtain the phosphorus-containing polycarboxylic acid water reducing agent PCE-1.
实施例2Example 2
(1)第一酯化反应:将1050.00g分子量为2000的3-甲基-3-丁烯-1-聚乙二醇和100.00g间羧甲基苯磷酸混合,在氮气保护下,升温至75℃,再加入1.50g氮硫方酸,保温反应1.5h,期间用抽真空或通氮气带水的方法除去水,反应结束后降至室温,得到含有酯化产物和未反应的3-甲基-3-丁烯-1-聚乙二醇的第一混合物。(1) The first esterification reaction: 1050.00 g of 3-methyl-3-butene-1-polyethylene glycol with a molecular weight of 2000 and 100.00 g of m-carboxymethylbenzenephosphoric acid are mixed, and the temperature is increased to 75 under the protection of nitrogen. ℃, then add 1.50g of nitrogen sulfur sulfuric acid, keep the reaction for 1.5h, remove the water by vacuum or nitrogen water during the reaction, after the reaction is completed, reduce to room temperature to obtain the esterified product and unreacted 3-methyl A first mixture of 3-butene-1-polyethylene glycol.
(2)第二酯化反应:将88.00g甲基丙烯酸、100.00g1-羟基萘-5磷酸和1.60g吩噻嗪混合,在氮气保护下,升温至100℃,再加入0.30g氮硫方酸,保温反应2.0h,期间用抽真空或通氮气带水的方法除去水,反应结束后降至室温,得到含有酯化产物和未反应的甲基丙烯酸的第二混合物;(2) The second esterification reaction: 88.00 g of methacrylic acid, 100.00 g of 1-hydroxynaphthalene-5 phosphoric acid, and 1.60 g of phenothiazine are mixed, and the temperature is increased to 100 ° C. under the protection of nitrogen, and then 0.30 g of nitrosulfuric acid is added. , Holding the reaction for 2.0h, during which the water was removed by vacuuming or passing nitrogen through water, and after the reaction was completed, the temperature was lowered to obtain a second mixture containing the esterified product and unreacted methacrylic acid;
(3)单体共混:将100.00g步骤(1)制得的第一混合物、13.00g步骤(2)制得的第二混合物混合,并加入40.00g水使得其溶解,得到共聚单体混合物溶液;(3) monomer blending: 100.00 g of the first mixture prepared in step (1) and 13.00 g of the second mixture prepared in step (2) are mixed, and 40.00 g of water is added to dissolve them to obtain a comonomer mixture Solution
(4)共聚反应:将上述共聚单体混合物溶液、偶氮二异丁基脒盐酸盐水溶液(其中偶氮二异丁基脒盐酸盐1.20g,水10.00g)及次磷酸钠水溶液(其中次磷酸钠0.90g,水10.00g)滴入40.00g水中进行反应,反应温度为45℃,滴加时间为2.0h,滴加完毕后保温1.0h,得共聚产物;(4) Copolymerization reaction: the above comonomer mixture solution, azobisisobutylphosphonium hydrochloride aqueous solution (among which azobisisobutylphosphonium hydrochloride 1.20g, water 10.00g) and aqueous sodium hypophosphite ( Among them, sodium hypophosphite (0.90 g, water 10.00 g) was dropped into 40.00 g of water to carry out the reaction, the reaction temperature was 45 ° C, the dropping time was 2.0 h, and the temperature was maintained for 1.0 h after the dropping was completed to obtain a copolymer product;
(5)中和反应:将步骤(4)制得的共聚产物用碱调节pH至5~7,即得所述含磷聚羧酸减水剂PCE-2。(5) Neutralization reaction: Adjust the pH of the copolymerized product obtained in step (4) to 5 to 7 with alkali to obtain the phosphorus-containing polycarboxylic acid water reducing agent PCE-2.
实施例3Example 3
(1)第一酯化反应:将1140.00g分子量为2400的2-甲基烯丙基聚乙二醇和100.00g对羧乙基苯磷酸混合,在氮气保护下,升温至85℃,再加入2.80g三硝基苯磺酸,保温反 应1.5h,期间用抽真空或通氮气带水的方法除去水,反应结束后降至室温,得到含有酯化产物和未反应的2-甲基烯丙基聚乙二醇的第一混合物。(1) The first esterification reaction: 1140.00 g of 2-methylallyl polyethylene glycol having a molecular weight of 2400 and 100.00 g of p-carboxyethyl phenylphosphoric acid are mixed, and the temperature is increased to 85 ° C. under the protection of nitrogen, and then 2.80 is added. g Trinitrobenzenesulfonic acid, holding the reaction for 1.5h, during which the water is removed by evacuation or nitrogen flow with water. After the reaction, the temperature is reduced to room temperature to obtain an esterified product and unreacted 2-methylallyl group. A first mixture of polyethylene glycol.
