[go: up one dir, main page]

WO2019103197A1 - System for predicting traffic accident on basis of artificial intelligence and method therefor - Google Patents

System for predicting traffic accident on basis of artificial intelligence and method therefor Download PDF

Info

Publication number
WO2019103197A1
WO2019103197A1 PCT/KR2017/013497 KR2017013497W WO2019103197A1 WO 2019103197 A1 WO2019103197 A1 WO 2019103197A1 KR 2017013497 W KR2017013497 W KR 2017013497W WO 2019103197 A1 WO2019103197 A1 WO 2019103197A1
Authority
WO
WIPO (PCT)
Prior art keywords
accident
probability
artificial intelligence
control center
accident probability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2017/013497
Other languages
French (fr)
Korean (ko)
Inventor
김성식
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atec T& Co ltd
Original Assignee
Atec T& Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atec T& Co ltd filed Critical Atec T& Co ltd
Publication of WO2019103197A1 publication Critical patent/WO2019103197A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/20Image preprocessing
    • G06V10/24Aligning, centring, orientation detection or correction of the image
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/62Text, e.g. of license plates, overlay texts or captions on TV images
    • G06V20/63Scene text, e.g. street names
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled

Definitions

  • the present invention relates to an artificial intelligence-based traffic accident prediction system and method thereof, and more particularly, to a traffic accident prediction system and method using artificial intelligence based on image recognition and deep learning,
  • the present invention relates to an artificial intelligence-based traffic accident prediction system and a method thereof, which can prevent an accident in advance by promptly taking a follow-up action.
  • Patent Document 1 The prior art disclosed in Patent Document 1 is composed of an optical cable fixed to a guardrail installed on a road, a controller capable of transmitting and receiving a frequency provided at a start point and an end point of a guardrail provided with an optical cable, and a control head connected to the controller through wired / wireless communication
  • the control headquarters can confirm the occurrence of a traffic accident in real time, and can precisely check the location of an accident when a traffic accident occurs, so that it can respond quickly to the structure of life and the accident recovery.
  • Patent Document 2 includes a traffic accident-causing element sensing unit provided inside a vehicle to detect a traffic accident-causing element and then transmit a sensed signal to the outside, A signal transmission unit for transmitting position information to the sensing signal transmitted from the traffic accident-causing element sensing unit, and a sensing signal generated from the insured vehicle subscribed to the insurance product of the insurer, It implements the detection signal providing service system of the traffic accident causing element including the insurance company server.
  • the signaling unit that receives the signal of detecting the traffic accident-causing element in the vehicle during operation provides the insurer with insurance premium from the insurance company, and the insured who insured the insurance provides the traffic accident inducing element So that the occurrence of traffic accidents can be prevented.
  • Patent Document 1 Korean Patent Laid-Open No. 10-2010-0072931 (2010.07.01) (Traffic Accident Detection System and Detection Method)
  • Patent Document 2 Korean Patent Laid-open Publication No. 10-2013-0026538 (published on Mar. 13, 2013) (System and Method for Providing Detection Signal of Traffic Accident Indicating Element)
  • Patent Document 3 Korean Patent Laid-open No. 10-2016-0092959 (published on 2016.08.05) (Method and system for preventing traffic accident at intersection due to speeding and signal violation)
  • the general traffic accident detection system and the conventional technology described above detect the occurrence of a vehicle accident, and it is impossible to predict a traffic accident before the occurrence of a traffic accident and to take a follow-up action.
  • Patent Literature 2 can detect a traffic accident element in advance to determine a traffic accident, this Patent Literature 2 also predicts an accident probability based on artificial intelligence, It is impossible to predict the traffic accident in advance and take quick action in cooperation with the control center.
  • the present invention has been proposed in order to solve all the problems occurring in the related art as described above, and it is an object of the present invention to predict a vehicle, a person and a road with high accident risk by using image recognition and deep learning
  • the present invention relates to an artificial intelligence-based traffic accident prediction system and a method thereof, which can prevent an accident in advance by promptly transferring a traffic accident to a control center.
  • the artificial intelligence-based traffic accident prediction system recognizes an object from an image photographed by a camera and analyzes the recognized object with an artificial intelligence-based accident probability algorithm
  • a vehicle system for predicting the probability of an accident and transmitting accident prediction data to the control center when the accident is predicted as a result ; Analyzing the accident prediction data transmitted from the vehicle system, transmitting the action information to the related organization according to the urgency, learning about the accident probability using the accident prediction data, transmitting the learning result to the vehicle system, And a control center for updating the intelligence-based accident probability algorithm.
  • the vehicle system includes an image recognition unit for photographing through a camera to acquire an image; An image data storage unit for storing image data recognized by the image recognition unit; An object recognition unit for recognizing an object from the image data stored in the image data storage unit, analyzing the recognized object information using an artificial intelligence-based accident probability algorithm to calculate an accident probability, predicting an accident based on the calculated accident probability value, And an accident predicting unit for transmitting the accident prediction data to the control center when it is predicted that an accident has occurred.
  • the vehicle system may further include a wireless transmission unit for converting the accident prediction data output from the accident prediction unit into wireless data and transmitting the wireless data to a remote control center.
  • the accident predicting unit may include an artificial intelligence-based accident probability processor for recognizing object information from the image data and analyzing the recognized object information using an artificial intelligence-based accident probability algorithm to calculate an accident probability; A comparison and analysis unit for comparing the accident probability value calculated by the artificial intelligence based fault probability processing unit with a reference value and outputting the comparison result; And a normal presence / absence determination unit for performing an accident prediction based on the comparison result output from the comparison / analysis unit and transmitting the accident prediction data to the control center if the prediction result indicates that an accident has occurred.
  • the artificial intelligence-based incident probability processing unit extracts objects in the image data using a CNN (Convolution Neutral Networks) algorithm, and analyzes the extracted objects to calculate an incident probability.
  • CNN Convolution Neutral Networks
  • control center comprises a control center radio receiving unit for receiving the accident prediction data transmitted from the vehicle system; A control center data storage for storing the accident prediction data received by the control center radio receiver; An accident probability determination unit for analyzing the accident prediction data stored in the control center data storage unit to calculate an accident probability and determining an urgency based on the extracted accident probability.
  • control center may further include an emergency request transmitting unit for selecting an affiliated institution according to the degree of urgency determined by the accident probability determining unit, and then transmitting urgent request information for an action to the selected related institution.
  • the control center may further include an accident probability learning unit for learning through deep learning using the received accident prediction data and updating an artificial intelligence based accident probability algorithm in the vehicle system based on the learning result, do.
  • an artificial intelligence-based traffic accident prediction method comprising: (a) recognizing an object from an image captured through a camera in a vehicle system; Estimating an accident probability by analyzing with an accident probability algorithm, and transmitting accident prediction data to a control center when an accident occurrence is predicted as a result; (b) analyzing the accident prediction data transmitted from the vehicle system at the control center and transmitting the action information to the related organization according to the degree of urgency, learning about the accident probability using the accident prediction data, And updating the artificial intelligence-based accident probability algorithm by transmitting to the vehicle system.
  • the step (a) includes: (a1) capturing an image through a camera to acquire and store an image, and recognizing an object from the stored image data; (a2) analyzing the recognized object information with an artificial intelligence-based accident probability algorithm to calculate an accident probability; (a3) predicting an accident on the basis of the calculated accident probability value, and transmitting the accident prediction data to the control center when it is predicted that the accident occurred; (a4) receiving the accident probability algorithm update data from the control center, updating the artificial intelligence-based accident probability algorithm.
  • (B) comprises: (b1) receiving and storing accident prediction data transmitted from the vehicle system; (b2) analyzing the stored accident prediction data to calculate an accident probability, and determining an urgency based on the extracted accident probability; (b3) selecting an affiliated institution according to the determined degree of urgency, and then transmitting urgent request information for an action to the selected affiliated institution; (b4) learning through deep learning using the stored accident prediction data, and updating an artificial intelligence-based accident probability algorithm in the vehicle system based on the learning result.
  • the present invention by using the image recognition and deep learning technique, it is possible to predict a vehicle, a person and a road with a high risk of an accident, transmit the prediction result to the control center, There is an advantage that it can be prevented.
  • FIG. 1 is a block diagram of an artificial intelligence-based traffic accident prediction system according to the present invention.
  • FIG. 2 and FIG. 3 are flowcharts illustrating a method for predicting a traffic accident based on artificial intelligence according to the present invention.
  • FIG. 1 is a block diagram of an artificial intelligence-based traffic accident prediction system according to a preferred embodiment of the present invention.
  • the object is recognized from an image captured through a camera, and an artificial intelligence-based accident probability algorithm is applied to the recognized object (100) for predicting the probability of an accident and transmitting the predicted accident prediction data to the control center when the occurrence of the accident is predicted as a result of the prediction, and an accident prediction data transmitted from the vehicle system (100)
  • a control center 200 for transmitting action information, learning about an accident probability using the accident prediction data, and transmitting the learning result to the vehicle system 100 to update an artificial intelligence-based accident probability algorithm .
  • the vehicle system 100 includes an image recognition unit 10 that captures an image through a camera and acquires an image, an image data storage unit 20 that stores image data recognized by the image recognition unit 10, And estimates the accident on the basis of the calculated accident probability value. If the predicted result is predicted as an accident occurrence, the accident prediction data is obtained A wireless transmission unit 40 for converting the accident prediction data output from the accident prediction unit 30 into wireless data and transmitting the wireless data to a remote control center 200, .
  • the accident predicting unit 30 includes an artificial intelligence-based accident probability processing unit 31 for recognizing object information from the image data and analyzing the recognized object information with an artificial intelligence-based accident probability algorithm to calculate an accident probability, A comparison / analysis unit 32 for comparing the accident probability value calculated by the artificial intelligence-based incident probability processing unit 31 with a reference value and outputting the comparison result; And a normal presence / absence determination unit (33) for transmitting the accident prediction data to the control center (200) if it is predicted that an accident has occurred.
  • an artificial intelligence-based accident probability processing unit 31 for recognizing object information from the image data and analyzing the recognized object information with an artificial intelligence-based accident probability algorithm to calculate an accident probability
  • a comparison / analysis unit 32 for comparing the accident probability value calculated by the artificial intelligence-based incident probability processing unit 31 with a reference value and outputting the comparison result
  • And a normal presence / absence determination unit (33) for transmitting the accident prediction data to the control center (200) if it is predicted that an accident has occurred.
  • the control center 200 includes a control center radio receiving unit 50 for receiving the accident prediction data transmitted from the vehicle system 100, a control unit 50 for storing the accident prediction data received by the control center radio receiving unit 50, An accident probability determination unit 70 for calculating an accident probability by analyzing the accident prediction data stored in the center data storage unit 60 and determining the urgency based on the extracted accident probability, , And an emergency request transmission unit (80) for selecting an affiliated institution according to the degree of urgency determined by the accident probability determination unit (70), and then transmitting urgent request information for an action to the selected related institution.
  • a control center radio receiving unit 50 for receiving the accident prediction data transmitted from the vehicle system 100
  • a control unit 50 for storing the accident prediction data received by the control center radio receiving unit 50
  • An accident probability determination unit 70 for calculating an accident probability by analyzing the accident prediction data stored in the center data storage unit 60 and determining the urgency based on the extracted accident probability
  • an emergency request transmission unit (80) for selecting an affiliated institution according to the degree of urgency determined by the accident probability determination unit (70), and
  • the control center 200 preferably includes an accident probability learning unit 90 that learns through deep learning using the received accident prediction data and updates an artificial intelligence based accident probability algorithm in the vehicle system based on the learning result, .
  • the vehicle system 100 acquires an image by photographing it through a camera in the image recognition unit 10.
  • the camera is installed at various positions of the vehicle to acquire an image around the vehicle, but in the present invention, it is assumed that the camera is installed in front of the vehicle to photograph the vehicle traveling direction to acquire images.
  • the image data recognized by the image recognition unit 10 is stored through the image data storage unit 20.
  • the accident predicting unit 30 recognizes an object from the stored image data, calculates an accident probability by analyzing the recognized object information by an artificial intelligence-based accident probability algorithm, and calculates an accident probability based on the calculated accident probability value And transmits the accident prediction data to the control center 200 when it is predicted that the accident occurred.
  • the prediction of the accident by analyzing the image data can be performed in real time or at regular intervals.
  • the artificial intelligence-based accident probability processing unit 31 of the accident predicting unit 30 recognizes object information from the stored image data by using an artificial intelligence-based accident probability algorithm, and then analyzes the recognized object information, .
  • an artificial intelligence-based accident probability algorithm using the CNN (Convolution Neural Networks) algorithm.
  • the CNN algorithm consists of a convolution layer, a pooling layer, and a feed forward layer.
  • the convolution layer is a layer for extracting meaningful features in layers when implementing a filter to extract convolution features.
  • the pooling layer is a layer that performs sub-sampling to reduce the feature because there are many pixels due to the nature of the image.
  • the feed forward layer is a layer that classifies using features extracted from the Convolution layer and the Pooling layer.
  • the comparative analysis unit 32 compares the accident probability value calculated by the artificial intelligence-based accident probability processing unit 31 with a predetermined reference value, and outputs an error value, which is the difference, as a comparison result.
  • the normal presence / absence determiner 33 compares the error value, which is a comparison result output from the comparison / analysis unit 32, with a setting value for determining whether the error is normal or not. If the error value is less than the set value, And deletes the acquired image data. Since the deletion of unnecessary image data does not require the use of a large-capacity memory, the system implementation cost can be reduced. On the other hand, if the error value is larger than the set value, it is predicted that an accident occurs. If it is predicted that an accident has occurred, the predicted data is generated and transmitted to the wireless transmitting unit 40.
  • the wireless transmitting unit 40 converts the accident prediction data output from the accident predicting unit 30 into wireless data and transmits the wireless data to the remote control center 200.
  • the control center 200 receives the accident prediction data transmitted from the vehicle system 100 through the control center wireless receiving unit 50 and the control center data storage unit 60 receives the accident prediction data from the control center wireless receiving unit 50 And stores the received accident prediction data.
  • the accident probability determiner 70 calculates the accident probability by analyzing the accident prediction data stored in the control center data storage 60, and determines the urgency based on the extracted accident probability. For example, the accident probability determiner 70 calculates an accident probability by adding the presently stored accident probability error value and existing data, and if the calculated accident probability value is equal to or greater than a predetermined reference value, do.
  • the emergency number is the magnitude of the accident probability value predicted. The larger the value, the more urgent the situation is, the smaller the smaller, the less urgent the situation becomes.
  • the emergency request transmission unit 80 selects an appropriate agency. For example, if the current vehicle has a high probability of accident due to drowsiness, drunken driving or other abrupt driving, the police can be selected as the relevant authority to take immediate action when the emergency degree becomes high, and the relevant image data is sent to the police station for quick action .
  • control center 200 learns through deep learning using the accident prediction data received through the accident probability learning unit 90, To the vehicle system 100, update information for updating the AI-based accident probability algorithm.
  • update information for updating the AI-based accident probability algorithm.
  • the vehicle system 100 updates the artificial intelligence-based accident probability algorithm using the updated information, thereby improving the accuracy of the accident probability prediction.
  • FIG. 2 and FIG. 3 are flowcharts illustrating an artificial intelligence-based traffic accident prediction method according to a preferred embodiment of the present invention, wherein (a) (S101 to S108) (S101 to S108) of analyzing the object with an artificial intelligence-based accident probability algorithm to predict an accident probability, and when the accident occurrence is predicted, the accident prediction data is transmitted to the control center (200) (200) analyzes the accident prediction data transmitted from the vehicle system (100) and transmits the action information to the related organizations according to the degree of urgency, learns about the accident probability using the accident prediction data, (S201 to S207) to the vehicle system 100 and updating the AI-based accident probability algorithm.
  • a (S101 to S108) (S101 to S108) of analyzing the object with an artificial intelligence-based accident probability algorithm to predict an accident probability, and when the accident occurrence is predicted, the accident prediction data is transmitted to the control center (200) (200) analyzes the accident prediction data transmitted from the vehicle system (100) and transmits the action information to the related organizations according to the degree
  • the method includes the steps of: (a1) capturing an image through a camera to acquire and store an image, and recognizing an object from the stored image data (S101); (a2) (A3) estimating an accident on the basis of the calculated accident probability value, transmitting the accident prediction data to the control center 200 when it is predicted that the accident occurred, (S103 to S106); (a4) receiving the accident probability algorithm update data from the control center 200, updating the artificial intelligence-based accident probability algorithm (S107 To S108).
  • the step (b) includes the steps of (b1) receiving and storing the accident prediction data transmitted from the vehicle system 100 (S201), (b2) calculating the accident probability by analyzing the stored accident prediction data, (S203 to S203); (b3) selecting the relevant agency according to the determined degree of urgency, and then transmitting urgent request information for the action to the selected related authority (S204); (b4) learning through deep learning using the stored accident prediction data, and updating the artificial intelligence-based accident probability algorithm in the vehicle system based on the learning result (S205 to S207).
  • the vehicle system 100 captures an image through the camera in the image recognition unit 10 and acquires the image. It is assumed that the camera is installed at the front of the vehicle to acquire images by photographing the traveling direction of the vehicle.
  • the image data recognized by the image recognition unit 10 is stored through the image data storage unit 20.
  • the accident predicting unit 30 recognizes the object from the stored image data using the artificial intelligence-based accident probability algorithm, and analyzes the recognized object information to calculate the accident probability.
  • the artificial intelligence-based accident probability algorithm uses the CNN (Convolution Neural Networks) algorithm.
  • the CNN algorithm consists of a convolution layer, a pooling layer, and a feed forward layer. The method of calculating the probability of an accident using the CNN algorithm is described in detail in the system of FIG. 1, and will not be described here.
  • the comparison and analysis unit 32 compares the accident probability value calculated by the artificial intelligence-based accident probability processing unit 31 with a predetermined reference value in step S103, and outputs the error value as the comparison result.
  • the normal presence / absence determining unit 33 compares the error value, which is a comparison result outputted from the comparison / analysis unit 32, with a setting value for determining whether or not the normal state is present in step S104. If the error value is equal to or smaller than the set value It is judged as normal and the process goes to step S106 to delete the acquired image data. Since the deletion of unnecessary image data does not require the use of a large-capacity memory, the system implementation cost can be reduced.
  • step S105 to generate accident prediction data and transmits the data to the remote control center 200.
  • step S107 when the update information is received, the vehicle system 100 proceeds to step S108 and updates the AI-based accident probability algorithm based on the update information to improve the accuracy of the accident probability prediction.
  • control center 200 receives the accident prediction data transmitted from the vehicle system 100 through the control center wireless receiving unit 50 in step S201, and the control center data storage unit 60 stores the accident prediction data transmitted from the control center wireless And stores the accident prediction data received by the receiving unit 50.
  • the accident probability determiner 70 calculates the accident probability by analyzing the accident prediction data stored in the control center data storage 60 in step S202, and determines the urgency based on the extracted accident probability. For example, if the calculated accident probability value is equal to or greater than a preset reference value, the occurrence probability of an accident is predicted and the urgency is confirmed.
  • the emergency number is the magnitude of the accident probability value predicted. The larger the value, the more urgent the situation is, the smaller the smaller, the less urgent the situation becomes.
  • the emergency request transmission unit 80 selects an appropriate agency. For example, if the current vehicle has a high probability of accident due to drowsiness, drunken driving or other abrupt driving, the police may be selected as the relevant authority to immediately take measures to deal with the accident, and the corresponding image data is transmitted to the police station So that they can take action.
  • step S205 If the current state of the road is high, the process goes to step S205 to transmit the image data to the relevant authority (for example, Ministry of Land, Korea Highway Corporation) related to the road, and take appropriate measures.
  • the relevant authority for example, Ministry of Land, Korea Highway Corporation
  • control center 200 performs learning through deep learning using the accident prediction data received through the accident probability learning unit 90 in step S206.
  • step S207 Based on the intelligence-based incident-probability algorithm in the vehicle system to the vehicle system 100 to update the artificial intelligence-based incident-probability algorithm to improve the accuracy of the accident-probability prediction.
  • the present invention analyzes vehicles and areas with high possibility of accidents through cameras of vehicles and roads, finds vehicles or people with abnormal behaviors, unusually violates roads, and transmits them to related agencies to take measures Thereby preventing accidents in advance.
  • the present invention is applied to a technique for improving the running safety of an autonomous vehicle by allowing an accident probability to be predicted using the image recognition and artificial intelligence accident probability algorithm and taking measures by using it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Artificial Intelligence (AREA)
  • Computational Linguistics (AREA)
  • Business, Economics & Management (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Traffic Control Systems (AREA)

