WO2019191056A1 - Produits en alliage d'aluminium fabriqués de manière additive possédant des affineurs nanométriques de grain - Google Patents
Produits en alliage d'aluminium fabriqués de manière additive possédant des affineurs nanométriques de grain Download PDFInfo
- Publication number
- WO2019191056A1 WO2019191056A1 PCT/US2019/024018 US2019024018W WO2019191056A1 WO 2019191056 A1 WO2019191056 A1 WO 2019191056A1 US 2019024018 W US2019024018 W US 2019024018W WO 2019191056 A1 WO2019191056 A1 WO 2019191056A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aluminum alloy
- additively manufactured
- nanometers
- grain refiner
- alloy product
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y70/00—Materials specially adapted for additive manufacturing
- B33Y70/10—Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/0408—Light metal alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
- C22C32/0047—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/10—Formation of a green body
- B22F10/14—Formation of a green body by jetting of binder onto a bed of metal powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/25—Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/20—Direct sintering or melting
- B22F10/28—Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F10/00—Additive manufacturing of workpieces or articles from metallic powder
- B22F10/60—Treatment of workpieces or articles after build-up
- B22F10/64—Treatment of workpieces or articles after build-up by thermal means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F5/04—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine blades
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1084—Alloys containing non-metals by mechanical alloying (blending, milling)
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- This patent application relates to methods of additively manufacturing aluminum alloy products using nanoscale grain refiners, and additively aluminum alloy products made from the same.
- Additive manufacturing is defined as“a process of joining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies”, in ASTM F2792-l2a entitled “Standard Terminology for Additively Manufacturing Technologies.” Cracking of additively manufactured metal alloy products is a problem. See, e.g., Martin, John H. et al.“3D printing of high-strength aluminium alloys,” Nature volume 549, pages 365-369 (21 September 2017).
- the patent application relates to methods of additively manufacturing aluminum alloy products using nanoscale grain refiners, and additively manufactured aluminum alloy products made from the same.
- nanoscale means materials having an average size of less than 1 micron, and generally 500 nanometers or less. It has been surprisingly found that nanoscale grain refiner particles are effective in producing additively manufactured aluminum alloy products having, for instance, one or more of equiaxed grains and/or crack-free additive manufacturing products, among others. Such products may also employ less grain refiner materials as compared to conventional additive manufacturing processes employing conventional grain refiner materials.
- an additively manufactured product comprises an aluminum alloy matrix having an fee crystalline microstructure and grain refiner particles.
- the grain refiner particles may be dispersed within the aluminum alloy matrix.
- the nanoscale grain refiner particles have an average particle size of less than 1 micrometer, such as an average particle size of not greater than 500 nanometers.
- an area density of the nanoscale grain refiner particles within the aluminum alloy matrix is at least 0.0008 nanoscale grain refiner particle per 64 square micrometers of the aluminum alloy matrix. Due to at least the size and density of these nanoscale grain refiner particles, an additively manufactured aluminum alloy product with a high amount of equiaxed grains in the as-built condition may be produced.
- an additively manufactured aluminum alloy product comprises grains and at least 50 vol. % of the grains are equiaxed grains.
- the equiaxed grains have an average size of not greater than 50 micrometers (e.g., not greater than 10 micrometers).
- the new additively manufactured aluminum alloy products may include nanoscale grain refiner particles.
- nanoscale grain refiner particles means grain refiners particles having a size of less than 1 micrometers.
- grain refiner means a nucleant or nucleants that facilitates alloy matrix crystal formation (e.g., fee crystals/grains). Suitable grain refiners include ceramic materials, intermetallic particles, and combinations thereof, among others.
- the average particle size of the nanoscale grain refiner particles is not greater than 500 nanometers. In another embodiment, the average particle size of the nanoscale grain refiner particles is not greater than 400 nanometers. In yet another embodiment, the average particle size of the nanoscale grain refiner particles is not greater than 350 nanometers. In another embodiment, the average particle size of the nanoscale grain refiner particles is not greater than 300 nanometers. In yet another embodiment, the average particle size of the nanoscale grain refiner particles is not greater than 250 nanometers. In another embodiment, the average particle size of the nanoscale grain refiner particles is not greater than 200 nanometers. In yet another embodiment, the average particle size of the nanoscale grain refiner particles is not greater than 175 nanometers.
- the average particle size of the nanoscale grain refiner particles is not greater than 150 nanometers. In yet another embodiment, the average particle size of the nanoscale grain refiner particles is not greater than 125 nanometers. In another embodiment, the average particle size of the nanoscale grain refiner particles is not greater than 100 nanometers, or less.
- the average particle size of the nanoscale grain refiner particles is at least 1 nanometers. In another embodiment, the average particle size of the nanoscale grain refiner particles is at least 5 nanometers. In yet another embodiment, the average particle size of the nanoscale grain refiner particles is at least 7.5 nanometers. In another embodiment, the average particle size of the nanoscale grain refiner particles is at least 10 nanometers. In yet another embodiment, the average particle size of the nanoscale grain refiner particles is at least 15 nanometers. In another embodiment, the average particle size of the nanoscale grain refiner particles is at least 20 nanometers. In yet another embodiment, the average particle size of the nanoscale grain refiner particles is at least 30 nanometers.