(2)第二酯化反应:将165.00g马来酸、100.00g1-羟基萘-6磷酸和1.80g二苯胺混合,在氮气保护下,升温至110℃,再加入0.60g三硝基苯磺酸,保温反应2.5h,期间用抽真空或通氮气带水的方法除去水,反应结束后降至室温,得到含有酯化产物和未反应的马来酸的第二混合物;(2) The second esterification reaction: 165.00g of maleic acid, 100.00g of 1-hydroxynaphthalene-6 phosphate and 1.80g of diphenylamine are mixed, and the temperature is increased to 110 ° C under the protection of nitrogen, and then 0.60g of trinitrobenzenesulfonate is added. Acid, keep the reaction for 2.5h, remove the water by vacuuming or passing nitrogen gas into the water during the reaction. After the reaction, the temperature is reduced to room temperature to obtain a second mixture containing the esterified product and unreacted maleic acid;
(3)单体共混:将100.00g步骤(1)制得的第一混合物、15.00g步骤(2)制得的第二混合物混合,并加入40.00g水使得其溶解,得到共聚单体混合物溶液;(3) monomer blending: 100.00 g of the first mixture obtained in step (1) and 15.00 g of the second mixture obtained in step (2) are mixed, and 40.00 g of water is added to dissolve them to obtain a comonomer mixture Solution
(4)共聚反应:将上述共聚单体混合物溶液、偶氮二氰基戊酸水溶液(其中偶氮二氰基戊酸2.20g,水10.00g)及磷酸三钠水溶液(其中磷酸三钠1.60g,水10.00g)滴入40.00g水中进行反应,反应温度为50℃,滴加时间为2.0h,滴加完毕后保温0.5h,得共聚产物;(4) Copolymerization reaction: the above comonomer mixture solution, an azobiscyanovaleric acid aqueous solution (wherein 2.20 g of azodicyanovaleric acid and 10.00 g of water) and an aqueous solution of trisodium phosphate (wherein 1.60 g of trisodium phosphate) , Water 10.00g) dropwise into 40.00g water to carry out the reaction, the reaction temperature is 50 ° C., the dropping time is 2.0h, and the temperature is maintained for 0.5h after the dropwise addition, to obtain a copolymer product;
(5)中和反应:将步骤(4)制得的共聚产物用碱调节pH至5~7,即得所述含磷聚羧酸减水剂PCE-3。(5) Neutralization reaction: Adjust the pH of the copolymerized product obtained in step (4) to 5 to 7 with alkali to obtain the phosphorus-containing polycarboxylic acid water reducing agent PCE-3.
实施例4Example 4
(1)第一酯化反应:将1450.00g分子量为3000的烯丙基聚乙二醇和100.00g邻羧基苯甲基磷酸混合,在氮气保护下,升温至90℃,再加入4.40g苯六甲酸,保温反应3.0h,期间用抽真空或通氮气带水的方法除去水,反应结束后降至室温,得到含有酯化产物和未反应的烯丙基聚乙二醇的第一混合物。(1) First esterification reaction: 1450.00g of allyl polyethylene glycol having a molecular weight of 3000 and 100.00g of o-carboxybenzyl phosphoric acid are mixed, and the temperature is increased to 90 ° C under the protection of nitrogen, and then 4.40g of pyromellitic acid is added. The reaction was kept at a temperature of 3.0 h, during which the water was removed by vacuum or nitrogen gas, and the temperature was reduced to room temperature after the reaction was completed to obtain a first mixture containing an esterified product and unreacted allyl polyethylene glycol.
(2)第二酯化反应:将170.00g马来酸酐、100.00g1-羟基萘-7磷酸和2.00g对苯二酚混合,在氮气保护下,升温至100℃,再加入0.70g三硝基苯磺酸,保温反应1.5h,期间用抽真空或通氮气带水的方法除去水,反应结束后降至室温,得到含有酯化产物和未反应的马来酸酐的第二混合物;(2) The second esterification reaction: 170.00 g of maleic anhydride, 100.00 g of 1-hydroxynaphthalene-7 phosphoric acid, and 2.00 g of hydroquinone are mixed, and the temperature is increased to 100 ° C under the protection of nitrogen, and then 0.70 g of trinitro group is added. Benzene sulfonic acid, which was incubated for 1.5 h. During the reaction, water was removed by evacuation or nitrogen with water. After the reaction, the temperature was reduced to room temperature to obtain a second mixture containing the esterified product and unreacted maleic anhydride.
