[go: up one dir, main page]

WO2019136069A1 - Apparatus and method for processing wood fibers - Google Patents

Apparatus and method for processing wood fibers Download PDF

Info

Publication number
WO2019136069A1
WO2019136069A1 PCT/US2019/012054 US2019012054W WO2019136069A1 WO 2019136069 A1 WO2019136069 A1 WO 2019136069A1 US 2019012054 W US2019012054 W US 2019012054W WO 2019136069 A1 WO2019136069 A1 WO 2019136069A1
Authority
WO
WIPO (PCT)
Prior art keywords
refiner
refining
bars
maximum height
refiner bars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2019/012054
Other languages
French (fr)
Inventor
Dwight Edward ANDERSON
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Paper Co
Original Assignee
International Paper Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US15/860,055 external-priority patent/US11001968B2/en
Priority claimed from US15/860,006 external-priority patent/US10794003B2/en
Priority to CA3087412A priority Critical patent/CA3087412A1/en
Priority to RU2020121781A priority patent/RU2771695C2/en
Priority to CN201980009186.8A priority patent/CN111630225B/en
Priority to CN202211665190.XA priority patent/CN115897276B/en
Application filed by International Paper Co filed Critical International Paper Co
Priority to EP19702132.2A priority patent/EP3735486A1/en
Priority to CN202211667859.9A priority patent/CN115897277B/en
Priority to BR112020013528-3A priority patent/BR112020013528B1/en
Priority to JP2020555749A priority patent/JP7540950B2/en
Publication of WO2019136069A1 publication Critical patent/WO2019136069A1/en
Anticipated expiration legal-status Critical
Priority to JP2024135733A priority patent/JP2024153945A/en
Ceased legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/20Methods of refining
    • D21D1/30Disc mills
    • D21D1/306Discs
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21DTREATMENT OF THE MATERIALS BEFORE PASSING TO THE PAPER-MAKING MACHINE
    • D21D1/00Methods of beating or refining; Beaters of the Hollander type
    • D21D1/004Methods of beating or refining including disperging or deflaking
    • D21D1/006Disc mills
    • D21D1/008Discs

