WO2019103368A1 - Procédé de détection de code malveillant utilisant des mégadonnées - Google Patents
Procédé de détection de code malveillant utilisant des mégadonnées Download PDFInfo
- Publication number
- WO2019103368A1 WO2019103368A1 PCT/KR2018/013609 KR2018013609W WO2019103368A1 WO 2019103368 A1 WO2019103368 A1 WO 2019103368A1 KR 2018013609 W KR2018013609 W KR 2018013609W WO 2019103368 A1 WO2019103368 A1 WO 2019103368A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- malicious code
- pattern data
- malicious
- database
- apk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/20—Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
- G06F16/22—Indexing; Data structures therefor; Storage structures
- G06F16/2219—Large Object storage; Management thereof
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/50—Monitoring users, programs or devices to maintain the integrity of platforms, e.g. of processors, firmware or operating systems
- G06F21/55—Detecting local intrusion or implementing counter-measures
- G06F21/56—Computer malware detection or handling, e.g. anti-virus arrangements
Definitions
- the present invention relates to a malicious code detection method, and more particularly, to a malicious code detection method using big data.
- the Android operating system is Linux-based open source, and as Android-based applications are developed, the threat of Android security due to malicious code is increasing day by day.
- the malicious codes known so far are not entirely new types, but the majority of the variants of the malicious code that have already been modified or the activities that perform malicious actions are extracted and inserted into another application.
- malware APK Android application package
- Android malicious code detection method based on activity string analysis Patent Publication No. 10-2015-0083627, July 20, 2015
- the classes.dex file in the APK is read and then parsed in the form of pattern information, and then malicious code is detected by comparing the pattern information in the malicious code database.
- detection can be performed only when the pattern information is exactly matched with the malicious code, and when the reflection, packing, and obfuscation techniques are applied to the APK file, pattern information is deformed and detection is difficult.
- the present invention has been proposed in order to solve the above-mentioned problems of the previously proposed methods.
- the present invention compares pattern data extracted from an APK file to be inspected with previously collected large-scale malicious code pattern data, Malicious code can be detected in a short time using a large amount of database, malicious code can be detected without exact matching of strings, And it is an object of the present invention to provide a malicious code detection method using big data that can detect malicious code even for an application.
- step (3) determining from the comparison result in the step (3) whether the pattern data stored in the database is found in the APK to be inspected, to determine whether or not the pattern is malicious.
- the pattern data includes:
- An activity name An activity name, a URL, a character string, and resource file information.
- the database includes:
- a pattern database for storing pattern data of a plurality of collected malicious codes
- An APK information database storing APK information of a plurality of malicious codes
- a link database for storing connection information for connecting each pattern data stored in the pattern database with at least one APK information stored in the APK information database.
- the pattern database includes:
- An activity name of a plurality of malicious codes a URL, a character string, and resource file information.
- the APK information database comprises:
- At least one APK information selected from the group including a package name of a plurality of malicious codes, a SHA hash value, a size, and a virus detection name can be stored.
- the malicious code detection name of the APK including the pattern data extracted in the step (1) is inquired of the total number of APKs including the pattern data, the number of APKs detected as malicious codes in the total number of APKs, .
- step (4) More preferably, in the step (4)
- the ratio of the malicious code to each detection name can be calculated.
- the pattern data extracted from the APK file to be inspected is compared with the large-scale malicious code pattern data collected in the past,
- malicious code can be determined in a short period of time by using a large amount of database, malicious code can be detected without exact matching of strings, and even for applications using the security technique Malicious code detection can be performed.
- FIG. 1 is a diagram illustrating a system configuration for implementing a malicious code detection method using Big Data according to an embodiment of the present invention
- FIG. 2 is a flowchart illustrating a malicious code detection method using Big Data according to an embodiment of the present invention.
- FIG. 3 is a diagram illustrating a matrix for comparing extracted pattern data and a query result of a database in a malicious code detection method using big data according to an embodiment of the present invention.