(3)单体共混:将100.00g步骤(1)制得的第一混合物、16.00g步骤(2)制得的第二混合物混合,并加入40.00g水使得其溶解,得到共聚单体混合物溶液;(3) monomer blending: 100.00 g of the first mixture prepared in step (1) and 16.00 g of the second mixture prepared in step (2) are mixed, and 40.00 g of water is added to dissolve it to obtain a comonomer mixture Solution
(4)共聚反应:将上述共聚单体混合物溶液、双氧水水溶液(其中,双氧水1.20g,水10.00g)、磷酸三钠水溶液(其中,磷酸三钠1.00g,水10.00g)、抗坏血酸水溶液(其中,抗坏血酸0.20,水10.00g)滴入40.00g水中进行反应,反应温度为35℃,滴加时间为2.5h,滴加完毕后保温1.0h,得共聚产物;(4) Copolymerization reaction: the above comonomer mixture solution, hydrogen peroxide aqueous solution (including hydrogen peroxide 1.20 g, water 10.00 g), trisodium phosphate aqueous solution (including trisodium phosphate 1.00 g, water 10.00 g), and ascorbic acid aqueous solution (where , Ascorbic acid 0.20, water 10.00g) dropwise into 40.00g water for reaction, the reaction temperature is 35 ° C, the drop time is 2.5h, and the temperature is maintained for 1.0h after the dropwise addition, to obtain a copolymer product;
(5)中和反应:将步骤(4)制得的共聚产物用碱调节pH至5~7,即得所述含磷聚羧酸减水剂PCE-4。(5) Neutralization reaction: Adjust the pH of the copolymerized product obtained in step (4) to 5 to 7 with alkali to obtain the phosphorus-containing polycarboxylic acid water reducing agent PCE-4.
实施例5Example 5
(1)第一酯化反应:将1990.00g分子量为4000的3-甲基-3-丁烯-1-聚乙二醇和100.00g对羧甲基苯乙基磷酸混合,在氮气保护下,升温至80℃,再加入6.00g三硝基苯磺酸,保温反应3.0h,期间用抽真空或通氮气带水的方法除去水,反应结束后降至室温,得到含有酯化产物和未反应的3-甲基-3-丁烯-1-聚乙二醇的第一混合物。(1) First esterification reaction: 1990.00g of 3-methyl-3-butene-1-polyethylene glycol having a molecular weight of 4000 and 100.00g of p-carboxymethylphenethylphosphoric acid are mixed, and the temperature is increased under the protection of nitrogen. To 80 ° C, add 6.00g of trinitrobenzenesulfonic acid, and keep the reaction for 3.0h. During the period, remove the water by vacuuming or passing nitrogen into the water. After the reaction, the temperature is reduced to room temperature to obtain the esterified product and unreacted A first mixture of 3-methyl-3-butene-1-polyethylene glycol.
(2)第二酯化反应:将99.00g丙烯酸、100.00g2-羟基萘-4磷酸和3.60g吩噻嗪混合,在氮气保护下,升温至115℃,再加入0.40g氮硫方酸,保温反应1.5h,期间用抽真空或通氮气带水的方法除去水,反应结束后降至室温,得到含有酯化产物和未反应的丙烯酸的第二混合物;(2) The second esterification reaction: 99.00 g of acrylic acid, 100.00 g of 2-hydroxynaphthalene-4 phosphoric acid and 3.60 g of phenothiazine are mixed, and the temperature is increased to 115 ° C. under the protection of nitrogen, and 0.40 g of nitrogen sulfur sulfuric acid is added, and the temperature is maintained The reaction was carried out for 1.5 hours. During the reaction, water was removed by evacuation or nitrogen gas. After the reaction, the temperature was reduced to room temperature to obtain a second mixture containing the esterified product and unreacted acrylic acid.
(3)单体共混:将100.00g步骤(1)制得的第一混合物、13.00g步骤(2)制得的第二混合物混合,并加入40.00g水使得其溶解,得到共聚单体混合物溶液;(3) monomer blending: 100.00 g of the first mixture prepared in step (1) and 13.00 g of the second mixture prepared in step (2) are mixed, and 40.00 g of water is added to dissolve them to obtain a comonomer mixture Solution
(4)共聚反应:将上述共聚单体混合物溶液、偶氮二氰基戊酸水溶液(其中,偶氮二氰基戊酸1.80g,水10.00g)、次磷酸钠水溶液(其中,次磷酸钠1.40g,水20.00g)滴入40.00g水中进行反应,反应温度为40℃,滴加时间为2.0h,滴加完毕后保温2.0h,得共聚产物;(4) Copolymerization reaction: the comonomer mixture solution, an azodicyanovaleric acid aqueous solution (wherein, azodicyanovaleric acid 1.80g, water 10.00g), an aqueous sodium hypophosphite solution (wherein sodium hypophosphite 1.40g, water 20.00g) dropwise into 40.00g water to carry out the reaction, the reaction temperature is 40 ° C, the dropping time is 2.0h, and the temperature is maintained for 2.0h after the dropwise addition, to obtain a copolymer product;
(5)中和反应:将步骤(4)制得的共聚产物用碱调节pH至5~7,即得所述含磷聚羧酸减水剂PCE-5。(5) Neutralization reaction: The copolymerized product obtained in step (4) is adjusted to a pH of 5 to 7 with an alkali to obtain the phosphorus-containing polycarboxylic acid water reducing agent PCE-5.
