[go: up one dir, main page]

WO2019168381A1 - Apparatus for automatic classification of skin disease, and method for automatic classification of skin disease - Google Patents

Apparatus for automatic classification of skin disease, and method for automatic classification of skin disease Download PDF

Info

Publication number
WO2019168381A1
WO2019168381A1 PCT/KR2019/002438 KR2019002438W WO2019168381A1 WO 2019168381 A1 WO2019168381 A1 WO 2019168381A1 KR 2019002438 W KR2019002438 W KR 2019002438W WO 2019168381 A1 WO2019168381 A1 WO 2019168381A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
skin
pixel values
pixel
glcm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2019/002438
Other languages
French (fr)
Korean (ko)
Inventor
김명남
조진호
구정모
나승대
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industry Academic Cooperation Foundation of KNU
Original Assignee
Industry Academic Cooperation Foundation of KNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industry Academic Cooperation Foundation of KNU filed Critical Industry Academic Cooperation Foundation of KNU
Publication of WO2019168381A1 publication Critical patent/WO2019168381A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/40Image enhancement or restoration using histogram techniques
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/698Matching; Classification
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30088Skin; Dermal

Definitions

  • the present invention relates to an apparatus and method for automatically classifying skin diseases, and more particularly, from a pixel characteristic of an image photographing a skin disease, a gray degree coexistence matrix (GLCM) and a gray degree continuous length matrix (GLRLM) converted from an image.
  • the present invention relates to an automatic skin disease classification device and an automatic skin disease classification method that can automatically classify skin diseases such as melanoma based on the extracted GLCM and GLRLM features.
  • senile skin disease is difficult to detect early, and when the treatment is missed progress to a malignant disease may be difficult to treat.
  • Melanoma is one of the most common diseases of the senile skin disease, and initially has a modality similar to nevus. Because of this, melanoma is difficult to detect early in the onset and is often mistaken for nevus.
  • Melanoma is a disease in which malignant tumors spread from the dermal layer of the skin to the muscles. Unlike nevus, the symptoms appear in the affected areas such as vascular malformation, melanin pigmentation and malformation. The most malignant malignant melanoma has no noticeable symptoms such as itching or pain, and it is characterized by ordinary black spots.
  • skins such as melanoma and the like are based on pixel features of an image of a skin disease image, a GLCM feature extracted from a gray degree coexistence matrix (GLCM) and a gray degree continuous length matrix (GLRLM) converted from an image, and a GLRLM feature.
  • An apparatus and method for automatically classifying skin diseases capable of automatically classifying diseases with high accuracy, and a recording medium.
  • a method for automatically classifying skin diseases comprising: calculating a histogram of brightness values of pixels in an image of a skin lesion, extracting pixel characteristics by statistically analyzing the histogram; Converting pixel values of the image into a gray-level co-occurrence matrix (GLCM) representing adjacency between the pixel values; Extracting a GLCM feature based on pixel values of the gray degree co-occurrence matrix; Converting pixel values of the image into a gray level run length matrix (GLRLM) representing a continuous length of the pixel values; Extracting a GLRLM feature based on pixel values of the gray continuous length matrix; And classifying the skin disease by applying the pixel feature, the GLCM feature, and the GLRLM feature to a machine learning model.
  • GLCM gray-level co-occurrence matrix
  • GLRLM gray level run length matrix
  • the pixel characteristic may include an average, standard deviation, skew, kottosis, entropy, and root mean square of pixel values of the image.
  • the GLCM feature is characterized by auto-correlation, contrast, correlation, dissimilarity, energy, and homogeneity of pixel values of the grayscale co-occurrence matrix. It may include.
  • the GLRLM features include short run emphasis (SRE), long run emphasis (LRE), gray level non-uniformity (GLNU), run percentage (RPN), and RLNU (run) extracted based on pixel values of the gray-scale continuous length matrix. Length Non-Uniformity) and High Gray Level Run Emphasis (HGLRE).
  • the machine learning model may include a support vector machine (SVM) model.
  • SVM support vector machine
  • a method for automatically classifying skin diseases may include: obtaining a dermatoscope image by photographing the skin lesion using dermoscopy; Converting the dermal image into a binary image and detecting an object of a smaller size than the skin lesion in the binary image; Removing noise including hair and skin keratin based on the size difference between the skin lesion and the object; And extracting a region of interest including only skin lesions by converting pixel values of normal skin to 0 in the dermal image.
  • the machine learning model may be acquired by learning the pixel feature, the GLCM feature, and the GLRLM feature based on learning image data including melanoma images and nevus images.
  • the method may further include generating.
  • the step of classifying the skin disease may include classifying the skin lesion into any one of melanoma and nevus based on the learned machine learning model.
  • a computer-readable recording medium having a program recorded thereon for executing the method for automatically classifying skin diseases is provided.
  • the at least one processor calculates a histogram of the brightness values of the pixels in the image of the skin lesion, the histogram Statistical analysis to extract pixel features; Converting pixel values of the image into a Gray-Level Co-occurrence Matrix (GLCM) representing adjacency between the pixel values; Extract a GLCM feature based on pixel values of the gray degree co-occurrence matrix; Converting pixel values of the image into a gray level run length matrix (GLRLM) representing a continuous length of the pixel values; Extract a GLRLM feature based on pixel values of the gray continuous length matrix; And apply the pixel feature, the GLCM feature, and the GLRLM feature to a machine learning model to classify skin diseases.
  • GLCM Gray-Level Co-occurrence Matrix
  • GLRLM gray level run length matrix