Abstract

The present invention relates to: a system for predicting a traffic accident on the basis of artificial intelligence, the system using image recognition and deep learning techniques so as to predict a vehicle, a person or a road that are at high risk for an accident, and transmitting a predicted result to a control center so as to quickly take follow-up actions, thereby enabling an accident to be prevented in advance; and a method therefor. The system for predicting a traffic accident on the basis of artificial intelligence is implemented by comprising: a vehicle system, which recognizes an object from an image captured through a camera, analyzes the recognized object with an artificial intelligence-based accident probability algorithm so as to predict an accident probability, and transmits accident prediction data to a control center when the occurrence of an accident is predicted as a result of the prediction; and the control center, which analyzes the accident prediction data transmitted from the vehicle system so as to transmit action information to authorities according to the degree of emergency, learns the accident probability by using the accident prediction data, and transmits the learning result to the vehicle system so as to update the artificial intelligence-based accident probability algorithm.

Description

인공지능 기반의 교통사고 예측시스템 및 그 방법Artificial intelligence based traffic accident prediction system and method

본 발명은 인공지능 기반의 교통사고 예측시스템 및 그 방법에 관한 것으로, 특히 영상인식과 딥 러닝(deep learning) 기법을 사용하여 사고 위험성이 높은 차량이나 사람 및 도로를 예측하고, 예측 결과를 관제센터에 전송하여 신속하게 후속 조치를 취하도록 함으로써 사고를 미리 방지할 수 있도록 한 인공지능 기반의 교통사고 예측시스템 및 그 방법에 관한 것이다.The present invention relates to an artificial intelligence-based traffic accident prediction system and method thereof, and more particularly, to a traffic accident prediction system and method using artificial intelligence based on image recognition and deep learning, The present invention relates to an artificial intelligence-based traffic accident prediction system and a method thereof, which can prevent an accident in advance by promptly taking a follow-up action.

자동차 기술의 급속한 발전은 전 세계적인 차량의 증가를 가져왔고, 차량은 한편으로 편리한 문명의 이기이기도 하지만 다른 한편으로는 자동차 사고를 일으켜 인명과 재산에 위해를 가할 수도 있는 도구로 등장하게 되었다.The rapid development of automotive technology has led to an increase in the number of vehicles worldwide, and on the other hand, the vehicle has become a convenient civilization, but on the other hand it has become a tool that can cause car accidents and harm lives and property.