按照GB/T8076-2008对实施例1到实施例5所制得的含磷聚羧酸减水剂进行测试,折固掺量为0.2%时(相对于水泥用量),减水率均高于45%,28d抗压强度比均大于140%,28d收缩率比均小于110%。According to GB / T8076-2008, the phosphorus-containing polycarboxylic acid water-reducing agents prepared in Examples 1 to 5 were tested. When the solid content was 0.2% (relative to the amount of cement), the water reduction rates were higher than The compressive strength ratios at 45% and 28d were all greater than 140%, and the shrinkage ratios at 28d were less than 110%.
采用闽福P.O 42.5普通硅酸盐水泥,混凝土配合比为:水泥300kg/m 3、粉煤灰100kg/m 3、矿粉100kg/m 3、砂690kg/m 3、石子1050kg/m 3、水160kg/m 3,并添加膨润土3.5%(相对于水泥用量),对实施例1到实施例5所制得的含磷聚羧酸减水剂和市售聚羧酸减水剂(PCE)按照折固掺量0.15%进行性能测试。测试混凝土初始坍落度和扩展度、2h坍落度和扩展度,不同外加剂的测试结果如表1所示。 Minfu PO 42.5 ordinary Portland cement is used. The concrete mix ratio is: cement 300kg / m 3 , fly ash 100kg / m 3 , mineral powder 100kg / m 3 , sand 690kg / m 3 , stone 1050kg / m 3 , water 160kg / m 3 , and adding 3.5% of bentonite (relative to the amount of cement), the phosphorus-containing polycarboxylic acid water reducing agent and commercially available polycarboxylic acid water reducing agent (PCE) prepared in Examples 1 to 5 were added in accordance with Folding solid content of 0.15% for performance testing. Test the initial slump and spread of the concrete, 2h slump and spread.
表1不同外加剂测试结果Table 1 Test results of different admixtures
从表1可以看出,对掺有膨润土的材料,本专利合成的实施例对比市售的聚羧酸减水剂(PCE),减水率更大,保坍性能更好,由此可见本专利制备的聚羧酸减水剂对含泥量高的材料敏感性比较低,具有抗泥效果。It can be seen from Table 1 that, for the materials doped with bentonite, the examples synthesized in this patent compare with commercially available polycarboxylic acid water reducing agent (PCE), which has a larger water reduction rate and better slump retention performance. The patented polycarboxylic acid water reducing agent has low sensitivity to materials with high mud content and has anti-mud effect.
本领域普通技术人员可知,本发明的技术方案在下述范围内变化时,仍然能够得到与上述实施例相同或相近的技术效果,仍然属于本发明的保护范围:Those of ordinary skill in the art may know that when the technical solution of the present invention is changed within the following range, the same or similar technical effects as those of the above embodiments can still be obtained, and still belong to the protection scope of the present invention:
一种含磷聚羧酸减水剂,其分子量为10000~150000,且其结构式如下:A phosphorus-containing polycarboxylic acid water reducing agent, the molecular weight of which is 10,000 to 150,000, and its structural formula is as follows:
其中,R 1为H或CH 3,R 2为1~4个碳的烷基,R 3为空或1~4个碳的烷基,R 4为空 或1~4个碳的烷基,R 5为H或COOM,R 6为H或CH 3,R 7为H或COOM,R 8为H或CH 3,R 9为空或1~4个碳的烷基,R 10为具有一个烷基磷酸盐取代基的萘环,M为H、Na、K或NH 4;R 3与R 4相对所在苯环的关系为邻位、间位或对位。 Wherein R 1 is H or CH 3 , R 2 is an alkyl group of 1 to 4 carbons, R 3 is an alkyl group of 1 to 4 carbons, R 4 is an alkyl group of 1 to 4 carbons, R 5 is H or COOM, R 6 is H or CH 3 , R 7 is H or COOM, R 8 is H or CH 3 , R 9 is an empty or 1 to 4 carbon alkyl group, and R 10 is an alkyl group having one alkane In the naphthalene ring of the phosphate substituent, M is H, Na, K or NH 4 ; the relationship between R 3 and R 4 relative to the benzene ring is ortho, meta or para.