- the average particle size of the nanoscale grain refiner particles is at least 40 nanometers. In yet another embodiment, the average particle size of the nanoscale grain refiner particles is at least 50 nanometers. In another embodiment, the average particle size of the nanoscale grain refiner particles is at least 60 nanometers. In yet another embodiment, the average particle size of the nanoscale grain refiner particles is at least 70 nanometers. In another embodiment, the average particle size of the nanoscale grain refiner particles is at least 80 nanometers. In yet another embodiment, the average particle size of the nanoscale grain refiner particles is at least 90 nanometers, or higher. Any of the average particle size upper limits of the nanoscale grain refiner particles described in the preceding paragraph may be combined with any of the lower average particle size limits of the nanoscale grain refiner particles described in this paragraph.
- an additively manufactured aluminum alloy product has a grain size of from about 1 micrometer to about 10 micrometers.
- Some non-limiting examples of embodiments of aluminum alloys having amounts of nanoscale grain refiner particles for such additively manufactured aluminum alloy products are given in Table 1, below.
- the new aluminum alloys described herein may have, for instance, from 0.0008 to 44 nanoscale grain refiner particles per 64 square micrometers and may have an average grain size of from about 1 micrometer to about 10 micrometers. As shown, in some embodiments, the new aluminum alloys described herein may have, for instance, from about 1.0 x 1 O 7 to about 14 volume percent of nanoscale grain refiner particles and may have an average grain size of from about 1 micrometer to about 10 micrometers.
- an area density of the nanoscale grain refiner particles within the aluminum alloy matrix is at least 0.0008 nanoscale grain refiner particle per 64 square micrometers of the aluminum alloy matrix. In one embodiment, an area density of the nanoscale grain refiner particles within the aluminum alloy matrix is at least 0.01 nanoscale grain refiner particle per 64 square micrometers of the aluminum alloy matrix. In another embodiment, an area density of the nanoscale grain refiner particles within the aluminum alloy matrix is at least 0.1 nanoscale grain refiner particle per 64 square micrometers of the aluminum alloy matrix. In yet another embodiment, an area density of the nanoscale grain refiner particles within the aluminum alloy matrix is at least 1 nanoscale grain refiner particle per 64 square micrometers of the aluminum alloy matrix.
- an area density of the nanoscale grain refiner particles within the aluminum alloy matrix is not greater than 44 nanoscale grain refiner particles per 64 square micrometers of the aluminum alloy matrix. In one embodiment, an area density of the nanoscale grain refiner particles within the aluminum alloy matrix is not greater than 30 nanoscale grain refiner particles per 64 square micrometers of the aluminum alloy matrix. In another embodiment, an area density of the nanoscale grain refiner particles within the aluminum alloy matrix is not greater than 17 nanoscale grain refiner particles per 64 square micrometers of the aluminum alloy matrix.
- an aluminum alloy comprises at least 1 x 10 7 vol. % nanoscale particles. In another embodiment, an aluminum alloy comprises at least 0.0001 vol. % nanoscale particles. In another embodiment, an aluminum alloy comprises at least 0.001 vol. % nanoscale particles. In yet another embodiment, an aluminum alloy comprises at least 0.01 vol. % nanoscale particles. In some embodiments, an aluminum alloy comprises not greater than 14 vol. % nanoscale particles. In one embodiment, an aluminum alloy comprises not greater than 10 vol. % nanoscale particles. In another embodiment, an aluminum alloy comprises not greater than 5 vol. % nanoscale particles. In yet another embodiment, an aluminum alloy comprises not greater than 1 vol. % nanoscale particles.
- the average particle size, area density and/or volumetric percentage of the nanoscale grain refiner particles may be determined via an SEM image analysis of a suitable number of SEM micrographs of the additively manufactured product in the as-built condition. Generally, at least 5 micrographs (e.g., at least 10 micrographs) should be analyzed.
- the “as-built condition” means the condition of the additively manufactured aluminum alloy product after production and absent of any subsequent mechanical, thermal or thermomechanical treatments.
- the nanoscale grain refiner particles are generally distributed within the aluminum alloy matrix. In one embodiment, the nanoscale grain refiner particles are homogenously distributed within the aluminum alloy matrix. In other embodiments, the nanoscale grain refiner particles are non-homogenously distributed relative to the aluminum alloy matrix.
- the nanoscale grain refiner particles may comprise one or more ceramic materials.
- ceramics include oxide materials, boride materials, carbide materials, nitride materials, silicon materials, carbon materials, and/or combinations thereof.
- Some additional examples of ceramics include metal oxides, metal borides, metal carbides, metal nitrides and/or combinations thereof.
- some non-limiting examples of ceramics include: TiB, T1B2, TiC, SiC, AI2O3, BC, BN, S13N4, AI4C3, A1N, their suitable equivalents, and/or combinations thereof.
- the nanoscale grain refiner particles may comprise one or more intermetallic particles.
- the aluminum alloy compositions described herein may include materials that may facilitate the formation of intermetallic particles (e.g., during solidification).
- non-limiting examples of such materials that may be used include titanium, zirconium, scandium, hafnium, vanadium, molybdenum, niobium, tantalum and tungsten, optionally in elemental form, among others.
- an additively manufactured aluminum alloy product in the as-built condition comprises grains and at least 50 vol. % of the grains are equiaxed grains.
- an additively manufactured aluminum alloy product in the as-built condition comprises at least 60 vol. % of equiaxed grains.