차량이 증가하면서 교통정보의 중요성과 필요성은 지속적으로 증대되어 왔으며, 이러한 필요성에 따라 교통정보를 수집, 제공하기 위한 다양한 시스템이 제안되고 있으며, 교통사고를 감지하여 신속한 후속 조치를 취할 수 있도록 한 교통사고 감지 시스템도 제안되고 있다.As the number of vehicles increases, the importance and necessity of traffic information has been continuously increased. Various systems have been proposed to collect and provide traffic information according to the necessity. In order to detect traffic accidents and take quick follow-up measures, An accident detection system has also been proposed.

교통사고 감지시스템에 대하여 종래에 제안된 기술이 하기의 <특허문헌 1> 내지 <특허문헌 3> 에 개시되어 있다.[0006] The techniques proposed in the past for a traffic accident detection system are disclosed in Patent Documents 1 to 3 below.

<특허문헌 1> 에 개시된 종래기술은 도로에 설치된 가드레일에 고정 설치된 광케이블, 광케이블이 설치된 가드레일의 시점과 종점에 구비된 주파수 송수신이 가능한 제어기, 제어기와 유무선 통신으로 연결되는 통제본부로 구성되어, 교통사고가 발생하는 경우, 통제본부에서는 교통사고의 발생 유무를 실시간으로 확인할 수 있고, 교통사고 발생시 사고 위치를 정확하게 확인하여 인명의 구조 및 사고 복구 등에 신속하게 대응할 수 있다.The prior art disclosed in Patent Document 1 is composed of an optical cable fixed to a guardrail installed on a road, a controller capable of transmitting and receiving a frequency provided at a start point and an end point of a guardrail provided with an optical cable, and a control head connected to the controller through wired / wireless communication In case of a traffic accident, the control headquarters can confirm the occurrence of a traffic accident in real time, and can precisely check the location of an accident when a traffic accident occurs, so that it can respond quickly to the structure of life and the accident recovery.

또한, <특허문헌 2> 에 개시된 종래기술은 자동차의 내부에 구비되어 교통사고 유발요소를 감지한 후 감지된 신호를 외부에 송출하는 교통사고 유발요소 감지장치부, 도로별 구역마다 설치되어 있어, 교통사고 유발요소 감지장치부로부터 전달되는 감지신호에 위치정보를 포함하여 송출하는 신호 전달부, 보험사의 보험 상품에 가입한 보험자 차량으로부터 생성되는 감지신호를 신호 전달부로부터 전달받아 보험료 산정에 반영하는 보험사 서버를 포함하여 교통사고 유발요소의 감지신호 제공 서비스 시스템을 구현한다. 이러한 구성을 통해, 운전 중 차량 내부의 교통사고 유발요소 감지 신호를 전달받은 신호 전달부가 이를 보험사에 제공함으로써 보험자가 보험사로부터 보험료 혜택을 받도록 하고, 해당 보험에 가입한 보험자는 운전 중 교통사고 유발요소를 발생시키지 않도록 주의할 수 있어 교통사고 발생을 방지할 수 있도록 한다.In addition, the prior art disclosed in Patent Document 2 includes a traffic accident-causing element sensing unit provided inside a vehicle to detect a traffic accident-causing element and then transmit a sensed signal to the outside, A signal transmission unit for transmitting position information to the sensing signal transmitted from the traffic accident-causing element sensing unit, and a sensing signal generated from the insured vehicle subscribed to the insurance product of the insurer, It implements the detection signal providing service system of the traffic accident causing element including the insurance company server. With this configuration, the signaling unit that receives the signal of detecting the traffic accident-causing element in the vehicle during operation provides the insurer with insurance premium from the insurance company, and the insured who insured the insurance provides the traffic accident inducing element So that the occurrence of traffic accidents can be prevented.

또한, <특허문헌 3> 에 개시된 종래기술은 교차로의 제1 차도의 차량 신호등이 적색 신호로 변경된 이후에 교차로를 향해 소정 속도 이상으로 계속 진행하는 차량이 감지되면, 교차로의 다른 제2 또는 제2 및 제3 차도의 차량 신호등을 소정 시간 동안 적색 신호로 유지시킨 다음 상기 제1 차도의 차량이 교차로를 통과한 후 직진 또는 좌회전 신호로 변환되도록 구성하여, 교차로에서 신호를 위반하고 교차로를 향하여 달려오는 과속 차량을 감지하여 교차로의 차량 신호등을 능동적으로 지연 또는 변경 제어함으로써, 교차로에서 과속 및 신호위반에 의한 교통사고를 예방할 수 있다.Further, in the conventional technique disclosed in Patent Document 3, when a vehicle is detected that continues beyond a predetermined speed toward an intersection after the vehicle signal lamp of the first diagram of the intersection is changed to a red signal, the other second or second And the vehicle signal lamp of the third road is maintained as a red signal for a predetermined time and then the vehicle of the first roadway is converted into a straight or left turn signal after passing through the intersection so as to violate the signal at the intersection and run toward the intersection By detecting an overspeed vehicle and actively delaying or changing the vehicle traffic light at an intersection, it is possible to prevent traffic accidents due to speeding and signal violation at an intersection.

[선행기술문헌][Prior Art Literature]

(특허문헌 1) 대한민국 공개특허 10-2010-0072931(2010.07.01)(교통사고 감지시스템 및 감지방법)(Patent Document 1) Korean Patent Laid-Open No. 10-2010-0072931 (2010.07.01) (Traffic Accident Detection System and Detection Method)

(특허문헌 2) 대한민국 공개특허 10-2013-0026538(2013.03.14. 공개)(교통사고 유발요소의 감지신호 제공 서비스 시스템 및 방법)(Patent Document 2) Korean Patent Laid-open Publication No. 10-2013-0026538 (published on Mar. 13, 2013) (System and Method for Providing Detection Signal of Traffic Accident Indicating Element)

(특허문헌 3) 대한민국 공개특허 10-2016-0092959(2016.08.05. 공개)(과속 및 신호위반에 의한 교차로 교통사고 예방 방법 및 그 시스템)(Patent Document 3) Korean Patent Laid-open No. 10-2016-0092959 (published on 2016.08.05) (Method and system for preventing traffic accident at intersection due to speeding and signal violation)

그러나 상기와 같은 일반적인 교통사고 감지시스템 및 종래기술은 차량 사고가 발생한 것을 감지하는 기술로서, 교통사고가 발생하기 이전에 교통사고를 예측하여 후속 조치를 취하도록 하는 것은 불가능한 단점이 있다.However, the general traffic accident detection system and the conventional technology described above detect the occurrence of a vehicle accident, and it is impossible to predict a traffic accident before the occurrence of a traffic accident and to take a follow-up action.

또한, <특허문헌 2> 에 개시된 종래기술은 교통사고 유발요소를 감지하여 교통사고를 미리 판단할 수 있도록 하는 것은 가능하나, 이러한 <특허문헌 2> 도 인공지능 기반으로 사고 확률을 미리 예측하고, 이를 관제센터와 연동하여 최적으로 교통사고를 미리 예측하여 신속한 조치를 취하도록 하는 것은 불가능한 단점이 있다.In addition, although the prior art disclosed in Patent Document 2 can detect a traffic accident element in advance to determine a traffic accident, this Patent Literature 2 also predicts an accident probability based on artificial intelligence, It is impossible to predict the traffic accident in advance and take quick action in cooperation with the control center.

따라서 본 발명은 상기와 같은 종래기술에서 발생하는 제반 문제점을 해결하기 위해서 제안된 것으로서, 영상인식과 딥 러닝(deep learning) 기법을 사용하여 사고 위험성이 높은 차량이나 사람 및 도로를 예측하고, 예측 결과를 관제센터에 전송하여 신속하게 후속 조치를 취하도록 함으로써 사고를 미리 방지할 수 있도록 한 인공지능 기반의 교통사고 예측시스템 및 그 방법에 관한 것이다.Accordingly, the present invention has been proposed in order to solve all the problems occurring in the related art as described above, and it is an object of the present invention to predict a vehicle, a person and a road with high accident risk by using image recognition and deep learning The present invention relates to an artificial intelligence-based traffic accident prediction system and a method thereof, which can prevent an accident in advance by promptly transferring a traffic accident to a control center.

상기한 바와 같은 목적을 달성하기 위하여, 본 발명에 따른 인공지능 기반의 교통사고 예측시스템은, 카메라를 통해 촬영된 영상으로부터 객체를 인식하고, 인식한 객체에 대하여 인공지능 기반 사고확률 알고리즘으로 분석하여 사고 확률을 예측하며, 예측 결과 사고 발생이 예측되면 사고 예측 데이터를 관제 센터에 전송하는 차량 시스템; 상기 차량 시스템으로부터 전송된 사고 예측 데이터를 분석하여 긴급도에 따라 관계기관에 조치 정보를 전송하고, 상기 사고 예측 데이터를 이용하여 사고 확률에 대해 학습을 하고, 학습 결과를 상기 차량 시스템으로 전송하여 인공지능 기반 사고 확률 알고리즘을 갱신하는 관제 센터를 포함하는 것을 특징으로 한다.In order to achieve the above object, the artificial intelligence-based traffic accident prediction system according to the present invention recognizes an object from an image photographed by a camera and analyzes the recognized object with an artificial intelligence-based accident probability algorithm A vehicle system for predicting the probability of an accident and transmitting accident prediction data to the control center when the accident is predicted as a result; Analyzing the accident prediction data transmitted from the vehicle system, transmitting the action information to the related organization according to the urgency, learning about the accident probability using the accident prediction data, transmitting the learning result to the vehicle system, And a control center for updating the intelligence-based accident probability algorithm.

상기에서 차량 시스템은 카메라를 통해 촬영하여 영상을 획득하는 영상 인식부; 상기 영상 인식부에서 인식한 영상 데이터를 저장하는 영상 데이터 저장부; 상기 영상 데이터 저장부에서 저장된 영상 데이터로부터 객체를 인식하고, 인식한 객체 정보를 인공지능기반 사고확률 알고리즘으로 분석하여 사고 확률을 산출하고, 산출한 사고 확률 값을 기초로 사고를 예측하며, 예측 결과 사고 발생으로 예측되면 사고 예측 데이터를 관제 센터에 전송하는 사고 예측부를 포함하는 것을 특징으로 한다.In the above, the vehicle system includes an image recognition unit for photographing through a camera to acquire an image; An image data storage unit for storing image data recognized by the image recognition unit; An object recognition unit for recognizing an object from the image data stored in the image data storage unit, analyzing the recognized object information using an artificial intelligence-based accident probability algorithm to calculate an accident probability, predicting an accident based on the calculated accident probability value, And an accident predicting unit for transmitting the accident prediction data to the control center when it is predicted that an accident has occurred.

상기에서 차량 시스템은 상기 사고 예측부에서 출력되는 사고 예측 데이터를 무선 데이터로 변환하여 원격의 관제 센터에 전송하는 무선 송출부를 더 포함하는 것을 특징으로 한다.The vehicle system may further include a wireless transmission unit for converting the accident prediction data output from the accident prediction unit into wireless data and transmitting the wireless data to a remote control center.

상기에서 사고 예측부는 상기 영상 데이터로부터 객체 정보를 인식하고, 인식한 객체 정보를 인공지능기반 사고확률 알고리즘으로 분석하여 사고 확률을 산출하는 인공지능기반 사고확률 처리부; 상기 인공지능기반 사고확률 처리부에서 산출한 사고 확률 값을 기준 값과 비교하여 그 비교 결과를 출력하는 비교 분석부; 상기 비교 분석부에서 출력되는 비교 결과를 기초로 사고 예측을 하며, 예측 결과 사고 발생으로 예측되면 사고 예측 데이터를 관제 센터에 전송하는 정상 유무 판단부를 포함하는 것을 특징으로 한다.The accident predicting unit may include an artificial intelligence-based accident probability processor for recognizing object information from the image data and analyzing the recognized object information using an artificial intelligence-based accident probability algorithm to calculate an accident probability; A comparison and analysis unit for comparing the accident probability value calculated by the artificial intelligence based fault probability processing unit with a reference value and outputting the comparison result; And a normal presence / absence determination unit for performing an accident prediction based on the comparison result output from the comparison / analysis unit and transmitting the accident prediction data to the control center if the prediction result indicates that an accident has occurred.