上述含磷聚羧酸减水剂制备方法,包括如下步骤:The preparation method of the above-mentioned phosphorus-containing polycarboxylic acid water reducing agent includes the following steps:
(1)第一酯化反应:将不饱聚醚和第一化合物混合,在氮气保护下,升温至70~90℃,再加入催化剂,保温反应0.5~3.0h,期间用抽真空或通氮气带水的方法除去水,反应结束后降至室温,得到含有酯化产物和未反应的不饱聚醚的第一混合物;上述不饱聚醚为分子量为600~5000的烯丙基聚乙二醇、3-甲基-3-丁烯-1-聚乙二醇、2-甲基烯丙基聚乙二醇中的至少一种;上述第一化合物的结构式如下:(1) The first esterification reaction: the unsaturated polyether and the first compound are mixed, and the temperature is increased to 70-90 ° C under the protection of nitrogen, and then a catalyst is added, and the reaction is maintained for 0.5-3.0h, during which a vacuum or nitrogen is passed. The method with water is used to remove water, and after the reaction is completed, the temperature is lowered to room temperature to obtain a first mixture containing an esterified product and an unreacted unsaturated polyether. The unsaturated polyether is an allyl polyethylene with a molecular weight of 600 to 5000. At least one of alcohol, 3-methyl-3-butene-1-polyethylene glycol, and 2-methylallyl polyethylene glycol; the structural formula of the first compound is as follows:
(2)第二酯化反应:将不饱和羧酸或不饱和羧酸酐、羟基萘磷酸和阻聚剂混合,在氮气保护下,升温至90~120℃,再加入催化剂,保温反应0.5~3.0h,期间用抽真空或通氮气带水的方法除去水,反应结束后降至室温,得到含有酯化产物和未反应的不饱和羧酸或不饱和羧酸酐的第二混合物;上述不饱和羧酸或不饱和羧酸酐为丙烯酸、甲基丙烯酸、马来酸、马来酸酐中的至少一种;上述羟基萘磷酸为1-羟基萘-4磷酸、1-羟基萘-5磷酸、1-羟基萘-6磷酸、1-羟基萘-7磷酸、2-羟基萘-4磷酸、2-羟基萘-5磷酸、2-羟基萘-6磷酸、2-羟基萘-7磷酸、1-羟甲基萘-4磷酸、1-羟甲基萘-5磷酸、1-羟甲基萘-6磷酸、1-羟甲基萘-7磷酸、2-羟甲基萘-4磷酸、2-羟甲基萘-5磷酸、2-羟甲基萘-6磷酸、2-羟甲基萘-7磷酸、1-羟基萘-4甲基磷酸、1-羟基萘-5甲基磷酸、1-羟基萘-6甲基磷酸、1-羟基萘-7甲基磷酸、2-羟基萘-4甲基磷酸、2-羟基萘-5甲基磷酸、2-羟基萘-6甲基磷酸、2-羟基萘-7甲基磷酸、1-羟甲基萘-4甲基磷酸、1-羟甲基萘-5甲基磷酸、1-羟甲基萘-6甲基磷酸、1-羟甲基萘-7甲基磷酸、2-羟甲基萘-4甲基磷酸、2-羟甲基萘-5甲基磷酸、2-羟甲基萘-6甲基磷酸、2-羟甲基萘-7甲基磷酸中的至少一种;(2) The second esterification reaction: mixed unsaturated carboxylic acid or unsaturated carboxylic anhydride, hydroxynaphthalene phosphoric acid and polymerization inhibitor, heated under nitrogen protection to 90-120 ° C, and then added a catalyst, and kept the reaction at 0.5-3.0 h, during the period of time, the water is removed by vacuum or nitrogen gas, and the temperature is reduced to room temperature after the reaction, to obtain a second mixture containing the esterified product and unreacted unsaturated carboxylic acid or unsaturated carboxylic anhydride; The acid or unsaturated carboxylic anhydride is at least one of acrylic acid, methacrylic acid, maleic acid, and maleic anhydride; the hydroxynaphthalene phosphate is 1-hydroxynaphthalene-4 phosphate, 1-hydroxynaphthalene-5 phosphate, and 1-hydroxyl Naphthalene-6 phosphate, 1-hydroxynaphthalene-7 phosphate, 2-hydroxynaphthalene-4 phosphate, 2-hydroxynaphthalene-5 phosphate, 2-hydroxynaphthalene-6 phosphate, 2-hydroxynaphthalene-7 phosphate, 1-hydroxymethyl Naphthalene-4 phosphate, 1-hydroxymethylnaphthalene-5 phosphate, 1-hydroxymethylnaphthalene-6 phosphate, 1-hydroxymethylnaphthalene-7 phosphate, 2-hydroxymethylnaphthalene-4 phosphate, 2-hydroxymethyl Naphthalene-5 phosphate, 2-hydroxymethylnaphthalene-6 phosphate, 2-hydroxymethylnaphthalene-7 phosphate, 1-hydroxynaphthalene-4 methylphosphate, 1-hydroxynaphthalene-5methylphosphate, 1-hydroxynaphthalene- 6 methyl phosphate, 1-hydroxynaphthalene-7 methyl Acid, 2-hydroxynaphthalene-4 methyl phosphate, 2-hydroxynaphthalene-5 methyl phosphate, 2-hydroxynaphthalene-6 methyl phosphate, 2-hydroxynaphthalene-7 methyl phosphate, 1-hydroxymethylnaphthalene-4 Methyl phosphate, 1-hydroxymethylnaphthalene-5 methyl phosphate, 1-hydroxymethylnaphthalene-6 methyl phosphate, 1-hydroxymethylnaphthalene-7 methyl phosphate, 2-hydroxymethylnaphthalene-4 methyl At least one of phosphoric acid, 2-hydroxymethylnaphthalene-5 methylphosphate, 2-hydroxymethylnaphthalene-6methylphosphate, 2-hydroxymethylnaphthalene-7methylphosphoric acid;