  • the at least one processor is further configured to convert a dermoscopic image of the skin lesion by a dermoscopy into a binary image; Detecting an object of a smaller size than the skin lesion in the binary image; Removing noise including hair and dead skin cells based on the size difference between the skin lesion and the object; The pixel value of the normal skin may be converted to 0 in the dermoscopic image to extract an ROI including only skin lesions.
  • the at least one processor generates the machine learning model by learning the pixel feature, the GLCM feature and the GLRLM feature using training image data including melanoma images and nevus images;
  • the skin lesion may be classified into one of melanoma and nevus based on the machine learning model trained using the training image data.
  • a GLCM feature and a GLRLM feature extracted from a gray degree coexistence matrix (GLCM) and a gray degree continuous length matrix (GLRLM) converted from an image
  • GLCM gray degree coexistence matrix
  • GLRLM gray degree continuous length matrix
  • FIG. 1 is a schematic flowchart of a method for automatically classifying skin diseases according to an exemplary embodiment of the present invention.
  • FIG. 2 is a block diagram of an automatic skin disease classification apparatus according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method for automatically classifying skin diseases according to an exemplary embodiment of the present invention.
  • step S30 of FIG. 3 is a detailed flowchart of step S30 of FIG. 3.
  • 5 is an exemplary diagram of size distribution diagrams of objects extracted from a dermoscopic image.
  • FIG. 6 is an exemplary view of a process of preprocessing a dermoscopic image according to an embodiment of the present invention.
  • FIG. 7 is a block diagram of a skin disease classification unit constituting an automatic skin disease classification apparatus according to an embodiment of the present invention.
  • GLCM gray degree co-occurrence matrix
  • FIG 9 is an exemplary diagram of a gray scale continuous length matrix (GLRLM) converted from an image according to an embodiment of the present invention.
  • GLRLM gray scale continuous length matrix
  • FIG. 10 is an exemplary diagram of melanoma images (a) and nevus images (b) used in machine learning according to an embodiment of the present invention.
  • FIG. 11 is a diagram showing skin disease classification accuracy performance of the automatic skin disease classification method according to an embodiment of the present invention.
  • ' ⁇ part' is a unit for processing at least one function or operation, and may mean, for example, a hardware component such as software, FPGA, or ASIC. However, ' ⁇ ' is not meant to be limited to software or hardware. ' ⁇ Portion' may be configured to be in an addressable storage medium or may be configured to play one or more processors.
  • ' ⁇ ' means components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and subs. Routines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables.
  • the functions provided by the component and the ' ⁇ ' may be performed separately by the plurality of components and the ' ⁇ ', or may be integrated with other additional components.
  • FIG. 1 is a schematic flowchart of a method for automatically classifying skin diseases according to an exemplary embodiment of the present invention.
  • S1 dermoscopy image
  • ROI region of interest
  • Extract S3
  • image features related to skin diseases such as melanoma are extracted from the region of interest of the image (S4 to S5).
  • Image features include pixel features extracted by first-order statistical analysis using information of the pixel itself, and gray-level co-occurrence matrix (GLCM) and gray level run length matrix (GLRLM) converted from an image into a matrix form. It may include GLCM features and GLRLM features extracted from.
  • the extracted features may be applied to machine learning discrimination algorithms such as a Support Vector Machine and used to classify skin diseases. According to an embodiment of the present invention, in particular, it is possible to accurately classify nevus and melanoma correctly.
  • FIG. 2 is a block diagram of an automatic skin disease classification apparatus according to an embodiment of the present invention.
  • the automatic skin disease classification apparatus 100 according to an embodiment of the present invention, the control unit 110, the learning unit 120, the image acquisition unit 130, the image preprocessor 140, skin disease classification The unit 150 and the storage unit 160 may be included.
  • the controller 110 includes at least one processor and controls the learner 120, the image acquirer 130, the image preprocessor 140, the skin disease classifier 150, and the storage 160. Execute the function (program) for automatic disease classification.
  • the learner 120 may learn features of skin disease using learning image data including melanoma images and nevus images (S10).
  • the learner 120 may extract features of melanoma using an image of a recognized skin disease database and generate a machine learning model for classifying melanoma and nevus.
  • the learner 120 may calculate a histogram from pixel values of an image of a skin disease database, and extract pixel features by statistically analyzing the histogram.
  • the learner 120 may convert the images of the skin disease database into GLCM and GLRLM, respectively, and then extract GLCM features and GLRLM features from GLCM and GLRLM.
  • the learner 120 learns the extracted pixel features, GLCM features, and GLRLM features to generate a machine learning model.
  • the machine learning model generated by the learner 120 may be stored in the storage 160 to be used for classification of skin diseases.
  • the image acquirer 130 may acquire an image by photographing a skin lesion part (S20).
  • the image acquirer 130 may include dermoscopy for acquiring a dermoscopic image by photographing a skin lesion suspected of melanoma.
  • the image acquired by the image acquirer 130 may be stored in the storage 160.
  • the focus of the image and the location of the disease may be different within the image for each specialist.
  • various noises except the disease are generated in the image. This noise can cause errors in extracting features from the image.
  • the image preprocessing unit 140 converts the dermal image to a binary image, removes noise such as hair and keratin (S30), and a region of interest including only skin lesions in the dermal image. Can be extracted.
  • the image preprocessed by the image preprocessor 140 may be stored in the storage 160.
  • the image preprocessor 140 converts the dermoscopic image into a binary image (S32).