상기에서 인공지능 기반 사고확률 처리부는 CNN(Convolution Neutral Networks) 알고리즘을 이용하여 영상 데이터 내 객체를 추출하고, 추출한 객체를 분석하여 사고 확률을 산출하는 것을 특징으로 한다.In the above, the artificial intelligence-based incident probability processing unit extracts objects in the image data using a CNN (Convolution Neutral Networks) algorithm, and analyzes the extracted objects to calculate an incident probability.

상기에서 관제 센터는 상기 차량 시스템으로부터 전송된 사고 예측 데이터를 수신하는 관제센터 무선 수신부; 상기 관제센터 무선 수신부에서 수신한 사고 예측 데이터를 저장하는 관제센터 데이터 저장부; 상기 관제센터 데이터 저장부에서 저장한 사고 예측 데이터를 분석하여 사고확률을 산출하고, 추출한 사고확률을 기초로 긴급도를 판단하는 사고확률 판단부를 포함하는 것을 특징으로 한다.Wherein the control center comprises a control center radio receiving unit for receiving the accident prediction data transmitted from the vehicle system; A control center data storage for storing the accident prediction data received by the control center radio receiver; An accident probability determination unit for analyzing the accident prediction data stored in the control center data storage unit to calculate an accident probability and determining an urgency based on the extracted accident probability.

또한, 상기 관제 센터는 상기 사고확률 판단부에서 판단한 긴급도에 따라 관계기관을 선택한 후, 선택된 관계기관에 조치를 위한 긴급 요청 정보를 전송하는 긴급요청 송신부를 더 포함하는 것을 특징으로 한다.In addition, the control center may further include an emergency request transmitting unit for selecting an affiliated institution according to the degree of urgency determined by the accident probability determining unit, and then transmitting urgent request information for an action to the selected related institution.

또한, 상기 관제 센터는 수신한 사고 예측 데이터를 이용하여 딥 러닝을 통해 학습을 하고, 학습 결과를 기초로 상기 차량 시스템 내의 인공지능 기반 사고 확률 알고리즘을 업데이트하는 사고확률 학습부를 더 포함하는 것을 특징으로 한다.The control center may further include an accident probability learning unit for learning through deep learning using the received accident prediction data and updating an artificial intelligence based accident probability algorithm in the vehicle system based on the learning result, do.

상기한 바와 같은 목적을 달성하기 위하여, 본 발명에 따른 인공지능 기반의 교통사고 예측방법은, (a) 차량 시스템에서 카메라를 통해 촬영된 영상으로부터 객체를 인식하고, 인식한 객체에 대하여 인공지능기반 사고확률 알고리즘으로 분석하여 사고 확률을 예측하며, 예측 결과 사고 발생이 예측되면 사고 예측 데이터를 관제 센터로 전송하는 단계; (b) 상기 관제 센터에서 상기 차량 시스템으로부터 전송된 사고 예측 데이터를 분석하여 긴급도에 따라 관계기관에 조치 정보를 전송하고, 상기 사고 예측 데이터를 이용하여 사고 확률에 대해 학습을 하고, 학습 결과를 상기 차량 시스템으로 전송하여 인공지능 기반 사고 확률 알고리즘을 갱신하는 단계를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided an artificial intelligence-based traffic accident prediction method, comprising: (a) recognizing an object from an image captured through a camera in a vehicle system; Estimating an accident probability by analyzing with an accident probability algorithm, and transmitting accident prediction data to a control center when an accident occurrence is predicted as a result; (b) analyzing the accident prediction data transmitted from the vehicle system at the control center and transmitting the action information to the related organization according to the degree of urgency, learning about the accident probability using the accident prediction data, And updating the artificial intelligence-based accident probability algorithm by transmitting to the vehicle system.

상기에서 (a)단계는 (a1) 카메라를 통해 촬영하여 영상을 획득하여 저장하고, 상기 저장된 영상 데이터로부터 객체를 인식하는 단계; (a2) 상기 인식한 객체 정보를 인공지능기반 사고확률 알고리즘으로 분석하여 사고 확률을 산출하는 단계; (a3) 상기 산출한 사고 확률 값을 기초로 사고를 예측하며, 예측 결과 사고 발생으로 예측되면 사고 예측 데이터를 관제 센터에 전송하는 단계; (a4) 상기 관제 센터로부터 사고 확률 알고리즘 업데이트 데이터를 수신하면, 상기 인공지능기반 사고 확률 알고리즘을 업데이트하는 단계를 포함하는 것을 특징으로 한다.The step (a) includes: (a1) capturing an image through a camera to acquire and store an image, and recognizing an object from the stored image data; (a2) analyzing the recognized object information with an artificial intelligence-based accident probability algorithm to calculate an accident probability; (a3) predicting an accident on the basis of the calculated accident probability value, and transmitting the accident prediction data to the control center when it is predicted that the accident occurred; (a4) receiving the accident probability algorithm update data from the control center, updating the artificial intelligence-based accident probability algorithm.

상기에서 (b)단계는 (b1) 상기 차량 시스템으로부터 전송된 사고 예측 데이터를 수신하여 저장하는 단계; (b2) 상기 저장한 사고 예측 데이터를 분석하여 사고확률을 산출하고, 추출한 사고확률을 기초로 긴급도를 판단하는 단계; (b3) 상기 판단한 긴급도에 따라 관계기관을 선택한 후, 선택된 관계기관에 조치를 위한 긴급요청 정보를 전송하는 단계; (b4) 상기 저장한 사고 예측 데이터를 이용하여 딥 러닝을 통해 학습을 하고, 학습 결과를 기초로 상기 차량 시스템 내의 인공지능기반 사고확률 알고리즘을 업데이트하는 단계를 포함하는 것을 특징으로 한다.(B) comprises: (b1) receiving and storing accident prediction data transmitted from the vehicle system; (b2) analyzing the stored accident prediction data to calculate an accident probability, and determining an urgency based on the extracted accident probability; (b3) selecting an affiliated institution according to the determined degree of urgency, and then transmitting urgent request information for an action to the selected affiliated institution; (b4) learning through deep learning using the stored accident prediction data, and updating an artificial intelligence-based accident probability algorithm in the vehicle system based on the learning result.

본 발명에 따르면 영상인식과 딥 러닝(deep learning) 기법을 사용하여 사고 위험성이 높은 차량이나 사람 및 도로를 예측하고, 예측 결과를 관제센터에 전송하여 신속하게 후속 조치를 취하도록 함으로써, 사고를 미리 방지할 수 있는 장점이 있다.According to the present invention, by using the image recognition and deep learning technique, it is possible to predict a vehicle, a person and a road with a high risk of an accident, transmit the prediction result to the control center, There is an advantage that it can be prevented.

도 1은 본 발명에 따른 인공지능 기반의 교통사고 예측시스템의 구성도,1 is a block diagram of an artificial intelligence-based traffic accident prediction system according to the present invention;

도 2 및 도 3은 본 발명에 따른 인공지능 기반의 교통사고 예측방법을 보인 흐름도.FIG. 2 and FIG. 3 are flowcharts illustrating a method for predicting a traffic accident based on artificial intelligence according to the present invention.

이하 본 발명의 바람직한 실시 예에 따른 인공지능 기반의 교통사고 예측시스템 및 그 방법을 첨부된 도면을 참조하여 상세하게 설명한다.Hereinafter, an artificial intelligence-based traffic accident prediction system and method according to a preferred embodiment of the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 바람직한 실시 예에 따른 인공지능 기반의 교통사고 예측시스템의 구성도로서, 카메라를 통해 촬영된 영상으로부터 객체를 인식하고, 인식한 객체에 대하여 인공지능 기반 사고확률 알고리즘으로 분석하여 사고 확률을 예측하며, 예측 결과 사고 발생이 예측되면 사고 예측 데이터를 관제 센터에 전송하는 차량 시스템(100), 상기 차량 시스템(100)으로부터 전송된 사고 예측 데이터를 분석하여 긴급도에 따라 관계기관에 조치 정보를 전송하고, 상기 사고 예측 데이터를 이용하여 사고 확률에 대해 학습을 하고, 학습 결과를 상기 차량 시스템(100)으로 전송하여 인공지능 기반 사고 확률 알고리즘을 갱신하는 관제 센터(200)를 포함한다.FIG. 1 is a block diagram of an artificial intelligence-based traffic accident prediction system according to a preferred embodiment of the present invention. The object is recognized from an image captured through a camera, and an artificial intelligence-based accident probability algorithm is applied to the recognized object (100) for predicting the probability of an accident and transmitting the predicted accident prediction data to the control center when the occurrence of the accident is predicted as a result of the prediction, and an accident prediction data transmitted from the vehicle system (100) And a control center 200 for transmitting action information, learning about an accident probability using the accident prediction data, and transmitting the learning result to the vehicle system 100 to update an artificial intelligence-based accident probability algorithm .

상기 차량 시스템(100)은 카메라를 통해 촬영하여 영상을 획득하는 영상 인식부(10), 상기 영상 인식부(10)에서 인식한 영상 데이터를 저장하는 영상 데이터 저장부(20), 상기 저장된 영상 데이터로부터 객체를 인식하고, 인식한 객체 정보를 인공지능기반 사고 확률 알고리즘으로 분석하여 사고 확률을 산출하고, 산출한 사고 확률 값을 기초로 사고를 예측하며, 예측 결과 사고 발생으로 예측되면 사고 예측 데이터를 관제 센터(200)에 전송하는 사고 예측부(30), 상기 사고 예측부(30)에서 출력되는 사고 예측 데이터를 무선 데이터로 변환하여 원격의 관제 센터(200)에 전송하는 무선 송출부(40)를 포함한다.The vehicle system 100 includes an image recognition unit 10 that captures an image through a camera and acquires an image, an image data storage unit 20 that stores image data recognized by the image recognition unit 10, And estimates the accident on the basis of the calculated accident probability value. If the predicted result is predicted as an accident occurrence, the accident prediction data is obtained A wireless transmission unit 40 for converting the accident prediction data output from the accident prediction unit 30 into wireless data and transmitting the wireless data to a remote control center 200, .

또한, 상기 사고 예측부(30)는 상기 영상 데이터로부터 객체 정보를 인식하고, 인식한 객체 정보를 인공지능기반 사고 확률 알고리즘으로 분석하여 사고 확률을 산출하는 인공지능 기반 사고확률 처리부(31), 상기 인공지능 기반 사고확률 처리부(31)에서 산출한 사고 확률 값을 기준 값과 비교하여 그 비교 결과를 출력하는 비교 분석부(32), 상기 비교 분석부(32)에서 출력되는 비교 결과를 기초로 사고 예측을 하며, 예측 결과 사고 발생으로 예측되면 사고 예측 데이터를 관제 센터(200)에 전송하는 정상유무 판단부(33)를 포함한다.The accident predicting unit 30 includes an artificial intelligence-based accident probability processing unit 31 for recognizing object information from the image data and analyzing the recognized object information with an artificial intelligence-based accident probability algorithm to calculate an accident probability, A comparison / analysis unit 32 for comparing the accident probability value calculated by the artificial intelligence-based incident probability processing unit 31 with a reference value and outputting the comparison result; And a normal presence / absence determination unit (33) for transmitting the accident prediction data to the control center (200) if it is predicted that an accident has occurred.