(3)单体共混:将步骤(1)制得的第一混合物和步骤(2)制得的第二混合物以 100:6~18的质量比混合,并加入水使得其溶解,得到共聚单体混合物溶液;(3) monomer blending: mixing the first mixture obtained in step (1) and the second mixture obtained in step (2) at a mass ratio of 100: 6 to 18, and adding water to dissolve them to obtain copolymerization Monomer mixture solution;
(4)共聚反应:将上述共聚单体混合物溶液、引发剂水溶液及分子量调节剂水溶液滴入水中进行反应,反应温度为10~60℃,滴加时间为0.2~6.0h,滴加完毕后保温0~3.0h,得共聚产物;(4) Copolymerization reaction: The above comonomer mixture solution, initiator aqueous solution and molecular weight regulator aqueous solution are dropped into water for reaction. The reaction temperature is 10-60 ° C, and the dropping time is 0.2-6.0h. 0 ~ 3.0h, copolymerization product is obtained;
(5)中和反应:将步骤(3)制得的共聚产物用碱调节pH至5~7,即得所述一种含磷聚羧酸减水剂。(5) Neutralization reaction: The copolymerized product obtained in step (3) is adjusted to a pH of 5 to 7 with an alkali to obtain the phosphorus-containing polycarboxylic acid water reducing agent.
所述步骤(1)中,所述不饱聚醚和第一化合物的摩尔比为1~1.5:1,催化剂的用量为不饱聚醚和第一化合物总质量的0.05~0.3%。所述步骤(2)中,所述不饱和羧酸或不饱和羧酸酐和羟基萘磷酸的摩尔比为2~7:1,所述催化剂的用量为不饱和羧酸或不饱和羧酸酐和羟基萘磷酸总质量的0.03~0.3%;所述阻聚剂用量为不饱和羧酸或不饱和羧酸酐和羟基萘磷酸总质量的0.2~3.0%%。所述步骤(3)和步骤(4)所用水的总量使得所述共聚产物的质量浓度为20~70%,所述引发剂的用量为所述共聚单体混合物溶液中溶质的总质量的0.5~3.0%,所述分子量调节剂的用量为所述共聚单体混合物溶液中溶质的总质量的0.2~2.0%。In the step (1), the molar ratio of the unsaturated polyether to the first compound is 1 to 1.5: 1, and the amount of the catalyst used is 0.05 to 0.3% of the total mass of the unsaturated polyether and the first compound. In the step (2), the molar ratio of the unsaturated carboxylic acid or unsaturated carboxylic anhydride to hydroxynaphthalene phosphoric acid is 2 to 7: 1, and the amount of the catalyst used is unsaturated carboxylic acid or unsaturated carboxylic anhydride and hydroxy 0.03 to 0.3% of the total mass of naphthalene phosphate; the amount of the polymerization inhibitor is 0.2 to 3.0% of the total mass of unsaturated carboxylic acid or unsaturated carboxylic anhydride and hydroxynaphthalene phosphate. The total amount of water used in step (3) and step (4) is such that the mass concentration of the copolymerization product is 20 to 70%, and the amount of the initiator is equal to the total mass of the solute in the comonomer mixture solution. 0.5 to 3.0%, and the amount of the molecular weight modifier is 0.2 to 2.0% of the total mass of the solute in the comonomer mixture solution.
所述催化剂为苯六甲酸,氮硫方酸和三硝基苯磺酸中的至少一种。所述阻聚剂为对苯二酚、吩噻嗪和二苯胺中的至少一种。所述引发剂为水溶性氧化还原引发体系或水溶性偶氮引发剂。所述分子量调节剂为巯基乙酸、巯基丙酸、巯基乙醇、异丙醇、次磷酸钠、磷酸三钠、甲酸钠、乙酸钠和十二硫醇中的至少一种。The catalyst is at least one of pyromellitic acid, nitrogen sulfur acid, and trinitrobenzenesulfonic acid. The polymerization inhibitor is at least one of hydroquinone, phenothiazine, and diphenylamine. The initiator is a water-soluble redox initiator system or a water-soluble azo initiator. The molecular weight modifier is at least one of mercaptoacetic acid, mercaptopropionic acid, mercaptoethanol, isopropanol, sodium hypophosphite, trisodium phosphate, sodium formate, sodium acetate, and dodecyl mercaptan.