  • the Otsu technique may extract a set of objects having similar values from the histogram of pixel values of the dermal image, thereby creating a threshold value for maximizing variance between divided regions.
  • the total variance may be expressed as the sum of the variance in the class and the variance between the classes, and may be expressed as in Equations (1) to (3) below.
  • ⁇ ⁇ 2 is the variance in the class
  • ⁇ c 2 is the variance between the classes
  • ⁇ i is the weight of the probability that the pixel is included in the class i
  • is the average value of the class.
  • Binary images may include noise, which is unnecessary information that reduces the accuracy of skin disease classification.
  • the noise is mainly caused by skin conditions such as hair or keratin of the patient. This noise causes errors in extracting the features of the skin lesions and causes problems of deterioration of accuracy.
  • the image preprocessor 140 removes noise based on the binary image obtained in the preprocessing process. Since the noise information is characterized in that the size information is relatively smaller than the skin disease in the image, the image preprocessing unit 140 removes the noise by using the size of the noise, and the region of interest based on the image from which the noise is removed Can be extracted.
  • FIG. 5 is an exemplary diagram of size distribution diagrams of objects extracted from a dermoscopic image.
  • the size of hair, keratin, etc. is smaller than the size of the skin component (e.g., melanoma), so that small-sized objects whose size difference from the skin lesion exceeds the set value are obtained.
  • the skin component e.g., melanoma
  • the image preprocessor 140 may compare the sizes of the components (objects) based on a binary image obtained in the preprocessing process to remove noise such as hair, normal skin, and keratin other than the skin lesion. That is, the image preprocessor 140 may detect objects (eg, hair, keratin, etc.) having a smaller size than the skin lesion in the binary image (S34). The image preprocessor 140 removes noise including hair and skin keratin based on the size difference between the skin lesion and the object (S36).
  • objects eg, hair, keratin, etc.
  • 6 is an exemplary view of a process of preprocessing a dermoscopic image according to an embodiment of the present invention.
  • 6A shows a binary image converted from a dermal image
  • B a noise-removed binary image
  • c a skin lesion boundary
  • d shows a region of interest extraction.
  • Figure 6 (b) it can be confirmed that the noise caused by hair or keratin, etc. is effectively removed.
  • the image preprocessor 140 extracts information on the skin lesion area by using the image from which the noise is removed, and proceeds with image reconstruction to minimize information on normal skin based on the extracted information. do.
  • the image preprocessor 140 may extract the ROI including only the skin lesion by converting the pixel value of the normal skin to 0 in the dermal image (S38).
  • the image preprocessor 140 may extract a boundary line for the skin lesion area of the image and calculate a size of the skin lesion area based on the extracted boundary line.
  • the image preprocessor 140 removes the information on the normal skin from the lesion area based on the calculated size of the skin lesion area, and removes the skin lesion area to prevent the feature from being extracted from the area except the skin lesion area.
  • the region of interest may be extracted by converting the pixel value of the region (normal skin) to 0, as shown in FIG. Accordingly, it is possible to minimize the error of features caused by normal skin and noise.
  • an embodiment of the present invention utilizes all of the pixel information in the dermal image, generates two transformation matrices based on the similarity of pixel clusters, and classifies skin diseases by extracting features from the transformation matrices. do.
  • the skin disease classifying unit 150 may use two transformation matrices GLCM and GLRLM generated from brightness values, histograms, and image information of pixels of the dermal image.
  • various features related to skin disease pixel features, GLCM features, and GLRLM features
  • the extracted features are machine learning models learned by the learning unit 120 (eg, For example, it may be applied to a support vector machine model) to classify skin diseases such as melanoma (S100).
  • the skin disease classifier 150 may include a histogram calculator 151, a pixel feature extractor 152, a GLCM converter 153, a GLCM feature extractor 154, a GLRLM converter 155, and a GLRLM.
  • the feature extractor 156 and the classifier 157 may be included.
  • the histogram calculator 151 calculates a histogram of brightness values of pixels in the ROI of the image of the skin lesion (S40).
  • the pixel feature extractor 152 extracts pixel features by first performing statistical analysis on a histogram of brightness values of pixels (S50). Pixel features using only pixel information are features related to histograms using pixel-specific information and frequency of pixel information, and may be used as important features representing overall information of an image.
  • the pixel feature extractor 152 includes a pixel including an average, standard deviation, skew, kutosis, entropy, and root mean square of pixel values of an image. Features can be extracted. Equations (4) to (7) are equations of pixel features used for feature extraction for skin lesions.
  • Equations (4) to (7) X is pixel information (pixel value) in the region of interest, P is a histogram for pixels in the region of interest, N is the number of pixels, Ent is the entropy of the histogram, and Kur is the keratos of the pixel values. , RMS is the root mean square of the pixel values, and STD is the standard deviation of the pixel values.
  • Entropy in Equation (4) is a measure of disorder, which is a feature of the frequency of histograms of pixels in an image.
  • Kurtosis of Equation (5) represents a measure of probability distribution indicating how much the distribution of pixel values in an image is distributed at a specific value.
  • the root mean square and standard deviation of Eqs. (6) and (7) can be used as a statistical measure of the magnitude of change in pixel values and as a pixel feature related to the scatter of values in the matrix.
  • the GLCM converter 153 converts the pixel values in the ROI of the image into a gray-level co-occurrence matrix (GLCM) representing the adjacency between the pixel values.
  • the conversion is made (S60). 8 is an exemplary diagram of a gray degree co-occurrence matrix (GLCM) converted from an image according to an embodiment of the present invention.