또한, 상기 관제 센터(200)는 상기 차량 시스템(100)으로부터 전송된 사고 예측 데이터를 수신하는 관제센터 무선 수신부(50), 상기 관제센터 무선 수신부(50)에서 수신한 사고 예측 데이터를 저장하는 관제센터 데이터 저장부(60), 상기 관제센터 데이터 저장부(60)에서 저장한 사고 예측 데이터를 분석하여 사고확률을 산출하고, 추출한 사고확률을 기초로 긴급도를 판단하는 사고확률 판단부(70), 상기 사고확률 판단부(70)에서 판단한 긴급도에 따라 관계기관을 선택한 후, 선택된 관계기관에 조치를 위한 긴급요청 정보를 전송하는 긴급요청 송신부(80)를 포함한다.The control center 200 includes a control center radio receiving unit 50 for receiving the accident prediction data transmitted from the vehicle system 100, a control unit 50 for storing the accident prediction data received by the control center radio receiving unit 50, An accident probability determination unit 70 for calculating an accident probability by analyzing the accident prediction data stored in the center data storage unit 60 and determining the urgency based on the extracted accident probability, , And an emergency request transmission unit (80) for selecting an affiliated institution according to the degree of urgency determined by the accident probability determination unit (70), and then transmitting urgent request information for an action to the selected related institution.

바람직하게 상기 관제 센터(200)는 수신한 사고 예측 데이터를 이용하여 딥 러닝을 통해 학습을 하고, 학습 결과를 기초로 상기 차량 시스템 내의 인공지능 기반 사고 확률 알고리즘을 업데이트하는 사고확률 학습부(90)를 더 포함한다.The control center 200 preferably includes an accident probability learning unit 90 that learns through deep learning using the received accident prediction data and updates an artificial intelligence based accident probability algorithm in the vehicle system based on the learning result, .

이와 같이 구성된 본 발명의 바람직한 실시 예에 따른 인공지능 기반의 교통사고 예측시스템의 동작을 구체적으로 설명하면 다음과 같다.The operation of the artificial intelligence-based traffic accident prediction system according to the preferred embodiment of the present invention will be described in detail as follows.

먼저, 차량 시스템(100)은 차량의 운행이 시작되면, 영상 인식부(10)에서 카메라를 통해 촬영하여 영상을 획득한다. 여기서 카메라는 차량의 다양한 위치에 설치되어 차량 주변의 영상을 획득할 수 있으나, 본 발명에서는 차량 전방에 설치되어 차량 진행 방향을 촬영하여 영상을 획득하는 것으로 가정한다.First, when the vehicle starts to be driven, the vehicle system 100 acquires an image by photographing it through a camera in the image recognition unit 10. [ Here, it is assumed that the camera is installed at various positions of the vehicle to acquire an image around the vehicle, but in the present invention, it is assumed that the camera is installed in front of the vehicle to photograph the vehicle traveling direction to acquire images.

상기 영상 인식부(10)에서 인식한 영상 데이터는 영상 데이터 저장부(20)를 통해 저장된다.The image data recognized by the image recognition unit 10 is stored through the image data storage unit 20.

다음으로, 사고 예측부(30)는 상기 저장된 영상 데이터로부터 객체를 인식하고, 인식한 객체 정보를 인공지능기반 사고 확률 알고리즘으로 분석하여 사고 확률을 산출하고, 산출한 사고 확률 값을 기초로 사고를 예측하며, 예측 결과 사고 발생으로 예측되면 사고 예측 데이터를 관제 센터(200)에 전송한다. 여기서 영상 데이터를 분석하여 사고를 예측하는 것은 실시간 또는 일정 주기로 수행할 수 있다.Next, the accident predicting unit 30 recognizes an object from the stored image data, calculates an accident probability by analyzing the recognized object information by an artificial intelligence-based accident probability algorithm, and calculates an accident probability based on the calculated accident probability value And transmits the accident prediction data to the control center 200 when it is predicted that the accident occurred. Here, the prediction of the accident by analyzing the image data can be performed in real time or at regular intervals.

예컨대, 사고 예측부(30)의 인공지능기반 사고확률 처리부(31)는 인공지능기반 사고확률 알고리즘을 이용하여 상기 저장된 영상 데이터로부터 객체 정보를 인식하고, 이어, 인식한 객체 정보를 분석하여 사고 확률을 산출한다. 여기서 인공지능기반 사고확률 알고리즘은 CNN(Convolution Neutral Networks) 알고리즘을 이용하는 것이 바람직하다. CNN 알고리즘은 Convolution layer, Pooling layer, Feed forward layer로 이루어진다. Convolution layer는 convolution feature 들을 추출하기 위한 필터를 구현할 때 계층으로 의미 있는 특징들을 추출하기 위한 층이다. Pooling layer는 이미지의 특성상 많은 픽셀이 존재하기 때문에 특징을 줄이기 위해 서브샘플링을 수행하는 층이다. Feed forward layer는 Convolution layer와 Pooling layer에서 추출한 특징들을 이용하여 분류를 하는 층이다. 즉, 3 by 3 또는 그 이상의 window 혹은 mask를 영상 전체에 대해 반복적으로 수행을 하게 되면, 그 mask의 계수 값들의 따라 적정한 결과를 얻을 수 있다. 이러한 방식으로 영상으로부터 객체를 추출한다. 이후 추출한 객체를 분석하여 사고 확률을 계산한다. 특징 추출과 topology invariance를 얻기 위해 filter와 sub-sampling을 거치며 이 과정을 반복적으로 수행하여 local feature로부터 global를 얻어낸다. 간단히 설명하자면 각 window에서 가장 큰 자극만을 선택한다. 이 과정(convolution + sub-sampling) 과정을 여러 번 거치게 되면 이미지 전체를 대표할 수 있는 global 한 특징을 얻을 수 있게 된다. 이렇게 얻은 특징을 학습시키면 topology 변화에 강인한 인식능력을 갖게 되며, 이것을 이용하여 사고 확률을 계산한다.For example, the artificial intelligence-based accident probability processing unit 31 of the accident predicting unit 30 recognizes object information from the stored image data by using an artificial intelligence-based accident probability algorithm, and then analyzes the recognized object information, . Here, it is desirable to use the artificial intelligence-based accident probability algorithm using the CNN (Convolution Neural Networks) algorithm. The CNN algorithm consists of a convolution layer, a pooling layer, and a feed forward layer. The convolution layer is a layer for extracting meaningful features in layers when implementing a filter to extract convolution features. The pooling layer is a layer that performs sub-sampling to reduce the feature because there are many pixels due to the nature of the image. The feed forward layer is a layer that classifies using features extracted from the Convolution layer and the Pooling layer. That is, if the window or mask of 3 by 3 or more is repeatedly performed on the entire image, an appropriate result can be obtained according to the coefficient values of the mask. In this way, objects are extracted from the image. Then, the extracted object is analyzed to calculate the accident probability. To obtain feature extraction and topology invariance, we perform filter and sub-sampling and repeat this process to obtain global from the local feature. Simply select the largest stimulus in each window. Multiple passes through this process (convolution + sub-sampling) will provide a global feature that can represent the entire image. By learning these features, you will have a strong cognitive ability in topology change, and use this to calculate the probability of an accident.

다음으로, 비교 분석부(32)는 상기 인공지능 기반 사고확률 처리부(31)에서 산출한 사고 확률 값을 미리 설정된 기준 값과 비교하여, 그 차이인 오차 값을 비교 결과로 출력한다.Next, the comparative analysis unit 32 compares the accident probability value calculated by the artificial intelligence-based accident probability processing unit 31 with a predetermined reference value, and outputs an error value, which is the difference, as a comparison result.

이어, 정상 유무 판단부(33)는 상기 비교 분석부(32)에서 출력되는 비교 결과인 오차 값을 정상 유무를 판단하기 위한 설정 값과 비교하여, 상기 오차 값이 상기 설정 값 이하이면 정상으로 판단을 하고, 취득한 영상 데이터를 삭제한다. 불필요한 영상 데이터의 삭제로 인해 대용량의 메모리를 사용하지 않아도 되므로, 시스템 구현 비용을 절감할 수 있다. 이와는 달리 상기 오차 값이 상기 설정 값보다 크면 사고 발생으로 예측한다. 상기 예측 결과, 사고 발생으로 예측되면 사고 예측 데이터를 생성하여 무선 송출부(40)로 전달한다.Then, the normal presence / absence determiner 33 compares the error value, which is a comparison result output from the comparison / analysis unit 32, with a setting value for determining whether the error is normal or not. If the error value is less than the set value, And deletes the acquired image data. Since the deletion of unnecessary image data does not require the use of a large-capacity memory, the system implementation cost can be reduced. On the other hand, if the error value is larger than the set value, it is predicted that an accident occurs. If it is predicted that an accident has occurred, the predicted data is generated and transmitted to the wireless transmitting unit 40.

무선 송출부(40)는 상기 사고 예측부(30)에서 출력되는 사고 예측 데이터를 무선 데이터로 변환하여 원격의 관제 센터(200)에 전송한다.The wireless transmitting unit 40 converts the accident prediction data output from the accident predicting unit 30 into wireless data and transmits the wireless data to the remote control center 200.

상기 관제 센터(200)는 관제센터 무선 수신부(50)를 통해 상기 차량 시스템(100)으로부터 전송된 사고 예측 데이터를 수신하고, 관제센터 데이터 저장부(60)는 상기 관제센터 무선 수신부(50)에서 수신한 사고 예측 데이터를 저장한다.The control center 200 receives the accident prediction data transmitted from the vehicle system 100 through the control center wireless receiving unit 50 and the control center data storage unit 60 receives the accident prediction data from the control center wireless receiving unit 50 And stores the received accident prediction data.

다음으로, 사고확률 판단부(70)는 상기 관제센터 데이터 저장부(60)에서 저장한 사고 예측 데이터를 분석하여 사고확률을 산출하고, 추출한 사고확률을 기초로 긴급도를 판단한다. 예컨대, 사고확률 판단부(70)는 현재 저장한 사고 확률 오차 값과 기존 데이터를 합하여 사고 확률을 계산하고, 계산한 사고 확률 값이 미리 설정된 기준 값 이상이면, 사고 발생으로 예측하고 긴급도를 확인한다. 여기서 긴급도란 예측한 사고 확률 값의 크기이다. 이 값이 클수록 긴급 상황이며, 작으면 작을수록 덜 긴급한 상황이 된다.Next, the accident probability determiner 70 calculates the accident probability by analyzing the accident prediction data stored in the control center data storage 60, and determines the urgency based on the extracted accident probability. For example, the accident probability determiner 70 calculates an accident probability by adding the presently stored accident probability error value and existing data, and if the calculated accident probability value is equal to or greater than a predetermined reference value, do. Here, the emergency number is the magnitude of the accident probability value predicted. The larger the value, the more urgent the situation is, the smaller the smaller, the less urgent the situation becomes.

이러한 긴급도에 따라 긴급요청 송신부(80)는 적절한 관계기관을 선택한다. 예컨대, 현재 앞 차량이 졸음, 음주나 기타 난폭 운전으로 인해 사고 확률이 높아 긴급도가 높아지면 이를 바로 조치할 수 있는 관계기관으로 경찰서를 선택하고, 해당 영상 데이터를 경찰서로 전송하여 신속한 조치를 취할 수 있도록 한다.According to this urgency, the emergency request transmission unit 80 selects an appropriate agency. For example, if the current vehicle has a high probability of accident due to drowsiness, drunken driving or other abrupt driving, the police can be selected as the relevant authority to take immediate action when the emergency degree becomes high, and the relevant image data is sent to the police station for quick action .