Definitions

  • the present disclosure relates generally to processing wood fibers in a refiner and more particularly to an apparatus and method for refining wood fibers and breaking up fiber bundles.
  • Disc-type refiners have traditionally been used to process wood fibers in a step of a paper product making process.
  • Such refiners include first and second refining members having a refining space therebetween.
  • Each of the first and second refining members include a plurality of refiner bars separated by refiner grooves, in which the refiner bars define cuting surfaces for cutting the wood fibers.
  • at least one of the first and second refining members is rotated relati v e to the other, m which rotation of the cutting surfaces of the refiner bars cut wood fibers being processed in the refiner.
  • the processed wood fibers may be further processed in subsequent paper product making processes to produce paper products.
  • the wood fibers may undergo additional processing, such as in a separate tickler refiner or deflaker.
  • a refining member for a pulp refiner comprises a refining body including a refining surface comprising first refiner bars separated by first refiner grooves and second refiner bars separated by second refiner grooves.
  • first refiner bars extends from a radially inward position on the refining surface to a first radially outward position on tire refining surface.
  • second refiner bars extends to a second radially outward position on the refining surface .
  • the second refiner bars have a longitudinal length from about 0.6 cm to about 10 cm, in which the second radially outward position is nearer to an outermost part of the refining body than the first radially outward position.
  • the first refiner bars have a first maximum height extending upward from a floor of an adjacent first refiner groove, and the second refiner bars have a second maximum height extending upward from a floor of an adjacent second refiner groove.
  • the second maximum height is at least 0.35 ram less than the first maximum height.
  • Tire first refiner bars are adapted to refine wood fibers, and the second refiner bars are adapted to break up fiber bundles.
  • Idle first maximum height of tire first refiner bars when measured from the floor of the adjacent first refiner groove, may be from about 4 mm to about 10 mm.
  • the second maximum height of the second refiner bars when measured from the floor of the adjacent second refiner groove, may be from about 0.35 mm to about 1.5 mm less than the first maximum height.
  • the second maximum height of the second refiner bars when measured from the floor of the adjacent second refiner groove, may be from about 0.7 mm to about 1.5 mm less than the first maximum height.
  • the longitudinal length of the second refiner bars may be from about 2 cm to about 10 cm.
  • the second refiner bars may be integral with the first refiner bars such that the second refiner bars extend from the first radially outward position to the second radially outward position.
  • Each of the second refiner bars may slope continuously downward from tire first radially outward position to the second radially outward position.
  • the first and second refiner bars may have a width extending between side edges of from about 2 mm to about 8 mm.
  • At least a portion of the first refiner grooves may be provided with dams.
  • the refining member may further comprise third refiner bars separated by third refiner grooves and fourth refiner bars separated by fourth refiner grooves.
  • Each of the third refiner bars may extend to a third radially outward position on tire refining surface
  • each of the fourth refiner bars may extend to a fourth radially outward position on the refining surface.
  • the fourth refiner bars may have a longitudinal length from about 0.6 cm to about 10 cm. The fourth radially outward position may be nearer to an outermost part of the refining body than the third radially outward position.
  • the third refiner bars may have a third maximum height extending upward from a floor of an adjacent third refiner groove, and the fourth refiner bars may have a fourth maximum height extending upw'ard from a floor of an adjacent fourth refiner groove.
  • the fourth maximum height may be at least 0.35 mm less than the third maximum height.
  • the third refiner bars may be adapted to refine wood fibers, and the fourth refiner bars may be adapted to break up fiber bundles.
  • the third refiner bars may be integral with the second refiner bars such that the third refiner bars extend from the second radially outward position to the third radially outward position
  • the fourth refiner bars may be integral with the third refiner bars such that the fourth refiner bars extend from the third radially outward position to the fourth radially outward position.
  • a pulp refiner comprises: a frame, at least a first pair of refining members, and a rotor associated with the frame.
  • the refining members comprise a first refining member associated with the frame and comprising a first refining body and a second refining member associated with the frame and comprising a second refining body.
  • the first refining body includes a first refining surface comprising: first refiner bars separated by first refiner grooves, each of the first refiner bars extending from a radially inward position on the refining surface to a first radially outward position on the refining surface, and second refiner bars separated by second refiner grooves, each of the second refiner bars extending to a second radially outward position on the refining surface.
  • the second refiner bars have a longitudinal length from about 0.6 cm to about 10 cm. The second radially outward position may be nearer to an outermost part of the refining body than the first radially outward position.
  • the first refiner bars have a first maximum height extending upward from a floor of an adjacent first groove
  • the second refiner bars have a second maximum height extending upward from the adjacent second groove floor.
  • the second maximum height is at least 0.35 mm less than the first maximum height.
  • Idle second refining member includes a second refining surface comprising second member refiner bars separated by second member refiner grooves.
  • the first refining member is spaced from the second refining member to define a refining space therebetween.
  • the rotor is coupled to one of the first refining member or the second refining member such that rotation of tire rotor effects movement of the one of the first or the second refining member relative to the other.
  • the wood pulp slurry passes through the refining space such that a significant number of the wood fibers in the wood pulp slum ' are refined and a plurality of wood fiber bundles in the wood pulp shiny' are separated.
  • the second maximum height may be at least 0.7 mm less than the first maximum height.
  • the longitudinal length of the second refiner bars may be from about 2 cm to about 10 cm.
  • the second member refiner bars may comprise: third refiner bars extending from a radially inward position on the second refining surface to a first radially outward position on the second refining surface, and fourth refiner bars extending to a second radially outward position on the second refining surface.
  • the second radially outward position may be nearer to an outermost part of the second refining body than the first radially outward position.
  • the third refiner bars may have a third maximum height extending upward from a floor of an adjacent groove, and the fourth refiner bars may have a fourth maximum height extending upward from the adjacent groove floor.
  • the fourth maximum height may be at least 0.35 mm less than the third maximum height.
  • the first refining member may be a non-rotating stator member, and the second refining member may be a rotating rotor member.
  • a method for processing wood fibers comprises: providing a refiner comprising at least a first pair of refining members.
  • the refining members comprise: a first refining member comprising a first refining body and a second refining member comprising a second refining body.
  • the first refining body includes a first refining surface comprising: first refiner bars separated by first refiner grooves and having a first maximum height extending upward from a floor of an adjacent first refiner groove, and second refiner bars separated by second refiner grooves and having a second maximum height extending upward from a floor of an adjacent second refiner groove.
  • the second refining body includes a second refining surface comprising second member refiner bars separated by second member refiner grooves.
  • the first refining member is spaced from the second refining member to define a refining space therebetween At least a portion of the second member refiner bars are positioned so as to be across from the second refiner bars such that a gap between the portion of the second member refiner bars and the second refiner bars is defined.
  • the method further comprises: rotating at least one of the first refining member or the second refining member such that the first and second refining members move relative to one another; supplying a slurry of wood pulp comprising wood fibers to the refiner such that the slurry passes through the refining space; and applying axial pressure to at least one of the first refining member or the second refining member as the slurry is supplied such that the gap between the portion of the second member refiner bars and the second refiner bars is between about 0.9 mm and about 1 5 mm, m which at least a portion of wood fiber bundles passing through the gap are separated.
  • the second refiner bars may have a longitudinal length from about 0.6 cm to about 10 cm, and the second maximum height may be at least 0.35 mm less than the first maximum height.
  • the longitudinal length of the second refiner bars may be from about 2 cm to about 10 cm.
  • the second member refiner bars may comprise: third refiner bars and fourth refiner bars.
  • Tire third refiner bars may have a third maximum height extending upward from a floor of an adjacent groove
  • the fourth refiner bars may have a fourth maximum height extending upward from an adjacent groove floor.
  • the fourth maximum height may be at least 0.35 mm less than the third maximum height.
  • a refining member for a pulp refiner comprises: a refining body comprising a plurality of radially extending pie-shaped segments comprising: at least one first pie-shaped segment and at least one second pie-shaped segment.
  • the at least one first pie-shaped segment comprises a first refining surface comprising first refiner bars separated by first refiner grooves.
  • the first refiner bars have a first maximum height extending upward from a floor of an adjacent first refiner groove.
  • the at least one second pie-shaped segment comprises a second refining surface comprising second refiner bars separated by second refiner grooves .
  • the second refiner bars have a second maximum height extending upward from a floor of an adjacent second refiner groove.
  • the second maximum height is at least 0.35 mm less than the first maximum height.
  • the first refiner bars are adapted to refine wood fibers, and the second refiner bars are adapted to break up fiber bundles.
  • the first maximum height of the first refiner bars when measured from the floor of the adjacent first refiner groove, may be from about 4 mm to about 10 mm.
  • the second maximum height of the second refiner bars when measured from the floor of the adjacent second refiner groove, may be from about 0.35 mm to about 1.5 mm less than the first maximum height.
  • the second maximum height of the second refiner bars when measured from the floor of the adjacent second refiner groove, may be from about 0.7 mm to about 1 .5 mm less than the first maximum height.
  • a pulp refiner comprises: a frame, at least a first pair of refining members, and a rotor associated with the frame.
  • the refining members comprise: a first refining member associated with tire frame and comprising a first refining body and a second refining member associated with the frame and comprising a second refining body.
  • the first refining body includes a plurality of radially extending pie-shaped segments comprising: at least one first pie-shaped segment and at least one second pie-shaped segment.
  • the at least one first pie-shaped segment comprises a first refining surface comprising first refiner bars separated by first refiner grooves.
  • the first refiner bars have a first maximum height extending upward from a floor of an adjacent first refiner groove.
  • the at least one second pie-shaped segment comprises a second refining surface comprising second refiner bars separated by second refiner grooves.
  • the second refiner bars have a second maximum height extending upward from a floor of an adjacent second refiner groove. Idle second maximum height is at least 0.35 mm less than the first maximum height.
  • the second refining body includes a second member refining surface comprising second member refiner bars separated by second member refiner grooves. The first refining member is spaced from the second refining member to define a refining space therebetween.
  • the rotor is coupled to one of the first refining member or the second refining member such that rotation of the rotor effects movement of the first and second refining members relative to one another.
  • a slurry of wood pulp comprising wood fibers is supplied to the frame, the wood pulp slurry passes through the refining space such that a significant number of the wood fibers in the wood pulp slimy are refined and a plurality of wood fiber bundles in the wood pulp slurr are separated .
  • the second maximum height of the second refiner bars when measured from the floor of the adjacent second refiner groove, may be from about 0.35 mm to about 1.5 mm less than the first maximum height.
  • the second maximum height of the second refiner bars when measured from the floor of the adjacent second refiner groove, may be from about 0.7 mm to about 1.5 mm less than the first maximum height.
  • the second refining body may comprise a plurality of radially extending pie-shaped segments comprising: at least one third pie-shaped segment and at least one fourth pie-shaped segment.
  • the at least one third pie-shaped segment may comprise a third refining surface comprising third refiner bars separated by third refiner grooves.
  • the third refiner bars may- have a third maximum height extending upward from a floor of an adjacent third refiner groove.
  • the at least one fourth pie-shaped segment may comprise a fourth refining surface comprising fourth refiner bars separated by fourth refiner grooves.
  • the fourth refiner bars may have a fourth maximum height extending upward from a floor of an adjacent fourth refiner groove.
  • the fourth maximum height may be at least 0.35 mm less than the third maximum height.
  • the third and fourth refiner bars may define the second member refiner bars, and the third and fourth refiner grooves may define the second member refiner grooves.
  • the first refining member may be a non-rotating stator member
  • the second refining member may be a rotating rotor member.
  • a refining member for a pulp refiner comprises a refining body including a refining surface comprising: refiner bars separated by refiner grooves, each of the refiner bars extending from a radially inward position on the refining surface to a first radially outward position on the refining surface; and teeth extending to a second radially outward position on the refining surface.
  • the second radially outward position is nearer to an outermost part of the refining body than the first radially outward position.
  • the refiner bars are adapted to refine wood fibers and the teeth are adapted to break up fiber bundles.
  • the refiner bars may have a first maximum height, when measured from a floor of an adjacent refiner groove, from about 4 mm to about 10 mm.
  • the refiner bars may have a width extending between side edges of from about 2 mm to about 8 mm.
  • At least a portion of the refiner grooves may be provided with dams.
  • a pulp refiner comprises a frame, at least a first pair of refining members, and a rotor associated with the frame.
  • the refining members comprise a first refining member associated with the frame and comprising a first refining body including a first refining surface and a second refining member associated w ith the frame and comprising a second refining body including a second refining surface.
  • the first refining surface comprises: first refiner bars separated by first refiner grooves, each of the first refiner bars extending from a radially inward position on the first refining surface to a first radially outward position on the first refining surface, and first teeth extending to a further radially outward position on the first refining surface.
  • the further radially outward position is nearer to an outermost part of the first refining body than the first radially outward position.
  • the first refining member is spaced from the second refining member to define a refining space therebetween.
  • the rotor is coupled to one of the first refining member or the second refining member such that rotation of the rotor effects movement of the first and second refining members relative to one another.
  • the wood pulp slurry passes through the refining space such that a significant number of the wood fibers in the wood pulp slurr are refined and a plurality of wood fiber bundles in the wood pulp slurry are separated.
  • the second refining member may comprise a second refining body including a second refining surface comprising: second refiner bars separated by second refiner grooves, each of the second refiner bars extending from a radially inward position on the second refining surface to a first radially outward position on the second refining surface, and second teeth extending to a second radially outward position on the second refining surface.
  • the second radially outward position may be nearer to an outermost part of the second refining body than the first radially outward position.
  • the second refining surface may comprise a first row of the second teeth extending to tire second radially outward position on the second refining surface and a second row of the second teeth extending to a fourth radially outward position on tire second refining surface.
  • the first teeth intermesh with the second teeth.
  • the first refining member may be a non-rotating stator member, and the second refining member may be a rotating rotor member.
  • FIG. I is a schematic, partial cross-sectional view' of a disc refiner
  • FIGS. 2 and 3 are plan views of a first and a second refining body, respectively;
  • FIGS. 4A and 4B are plan views of a section of a refining surface of the first refining body of FIG. 2;
  • FIGS. 5A and 5B are plan views of a section of a refining surface of the second refining body of FIG 3;
  • FIG. 6A is a partial cross-sectional view of a refining body taken along line 6A— 6A in FIGS. 4A and 5 A;
  • FIG. 6B is a partial cross-sectional view of a refining body' taken along line 6B— 6B in FIGS. 4B and 5B;
  • FIG. 7 is a partial cross-sectional view taken along line 7— 7 in FIGS. 4A, 4B, 5A, and 5B;
  • FIGS. 8 and 9 are partial cross-sectional views of a refiner bar on a first refining body that is spaced apart and positioned above a corresponding refiner bar on a second refining body;
  • FIGS. 10 and I I are plan view's of portions of a first and a second refining body, respectively, comprising a plurality ' of radially extending pie-shaped segments;
  • FIGS. 12A and 12B are partial cross-sectional views of refiner bars from the pie-shaped segments of FIGS. 10 and 11 , in which one refining body is spaced apart and positioned above another refining body;
  • FIGS. 13 and 14 are plan views of a first and a second refining body, respectively, comprising teeth;
  • FIG. 15 is a plan view of a section of a refining surface of the first refining body of FIG. 13;
  • FIG. 16 is a plan view of a section of a refining surface of the second refining body of
  • FIG. 14
  • FIG. 17 is a partial cross-sectional view of a refiner bar and tooth on a first refining body that is spaced apart and positioned above a second refining body comprising a refiner bar and teeth;
  • FIG. 18 is a flowchart illustrating an exemplary method for processing wood fibers.
  • FIG. I illustrates a schematic, partial cross-sectional view of a disc refiner 10 according to the present disclosure.
  • the disc refiner 10 comprises a housing with a first housing section 12 and a second housing section 14 that may be bolted or otherwise attached fixedly together.
  • the housing sections 12, 14 define an inlet 16, an outlet 18, and a refiner inner cavity 64 that contains one or more pairs of refining members.
  • the embodiment shown in FIG. l is a double disc refiner 10 comprising two pairs of refining members, e.g., a first refining member 20 paired with a second refining member 30 and a third refining member 40 paired with a fourth refining member 50.
  • the first refining member 20 comprises a first refining body 22 with a first refining surface 24, and the second refining member 30 comprises a second refining body- 32 with a second refining surface 34.
  • the third refining member 40 comprises a third refining body 42 and a third refining surface 44
  • the fourth refining member 50 comprises a fourth refining body 52 and a fourth refining surface 54.
  • Each of the refining members 20, 30, 40, 50 are associated with a main support frame comprising a fixed support frame 66 secured to the first housing section 12 and a movable support frame 68, as described herein.
  • the first, second, third, and fourth refining bodies 22, 32, 42, 52 may be generally disc- shaped with substantially identical outer diameters (see FIGS. 2 and 3).
  • the first and second refining members 20, 30 are arranged such that the first refining surface 24 faces the second refining surface 34
  • the third and fourth refining members 40, 50 are arranged such that the third refining surface 44 faces the fourth refining surface 54.
  • the first refining member 20 is spaced apart from the second refining member 30 to define a first refining space 60 between the respective refining surfaces 24, 34.
  • the third refining member 40 is spaced apart from the fourth refining member 50 to define a second refining space 62 between the respective refining surfaces 44, 54.
  • the disc refiner 10 may have a structure similar to the one illustrated in U .S. Patent Application Publication No. 2006/0037728 Al, the disclosure of which is incorporated herein by reference.
  • the first and fourth refining members 20, 50 are stationary, and the second and third refining members 30, 40 rotate relative to the first and fourth refining members 20, 50.
  • the first refining member 20 may be fixed to the support frame 66 by bolts or other suitable fasteners (not shown).
  • the second and third refining members 30, 40 may be attached to a support 70 that is coupled to and extends radially outwardly from a rotatable shaft 72.
  • the support 70 is coupled to the shaft 72 so as to rotate with the shaft 72 and is also axially movable along the shaft 72.
  • the shaft 72 is driven by a first motor 74 such that the support 70 and the second and third refining members 30, 40 rotate with tire shaft 72 during operation of the disc refiner 10.
  • the shaft 72 has a central axis 72A that is generally coaxial with an axis of rotation of the second and third refining members 30, 40.
  • the shaft 72 may be rotatably mounted to the fixed support frame 66 such that the first and second refining members 30, 40 are associated with the main support frame.
  • the support 70 may be movable axially along the shaft 72, e.g., substantially along the central axis 72.A, relative to the first and fourth refining members 20, 50, as described herein.
  • the fourth refining member 50 may be fixed to the movable support frame 68 by bolts or other suitable fasteners (not shown).
  • the support 70 and the shaft 72 may define a rotor associated with the main support frame such that the second and third refining members may define rotating rotor members, and the first and fourth refining members 20, 50 may define non-rotating stator members. Rotation of the rotor effects movement of the second and third refining members 30, 40 relative to the first and fourth refining members 20, 50, respectively.
  • the movable support frame 68 may be mounted in the second housing section 14 and is coupled to a second motor 76, which may comprise a reversible electric motor, which is fixed m position.
  • the second motor 76 moves the movable support frame 68 in a substantially horizontal (i.e., axial) direction shown by arrow A.
  • the refiner 10 may comprise, for example, a jack screw (not shown) coupled to the second motor 76 and the movable support frame 68, which second motor 76 may rotate the jack screw to move the movable support frame 68 to which is attached, for example, the fourth refining member 50.
  • control of the size of the gaps may be achieved by one or more magnetic bearings.
  • Magnetic bearings that control the axial position of the shaft 72 may be used to control the position of the rotating rotor members that are fixed to the shaft 72.
  • Magnetic bearings may be used to control the axial position of one or more additional movable sections of the main support frame, i .e., the movable support frame 68, to which one or more of the non-rotating stator members are attached.
  • a slurry of wood pulp comprising wood fibers passes through the refining spaces 60, 62.
  • the jack screw rotates in a first direction, it causes movement of the movable support frame 68 and the fourth refining member 50 inwardly tow'ards the third refining member 40.
  • the fourth refining member 50 then applies an axial force to the pulp slurry passing through the second refining space 62 w'hieh, in turn, applies an axial force to the third refining member 40, causing the third refining member 40, the support 70 and the second refining member 30 to move inwardly toward the first refining member 20.
  • the jack screw' rotates in a second direction, opposite to the first direction, it causes movement of the movable support frame 68 and the fourth refining member 50 outwardly away from the third refining member 40.
  • the axial force applied by the pulp slum passing through the first refining space 60 is then sufficient to cause the second refining member 30, the support 70 and the third refining member 40 to move toward the fourth refining member 50. This occurs until the axial forces applied by the wood slurries passing through the first and second refining spaces 60, 62 against the second and third refining members 30 and 40 are approximately equal.
  • the disc refiner 10 may further comprise a further motor and a second rotatable shaft, and the first and/or fourth refining members 20, 50 may be coupled to the second rotatable shaft such that the first and/or fourth refining members 20, 50 may be counter-rotatable relative to the second and/or third refining members 30, 40, respectively.
  • the disc refiner 10 may comprise only one pair of refining members in which one refining member is a non-rotating stator member and the other refining member is a rotating rotor member.
  • the disc refiner may comprise three or more parrs of refining members.
  • the disc refiner 10 may comprise a conical refiner with one or more pairs of refining members.
  • FIGS. 2 and 3 are plan views of the refining surfaces 24, 34 of the first refining body 22 and the second refining body 32, respectively, for use in a pulp refiner according to one embodiment of die present disclosure.
  • the structure of dre refining surfaces 44, 54 of the third and fourth refining bodies 42, 52, respectively, may be substantially similar to the refining surfaces 24, 34 of the first and second refining bodies 22, 32, respectively.
  • die first refining body 22 may comprise a plurality of sections, e.g. sections 22A-22C, that are bolted or otherwise attached together to form the disc shaped refining body 22 comprising a radially outer edge 27.
  • the refining surface 24 comprises a plurality of elongated refiner bars 26 separated from one another by refiner grooves 28.
  • the other sections (not labeled) of the first refining body 22 would similarly comprise refiner bars 26 and refiner grooves 28.
  • the refiner bars 26 extend radially outwardly from a radially inner location 23 toward the radially outer edge 27 of the first refining body 22.
  • Tire refiner bars 26 may be slanted at various angles as shown in FIG. 2, and each section 22A-22C may comprise one or more segments (not separately labeled) of refiner bars 26 that are slanted in different directions.
  • the refiner bars 26 and refiner grooves 28 within each section 22A-22C in FIG. 2 may otherwise be similar in structure.
  • the second refining body 32 may similarly comprise a plurality of sections, e.g. sections 32A-32C, that are bolted or otherwise attached together to form the disc shaped refining body 32 comprising a radially outer edge 37.
  • Tire refining surface 34 comprises a plurality of elongated refiner bars 36 separated from one another by refiner grooves 38.
  • the other sections (not labeled) of the second refining body 32 would similarly comprise refiner bars 36 and refiner grooves 38.
  • the refiner bars 36 extend radially outwardly from a radially inner location 33 toward the radially outer edge 37 of the second refining body 32.
  • the refiner bars 36 may be slanted at various angles as shown in FIG. 3, and each section 32A-32C may comprise two or more segments (not separately labeled) of refiner bars 36 that are slanted in different directions.
  • the refiner bars 36 and refiner grooves 38 within each section 32A-32C in FIG. 3 may otherwise be similar in structure.
  • Paths of a slu ' of wood pulp comprising wood fibers through the refiner 10 are illustrated via arrows B in FIG. 1.
  • the pulp slum' enters the disc refiner 10 through an inlet 16 and passes into the refiner inner cavity 64 via a central aperture 21 in the first refining member 20.