  • GLCM represents the frequency of pixel values of adjacent pixels, and is a matrix having an N ⁇ N size (N is the total number of pixel values).
  • the GLCM conversion unit 153 generates an image of (X, Y) pixels whenever an adjacent pixel group corresponding to the X th (X is an integer less than or equal to N) pixel value and the Y th (Y is an integer less than or equal to N) pixel value is found. You can create GLCM by increasing the value by 1. In the example of FIG.
  • the GLCM feature extractor 154 extracts the GLCM features based on pixel values of the gray degree co-generation matrix GLCM (S70).
  • the GLCM feature extractor 154 may include auto-correlation, contrast, correlation and analogy of pixel values of a gray-level co-occurrence matrix (GLCM).
  • GLCM features can be extracted including dissimilarity, energy and homogeneity.
  • the GLCM feature extractor 154 may extract GLCM features from GLCM according to Equations (8) to (10) below.
  • Equations (8) to (10) Cont is the contrast of pixel values of GLCM, Corr is the correlation of GLCM, Homo is the homogeneity of GLCM, i and j are the positions of the matrix, and P (i, j) is the GLCM Pixel value, N g is the pixel value of the image before conversion to GLCM, ⁇ x is the mean value of p x , P x (i) is the probability for the row in GLCM, ⁇ y is the mean value of p y , and P y (i) Is the probability of heat in GLCM, ⁇ x is the standard deviation of p x , and ⁇ y is the standard deviation of p y .
  • Contrast of Equation (8) is used as a feature of the measure of the contrast of the pixels in the image.
  • the correlation of Equation 9 is used as a feature of the measure of how similar the pixel values in the image are to each other.
  • the homogeneity of equation (10) is used as a feature of the measure of how similar pixel values are distributed in the pixels of an image.
  • the GLRLM converter 155 converts the pixel values of the image into a gray level run length matrix (GLRLM) representing a continuous length of the pixel values (S80).
  • GLRLM gray level run length matrix
  • S80 a continuous length of the pixel values
  • 9 is an exemplary diagram of a gray scale continuous length matrix (GLRLM) converted from an image according to an embodiment of the present invention.
  • the GLRLM is a matrix of how long pixels having a specific brightness value are continuously maintained at the same value (grouping).
  • the GLRLM may be generated by accumulating the frequency of successive pixel values in an image in the ROI.
  • the rows of GLRLM are pixel values, and the columns are the number of successive pixel values.
  • the GLRLM converter 153 may generate the GLRLM by incrementing the value of the (x, y) pixel by 1 each time the x-th (x is an integer less than or equal to N) pixel appears consecutively y times.
  • the frequency of the pixel having the pixel value '1' one row of GLRLMs
  • the one-row, two-column component value is one
  • the pixel value is one.
  • the frequency of the pixel having '4' four rows of GLRLMs
  • appears three times consecutively three columns of GLRLMs
  • the GLRLM feature extractor 156 extracts GLRLM features based on the pixel values of the gray continuous length matrix (S90).
  • the GLRLM feature extractor 156 may include short run emphasis (SRE), long run emphasis (LRE), gray level non-uniformity (GLNU), and RP based on pixel values of a gray scale continuous length matrix (GLRLM).
  • GLRLM features can be extracted including Run Percentage, Run Length Non-Uniformity (RLNU), and High Gray Level Run Emphasis (HGLRE).
  • the classifier 157 classifies skin diseases by applying pixel features, GLCM features, and GLRLM features to a machine learning model (S100).
  • the machine learning model can include a support vector machine (SVM) model.
  • SVM support vector machine
  • Table 1 shows the feature values (Pixel features, GLCM features, GLRLM features) for melanoma and Nevus used in the training data. From Table 1, it can be seen that differences that were not visible to the naked eye in pixel information due to the characteristics of melanoma and nevus appear in feature values extracted from the transformation matrices GLCM and GLRLM. Skin characteristic classification was performed through the SVM classifier using any test image using these feature values.
  • FIG. 11 is a diagram illustrating skin disease classification accuracy performance of an automatic skin disease classification method according to an exemplary embodiment of the present invention. In FIG.
  • Alpha represents classification accuracy when melanoma and nevus are classified using only ABCD method
  • Beta represents classification accuracy using ABCD method and pixel-based feature
  • Theta represents ABCD method, pixel feature, and GLCM feature. Is the classification accuracy when the ABCD method, pixel features, GLCM features, and GLRLM features are applied.
  • melanoma may be applied by applying micromatrix information (pixel features) that are difficult to visually identify and transformation matrixes based on similarity of adjacent pixels and GLCM / GLRLM features extracted from transformation matrices. It can be seen that the classification accuracy is improved.
  • the method for automatically classifying skin diseases according to an embodiment of the present invention may be used for quantitative and objective analysis and diagnosis in determining skin diseases, and may be particularly useful for an early detection system for skin diseases such as melanoma.
  • the automatic skin disease classification method according to an embodiment of the present invention can be utilized to effectively provide information about the disease before the invasive diagnosis such as biopsy for other skin diseases other than melanoma.
  • the method for automatically classifying skin diseases may be implemented by, for example, a computer executable program, and may be implemented in a general-purpose digital computer operating the program using a computer readable recording medium.
  • the computer-readable recording medium may be volatile memory such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), Nonvolatile memory, such as electrically erasable and programmable ROM (EEPROM), flash memory device, phase-change RAM (PRAM), magnetic RAM (MRAM), resistive RAM (RRAM), ferroelectric RAM (FRAM), floppy disk, hard disk, or Optical reading media may be, for example, but not limited to, a storage medium in the form of CD-ROM, DVD, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Pathology (AREA)
  • Databases & Information Systems (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Quality & Reliability (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Multimedia (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