아울러 현재 앞 도로의 상태가 사고 확률이 높을 경우, 도로에 관계된 관계기관(예를 들어, 국토부, 한국 도로공사)에 영상 데이터를 전송하여, 그에 알맞은 조치를 취하도록 한다.In addition, if the current road condition has a high probability of accident, send the image data to the relevant agencies concerned with the road (for example, Ministry of Land, Korea Highway Corporation) and take appropriate measures.

한편, 본 발명의 다른 특징으로서, 상기 관제 센터(200)는 사고확률 학습부(90)를 통해 수신한 사고 예측 데이터를 이용하여 딥 러닝을 통해 학습을 하고, 학습 결과를 기초로 상기 차량 시스템 내의 인공지능 기반 사고 확률 알고리즘을 업데이트하는 업데이트 정보를 상기 차량 시스템(100)으로 전송한다. 상기 차량 시스템(100)은 업데이트 정보가 수신되면, 이를 이용하여 인공지능 기반 사고확률 알고리즘을 업데이트하여, 사고 확률 예측의 정확성을 향상하게 된다.In another aspect of the present invention, the control center 200 learns through deep learning using the accident prediction data received through the accident probability learning unit 90, To the vehicle system 100, update information for updating the AI-based accident probability algorithm. When the update information is received, the vehicle system 100 updates the artificial intelligence-based accident probability algorithm using the updated information, thereby improving the accuracy of the accident probability prediction.

도 2 및 도 3은 본 발명의 바람직한 실시 예에 따른 인공지능 기반의 교통사고 예측방법을 보인 흐름도로서, (a) 차량 시스템(100)에서 카메라를 통해 촬영된 영상으로부터 객체를 인식하고, 인식한 객체에 대하여 인공지능기반 사고확률 알고리즘으로 분석하여 사고 확률을 예측하며, 예측 결과 사고 발생이 예측되면 사고 예측 데이터를 관제 센터(200)로 전송하는 단계(S101 ~ S108), (b) 상기 관제 센터(200)에서 상기 차량 시스템(100)으로부터 전송된 사고 예측 데이터를 분석하여 긴급도에 따라 관계기관에 조치 정보를 전송하고, 상기 사고 예측 데이터를 이용하여 사고 확률에 대해 학습을 하고, 학습 결과를 상기 차량 시스템(100)으로 전송하여 인공지능기반 사고 확률 알고리즘을 갱신하는 단계(S201 ~ S207)를 포함한다.FIG. 2 and FIG. 3 are flowcharts illustrating an artificial intelligence-based traffic accident prediction method according to a preferred embodiment of the present invention, wherein (a) (S101 to S108) (S101 to S108) of analyzing the object with an artificial intelligence-based accident probability algorithm to predict an accident probability, and when the accident occurrence is predicted, the accident prediction data is transmitted to the control center (200) (200) analyzes the accident prediction data transmitted from the vehicle system (100) and transmits the action information to the related organizations according to the degree of urgency, learns about the accident probability using the accident prediction data, (S201 to S207) to the vehicle system 100 and updating the AI-based accident probability algorithm.

상기 (a)단계는 (a1) 카메라를 통해 촬영하여 영상을 획득하여 저장하고, 상기 저장된 영상 데이터로부터 객체를 인식하는 단계(S101), (a2) 상기 인식한 객체 정보를 인공지능기반 사고확률 알고리즘으로 분석하여 사고 확률을 산출하는 단계(S102), (a3) 상기 산출한 사고 확률 값을 기초로 사고를 예측하며, 예측 결과 사고 발생으로 예측되면 사고 예측 데이터를 관제 센터(200)에 전송하고, 비 사고로 예측되면 해당 영상 데이터를 삭제하는 단계(S103 ~ S106), (a4) 상기 관제 센터(200)로부터 사고 확률 알고리즘 업데이트 데이터를 수신하면, 상기 인공지능기반 사고확률 알고리즘을 업데이트하는 단계(S107 ~ S108)를 포함한다.The method includes the steps of: (a1) capturing an image through a camera to acquire and store an image, and recognizing an object from the stored image data (S101); (a2) (A3) estimating an accident on the basis of the calculated accident probability value, transmitting the accident prediction data to the control center 200 when it is predicted that the accident occurred, (S103 to S106); (a4) receiving the accident probability algorithm update data from the control center 200, updating the artificial intelligence-based accident probability algorithm (S107 To S108).

상기 (b)단계는 (b1) 상기 차량 시스템(100)으로부터 전송된 사고 예측 데이터를 수신하여 저장하는 단계(S201), (b2) 상기 저장한 사고 예측 데이터를 분석하여 사고확률을 산출하고, 추출한 사고확률을 기초로 긴급도를 판단하는 단계(S202 ~ S203), (b3) 상기 판단한 긴급도에 따라 관계기관을 선택한 후, 선택된 관계기관에 조치를 위한 긴급요청 정보를 전송하는 단계(S204), (b4) 상기 저장한 사고 예측 데이터를 이용하여 딥 러닝을 통해 학습을 하고, 학습 결과를 기초로 상기 차량 시스템 내의 인공지능 기반 사고 확률 알고리즘을 업데이트하는 단계(S205 ~ S207)를 포함한다.The step (b) includes the steps of (b1) receiving and storing the accident prediction data transmitted from the vehicle system 100 (S201), (b2) calculating the accident probability by analyzing the stored accident prediction data, (S203 to S203); (b3) selecting the relevant agency according to the determined degree of urgency, and then transmitting urgent request information for the action to the selected related authority (S204); (b4) learning through deep learning using the stored accident prediction data, and updating the artificial intelligence-based accident probability algorithm in the vehicle system based on the learning result (S205 to S207).

이와 같이 구성된 본 발명의 바람직한 실시 예에 따른 인공지능 기반의 교통사고 예측방법을 구체적으로 설명하면 다음과 같다.The artificial intelligence based traffic accident prediction method according to the preferred embodiment of the present invention will be described in detail as follows.

먼저, 차량 시스템(100)은 단계 S101에서 차량의 운행이 시작되면, 영상 인식부(10)에서 카메라를 통해 촬영하여 영상을 획득한다. 카메라는 차량 전방에 설치되어 차량 진행 방향을 촬영하여 영상을 획득하는 것으로 가정한다.First, when the vehicle starts to run in step S101, the vehicle system 100 captures an image through the camera in the image recognition unit 10 and acquires the image. It is assumed that the camera is installed at the front of the vehicle to acquire images by photographing the traveling direction of the vehicle.

상기 영상 인식부(10)에서 인식한 영상 데이터는 영상 데이터 저장부(20)를 통해 저장된다.The image data recognized by the image recognition unit 10 is stored through the image data storage unit 20.

다음으로, 사고 예측부(30)는 단계 S102에서 인공지능기반 사고확률 알고리즘을 이용하여 상기 저장된 영상 데이터로부터 객체를 인식하고, 인식한 객체 정보를 분석하여 사고 확률을 산출한다. 여기서 인공지능기반 사고확률 알고리즘은 CNN(Convolution Neutral Networks) 알고리즘을 이용하는 것이 바람직하다. CNN 알고리즘은 Convolution layer, Pooling layer, Feed forward layer로 이루어지며, 이를 이용하여 사고 확률을 산출하는 방식은 전술한 도 1의 시스템에서 자세하게 설명한 바 있으므로 생략하기로 한다.Next, in step S102, the accident predicting unit 30 recognizes the object from the stored image data using the artificial intelligence-based accident probability algorithm, and analyzes the recognized object information to calculate the accident probability. Here, it is desirable to use the artificial intelligence-based accident probability algorithm using the CNN (Convolution Neural Networks) algorithm. The CNN algorithm consists of a convolution layer, a pooling layer, and a feed forward layer. The method of calculating the probability of an accident using the CNN algorithm is described in detail in the system of FIG. 1, and will not be described here.

다음으로, 비교 분석부(32)는 단계 S103에서 상기 인공지능기반 사고확률 처리부(31)에서 산출한 사고 확률 값을 미리 설정된 기준 값과 비교하여, 그 차이인 오차 값을 비교 결과로 출력한다.Next, the comparison and analysis unit 32 compares the accident probability value calculated by the artificial intelligence-based accident probability processing unit 31 with a predetermined reference value in step S103, and outputs the error value as the comparison result.

이어, 정상 유무 판단부(33)는 단계 S104에서 상기 비교 분석부(32)에서 출력되는 비교 결과인 오차 값을 정상 유무를 판단하기 위한 설정 값과 비교하여, 상기 오차 값이 상기 설정 값 이하이면 정상으로 판단을 하고, 단계 S106으로 이동하여 취득한 영상 데이터를 삭제한다. 불필요한 영상 데이터의 삭제로 인해 대용량의 메모리를 사용하지 않아도 되므로, 시스템 구현 비용을 절감할 수 있다.Next, the normal presence / absence determining unit 33 compares the error value, which is a comparison result outputted from the comparison / analysis unit 32, with a setting value for determining whether or not the normal state is present in step S104. If the error value is equal to or smaller than the set value It is judged as normal and the process goes to step S106 to delete the acquired image data. Since the deletion of unnecessary image data does not require the use of a large-capacity memory, the system implementation cost can be reduced.

이와는 달리 상기 오차 값이 상기 설정 값보다 크면 사고 발생으로 예측한다. 상기 예측 결과, 사고 발생으로 예측되면 단계 S105로 이동하여 사고 예측 데이터를 생성하여 원격의 관제 센터(200)에 전송한다.On the other hand, if the error value is larger than the set value, it is predicted that an accident occurs. If it is predicted that an accident has occurred, the process proceeds to step S105 to generate accident prediction data and transmits the data to the remote control center 200. [

아울러 단계 S107에서 상기 차량 시스템(100)은 업데이트 정보가 수신되면, 단계 S108로 이동하여 상기 업데이트 정보를 기반으로 인공지능기반 사고확률 알고리즘을 업데이트하여, 사고 확률 예측의 정확성 향상을 도모하게 된다.In step S107, when the update information is received, the vehicle system 100 proceeds to step S108 and updates the AI-based accident probability algorithm based on the update information to improve the accuracy of the accident probability prediction.

한편, 상기 관제 센터(200)는 단계 S201에서 관제센터 무선 수신부(50)를 통해 상기 차량 시스템(100)으로부터 전송된 사고 예측 데이터를 수신하고, 관제센터 데이터 저장부(60)는 상기 관제센터 무선 수신부(50)에서 수신한 사고 예측 데이터를 저장한다.Meanwhile, the control center 200 receives the accident prediction data transmitted from the vehicle system 100 through the control center wireless receiving unit 50 in step S201, and the control center data storage unit 60 stores the accident prediction data transmitted from the control center wireless And stores the accident prediction data received by the receiving unit 50.

이어, 사고확률 판단부(70)는 단계 S202에서 상기 관제센터 데이터 저장부(60)에서 저장한 사고 예측 데이터를 분석하여 사고확률을 산출하고, 추출한 사고확률을 기초로 긴급도를 판단한다. 예컨대, 현재 저장한 사고 확률 오차 값과 기존 데이터를 합하여 사고 확률을 계산하고, 계산한 사고 확률 값이 미리 설정된 기준 값 이상이면, 사고 발생으로 예측하고 긴급도를 확인한다. 여기서 긴급도란 예측한 사고 확률 값의 크기이다. 이 값이 클수록 긴급 상황이며, 작으면 작을수록 덜 긴급한 상황이 된다.Then, the accident probability determiner 70 calculates the accident probability by analyzing the accident prediction data stored in the control center data storage 60 in step S202, and determines the urgency based on the extracted accident probability. For example, if the calculated accident probability value is equal to or greater than a preset reference value, the occurrence probability of an accident is predicted and the urgency is confirmed. Here, the emergency number is the magnitude of the accident probability value predicted. The larger the value, the more urgent the situation is, the smaller the smaller, the less urgent the situation becomes.