  • the refiner inner cavity 64 may be defined, in part, by the fixed support frame 66 and the movable support frame 68.
  • the refining surfaces 24, 34 may comprise one or more additional rows of refiner bars (not labeled), such as those located near tire center of the refining bodies 22, 32, e.g., near the central aperture 21.
  • Additional refiner bars may be wider and spaced further apart than the other refiner bars 26 to break up large fiber bundles before they enter the refining space 60.
  • the wood fibers travel radially outwardly between the refining members 20, 30, 40, 50.
  • Tire first refining space 60 defined between the first and second refining members 20, 30 and the second refining space 62 defined between the third and fourth refining members 40, 50 define separate paths along which the wood fibers may travel from the inlet 16 to the outlet 18. It is believed that the wood fibers only pass through one of the first and second refining spaces 60, 62 at a time.
  • the refiner groo ves 28, 38 may be considered part of the refining space 60 defined between the first and second refining members 20, 30.
  • the refiner grooves (not shown) of the third and fourth refining members 40, 50 may be considered part of the refining space 62 defined between the third and fourth refining members 40, 50. It is believed that a majority of the flow of wood fibers through the refining space 62 passes through tire refiner grooves (not labeled) of the third and fourth refining members 40, 50. After processing, the wood fibers exit the refiner 10 via the outlet 18, at least in part under the action of centrifugal force.
  • FIGS. 4A and 4B are detailed views of one portion of the refining surface 24 of the first refining body 22, and FIGS. 5 A and 5B are detailed views of a corresponding portion of the refining surface 34 of the second refining body 32.
  • FIGS. 6A and 6B are partial cross-sectional views of the refining bodies 22, 32 taken along lines 6A— 6A and 6B— 6B, respectively, illustrating two embodiments of a refiner bar 26, 36, as shown in FIGS. 4.4, 4B, 5A, and 5B
  • FIG. 7 is a partial cross-sectional view taken along line 7— 7 in FIGS. 4A, 4B, 5A, and 5B.
  • each refiner bar 26, 36 may comprise a first refiner bar 26A, 36A and a second refiner bar 26B, 36B.
  • the first refiner bars 26A, 36A may be separated from one another by first refiner grooves 28A, 38A
  • the second refiner bars 26B, 36B may be separated from one another by second refiner grooves 28B, 38B.
  • the first and second refiner grooves 28A, 38 A, 2.8B, 38B may have a width WG of from about 2 mm to about 6 mm.
  • the first refiner bars 26A, 36A comprise a first maximum height Hi extending upward from a floor F; of the adjacent first refiner groove 28A, 38A, and the second refiner bars 26B, 36B comprise a second maximum height Hi extending upward from a floor Fi of the adjacent second refiner groove 28B, 38B, in which the second maximum height Hi is less than the first maximum height Hi.
  • the minimum height difference between Hi and Hi is depicted as Di in FIG. 6A .
  • a radially outer portion ROi of the first refiner bar 26A, 36A may comprise a step-down from the first maximum height Hi to the second maximum height Hi.
  • the second maximum height Hi may be at least 0.35 mm less than the first maximum height Hi. In other examples, the second maximum height Hi may be at least 0.70 mm less than the first maximum height Hi.
  • the first maximum height Hi of the first refiner bars 26A, 36A, when measured from the floor Fi of the adjacent first refiner groove 28A, 38A may be from about 4 mm to about 10 mm. In a particular example, the second maximum height Hi of the second refiner bars 26B, 36B, when measured from the floor Fi of the adjacent second refiner groove 28B, 38B, may be from about 0.35 mm to about 1.5 mm less than the first maximum height Hi.
  • the second maximum height Hi of the second refiner bars 26B, 36B when measured from the floor Fi of the adjacent second refiner groove 28B, 38B, may be from about 0.7 mm to about 1.5 mm less than the first maximum height Hi .
  • the first refiner bars 26A, 36A and the second refiner bars 26B, 36B may comprise a width Wie extending between sides edges of the respective refiner bars 26A, 36A, 26B, 36B of from about 2 mm to about 8 mm.
  • Each of tire first refiner bars 26A, 36A extend from a radially inward position Pi on the refining surface 24, 34 to a first radially outward position Pi on the refining surface 24, 34.
  • Each of the second refiner bars 26B, 36B extend to a second radially outward position Pi on the refining surface 24, 34.
  • the second radially outward position Pn may be nearer to an outermost part, eg., the radially outer edge 27, 37, of the refining body 22, 32 than the first radially outward position Pi.
  • the radially inward position Pi may comprise a position at or near the radially inner location 23, 33.
  • the second refiner bars 26B, 36B may comprise a longitudinal length Li from about 0.6 cm to about 10 cm and preferably from about 2 cm to about 10 cm.
  • the second refiner bars 26B, 36B may be integral with the first refiner bars 26A, 36A, as shown in FIGS. 4A, 5A, and 6A, such that the second refiner bars 26B, 36B extend from the first radially outward position Pi to tire second radially outward position Pi.
  • the second refiner bars 26B, 36B may slope continuously downward from the first radially outward position Pi to the second radially outward position Pi.
  • the height of the second refiner bars 26B, 36B may decrease continuously along substantially the entire longitudinal length Li from the second maximum height Kb to a second minimum height Hi’.
  • the second refiner bars 26B, 36B may extend substantially horizontally from the first radially outward position P 2 to the second radially outward position P3, as depicted by the dashed line in FIG. 6A, such that the second refiner bars 26B, 36B are at the second maximum height H2 along substantially the entire longitudinal length Li of the second refiner bars 26B, 36B.
  • the first refiner bars 26A, 36A may be radially separated from the second refiner bars 26B, 36B by a space.
  • the refining surfaces 24, 34 may comprise dams 29, 39 provided in at least a portion of the first refiner grooves 28A, 38A.
  • the dams 29, 39 may comprise a height that is substantially the same as or less than the height of the adjacent first refiner bars 26A, 36A.
  • the dams 29, 39 serve to divert wood fibers from the first refiner grooves 28A, 38A so as to be engaged by the first and second refiner bars 26A, 36A, 26B, 36B.
  • the first refiner bars 26 A, 36A are adapted to refine the wood fibers in the pulp slurry, while the second refiner bars 26B, 36B are adapted to break up or separate fiber bundles. Refining may be used to break apart and reduce small floes of fibers, induce external or internal fibrillation to effect fiber bonding, and/or cut a significant number of long wood fibers in the wood pulp slurry such that tire lengths of tire long wood fibers are reduced.
  • the refining process also causes some of the wood fibers to re-form into small, dense fiber bundles (“flakes”), particularly during refining of long fibers such as softwood.
  • the fiber bundles may adversely affect tensile strength, formation, etc. of the finished paper product, seed formation of strings of pulp that clog downstream components, and/or inhibit the drainage of fluid/water from the fibers during paper product production.
  • the flakes should be broken apart after refining in a process called deflakmg.
  • deflakmg As used herein, the term“deflaking” is used to refer to the process of breaking apart fiber bundles that have formed during refining.
  • deflaking typically takes place in one or more subsequent refiners, frequently operating at low power and referred to as a“tickler” refiner, or deflakers.
  • a“tickler” refiner or deflakers.
  • Use of separate refmer(s) or deflakers increases the cost and complexity' of the system.
  • the tickler refmer(s) and the associated tines and tank(s) and a downstream machine chest may accumulate residual amounts of fibers from previous runs and allow the continued formation of fiber bundles. Processing in the tickler refiner(s) may degrade the properties of the fibers when dissimilar pulp slurries are refined together. It is believed that refining members 20, 30, 40, 50 according to the present disclosure solve these problems by incorporating refiner bars 26A, 26B, 36A, 36B of differing heights such that refining and deflaking may be performed within a single refiner 10.
  • the first maximum height Hi of the first refiner bars 26A, 36A which is greater than tire second maximum height Hi, means that the wood fibers are subjected to high intensity shearing and compression forces as the fibers pass through the portion of the refining space 60 that is at least partially defined by the first refiner grooves 28A, 38A and engaged by cutting side edges 126A, 136A of the first refiner bars 26A, 36A on the opposing first and second refining surfaces 24, 34 (see also FIGS. 8 and 9).
  • the portion of the refining space 60 that is at least partially defined by the first refiner grooves 28A, 38 A and extends from the radially inward position Pi on the refining surface 24, 34 to the first radially outward position P2 on the refining surface 24, 34 may at least partially define a refining zone.
  • the radially inner location 23, 33 of the respective refining body 22, 32 may define the start of the refining zone.
  • the second refiner bars 26B, 36B comprise the second maximum height H2, and the intensity of the force applied to the fibers decreases in response to the reduced height (see also FIGS. 8 and 9).
  • the portion of the refining space 60 that is at least partially defined by the second refiner grooves 28B, 38B and extends from the first radially outward position P2 to the second radially outward position P3 on the refining surface 24, 34 may at least partially define a deflaking zone.
  • the decreased force applied to the fibers in the deflaking zone is believed to break up the fiber bundles formed during refining without further refining or only minimally refining the fibers. In the embodiment depicted in FIG.
  • the second refiner bars 26B, 36B form an annular ring defining the deflaking zone around a radially outer portion (not separately labeled) of the first and second refining bodies 22, 32. It is believed that the second maximum height H2 of the second refiner bars 26B, 36B should be at least about 0.35 mm less than the fi rst maximum height Hi of the first refiner bars 26A, 36A in order to cease refining of the fibers and begin deflaking.
  • the refining zone may comprise 60% or more of the total area defined by both the refining and deflaking zones on each refining surface 24, 34.
  • each refiner bar 26’, 36’ may comprise a first refiner bar 26A’, 36A’, a second refiner bar 26B’, 36B ⁇ a third refiner bar 26C, 36C, and a fourth refiner bar 26D, 36D.
  • the first refiner bars 26A’, 36A’ and the second refiner bars 26B’, 36’ may be substantially similar to the first refiner bars 26A, 36A and the second refiner bars 26B, 36B as depicted in FIGS.
  • first and second refiner bars 26A’, 36A ‘ , 26B’, 36B’ may extend radially outwardly a shorter distance.
  • the first refiner bars 26A’, 36A’ may be separated from one another by first refiner grooves 28A’, 38 A’
  • the second refiner bars 26B , 36B’ may be separated from one another by second refiner grooves 28B’, 38B’.
  • the first and second refiner grooves 28A’, 38A’, 28B’, 38B ’ may have a width WG of from about 2 mm to about 6 mm.
  • the third refiner bars 26C, 36C may he separated from one another by third refiner grooves 28C, 38C, and the fourth refiner bars 26D, 36D may be separated from one another by fourth refiner grooves 28D, 38D.
  • the third refiner bars 26C, 36C comprise a third maximum height ft extending upward from a floor F3 of the adjacent third refiner groove 28C, 38C
  • the fourth refiner bars 26D, 36D comprise a fourth maximum height H 4 extending upward from a floor F-i of the adjacent fourth refiner groove 28D, 38D, in which die fourth maximum height Hr is less than the third maximum height ft.
  • the third maximum height H3 may substantially equal the first maximum height Hr and the fourth maximum height Hr may substantially equal the second maximum height H2.
  • a radially outer portion RO2 of the tiiird refiner bar 26C, 36C may comprise a step-down from the third maximum height H3 to the fourth maximum height Hr.
  • the third and fourth refiner grooves 28C, 38C, 28D, 38D may have a width WG of from about 2 mm to about 6 mm.
  • tire fourth maximum height Hr may be at least 0.35 mm less than the third maximum height ft . In other examples, the fourth maximum height Hr may be at least 0.70 mm less than the third maximum height ft.
  • the third maximum height Hi of the third refiner bars 26C, 36C, when measured from die floor F3 of the adjacent third refiner groove 28C, 38C may be from about 4 mm to about 10 mm.
  • the fourth maximum height Hr of the fourth refiner bars 26D, 36D, when measured from the floor Fr of the ad j acent fourth refiner groove 28D, 38D may be from about 0.35 mm to about 1.5 mm less than the third maximum height ft.
  • the fourth maximum height ft of the fourth refiner bars 26D, 36D when measured from the fl oor Fr of the adjacent fourth refiner groove 28D, 38D, may be from about 0 7 mm to about 1.5 mm less than the third maximum height ft.
  • the third refiner bars 26C, 36C and the fourth refiner bars 26D, 36D may comprise a width (not separately labeled) extending between sides edges of the respective refiner bars 26C, 36C, 26D, 36D of from about 2 mm to about 8 mm.
  • Each of the first refiner bars 26A’, 36A’ extends from a radially inward position Py on the refining surface 24, 34 to a first radially outward position P on the refining surface 24, 34.
  • Each of the second refiner bars 26B’, 36EG extends to a second radially outward position Pr on the refining surface 24, 34.
  • Each of the third refiner bars 26C, 36C extend to a third radially outward position Pr on the refining surface 24, 34.
  • Each of the fourth refiner bars 26D, 36D extend to a fourth radially outward position Ps on the refining surface 24, 34.
  • the fourth radially outward position Ps may be nearer to an outermost part, e.g , the radially outer edge 27, 37, of the refining body 22, 32 than the first, second, and third radially outward positions p2 . Pi’ and Pr.
  • the fourth refiner bars 26D, 36D may comprise a longitudinal length Li from about 0.6 era to about 10 cm and preferably from about 2 cm to about 10 cm.
  • the second refiner bars 26EG, 36B’ may be integral with the first refiner bars 26A’, 36A’, as shown in FIGS. 4B, 5B, and 6B, such that the second refiner bars 26B ‘ , 36B’ extend from the first radially outward position Pi’ to the second radially outward position ! .
  • FIGS. 4B, 5B, and 6B the second refiner bars 26B ‘ , 36B’ extend from the first radially outward position Pi’ to the second radially outward position ! .
  • the third refiner bars 26C, 36C may be integral with the second refiner bars 26B’, 36B" such that the third refiner bars 26C, 36C extend from the second radially outward position Pr to the third radially outward position Pi ⁇ and the fourth refiner bars 26D, 36D may be integral with the third refiner bars 26C, 36C such that the fourth refiner bars 26D, 36D extend from the third radially outward position Pi to the fourth radially outward position Pr
  • the second refiner bars 26B’, 36B’ may slope continuously downward from the first radially outward position Pr to the second radially outward position Py. As shown in FIG.
  • the second refiner bars 26B ⁇ 36B’ may comprise a longitudinal length Li of from about 0.6 cm to about 10 cm and preferably from about 2 cm to about 10 cm.
  • the height of the second refiner bars 26B’, 36B’ may decrease continuously along substantially the entire longitudinal length Li from the second maximum height Hi to a second minimum height Hr.
  • the second refiner bars 26B’, 36B may extend substantially horizontally from the first radially outward position Pr to the second radially outward position IV, as depicted by the dashed line in FIG.
  • the fourth refiner bars 26D, 36D may slope continuously downward from the thud radially outward position P 4 to tire fourth radially outward position Ps. As shown in FIG. 6B, the height of the fourth refiner bars 26D, 36D may decrease continuously along substantially the entire longitudinal length I, 2 from the fourth maximum height Hr to a fourth minimum height Hr’.
  • the fourth refiner bars 26D, 36D may extend substantially horizontally from the third radially outward position P 4 to the fourth radially outward position P , as depicted by the dashed line in FIG. 6B, such that the fourth refiner bars 26D, 36D are at the fourth maximum height HU along substantially the entire longitudinal length L2 of the fourth refiner bars 26D, 36D.
  • the third refiner bars 26C, 36C may be radially separated from the fourth refiner bars 26D, 36D by a space.
  • the refining surface 24, 34 may comprise dams 29, 39 provided in at least a portion of the first and/or third refiner grooves 28A’, 38A’, 28C, 38C, as described herein.
  • the first refiner bars 26 A’, 36A’ in FIGS. 4B, 5B, and 6B are adapted to refine wood fibers
  • the second refiner bars 26B’, 36B’ in FIGS. 4B, 5B, and 6B are adapted to break up fiber bundles, as described with respect to the first and second refiner bars 26A, 36A, 26B, 36B in FIGS. 4A, 5A, and 6A.
  • the third refiner bars 26C, 36C are adapted to refine wood fibers (similar to the first refiner bars 26A’, 36L ⁇ .
  • the fourth refiner bars 26D, 36D are adapted to break up fiber bundles (similar to the second refiner bars 26B ⁇ 36B’), as described herein .
  • the portions of the refining space 60 that are at least partially defined by the first refiner grooves 28A ‘ , 38A’ and the third refiner grooves 28C, 38C and extending from the radially inward position Pr to the first radially outward position P2' and from the second radially outward position P:v to the third radially outward position P 4 on the refilling surface 24, 34 may at least partially define first and second refining zones, respectively, as described herein.
  • the portions of the refining space 60 that are at least partially defined by the second refiner grooves 28B’, 38B’ and the fourth refiner grooves 28D, 38D and extending from the first radially outward position P2’ to the second radially outward position P3’ and from the third radially outward position P 4 to the fourth radially outward position P5 on the refining surface 24, 34 may at least partially define first and second deflaking zones, respectively, as described herein. It is believed that the second maximum height Ft of the second refiner bars 26B’, 36B’ should be at least about 0.35 mm less than the first maximum height Hi of the first refiner bars 26A’, 36A’ in order to cease refining of the fibers and begin deflaking.
  • FIGS. 8 and 9 are partial cross-sectional views of the first and second refining bodies 22, 32/132 of the first and second refining members 20, 30/130 according to the present disclosure.
  • the first refining member 20 is spaced apart and positioned adjacent to and across from the second refining member 30 (see FIG.
  • a refining body according to the present invention e.g., the first refining body 22
  • the first refining body 22 comprises a first refiner bar 26A, a first refiner groove 28A, a second refiner bar 26B, and a second refiner groove 28B, which may correspond to the first and second refiner bars 26A, 26B and first and second refiner grooves 28A, 28B, as described herein with respect to FIGS. 4A, 4B, 6A, 6B, and 7. It is understood that the features described in FIG.
  • the conventional refining body 132 comprises a conventional refiner bar 136, which is a uniform height along substantially the entire longitudinal length of the refiner bar 136, and a refiner groove 138.
  • the non-rotating stator member e.g., the first refining member 20
  • the rotating rotor member e.g., the second refining member 30
  • refiner bars 26A, 26B and refiner grooves 28A, 28B according to the present disclosure (see FIG. 1).
  • a first gap Gi is defined in FIG. 8 between an outer surface S26A of the first refiner bar
  • a second gap Co may be defined between an outer surface S26B of the second refiner bar 26B and the outer surface of the conventional refiner bar 136, in which G 2 is greater than Gi.
  • a third gap Gn may be defined between an outer surface S26B’ of the second refiner bar 26B and the outer surface S 13 e of the conventional refiner bar 136, m which G3 is greater than Gi .
  • a distance between the outer surface S26B of the second refiner bar 26B and the outer surface S136 of the conventional refiner bar 136 may increase continuously along at least a portion of the longitudinal length (not labeled; see FIGS. 6 A and 6B) of the second refiner bar 26B from a minimum distance corresponding to the third gap G3 to a maximum distance corresponding to the second gap G2.
  • one refining body according to the present invention e.g., the first refining body 22
  • another refining body according to the present invention e.g., the second refining body 32.
  • the first refining body 22 comprises a first refiner bar 26A, a first refiner groove 28A, a second refiner bar 26B, and a second refiner groove 28B, which may correspond to the first and second refiner bars 26A, 26B and first and second refiner grooves 28A, 28B, as described herein with respect to FIGS. 4A, 4B, 6A, 6B, and 7.
  • the second refining body 32 comprises a first refiner bar 36A, a first refiner groove 38.4, a second refiner bar 36B, and a second refiner groove 38B, which may correspond to the first and second refiner bars 36A, 36B and first and second refiner grooves 38A, 38B, as described herein with respect to FIGS.
  • a first gap Gi is defined between an outer surface S26A of the first refiner bar 26A of the first refining body 22 and an outer surface SISA of the first refiner bar 36A of the second refining body 32.
  • a gap Gr may be defined between an outer surface Sieu of the second refiner bar 26B and an outer surface SISB of the second refiner bar 36B of the second refining body 32, in which Gr is greater than Gi .
  • a gap Gs may be defined between the outer surface S26B of the second refiner bar 26B and an outer surface S36B’ of the second refiner bar 36B, in which Gs is greater than Gi.
  • the second refiner bar 26B of the first refining body 22 and the second refiner bar 36B of the second refining body 32 both extend substantially horizontally (shown in FIG.
  • a gap Ge may be defined between an outer surface S26B of the second refiner bar 26B and the outer surface SieB’ of the second refiner bar 36B, in wliich Ge is greater than Gi.
  • Gr is greater than Gy and Ge is greater than Ge.
  • a distance between the outer surfaces S26B, S26B’, S.36B, Siep.’ of the second refiner bars 26B, 36B may increase continuously along at least a portion of the longitudinal length (not labeled; see FIGS. 6A and 6B) of one or both of the respective second refiner bars 26B, 36B.
  • one refining body e.g., the first refining body 22
  • the distance between the outer surfaces S26B, S36B ⁇ of the second refiner bars 26B, 36B may increase from a minimum distance corresponding to the gap Ge to a maximum distance corresponding to the third gap Gs.
  • both refining bodies 22, 32 comprise sloped second refiner bars 26B, 36B
  • the distance between the outer surfaces S26B, SJ6B of the second refiner bars 26B, 36B may increase from a minimum distance corresponding to the gap Ge to a maximum distance corresponding to the second gap Gr.
  • the rotatable refining member e.g., the first refining member 20; see FIG. 1 rotates relative to the stationary' refining member (e.g., the second refining member 30/130; see FIG 1)
  • the pulp slurry comprising wood fibers is supplied to the frame 66, e.g., the inlet 16, of the refiner 10 (see FIG. 1) and enters the refining space 60 defined between the first and second refining bodies 22, 32/132.
  • the first and second refining bodies 22, 132 are spaced apart to define the first gap Gi between the first refiner bars 26A of the first refining body 22 and the conventional refiner bars 136 of the second refining body 132 such that the refiner bars 26A and 136 interact with one another to refine the wood fibers, its described herein. It is believed that the first gap Gi should be less than about 0.9 mm and preferably between about 0.2 mm to about 0.9 mm in order for refining to occur.
  • a distance between the second refiner bars 26B of the first refining body 22 and the refiner bars 136 of the second refining body 132 is increased such that it is believed that refining stops and delinking begins.
  • tire second refiner bars 26B slope continuously downward, the distance increases from the first gap Gi to the second gap G2.
  • the second refiner bars 26B extend substantially horizontally, the distance increases from the first gap Gi to the third gap Gn.
  • the distance between the second refiner bars 26B of the first refining body 22 and the refiner bars 136 of the second refining body 132 should be between about 0.9 mm and about 1.5 mm in order for delinking to occur.
  • the first and second refining bodies 22, 32 are spaced apart to define the first gap Gi between the first refiner bars 26A, 36A such that the refiner bars 26A, 36A interact with one another to refine the wood fibers, as described herein.
  • the first gap Gi should be less than about 0.9 mm and preferably between about 0.2 mm to about 0.9 mm in order for refining to occur and that the gaps Gy Gs, Ge should be between about 0.9 mm and about 1.5 mm in order for deflaking to occur.
  • the gaps Gi and G2, G3, Gy Gy GJ, GG defined between the refining bodies 22, 32/132 may be adjusted by applying axial pressure to at least one of the first or second refining members 20, 30, for example, via the second motor 76 that is coupled to the movable support frame 68 via the jack screw (not shown).
  • the second refining member 30 may be coupled directly to the movable support frame 68 such that the second refining member 30 moves with the movable support frame 68 as tire latter is moved via the second motor 76 and the jack screw.
  • the second refining member 30 is moved as described above, i.e., as the jack screw rotates in a first direction, it causes mov ement of the movable support frame 68 and the fourth refining member 50 inwardly towards the third refining member 40.
  • the fourth refining member 50 then applies an axial force to the w'ood slurry passing through the second refining space 62 which, in turn, applies an axial force to the third refining member 40, causing the third refining member 40, the support 70 and the second refining member 30 to move inwardly tow'ard the first refining member 20.
  • the gap Gi defined between the refiner bars 26A, 36A, 136 may be maintained at a substantially constant gap value by adjusting the positioning of the second refining member 30 relative to the first refining member 20 via the second motor 76 (controlled manually or via a controller/processor coupled to the second motor 76) and jack screw so that an amount of power required to be input/generated by the first motor 74 (controlled manually or via a controller/processor coupled to the first motor 74), running at a predetennined rotational velocity, to process a certain amount of pulp flowing through the refining space 60, is maintained at a predefined input power level, which power level is monitored by an operator or a controller/processor controlling the first motor 74.
  • the second motor 76 is controlled so as to move the second refining member 30 relative to the first refining member 20 until the power input by the first motor 74 equals 114 kilowats.
  • the gap size between the first and second refining members 20, 30 is at a value of 0 57 mm.
  • the gap G?., ⁇ 3 ⁇ 4, G 4 , G 4 , GS, Ge required to achieve defiaking may vary depending on the load or flow rate
  • refining of the wood fibers may stop and defiaking may begin almost immediately upon passage of the fibers into the portion of the refining space 60 that is at least partially defined by the second refiner grooves 28B/28B', 38B/38B’, e.g , upon movement of the wood fibers past the first radially outward position P 2/ P2’ and/or the third radially outward position P4, as shown in FIGS. 6A and 6B.
  • some refining of the wood fibers may continue along at least a portion of the refining space 60 that is at least partially defined by the second refiner grooves 28B/28B’, 38B/38B ’ .
  • embodiments in which one or both of the second refiner bars 26B/26B’ of the first refining body 22 and the second refiner bars 36B/36B’ of the second refining body 32 slope continuously downward may be particularly advantageous to ensure that a sufficient distance between the refiner bars 26B/26B’ and 136/36B/36B’ is achiev ed along at least a portion of tire refining space 60 that is at least partially defined by the second refiner grooves 28B/28B’, 38B/38B to allow ' refining to cease and defiaking to occur.
  • the refining surfaces 24, 34 of the refining bodies 22, 32 may wear and degrade over time.
  • first and third refiner bars 26A/26A’, 26C, 36A/36A’, 36C that perform the ma j ority of the high intensity, high energy refining may wear faster than the second and fourth refiner bars 26B/26B’, 26D, 36B/36B’, 36D that perform defiaking, which is generally lower intensity and lower energy than refining.
  • the position of the refining bodies 22, 32/132 may be adjusted as described herein to maintain tire first gap Gi between the first and third refiner bars 26A/26A’, 26C, 36A/36A’, 36C at a substantially constant value as their outer surfaces S26A, S.16A begin to wear down.
  • the gap G2, Co, G 4 , G 4 , GS, Gs between the second and fourth refiner bars 26B/26B’, 26D, 36B/36B’, 36D may not be adjustable.
  • embodiments in which one or both of the second refiner bars 26B/26B’, 36B/36B ‘ and/or one or both of the four refiner bars 36B/36B , 36D are sloped are believed to allow the transition between the refining and deflaking zones to shift radially outward along the longitudinal length (not labeled; see FIGS. 6A and 6B) of the second and fourth refiner bars 26B/26B’, 26D, 36B/36B’, 36D as the first and third refiner bars 26A/26A’, 26C, 36A/36A’, 36C wear down.