Disclosed are an apparatus and a method for automatic classification of a skin disease and a recording medium, the apparatus and method being capable of automatically classifying a skin disease, such as melanoma, with a high level of accuracy on the basis of the pixel features of an image captured of the skin disease, and gray level co-occurrence matrix (GLCM) features and gray level run length matrix (GLRLM) features extracted from a GLCM and a GLRLM converted from the image. The method for automatic classification of a skin disease, according to an embodiment of the present invention, comprises the steps of: producing a histogram of the brightness values of pixels in an image captured of a skin legion, and extracting pixel features by means of statistical analysis of the histogram; converting the pixel values of the image to a gray level co-occurrence matrix (GLCM) representing the adjacency between the pixel values; extracting GLCM features on the basis of the pixel values of the gray level co-occurrence matrix; converting the pixel values of the image to a gray level run length matrix (GLRLM) representing the run length of the pixel values; extracting GLRLM features on the basis of the pixel values of the gray level run length matrix; and classifying the skin disease by applying the pixel features, the GLCM features, and the GLRLM features to a machine learning model.

Description

피부 질환 자동 분류 장치 및 피부 질환 자동 분류 방법Skin disease automatic classification device and skin disease automatic classification method

본 발명은 피부 질환 자동 분류 장치 및 방법에 관한 것으로, 보다 상세하게는 피부 질환을 촬영한 영상의 화소 특징, 영상으로부터 변환된 회색도 동시발생 행렬(GLCM)과 회색도 연속길이 행렬(GLRLM)로부터 추출된 GLCM 특징 및 GLRLM 특징을 기반으로 흑색종 등의 피부 질환을 높은 정확도로 자동 분류할 수 있는 피부 질환 자동 분류 장치 및 피부 질환 자동 분류 방법에 관한 것이다.The present invention relates to an apparatus and method for automatically classifying skin diseases, and more particularly, from a pixel characteristic of an image photographing a skin disease, a gray degree coexistence matrix (GLCM) and a gray degree continuous length matrix (GLRLM) converted from an image. The present invention relates to an automatic skin disease classification device and an automatic skin disease classification method that can automatically classify skin diseases such as melanoma based on the extracted GLCM and GLRLM features.

최근 생활환경의 변화 및 의료기술의 발전으로 인간의 수명이 점차 연장되고 있으며, 이로 인해 실버 의료 기술이 각광받고 있다. 따라서 고령화 사회에서 면역력 저하로 인하여 발생하는 질환에 대한 조기 대응이 중요하게 되었다. 특히, 노인성 피부질환은 조기 발견이 어렵고, 치료시기를 놓치게 되는 경우 악성 질환으로 진행되어 치료가 어려워지기도 한다. 흑색종(melanoma)은 이러한 노인성 피부질환에서 가장 많이 발생하는 질환중 하나로, 초기에 모반증(nevus)과 유사한 양상(modality)을 가진다. 이 때문에 흑색종은 발병 초기에 발견되기 어려우며 모반증으로 오인되는 경우가 많다. 흑색종은 피부의 진피층에서부터 근육까지 악성 종양이 퍼지는 질환으로서 모반증과 다르게 환부에서 나타나는 양상이 혈관 기형, 멜라닌 색소의 침착 및 기형적인 형태와 같은 증상이 나타나게 된다. 가장 악성도가 높은 악성 흑색종의 경우 가려움이나 통증 같은 자각 증상이 없으며 평범한 검은 반점으로 보이는 특징이 있다.Recently, the life span of human beings is gradually extended due to the change of living environment and the development of medical technology. Therefore, early response to diseases caused by lowering immunity in aging society has become important. In particular, senile skin disease is difficult to detect early, and when the treatment is missed progress to a malignant disease may be difficult to treat. Melanoma is one of the most common diseases of the senile skin disease, and initially has a modality similar to nevus. Because of this, melanoma is difficult to detect early in the onset and is often mistaken for nevus. Melanoma is a disease in which malignant tumors spread from the dermal layer of the skin to the muscles. Unlike nevus, the symptoms appear in the affected areas such as vascular malformation, melanin pigmentation and malformation. The most malignant malignant melanoma has no noticeable symptoms such as itching or pain, and it is characterized by ordinary black spots.

Abbasi 등은 의사들이 육안으로 임상적인 경험을 기반으로 흑색종을 판별하는 ABCD(Asymmetry, Border, Color, Diameter) 방법을 개발하였다. 그러나 이 방법은 병변(lesion) 부위의 형태를 육안으로 판별하는 방식으로서 전문의의 주관적 판단이 개입되기 때문에 같은 영상이라도 전문의 마다 다르게 진단할 수 있는 단점이 있다. Bowling 등은 기존의 육안으로 확인하던 ABCD 방법을 피부경(dermoscopy)을 이용하여 좀 더 세밀하게 관찰함으로써 발생할 수 있는 오류를 줄이는 방법을 사용하였다. 그러나 기존의 피부경은 일반 카메라에 현미경의 광학렌즈를 부착하는 방식으로서 질환 영역을 확대하여 볼 수 있으나 질환을 판별하는 방식은 기존의 육안으로 판독하는 방식을 사용하는 문제가 있다. 함 등은 피부경 영상에서 SVM(support vector machine)을 이용하여 흑색종과 모반증에 대한 자동 분류를 시도하였으나, 환자 개인마다 발생하는 피부상태와 모발, 광원들을 고려하지 않아 정확한 검출에 어려움이 있었다.Abbasi et al. Developed the ABCD (Asymmetry, Border, Color, Diameter) method, which allows doctors to visually distinguish melanoma based on clinical experience. However, this method is a method of visually discriminating the shape of a lesion, and since subjective judgment of a specialist is involved, the same image may be diagnosed differently for each specialist. Bowling et al. Used a method that reduces the errors that can be caused by observing the ABCD method, which was previously observed with the naked eye, in more detail using dermoscopy. However, the conventional skin mirror is a method of attaching a microscope optical lens to a general camera to enlarge the disease area, but there is a problem of using a conventional method of reading by the naked eye. Hahm et al. Attempted automatic classification of melanoma and nevus by using SVM (support vector machine) in dermoscopic images, but it was difficult to accurately detect the skin condition, hair, and light sources. .