이러한 긴급도에 따라 긴급요청 송신부(80)는 적절한 관계기관을 선택한다. 예컨대, 현재 앞 차량이 졸음, 음주나 기타 난폭 운전으로 인해 사고 확률이 높아 긴급도가 높아지면 이를 바로 조치할 수 있는 관계기관으로 경찰서를 선택하고, 단계 S204에서 해당 영상 데이터를 경찰서로 전송하여 신속한 조치를 취할 수 있도록 한다.According to this urgency, the emergency request transmission unit 80 selects an appropriate agency. For example, if the current vehicle has a high probability of accident due to drowsiness, drunken driving or other abrupt driving, the police may be selected as the relevant authority to immediately take measures to deal with the accident, and the corresponding image data is transmitted to the police station So that they can take action.

아울러 현재 앞 도로의 상태가 사고 확률이 높을 경우, 단계 S205로 이동하여 도로에 관계된 관계기관(예를 들어, 국토부, 한국 도로공사)에 영상 데이터를 전송하여, 그에 알맞은 조치를 취하도록 한다.If the current state of the road is high, the process goes to step S205 to transmit the image data to the relevant authority (for example, Ministry of Land, Korea Highway Corporation) related to the road, and take appropriate measures.

한편, 본 발명의 다른 특징으로서, 상기 관제 센터(200)는 단계 S206에서 사고확률 학습부(90)를 통해 수신한 사고 예측 데이터를 이용하여 딥 러닝을 통해 학습을 하고, 단계 S207에서 학습 결과를 기초로 상기 차량 시스템 내의 인공지능 기반 사고 확률 알고리즘을 업데이트하는 업데이트 정보를 상기 차량 시스템(100)으로 전송하여, 인공지능기반 사고확률 알고리즘을 업데이트하여, 사고 확률 예측의 정확성을 향상시킨다.Meanwhile, as another feature of the present invention, the control center 200 performs learning through deep learning using the accident prediction data received through the accident probability learning unit 90 in step S206. In step S207, Based on the intelligence-based incident-probability algorithm in the vehicle system to the vehicle system 100 to update the artificial intelligence-based incident-probability algorithm to improve the accuracy of the accident-probability prediction.

이와 같이 본 발명은 차량 및 도로의 카메라를 통해 사고 가능성이 높은 차량 및 지역을 분석하고, 이상한 행동을 보이는 차량이나 사람, 유난히 법규 위반이 많은 도로를 찾아내어, 이를 관계기관에 전송하여 조치를 취하도록 함으로써, 사고를 미리 방지하게 된다.As described above, the present invention analyzes vehicles and areas with high possibility of accidents through cameras of vehicles and roads, finds vehicles or people with abnormal behaviors, unusually violates roads, and transmits them to related agencies to take measures Thereby preventing accidents in advance.

한편, 본 발명에 대한 연구는 과학기술정보통신부 및 정보통신기술진흥센터의 ICT융합산업원천기술개발사업의 일환으로 진행되었다(과제고유번호; R7118-16-1002, 주관기관: 한국전자통신연구원, 연구기간 : 2016.04.01 ~ 2019.12.31.)Meanwhile, research on the present invention has been conducted as part of the technology development project of the ICT convergence industry of the Ministry of Science, Technology, Information and Communication Technology and Information and Communication Technology Promotion Center (R7118-16-1002, Organized by Korea Electronics and Telecommunications Research Institute, Research period: 2016.04.01 ~ 2019.12.31.)

이상 본 발명자에 의해서 이루어진 발명을 상기 실시 예에 따라 구체적으로 설명하였지만, 본 발명은 상기 실시 예에 한정되는 것은 아니고 그 요지를 이탈하지 않는 범위에서 여러 가지로 변경 가능한 것은 이 기술분야에서 통상의 지식을 가진 자에게 자명하다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments, but, on the contrary, It is obvious to those who have.

본 발명은 영상 인식과 인공지능 사고확률 알고리즘을 이용하여 사고 확률을 예측하고, 이를 이용하여 조치를 취할 수 있도록 하여, 자율주행차량의 주행 안전성을 향상하는 기술에 적용된다.The present invention is applied to a technique for improving the running safety of an autonomous vehicle by allowing an accident probability to be predicted using the image recognition and artificial intelligence accident probability algorithm and taking measures by using it.

Claims (11)

인공지능 기반으로 교통사고를 예측하기 위한 시스템으로서,As a system for predicting traffic accidents based on artificial intelligence, 카메라를 통해 촬영된 영상으로부터 객체를 인식하고, 인식한 객체에 대하여 인공지능 기반 사고확률 알고리즘으로 분석하여 사고 확률을 예측하며, 예측 결과 사고 발생이 예측되면 사고 예측 데이터를 관제 센터에 전송하는 차량 시스템; 및A vehicle system for recognizing an object from a camera image, analyzing the recognized object with an artificial intelligence-based accident probability algorithm to predict an accident probability, and transmitting accident prediction data to a control center when an accident occurrence is predicted ; And 상기 차량 시스템으로부터 전송된 사고 예측 데이터를 분석하여 긴급도에 따라 관계기관에 조치 정보를 전송하고, 상기 사고 예측 데이터를 이용하여 사고 확률에 대해 학습을 하고, 학습 결과를 상기 차량 시스템으로 전송하여 인공지능 기반 사고 확률 알고리즘을 갱신하는 관제 센터를 포함하는 것을 특징으로 하는 인공지능 기반의 교통사고 예측시스템.Analyzing the accident prediction data transmitted from the vehicle system, transmitting the action information to the related organization according to the urgency, learning about the accident probability using the accident prediction data, transmitting the learning result to the vehicle system, And a control center for updating the intelligence-based accident probability algorithm. 청구항 1에서, 상기 차량 시스템은 카메라를 통해 촬영하여 영상을 획득하는 영상 인식부; 상기 영상 인식부에서 인식한 영상 데이터를 저장하는 영상 데이터 저장부; 상기 영상 데이터 저장부에서 저장된 영상 데이터로부터 객체를 인식하고, 인식한 객체 정보를 인공지능기반 사고확률 알고리즘으로 분석하여 사고 확률을 산출하고, 산출한 사고 확률 값을 기초로 사고를 예측하며, 예측 결과 사고 발생으로 예측되면 사고 예측 데이터를 관제 센터에 전송하는 사고 예측부를 포함하는 것을 특징으로 하는 인공지능 기반의 교통사고 예측시스템.The vehicle system according to claim 1, wherein the vehicle system comprises: an image recognizing unit for acquiring an image by photographing through a camera; An image data storage unit for storing image data recognized by the image recognition unit; An object recognition unit for recognizing an object from the image data stored in the image data storage unit, analyzing the recognized object information using an artificial intelligence-based accident probability algorithm to calculate an accident probability, predicting an accident based on the calculated accident probability value, And an accident predicting unit for transmitting the accident prediction data to the control center when it is predicted that an accident has occurred. 청구항 2에서, 상기 차량 시스템은 상기 사고 예측부에서 출력되는 사고 예측 데이터를 무선 데이터로 변환하여 원격의 관제 센터에 전송하는 무선 송출부를 더 포함하는 것을 특징으로 하는 인공지능 기반의 교통사고 예측시스템.The system of claim 2, wherein the vehicle system further includes a wireless transmission unit for converting the accident prediction data output from the accident prediction unit into wireless data and transmitting the wireless data to a remote control center. 청구항 2에서, 상기 사고 예측부는 상기 영상 데이터로부터 객체 정보를 인식하고, 인식한 객체 정보를 인공지능기반 사고확률 알고리즘으로 분석하여 사고 확률을 산출하는 인공지능기반 사고확률 처리부; 상기 인공지능기반 사고확률 처리부에서 산출한 사고 확률 값을 기준 값과 비교하여 그 비교 결과를 출력하는 비교 분석부; 상기 비교 분석부에서 출력되는 비교 결과를 기초로 사고 예측을 하며, 예측 결과 사고 발생으로 예측되면 사고 예측 데이터를 관제 센터에 전송하는 정상 유무 판단부를 포함하는 것을 특징으로 하는 인공지능 기반의 교통사고 예측시스템.The accident predicting unit may include an artificial intelligence-based accident probability processor for recognizing object information from the image data and analyzing the recognized object information using an artificial intelligence-based accident probability algorithm to calculate an accident probability; A comparison and analysis unit for comparing the accident probability value calculated by the artificial intelligence based fault probability processing unit with a reference value and outputting the comparison result; And a normal presence / absence determination unit for performing an accident prediction based on the comparison result output from the comparison / analysis unit and transmitting the accident prediction data to the control center if the prediction result is that an accident occurred, system. 청구항 4에서, 상기 인공지능 기반 사고확률 처리부는 CNN(Convolution Neutral Networks) 알고리즘을 이용하여 영상 데이터 내 객체를 추출하고, 추출한 객체를 분석하여 사고 확률을 산출하는 것을 특징으로 하는 인공지능 기반의 교통사고 예측시스템.The artificial intelligence-based accident probability processing unit may extract an object in the image data using a CNN (Convolution Neural Networks) algorithm, and analyze the extracted object to calculate an accident probability. Prediction system. 청구항 1에서, 상기 관제 센터는 상기 차량 시스템으로부터 전송된 사고 예측 데이터를 수신하는 관제센터 무선 수신부; 상기 관제센터 무선 수신부에서 수신한 사고 예측 데이터를 저장하는 관제센터 데이터 저장부; 상기 관제센터 데이터 저장부에서 저장한 사고 예측 데이터를 분석하여 사고확률을 산출하고, 추출한 사고확률을 기초로 긴급도를 판단하는 사고확률 판단부를 포함하는 것을 특징으로 하는 인공지능 기반의 교통사고 예측시스템.The control center according to claim 1, wherein the control center comprises: a control center radio receiving unit for receiving the accident prediction data transmitted from the vehicle system; A control center data storage for storing the accident prediction data received by the control center radio receiver; An accident probability determination unit for calculating an accident probability by analyzing the accident prediction data stored in the control center data storage unit and determining an urgency based on the extracted accident probability, . 청구항 6에서, 상기 관제 센터는 상기 사고확률 판단부에서 판단한 긴급도에 따라 관계기관을 선택한 후, 선택된 관계기관에 조치를 위한 긴급 요청 정보를 전송하는 긴급요청 송신부를 더 포함하는 것을 특징으로 하는 인공지능 기반의 교통사고 예측시스템.[Claim 6] The system of claim 6, wherein the control center further comprises an emergency request transmission unit for selecting the relevant organization according to the degree of urgency determined by the accident probability determination unit, and then transmitting the emergency request information for the action to the selected related organization Intelligent Traffic Accident Prediction System. 청구항 6에서, 상기 관제 센터는 수신한 사고 예측 데이터를 이용하여 딥 러닝을 통해 학습을 하고, 학습 결과를 기초로 상기 차량 시스템 내의 인공지능 기반 사고 확률 알고리즘을 업데이트하는 사고확률 학습부를 더 포함하는 것을 특징으로 하는 인공지능 기반의 교통사고 예측시스템.The control center may further include an accident probability learning unit for learning through deep learning using the received accident prediction data and updating an artificial intelligence based accident probability algorithm in the vehicle system based on the learning result A traffic accident prediction system based on artificial intelligence. 인공지능 기반으로 교통사고를 예측하기 위한 방법으로서,As a method for predicting traffic accidents based on artificial intelligence, (a) 차량 시스템에서 카메라를 통해 촬영된 영상으로부터 객체를 인식하고, 인식한 객체에 대하여 인공지능기반 사고확률 알고리즘으로 분석하여 사고 확률을 예측하며, 예측 결과 사고 발생이 예측되면 사고 예측 데이터를 관제 센터로 전송하는 단계; 및(a) An object is recognized from an image taken through a camera in a vehicle system, and an artificial intelligence-based accident probability algorithm is applied to the recognized object to predict an accident probability. To a center; And (b) 상기 관제 센터에서 상기 차량 시스템으로부터 전송된 사고 예측 데이터를 분석하여 긴급도에 따라 관계기관에 조치 정보를 전송하고, 상기 사고 예측 데이터를 이용하여 사고 확률에 대해 학습을 하고, 학습 결과를 상기 차량 시스템으로 전송하여 인공지능 기반 사고 확률 알고리즘을 갱신하는 단계를 포함하는 것을 특징으로 하는 인공지능 기반의 교통사고 예측방법.(b) analyzing the accident prediction data transmitted from the vehicle system at the control center and transmitting the action information to the related organization according to the degree of urgency, learning about the accident probability using the accident prediction data, And updating the artificial intelligence-based accident probability algorithm by transmitting to the vehicle system the artificial intelligence-based traffic accident prediction method. 청구항 9에서, 상기 (a)단계는 (a1) 카메라를 통해 촬영하여 영상을 획득하여 저장하고, 상기 저장된 영상 데이터로부터 객체를 인식하는 단계; (a2) 상기 인식한 객체 정보를 인공지능기반 사고확률 알고리즘으로 분석하여 사고 확률을 산출하는 단계; (a3) 상기 산출한 사고 확률 값을 기초로 사고를 예측하며, 예측 결과 사고 발생으로 예측되면 사고 예측 데이터를 관제 센터에 전송하는 단계; (a4) 상기 관제 센터로부터 사고 확률 알고리즘 업데이트 데이터를 수신하면, 상기 인공지능기반 사고 확률 알고리즘을 업데이트하는 단계를 포함하는 것을 특징으로 하는 인공지능 기반의 교통사고 예측방법.[12] The method of claim 9, wherein the step (a) comprises: (a1) capturing an image through a camera to acquire and store an image, and recognizing an object from the stored image data; (a2) analyzing the recognized object information with an artificial intelligence-based accident probability algorithm to calculate an accident probability; (a3) predicting an accident on the basis of the calculated accident probability value, and transmitting the accident prediction data to the control center when it is predicted that the accident occurred; (a4) receiving the accident probability algorithm update data from the control center, updating the artificial intelligence-based accident probability algorithm. 청구항 9에서, 상기 (b)단계는 (b1) 상기 차량 시스템으로부터 전송된 사고 예측 데이터를 수신하여 저장하는 단계; (b2) 상기 저장한 사고 예측 데이터를 분석하여 사고확률을 산출하고, 추출한 사고확률을 기초로 긴급도를 판단하는 단계; (b3) 상기 판단한 긴급도에 따라 관계기관을 선택한 후, 선택된 관계기관에 조치를 위한 긴급요청 정보를 전송하는 단계; (b4) 상기 저장한 사고 예측 데이터를 이용하여 딥 러닝을 통해 학습을 하고, 학습 결과를 기초로 상기 차량 시스템 내의 인공지능기반 사고확률 알고리즘을 업데이트하는 단계를 포함하는 것을 특징으로 하는 인공지능 기반의 교통사고 예측방법.The method of claim 9, wherein step (b) comprises: (b1) receiving and storing accident prediction data transmitted from the vehicle system; (b2) analyzing the stored accident prediction data to calculate an accident probability, and determining an urgency based on the extracted accident probability; (b3) selecting an affiliated institution according to the determined degree of urgency, and then transmitting urgent request information for an action to the selected affiliated institution; (b4) learning through deep learning using the stored accident prediction data, and updating the artificial intelligence-based accident probability algorithm in the vehicle system based on the learning result. Traffic accident prediction method.
PCT/KR2017/013497 2017-11-23 2017-11-24 System for predicting traffic accident on basis of artificial intelligence and method therefor Ceased WO2019103197A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170157616A KR102030583B1 (en) 2017-11-23 2017-11-23 Artificial intelligence based traffic accident prediction system and method
KR10-2017-0157616 2017-11-23