以上所述,仅为本发明的较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。The above are only the preferred embodiments of the present invention, so the scope of implementation of the present invention cannot be limited accordingly, that is, equivalent changes and modifications made according to the patent scope of the present invention and the contents of the description should still be covered by the present invention. In the range.
Claims (9)
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| MYPI2018002722A MY197439A (en) | 2018-06-08 | 2018-12-21 | Phosphorus?containing polycarboxylate superplasticizer and method for making same |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201810586582.4A CN108623745B (en) | 2018-06-08 | 2018-06-08 | Phosphorus-containing polycarboxylate superplasticizer and preparation method thereof |
| CN201810586582.4 | 2018-06-08 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2019233085A1 true WO2019233085A1 (en) | 2019-12-12 |
Family
ID=63691168
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2018/122569 Ceased WO2019233085A1 (en) | 2018-06-08 | 2018-12-21 | Phosphorus-containing polycarboxylate superplasticizer and preparation method therefor |
Country Status (3)
| Country | Link |
|---|---|
| CN (1) | CN108623745B (en) |
| MY (1) | MY197439A (en) |
| WO (1) | WO2019233085A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115894889A (en) * | 2022-12-29 | 2023-04-04 | 科之杰新材料集团有限公司 | Viscosity-reducing slow-release polycarboxylate superplasticizer and preparation method thereof |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108623745B (en) * | 2018-06-08 | 2020-03-06 | 科之杰新材料集团有限公司 | Phosphorus-containing polycarboxylate superplasticizer and preparation method thereof |
| CN110330600B (en) * | 2019-05-29 | 2022-04-22 | 科之杰新材料集团有限公司 | Low-sensitivity wet-mixed mortar plasticizer and preparation method thereof |
| CN110228962B (en) * | 2019-05-29 | 2021-10-29 | 科之杰新材料集团有限公司 | Water-retention type wet-mixed mortar plasticizer and preparation method thereof |
| CN110255958B (en) * | 2019-05-29 | 2020-07-31 | 科之杰新材料集团有限公司 | Wet-mixed mortar plasticity stabilizer and preparation method thereof |
| CN110358021B (en) * | 2019-05-29 | 2022-04-22 | 科之杰新材料集团有限公司 | Cross-linking type wet-mixed mortar plasticity-maintaining agent and preparation method thereof |
| CN113185185B (en) * | 2021-05-31 | 2022-08-02 | 扬州工业职业技术学院 | A kind of multifunctional auxiliary agent for building materials and preparation method thereof |
| CN115838458B (en) * | 2022-11-14 | 2025-03-11 | 科之杰新材料集团有限公司 | Novel polycarboxylate superplasticizer and preparation method thereof |
| CN116003699B (en) * | 2022-12-29 | 2025-09-16 | 陕西科之杰新材料有限公司 | Viscosity-reducing polycarboxylic acid slump retaining agent and preparation method thereof |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010070395A (en) * | 2008-09-16 | 2010-04-02 | Kao Corp | Hydraulic composition for ultrahigh strength concrete |
| CN105837761A (en) * | 2016-05-26 | 2016-08-10 | 广东复特新型材料科技有限公司 | Phosphate-based high slump loss resistant type polycarboxylate high-performance water reducing agent and preparation method thereof |
| CN104261719B (en) * | 2014-08-06 | 2016-09-14 | 中交二航武汉港湾新材料有限公司 | A kind of high-performance polycarboxylic acids water reducing agent and preparation method thereof |
| CN106186781A (en) * | 2016-06-29 | 2016-12-07 | 南京瑞迪高新技术有限公司 | A kind of preparation method of modified naphthalene series water-reducing agent |
| CN108623745A (en) * | 2018-06-08 | 2018-10-09 | 科之杰新材料集团有限公司 | A kind of phosphorous polycarboxylate water-reducer and preparation method thereof |
Family Cites Families (7)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB8316819D0 (en) * | 1983-06-21 | 1983-07-27 | Unilever Plc | Cementiferous compositions |
| JP5067523B2 (en) * | 2006-03-20 | 2012-11-07 | 信越化学工業株式会社 | Chemically amplified positive resist material and pattern forming method using the same |
| CN103408706A (en) * | 2013-08-19 | 2013-11-27 | 科之杰新材料集团有限公司 | High-performance polycarboxylic acid water reducing agent and preparation method thereof |
| CN107325234B (en) * | 2017-07-07 | 2020-04-24 | 江苏奥莱特新材料股份有限公司 | Anti-mud phosphate modified polycarboxylate superplasticizer and preparation method thereof |
| CN107513136A (en) * | 2017-08-24 | 2017-12-26 | 重庆三圣实业股份有限公司 | One kind protects the water reducer and preparation method thereof that collapses containing polynary aryl |
| CN107868187B (en) * | 2017-12-07 | 2020-05-08 | 科之杰新材料集团有限公司 | Preparation method of low-hydration-heat polycarboxylate superplasticizer |
| CN107987227A (en) * | 2017-12-07 | 2018-05-04 | 科之杰新材料集团有限公司 | A kind of preparation method of low hydration heat extra retarded set type polycarboxylate water-reducer |