- an additively manufactured aluminum alloy product in the as-built condition comprises at least 70 vol. % of equiaxed grains.
- an additively manufactured aluminum alloy product in the as-built condition comprises at least 80 vol. % of equiaxed grains.
- an additively manufactured aluminum alloy product in the as-built condition comprises at least 90 vol. % of equiaxed grains. In another embodiment, an additively manufactured aluminum alloy product in the as-built condition comprises at least 95 vol. % of equiaxed grains. In yet another embodiment, an additively manufactured aluminum alloy product in the as-built condition comprises at least 99 vol. % of equiaxed grains, or more.
- the area weighted average grain size of the equiaxed grains of the additively manufactured aluminum alloy product in the as-built condition is generally not greater than 50 microns. In one embodiment, the area weighted average grain size of the equiaxed grains of the additively manufactured aluminum alloy product in the as-built condition is not greater than 40 microns. In another embodiment, the area weighted average grain size of the equiaxed grains of the additively manufactured aluminum alloy product in the as-built condition is not greater than 30 microns. In yet another embodiment, the area weighted average grain size of the equiaxed grains of the additively manufactured aluminum alloy product in the as-built condition is not greater than 20 microns.
- the area weighted average grain size of the equiaxed grains of the additively manufactured aluminum alloy product in the as-built condition is not greater than 10 microns. In yet another embodiment, the area weighted average grain size of the equiaxed grains of the additively manufactured aluminum alloy product in the as-built condition is not greater than 5 microns. In another embodiment, the area weighted average grain size of the equiaxed grains of the additively manufactured aluminum alloy product in the as-built condition is not greater than 4 microns. In yet another embodiment, the area weighted average grain size of the equiaxed grains of the additively manufactured aluminum alloy product in the as-built condition is not greater than 3 microns. In another embodiment, the area weighted average grain size of the equiaxed grains of the additively manufactured aluminum alloy product in the as-built condition is not greater than 2 microns, or less.
- the“grain size” is calculated by the following equation:
- Ai is the area of the individual grain as measured using commercial software Edax OIM version 8.0 or equivalent;
- vz is the calculated individual grain size assuming the grain is a circle.
- Grain size is determined based on a two-dimensional plane that includes the build direction of the additively manufactured product.
- the“area weighted average grain size” is calculated by the following equation:
- Ai is the area of each individual grain as measured using commercial software Edax OIM version 8.0 or equivalent;
- v-bar is the area weighted average grain size.
- “equiaxed grains” means grains having an average aspect ratio of less than 4: 1 as measured in the XY, YZ, and XZ planes.
- The“aspect ratio” is determined using commercial software Edax OIM version 8.0 or equivalent. The commercial software fits an ellipse to the perimeter points of the grain.
- “aspect ratio” is the inverse of: the length of the minor axis of the ellipse divided by the length of the major axis of the ellipse as determined using commercial software.
- an additively manufactured aluminum alloy part comprises equiaxed grains having an average aspect ratio of not greater than 4: 1.
- an additively manufactured aluminum alloy part comprises equiaxed grains having an average aspect ratio of not greater than 3: 1. In one described embodiment, an additively manufactured aluminum alloy part comprises equiaxed grains having an average aspect ratio of not greater than 2: 1. In one embodiment, an additively manufactured aluminum alloy part comprises equiaxed grains having an average aspect ratio of not greater than 1.5: 1. In one embodiment, an additively manufactured aluminum alloy part comprises equiaxed grains having an average aspect ratio of not greater than 1.1 : 1.
- the amount (volume percent) of equiaxed grains in the additively manufactured product in the as-built condition may be determined by EBSD (electron backscatter diffraction) analysis of a suitable number of SEM micrographs of the additively manufactured product in the as-built condition. Generally, at least 5 micrographs should be analyzed. ii. Composition
- the new additively manufactured aluminum alloy products may be made from any suitable aluminum alloy composition.
- the aluminum alloy is one of a lxxx, 2xxx, 3xxx, 4xxx, 5xxx, 6xxx, 7xxx, and 8xxx aluminum alloy, as defined by the Aluminum Association document ANSI H35.1 entitled,“American National Standard Alloy and Temper Designation Systems for Aluminum” (2009), pages 4-5, modified to have the nanoscale grain refiners disclosed herein.
- the aluminum alloy is one of a lxx, 2xx, 3xx, 4xx, 5xx, 7xx, 8xx and 9xx aluminum casting and ingot alloy, as defined by the Aluminum Association document ANSI H35.1 entitled,“American National Standard Alloy and Temper Designation Systems for Aluminum” (2009), pages 6-7, modified to have the nanoscale grain refiners disclosed herein.
- the aluminum alloy is one of a lxxx, 2xxx, 3xxx, 4xxx, 5xxx, 6xxx, 7xxx and 8xxx aluminum alloy composition of the Aluminum Association document “International Alloy Designations and Chemical Composition Limits for Wrought Aluminum and Wrought Aluminum Alloys” (2015) (a.k.a., the“Teal Sheets”), modified to have the nanoscale grain refiners disclosed herein.