  • FIGS. 10 and 11 are plan views of portions of refining surfaces of a first refining body 22’ and a second refining body 32 , respectively, according to another embodiment of the present disclosure.
  • the first and second refining bodies 22’, 32’ may be part of refining members, e.g., first and second refining members 20, 30, respectively, as described herein, for use in a pulp refiner, such as the disc refiner 10 depicted in FIG. 1.
  • Each of the refining members 20, 30 comprising the first and second refining bodies 22’, 32’, respectively, may be associated with the main support frame comprising the fixed support frame 66 secured to the first housing section 12 and the movable support frame 68.
  • One refining member e.g., the first refining member 20 comprising the first refining body 22’
  • Another refining member e.g., a second refining member 30 comprising tire second refining body 32’
  • Third and fourth refining members (not shown), having third and fourth refining bodies similar to the first and second refining bodies 22’, 32’, may also be provided.
  • the first refining body 22’ comprises a plurality of sections 22A’- 22C’ that may be bolted or otherwise attached together to form the disc-shaped refining body 22’ comprising a radially outer edge 27’.
  • Each section 22A’-22C’ comprises a plurality of elongated refiner bars 26’ separated from one another by refiner grooves 28’.
  • the other sections (not labeled) of the first refining body 22’ would similarly comprise refiner bars 26’ and refiner grooves 28’.
  • the refiner bars 26’ extend radially outwardly from a radially inner location 23’ toward the radially outer edge 27’ of the first refining body 22’.
  • Each section 22A’-22C’ of the first refining body 22’ may comprise one or more or more radially extending pie-shaped segments comprising at least one first pie-shaped segment 22B-1 and at least one second pie-shaped segment 22B-2.
  • the second refining body 32’ comprises a corresponding plurality of sections 32A’-32C’ that may be bolted or otherwise attached together to form the disc- shaped refining body 32’ comprising a radially outer edge 37’.
  • Each section 32A’-32C’ comprises a plurality of elongated refiner bars 36’ separated from one another by refiner grooves 38’.
  • the other sections (not labeled) of the second refining body 32’ would similarly comprise refiner bars 36’ and refiner grooves 38’.
  • the refiner bars 36’ extend radially outwardly from a radially inner location 33’ toward the radially outer edge 37’ of the second refining body 32’.
  • Each section 32A’-32C’ of the second refining body 32’ may comprise one or more or more radially extending pie-shaped segments comprising at least one first pie-shaped segment 32B-1 and at least one second pie shaped segment 32B-2.
  • the third and fourth refining bodies 42, 52 of FIG. 1 may comprise a structure that is substantially similar to the first and second refining bodies 22’, 32’, respectively, as described herein.
  • At least one of the first and second refining bodies 22’, 32’ of FIGS. 10 and 1 1 comprises one or more sections 22A’-22C’, 32A’-32C’ with at least one radially extending pie shaped segment, e.g., 22B-1 and 32B-1, of refiner bars 2.6’, 36’ that comprises one or more characteristics that are different from the refiner bars 26’, 36’ in an adjacent radially extending pie-shaped segment, e.g., 22B-2 and 32B-2, respectively.
  • FIGS. 12A and 12B are partial cross- sectional view's in winch the first and second refining bodies 22’, 32’ of FIGS. 10 and 11 are spaced apart and positioned adjacent to and across from each other (see FIG. 1).
  • a first refiner bar 26-1, wiiich may be located on a refining surface 24-1 of the at least one first pie-shaped segment 22B-1 of the first refining body 22’ (also referred to herein as a first refining surface), is spaced apart and positioned adjacent to and across from a third refiner bar 36-1, which may be located on a refining surface 34-1 of the at least one third pie-shaped segment 32B-1 of the second refining body 32’ (also referred to herein as a third refining surface).
  • a third refiner bar 36-1 which may be located on a refining surface 34-1 of the at least one third pie-shaped segment 32B-1 of the second refining body 32’ (also referred to herein as a third refining surface).
  • a second refiner bar 26-2, winch may be located on a refining surface 24-2 of the at least one second pie-shaped segment 22B-2 of the first refining body 22’ (also referred to herein as a second refining surface), is spaced apart and positioned adjacent to and across from a fourth refiner bar 36-2, which may be located on a refining surface 34-2 of the at least one fourth pie-shaped segment 32B-2. of the second refining body 32’ (also referred to herein as a fourth refining surface)
  • the first refiner bars 26-1 are separated from one another by first refiner grooves 28-1 and may comprise a first maximum height Hr extending upward from a floor Fr of a respective adjacent first refiner groove 28-1.
  • the third refiner bars 36-1 are separated from one another by third refiner grooves 38-1 and may comprise a third maximum height Hr extending upward from a floor FV of a respective adjacent third refiner groove 38-1.
  • the first and third refiner bars 26- 1, 36-1 may be substantially similar to one another, and the first and third maximum heights Hr, Hr may be substantially equal.
  • the second refiner bars 26-2 are separated from one another by second refiner grooves 28-2 and may comprise a second maximum height H2’ extending upward from a floor F2 of an adjacent second refiner groove 28-2.
  • the fourth refiner bars 36-2 are separated from one another by fourth refiner grooves 38-2 and may comprise a fourth maximum height Hr extending upward from a floor Fr of an adjacent fourth refiner groove 38-2.
  • the second and fourth refiner bars 26-2, 36-2 may be substantially similar to one another, and the second and fourth maximum heights Hz , Hr ⁇ may be substantially equal. All of the refiner bars 26-1 , 26-2, 36-1 , 36-2 within a respective pie-shaped segment 22B-1 , 22B-2, 32B-1, 32B-2 may comprise a same height with respect to each other.
  • the second maximum height H2’ of the second refiner bars 2.6-2 may be less than the first maximum height Hi of the first refiner bars 26-1.
  • the second maximum height Hi ⁇ when measured from the floor F2 ⁇ of the adjacent second refiner groove 28-2, may be at least 0.35 mm less than the first maximum height Hr.
  • the second maximum height Hr when measured from the floor F 2’ of the adjacent second refiner groove 28-2, may be at least 0.70 mm less than the first maximum height Hr.
  • the first maximum height Hr of the first refiner bars 26- 1 when measured from the floor F 1 ⁇ of the respective adjacent first refiner groove 2.8-1, may be from about 4 mm to about 10 mm.
  • the second maximum height Hi ’ of the second refiner bars 26-2 when measured from the floor Fi’ of the respective adjacent second refiner groove 28-2, may be from about 0.35 mm to about 1.5 mm less than the first maximum height Hr.
  • the second maximum height Hr of the second refiner bars 26-2 when measured from the floor Fz ’ of the respective adjacent second refiner groove 28-2, may be from about 0.7 mm to about 1.5 mm less than the first maximum height Hi’.
  • the first refiner bars 2.6-1 and the second refiner bars 26-2 may comprise a width extending between sides edges of the respective refiner bars 26-1 , 26-2 of from about 2 mm to about 8 mm (not shown; see FIG. 7).
  • Hie fourth maximum height Hr of the fourth refiner bars 36-2 which may correspond to tire second maximum height Hz , may be less than the third maximum height H.v of the third refiner bars 36-1, which may correspond to the first maximum height Hr.
  • the refining surface 34-1 of the at least one third pie-shaped segment 32B-1 of the second refining body 32’ will pass the refining surface 24-1 of the at least one first pie-shaped segment 22B-1 of the first refining body 22 ’
  • the refining surface 34-2 of the at least one fourth pie-shaped segment 32B-2 of the second refining body 32’ will pass the refining surface 24-2 of the at least one second pie-shaped segment 22B-2 of the first refining body 22’.
  • the third refiner bars 36-1 comprising die third maximum height Hr will be positioned opposite the fi rst refiner bars 26-1 comprising the first maximum height Hr such that the first and third refiner bars 26-1 and 36-1 refine a significant number of the wood fibers.
  • the fourth refiner bars 36-2 comprising the fourth maximum height Hr’ will be positioned opposite from the second refiner bars 26-2 comprising the second maximum height Hr such that die second and fourth refiner bars 26-2 and 36-2 break up or separate a plurality of wood fiber bundles die wood pulp slurry, as described herein.
  • Low intensity refining may occur when the refining surface 34-1 of the at least one tiiird pie-shaped segment 32B-1 of the second refining body 32’ passes the refining surface 24- 2 of die at least one second pie-shaped segment 22B-2 of the first refining body 22’, and die refining surface 34-2 of the at least one fourth pie-shaped segment 32B-2 of the second refining body 32’ passes the refining surface 24-1 of the at least one first pie-shaped segment 22B-1 of the first refining body 22’.
  • one or more of die sections 22A ‘ -22C’, 32A’-32C’ of the respective refining bodies 22’, 32’ may, in some examples, each comprise three radially- extending pie-shaped segments 22B-1 , 22B-1 , 22B-3 and 32B-1, 32B-2, 32B-3
  • two segments, e.g., 22B-1, 22B-3 and 32B-1, 32B-3 may comprise refiner bars with one of the first or second maximum height Hr, 3 ⁇ 4
  • one segment, e.g , 22B-2 and 32B-2 may comprise refiner bars with the other of the first or second maximum height Hr, Hi', in which the second maximum height I : is less dian the first maximum height Hr.
  • the segments 22B-1, 22B-3 may comprise the first refiner bars 26-1
  • the segments 32B-1, 32B-3 may comprise third refiner bars 36-1
  • the segment 22B-2 may comprise the second refiner bars 26-2
  • the segment 32B-2 may comprise the fourth refiner bars 36-2.
  • one or more of the sections 22A’-22C’, 32A’-32C may each comprise only two segments of refiner bars or may each comprise four or more segments of refiner bars.
  • one or more of the sections 22A’-22C’, 32A’- 32C’ may not comprise separate segments, such that an entire section comprises refiner bars of one height.
  • a refining body according to the present disclosure e.g., one of refining bodies 22’, 32’, may be paired with a refining body comprising conventional refiner bars, e.g., refiner bars that are all of the same height.
  • a gap between opposing first and third refiner bars 26-1, 36-1 should be less than about 0.9 mm and preferably between about 0.2 mm to about 0.9 mm in order for refining to occur and that a gap between opposing second and fourth refiner bars 26-2, 36-2 should be between about 0.9 mm and about 1.5 mm in order for deflaking to occur.
  • FIGS. 13 and 14 are plan views of portions of a first refining surface 224 of a first refining body 222 and a second refining surface 234 of a second refining body 232, respectively, according to another embodiment of the present disclosure.
  • the first and second refining bodies 222, 232 may be part of refining members, e.g , refining members 20, 30, respectively, as described herein, for use in a pulp refiner, such as the disc refiner 10 depicted in FIG. 1.
  • Each of the refining members 20, 30 comprising the first and second refining bodies 222, 232, respectively, may be associated with the main support frame comprising the fixed support frame 66 secured to the first housing section 12 and the movable support frame 68.
  • One refining member, e.g., the first refining member 20 comprising the first refining body 222, may be fixed to the support frame 66 of the refiner 10 to define a non-rotating stator member.
  • Another refining member e.g , the second refining member 30 comprising the second refining body 232, may be fixed to the support 70, which rotates with the shaft 72 and defines a rotor that is associated with the main support frame, such that rotation of the rotor effects movement of tire second refining member 30 relative to the first refining member 20.
  • the first refining body 222 comprises a plurality of sections (not separately labeled; see FIGS. 2 and 3) that may be bolted or otherwise attached together to form the disc-shaped refining body 222 comprising a radially outer edge 227.
  • the first refining surface 224 comprises a plurality of elongated first refiner bars 226 separated from one another by first refiner grooves 228.
  • the first refiner bars 226 extend radially outwardly from a radially inner location 223 toward the radially outer edge 227 of the first refining body 222.
  • the first refiner bars 226 may be slanted at vari ous angles as shown in FIG.
  • each section of the refining body 222 may comprise one or more segments (not labeled) of refiner bars 226 that are slanted in different directions.
  • the first refining body 222 further comprises one or more annular rows or rings of teeth 400 located between tire first refiner bars 226 and the radially outer edge 227 of the first refining body 222.
  • the other sections (not labeled) of the fi rst refining body 222 would similarly comprise refiner bars 226, refiner grooves 228, and teeth 400.
  • the second refining body 232 comprises a plurality of sections
  • the second refining surface 234 comprises a plurality of elongated second refiner bars 236 separated from one another by second refiner grooves 238.
  • the second refiner bars 236 extend radially outwardly from a radially inner location 233 toward the radially outer edge 237 of the second refining body 232.
  • the second refiner bars 236 may be slanted at various angles as shown in FIG. 14, and each section of the refining body 232 may comprise one or more segments (not labeled) of refiner bars 236 that are slanted in different directions.
  • the second refining body 232 further comprises one or more annular rows or rings of teeth 400 located between the second refiner bars 236 and the radially outer edge 237 of the second refining body 232.
  • the other sections (not labeled) of the second refining body 232 would similarly comprise refiner bars 236, refiner grooves 238, and teeth 400.
  • the structure of the refining surfaces 44, 54 of the third and fourth refining bodies 42, 52, respectively, of FIG. 1 may comprise a structure that is substantially similar to the refining surfaces 224, 234 of the first and second refining bodies 222, 232, respectively, as described herein.
  • FIGS. 13 and 16 are detailed views of one portion of the first and second refining surfaces 224, 234, of FIGS. 13 and 14, respectively.
  • FIG. 17 is a partial cross-sectional view' of a first refiner bar 226 and tooth 400B, which may be located on the first refining body 222 of FIGS. 13 and 15, and a second refiner bar 236 and teeth 400.4, 400C, which may be located on the second refining body 232 of FIGS. 14 and 16, which the first refining body 222 is spaced apart and positioned adjacent to and across from the second refining body 232 to define a refining space 2.60 therebetween.
  • FIGS. 17 is a partial cross-sectional view' of a first refiner bar 226 and tooth 400B, which may be located on the first refining body 222 of FIGS. 13 and 15, and a second refiner bar 236 and teeth 400.4, 400C, which may be located on the second refining body 232 of FIGS. 14 and 16, which the first ref
  • the first refining surface 224 comprises first refiner bars 226 that are separated from one another by first refiner grooves 228, and the second refining surface 234 comprises second refiner bars 236 that are separated from one another by second refiner grooves 238.
  • One or both of he first and second refining surfaces 224, 2.34 may comprise dams 22.9, 239 provided in at least a portion of the first and second refiner grooves 228, 238, as described herein .
  • Each of the first and second refiner bars 226, 236 extends from a radially inward position P;oo to a first radially outward position l1 ⁇ 2o on die respective first and second refining surfaces 224, 234.
  • the radially inward position Pioo may comprise a position at or near the respective radially inner location
  • the first and second refiner bars 226, 236 may comprise a width W226, W236, respectively, extending between sides edges of the respective refiner bars 226, 236 of from about 2 mm to about 8 mm.
  • the first refining surface 224 comprises first teeth 400B located between a radially outer edge RQ226 of the first refiner bars 226 and the radially outer edge 227 of the first refining body 222.
  • the first teeth 400B extend to a third radially outward position, e.g., P400, on the first refining surface 224, in which the third radially outward position P400 is nearer to an outermost part, e.g., the radially outer edge 227, of the first refining body 222 than the first radially outward position P200 of the first refining bars 226
  • the second refining surface 234 comprises second teeth 400A, 400C that are located between a radially outer edge RO236 of the second refiner bars 236 and the radially outer edge 237 of the second refining body 232.
  • the second teeth 400A, 400C extend to a second or a fourth radially outward position, e.g., l1 ⁇ 2o or P500, on the second refining surface 234, in which the second and fourth radially outward positions P300, P500 are nearer to an outermost part, e.g., the radially outer edge 237, of the second refining body 232 than the first radially outward position P200 of die second refining bars 236.
  • a second or a fourth radially outward position e.g., l1 ⁇ 2o or P500
  • the teeth 400A-400C may be arranged in concentric rings and may protrade substantially perpendicularly toward one another from the respective refining surfaces 224, 234.
  • the ring comprising first teeth 400B is spaced apart from the radially outer edge RO226 of the first refiner bars 226 by a first substantially planar area 282 and from the radially outer edge 227 of the refining body 222 by a second substantially planar area 284.
  • the ring comprising second teeth 400A is spaced apart from the radially outer edge RO236 of the second refiner bars 236 by a first substantially planar area 286 and from the ring comprising second teeth 400C by a second substantially planar area 288.
  • the first refining surface 224 of the first refining body 222 comprises one concentric row/ring of first teeth 400B
  • the second refining surface 234 of the second refining body 232 comprises two concentric rows/rings of second teeth 400 A, 400C, in which the first and second teeth 400A-400C are arranged on the respective refining surfaces
  • the first refining surface 224 may comprise two or more concentric rings of teeth
  • the second refining surface 234 may comprise one concentric row of teeth or three or more concentric rings of teeth.
  • one of the refining bodies will comprise one fewer rings of teeth than the other refining body, and the teeth are arranged on each refining body such that the teeth from one refining body intermesh with the teeth of the other refining body, as is known in the art.
  • each of the first and second teeth 400A-400C may comprise a substantially pyramidal or trapezoidal shape with a base 402, a radially inward facing surface 404, a radially outward facing surface 406, sides (not separately labeled) slightly angled inwardly toward a center axis (not labeled) of the tooth 400A, and a generally planar outer surface 408.
  • the radially inward and outward facing surfaces 404, 406 of each tooth 400A-400C may slope from the base 402 towards its respective outer surface 408.
  • each tooth 400A-400C may be substantially parallel to a plane of the respective substantially planar area 282, 284, 288 that is opposite the tooth 400A-400C.
  • each of the first and second teeth 400A-400C may comprise a shape that is substantially triangular, rectangular, or any other suitable geometric shape.
  • the base 402 of the teeth 400A-400C may comprise a radial dimension that is greater than a circumferential dimension, but in other embodiments (not shown), the base 402 may comprise a radial dimension that is less than a circumferential dimension.
  • At least a portion of the base 402 of teeth 400A-400C may comprise a longitudinal length (not labeled), i.e., in a radial direction, of at least 0.6 cm, and in some particular instances, the longitudinal length may comprise between 0.6 cm to about 2 cm.
  • at least a portion of the base 402 of the teeth 400A-400C may comprise a width (not labeled), in a circumferential direction, that is substantially equal to the combined width, e.g., W226, W236, of one refiner bar 226, 236 and a width WG of one adjacent groove 228, 23 .
  • the width WG may be from about 2 mm to about 6 mm.
  • the base 402 of the teeth 400A-400C may comprise at least about 10 mm in the circumferential direction. In other instances, the base 402 of the teeth 400A-400C may comprise between about 10 mm and 20 mm in the circumferential direction.
  • one or more of the radially inward and outward facing surfaces 404, 406 or the sides of one or more of the teeth 400A-400C may comprise one or more radially-extending projections that may affect the interaction of the teeth 400A-400C with the wood fibers to separate wood fiber bundles.
  • the teeth 400A-400C may have a structure similar to those illustrated in U.S. Patent No. 8,342,437 B2, the disclosure of which is incorporated herein by reference.
  • the first refiner bars 226 comprise a first height H100 extending upward from a floor F100 of an adjacent first refiner groove 228, and the second refiner bars 236 comprise a second height H200 extending upward from a floor F200 of an adjacent second refiner groove 238.
  • the first and second heights H100, H200 of the first and second refiner bars 226, 236 may be substantially equal to one another and may comprise from about 4 mm to about 10 mm.
  • the first and second refining bodies 222, 232 are spaced apart by a first gap G100 that is defined between an outer surface S226 of the first refiner bar 226 and an outer surface S236 of the second refiner bar 236.
  • a second gap G200 is defined between tire generally planar outer surfaces 408 of the teeth 400A-400C and a respective one of the substantially planar areas 282, 284, 288 that is opposite the tooth 400A-400C, in which G200 may be greater than G100.
  • a height (not labeled) of die teeth 400A-400C extending upward from the adjacent, respective first or second refiner groove 228, 238 may be about 8-10 mm.
  • the teeth 400A-400C are intemieshed such that a portion of one or both of the radially inward or outward facing surfaces 404, 406 of each tooth 4QQA- 400C overlaps in an axial direction, e.g., in the direction of arrow A in FIG.
  • G300 may be substantially equal to Gioo. In other examples, G300 may he less than or more than G200.
  • the wood fibers pass into the portion of the refining space 260 that is at least partially defined by the first and second refiner grooves 228, 238, e.g., from about the first radially inward position P 100 to about the first radially outward position P200.
  • the first and second refiner bars 226, 236 interact with one another to refine a significant number of the wood fibers in the wood pulp, as described herein.
  • the first gap G ioo should be less than about 0.9 mm and preferably between about 0 2 mm to about 0 9 mm in order for refining to occur.
  • the refined wood fibers then pass into the portion of the refining space 260 that is at least partially defined by the respective first and second substantially planar areas 282, 284, 286, 288, e.g., from about the first radially outward position P200 to about the fourth radially outward position P500. It is believed that the second and third gaps G200 and G300 should be between about 0.9 mm and about 1.5 mm in order for deflaking to occur.
  • the teeth 400A-400C are adapted to break up or separate a plurality of w'ood fiber bundles in the wood pulp slurry, as described herein.
  • G200 is greater than Gioo such that it is believed that refining stops and deflaking begins at about the first radially outward first position
  • the refining surfaces 224, 234 of the refining bodies 222, 232 particularly the outer surfaces S226, S236 of the first and second refiner bars 226, 236 and the outer surfaces 408 of the teeth 400A-400C, may wear and degrade over time.
  • the spacing between the first and second refining members 20, 30 comprising tire first and second refining bodies 222, 232, respectively, may be readjusted as described herein such that the first gap G100 remains substantially constant.
  • This adjustment of the first and second refining bodies 222, 232 may cause the second gap G200 to decrease, as the refiner bars 226, 236 perform the more intense function of refining and typically wear faster than the teeth 4G0A-4Q0C.
  • This difference in wear may be factored into the selection of the teeth 400A-400C (e.g., the type(s) of metal used for the teeth 400A-400C, the initial size of the second gap G200, the shape of the teeth 400A-400C, etc.) such that an adequate second gap G200 may be maintained to ensure that refining ceases and delinking begins when the wood fibers enter the portion of the refining space 260 that is at least partially defined by tire respective first and second substantially planar areas 282, 284, 286, 288.
  • the third gap G300 may be substantially equal to or greater than the second gap G200.
  • the third gap Gsoo may decrease until the third gap GBOO is less than the second gap G200.
  • tire refiner 10 of FIG. 1 may be coupled to a controller (not shown) that receives data from a fiber analyzer (e.g., a Valmef ® MAP Pulp Analyzer (Valmet Corp )) regarding one or more fiber properties measured at one or more locations downstream of the refiner 10, such as a number, size, etc. of fiber bundles (also referred to as“Wide Shives”), fibrillation, Canadian Standard Freeness, fiber length, fiber width, kink, curl, coarseness, number of fines, etc. Based on this data, the controller may control operation of the refiner 10 as part of a feedback loop.
  • a fiber analyzer e.g., a Valmef ® MAP Pulp Analyzer (Valmet Corp )
  • a controller may control operation of the refiner 10 as part of a feedback loop.
  • the controller may- adjust the spacing between the one or more pairs of refining members 20, 30, 40, 50 in order to maintain the one or more fiber properties within a predetermined target range.
  • the controller may also increase or decrease a rotational speed of the one or more rotating rotor members of the refiner 10 (e.g., the second and third refining members 30, 40) based on this data.
  • the controller may control operation of the refiner 10, such as by varying the size of the refining gap Gi, G100, and the deflakmg gap G2, G3, G4, GJ, Go, G200, G300, to generate a refined softwood pulp that has less than a predetermined number, e.g., 1 ,000 ppm, of fiber bundles of a particular size, e.g., about 150 - 2,000 microns wide and from 0.3 to 40 mm long.
  • refining members 20, 30, 40, 50 according to the present disclosure may be installed in one or more of a plurality of refiners that are arranged in a series, m which each refiner may be substantially similar to the refiner 10 ofFIG. 1.
  • the controller may control operation of one or more of the plurality of refiners in order to maintain the one or more fiber properties within the predetermined target range.
  • refining members 20, 30, 40, 50 according to the present disclosure may be installed only in the last refiner of the series, and in other examples, refining members 20, 30, 40, 50 according to the present disclosure may be installed in two or more of the refiners.
  • FIG. 18 is a flowchart illustrating an exemplary method for processing wood fibers. Although reference is made to the components of the refiner 10 in FIG. 1 , it is understood that the method is not limited only to this structure.
  • Tire method may begin at Step 500 with providing a refiner 10 comprising at least a first pair of refining members 20 and 30, 40 and 50.
  • the at least one pair of refining members may comprise a first refining member 20 comprising a first refining body 22 including a first refining surface 24 and a second refining member 30 comprising a second refining body 32 including a second refining surface 34.
  • the first refining surface 24 may comprise first refiner bars 26A separated by first refiner grooves 28A and second refiner bars 26B separated by second refiner grooves 28B, in which the first refiner bars 2.6A have a first maximum height Hi extending upward from a floor Fi of an adjacent first refiner groove 28A and the second refiner bars 26B having a second maximum height Hr extending upward from a floor F?_ of an adjacent second refiner groove 28B.
  • Idle second refining surface 34 may comprise second member refiner bars 36 separated by second member refiner grooves 38.
  • the first refining member 20 may be spaced from the second refining member 30 to define a refining space 60 therebetween.
  • At least a portion of the second member refiner bars 36 may be positioned so as to be across from the second refiner bars 26B of the first refining member 20 such that a gap Gi, G3, Gy Gs, Ge between the portion of the second member refiner bars 36 and the second refiner bars 26B is defined.
  • Idle method may continue with rotating at least one of the first refining member 20 or the second refining member 30 such that the first and second refining members 20, 30 move relative to one another in Step 510, and supplying a slurry of wood pulp comprising wood fibers to the refiner 10 such that the slurry passes through the refining space 60 in Step 520.
  • axial pressure may be supplied to at least one of the first refining member 20 or the second refining member 30 as the slurry is supplied such that the gap G2, G3, Gy Gs, Ge between the portion of the second member refiner bars 36 and the second refiner bars 26B is between about 0.9 mm and about 1.5 mm, in which at least a portion of wood fiber bundles passing through the gap G?., G3, Gy Gs, Ge are separated, after which the method may terminate.