- a malicious code detection method using Big Data includes a pattern database 210, an APK information database 220, and a server 230 including a link database 230 200 and the portable terminal 100, respectively.
- the portable terminal 100 may include various portable devices capable of using a network such as a smart phone operating as an Android operating system, a smart note, a tablet PC, a smart camera, a smart watch, and a wearable computer.
- a network such as a smart phone operating as an Android operating system, a smart note, a tablet PC, a smart camera, a smart watch, and a wearable computer.
- the present invention is not limited to the above-described terminal device of the portable terminal 100 according to the present invention, but may be a portable device that downloads, installs, and drives an application. It is necessary to detect a malicious code in an application package waiting for installation or installation
- the mobile terminal 100 of the present invention can play a role regardless of the specific terminal type.
- the server 200 can store and provide information on a plurality of malicious codes.
- the server 200 can store pattern data of a large-scale malicious code that has been collected in the past, and can reflect the latest malicious code information through continuous updating.
- the portable terminal 100 can access the server 200 through the network to use the database, and it is difficult to store the malicious code in the portable terminal 100 Big data can be used to detect malicious code accurately and quickly.
- the portable terminal 100 may access a web page providing a malicious code detection service to request malicious code detection, and the server 200 may provide a database in cooperation with a web page.
- the database may include a pattern database 210, an APK information database 220, and a link database 230.
- the pattern database 210 may store pattern data of a plurality of collected malicious codes. More specifically, it may store at least one or more string values selected from the group including the activity name, URL, string, and resource file information of a plurality of malicious codes.
- the APK information database 220 can store APK information of a plurality of malicious codes. More specifically, it may store at least one APK information selected from the group including a package name of a plurality of malicious codes, a SHA hash value, a size, and a virus detection name.
- the SHA hash value means the hash value of the Secure Hash Algorithm (SHA) functions, and more specifically, the SHA 256 hash value.
- the link database 230 may store connection information for connecting each pattern data stored in the pattern database 210 and at least one APK information stored in the APK information database 220. [ That is, the pattern data of the malicious code and the hash value are interconnected, and all the pattern data may be connected to at least one APK information.
- a malicious code detection method using Big Data includes extracting pattern data from an APK file to be inspected (S100) (S200), comparing the pattern data with the inquiry result (S300), and determining whether the malicious site is malicious (S400).
- the portable terminal 100 can extract pattern data from an APK (Android application package) file to be inspected.
- the pattern data may include at least one or more selected from the group including the activity name, the URL, the character string, and the resource file information.
- APK file When a new APK file is downloaded to the portable terminal 100 and is being installed on standby or newly installed by real-time monitoring, the APK file is inspected.
- all the applications already installed in the portable terminal 100 An APK file, such as a specific application, may be the target of inspection.
- step S200 the portable terminal 100 can inquire the pattern data extracted in step S100 on the database storing pattern data of a plurality of malicious codes. That is, in step S200, the portable terminal 100 uses the big data stored in the pattern database 210, the APK information database 220, and the link database 230 via the network, The number of malicious code references of data, and the like.
- step S300 the portable terminal 100 can compare the pattern data extracted in step S100 with the inquiry result in step S200. More specifically, in step S300, the total number of APKs including the pattern data extracted in step S100, the number of APKs detected as malicious codes (from the total number of APKs), and the number of APKs APK malicious code detection name can be inquired.
- step S300 of the malicious code detection method using Big Data the inquiry result of step S200 and the pattern data extracted in step S100 are expressed in a matrix form and analyzed Can be utilized.
- step S100 shows the total number of APKs including the pattern data extracted in step S100, the number of APKs detected as a malicious code in the number of A columns in the B column, the extracted pattern data in the C column, It is possible to display the malware detection name of the APK including the pattern data.
- column D can exist only when it is detected as malicious code.