- the aluminum alloy is one of a lxx, 2xx, 3xx, 4xx, 5xx, 7xx, 8xx and 9xx aluminum alloy composition of the Aluminum Association document“Designations and Chemical Composition Limits for Aluminum Alloys in the Form of Castings and Ingot” (2009) (a.k.a.,“the Pink Sheets”), modified to have the nanoscale grain refiners disclosed herein. iii. Additive Manufacturing
- additive manufacturing means“a process of j oining materials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive manufacturing methodologies”, as defined in ASTM F2792-l2a entitled “Standard Terminology for Additively Manufacturing Technologies.”
- the additively manufactured aluminum alloy products described herein may be manufactured via any appropriate additive manufacturing technique described in this ASTM standard, such as binder jetting, directed energy deposition, material extrusion, material jetting, powder bed fusion, or sheet lamination, among others.
- Non-limiting examples of additive manufacturing processes useful in producing additively manufactured aluminum alloy products include, for instance, DMLS (direct metal laser sintering), SLM (selective laser melting), SLS (selective laser sintering), and EBM (electron beam melting), among others.
- DMLS direct metal laser sintering
- SLM selective laser melting
- SLS selective laser sintering
- EBM electro beam melting
- Additive manufacturing techniques may facilitate the selective heating of additive manufacturing feedstock(s) above the liquidus temperature of the particular aluminum alloy to be formed, thereby forming a molten pool, followed by rapid solidification of the molten pool.
- a method comprises (a) selectively heating at least a portion of an additive manufacturing feedstock (e.g., via a laser) to a temperature above the liquidus temperature of the particular aluminum alloy to be formed, (b) forming a molten pool, and (c) cooling the molten pool to form a solidified mass. Steps (a)-(c) may be repeated as necessary until the additively manufactured alloy product is completed.
- an additive manufacturing process includes depositing successive layers of one or more powders and then selectively melting and/or sintering the powders to create, layer-by-layer, an additively manufactured aluminum alloy product.
- a method comprises (a) dispersing a powder in a bed, (b) selectively heating a portion of the powder (e.g., via a laser) to a temperature above the liquidus temperature of the particular aluminum alloy product to be formed, (c) forming a molten pool and (d) cooling the molten pool to form a solidified mass. Steps (a)-(c) may be repeated as necessary until the additively manufactured alloy product is completed.
- an additive manufacturing process uses an EOSINT M 280 Direct Metal Laser Sintering (DMLS) additive manufacturing system, or comparable system, available from EOS GmbH (Robert-Stirling-Ring 1, 82152 Krailling/Munich, Germany).
- a method comprises (a) dispersing a powder in a bed, (b) selectively binder jetting the powder, and repeating steps (a)-(b), as appropriate, until a green additively manufactured part is completed.
- the green additively manufactured part may be further processed, such as by sintering and/or hot isostatic pressing (“HIP’ing”).
- a method comprises spraying one or more additive manufacturing feedstock powders in a controlled environment, and concomitant to the spraying, a laser is used to melt and/or solidify the sprayed additive manufacturing feedstock powder(s). This spraying and concomitant energy deposition may be repeated, as necessary to facilitate production of an additively manufactured aluminum alloy product.
- Electron beam techniques may facilitate production of larger parts than readily produced via laser additive manufacturing techniques.
- a method comprises feeding a wire (e.g., ⁇ 2.54 mm in diameter) to the wire feeder portion of an electron beam gun.
- the wire may comprise any of the alloys described above.
- the electron beam heats the wire or tube, as the case may be, above the liquidus point of the alloy to be formed, followed by rapid solidification of the molten pool to form the deposited material.
- the cooling the molten pool comprises cooling at a cooling rate of at least l000°C per second. In one or more of the described embodiments, the cooling the molten pool comprises cooling at a cooling rate of at least l0,000°C per second. In one or more of the described embodiments, the cooling the molten pool comprises cooling at a cooling rate of at least l00,000°C per second. In one or more of the described embodiments, the cooling the molten pool comprises cooling at a cooling rate of at least l,000,000°C per second.
- crack-free aluminum alloy products in the as-built condition may be produced and realized.
- “crack-free” means that the product is sufficiently free of cracks such that it can be used for its intended, end-use purpose.
- the determination of whether a product is“crack-free” may be made by any suitable method, such as, by visual inspection, dye penetrant inspection, and/or by non-destructive test methods.
- the non-destructive test method is an ultrasonic inspection.
- the non-destructive test method is a computed topography scan (“CT scan”) inspection (e.g., by measuring density differences within the product).
- CT scan computed topography scan
- an aluminum alloy product is determined to be crack-free by visual inspection. In another embodiment, an aluminum alloy product is determined to be crack-free by dye penetrant inspection. In yet another embodiment, an aluminum alloy product is determined to be crack-free by CT scan inspection, as evaluated in accordance with ASTM El 441. In another embodiment, an aluminum alloy product is determined to be crack-free during an additive manufacturing process, wherein in situ monitoring of the additively manufactured build is employed.
- the additive manufacturing processes described above may employ any suitable feedstock, including one or more powders, one or more wires, one or more sheets, and combinations thereof.
- the additive manufacturing feedstock is comprised of one or more powders.
- Powders for use in additive manufacturing may be produced with or without the nanoscale grain refiner particles therein.
- an additive manufacturing powder feedstock may be comprised of any combination of metallic powders, alloy powders, and non- metalbc powders (e.g., ceramic powders).
- any combination of metallic powders, alloy powders, and/or non-metallic powders may be used to realize an aluminum alloy composition described above.