-
2018
- 2018-06-08 CN CN201810586582.4A patent/CN108623745B/en active Active
- 2018-12-21 WO PCT/CN2018/122569 patent/WO2019233085A1/en not_active Ceased
- 2018-12-21 MY MYPI2018002722A patent/MY197439A/en unknown
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2010070395A (en) * | 2008-09-16 | 2010-04-02 | Kao Corp | Hydraulic composition for ultrahigh strength concrete |
| CN104261719B (en) * | 2014-08-06 | 2016-09-14 | 中交二航武汉港湾新材料有限公司 | A kind of high-performance polycarboxylic acids water reducing agent and preparation method thereof |
| CN105837761A (en) * | 2016-05-26 | 2016-08-10 | 广东复特新型材料科技有限公司 | Phosphate-based high slump loss resistant type polycarboxylate high-performance water reducing agent and preparation method thereof |
| CN106186781A (en) * | 2016-06-29 | 2016-12-07 | 南京瑞迪高新技术有限公司 | A kind of preparation method of modified naphthalene series water-reducing agent |
| CN108623745A (en) * | 2018-06-08 | 2018-10-09 | 科之杰新材料集团有限公司 | A kind of phosphorous polycarboxylate water-reducer and preparation method thereof |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115894889A (en) * | 2022-12-29 | 2023-04-04 | 科之杰新材料集团有限公司 | Viscosity-reducing slow-release polycarboxylate superplasticizer and preparation method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| CN108623745A (en) | 2018-10-09 |
| CN108623745B (en) | 2020-03-06 |
| MY197439A (en) | 2023-06-19 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2019233085A1 (en) | Phosphorus-containing polycarboxylate superplasticizer and preparation method therefor | |
| WO2019233215A1 (en) | High water-reducing and low sensitivity polycarboxylate superplasticizer and preparation method therefor | |
| CN112694574B (en) | Polycarboxylate superplasticizer with high mud resistance and high slump loss resistance and preparation method thereof | |
| CN103588655B (en) | Polycarboxylate water-reducer of amino acid esterification product modification and preparation method thereof | |
| CN103613306B (en) | A kind of poly carboxylic acid series water reducer containing hyperbranched polyamine-ester structure and preparation method thereof | |
| WO2021217762A1 (en) | Unsaturated polyether monomer, and polycarboxylate superplasticizer and preparation method therefor | |
| CN107337765B (en) | Phosphonic acid-based polymer with strong adaptability and slump retaining performance as well as preparation method and application thereof | |
| CN106832147B (en) | A kind of preparation method of the polycarboxylate water-reducer containing phosphonyl group | |
| CN109734353A (en) | A kind of high slump retention polycarboxylate water reducing agent | |
| CN113896845B (en) | Low-sensitivity slow-release polycarboxylic acid slump retaining agent and preparation method thereof | |
| CN109650762B (en) | Phosphate type polycarboxylate superplasticizer and preparation method thereof | |
| CN107286298B (en) | Slow-release polycarboxylate superplasticizer and preparation method thereof | |
| CN115215972B (en) | Preparation method of fast dispersing polycarboxylate water-reducing agent | |
| CN104876468A (en) | Functionalized polycarboxylic acid water reducer matched with silica fume and preparation method thereof | |
| CN104193215B (en) | Ternary block macromonomer graft copolymerization high-property polycarboxylic acid water-reducing agent and preparation method thereof | |
| WO2024104063A1 (en) | New polycarboxylic acid water-reducing agent and preparation method therefor | |
| CN109970931A (en) | A shrinkage-reducing polycarboxylic acid-based superplasticizer, preparation method and application thereof | |
| CN108484842B (en) | Ester low-sensitivity polycarboxylate superplasticizer and preparation method thereof | |
| CN111961148B (en) | A kind of reaction air-entraining type polycarboxylate water reducer and preparation method thereof | |
| CN108219080B (en) | Preparation method of polycarboxylate superplasticizer | |
| CN114044856A (en) | Mud-blocking type polycarboxylate superplasticizer and preparation method thereof | |
| CN108586672A (en) | A kind of cross-linking type polycarboxylic acid super-plasticizer and its preparation method and application | |
| CN108586665B (en) | Preparation method of ether water-retention thixotropic polycarboxylate superplasticizer | |
| CN109535347B (en) | Preparation method of block water-retaining concrete admixture | |
| CN113912833B (en) | Esterified monomer, esterified product, high-adaptability polycarboxylic acid slump retaining agent and preparation method thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18921437 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 18921437 Country of ref document: EP Kind code of ref document: A1 |