Landscapes

  • Paper (AREA)
  • Crushing And Grinding (AREA)

Abstract

A refining member comprising a refining body with a refining surface comprising first and second refiner bars separated by first and second refiner grooves, respectively. The first refiner bars extend from a radially inward position to a first radially outward position. The second refiner bars extend to a second radially outward position that is nearer to an outermost part of the refining body than the first radially outward position. The second refiner bars have a longitudinal length from about 0.6 cm to about 10 cm. The first and second refiner bars have a respective first and second maximum height extending upward from a floor of a respective, adjacent first or second refiner groove. The second maximum height is at least 0.35 mm less than the first maximum height. The first refiner bars are adapted to refine wood fibers and the second refiner bars are adapted to break up fiber bundles.

Description

APPARATUS AND METHOD FOR PROCESSING WOOD FIBERS
RELATED APPLICATIONS
This application is related to following application, which is filed concurrently herewith and which is hereby incorporated by reference in its entirety: U.S. Patent Application No. 15/860,006 (Attorney Docket No. TEC-120257-US), entitled“APPARATUS AND METHOD FOR PROCESSING WOOD FIBERS,” by Dwight Anderson.
FIELD OF THE INVENTION
The present disclosure relates generally to processing wood fibers in a refiner and more particularly to an apparatus and method for refining wood fibers and breaking up fiber bundles.
BACKGROUND OF THE INVENTION
Disc-type refiners have traditionally been used to process wood fibers in a step of a paper product making process. Such refiners include first and second refining members having a refining space therebetween. Each of the first and second refining members include a plurality of refiner bars separated by refiner grooves, in which the refiner bars define cuting surfaces for cutting the wood fibers. During operation, at least one of the first and second refining members is rotated relati v e to the other, m which rotation of the cutting surfaces of the refiner bars cut wood fibers being processed in the refiner. Once the wood fibers are processed in the refiner, the processed wood fibers may be further processed in subsequent paper product making processes to produce paper products. In some instances, the wood fibers may undergo additional processing, such as in a separate tickler refiner or deflaker.
SUMMARY OF THE INVENTION
In accordance with a first aspect of the present invention, a refining member for a pulp refiner is provided. The refining member comprises a refining body including a refining surface comprising first refiner bars separated by first refiner grooves and second refiner bars separated by second refiner grooves. Each of the first refiner bars extends from a radially inward position on the refining surface to a first radially outward position on tire refining surface. Each of the second refiner bars extends to a second radially outward position on the refining surface . The second refiner bars have a longitudinal length from about 0.6 cm to about 10 cm, in which the second radially outward position is nearer to an outermost part of the refining body than the first radially outward position. The first refiner bars have a first maximum height extending upward from a floor of an adjacent first refiner groove, and the second refiner bars have a second maximum height extending upward from a floor of an adjacent second refiner groove. The second maximum height is at least 0.35 ram less than the first maximum height. Tire first refiner bars are adapted to refine wood fibers, and the second refiner bars are adapted to break up fiber bundles.
Idle first maximum height of tire first refiner bars, when measured from the floor of the adjacent first refiner groove, may be from about 4 mm to about 10 mm. The second maximum height of the second refiner bars, when measured from the floor of the adjacent second refiner groove, may be from about 0.35 mm to about 1.5 mm less than the first maximum height. The second maximum height of the second refiner bars, when measured from the floor of the adjacent second refiner groove, may be from about 0.7 mm to about 1.5 mm less than the first maximum height.
The longitudinal length of the second refiner bars may be from about 2 cm to about 10 cm.
The second refiner bars may be integral with the first refiner bars such that the second refiner bars extend from the first radially outward position to the second radially outward position. Each of the second refiner bars may slope continuously downward from tire first radially outward position to the second radially outward position.
The first and second refiner bars may have a width extending between side edges of from about 2 mm to about 8 mm.
At least a portion of the first refiner grooves may be provided with dams.
The refining member may further comprise third refiner bars separated by third refiner grooves and fourth refiner bars separated by fourth refiner grooves. Each of the third refiner bars may extend to a third radially outward position on tire refining surface, and each of the fourth refiner bars may extend to a fourth radially outward position on the refining surface. The fourth refiner bars may have a longitudinal length from about 0.6 cm to about 10 cm. The fourth radially outward position may be nearer to an outermost part of the refining body than the third radially outward position. The third refiner bars may have a third maximum height extending upward from a floor of an adjacent third refiner groove, and the fourth refiner bars may have a fourth maximum height extending upw'ard from a floor of an adjacent fourth refiner groove. The fourth maximum height may be at least 0.35 mm less than the third maximum height. The third refiner bars may be adapted to refine wood fibers, and the fourth refiner bars may be adapted to break up fiber bundles.
7 The third refiner bars may be integral with the second refiner bars such that the third refiner bars extend from the second radially outward position to the third radially outward position, and the fourth refiner bars may be integral with the third refiner bars such that the fourth refiner bars extend from the third radially outward position to the fourth radially outward position.
In accordance with a second aspect of the present disclosure, a pulp refiner is provided. The pulp refiner comprises: a frame, at least a first pair of refining members, and a rotor associated with the frame. The refining members comprise a first refining member associated with the frame and comprising a first refining body and a second refining member associated with the frame and comprising a second refining body. The first refining body includes a first refining surface comprising: first refiner bars separated by first refiner grooves, each of the first refiner bars extending from a radially inward position on the refining surface to a first radially outward position on the refining surface, and second refiner bars separated by second refiner grooves, each of the second refiner bars extending to a second radially outward position on the refining surface. The second refiner bars have a longitudinal length from about 0.6 cm to about 10 cm. The second radially outward position may be nearer to an outermost part of the refining body than the first radially outward position. The first refiner bars have a first maximum height extending upward from a floor of an adjacent first groove, and the second refiner bars have a second maximum height extending upward from the adjacent second groove floor. The second maximum height is at least 0.35 mm less than the first maximum height. Idle second refining member includes a second refining surface comprising second member refiner bars separated by second member refiner grooves. The first refining member is spaced from the second refining member to define a refining space therebetween. The rotor is coupled to one of the first refining member or the second refining member such that rotation of tire rotor effects movement of the one of the first or the second refining member relative to the other. When a slurry of wood pulp comprising wood fibers is supplied to the frame, the wood pulp slurry passes through the refining space such that a significant number of the wood fibers in the wood pulp slum' are refined and a plurality of wood fiber bundles in the wood pulp shiny' are separated.
The second maximum height may be at least 0.7 mm less than the first maximum height.
The longitudinal length of the second refiner bars may be from about 2 cm to about 10 cm. The second member refiner bars may comprise: third refiner bars extending from a radially inward position on the second refining surface to a first radially outward position on the second refining surface, and fourth refiner bars extending to a second radially outward position on the second refining surface. The second radially outward position may be nearer to an outermost part of the second refining body than the first radially outward position. The third refiner bars may have a third maximum height extending upward from a floor of an adjacent groove, and the fourth refiner bars may have a fourth maximum height extending upward from the adjacent groove floor. The fourth maximum height may be at least 0.35 mm less than the third maximum height.
The first refining member may be a non-rotating stator member, and the second refining member may be a rotating rotor member.
In accordance with a third aspect of the present disclosure, a method for processing wood fibers is provided. The method comprises: providing a refiner comprising at least a first pair of refining members. The refining members comprise: a first refining member comprising a first refining body and a second refining member comprising a second refining body. The first refining body includes a first refining surface comprising: first refiner bars separated by first refiner grooves and having a first maximum height extending upward from a floor of an adjacent first refiner groove, and second refiner bars separated by second refiner grooves and having a second maximum height extending upward from a floor of an adjacent second refiner groove. The second refining body includes a second refining surface comprising second member refiner bars separated by second member refiner grooves. The first refining member is spaced from the second refining member to define a refining space therebetween At least a portion of the second member refiner bars are positioned so as to be across from the second refiner bars such that a gap between the portion of the second member refiner bars and the second refiner bars is defined. The method further comprises: rotating at least one of the first refining member or the second refining member such that the first and second refining members move relative to one another; supplying a slurry of wood pulp comprising wood fibers to the refiner such that the slurry passes through the refining space; and applying axial pressure to at least one of the first refining member or the second refining member as the slurry is supplied such that the gap between the portion of the second member refiner bars and the second refiner bars is between about 0.9 mm and about 1 5 mm, m which at least a portion of wood fiber bundles passing through the gap are separated.
The second refiner bars may have a longitudinal length from about 0.6 cm to about 10 cm, and the second maximum height may be at least 0.35 mm less than the first maximum height. The longitudinal length of the second refiner bars may be from about 2 cm to about 10 cm.
The second member refiner bars may comprise: third refiner bars and fourth refiner bars. Tire third refiner bars may have a third maximum height extending upward from a floor of an adjacent groove, and the fourth refiner bars may have a fourth maximum height extending upward from an adjacent groove floor. The fourth maximum height may be at least 0.35 mm less than the third maximum height.
In accordance with a fourth aspect of the present disclosure, a refining member for a pulp refiner is provided. The refining member comprises: a refining body comprising a plurality of radially extending pie-shaped segments comprising: at least one first pie-shaped segment and at least one second pie-shaped segment. The at least one first pie-shaped segment comprises a first refining surface comprising first refiner bars separated by first refiner grooves. The first refiner bars have a first maximum height extending upward from a floor of an adjacent first refiner groove. The at least one second pie-shaped segment comprises a second refining surface comprising second refiner bars separated by second refiner grooves . The second refiner bars have a second maximum height extending upward from a floor of an adjacent second refiner groove. The second maximum height is at least 0.35 mm less than the first maximum height. The first refiner bars are adapted to refine wood fibers, and the second refiner bars are adapted to break up fiber bundles.
The first maximum height of the first refiner bars, when measured from the floor of the adjacent first refiner groove, may be from about 4 mm to about 10 mm.
The second maximum height of the second refiner bars, when measured from the floor of the adjacent second refiner groove, may be from about 0.35 mm to about 1.5 mm less than the first maximum height.
The second maximum height of the second refiner bars, when measured from the floor of the adjacent second refiner groove, may be from about 0.7 mm to about 1 .5 mm less than the first maximum height.
In accordance with a fifth aspect of the present disclosure, a pulp refiner is provided. The pulp refiner comprises: a frame, at least a first pair of refining members, and a rotor associated with the frame. The refining members comprise: a first refining member associated with tire frame and comprising a first refining body and a second refining member associated with the frame and comprising a second refining body. The first refining body includes a plurality of radially extending pie-shaped segments comprising: at least one first pie-shaped segment and at least one second pie-shaped segment. The at least one first pie-shaped segment comprises a first refining surface comprising first refiner bars separated by first refiner grooves. The first refiner bars have a first maximum height extending upward from a floor of an adjacent first refiner groove. The at least one second pie-shaped segment comprises a second refining surface comprising second refiner bars separated by second refiner grooves. The second refiner bars have a second maximum height extending upward from a floor of an adjacent second refiner groove. Idle second maximum height is at least 0.35 mm less than the first maximum height. The second refining body includes a second member refining surface comprising second member refiner bars separated by second member refiner grooves. The first refining member is spaced from the second refining member to define a refining space therebetween. The rotor is coupled to one of the first refining member or the second refining member such that rotation of the rotor effects movement of the first and second refining members relative to one another. When a slurry of wood pulp comprising wood fibers is supplied to the frame, the wood pulp slurry passes through the refining space such that a significant number of the wood fibers in the wood pulp slimy are refined and a plurality of wood fiber bundles in the wood pulp slurr are separated .
The second maximum height of the second refiner bars, when measured from the floor of the adjacent second refiner groove, may be from about 0.35 mm to about 1.5 mm less than the first maximum height.
The second maximum height of the second refiner bars, when measured from the floor of the adjacent second refiner groove, may be from about 0.7 mm to about 1.5 mm less than the first maximum height.
The second refining body may comprise a plurality of radially extending pie-shaped segments comprising: at least one third pie-shaped segment and at least one fourth pie-shaped segment. The at least one third pie-shaped segment may comprise a third refining surface comprising third refiner bars separated by third refiner grooves. The third refiner bars may- have a third maximum height extending upward from a floor of an adjacent third refiner groove. The at least one fourth pie-shaped segment may comprise a fourth refining surface comprising fourth refiner bars separated by fourth refiner grooves. The fourth refiner bars may have a fourth maximum height extending upward from a floor of an adjacent fourth refiner groove. The fourth maximum height may be at least 0.35 mm less than the third maximum height. The third and fourth refiner bars may define the second member refiner bars, and the third and fourth refiner grooves may define the second member refiner grooves.
The first refining member may be a non-rotating stator member, and the second refining member may be a rotating rotor member. In accordance with a sixth aspect of the present disclosure, a refining member for a pulp refiner is provided. The refining member comprises a refining body including a refining surface comprising: refiner bars separated by refiner grooves, each of the refiner bars extending from a radially inward position on the refining surface to a first radially outward position on the refining surface; and teeth extending to a second radially outward position on the refining surface. The second radially outward position is nearer to an outermost part of the refining body than the first radially outward position. The refiner bars are adapted to refine wood fibers and the teeth are adapted to break up fiber bundles.
The refiner bars may have a first maximum height, when measured from a floor of an adjacent refiner groove, from about 4 mm to about 10 mm.
The refiner bars may have a width extending between side edges of from about 2 mm to about 8 mm.
At least a portion of the refiner grooves may be provided with dams.
In accordance with a seventh aspect of the present disclosure, a pulp refiner is provided. The pulp refiner comprises a frame, at least a first pair of refining members, and a rotor associated with the frame. The refining members comprise a first refining member associated with the frame and comprising a first refining body including a first refining surface and a second refining member associated w ith the frame and comprising a second refining body including a second refining surface. The first refining surface comprises: first refiner bars separated by first refiner grooves, each of the first refiner bars extending from a radially inward position on the first refining surface to a first radially outward position on the first refining surface, and first teeth extending to a further radially outward position on the first refining surface. The further radially outward position is nearer to an outermost part of the first refining body than the first radially outward position. The first refining member is spaced from the second refining member to define a refining space therebetween. The rotor is coupled to one of the first refining member or the second refining member such that rotation of the rotor effects movement of the first and second refining members relative to one another. When a slurry of wood pulp comprising wood fibers is supplied to the frame, the wood pulp slurry passes through the refining space such that a significant number of the wood fibers in the wood pulp slurr are refined and a plurality of wood fiber bundles in the wood pulp slurry are separated.
The second refining member may comprise a second refining body including a second refining surface comprising: second refiner bars separated by second refiner grooves, each of the second refiner bars extending from a radially inward position on the second refining surface to a first radially outward position on the second refining surface, and second teeth extending to a second radially outward position on the second refining surface. The second radially outward position may be nearer to an outermost part of the second refining body than the first radially outward position.
The second refining surface may comprise a first row of the second teeth extending to tire second radially outward position on the second refining surface and a second row of the second teeth extending to a fourth radially outward position on tire second refining surface. The first teeth intermesh with the second teeth.
The first refining member may be a non-rotating stator member, and the second refining member may be a rotating rotor member.
BRIEF DESCRIPTION OF THE DRAWINGS
While the specification concludes with claims particularly pointing out and distinctly claiming the present invention, it is believed that the present invention will be better understood from the following description in conjunction with the accompanying Drawing Figures, in which like reference numerals identify like elements, and wherein:
FIG. I is a schematic, partial cross-sectional view' of a disc refiner;
FIGS. 2 and 3 are plan views of a first and a second refining body, respectively;
FIGS. 4A and 4B are plan views of a section of a refining surface of the first refining body of FIG. 2;
FIGS. 5A and 5B are plan views of a section of a refining surface of the second refining body of FIG 3;
FIG. 6A is a partial cross-sectional view of a refining body taken along line 6A— 6A in FIGS. 4A and 5 A;
FIG. 6B is a partial cross-sectional view of a refining body' taken along line 6B— 6B in FIGS. 4B and 5B;
FIG. 7 is a partial cross-sectional view taken along line 7— 7 in FIGS. 4A, 4B, 5A, and 5B;
FIGS. 8 and 9 are partial cross-sectional views of a refiner bar on a first refining body that is spaced apart and positioned above a corresponding refiner bar on a second refining body;
FIGS. 10 and I I are plan view's of portions of a first and a second refining body, respectively, comprising a plurality' of radially extending pie-shaped segments;
FIGS. 12A and 12B are partial cross-sectional views of refiner bars from the pie-shaped segments of FIGS. 10 and 11 , in which one refining body is spaced apart and positioned above another refining body; FIGS. 13 and 14 are plan views of a first and a second refining body, respectively, comprising teeth;
FIG. 15 is a plan view of a section of a refining surface of the first refining body of FIG. 13;
FIG. 16 is a plan view of a section of a refining surface of the second refining body of
FIG. 14;
FIG. 17 is a partial cross-sectional view of a refiner bar and tooth on a first refining body that is spaced apart and positioned above a second refining body comprising a refiner bar and teeth; and
FIG. 18 is a flowchart illustrating an exemplary method for processing wood fibers.
DETAILED DESCRIPTION OF THE INVENTION
In the following detailed description of the preferred embodiments, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration, and not by way of limitation, specific preferred embodiments in which the invention may be practiced. It is to be understood that other embodiments may be utilized and that changes may be made without departing from the spirit and scope of the present invention.
FIG. I illustrates a schematic, partial cross-sectional view of a disc refiner 10 according to the present disclosure. The disc refiner 10 comprises a housing with a first housing section 12 and a second housing section 14 that may be bolted or otherwise attached fixedly together.
The housing sections 12, 14 define an inlet 16, an outlet 18, and a refiner inner cavity 64 that contains one or more pairs of refining members. The embodiment shown in FIG. l is a double disc refiner 10 comprising two pairs of refining members, e.g., a first refining member 20 paired with a second refining member 30 and a third refining member 40 paired with a fourth refining member 50. The first refining member 20 comprises a first refining body 22 with a first refining surface 24, and the second refining member 30 comprises a second refining body- 32 with a second refining surface 34. The third refining member 40 comprises a third refining body 42 and a third refining surface 44, and the fourth refining member 50 comprises a fourth refining body 52 and a fourth refining surface 54. Each of the refining members 20, 30, 40, 50 are associated with a main support frame comprising a fixed support frame 66 secured to the first housing section 12 and a movable support frame 68, as described herein.
The first, second, third, and fourth refining bodies 22, 32, 42, 52 may be generally disc- shaped with substantially identical outer diameters (see FIGS. 2 and 3). The first and second refining members 20, 30 are arranged such that the first refining surface 24 faces the second refining surface 34, and the third and fourth refining members 40, 50 are arranged such that the third refining surface 44 faces the fourth refining surface 54. The first refining member 20 is spaced apart from the second refining member 30 to define a first refining space 60 between the respective refining surfaces 24, 34. The third refining member 40 is spaced apart from the fourth refining member 50 to define a second refining space 62 between the respective refining surfaces 44, 54. The disc refiner 10 may have a structure similar to the one illustrated in U .S. Patent Application Publication No. 2006/0037728 Al, the disclosure of which is incorporated herein by reference.
In the embodiment shown in FIG. 1 , the first and fourth refining members 20, 50 are stationary, and the second and third refining members 30, 40 rotate relative to the first and fourth refining members 20, 50. The first refining member 20 may be fixed to the support frame 66 by bolts or other suitable fasteners (not shown). The second and third refining members 30, 40 may be attached to a support 70 that is coupled to and extends radially outwardly from a rotatable shaft 72. The support 70 is coupled to the shaft 72 so as to rotate with the shaft 72 and is also axially movable along the shaft 72. The shaft 72 is driven by a first motor 74 such that the support 70 and the second and third refining members 30, 40 rotate with tire shaft 72 during operation of the disc refiner 10. The shaft 72 has a central axis 72A that is generally coaxial with an axis of rotation of the second and third refining members 30, 40. The shaft 72 may be rotatably mounted to the fixed support frame 66 such that the first and second refining members 30, 40 are associated with the main support frame. The support 70 may be movable axially along the shaft 72, e.g., substantially along the central axis 72.A, relative to the first and fourth refining members 20, 50, as described herein. The fourth refining member 50 may be fixed to the movable support frame 68 by bolts or other suitable fasteners (not shown). Thus, the support 70 and the shaft 72 may define a rotor associated with the main support frame such that the second and third refining members may define rotating rotor members, and the first and fourth refining members 20, 50 may define non-rotating stator members. Rotation of the rotor effects movement of the second and third refining members 30, 40 relative to the first and fourth refining members 20, 50, respectively.
The movable support frame 68 may be mounted in the second housing section 14 and is coupled to a second motor 76, which may comprise a reversible electric motor, which is fixed m position. The second motor 76 moves the movable support frame 68 in a substantially horizontal (i.e., axial) direction shown by arrow A. The refiner 10 may comprise, for example, a jack screw (not shown) coupled to the second motor 76 and the movable support frame 68, which second motor 76 may rotate the jack screw to move the movable support frame 68 to which is attached, for example, the fourth refining member 50. This movement adjusts the size of the gaps, i.e., the first and second refining spaces 60, 62, defined between the first and second refining members 20, 30 and the third and fourth refining members 40, 50 (see also FIGS. 8 and 9). In other embodiments (not shown), control of the size of the gaps may be achieved by one or more magnetic bearings. Magnetic bearings that control the axial position of the shaft 72 may be used to control the position of the rotating rotor members that are fixed to the shaft 72. Magnetic bearings may be used to control the axial position of one or more additional movable sections of the main support frame, i .e., the movable support frame 68, to which one or more of the non-rotating stator members are attached.
As will be discussed further herein, a slurry of wood pulp comprising wood fibers passes through the refining spaces 60, 62. As the jack screw rotates in a first direction, it causes movement of the movable support frame 68 and the fourth refining member 50 inwardly tow'ards the third refining member 40. The fourth refining member 50 then applies an axial force to the pulp slurry passing through the second refining space 62 w'hieh, in turn, applies an axial force to the third refining member 40, causing the third refining member 40, the support 70 and the second refining member 30 to move inwardly toward the first refining member 20. As the jack screw' rotates in a second direction, opposite to the first direction, it causes movement of the movable support frame 68 and the fourth refining member 50 outwardly away from the third refining member 40. This reduces the axial force applied by the fourth refining member 50 to the pulp slurry passing through the second refining space 62 which, in turn, reduces an axial force applied by the pulp slum' to the third refining member 40. The axial force applied by the pulp slum passing through the first refining space 60 is then sufficient to cause the second refining member 30, the support 70 and the third refining member 40 to move toward the fourth refining member 50. This occurs until the axial forces applied by the wood slurries passing through the first and second refining spaces 60, 62 against the second and third refining members 30 and 40 are approximately equal.
In some embodiments (not shown), the disc refiner 10 may further comprise a further motor and a second rotatable shaft, and the first and/or fourth refining members 20, 50 may be coupled to the second rotatable shaft such that the first and/or fourth refining members 20, 50 may be counter-rotatable relative to the second and/or third refining members 30, 40, respectively. In other embodiments (not shown), the disc refiner 10 may comprise only one pair of refining members in which one refining member is a non-rotating stator member and the other refining member is a rotating rotor member. In further embodiments (not shown), the disc refiner may comprise three or more parrs of refining members. In yet further embodiments (not shown), the disc refiner 10 may comprise a conical refiner with one or more pairs of refining members.
FIGS. 2 and 3 are plan views of the refining surfaces 24, 34 of the first refining body 22 and the second refining body 32, respectively, for use in a pulp refiner according to one embodiment of die present disclosure. Although not discussed in detail herein, the structure of dre refining surfaces 44, 54 of the third and fourth refining bodies 42, 52, respectively, (see FIG. 1) may be substantially similar to the refining surfaces 24, 34 of the first and second refining bodies 22, 32, respectively.
With reference to FIGS. 1 and 2, die first refining body 22 may comprise a plurality of sections, e.g. sections 22A-22C, that are bolted or otherwise attached together to form the disc shaped refining body 22 comprising a radially outer edge 27. The refining surface 24 comprises a plurality of elongated refiner bars 26 separated from one another by refiner grooves 28. Although not shown in FIG. 2, it is understood that the other sections (not labeled) of the first refining body 22 would similarly comprise refiner bars 26 and refiner grooves 28. The refiner bars 26 extend radially outwardly from a radially inner location 23 toward the radially outer edge 27 of the first refining body 22. Tire refiner bars 26 may be slanted at various angles as shown in FIG. 2, and each section 22A-22C may comprise one or more segments (not separately labeled) of refiner bars 26 that are slanted in different directions. The refiner bars 26 and refiner grooves 28 within each section 22A-22C in FIG. 2 may otherwise be similar in structure.
As shown in FIG. 3, the second refining body 32 may similarly comprise a plurality of sections, e.g. sections 32A-32C, that are bolted or otherwise attached together to form the disc shaped refining body 32 comprising a radially outer edge 37. Tire refining surface 34 comprises a plurality of elongated refiner bars 36 separated from one another by refiner grooves 38. Although not shown in FIG. 3, it is understood that the other sections (not labeled) of the second refining body 32 would similarly comprise refiner bars 36 and refiner grooves 38. The refiner bars 36 extend radially outwardly from a radially inner location 33 toward the radially outer edge 37 of the second refining body 32. The refiner bars 36 may be slanted at various angles as shown in FIG. 3, and each section 32A-32C may comprise two or more segments (not separately labeled) of refiner bars 36 that are slanted in different directions. The refiner bars 36 and refiner grooves 38 within each section 32A-32C in FIG. 3 may otherwise be similar in structure.