- an additive manufacturing feedstock powder may comprise metallic powders and/or alloy powders, where the particles comprise the metallic powders and/or alloy particles having grain refining material therein (e.g., ceramic materials).
- an additive manufacturing feedstock powder may be comprised of alloy particles, and the alloy particles may include a plurality of non-metallic particles therein, wherein the non-metallic particles have a smaller size than the alloy particles.
- the applicable powders may be blended or used separately to make the additively manufactured aluminum alloy product.
- “powder” means a material comprising a plurality of particles suited to produce an aluminum alloy product via additive manufacturing.
- “particle” means a minute fragment of matter having a size suitable for use in the powder of the powder bed (e.g., a size of from 5 microns to 100 microns). Shavings are types of particles. Suitable methods for producing powders include, for instance, atomization (e.g., gas atomization, plasma atomization), and impingement of a molten liquid (e.g., solidification of an impinging molten metal droplet on a cold substrate), among others.
- the additive manufacturing feedstock is comprised of one or more wires.
- a ribbon is a type of wire.
- the wires may be produced, for instance, via melt spinning to produce a ribbon.
- Powder cored wires may also be used (e.g., per commonly owned U.S. Patent Publications US20170014937A1 and/or US 20170120386A1).
- the additive manufacturing feedstock is comprised of one or more sheets.
- Foil is a type of sheet. Sheets may be used in additive manufacturing processes such as sheet lamination, per ASTM F2792-l2a.
- the new additively manufactured aluminum alloys may be subjected to one or more deforming (e.g., working) steps and/or one or more thermally treating steps.
- Deforming may occur, for instance, before, after or during (e.g., concomitant to) any thermally treating steps.
- deforming an additively manufactured aluminum alloy product comprises hot isostatic pressing (“HIP’ing”).
- deforming an additively manufactured aluminum alloy product comprises working.
- Working may include hot working and/or cold working.
- the working may include working all of the product, or a portion of the product.
- the working may include, for instance, rolling, extruding, forging, and other known methods of working aluminum alloy products.
- the working comprises die forging the final additively manufactured product into the final worked product, wherein the final worked product is a complex shape (e.g., having a plurality of non-planar surfaces).
- the new additively manufactured aluminum alloy products may be thermally treated.
- Thermally treating an additively manufactured aluminum alloy may comprise one or more of solution heat treating and quenching, precipitation hardening (aging), and annealing.
- solution heat treating means heating an alloy body to a suitable temperature, generally above a solvus temperature, and holding at that temperature long enough to allow at least some soluble element(s) to enter solid solution. Quenching may optionally be employed after a solution heat treatment. The quenching may comprise cooling rapidly enough to hold at least some dissolved element(s) in solid solution. The quenching may facilitate production of a supersaturated solid solution. A subsequent precipitation hardening step may facilitate the production of precipitate phases from a supersaturated solid solution, as discussed in greater detail below.
- thermally treating an aluminum alloy comprises precipitation hardening.
- a precipitation hardening step may be employed after production of an aluminum alloy product and/or after solution heat treating and quenching of an aluminum alloy product.
- an additively manufactured aluminum alloy product may realize a supersaturated solid solution in the as-built condition (e.g., due to high cooling rates of at least l000°C/s).
- Precipitation hardening of the new aluminum alloys may occur at room temperature (sometimes referred to as a“natural age”) and/or at one or more elevated temperatures (sometimes referred to as an“artificial age”).
- Certain aluminum alloys may be precipitation hardened (e.g., to increase strength).
- the precipitation hardening may be performed for a time sufficient and at a temperature sufficient to facilitate the production of one or more precipitates.
- Various combinations of (1) solution heat treating and quenching and (2) aging steps may be performed.
- an aluminum alloy may be processed to one of a Tl, T2, T3, T4, T6, T7, T8, T9 or T10 temper, as defined in ANSI H35.1 (2009). Any other tempers of ANSI H35.1 (2009), or others known in the art, may be utilized.
- the new additively manufactured aluminum alloy products may be processed to one of an H, F, O or W temper, among others.
- the new additively manufactured aluminum alloy products described herein may be used in a variety of product applications.
- a new additively manufactured aluminum alloy product is utilized in an elevated temperature application, such as in an aerospace (e.g. engines or structures), automotive vehicle (e.g. piston, valve, among others), defense, electronics (e.g. consumer electronics) or space application.
- a new aluminum alloy product is used in a ground transportation application.
- a new additively manufactured aluminum alloy product is utilized as an engine component in an aerospace vehicle (e.g., in the form of a blade, such as a compressor blade incorporated into the engine).
- a new additively manufactured aluminum alloy product is used as a heat exchanger for the engine of the aerospace vehicle.
- a new additively manufactured aluminum alloy product is an automotive engine component.
- the automotive vehicle including the engine component may subsequently be operated.
- a new additively manufactured aluminum alloy product may be used as a turbocharger component (e.g., a compressor wheel of a turbocharger, where elevated temperatures may be realized due to recycling engine exhaust back through the turbocharger), and the automotive vehicle including the turbocharger component may be operated.
- anew additively manufactured aluminum alloy product may be used as a blade in a land based (stationary) turbine for electrical power generation, and the land based turbine included the aluminum product may be operated to facilitate electrical power generation.
- the new additively manufactured aluminum alloy products may be utilized in a structural application.