- step S400 the portable terminal 100 can determine the presence or absence of maliciousness based on the degree to which the pattern data stored in the database is found in the APK to be inspected from the comparison result in step S300.
- step S400 the number of APKs detected as malicious codes (the number of APKs detected in step B in Fig. 3) from the total number of APKs (pattern A column information in Fig. 3) Thermal information), the ratio of the malicious code can be calculated, and the malicious code can be determined using the calculated value. For example, if the calculated value is not less than a predetermined standard, it can be judged to be malicious. In addition, if there are a plurality of malicious code detection names (D column information in Fig. 3) of the APK including the corresponding pattern data (C column information in Fig. 3), it is possible to calculate the percentage of the malicious code occupied by each detection name. The calculated values can be judged synthetically to determine whether maliciousness exists.
- the malicious code is detected using the statistical method using the big data, so that it is possible to quickly and accurately detect the malicious code even for the APK file to which the pattern data is deformed, the reflection, the packing, and the obfuscation technique.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- General Engineering & Computer Science (AREA)
- Software Systems (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Virology (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
Abstract
Selon un procédé de détection de code malveillant utilisant des mégadonnées, proposé par la présente invention, des données de motif extraites d'un fichier APK à inspecter sont comparées à des données de motif de code malveillant à grande échelle recueillies précédemment. En résultat de la comparaison, lorsque de multiples données de motif ayant été utilisées dans un code malveillant existant sont découvertes, il est déterminé que le fichier APK contient un code malveillant. Par conséquent, la présente invention peut déterminer, en utilisant une très grande base de données en un court laps de temps, si un code malveillant existe ou non, détecter un code malveillant même sans correspondance exacte de chaînes de caractères, et détecter un code malveillant même pour une application à laquelle une technique de sécurité Android est appliquée.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR10-2017-0159369 | 2017-11-27 | ||
| KR1020170159369A KR20190061231A (ko) | 2017-11-27 | 2017-11-27 | 빅데이터를 활용한 악성코드 검출 방법 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2019103368A1 true WO2019103368A1 (fr) | 2019-05-31 |
Family
ID=66632020
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/KR2018/013609 Ceased WO2019103368A1 (fr) | 2017-11-27 | 2018-11-09 | Procédé de détection de code malveillant utilisant des mégadonnées |
Country Status (2)
| Country | Link |
|---|---|
| KR (1) | KR20190061231A (fr) |
| WO (1) | WO2019103368A1 (fr) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12056239B2 (en) | 2020-08-18 | 2024-08-06 | Micro Focus Llc | Thread-based malware detection |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20120071817A (ko) * | 2010-12-23 | 2012-07-03 | 한국인터넷진흥원 | 악성코드 dna 및 메타데이터 자동 관리 시스템 |
| KR101508577B1 (ko) * | 2013-10-08 | 2015-04-07 | 고려대학교 산학협력단 | 악성코드 탐지장치 및 방법 |
| KR20150044490A (ko) * | 2013-10-16 | 2015-04-27 | (주)이스트소프트 | 안드로이드 악성 애플리케이션의 탐지장치 및 탐지방법 |
| KR20150099132A (ko) * | 2014-02-21 | 2015-08-31 | 삼성전자주식회사 | 컨텐츠 악성 검사 방법 및 장치 |
| KR101628837B1 (ko) * | 2014-12-10 | 2016-06-10 | 고려대학교 산학협력단 | 악성 어플리케이션 또는 악성 웹사이트 탐지 방법 및 시스템 |
-
2017
- 2017-11-27 KR KR1020170159369A patent/KR20190061231A/ko not_active Ceased
-
2018