Paths of a slu ' of wood pulp comprising wood fibers through the refiner 10 are illustrated via arrows B in FIG. 1. With reference to FIGS. 1-3, the pulp slum' enters the disc refiner 10 through an inlet 16 and passes into the refiner inner cavity 64 via a central aperture 21 in the first refining member 20. The refiner inner cavity 64 may be defined, in part, by the fixed support frame 66 and the movable support frame 68. The refining surfaces 24, 34 may comprise one or more additional rows of refiner bars (not labeled), such as those located near tire center of the refining bodies 22, 32, e.g., near the central aperture 21. These additional refiner bars may be wider and spaced further apart than the other refiner bars 26 to break up large fiber bundles before they enter the refining space 60. The wood fibers travel radially outwardly between the refining members 20, 30, 40, 50. Tire first refining space 60 defined between the first and second refining members 20, 30 and the second refining space 62 defined between the third and fourth refining members 40, 50 define separate paths along which the wood fibers may travel from the inlet 16 to the outlet 18. It is believed that the wood fibers only pass through one of the first and second refining spaces 60, 62 at a time. The refiner groo ves 28, 38 may be considered part of the refining space 60 defined between the first and second refining members 20, 30. It is believed that a majority of the flow of the wood fibers through the refining space 60 passes through the refiner grooves 28, 38. Similarly, the refiner grooves (not shown) of the third and fourth refining members 40, 50 may be considered part of the refining space 62 defined between the third and fourth refining members 40, 50. It is believed that a majority of the flow of wood fibers through the refining space 62 passes through tire refiner grooves (not labeled) of the third and fourth refining members 40, 50. After processing, the wood fibers exit the refiner 10 via the outlet 18, at least in part under the action of centrifugal force.
FIGS. 4A and 4B are detailed views of one portion of the refining surface 24 of the first refining body 22, and FIGS. 5 A and 5B are detailed views of a corresponding portion of the refining surface 34 of the second refining body 32. FIGS. 6A and 6B are partial cross-sectional views of the refining bodies 22, 32 taken along lines 6A— 6A and 6B— 6B, respectively, illustrating two embodiments of a refiner bar 26, 36, as shown in FIGS. 4.4, 4B, 5A, and 5B FIG. 7 is a partial cross-sectional view taken along line 7— 7 in FIGS. 4A, 4B, 5A, and 5B.
In the embodiments shown in FIGS. 4A, 5 A, 6A, and 7, each refiner bar 26, 36 may comprise a first refiner bar 26A, 36A and a second refiner bar 26B, 36B. The first refiner bars 26A, 36A may be separated from one another by first refiner grooves 28A, 38A, and the second refiner bars 26B, 36B may be separated from one another by second refiner grooves 28B, 38B. The first and second refiner grooves 28A, 38 A, 2.8B, 38B may have a width WG of from about 2 mm to about 6 mm. As shown in FIGS 6A and 7, the first refiner bars 26A, 36A comprise a first maximum height Hi extending upward from a floor F; of the adjacent first refiner groove 28A, 38A, and the second refiner bars 26B, 36B comprise a second maximum height Hi extending upward from a floor Fi of the adjacent second refiner groove 28B, 38B, in which the second maximum height Hi is less than the first maximum height Hi. The minimum height difference between Hi and Hi is depicted as Di in FIG. 6A . In some examples, a radially outer portion ROi of the first refiner bar 26A, 36A may comprise a step-down from the first maximum height Hi to the second maximum height Hi.
In some examples, the second maximum height Hi may be at least 0.35 mm less than the first maximum height Hi. In other examples, the second maximum height Hi may be at least 0.70 mm less than the first maximum height Hi. In further examples, the first maximum height Hi of the first refiner bars 26A, 36A, when measured from the floor Fi of the adjacent first refiner groove 28A, 38A, may be from about 4 mm to about 10 mm. In a particular example, the second maximum height Hi of the second refiner bars 26B, 36B, when measured from the floor Fi of the adjacent second refiner groove 28B, 38B, may be from about 0.35 mm to about 1.5 mm less than the first maximum height Hi. In another particular example, the second maximum height Hi of the second refiner bars 26B, 36B, when measured from the floor Fi of the adjacent second refiner groove 28B, 38B, may be from about 0.7 mm to about 1.5 mm less than the first maximum height Hi . In further examples, the first refiner bars 26A, 36A and the second refiner bars 26B, 36B may comprise a width Wie extending between sides edges of the respective refiner bars 26A, 36A, 26B, 36B of from about 2 mm to about 8 mm.
Each of tire first refiner bars 26A, 36A extend from a radially inward position Pi on the refining surface 24, 34 to a first radially outward position Pi on the refining surface 24, 34. Each of the second refiner bars 26B, 36B extend to a second radially outward position Pi on the refining surface 24, 34. The second radially outward position Pn may be nearer to an outermost part, eg., the radially outer edge 27, 37, of the refining body 22, 32 than the first radially outward position Pi. In some examples, the radially inward position Pi may comprise a position at or near the radially inner location 23, 33. The second refiner bars 26B, 36B may comprise a longitudinal length Li from about 0.6 cm to about 10 cm and preferably from about 2 cm to about 10 cm.
In some embodiments, the second refiner bars 26B, 36B may be integral with the first refiner bars 26A, 36A, as shown in FIGS. 4A, 5A, and 6A, such that the second refiner bars 26B, 36B extend from the first radially outward position Pi to tire second radially outward position Pi. In a particular embodiment, the second refiner bars 26B, 36B may slope continuously downward from the first radially outward position Pi to the second radially outward position Pi. As shown m FIG. 6A, the height of the second refiner bars 26B, 36B may decrease continuously along substantially the entire longitudinal length Li from the second maximum height Kb to a second minimum height Hi’. In another particular embodiment, the second refiner bars 26B, 36B may extend substantially horizontally from the first radially outward position P2 to the second radially outward position P3, as depicted by the dashed line in FIG. 6A, such that the second refiner bars 26B, 36B are at the second maximum height H2 along substantially the entire longitudinal length Li of the second refiner bars 26B, 36B. In other embodiments (not shown), the first refiner bars 26A, 36A may be radially separated from the second refiner bars 26B, 36B by a space.
With reference to FIGS. 4A, 5 A, and 7, the refining surfaces 24, 34 may comprise dams 29, 39 provided in at least a portion of the first refiner grooves 28A, 38A. The dams 29, 39 may comprise a height that is substantially the same as or less than the height of the adjacent first refiner bars 26A, 36A. The dams 29, 39 serve to divert wood fibers from the first refiner grooves 28A, 38A so as to be engaged by the first and second refiner bars 26A, 36A, 26B, 36B.
With reference to Figs. 1, 4A, 5A, and 6A, when a slurry of wood pulp comprising wood fibers is supplied to the frame 66, e.g , the inlet 16, of the refiner 10, the first refiner bars 26 A, 36A are adapted to refine the wood fibers in the pulp slurry, while the second refiner bars 26B, 36B are adapted to break up or separate fiber bundles. Refining may be used to break apart and reduce small floes of fibers, induce external or internal fibrillation to effect fiber bonding, and/or cut a significant number of long wood fibers in the wood pulp slurry such that tire lengths of tire long wood fibers are reduced. However, the refining process also causes some of the wood fibers to re-form into small, dense fiber bundles (“flakes”), particularly during refining of long fibers such as softwood. The fiber bundles may adversely affect tensile strength, formation, etc. of the finished paper product, seed formation of strings of pulp that clog downstream components, and/or inhibit the drainage of fluid/water from the fibers during paper product production. Thus, the flakes should be broken apart after refining in a process called deflakmg. As used herein, the term“deflaking” is used to refer to the process of breaking apart fiber bundles that have formed during refining. When refining involves a conventional pulp refiner, deflaking typically takes place in one or more subsequent refiners, frequently operating at low power and referred to as a“tickler” refiner, or deflakers. Use of separate refmer(s) or deflakers increases the cost and complexity' of the system. In addition, the tickler refmer(s) and the associated tines and tank(s) and a downstream machine chest may accumulate residual amounts of fibers from previous runs and allow the continued formation of fiber bundles. Processing in the tickler refiner(s) may degrade the properties of the fibers when dissimilar pulp slurries are refined together. It is believed that refining members 20, 30, 40, 50 according to the present disclosure solve these problems by incorporating refiner bars 26A, 26B, 36A, 36B of differing heights such that refining and deflaking may be performed within a single refiner 10.
The first maximum height Hi of the first refiner bars 26A, 36A, which is greater than tire second maximum height Hi, means that the wood fibers are subjected to high intensity shearing and compression forces as the fibers pass through the portion of the refining space 60 that is at least partially defined by the first refiner grooves 28A, 38A and engaged by cutting side edges 126A, 136A of the first refiner bars 26A, 36A on the opposing first and second refining surfaces 24, 34 (see also FIGS. 8 and 9). Hence, the portion of the refining space 60 that is at least partially defined by the first refiner grooves 28A, 38 A and extends from the radially inward position Pi on the refining surface 24, 34 to the first radially outward position P2 on the refining surface 24, 34 may at least partially define a refining zone. In some examples, the radially inner location 23, 33 of the respective refining body 22, 32 may define the start of the refining zone. When the refined fibers pass into the portion of the refining space 60 that is at least partially defined by the second refiner grooves 28B, 38B (e.g., from about the first radially outward position Pi to about the second radially outward position P3 in FIG. 6A), the second refiner bars 26B, 36B comprise the second maximum height H2, and the intensity of the force applied to the fibers decreases in response to the reduced height (see also FIGS. 8 and 9). Thus, the portion of the refining space 60 that is at least partially defined by the second refiner grooves 28B, 38B and extends from the first radially outward position P2 to the second radially outward position P3 on the refining surface 24, 34 may at least partially define a deflaking zone. The decreased force applied to the fibers in the deflaking zone is believed to break up the fiber bundles formed during refining without further refining or only minimally refining the fibers. In the embodiment depicted in FIG. 6A, the second refiner bars 26B, 36B form an annular ring defining the deflaking zone around a radially outer portion (not separately labeled) of the first and second refining bodies 22, 32. It is believed that the second maximum height H2 of the second refiner bars 26B, 36B should be at least about 0.35 mm less than the fi rst maximum height Hi of the first refiner bars 26A, 36A in order to cease refining of the fibers and begin deflaking. The refining zone may comprise 60% or more of the total area defined by both the refining and deflaking zones on each refining surface 24, 34.
In the embodiments shown in FIGS. 4B, 5B, and 6B, each refiner bar 26’, 36’ may comprise a first refiner bar 26A’, 36A’, a second refiner bar 26B’, 36B\ a third refiner bar 26C, 36C, and a fourth refiner bar 26D, 36D. The first refiner bars 26A’, 36A’ and the second refiner bars 26B’, 36’ may be substantially similar to the first refiner bars 26A, 36A and the second refiner bars 26B, 36B as depicted in FIGS. 4A, 5A, 6A, and 7 and as described herein but the first and second refiner bars 26A’, 36A, 26B’, 36B’ may extend radially outwardly a shorter distance. The first refiner bars 26A’, 36A’ may be separated from one another by first refiner grooves 28A’, 38 A’, and the second refiner bars 26B , 36B’ may be separated from one another by second refiner grooves 28B’, 38B’. The first and second refiner grooves 28A’, 38A’, 28B’, 38B may have a width WG of from about 2 mm to about 6 mm. The third refiner bars 26C, 36C may he separated from one another by third refiner grooves 28C, 38C, and the fourth refiner bars 26D, 36D may be separated from one another by fourth refiner grooves 28D, 38D. As shown in FIG. 6B, the third refiner bars 26C, 36C comprise a third maximum height ft extending upward from a floor F3 of the adjacent third refiner groove 28C, 38C, and the fourth refiner bars 26D, 36D comprise a fourth maximum height H4 extending upward from a floor F-i of the adjacent fourth refiner groove 28D, 38D, in which die fourth maximum height Hr is less than the third maximum height ft. The third maximum height H3 may substantially equal the first maximum height Hr and the fourth maximum height Hr may substantially equal the second maximum height H2. The minimum height difference between H3 and Hr i s depicted as D2 in FIG. 6B. In some examples, a radially outer portion RO2 of the tiiird refiner bar 26C, 36C may comprise a step-down from the third maximum height H3 to the fourth maximum height Hr. The third and fourth refiner grooves 28C, 38C, 28D, 38D may have a width WG of from about 2 mm to about 6 mm.
In some examples, tire fourth maximum height Hr may be at least 0.35 mm less than the third maximum height ft . In other examples, the fourth maximum height Hr may be at least 0.70 mm less than the third maximum height ft. In further examples, the third maximum height Hi of the third refiner bars 26C, 36C, when measured from die floor F3 of the adjacent third refiner groove 28C, 38C, may be from about 4 mm to about 10 mm. In a particular example, the fourth maximum height Hr of the fourth refiner bars 26D, 36D, when measured from the floor Fr of the adjacent fourth refiner groove 28D, 38D, may be from about 0.35 mm to about 1.5 mm less than the third maximum height ft. In anodier particular example, the fourth maximum height ft of the fourth refiner bars 26D, 36D, when measured from the fl oor Fr of the adjacent fourth refiner groove 28D, 38D, may be from about 0 7 mm to about 1.5 mm less than the third maximum height ft. In further examples, the third refiner bars 26C, 36C and the fourth refiner bars 26D, 36D may comprise a width (not separately labeled) extending between sides edges of the respective refiner bars 26C, 36C, 26D, 36D of from about 2 mm to about 8 mm. Each of the first refiner bars 26A’, 36A’ extends from a radially inward position Py on the refining surface 24, 34 to a first radially outward position P on the refining surface 24, 34. Each of the second refiner bars 26B’, 36EG extends to a second radially outward position Pr on the refining surface 24, 34. Each of the third refiner bars 26C, 36C extend to a third radially outward position Pr on the refining surface 24, 34. Each of the fourth refiner bars 26D, 36D extend to a fourth radially outward position Ps on the refining surface 24, 34. The fourth radially outward position Ps may be nearer to an outermost part, e.g , the radially outer edge 27, 37, of the refining body 22, 32 than the first, second, and third radially outward positions p2 . Pi’ and Pr. The fourth refiner bars 26D, 36D may comprise a longitudinal length Li from about 0.6 era to about 10 cm and preferably from about 2 cm to about 10 cm.
In some embodiments, the second refiner bars 26EG, 36B’ may be integral with the first refiner bars 26A’, 36A’, as shown in FIGS. 4B, 5B, and 6B, such that the second refiner bars 26B, 36B’ extend from the first radially outward position Pi’ to the second radially outward position ! . In some embodiments, as shown in FIGS. 4B, 5B, and 6B, the third refiner bars 26C, 36C may be integral with the second refiner bars 26B’, 36B" such that the third refiner bars 26C, 36C extend from the second radially outward position Pr to the third radially outward position Pi· and the fourth refiner bars 26D, 36D may be integral with the third refiner bars 26C, 36C such that the fourth refiner bars 26D, 36D extend from the third radially outward position Pi to the fourth radially outward position Pr In a particular embodiment, the second refiner bars 26B’, 36B’ may slope continuously downward from the first radially outward position Pr to the second radially outward position Py. As shown in FIG. 6B, the second refiner bars 26B\ 36B’ may comprise a longitudinal length Li of from about 0.6 cm to about 10 cm and preferably from about 2 cm to about 10 cm. The height of the second refiner bars 26B’, 36B’ may decrease continuously along substantially the entire longitudinal length Li from the second maximum height Hi to a second minimum height Hr. In another particular embodiment, the second refiner bars 26B’, 36B may extend substantially horizontally from the first radially outward position Pr to the second radially outward position IV, as depicted by the dashed line in FIG. 6B, such that the second refiner bars 26B’, 36B’ are at the second maximum height H2 along substantially the entire longitudinal length Li of the second refiner bars 26B’, 36B\ In a particular embodiment, the fourth refiner bars 26D, 36D may slope continuously downward from the thud radially outward position P4 to tire fourth radially outward position Ps. As shown in FIG. 6B, the height of the fourth refiner bars 26D, 36D may decrease continuously along substantially the entire longitudinal length I,2 from the fourth maximum height Hr to a fourth minimum height Hr’. In another particular embodiment, the fourth refiner bars 26D, 36D may extend substantially horizontally from the third radially outward position P4 to the fourth radially outward position P , as depicted by the dashed line in FIG. 6B, such that the fourth refiner bars 26D, 36D are at the fourth maximum height HU along substantially the entire longitudinal length L2 of the fourth refiner bars 26D, 36D. In oilier embodiments (not shown), the third refiner bars 26C, 36C may be radially separated from the fourth refiner bars 26D, 36D by a space.
With reference to FIGS. 4B, 5B, and 7, the refining surface 24, 34 may comprise dams 29, 39 provided in at least a portion of the first and/or third refiner grooves 28A’, 38A’, 28C, 38C, as described herein.
The first refiner bars 26 A’, 36A’ in FIGS. 4B, 5B, and 6B are adapted to refine wood fibers, and the second refiner bars 26B’, 36B’ in FIGS. 4B, 5B, and 6B are adapted to break up fiber bundles, as described with respect to the first and second refiner bars 26A, 36A, 26B, 36B in FIGS. 4A, 5A, and 6A. The third refiner bars 26C, 36C are adapted to refine wood fibers (similar to the first refiner bars 26A’, 36L }. while the fourth refiner bars 26D, 36D are adapted to break up fiber bundles (similar to the second refiner bars 26B\ 36B’), as described herein .
With reference to FIGS. 1, 4B, 5B, and 6B, the portions of the refining space 60 that are at least partially defined by the first refiner grooves 28A, 38A’ and the third refiner grooves 28C, 38C and extending from the radially inward position Pr to the first radially outward position P2' and from the second radially outward position P:v to the third radially outward position P4 on the refilling surface 24, 34 may at least partially define first and second refining zones, respectively, as described herein. The portions of the refining space 60 that are at least partially defined by the second refiner grooves 28B’, 38B’ and the fourth refiner grooves 28D, 38D and extending from the first radially outward position P2’ to the second radially outward position P3’ and from the third radially outward position P4 to the fourth radially outward position P5 on the refining surface 24, 34 may at least partially define first and second deflaking zones, respectively, as described herein. It is believed that the second maximum height Ft of the second refiner bars 26B’, 36B’ should be at least about 0.35 mm less than the first maximum height Hi of the first refiner bars 26A’, 36A’ in order to cease refining of the fibers and begin deflaking. Similarly, it is believed that the fourth maximum height H4 of the fourth refiner bars 26D, 36D should he at least about 0.35 mm less than the third maximum height FT of the third refiner bars 26C, 36C in order to cease refining of the fibers and begin deflaking. The first and second refining zones may compri se 60% or more of the total area defined by both the first and second refining and deflaking zones on each refining surface 24, 34. FIGS. 8 and 9 are partial cross-sectional views of the first and second refining bodies 22, 32/132 of the first and second refining members 20, 30/130 according to the present disclosure. The first refining member 20 is spaced apart and positioned adjacent to and across from the second refining member 30 (see FIG. 1) In the embodiment shown in FIG 8, a refining body according to the present invention, e.g., the first refining body 22, is paired with the conventional refining body 132. The first refining body 22 comprises a first refiner bar 26A, a first refiner groove 28A, a second refiner bar 26B, and a second refiner groove 28B, which may correspond to the first and second refiner bars 26A, 26B and first and second refiner grooves 28A, 28B, as described herein with respect to FIGS. 4A, 4B, 6A, 6B, and 7. It is understood that the features described in FIG. 8 with respect to the first and second refiner bars 26A, 26B and first and second refiner grooves 28A, 28B apply equally to the third and fourth refiner bars 26C, 26D and third and fourth refiner grooves 28C, 28D, respectively, as described herein (see FIGS. 4B, 5B, and 6B). The conventional refining body 132 comprises a conventional refiner bar 136, which is a uniform height along substantially the entire longitudinal length of the refiner bar 136, and a refiner groove 138. In other embodiments (not shown), the non-rotating stator member, e.g., the first refining member 20, may comprise conventional refiner bars that are a uniform height along substantially their entire length, and the rotating rotor member, e.g., the second refining member 30 may comprise refiner bars 26A, 26B and refiner grooves 28A, 28B according to the present disclosure (see FIG. 1).
A first gap Gi is defined in FIG. 8 between an outer surface S26A of the first refiner bar
26A and an outer surface S136 of the conventional refiner bar 136. In examples in which the second refiner bar 26B slopes continuously downward, a second gap Co may be defined between an outer surface S26B of the second refiner bar 26B and the outer surface of the conventional refiner bar 136, in which G 2 is greater than Gi. In examples in which the second refiner bar 26B extends substantially horizontally (shown in FIG. 8 by dashed lines), a third gap Gn may be defined between an outer surface S26B’ of the second refiner bar 26B and the outer surface S 13 e of the conventional refiner bar 136, m which G3 is greater than Gi . As shown in FIG. 8, in embodiments in which one of the second refiner bars, e.g., the second refiner bar 26B, is sloped, a distance between the outer surface S26B of the second refiner bar 26B and the outer surface S136 of the conventional refiner bar 136 may increase continuously along at least a portion of the longitudinal length (not labeled; see FIGS. 6 A and 6B) of the second refiner bar 26B from a minimum distance corresponding to the third gap G3 to a maximum distance corresponding to the second gap G2. In the embodiment shown in FIG. 9, one refining body according to the present invention, e.g., the first refining body 22, is paired with another refining body according to the present invention, e.g., the second refining body 32. The first refining body 22 comprises a first refiner bar 26A, a first refiner groove 28A, a second refiner bar 26B, and a second refiner groove 28B, which may correspond to the first and second refiner bars 26A, 26B and first and second refiner grooves 28A, 28B, as described herein with respect to FIGS. 4A, 4B, 6A, 6B, and 7. The second refining body 32 comprises a first refiner bar 36A, a first refiner groove 38.4, a second refiner bar 36B, and a second refiner groove 38B, which may correspond to the first and second refiner bars 36A, 36B and first and second refiner grooves 38A, 38B, as described herein with respect to FIGS. 5 A, 5B, 6A, 6B, and 7. It is understood that the features described in FIG. 9 with respect to the first and second refiner bars 26A, 26B, 36A, 36B and first and second refiner grooves 28A, 28B, 38A, 38B apply equally to the third and fourth refiner bars 26C, 26D and third and fourth refiner grooves 28C, 28D, respectively, as described herein (see FIGS. 4B, 5B, and 6B).
A first gap Gi is defined between an outer surface S26A of the first refiner bar 26A of the first refining body 22 and an outer surface SISA of the first refiner bar 36A of the second refining body 32. In examples m winch the second refiner bar 26B of the first refining body 22 and the second refiner bar 36B of the second refining body 32 both slope continuously downward, a gap Gr may be defined between an outer surface Sieu of the second refiner bar 26B and an outer surface SISB of the second refiner bar 36B of the second refining body 32, in which Gr is greater than Gi . In examples in which one of the second refiner bars, e.g., the second refiner bar 26B of the first refining body 22, slopes continuously downward and the other of the second refiner bars, e.g., the second refiner bar 36B of tire second refining body 32, extends substantially horizontally (shown in FIG. 9 by dashed lines), a gap Gs may be defined between the outer surface S26B of the second refiner bar 26B and an outer surface S36B’ of the second refiner bar 36B, in which Gs is greater than Gi. In examples in which the second refiner bar 26B of the first refining body 22 and the second refiner bar 36B of the second refining body 32 both extend substantially horizontally (shown in FIG. 9 with dashed lines), a gap Ge may be defined between an outer surface S26B of the second refiner bar 26B and the outer surface SieB’ of the second refiner bar 36B, in wliich Ge is greater than Gi. In some particular examples, Gr is greater than Gy and Ge is greater than Ge.
As shown in FIG. 9, in embodiments in which one or both of the second refiner bars 26B, 36B are sloped, a distance between the outer surfaces S26B, S26B’, S.36B, Siep.’ of the second refiner bars 26B, 36B may increase continuously along at least a portion of the longitudinal length (not labeled; see FIGS. 6A and 6B) of one or both of the respective second refiner bars 26B, 36B. For example, when one refining body, e.g., the first refining body 22, comprises a sloped second refiner bar 26B, the distance between the outer surfaces S26B, S36B· of the second refiner bars 26B, 36B may increase from a minimum distance corresponding to the gap Ge to a maximum distance corresponding to the third gap Gs. When both refining bodies 22, 32 comprise sloped second refiner bars 26B, 36B, the distance between the outer surfaces S26B, SJ6B of the second refiner bars 26B, 36B may increase from a minimum distance corresponding to the gap Ge to a maximum distance corresponding to the second gap Gr.
In all embodiments depicted in FIGS. 8 and 9, as the rotatable refining member (e.g., the first refining member 20; see FIG. 1) rotates relative to the stationary' refining member (e.g., the second refining member 30/130; see FIG 1), the pulp slurry comprising wood fibers is supplied to the frame 66, e.g., the inlet 16, of the refiner 10 (see FIG. 1) and enters the refining space 60 defined between the first and second refining bodies 22, 32/132. With reference to FIG. 8, as the wood fibers enter the portion of the refining space 60 that is at least partially defined by the first refiner grooves 28.4 of the first refining body 22 and the refiner grooves 138 of the second refining body 132, the first and second refining bodies 22, 132 are spaced apart to define the first gap Gi between the first refiner bars 26A of the first refining body 22 and the conventional refiner bars 136 of the second refining body 132 such that the refiner bars 26A and 136 interact with one another to refine the wood fibers, its described herein. It is believed that the first gap Gi should be less than about 0.9 mm and preferably between about 0.2 mm to about 0.9 mm in order for refining to occur.
With continued reference to FIG. 8, as the wood fibers pass into the portion of the refining space 60 that is at least partially defined by the second refiner grooves 28B of the first refining body 22 and the refiner grooves 138 of the second refining body 132, a distance between the second refiner bars 26B of the first refining body 22 and the refiner bars 136 of the second refining body 132 is increased such that it is believed that refining stops and delinking begins. In embodiments in which tire second refiner bars 26B slope continuously downward, the distance increases from the first gap Gi to the second gap G2. In embodiments in which the second refiner bars 26B extend substantially horizontally, the distance increases from the first gap Gi to the third gap Gn. It is believed that the distance between the second refiner bars 26B of the first refining body 22 and the refiner bars 136 of the second refining body 132, i.e., G2 or G3, should be between about 0.9 mm and about 1.5 mm in order for delinking to occur. With reference to FIG. 9, as the wood fibers enter the portion of the refining space 60 that is at least partially defined by the first refiner grooves 28A, 38A of the first and second refining bodies 22, 32, respectively, the first and second refining bodies 22, 32 are spaced apart to define the first gap Gi between the first refiner bars 26A, 36A such that the refiner bars 26A, 36A interact with one another to refine the wood fibers, as described herein. As the wood fibers pass into the portion of the refining space 60 that is at least partially defined by tire second refiner grooves 28B, 38B of the first and second refining bodies 22, 32, respectively, a distance between the second refiner bars 26B of the first refining body 22 and the second refiner bars 36B of the second refining body 32 increases to one of the gaps Gy GJ, or Ge such that refining stops and deflaking begins. It is believed that the first gap Gi should be less than about 0.9 mm and preferably between about 0.2 mm to about 0.9 mm in order for refining to occur and that the gaps Gy Gs, Ge should be between about 0.9 mm and about 1.5 mm in order for deflaking to occur.
With reference to FIGS. 1, 6A, 6B, 8, and 9, the gaps Gi and G2, G3, Gy Gy GJ, GG defined between the refining bodies 22, 32/132 may be adjusted by applying axial pressure to at least one of the first or second refining members 20, 30, for example, via the second motor 76 that is coupled to the movable support frame 68 via the jack screw (not shown). For a single-disc refiner, the second refining member 30 may be coupled directly to the movable support frame 68 such that the second refining member 30 moves with the movable support frame 68 as tire latter is moved via the second motor 76 and the jack screw. For a double-disc refiner 10, the second refining member 30 is moved as described above, i.e., as the jack screw rotates in a first direction, it causes mov ement of the movable support frame 68 and the fourth refining member 50 inwardly towards the third refining member 40. The fourth refining member 50 then applies an axial force to the w'ood slurry passing through the second refining space 62 which, in turn, applies an axial force to the third refining member 40, causing the third refining member 40, the support 70 and the second refining member 30 to move inwardly tow'ard the first refining member 20.
The gap Gi defined between the refiner bars 26A, 36A, 136 may be maintained at a substantially constant gap value by adjusting the positioning of the second refining member 30 relative to the first refining member 20 via the second motor 76 (controlled manually or via a controller/processor coupled to the second motor 76) and jack screw so that an amount of power required to be input/generated by the first motor 74 (controlled manually or via a controller/processor coupled to the first motor 74), running at a predetennined rotational velocity, to process a certain amount of pulp flowing through the refining space 60, is maintained at a predefined input power level, which power level is monitored by an operator or a controller/processor controlling the first motor 74. For example, if pulp is moving through the refining space 60 of a 20 inch diameter Andritz® Twinflo IPB low consistency refiner at a flow rate of 151 gallons/minute, and the first motor 74 is running at a constant rotational speed of 800 RPM, the second motor 76 is controlled so as to move the second refining member 30 relative to the first refining member 20 until the power input by the first motor 74 equals 114 kilowats. When the power input by the first motor 74 equals 114 kilowats, it is presumed that the gap size between the first and second refining members 20, 30 is at a value of 0 57 mm.
With continued reference to FIGS. 1, 6A, 6B, 8, and 9, it is believed that the gap G?., <¾, G4, G4, GS, Ge required to achieve defiaking may vary depending on the load or flow rate
(i.e., the liters/minute of pulp slurr ' flowing through the refining space 60) to which the refining bodies 22, 32/132 are subjected. For example, when die refining bodies 22, 32/132 are lightly loaded, refining of the wood fibers may stop and defiaking may begin almost immediately upon passage of the fibers into the portion of the refining space 60 that is at least partially defined by the second refiner grooves 28B/28B', 38B/38B’, e.g , upon movement of the wood fibers past the first radially outward position P 2/ P2’ and/or the third radially outward position P4, as shown in FIGS. 6A and 6B. When the refining bodies 22, 32/132 are heavily loaded, some refining of the wood fibers may continue along at least a portion of the refining space 60 that is at least partially defined by the second refiner grooves 28B/28B’, 38B/38B.