본 발명은 피부 질환을 촬영한 영상의 화소 특징, 영상으로부터 변환된 회색도 동시발생 행렬(GLCM)과 회색도 연속길이 행렬(GLRLM)로부터 추출된 GLCM 특징 및 GLRLM 특징을 기반으로 흑색종 등의 피부 질환을 높은 정확도로 자동 분류할 수 있는 피부 질환 자동 분류 장치 및 방법, 기록 매체를 제공하기 위한 것이다.According to the present invention, skins such as melanoma and the like are based on pixel features of an image of a skin disease image, a GLCM feature extracted from a gray degree coexistence matrix (GLCM) and a gray degree continuous length matrix (GLRLM) converted from an image, and a GLRLM feature. An apparatus and method for automatically classifying skin diseases capable of automatically classifying diseases with high accuracy, and a recording medium.

본 발명이 해결하고자 하는 과제는 이상에서 언급된 과제로 제한되지 않는다. 언급되지 않은 다른 기술적 과제들은 이하의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The problem to be solved by the present invention is not limited to the above-mentioned problem. Other technical problems not mentioned will be clearly understood by those skilled in the art from the following description.

본 발명의 일 측면에 따른 피부 질환 자동 분류 방법은, 피부 병변을 촬영한 영상에서 화소들의 밝기값들의 히스토그램을 산출하고, 상기 히스토그램을 통계분석하여 화소 특징을 추출하는 단계; 상기 영상의 화소값들을 상기 화소값들 간의 인접성을 나타내는 회색도 동시발생 행렬(GLCM; Gray-Level Co-occurrence Matrix)로 변환하는 단계; 상기 회색도 동시발생 행렬의 화소값들을 기반으로 GLCM 특징을 추출하는 단계; 상기 영상의 화소값들을 상기 화소값들의 연속길이를 나타내는 회색도 연속길이 행렬(GLRLM; Gray Level RunLength Matrix)로 변환하는 단계; 상기 회색도 연속길이 행렬의 화소값들을 기반으로 GLRLM 특징을 추출하는 단계; 및 상기 화소 특징, 상기 GLCM 특징 및 상기 GLRLM 특징을 기계학습 모델에 적용하여 피부 질환을 분류하는 단계를 포함한다.According to an aspect of the present invention, there is provided a method for automatically classifying skin diseases, comprising: calculating a histogram of brightness values of pixels in an image of a skin lesion, extracting pixel characteristics by statistically analyzing the histogram; Converting pixel values of the image into a gray-level co-occurrence matrix (GLCM) representing adjacency between the pixel values; Extracting a GLCM feature based on pixel values of the gray degree co-occurrence matrix; Converting pixel values of the image into a gray level run length matrix (GLRLM) representing a continuous length of the pixel values; Extracting a GLRLM feature based on pixel values of the gray continuous length matrix; And classifying the skin disease by applying the pixel feature, the GLCM feature, and the GLRLM feature to a machine learning model.

상기 화소 특징은 상기 영상의 화소값들의 평균, 표준편차, 스큐(skew), 커토시스(kurtosis), 엔트로피(entropy) 및 제곱평균제곱근(root mean square)을 포함할 수 있다.The pixel characteristic may include an average, standard deviation, skew, kottosis, entropy, and root mean square of pixel values of the image.

상기 GLCM 특징은 상기 회색도 동시발생 행렬의 화소값들의 자가상관관계(auto-correlation), 대조도(contrast), 상관관계(correlation), 비유사도(dissimilarity), 에너지(energy) 및 동질성(homogeneity)을 포함할 수 있다.The GLCM feature is characterized by auto-correlation, contrast, correlation, dissimilarity, energy, and homogeneity of pixel values of the grayscale co-occurrence matrix. It may include.

상기 GLRLM 특징은 상기 회색도 연속길이 행렬의 화소값들을 기반으로 추출되는 SRE(Short Run Emphasis), LRE(Long Run Emphasis), GLNU(Gray Level Non-Uniformity), RP(Run Percentage), RLNU(Run Length Non-Uniformity) 및 HGLRE(High Gray Level Run Emphasis)를 포함할 수 있다.The GLRLM features include short run emphasis (SRE), long run emphasis (LRE), gray level non-uniformity (GLNU), run percentage (RPN), and RLNU (run) extracted based on pixel values of the gray-scale continuous length matrix. Length Non-Uniformity) and High Gray Level Run Emphasis (HGLRE).

상기 기계학습 모델은 서포트 벡터 머신(SVM; Support Vector Machine) 모델을 포함할 수 있다.The machine learning model may include a support vector machine (SVM) model.