- a new additively manufactured aluminum alloy product is utilized in an aerospace structural application.
- the new additively manufactured aluminum alloy product may be formed into various aerospace structural components, including floor beams, seat rails, fuselage framing, bulkheads, spars, ribs, longerons, and brackets, among others.
- the new additively manufactured aluminum alloy products are utilized in an automotive structural application.
- the new additively manufactured aluminum alloy products may be formed into various automotive structural components including nodes of space frames, shock towers, and subframes, among others.
- the new additively manufactured aluminum alloy products of the present disclosure may also be utilized in a variety of consumer products, such as any consumer electronic products, including laptops, cell phones, cameras, mobile music players, handheld devices, computers, televisions, microwave, cookware, washer/dryer, refrigerator, sporting goods, or any other consumer electronic product requiring durability and selective visual appearance.
- the visual appearance of the consumer electronic product meets consumer acceptance standards.
- the new additively manufactured aluminum alloy products may be utilized in a variety of products including non-consumer products including the likes of medical devices, transportation systems and security systems, to name a few.
- the new additively manufactured aluminum alloy products may be incorporated in goods including the likes of car panels, media players, bottles and cans, office supplies, packages and containers, among others.
- the additively manufactured aluminum alloy products may realize an improved combination of properties over conventional additively manufactured aluminum alloy products.
- Conventional additively manufactured aluminum alloy products generally use grain refiners having an average size of more than 1 micrometers.
- a new additively manufactured aluminum alloy product realizes an improved combination of at least two of strength, fracture toughness, corrosion resistance, fatigue resistance, and fatigue crack growth resistance as compared to a compositionally equivalent conventional additively manufactured aluminum alloy product having an average grain refiner particle size of greater than 1 micrometer.
- a new additively manufactured aluminum alloy product realizes an improved combination of at least three of strength, fracture toughness, corrosion resistance, fatigue resistance, and fatigue crack growth resistance as compared to a compositionally equivalent conventional additively manufactured aluminum alloy product having an average grain refiner particle size of greater than 1 micrometer.
- a new additively manufactured aluminum alloy product realizes an improved combination of at least four of strength, fracture toughness, corrosion resistance, fatigue resistance, and fatigue crack growth resistance as compared to a compositionally equivalent conventional additively manufactured aluminum alloy product having an average grain refiner particle size of greater than 1 micrometer.
- a new additively manufactured aluminum alloy product realizes an improved combination of all of strength, fracture toughness, corrosion resistance, fatigue resistance, and fatigue crack growth resistance as compared to a compositionally equivalent conventional additively manufactured aluminum alloy product having an average grain refiner particle size of greater than 1 micrometer.
- the term“or” is an inclusive“or” operator, and is equivalent to the term“and/or,” unless the context clearly dictates otherwise.
- the term“based on” is not exclusive and allows for being based on additional factors not described, unless the context clearly dictates otherwise.
- the meaning of“a,”“an,” and“the” include plural references, unless the context clearly dictates otherwise.
- the meaning of“in” includes“in” and“on”, unless the context clearly dictates otherwise.
- FIG. 1 is a micrograph of an aluminum alloy product having a nanoscale T1B2 grain refiner particle (10).
- FIG. 1 shows a micrograph of the product.
- a nanoscale T1B2 particle (10) is circled.
- the TiB2 particle (10) has a size of about 20 nanometers and facilitated grain refinement.
- An additively manufactured aluminum alloy product comprising:
- the nanoscale grain refiner particles have an average particle size of not greater than 500 nanometers; (ii) an area density of the nanoscale grain refiner particles within the aluminum alloy matrix is at least 0.0008 nanoscale grain refiner particle per 64 square micrometers; and
- the additively manufactured aluminum alloy product comprises grains and wherein at least 50 vol. % of the grains are equiaxed grains, and wherein the equiaxed grains have an area weighted average grain size of not greater than 50 micrometers.
- Clause 2 The additively manufactured aluminum alloy product of clause 1, wherein the nanoscale grain refiner particles have an average particle size of at least 1 nanometers, or at least 5 nanometers, or at least 7.5 nanometers, or at least 10 nanometers, or at least 15 nanometers, or at least 20 nanometers, or at least 30 nanometers, or at least 40 nanometers, or at least 50 nanometers, or at least 60 nanometers, or at least 70 nanometers, or at least 80 nanometers, or at least 90 nanometers.
- the nanoscale grain refiner particles have an average particle size of at least 1 nanometers, or at least 5 nanometers, or at least 7.5 nanometers, or at least 10 nanometers, or at least 15 nanometers, or at least 20 nanometers, or at least 30 nanometers, or at least 40 nanometers, or at least 50 nanometers, or at least 60 nanometers, or at least 70 nanometers, or at least 80 nanometers, or at least 90 nanometers.
- nanoscale grain refiner particles have an average particle size of not greater than 400 nanometers, or not greater than 350 nanometers, or not greater than 300 nanometers, or not greater than 250 nanometers, or not greater than 200 nanometers, or not greater than 175 nanometers, or not greater than 150 nanometers, or not greater than 125 nanometers, or not greater than 100 nanometers.
- nanoscale grain refiner particles per 64 square micrometers or not greater than 30 nanoscale grain refiner particles per 64 square micrometers, or not greater than 17 nanoscale grain refiner particles per 64 square micrometers.