In situations in which the refining bodies 22, 32/132 are heavily loaded, embodiments in which one or both of the second refiner bars 26B/26B’ of the first refining body 22 and the second refiner bars 36B/36B’ of the second refining body 32 slope continuously downward may be particularly advantageous to ensure that a sufficient distance between the refiner bars 26B/26B’ and 136/36B/36B’ is achiev ed along at least a portion of tire refining space 60 that is at least partially defined by the second refiner grooves 28B/28B’, 38B/38B to allow' refining to cease and defiaking to occur. In addition, the refining surfaces 24, 34 of the refining bodies 22, 32 may wear and degrade over time. In particular, the first and third refiner bars 26A/26A’, 26C, 36A/36A’, 36C that perform the majority of the high intensity, high energy refining may wear faster than the second and fourth refiner bars 26B/26B’, 26D, 36B/36B’, 36D that perform defiaking, which is generally lower intensity and lower energy than refining. The position of the refining bodies 22, 32/132 may be adjusted as described herein to maintain tire first gap Gi between the first and third refiner bars 26A/26A’, 26C, 36A/36A’, 36C at a substantially constant value as their outer surfaces S26A, S.16A begin to wear down. However, the gap G2, Co, G4, G4, GS, Gs between the second and fourth refiner bars 26B/26B’, 26D, 36B/36B’, 36D may not be adjustable. Thus, embodiments in which one or both of the second refiner bars 26B/26B’, 36B/36B and/or one or both of the four refiner bars 36B/36B , 36D are sloped are believed to allow the transition between the refining and deflaking zones to shift radially outward along the longitudinal length (not labeled; see FIGS. 6A and 6B) of the second and fourth refiner bars 26B/26B’, 26D, 36B/36B’, 36D as the first and third refiner bars 26A/26A’, 26C, 36A/36A’, 36C wear down.
FIGS. 10 and 11 are plan views of portions of refining surfaces of a first refining body 22’ and a second refining body 32 , respectively, according to another embodiment of the present disclosure. With reference to FIGS. 1, 10, and 11, the first and second refining bodies 22’, 32’ may be part of refining members, e.g., first and second refining members 20, 30, respectively, as described herein, for use in a pulp refiner, such as the disc refiner 10 depicted in FIG. 1. Each of the refining members 20, 30 comprising the first and second refining bodies 22’, 32’, respectively, may be associated with the main support frame comprising the fixed support frame 66 secured to the first housing section 12 and the movable support frame 68. One refining member, e.g., the first refining member 20 comprising the first refining body 22’, may be fixed to die support frame 66 of the refiner 10 to define a non-rotating stator member. Another refining member, e.g., a second refining member 30 comprising tire second refining body 32’, may be fixed to the support 70, which rotates with the shaft 72 and defines a rotor that is associated with the main support frame, such that rotation of the rotor effects movement of the second refining member 30 relati ve to the first refining member 20. Third and fourth refining members (not shown), having third and fourth refining bodies similar to the first and second refining bodies 22’, 32’, may also be provided.
As shown in FIG. 10, the first refining body 22’ comprises a plurality of sections 22A’- 22C’ that may be bolted or otherwise attached together to form the disc-shaped refining body 22’ comprising a radially outer edge 27’. Each section 22A’-22C’ comprises a plurality of elongated refiner bars 26’ separated from one another by refiner grooves 28’. Although not shown in FIG. 10, it is understood that the other sections (not labeled) of the first refining body 22’ would similarly comprise refiner bars 26’ and refiner grooves 28’. The refiner bars 26’ extend radially outwardly from a radially inner location 23’ toward the radially outer edge 27’ of the first refining body 22’. Each section 22A’-22C’ of the first refining body 22’ may comprise one or more or more radially extending pie-shaped segments comprising at least one first pie-shaped segment 22B-1 and at least one second pie-shaped segment 22B-2.
As shown m FIG. 11, the second refining body 32’ comprises a corresponding plurality of sections 32A’-32C’ that may be bolted or otherwise attached together to form the disc- shaped refining body 32’ comprising a radially outer edge 37’. Each section 32A’-32C’ comprises a plurality of elongated refiner bars 36’ separated from one another by refiner grooves 38’. Although not shown in FIG. 1 1 , it is understood that the other sections (not labeled) of the second refining body 32’ would similarly comprise refiner bars 36’ and refiner grooves 38’. The refiner bars 36’ extend radially outwardly from a radially inner location 33’ toward the radially outer edge 37’ of the second refining body 32’. Each section 32A’-32C’ of the second refining body 32’ may comprise one or more or more radially extending pie-shaped segments comprising at least one first pie-shaped segment 32B-1 and at least one second pie shaped segment 32B-2. Although not discussed in detail herein, the third and fourth refining bodies 42, 52 of FIG. 1 may comprise a structure that is substantially similar to the first and second refining bodies 22’, 32’, respectively, as described herein.
At least one of the first and second refining bodies 22’, 32’ of FIGS. 10 and 1 1 comprises one or more sections 22A’-22C’, 32A’-32C’ with at least one radially extending pie shaped segment, e.g., 22B-1 and 32B-1, of refiner bars 2.6’, 36’ that comprises one or more characteristics that are different from the refiner bars 26’, 36’ in an adjacent radially extending pie-shaped segment, e.g., 22B-2 and 32B-2, respectively. FIGS. 12A and 12B are partial cross- sectional view's in winch the first and second refining bodies 22’, 32’ of FIGS. 10 and 11 are spaced apart and positioned adjacent to and across from each other (see FIG. 1). In FIG. 12A, a first refiner bar 26-1, wiiich may be located on a refining surface 24-1 of the at least one first pie-shaped segment 22B-1 of the first refining body 22’ (also referred to herein as a first refining surface), is spaced apart and positioned adjacent to and across from a third refiner bar 36-1, which may be located on a refining surface 34-1 of the at least one third pie-shaped segment 32B-1 of the second refining body 32’ (also referred to herein as a third refining surface). In FIG. 12B, a second refiner bar 26-2, winch may be located on a refining surface 24-2 of the at least one second pie-shaped segment 22B-2 of the first refining body 22’ (also referred to herein as a second refining surface), is spaced apart and positioned adjacent to and across from a fourth refiner bar 36-2, which may be located on a refining surface 34-2 of the at least one fourth pie-shaped segment 32B-2. of the second refining body 32’ (also referred to herein as a fourth refining surface)
With reference to FIGS. 10, 11, and 12A, the first refiner bars 26-1 are separated from one another by first refiner grooves 28-1 and may comprise a first maximum height Hr extending upward from a floor Fr of a respective adjacent first refiner groove 28-1. The third refiner bars 36-1 are separated from one another by third refiner grooves 38-1 and may comprise a third maximum height Hr extending upward from a floor FV of a respective adjacent third refiner groove 38-1. As shown in FIG. 12A, the first and third refiner bars 26- 1, 36-1 may be substantially similar to one another, and the first and third maximum heights Hr, Hr may be substantially equal.
With reference to FIGS. 10, 11, and 12B, the second refiner bars 26-2 are separated from one another by second refiner grooves 28-2 and may comprise a second maximum height H2’ extending upward from a floor F2 of an adjacent second refiner groove 28-2. The fourth refiner bars 36-2 are separated from one another by fourth refiner grooves 38-2 and may comprise a fourth maximum height Hr extending upward from a floor Fr of an adjacent fourth refiner groove 38-2. As shown in FIG. 12B, the second and fourth refiner bars 26-2, 36-2 may be substantially similar to one another, and the second and fourth maximum heights Hz , Hr· may be substantially equal. All of the refiner bars 26-1 , 26-2, 36-1 , 36-2 within a respective pie-shaped segment 22B-1 , 22B-2, 32B-1, 32B-2 may comprise a same height with respect to each other.
The second maximum height H2’ of the second refiner bars 2.6-2 may be less than the first maximum height Hi of the first refiner bars 26-1. In some examples, the second maximum height Hi·, when measured from the floor F2· of the adjacent second refiner groove 28-2, may be at least 0.35 mm less than the first maximum height Hr. In other examples, the second maximum height Hr, when measured from the floor F 2’ of the adjacent second refiner groove 28-2, may be at least 0.70 mm less than the first maximum height Hr. In further examples, the first maximum height Hr of the first refiner bars 26- 1 , when measured from the floor F 1 · of the respective adjacent first refiner groove 2.8-1, may be from about 4 mm to about 10 mm. in a particular example, the second maximum height Hi of the second refiner bars 26-2, when measured from the floor Fi’ of the respective adjacent second refiner groove 28-2, may be from about 0.35 mm to about 1.5 mm less than the first maximum height Hr. In another particular example, the second maximum height Hr of the second refiner bars 26-2, when measured from the floor Fz of the respective adjacent second refiner groove 28-2, may be from about 0.7 mm to about 1.5 mm less than the first maximum height Hi’. In further examples, the first refiner bars 2.6-1 and the second refiner bars 26-2 may comprise a width extending between sides edges of the respective refiner bars 26-1 , 26-2 of from about 2 mm to about 8 mm (not shown; see FIG. 7). Hie fourth maximum height Hr of the fourth refiner bars 36-2, which may correspond to tire second maximum height Hz , may be less than the third maximum height H.v of the third refiner bars 36-1, which may correspond to the first maximum height Hr.
With reference to FIGS. 1, 10, 11, 12A, and 12B, as the second refining member 30 rotates relative to the first refining member 20, the refining surface 34-1 of the at least one third pie-shaped segment 32B-1 of the second refining body 32’ will pass the refining surface 24-1 of the at least one first pie-shaped segment 22B-1 of the first refining body 22, and the refining surface 34-2 of the at least one fourth pie-shaped segment 32B-2 of the second refining body 32’ will pass the refining surface 24-2 of the at least one second pie-shaped segment 22B-2 of the first refining body 22’. When a slurry of wood pulp is supplied to the frame 66, e.g., the inlet 16, of the refiner 10 and passes through the refining space 60, and the refining surface 34- 1 of the at least one third pie-shaped segment 32B-1 of the second refining body 32’ passes the refining surface 24-1 of the at least one first pie-shaped segment 22B-1 of the first refining body 22’, the third refiner bars 36-1 comprising die third maximum height Hr will be positioned opposite the fi rst refiner bars 26-1 comprising the first maximum height Hr such that the first and third refiner bars 26-1 and 36-1 refine a significant number of the wood fibers. When the refining surface 34-2 of the at least one fourth pie-shaped segment 32B-2 of the second refining body 32’ passes the refining surface 24-2 of the at least one second pie-shaped segment 22B-2 of the first refining body 22’, the fourth refiner bars 36-2 comprising the fourth maximum height Hr’ will be positioned opposite from the second refiner bars 26-2 comprising the second maximum height Hr such that die second and fourth refiner bars 26-2 and 36-2 break up or separate a plurality of wood fiber bundles die wood pulp slurry, as described herein. Low intensity’ refining may occur when the refining surface 34-1 of the at least one tiiird pie-shaped segment 32B-1 of the second refining body 32’ passes the refining surface 24- 2 of die at least one second pie-shaped segment 22B-2 of the first refining body 22’, and die refining surface 34-2 of the at least one fourth pie-shaped segment 32B-2 of the second refining body 32’ passes the refining surface 24-1 of the at least one first pie-shaped segment 22B-1 of the first refining body 22’.
As shown in FIGS. 10 and 11, one or more of die sections 22A-22C’, 32A’-32C’ of the respective refining bodies 22’, 32’ may, in some examples, each comprise three radially- extending pie-shaped segments 22B-1 , 22B-1 , 22B-3 and 32B-1, 32B-2, 32B-3 In some particular examples, two segments, e.g., 22B-1, 22B-3 and 32B-1, 32B-3, may comprise refiner bars with one of the first or second maximum height Hr, ¾ , and one segment, e.g , 22B-2 and 32B-2, may comprise refiner bars with the other of the first or second maximum height Hr, Hi', in which the second maximum height I : is less dian the first maximum height Hr. For example, the segments 22B-1, 22B-3 may comprise the first refiner bars 26-1, the segments 32B-1, 32B-3 may comprise third refiner bars 36-1, the segment 22B-2 may comprise the second refiner bars 26-2, and the segment 32B-2 may comprise the fourth refiner bars 36-2. In odier examples (not shown), one or more of the sections 22A’-22C’, 32A’-32C may each comprise only two segments of refiner bars or may each comprise four or more segments of refiner bars. In further examples (not shown), one or more of the sections 22A’-22C’, 32A’- 32C’ may not comprise separate segments, such that an entire section comprises refiner bars of one height. It is understood that a refining body according to the present disclosure, e.g., one of refining bodies 22’, 32’, may be paired with a refining body comprising conventional refiner bars, e.g., refiner bars that are all of the same height.
It is believed that a gap between opposing first and third refiner bars 26-1, 36-1 should be less than about 0.9 mm and preferably between about 0.2 mm to about 0.9 mm in order for refining to occur and that a gap between opposing second and fourth refiner bars 26-2, 36-2 should be between about 0.9 mm and about 1.5 mm in order for deflaking to occur.
FIGS. 13 and 14 are plan views of portions of a first refining surface 224 of a first refining body 222 and a second refining surface 234 of a second refining body 232, respectively, according to another embodiment of the present disclosure. With reference to FIGS. 1, 13, and 14, the first and second refining bodies 222, 232 may be part of refining members, e.g , refining members 20, 30, respectively, as described herein, for use in a pulp refiner, such as the disc refiner 10 depicted in FIG. 1. Each of the refining members 20, 30 comprising the first and second refining bodies 222, 232, respectively, may be associated with the main support frame comprising the fixed support frame 66 secured to the first housing section 12 and the movable support frame 68. One refining member, e.g., the first refining member 20 comprising the first refining body 222, may be fixed to the support frame 66 of the refiner 10 to define a non-rotating stator member. Another refining member, e.g , the second refining member 30 comprising the second refining body 232, may be fixed to the support 70, which rotates with the shaft 72 and defines a rotor that is associated with the main support frame, such that rotation of the rotor effects movement of tire second refining member 30 relative to the first refining member 20.
As shown in FIG 13, the first refining body 222 comprises a plurality of sections (not separately labeled; see FIGS. 2 and 3) that may be bolted or otherwise attached together to form the disc-shaped refining body 222 comprising a radially outer edge 227. The first refining surface 224 comprises a plurality of elongated first refiner bars 226 separated from one another by first refiner grooves 228. The first refiner bars 226 extend radially outwardly from a radially inner location 223 toward the radially outer edge 227 of the first refining body 222. The first refiner bars 226 may be slanted at vari ous angles as shown in FIG. 13, and each section of the refining body 222 may comprise one or more segments (not labeled) of refiner bars 226 that are slanted in different directions. The first refining body 222 further comprises one or more annular rows or rings of teeth 400 located between tire first refiner bars 226 and the radially outer edge 227 of the first refining body 222. Although not shown in FIG. 13, it is understood that the other sections (not labeled) of the fi rst refining body 222 would similarly comprise refiner bars 226, refiner grooves 228, and teeth 400.
As shown in FIG. 14, the second refining body 232 comprises a plurality of sections
(not separately labeled; see FIGS. 2 and 3) that may be bolted or otherwise attached together to form the disc-shaped refining body 232 comprising a radially outer edge 237. The second refining surface 234 comprises a plurality of elongated second refiner bars 236 separated from one another by second refiner grooves 238. The second refiner bars 236 extend radially outwardly from a radially inner location 233 toward the radially outer edge 237 of the second refining body 232. The second refiner bars 236 may be slanted at various angles as shown in FIG. 14, and each section of the refining body 232 may comprise one or more segments (not labeled) of refiner bars 236 that are slanted in different directions. The second refining body 232 further comprises one or more annular rows or rings of teeth 400 located between the second refiner bars 236 and the radially outer edge 237 of the second refining body 232.
Although not shown in FIG. 14, it is understood that the other sections (not labeled) of the second refining body 232 would similarly comprise refiner bars 236, refiner grooves 238, and teeth 400. In addition, although not discussed in detail herein, the structure of the refining surfaces 44, 54 of the third and fourth refining bodies 42, 52, respectively, of FIG. 1 may comprise a structure that is substantially similar to the refining surfaces 224, 234 of the first and second refining bodies 222, 232, respectively, as described herein.
FIGS. 13 and 16 are detailed views of one portion of the first and second refining surfaces 224, 234, of FIGS. 13 and 14, respectively. FIG. 17 is a partial cross-sectional view' of a first refiner bar 226 and tooth 400B, which may be located on the first refining body 222 of FIGS. 13 and 15, and a second refiner bar 236 and teeth 400.4, 400C, which may be located on the second refining body 232 of FIGS. 14 and 16, which the first refining body 222 is spaced apart and positioned adjacent to and across from the second refining body 232 to define a refining space 2.60 therebetween. With reference to FIGS. 15-17, the first refining surface 224 comprises first refiner bars 226 that are separated from one another by first refiner grooves 228, and the second refining surface 234 comprises second refiner bars 236 that are separated from one another by second refiner grooves 238. One or both of he first and second refining surfaces 224, 2.34 may comprise dams 22.9, 239 provided in at least a portion of the first and second refiner grooves 228, 238, as described herein . Each of the first and second refiner bars 226, 236 extends from a radially inward position P;oo to a first radially outward position l½o on die respective first and second refining surfaces 224, 234. In some examples, the radially inward position Pioo may comprise a position at or near the respective radially inner location
223, 233 (see FIGS. 13 and 14). The first and second refiner bars 226, 236 may comprise a width W226, W236, respectively, extending between sides edges of the respective refiner bars 226, 236 of from about 2 mm to about 8 mm.
The first refining surface 224 comprises first teeth 400B located between a radially outer edge RQ226 of the first refiner bars 226 and the radially outer edge 227 of the first refining body 222. The first teeth 400B extend to a third radially outward position, e.g., P400, on the first refining surface 224, in which the third radially outward position P400 is nearer to an outermost part, e.g., the radially outer edge 227, of the first refining body 222 than the first radially outward position P200 of the first refining bars 226 The second refining surface 234 comprises second teeth 400A, 400C that are located between a radially outer edge RO236 of the second refiner bars 236 and the radially outer edge 237 of the second refining body 232. The second teeth 400A, 400C extend to a second or a fourth radially outward position, e.g., l½o or P500, on the second refining surface 234, in which the second and fourth radially outward positions P300, P500 are nearer to an outermost part, e.g., the radially outer edge 237, of the second refining body 232 than the first radially outward position P200 of die second refining bars 236.
With continued reference to FIGS. 15-17, the teeth 400A-400C may be arranged in concentric rings and may protrade substantially perpendicularly toward one another from the respective refining surfaces 224, 234. The ring comprising first teeth 400B is spaced apart from the radially outer edge RO226 of the first refiner bars 226 by a first substantially planar area 282 and from the radially outer edge 227 of the refining body 222 by a second substantially planar area 284. The ring comprising second teeth 400A is spaced apart from the radially outer edge RO236 of the second refiner bars 236 by a first substantially planar area 286 and from the ring comprising second teeth 400C by a second substantially planar area 288. In the embodiment shown in FIGS. 15-17, the first refining surface 224 of the first refining body 222 comprises one concentric row/ring of first teeth 400B, and the second refining surface 234 of the second refining body 232 comprises two concentric rows/rings of second teeth 400 A, 400C, in which the first and second teeth 400A-400C are arranged on the respective refining surfaces
224, 234 such that the first teeth 400B intermesh with the second teeth 40GA, 400C. In other embodiments (not shown), the first refining surface 224 may comprise two or more concentric rings of teeth, and the second refining surface 234 may comprise one concentric row of teeth or three or more concentric rings of teeth. In all embodiments, one of the refining bodies will comprise one fewer rings of teeth than the other refining body, and the teeth are arranged on each refining body such that the teeth from one refining body intermesh with the teeth of the other refining body, as is known in the art.
It is understood that the teeth 400A-400C may comprise any suitable shape and/or dimensions known in the art. As illustrated with respect to tooth 400A in FIG. 17, in some examples, each of the first and second teeth 400A-400C may comprise a substantially pyramidal or trapezoidal shape with a base 402, a radially inward facing surface 404, a radially outward facing surface 406, sides (not separately labeled) slightly angled inwardly toward a center axis (not labeled) of the tooth 400A, and a generally planar outer surface 408. The radially inward and outward facing surfaces 404, 406 of each tooth 400A-400C may slope from the base 402 towards its respective outer surface 408. The outer surface 408 of each tooth 400A-400C may be substantially parallel to a plane of the respective substantially planar area 282, 284, 288 that is opposite the tooth 400A-400C. In other examples (not shown), each of the first and second teeth 400A-400C may comprise a shape that is substantially triangular, rectangular, or any other suitable geometric shape. As shown in FIGS 15- 17, the base 402 of the teeth 400A-400C may comprise a radial dimension that is greater than a circumferential dimension, but in other embodiments (not shown), the base 402 may comprise a radial dimension that is less than a circumferential dimension. In some instances, at least a portion of the base 402 of teeth 400A-400C may comprise a longitudinal length (not labeled), i.e., in a radial direction, of at least 0.6 cm, and in some particular instances, the longitudinal length may comprise between 0.6 cm to about 2 cm. In other instances, at least a portion of the base 402 of the teeth 400A-400C may comprise a width (not labeled), in a circumferential direction, that is substantially equal to the combined width, e.g., W226, W236, of one refiner bar 226, 236 and a width WG of one adjacent groove 228, 23 . The width WG may be from about 2 mm to about 6 mm. For example, the base 402 of the teeth 400A-400C may comprise at least about 10 mm in the circumferential direction. In other instances, the base 402 of the teeth 400A-400C may comprise between about 10 mm and 20 mm in the circumferential direction. In addition, one or more of the radially inward and outward facing surfaces 404, 406 or the sides of one or more of the teeth 400A-400C may comprise one or more radially-extending projections that may affect the interaction of the teeth 400A-400C with the wood fibers to separate wood fiber bundles. The teeth 400A-400C may have a structure similar to those illustrated in U.S. Patent No. 8,342,437 B2, the disclosure of which is incorporated herein by reference.
As shown in FIG. 17, the first refiner bars 226 comprise a first height H100 extending upward from a floor F100 of an adjacent first refiner groove 228, and the second refiner bars 236 comprise a second height H200 extending upward from a floor F200 of an adjacent second refiner groove 238. In some examples, the first and second heights H100, H200 of the first and second refiner bars 226, 236 may be substantially equal to one another and may comprise from about 4 mm to about 10 mm. The first and second refining bodies 222, 232 are spaced apart by a first gap G100 that is defined between an outer surface S226 of the first refiner bar 226 and an outer surface S236 of the second refiner bar 236. A second gap G200 is defined between tire generally planar outer surfaces 408 of the teeth 400A-400C and a respective one of the substantially planar areas 282, 284, 288 that is opposite the tooth 400A-400C, in which G200 may be greater than G100. In some examples, a height (not labeled) of die teeth 400A-400C extending upward from the adjacent, respective first or second refiner groove 228, 238 may be about 8-10 mm. As shown in FIG 17, the teeth 400A-400C are intemieshed such that a portion of one or both of the radially inward or outward facing surfaces 404, 406 of each tooth 4QQA- 400C overlaps in an axial direction, e.g., in the direction of arrow A in FIG. 1, with a portion of the radially inward or outward facing surface 404, 406 of an adjacent tooth 400A-400C. The overlapping portion(s) of the teeth 400A-400C may be spaced apart by a third gap G300 that is defined between the respective radially inward or outward facing surfaces 404, 406 of the teeth 400A-400C. In some examples, G300 may be substantially equal to Gioo. In other examples, G300 may he less than or more than G200.
With reference to FIGS . 1 and 17, when a slurr of wood pulp is supplied to the frame of the refiner 10, e.g., the inlet 16, the wood fibers pass into the portion of the refining space 260 that is at least partially defined by the first and second refiner grooves 228, 238, e.g., from about the first radially inward position P 100 to about the first radially outward position P200. The first and second refiner bars 226, 236 interact with one another to refine a significant number of the wood fibers in the wood pulp, as described herein. It is belie ved that the first gap G ioo should be less than about 0.9 mm and preferably between about 0 2 mm to about 0 9 mm in order for refining to occur. The refined wood fibers then pass into the portion of the refining space 260 that is at least partially defined by the respective first and second substantially planar areas 282, 284, 286, 288, e.g., from about the first radially outward position P200 to about the fourth radially outward position P500. It is believed that the second and third gaps G200 and G300 should be between about 0.9 mm and about 1.5 mm in order for deflaking to occur. The teeth 400A-400C are adapted to break up or separate a plurality of w'ood fiber bundles in the wood pulp slurry, as described herein. G200 is greater than Gioo such that it is believed that refining stops and deflaking begins at about the first radially outward first position
Figure imgf000034_0001
With reference to FIGS. 1 and 15-17, the refining surfaces 224, 234 of the refining bodies 222, 232, particularly the outer surfaces S226, S236 of the first and second refiner bars 226, 236 and the outer surfaces 408 of the teeth 400A-400C, may wear and degrade over time. To compensate for this wear, the spacing between the first and second refining members 20, 30 comprising tire first and second refining bodies 222, 232, respectively, may be readjusted as described herein such that the first gap G100 remains substantially constant. This adjustment of the first and second refining bodies 222, 232 may cause the second gap G200 to decrease, as the refiner bars 226, 236 perform the more intense function of refining and typically wear faster than the teeth 4G0A-4Q0C. This difference in wear may be factored into the selection of the teeth 400A-400C (e.g., the type(s) of metal used for the teeth 400A-400C, the initial size of the second gap G200, the shape of the teeth 400A-400C, etc.) such that an adequate second gap G200 may be maintained to ensure that refining ceases and delinking begins when the wood fibers enter the portion of the refining space 260 that is at least partially defined by tire respective first and second substantially planar areas 282, 284, 286, 288. When the refining bodies 222, 232 are new, the third gap G300 may be substantially equal to or greater than the second gap G200. As the refining surfaces 224, 234 wear and the refining members 20, 30 are moved closer together, the third gap Gsoo may decrease until the third gap GBOO is less than the second gap G200.
In all embodiments described herein, tire refiner 10 of FIG. 1 may be coupled to a controller (not shown) that receives data from a fiber analyzer (e.g., a Valmef® MAP Pulp Analyzer (Valmet Corp )) regarding one or more fiber properties measured at one or more locations downstream of the refiner 10, such as a number, size, etc. of fiber bundles (also referred to as“Wide Shives”), fibrillation, Canadian Standard Freeness, fiber length, fiber width, kink, curl, coarseness, number of fines, etc. Based on this data, the controller may control operation of the refiner 10 as part of a feedback loop. For example, the controller may- adjust the spacing between the one or more pairs of refining members 20, 30, 40, 50 in order to maintain the one or more fiber properties within a predetermined target range. In some examples, it is believed that the controller may also increase or decrease a rotational speed of the one or more rotating rotor members of the refiner 10 (e.g., the second and third refining members 30, 40) based on this data. In other examples, the controller may control operation of the refiner 10, such as by varying the size of the refining gap Gi, G100, and the deflakmg gap G2, G3, G4, GJ, Go, G200, G300, to generate a refined softwood pulp that has less than a predetermined number, e.g., 1 ,000 ppm, of fiber bundles of a particular size, e.g., about 150 - 2,000 microns wide and from 0.3 to 40 mm long. In other examples, refining members 20, 30, 40, 50 according to the present disclosure may be installed in one or more of a plurality of refiners that are arranged in a series, m which each refiner may be substantially similar to the refiner 10 ofFIG. 1. The controller may control operation of one or more of the plurality of refiners in order to maintain the one or more fiber properties within the predetermined target range. In some particular examples, refining members 20, 30, 40, 50 according to the present disclosure may be installed only in the last refiner of the series, and in other examples, refining members 20, 30, 40, 50 according to the present disclosure may be installed in two or more of the refiners.
FIG. 18 is a flowchart illustrating an exemplary method for processing wood fibers. Although reference is made to the components of the refiner 10 in FIG. 1 , it is understood that the method is not limited only to this structure. Tire method may begin at Step 500 with providing a refiner 10 comprising at least a first pair of refining members 20 and 30, 40 and 50. The at least one pair of refining members may comprise a first refining member 20 comprising a first refining body 22 including a first refining surface 24 and a second refining member 30 comprising a second refining body 32 including a second refining surface 34. The first refining surface 24 may comprise first refiner bars 26A separated by first refiner grooves 28A and second refiner bars 26B separated by second refiner grooves 28B, in which the first refiner bars 2.6A have a first maximum height Hi extending upward from a floor Fi of an adjacent first refiner groove 28A and the second refiner bars 26B having a second maximum height Hr extending upward from a floor F?_ of an adjacent second refiner groove 28B. Idle second refining surface 34 may comprise second member refiner bars 36 separated by second member refiner grooves 38. The first refining member 20 may be spaced from the second refining member 30 to define a refining space 60 therebetween. At least a portion of the second member refiner bars 36 may be positioned so as to be across from the second refiner bars 26B of the first refining member 20 such that a gap Gi, G3, Gy Gs, Ge between the portion of the second member refiner bars 36 and the second refiner bars 26B is defined.
Idle method may continue with rotating at least one of the first refining member 20 or the second refining member 30 such that the first and second refining members 20, 30 move relative to one another in Step 510, and supplying a slurry of wood pulp comprising wood fibers to the refiner 10 such that the slurry passes through the refining space 60 in Step 520. At Step 530, axial pressure may be supplied to at least one of the first refining member 20 or the second refining member 30 as the slurry is supplied such that the gap G2, G3, Gy Gs, Ge between the portion of the second member refiner bars 36 and the second refiner bars 26B is between about 0.9 mm and about 1.5 mm, in which at least a portion of wood fiber bundles passing through the gap G?., G3, Gy Gs, Ge are separated, after which the method may terminate.
While particular embodiments of the present invention have been illustrated and described, it should be understood that various changes and modifications may be made without departing from the spirit and scope of the invention. It is therefore intended to cover in the appended claims all such changes and modifications that are within the scope of this invention.