Publications (1)

Publication Number Publication Date
WO2019103197A1 true WO2019103197A1 (en) 2019-05-31

Family

ID=66631552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/013497 Ceased WO2019103197A1 (en) 2017-11-23 2017-11-24 System for predicting traffic accident on basis of artificial intelligence and method therefor

Country Status (2)

Country Link
KR (1) KR102030583B1 (en)
WO (1) WO2019103197A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113077625A (en) * 2021-03-24 2021-07-06 合肥工业大学 Road traffic accident form prediction method
CN115205801A (en) * 2022-06-17 2022-10-18 平安银行股份有限公司 Traffic accident prediction method, device, electronic device and storage medium

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102318801B1 (en) 2019-10-22 2021-10-28 한국통합민원센터 주식회사 Driver traffic accident rate prediction system
KR102101986B1 (en) * 2019-10-31 2020-04-20 한국교통연구원 System and method for warning pedestrian collision
KR102331937B1 (en) * 2019-11-27 2021-11-30 주식회사 텔러스 Apparatus for vehicle emergency rescue based on the analysis of the driving state risk and the driver state and method thereof
KR102323329B1 (en) 2019-12-24 2021-11-08 주식회사 싸인텔레콤 Embeded camera having a function of preventing high-temperature using thermo electric module
KR102352666B1 (en) * 2019-12-30 2022-01-19 계명대학교 산학협력단 System and Method for Predicting Traffic Accident Risk
CN111768625A (en) * 2020-07-01 2020-10-13 中国计量大学 A traffic road event prediction method based on graph embedding
KR102851014B1 (en) * 2021-03-05 2025-08-27 주식회사 케이티 Method, apparatus and computer program for predicting traffic information based on image
CN112990021A (en) * 2021-03-18 2021-06-18 中国第一汽车股份有限公司 Data processing method, device, equipment and storage medium
WO2023132800A2 (en) * 2022-01-06 2023-07-13 Xena Vision Yazilim Ve Savunma Anonim Sirketi A method for anticipation detection and prevention in a 3d environment
KR102416711B1 (en) 2022-02-21 2022-07-05 주식회사 카비 Accident risk prediction device for each driver using artificial intelligence and accident risk prediction method using the same
KR102464046B1 (en) * 2022-02-25 2022-11-07 주식회사 에이엘테크 A system to prevent accidents on the road
CN114863680B (en) * 2022-04-27 2023-04-18 腾讯科技(深圳)有限公司 Prediction processing method, prediction processing device, computer equipment and storage medium
KR102608705B1 (en) * 2022-08-24 2023-12-04 주식회사 노타 Method and apparatus for generating safety control signal notifying risk of accident on road
KR102807461B1 (en) * 2022-10-28 2025-05-15 주식회사 크리드 Smart booth for emergency cleaning for workers
WO2024101928A1 (en) * 2022-11-09 2024-05-16 김병준 Electronic device and electronic system for performing situation determination operation on basis of object identification based on edge ai technology

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035639A (en) * 2012-08-08 2014-02-24 Toshiba Corp Traffic accident occurrence prediction device, method and program
KR20140106883A (en) * 2013-02-27 2014-09-04 한국전자통신연구원 Apparatus and method for detecting a risk situation by analyzing a relation of object
JP2016126756A (en) * 2014-12-26 2016-07-11 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Risk determination method, risk determination device, risk output device, and risk determination system
KR101688218B1 (en) * 2016-08-25 2016-12-20 델리아이 주식회사 System for managing traffic flow and incidents using image detection in real time based on object recognition and method for processing thereof
KR20170000778A (en) * 2015-06-24 2017-01-03 주식회사 엔알피시스템 Apparatus for detecting vehicle accident and emergency call system using the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100072931A (en) 2008-12-22 2010-07-01 재단법인 포항산업과학연구원 An apparatus and method of traffic accident detection
KR20130026538A (en) 2011-07-20 2013-03-14 김태엽 System and method for supplying sensing signal of accident-inducing element
KR20160092959A (en) 2016-05-19 2016-08-05 윤종식 Method of preventing traffic accidents in crossroad for signal violation and overspeed, and system of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035639A (en) * 2012-08-08 2014-02-24 Toshiba Corp Traffic accident occurrence prediction device, method and program
KR20140106883A (en) * 2013-02-27 2014-09-04 한국전자통신연구원 Apparatus and method for detecting a risk situation by analyzing a relation of object
JP2016126756A (en) * 2014-12-26 2016-07-11 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Risk determination method, risk determination device, risk output device, and risk determination system
KR20170000778A (en) * 2015-06-24 2017-01-03 주식회사 엔알피시스템 Apparatus for detecting vehicle accident and emergency call system using the same
KR101688218B1 (en) * 2016-08-25 2016-12-20 델리아이 주식회사 System for managing traffic flow and incidents using image detection in real time based on object recognition and method for processing thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113077625A (en) * 2021-03-24 2021-07-06 合肥工业大学 Road traffic accident form prediction method
CN113077625B (en) * 2021-03-24 2022-03-15 合肥工业大学 A method for predicting the shape of road traffic accidents
CN115205801A (en) * 2022-06-17 2022-10-18 平安银行股份有限公司 Traffic accident prediction method, device, electronic device and storage medium

Also Published As

Publication number Publication date
KR102030583B1 (en) 2019-10-11
KR20190059723A (en) 2019-05-31

Similar Documents

Publication Publication Date Title
WO2019103197A1 (en) System for predicting traffic accident on basis of artificial intelligence and method therefor
EP3859708B1 (en) Traffic light image processing method and device, and roadside device
KR101688218B1 (en) System for managing traffic flow and incidents using image detection in real time based on object recognition and method for processing thereof
KR101748121B1 (en) System and method for detecting image in real-time based on object recognition
KR101173368B1 (en) Automatic police enforcement system and method of illegal stopping and parking vehicles
KR102456869B1 (en) System for smart managing traffic
WO2021118304A1 (en) Mobile iot integration-based safe driving support system and processing method thereof
KR102363760B1 (en) Electronic device to monitor load surface in real time and operating method thereof, and system comprising the same
KR101626377B1 (en) A system for detecting car being violated parking and stopping of based on big date using CCTV camera and black box vehicle
US12027042B2 (en) Road information providing system and road information providing method
KR102105007B1 (en) Edge-cloud system for collecting and providing data of connected car
KR102463985B1 (en) Internet of things-based traffic monitoring system and method using the same
CN117116047A (en) Tunnel vehicle traffic event monitoring system based on video detection and sensing equipment
WO2020116767A1 (en) Traffic management server, and method and computer program for traffic management using same
WO2019124668A1 (en) Artificial intelligence system for providing road surface danger information and method therefor
KR20150139657A (en) Car accident distinction system for car damage using system for total parking control solution
KR101612867B1 (en) Incident monitoring system and method based on incident vehicle information
KR101851009B1 (en) Safety system for pedestrians
CN112906486B (en) Passenger status detection method, control method and system for driverless taxis
CN112818814A (en) Intrusion detection method and device, electronic equipment and computer readable storage medium
KR20220153870A (en) Hybrid video analysis device based on object filters and method
CN109558829B (en) Lane change detection method and device, computer device and readable storage medium
WO2022231039A1 (en) Mobile smart traffic light system
KR102330747B1 (en) Image Projector Based on Artificial Intelligence for Pedestrian Safety and the method thereof
CN110189548A (en) A road condition early warning method, system and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17932746

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17932746

Country of ref document: EP

Kind code of ref document: A1