- 2018-11-09 WO PCT/KR2018/013609 patent/WO2019103368A1/fr not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20120071817A (ko) * | 2010-12-23 | 2012-07-03 | 한국인터넷진흥원 | 악성코드 dna 및 메타데이터 자동 관리 시스템 |
| KR101508577B1 (ko) * | 2013-10-08 | 2015-04-07 | 고려대학교 산학협력단 | 악성코드 탐지장치 및 방법 |
| KR20150044490A (ko) * | 2013-10-16 | 2015-04-27 | (주)이스트소프트 | 안드로이드 악성 애플리케이션의 탐지장치 및 탐지방법 |
| KR20150099132A (ko) * | 2014-02-21 | 2015-08-31 | 삼성전자주식회사 | 컨텐츠 악성 검사 방법 및 장치 |
| KR101628837B1 (ko) * | 2014-12-10 | 2016-06-10 | 고려대학교 산학협력단 | 악성 어플리케이션 또는 악성 웹사이트 탐지 방법 및 시스템 |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12056239B2 (en) | 2020-08-18 | 2024-08-06 | Micro Focus Llc | Thread-based malware detection |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20190061231A (ko) | 2019-06-05 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2012091400A1 (fr) | Système et procédé de détection de logiciel malveillant dans un fichier sur la base d'une carte génétique de fichier | |
| WO2013089340A1 (fr) | Appareil et procédé de détection de similarité entre applications | |
| WO2019054613A1 (fr) | Procédé et système d'identification de progiciel source libre en fonction d'un fichier binaire | |
| WO2018182126A1 (fr) | Système et procédé permettant d'authentifier un logiciel sécurisé | |
| WO2015056885A1 (fr) | Dispositif de détection et procédé de détection pour une application android malveillante | |
| WO2014054854A1 (fr) | Système d'analyse de journal et procédé d'analyse de journal pour système de sécurité | |
| WO2014035043A1 (fr) | Appareil et procédé permettant de diagnostiquer des applications malveillantes | |
| WO2019066222A1 (fr) | Procédé et système pour identifier un progiciel libre sur la base d'un fichier binaire | |
| WO2018016671A2 (fr) | Système de détection de code dangereux conçu pour vérifier une vulnérabilité de sécurité et procédé associé | |
| WO2013077538A1 (fr) | Dispositif et procédé d'analyse d'application basée sur une api | |
| WO2022108318A1 (fr) | Appareil et procédé d'analyse de vulnérabilités de code de contrat intelligent | |
| WO2013100320A1 (fr) | Système, terminal utilisateur, procédé et appareil pour protéger et récupérer un fichier de système | |
| WO2013165180A1 (fr) | Procédé de suivi de journaux, serveur associé et support d'enregistrement | |
| WO2014088262A1 (fr) | Dispositif et procédé de détection d'applications frauduleuses/modifiées | |
| WO2021085983A1 (fr) | Procédé, dispositif et support lisible par ordinateur pour détecter des vulnérabilités dans un code source | |
| WO2019135425A1 (fr) | Procédé et système de vérification de licence de logiciel à source ouverte | |
| WO2023075500A1 (fr) | Procédé d'inspection de dispositif iot, et dispositif associé | |
| WO2018199366A1 (fr) | Procédé et système permettant de détecter si un obscurcissement a été appliqué à un fichier dex et d'évaluer la sécurité | |
| WO2018194196A1 (fr) | Procédé et système de détection d'application d'obfuscation et d'évaluation de la sécurité d'un fichier elf | |
| WO2016064024A1 (fr) | Dispositif et procédé de détection de connexion anormale | |
| WO2019103368A1 (fr) | Procédé de détection de code malveillant utilisant des mégadonnées | |
| WO2021045312A1 (fr) | Procédé de recherche et dispositif de recherche à base de code de hachage | |
| WO2014098337A1 (fr) | Dispositif et méthode de collecte de sites dangereux | |
| WO2014098372A1 (fr) | Dispositif et méthode de collecte de sites dangereux | |
| WO2022065992A1 (fr) | Procédé d'extraction d'un réseau de neurones artificiel à l'aide d'une vulnérabilité par fusion |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18880435 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 18880435 Country of ref document: EP Kind code of ref document: A1 |