Claims

What is claimed is:
1. A refining member for a pulp refiner, the refining member comprising:
a refining body including a refining surface comprising:
first refiner bars separated by first refiner grooves, each of the first refiner bars extending from a radially inward position on the refining surface to a first radially outward position on the refining surface;
second refiner bars separated by second refiner grooves, each of the second refiner bars extending to a second radially outward position on the refining surface, the second refiner bars having a longitudinal length from about 0.6 cm to about 10 cm, wherein the second radially outward position is nearer to an outermost part of the refining body than the first radially outward position, the first refiner bars having a first maximum height extending upward from a floor of an adjacent first refiner groove and the second refiner bars having a second maximum height extending upward from a floor of an adjacent second refiner groove, the second maximum height being at least 0.35 mm less than the first maximum height; and
wherein the first refiner bars are adapted to refine wood fibers and the second refiner bars are adapted to break up fiber bundles.
2. The refining member of claim 1, wherein the first maximum height of the first refiner bars, when measured from the floor of the adjacent first refiner groove, is from about 4 mm to about 10 mm.
3. The refining member of claim 2, wherein the second maximum height of the second refiner bars, when measured from the floor of the adjacent second refiner groove, is from about 0.35 mm to about 1.5 mm less than the first maximum height.
4. The refining member of claim 2, wherein the second maximum height of the second refiner bars, when measured from the floor of the adjacent second refiner groove, is from about 0.7 mm to about 1.5 mm less than the first maximum height.
5. The refining bar of claim 1, wherein the longitudinal length of the second refiner bars is from about 2 cm to about 10 cm.
6. The refining member of claim 1 , wherein the second refiner bars are integral with the first refiner bars such that the second refiner bars extend from the first radially outward position to the second radially outward position.
7. The refining member of claim 6, wherein each of the second refiner bars slopes continuously downward from the first radially outward position to the second radially outward position.
8. The refining member of claim 1, wherein the first and second refiner bars have a width extending between side edges of from about 2 mm to about 8 mm.
9. The refining member of claim 1, wherein at least a portion of the first refiner grooves are provided with dams.
10. The refining member of claim 1 , further comprising:
third refiner bars separated by third refiner grooves, each of the third refiner bars extending to a third radially outward position on the refining surface;
fourth refiner bars separated by fourth refiner grooves, each of the fourth refiner bars extending to a fourth radially outward position on the refining surface, the fourth refiner bars having a longitudinal length from about 0 6 cm to about 10 cm, wherein the fourth radially outward position is nearer to an outermost part of the refining body than the third radially outward position, the third refiner bars having a third maximum height extending upward from a floor of an adjacent third refiner groove and the fourth refiner bars having a fourth maximum height extending upward from a floor of an adjacent fourth refiner groove, the fourth maximum height being at least 0.35 mm less than the third maximum height; and
wherein the third refiner bars are adapted to refine wood fibers and the fourth refiner bars are adapted to break up fiber bundles.
11. The refining member of claim 10, wherein the third refiner bars are integral with the second refiner bars such that the third refiner bars extend from the second radially outward position to the third radially outward position and the fourth refiner bars are integral with the third refiner bars such that the fourth refiner bars extend from the third radially outward position to the fourth radially outward position.
12. A pulp refiner comprising:
a frame:
at least a first pair of refining members comprising:
a first refining member associated with the frame and comprising a first refining body including a first refining surface comprising:
first refiner bars separated by first refiner grooves, each of the first refiner bars extending from a radially inward position on the refining surface to a first radially outward position on the refining surface; and
second refiner bars separated by second refiner grooves, each of the second refiner bars extending to a second radially outward position on the refining surface, the second refiner bars having a longitudinal length from about 0.6 cm to about 10 cm, wherein the second radially outward position is nearer to an outermost part of the refining body than the first radially outward position, the first refiner bars having a first maximum height extending upward from a floor of an adjacent first groove and the second refiner bars having a second maximum height extending upward from the adjacent second groove floor, the second maximum height being at least 0.35 mm less than the first maximum height;
a second refining member associated with the frame and comprising a second refining body including a second refining surface comprising second member refiner bars separated by second member refiner grooves, the first refining member being spaced from the second refining member to define a refining space therebetween; and
a rotor associated with the frame and coupled to one of the first refining member or the second refining member such that rotation of the rotor effects movement of the one of the first or the second refining member relative to the other;
wherein when a slurry of wood pulp comprising wood fibers is supplied to the frame, the wood pulp slurry passes through the refining space such that a significant number of the w'ood fibers in the wood pulp slurry are refined and a plurality of wood fiber bundles in the wood pulp slurry are separated.
13. The pulp refiner of claim 12, wherein the second maximum height is at least 0.7 mm less than the first maximum height.
14. The pulp refiner of claim 12, wherein the longitudinal length of the second refiner bars is from about 2 cm to about 10 cm.
15. The pulp refiner of claim 12, wherein the second member refiner bars comprise:
third refiner bars extending from a radially inward position on the second refining surface to a first radially outward position on the second refining surface:
fourth refiner bars extending to a second radially outward position on the second refining surface, wherein the second radially outward position is nearer to an outermost part of the second refining body than the first radially outward position, the third refiner bars having a third maximum height extending upward from a floor of an adjacent groove and the fourth refiner bars having a fourth maximum height extending upward from the adjacent groove floor, the fourth maximum height being at least 0.35 mm less than the third maximum height.
16. The refining member of claim 12, wherein the first refining member is a non-rotating stator member and the second refining member is a rotating rotor member.
17. A method for processing wood fibers comprising:
providing a refiner comprising at least a first pair of refining members comprising:
a first refining member comprising a first refining body including a first refining surface comprising: first refiner bars separated by first refiner grooves, the first refiner bars having a first maximum height extending upward from a floor of an adjacent first refiner groove, and second refiner bars separated by second refiner grooves, the second refiner bars having a second maximum height extending upward from a floor of an adjacent second refiner groove;
a second refining member comprising a second refining body including a second refining surface comprising second member refiner bars separated by second member refiner grooves, wherein the first refining member is spaced from the second refining member to define a refining space therebetween and at least a portion of the second member refiner bars are positioned so as to be across from the second refiner bars such that a gap between the portion of the second member refiner bars and the second refiner bars is defined;
rotating at least one of the first refining member or the second refining member such that the first and second refimng members move relative to one another;
supplying a slurry of wood pulp comprising wood fibers to the refiner such that the slurry passes through the refining space; and
applying axial pressure to at least one of the first refining member or the second refining member as the slurry is supplied such that the gap between the portion of the second member refiner bars and the second refiner bars is between about 0.9 mm and about 1.5 mm, wherein at least a portion of wood fiber bundles passing through the gap are separated.
18. The method of claim 17, wherein the second refiner bars have a longitudinal length from about 0.6 cm to about 10 cm and the second maximum height is at least 0.35 mm less than the first maximum height.
19. The method of claim 18, wherein the longitudinal length of the second refiner bars is from about 2 cm to about 10 cm.
20. The method of claim 17, wherein the second member refiner bars comprise:
third refiner bars; and
fourth refiner bars, the third refiner bars having a third maximum height extending upward from a floor of an adjacent groove and the fourth refiner bars having a fourth maximum height extending upward from an adjacent groove floor, the fourth maximum height being at least 0.35 mm less than the third maximum height.
21. A refining member for a pulp refiner, the refining member comprising:
a refining body comprising a plurality of radially extending pie-shaped segments comprising: at least one first pie-shaped segment comprising a first refining surface comprising first refiner bars separated by first refiner grooves, the first refiner bars having a first maximum height extending upward from a floor of an adjacent first refiner groove;
at least one second pie-shaped segment comprising a second refining surface comprising second refiner bars separated by second refiner grooves, the second refiner bars having a second maximum height extending upward from a floor of an adjacent second refiner groove, the second maximum height being at least 0.35 mm less than the first maximum height; and
wherein the first refiner bars are adapted to refine wood fibers and the second refiner bars are adapted to break up fiber bundles.
22. The refining member of claim 21, wherein the first maximum height of the first refiner bars, when measured from the floor of the adjacent first refiner groove, is from about 4 mm to about 10 mm.
23. The refining member of claim 22, wherein the second maximum height of the second refiner bars, when measured from the floor of the adjacent second refiner groove, is from about 0.35 mm to about 1.5 mm less than the first maximum height.
24. The refining member of claim 22, wherein the second maximum height of the second refiner bars, when measured from the floor of the adjacent second refiner groove, is from about 0.7 mm to about 1.5 mm less than the first maximum height.
25. A pulp refiner comprising:
a frame;
at least a first pair of refining members comprising:
a first refining member associated with the frame and comprising a first refining body including a plurality of radially extending pie-shaped segments comprising: at least one first pie-shaped segment comprising a first refining surface comprising first refiner bars separated by first refiner grooves, the first refiner bars having a first maximum height extending upward from a floor of an adjacent first refiner groove, and at least one second pie-shaped segment comprising a second refining surface comprising second refiner bars separated by second refiner grooves, the second refiner bars having a second maximum height extending upward from a floor of an adjacent second refiner groove, the second maximum height being at least 0.35 mm less than the first maximum height;
a second refining member associated with the frame and comprising a second refining body including a second member refining surface comprising second member refiner bars separated by second member refiner grooves;
the first refining member being spaced from the second refining member to define a refining space therebetween;
a rotor associated with the frame and coupled to one of the first refining member or the second refining member such that rotation of the rotor effects movement of the first and second refining members relative to one another; and
wherein when a slurry of wood pulp comprising wood fibers is supplied to the frame, the wood pulp slurry passes through the refining space such that a significant number of the wood fibers in the wood pulp slurry are refined and a plurality of wood fiber bundles in the wood pulp slurry are separated.
26. The refining member of claim 25, wherein the second maximum height of the second refiner bars, when measured from the floor of the adjacent second refiner groove, is from about 0.35 mm to about 1.5 mm less than the first maximum height.
27. The refining member of claim 25, wherein the second maximum height of the second refiner bars, when measured from the floor of the adjacent second refiner groove, is from about 0.7 mm to about 1 5 mm less than the first maximum height.
28. The pulp refiner of claim 25, wherein the second refining body comprises a plurality of radially extending pie-shaped segments comprising:
at least one third pie-shaped segment comprising a third refining surface comprising third refiner bars separated by third refiner grooves, the third refiner bars having a third maximum height extending upward from a floor of an adjacent third refiner groove; and
at least one fourth pie-shaped segment comprising a fourth refining surface comprising fourth refiner bars separated by fourth refiner grooves, the fourth refiner bars having a fourth maximum height extending up ward from a floor of an adjacent fourth refiner groove, the fourth maximum height being at least 0.35 mm less than the third maximum height, wherein the third and fourth refiner bars define the second member refiner bars and the third and fourth refiner grooves define the second member refiner grooves.
29. The refining member of claim 25, wherein the first refining member is a non-rotating stator member and the second refining member is a rotating rotor member.
PCT/US2019/012054 2018-01-02 2019-01-02 Apparatus and method for processing wood fibers Ceased WO2019136069A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2020555749A JP7540950B2 (en) 2018-01-02 2019-01-02 Apparatus and method for processing wood fibers
BR112020013528-3A BR112020013528B1 (en) 2018-01-02 2019-01-02 REFINING ELEMENT FOR A PULP REFINERS, PULP REFINERS AND METHOD FOR PROCESSING WOOD FIBERS
RU2020121781A RU2771695C2 (en) 2018-01-02 2019-01-02 Method for processing wood fibres, refining elements and wood pulp refiners
CN201980009186.8A CN111630225B (en) 2018-01-02 2019-01-02 Apparatus and method for processing wood fibers
CN202211665190.XA CN115897276B (en) 2018-01-02 2019-01-02 Apparatus and method for processing wood fibers
CA3087412A CA3087412A1 (en) 2018-01-02 2019-01-02 Apparatus and method for processing wood fibers
EP19702132.2A EP3735486A1 (en) 2018-01-02 2019-01-02 Apparatus and method for processing wood fibers
CN202211667859.9A CN115897277B (en) 2018-01-02 2019-01-02 Apparatus and method for processing wood fibers
JP2024135733A JP2024153945A (en) 2018-01-02 2024-08-15 Apparatus and method for processing wood fibers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15/860,055 US11001968B2 (en) 2018-01-02 2018-01-02 Apparatus and method for processing wood fibers
US15/860,006 US10794003B2 (en) 2018-01-02 2018-01-02 Apparatus and method for processing wood fibers
US15/860,006 2018-01-02
US15/860,055 2018-01-02

Publications (1)

Publication Number Publication Date
WO2019136069A1 true WO2019136069A1 (en) 2019-07-11

Family

ID=65237163

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2019/012024 Ceased WO2019136046A1 (en) 2018-01-02 2019-01-02 Apparatus and method for processing wood fibers
PCT/US2019/012054 Ceased WO2019136069A1 (en) 2018-01-02 2019-01-02 Apparatus and method for processing wood fibers

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2019/012024 Ceased WO2019136046A1 (en) 2018-01-02 2019-01-02 Apparatus and method for processing wood fibers

Country Status (6)

Country Link
EP (2) EP3735485A1 (en)
JP (5) JP7540950B2 (en)
CN (3) CN111630225B (en)
CA (1) CA3087412A1 (en)
RU (1) RU2754905C1 (en)
WO (2) WO2019136046A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023528967A (en) * 2020-06-12 2023-07-06 バルメット テクノロジーズ オサケユキチュア blade segments for refiners

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3087412A1 (en) * 2018-01-02 2019-07-11 International Paper Company Apparatus and method for processing wood fibers
CA3139618A1 (en) * 2019-06-28 2020-12-30 Dwight Edward Anderson Apparatus and method for processing wood fibers

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3815834A (en) * 1973-02-12 1974-06-11 Bolton Emerson Novel disc refiner and method
WO1999054046A1 (en) * 1998-04-16 1999-10-28 Metsä-Serla Oyj Refiner disk segment
US20060037728A1 (en) 2004-08-17 2006-02-23 Gl&V Management Hungary Kft. Refining plate attached to a head in a pulp refiner
US20070164143A1 (en) * 2004-07-08 2007-07-19 Sabourin Marc J Disc refiner with increased gap between fiberizing and fibrillating bands
US8342437B2 (en) 2009-04-23 2013-01-01 Andritz Inc. Deflaker plate and methods relating thereto
EP2960367A1 (en) * 2014-06-26 2015-12-30 Valmet Technologies Oy Single-disc refiner
US20160145798A1 (en) * 2014-05-26 2016-05-26 Valmet Technologies, Inc. Blade Segment of Disc Refiner
US20170362773A1 (en) * 2016-06-15 2017-12-21 Valmet Ab Refiner plate segment with pre-dam

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB496266A (en) * 1937-05-24 1938-11-24 Bjoern Nils Seegebarth Gregert Method of and apparatus for defibrating and grinding paper pulp and like materials
US3674217A (en) * 1970-07-30 1972-07-04 Rolf Bertil Reinhall Pulp fiberizing grinding plate
SE435942B (en) * 1978-08-07 1984-10-29 Berggren Torsten L SET AND ORE MACHINE FOR TREATMENT OF FIBER SLIPPING, LIKE PAPER Pulp, AND PIECE OF MILGUDE, SUCH AS TREFLIS AND SPAN
CA1207572A (en) * 1985-06-06 1986-07-15 William C. Leith Rotating disc wood chip refiner
DE3916393A1 (en) * 1989-05-19 1990-11-22 Bematec S A GRINDING SET OF A CONE REFINER
US4951888A (en) * 1989-08-24 1990-08-28 Sprout-Bauer, Inc. Refining element and method of manufacturing same
DE4210207C1 (en) * 1992-03-28 1993-09-09 J.M. Voith Gmbh, 89522 Heidenheim, De Grinder disc with knives for fibre-shredder - has rings of teeth with radial grinding surfaces working between similar rings of teeth on stator
US5492548A (en) * 1992-03-31 1996-02-20 J & L Plate, Inc. Rough edged refiner plate cutter bars
SE501378C2 (en) * 1993-06-17 1995-01-30 Sunds Defibrator Ind Ab Grinding elements for disc refiners for atomizing lignocellulosic material
SE502906C2 (en) * 1994-06-29 1996-02-19 Sunds Defibrator Ind Ab Refining elements
SE502907C2 (en) * 1994-06-29 1996-02-19 Sunds Defibrator Ind Ab Refining elements
US6325308B1 (en) * 1999-09-28 2001-12-04 J & L Fiber Services, Inc. Refiner disc and method
US6402071B1 (en) * 1999-11-23 2002-06-11 Durametal Corporation Refiner plates with injector inlet
AU2003222209A1 (en) * 2002-02-07 2004-08-23 Kee-Met, Ltd. Method of manufacturing refiner elements--.
FI118971B (en) * 2002-07-02 2008-05-30 Metso Paper Inc Refiner
US7300540B2 (en) * 2004-07-08 2007-11-27 Andritz Inc. Energy efficient TMP refining of destructured chips
US7478773B2 (en) * 2006-01-09 2009-01-20 Andritz Inc. Tooth refiner plates having V-shaped teeth and refining method
US20070210197A1 (en) * 2006-03-10 2007-09-13 Carpenter Charles T Refiner plate
CA3022730C (en) * 2007-02-08 2021-03-30 Andritz Inc. Mechanical pulping refiner plate having curved refining bars with jagged leading sidewalls and method for designing plates
US8042755B2 (en) * 2008-01-07 2011-10-25 Andritz Inc. Bar and groove pattern for a refiner plate and method for compression refining
FI121817B (en) * 2009-03-18 2011-04-29 Metso Paper Inc Grinder refiner surface
FI122889B (en) * 2010-12-31 2012-08-31 Upm Kymmene Corp Method and apparatus for producing nanocellulose
JP5123404B2 (en) * 2011-01-20 2013-01-23 日本製紙株式会社 Pulp preparation method
US9708765B2 (en) * 2011-07-13 2017-07-18 Andritz Inc. Rotor refiner plate element for counter-rotating refiner having curved bars and serrated leading edges
US9670615B2 (en) * 2011-08-19 2017-06-06 Andritz Inc. Conical rotor refiner plate element for counter-rotating refiner having curved bars and serrated leading sidewalls
JP5859803B2 (en) * 2011-10-21 2016-02-16 株式会社テックコーポレーション Waste paper pulp disaggregation and beating device in small waste paper recycling equipment
US9181654B2 (en) * 2012-05-30 2015-11-10 Andritz Inc. Refiner plate having a smooth, wave-like groove and related methods
US9968938B2 (en) * 2012-09-17 2018-05-15 Andritz Inc. Refiner plate with gradually changing geometry
US9604221B2 (en) * 2012-11-09 2017-03-28 Andrtiz Inc. Stator refiner plate element having curved bars and serrated leading edges
US9145641B2 (en) * 2012-12-13 2015-09-29 Andritz Inc. Apparatus for disperser plate and method to refine paper
SE538142C2 (en) * 2014-03-05 2016-03-15 Valmet Oy Refiner segments and refiner for smoothing fiber flow in a refiner
DE202014010374U1 (en) * 2014-05-16 2015-06-17 Voith Patent Gmbh Apparatus for pulp treatment
CA3087412A1 (en) * 2018-01-02 2019-07-11 International Paper Company Apparatus and method for processing wood fibers

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3815834A (en) * 1973-02-12 1974-06-11 Bolton Emerson Novel disc refiner and method
WO1999054046A1 (en) * 1998-04-16 1999-10-28 Metsä-Serla Oyj Refiner disk segment
US20070164143A1 (en) * 2004-07-08 2007-07-19 Sabourin Marc J Disc refiner with increased gap between fiberizing and fibrillating bands
US20060037728A1 (en) 2004-08-17 2006-02-23 Gl&V Management Hungary Kft. Refining plate attached to a head in a pulp refiner
US8342437B2 (en) 2009-04-23 2013-01-01 Andritz Inc. Deflaker plate and methods relating thereto
US20160145798A1 (en) * 2014-05-26 2016-05-26 Valmet Technologies, Inc. Blade Segment of Disc Refiner
EP2960367A1 (en) * 2014-06-26 2015-12-30 Valmet Technologies Oy Single-disc refiner
US20170362773A1 (en) * 2016-06-15 2017-12-21 Valmet Ab Refiner plate segment with pre-dam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023528967A (en) * 2020-06-12 2023-07-06 バルメット テクノロジーズ オサケユキチュア blade segments for refiners
JP7754392B2 (en) 2020-06-12 2025-10-15 バルメット テクノロジーズ オサケユキチュア Blade segments for refiners

Also Published As

Publication number Publication date
JP7591684B2 (en) 2024-11-28
JP2021509451A (en) 2021-03-25
CN115897277A (en) 2023-04-04
CN115897276A (en) 2023-04-04
CN115897277B (en) 2025-05-16
EP3735486A1 (en) 2020-11-11
JP7498118B2 (en) 2024-06-11
WO2019136046A1 (en) 2019-07-11
RU2020121781A3 (en) 2022-01-04
CN111630225B (en) 2023-01-10
JP7664324B2 (en) 2025-04-17
CA3087412A1 (en) 2019-07-11
RU2754905C1 (en) 2021-09-08
CN111630225A (en) 2020-09-04
EP3735485A1 (en) 2020-11-11
JP2024153945A (en) 2024-10-29
JP2024109924A (en) 2024-08-14
RU2020121781A (en) 2022-01-04
JP2023134619A (en) 2023-09-27
CN115897276B (en) 2025-06-24
BR112020013528A2 (en) 2020-12-01
JP7540950B2 (en) 2024-08-27
JP2021509452A (en) 2021-03-25

Similar Documents

Publication Publication Date Title
US11982054B2 (en) Apparatus and method for processing wood fibers
US20240360622A1 (en) Apparatus and method for processing wood fibers
US20240247441A1 (en) Apparatus and method for processing wood fibers
JP7591684B2 (en) Apparatus and method for processing wood fibers
JP2024097063A (en) Apparatus and method for processing wood fibers
JP2024097063A5 (en)
RU2771695C2 (en) Method for processing wood fibres, refining elements and wood pulp refiners
RU2826027C2 (en) Wood pulp refiner and wood pulp refiner (embodiments)
EP3938574A1 (en) Double-disc refiner comprising a center plate
BR122024017524B1 (en) METHOD FOR PROCESSING WOOD FIBERS
BR112021024710B1 (en) REFINING MEMBER FOR A PULP REFINERS, PULP REFINERS AND METHOD FOR PROCESSING WOOD FIBERS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19702132

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 3087412

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020555749

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019702132

Country of ref document: EP

Effective date: 20200803

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020013528

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020013528

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200701