본 발명의 실시예에 따른 피부 질환 자동 분류 방법은, 피부경(dermoscopy)을 이용하여 상기 피부 병변을 촬영하여 피부경 영상을 획득하는 단계; 상기 피부경 영상을 이진 영상으로 변환하고, 상기 이진 영상에서 상기 피부 병변보다 작은 크기의 객체를 검출하는 단계; 상기 피부 병변과 상기 객체의 크기 차이를 기반으로 모발 및 피부각질을 포함하는 잡음을 제거하는 단계; 및 상기 피부경 영상에서 정상 피부의 화소값을 0으로 변환하여 피부 병변 만을 포함하는 관심 영역을 추출하는 단계를 더 포함할 수 있다.In accordance with an aspect of the present invention, a method for automatically classifying skin diseases may include: obtaining a dermatoscope image by photographing the skin lesion using dermoscopy; Converting the dermal image into a binary image and detecting an object of a smaller size than the skin lesion in the binary image; Removing noise including hair and skin keratin based on the size difference between the skin lesion and the object; And extracting a region of interest including only skin lesions by converting pixel values of normal skin to 0 in the dermal image.

본 발명의 실시예에 따른 피부 질환 자동 분류 방법은, 흑색종 영상들 및 모반증 영상들을 포함하는 학습 영상 데이터를 기반으로 상기 화소 특징, 상기 GLCM 특징 및 상기 GLRLM 특징을 학습하여 상기 기계학습 모델을 생성하는 단계를 더 포함할 수 있다. 상기 피부 질환을 분류하는 단계는 학습된 상기 기계학습 모델을 기반으로 상기 피부 병변을 흑색종과 모반증 중 어느 하나로 분류하는 단계를 포함할 수 있다.In the method for automatically classifying skin diseases according to an exemplary embodiment of the present invention, the machine learning model may be acquired by learning the pixel feature, the GLCM feature, and the GLRLM feature based on learning image data including melanoma images and nevus images. The method may further include generating. The step of classifying the skin disease may include classifying the skin lesion into any one of melanoma and nevus based on the learned machine learning model.

본 발명의 다른 측면에 따르면, 상기 피부 질환 자동 분류 방법을 실행하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록 매체가 제공된다.According to another aspect of the present invention, a computer-readable recording medium having a program recorded thereon for executing the method for automatically classifying skin diseases is provided.

본 발명의 또 다른 측면에 따르면, 적어도 하나의 프로세서를 포함하는 피부 질환 자동 분류 장치에 있어서, 상기 적어도 하나의 프로세서는, 피부 병변을 촬영한 영상에서 화소들의 밝기값들의 히스토그램을 산출하고, 상기 히스토그램을 통계분석하여 화소 특징을 추출하고; 상기 영상의 화소값들을 상기 화소값들 간의 인접성을 나타내는 회색도 동시발생 행렬(GLCM; Gray-Level Co-occurrence Matrix)로 변환하고; 상기 회색도 동시발생 행렬의 화소값들을 기반으로 GLCM 특징을 추출하고; 상기 영상의 화소값들을 상기 화소값들의 연속길이를 나타내는 회색도 연속길이 행렬(GLRLM; Gray Level RunLength Matrix)로 변환하고; 상기 회색도 연속길이 행렬의 화소값들을 기반으로 GLRLM 특징을 추출하고; 그리고 상기 화소 특징, 상기 GLCM 특징 및 상기 GLRLM 특징을 기계학습 모델에 적용하여 피부 질환을 분류하도록 구성된다.According to another aspect of the present invention, in the automatic skin disease classification apparatus including at least one processor, the at least one processor, calculates a histogram of the brightness values of the pixels in the image of the skin lesion, the histogram Statistical analysis to extract pixel features; Converting pixel values of the image into a Gray-Level Co-occurrence Matrix (GLCM) representing adjacency between the pixel values; Extract a GLCM feature based on pixel values of the gray degree co-occurrence matrix; Converting pixel values of the image into a gray level run length matrix (GLRLM) representing a continuous length of the pixel values; Extract a GLRLM feature based on pixel values of the gray continuous length matrix; And apply the pixel feature, the GLCM feature, and the GLRLM feature to a machine learning model to classify skin diseases.

상기 적어도 하나의 프로세서는, 피부경(dermoscopy)에 의해 상기 피부 병변을 촬영한 피부경 영상을 이진 영상으로 변환하고; 상기 이진 영상에서 상기 피부 병변보다 작은 크기의 객체를 검출하고; 상기 피부 병변과 상기 객체의 크기 차이를 기반으로 모발 및 피부각질을 포함하는 잡음을 제거하고; 그리고 상기 피부경 영상에서 정상 피부의 화소값을 0으로 변환하여 피부 병변 만을 포함하는 관심 영역을 추출하도록 구성될 수 있다.The at least one processor is further configured to convert a dermoscopic image of the skin lesion by a dermoscopy into a binary image; Detecting an object of a smaller size than the skin lesion in the binary image; Removing noise including hair and dead skin cells based on the size difference between the skin lesion and the object; The pixel value of the normal skin may be converted to 0 in the dermoscopic image to extract an ROI including only skin lesions.

상기 적어도 하나의 프로세서는, 흑색종 영상들 및 모반증 영상들을 포함하는 학습 영상 데이터를 이용하여 상기 화소 특징, 상기 GLCM 특징 및 상기 GLRLM 특징을 학습하여 상기 기계학습 모델을 생성하고; 그리고 상기 학습 영상 데이터를 이용하여 학습된 상기 기계학습 모델을 기반으로 상기 피부 병변을 흑색종과 모반증 중 어느 하나로 분류하도록 구성될 수 있다.The at least one processor generates the machine learning model by learning the pixel feature, the GLCM feature and the GLRLM feature using training image data including melanoma images and nevus images; The skin lesion may be classified into one of melanoma and nevus based on the machine learning model trained using the training image data.