- Clause 6 The additively manufactured aluminum alloy product of any of the preceding clauses, wherein a volumetric percentage of the nanoscale grain refiner particles within the aluminum alloy matrix is at least 0.0001, or at least 0.001, or at least 0.01. Clause 7. The additively manufactured aluminum alloy product of any of the preceding clauses, wherein a volumetric percentage of the nanoscale grain refiner particles within the aluminum alloy matrix is not greater than 10, or not greater than 5, or not greater than 1. Clause 8. The additively manufactured aluminum alloy product of any of the preceding clauses, wherein at least 60 vol. % of the grains are equiaxed grains, or at least 70 vol. % of the grains are equiaxed grains, or at least 80 vol.
- % of the grains are equiaxed grains, or at least 90 vol. % of the grains are equiaxed grains, or at least 95 vol. % of the grains are equiaxed grains, or at least 99 vol. % of the grains are equiaxed grains.
- Clause 12 The additively manufactured aluminum alloy product of clause 11, wherein the nanoscale grain refiner particles comprise at least ceramic materials, and wherein the ceramic materials comprise oxide materials, boride materials, carbide materials, nitride materials, silicon materials, carbon materials, and combinations thereof.
- Clause 13 The additively manufactured aluminum alloy product of clause 12, wherein the ceramic materials comprise at least one of TiB, T1B2, TiC, SiC, AI2O3, BC, BN, S13N4, AI4C3, and A1N.
- Clause 15 The additively manufactured aluminum alloy product of clause 11, wherein the nanoscale grain refiner particles at least comprise intermetallic particles, and wherein the intermetallic particles comprise at least one of titanium, zirconium, scandium, hafnium, vanadium, molybdenum, niobium, tantalum and tungsten. Clause 16. The additively manufactured aluminum alloy product of any of the preceding clauses, wherein the nanoscale grain refiner particles are homogenously distributed throughout the aluminum alloy matrix.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Civil Engineering (AREA)
- Composite Materials (AREA)
- Structural Engineering (AREA)
- Powder Metallurgy (AREA)
Abstract
L'invention concerne de nouveaux produits en alliage d'aluminium fabriqués de manière additive possédant des affineurs nanométriques de grain et leurs procédés de fabrication. Les nouveaux produits en alliage d'aluminium fabriqués de manière additive peuvent comprendre une matrice en alliage d'aluminium possédant une microstructure cristalline cubique à faces centrées fcc et des particules d'affineur de grain dispersées au sein de la matrice en alliage d'aluminium. Les particules d'affineur de grain peuvent posséder une grosseur moyenne de particule qui n'est pas supérieure à 500 nanomètres et une densité de surface d'au moins 0,0008 particule d'affineur de grain nanométrique pour 64 micromètres carrés. En outre, les produits en alliage d'aluminium fabriqués de manière additive peuvent comprendre au moins 50 % en volume de grains équiaxes possédant une grosseur moyenne de grain, pondérée en surface, qui n'est pas supérieure à 50 micromètres.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201862650182P | 2018-03-29 | 2018-03-29 | |
| US62/650,182 | 2018-03-29 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2019191056A1 true WO2019191056A1 (fr) | 2019-10-03 |
Family
ID=68060397
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2019/024018 Ceased WO2019191056A1 (fr) | 2018-03-29 | 2019-03-26 | Produits en alliage d'aluminium fabriqués de manière additive possédant des affineurs nanométriques de grain |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2019191056A1 (fr) |
Cited By (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN111187963A (zh) * | 2020-02-14 | 2020-05-22 | 山东大学 | 适于消除激光选区熔化成形热裂纹的哈氏合金及方法与应用 |
| CN112746195A (zh) * | 2020-12-30 | 2021-05-04 | 吉林大学 | 抗衰退的细化剂及制备方法和应用、铝合金及其细化方法 |
| EP4129530A4 (fr) * | 2020-03-24 | 2023-09-20 | Toyo Aluminium Kabushiki Kaisha | Poudre d'aluminium pour moulage en stratifié métallique, son procédé de fabrication, et produit moulé en stratifié métallique |
| EP4272961A1 (fr) * | 2022-05-03 | 2023-11-08 | Commissariat à l'énergie atomique et aux énergies alternatives | Procédé de fabrication d'une pièce en alliage d'aluminium par fabrication additive |
| US12194529B2 (en) | 2018-11-07 | 2025-01-14 | Arconic Technologies Llc | 2XXX aluminum lithium alloys |
| CN119419279A (zh) * | 2025-01-07 | 2025-02-11 | 广州天赐高新材料股份有限公司 | 粉末材料及其制备方法、电极材料 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5415708A (en) * | 1993-06-02 | 1995-05-16 | Kballoys, Inc. | Aluminum base alloy and method for preparing same |
| JPH10317083A (ja) * | 1997-05-13 | 1998-12-02 | Kobe Steel Ltd | アルミニウム合金用結晶粒微細化剤 |
| US20150273631A1 (en) * | 2012-11-01 | 2015-10-01 | General Electric Company | Additive manufacturing method and apparatus |
| US20180010216A1 (en) * | 2016-07-05 | 2018-01-11 | NanoAL LLC | Ribbons and powders from high strength corrosion resistant aluminum alloys |
| US20180016667A1 (en) * | 2016-07-13 | 2018-01-18 | Apple Inc. | Aluminum Alloys with High Strength and Cosmetic Appeal |
-
2019
- 2019-03-26 WO PCT/US2019/024018 patent/WO2019191056A1/fr not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5415708A (en) * | 1993-06-02 | 1995-05-16 | Kballoys, Inc. | Aluminum base alloy and method for preparing same |
| JPH10317083A (ja) * | 1997-05-13 | 1998-12-02 | Kobe Steel Ltd | アルミニウム合金用結晶粒微細化剤 |
| US20150273631A1 (en) * | 2012-11-01 | 2015-10-01 | General Electric Company | Additive manufacturing method and apparatus |
| US20180010216A1 (en) * | 2016-07-05 | 2018-01-11 | NanoAL LLC | Ribbons and powders from high strength corrosion resistant aluminum alloys |
| US20180016667A1 (en) * | 2016-07-13 | 2018-01-18 | Apple Inc. | Aluminum Alloys with High Strength and Cosmetic Appeal |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12194529B2 (en) | 2018-11-07 | 2025-01-14 | Arconic Technologies Llc | 2XXX aluminum lithium alloys |
| CN111187963A (zh) * | 2020-02-14 | 2020-05-22 | 山东大学 | 适于消除激光选区熔化成形热裂纹的哈氏合金及方法与应用 |
| EP4129530A4 (fr) * | 2020-03-24 | 2023-09-20 | Toyo Aluminium Kabushiki Kaisha | Poudre d'aluminium pour moulage en stratifié métallique, son procédé de fabrication, et produit moulé en stratifié métallique |
| CN112746195A (zh) * | 2020-12-30 | 2021-05-04 | 吉林大学 | 抗衰退的细化剂及制备方法和应用、铝合金及其细化方法 |
| CN112746195B (zh) * | 2020-12-30 | 2022-02-01 | 吉林大学 | 抗衰退的细化剂及制备方法和应用、铝合金及其细化方法 |
| EP4272961A1 (fr) * | 2022-05-03 | 2023-11-08 | Commissariat à l'énergie atomique et aux énergies alternatives | Procédé de fabrication d'une pièce en alliage d'aluminium par fabrication additive |
| FR3135217A1 (fr) * | 2022-05-03 | 2023-11-10 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Procede de fabrication d’une piece en alliage d’aluminium par fabrication additive |
| CN119419279A (zh) * | 2025-01-07 | 2025-02-11 | 广州天赐高新材料股份有限公司 | 粉末材料及其制备方法、电极材料 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2019161137A1 (fr) | Produits en alliage d'aluminium et leurs procédés de production | |
| WO2019191056A1 (fr) | Produits en alliage d'aluminium fabriqués de manière additive possédant des affineurs nanométriques de grain | |
| US20190309402A1 (en) | Aluminum alloy products having fine eutectic-type structures, and methods for making the same | |
| US20170120386A1 (en) | Aluminum alloy products, and methods of making the same | |
| WO2019055623A1 (fr) | Produits d'alliage d'aluminum et leurs procédés de fabrication | |
| Pandey et al. | Study of fabrication, testing and characterization of Al/TiC metal matrix composites through different processing techniques | |
| US20170292174A1 (en) | Aluminum alloys having iron, silicon, vanadium and copper, and with a high volume of ceramic phase therein | |
| Qbau et al. | Development of light weight high strength aluminum alloy for selective laser melting | |
| WO2019055630A1 (fr) | Produits en alliage d'aluminum obtenus par fabrication additive et leurs procédés de fabrication | |
| CN111872386A (zh) | 一种高强度铝镁合金的3d打印工艺方法 | |
| CN111673085A (zh) | 一种高强度铝镁硅合金的3d打印工艺方法 | |
| WO2020081157A1 (fr) | Produits d'alliage d'aluminium améliorés et leurs procédés de fabrication | |
| CN108884518A (zh) | 铝、钛和锆的hcp材料及由其制成的产物 | |
| CN111659889A (zh) | 一种高强度铝锰合金的3d打印工艺方法 | |
| WO2020106764A1 (fr) | Produits d'alliage d'aluminium améliorés et leurs procédés de fabrication | |
| CN114450426A (zh) | 合金、合金粉末、合金构件和复合构件 | |
| WO2020081255A1 (fr) | Alliages d'aluminium contenant des éléments de fer et de terres rares | |
| CN111842914A (zh) | 一种高强度铝铜合金的3d打印工艺方法 | |
| EP3701054A2 (fr) | Produits en alliage de titane et leurs procédés de fabrication | |
| CN111742072A (zh) | 含铝合金用于增材制造的用途 | |
| Łazińska et al. | Microstructure and mechanical properties of a Fe-28% Al-5% Cr-1% Nb-2% B alloy fabricated by laser engineered net shaping | |
| WO2019245922A1 (fr) | Charges d'alimentation pour la fabrication additive de produits en alliage d'aluminium et produits fabriqués de manière additive à partir de ces dernières | |
| CN111850332A (zh) | 一种高强度铝锌合金的3d打印工艺方法 | |
| WO2019245784A1 (fr) | Produits d'alliage d'aluminium améliorés et leurs procédés de fabrication | |
| WO2019165136A1 (fr) | Produits d'alliage d'aluminum et leurs procédés de fabrication |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19776798 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 19776798 Country of ref document: EP Kind code of ref document: A1 |