본 발명의 실시예에 의하면, 피부 질환을 촬영한 영상의 화소 특징, 영상으로부터 변환된 회색도 동시발생 행렬(GLCM)과 회색도 연속길이 행렬(GLRLM)로부터 추출된 GLCM 특징 및 GLRLM 특징을 기반으로 흑색종 등의 피부 질환을 높은 정확도로 자동 분류할 수 있는 피부 질환 자동 분류 장치 및 방법, 기록 매체가 제공된다.According to an embodiment of the present invention, based on a pixel feature of an image photographing a skin disease, a GLCM feature and a GLRLM feature extracted from a gray degree coexistence matrix (GLCM) and a gray degree continuous length matrix (GLRLM) converted from an image Provided are an apparatus and method for automatically classifying skin diseases and a recording medium capable of automatically classifying skin diseases such as melanoma with high accuracy.

본 발명의 효과는 상술한 효과들로 제한되지 않는다. 언급되지 않은 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.The effects of the present invention are not limited to the effects described above. Effects that are not mentioned will be clearly understood by those skilled in the art from the present specification and the accompanying drawings.

도 1은 본 발명의 실시예에 따른 피부 질환 자동 분류 방법의 개략적인 흐름도이다.1 is a schematic flowchart of a method for automatically classifying skin diseases according to an exemplary embodiment of the present invention.

도 2는 본 발명의 실시예에 따른 피부 질환 자동 분류 장치의 구성도이다.2 is a block diagram of an automatic skin disease classification apparatus according to an embodiment of the present invention.

도 3은 본 발명의 실시예에 따른 피부 질환 자동 분류 방법의 흐름도이다.3 is a flowchart of a method for automatically classifying skin diseases according to an exemplary embodiment of the present invention.

도 4는 도 3의 단계 S30의 구체적인 흐름도이다.4 is a detailed flowchart of step S30 of FIG. 3.

도 5는 피부경 영상에서 추출된 객체들의 크기 분포도의 예시도이다.5 is an exemplary diagram of size distribution diagrams of objects extracted from a dermoscopic image.

도 6은 본 발명의 실시예에 따라 피부경 영상을 전처리하는 과정의 예시도이다.6 is an exemplary view of a process of preprocessing a dermoscopic image according to an embodiment of the present invention.

도 7은 본 발명의 실시예에 따른 피부 질환 자동 분류 장치를 구성하는 피부질환 분류부의 구성도이다.7 is a block diagram of a skin disease classification unit constituting an automatic skin disease classification apparatus according to an embodiment of the present invention.

도 8은 본 발명의 실시예에 따라 영상으로부터 변환된 회색도 동시발생 행렬(GLCM)의 예시도이다.8 is an exemplary diagram of a gray degree co-occurrence matrix (GLCM) converted from an image according to an embodiment of the present invention.

도 9는 본 발명의 실시예에 따라 영상으로부터 변환된 회색도 연속길이 행렬(GLRLM)의 예시도이다.9 is an exemplary diagram of a gray scale continuous length matrix (GLRLM) converted from an image according to an embodiment of the present invention.

도 10은 본 발명의 실시예에 따라 기계학습에 사용된 흑색종 영상들(a)과 모반증 영상들(b)의 예시도이다.10 is an exemplary diagram of melanoma images (a) and nevus images (b) used in machine learning according to an embodiment of the present invention.

도 11은 본 발명의 실시예에 따른 피부 질환 자동 분류 방법의 피부 질환 분류 정확도 성능을 보여주는 도면이다.11 is a diagram showing skin disease classification accuracy performance of the automatic skin disease classification method according to an embodiment of the present invention.

본 발명의 다른 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술하는 실시예를 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되지 않으며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 만일 정의되지 않더라도, 여기서 사용되는 모든 용어들(기술 혹은 과학 용어들을 포함)은 이 발명이 속한 종래 기술에서 보편적 기술에 의해 일반적으로 수용되는 것과 동일한 의미를 갖는다. 공지된 구성에 대한 일반적인 설명은 본 발명의 요지를 흐리지 않기 위해 생략될 수 있다. 본 발명의 도면에서 동일하거나 상응하는 구성에 대하여는 가급적 동일한 도면부호가 사용된다. 본 발명의 이해를 돕기 위하여, 도면에서 일부 구성은 다소 과장되거나 축소되어 도시될 수 있다.Other advantages and features of the present invention, and methods of achieving them will become apparent with reference to the following embodiments in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, and the present invention is only defined by the scope of the claims. If not defined, all terms used herein (including technical or scientific terms) have the same meaning as commonly accepted by universal techniques in the prior art to which this invention belongs. General descriptions of known configurations may be omitted so as not to obscure the subject matter of the present invention. In the drawings of the present invention, the same reference numerals are used for the same or corresponding configurations. In order to help the understanding of the present invention, some of the components in the drawings may be somewhat exaggerated or reduced.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다", "가지다" 또는 "구비하다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the present invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise", "have" or "include" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification. Or any other feature or number, step, operation, component, part, or combination thereof.

본 명세서 전체에서 사용되는 '~부'는 적어도 하나의 기능이나 동작을 처리하는 단위로서, 예를 들어 소프트웨어, FPGA 또는 ASIC과 같은 하드웨어 구성요소를 의미할 수 있다. 그렇지만 '~부'가 소프트웨어 또는 하드웨어에 한정되는 의미는 아니다. '~부'는 어드레싱할 수 있는 저장 매체에 있도록 구성될 수도 있고 하나 또는 그 이상의 프로세서들을 재생시키도록 구성될 수도 있다.As used throughout the present specification, '~ part' is a unit for processing at least one function or operation, and may mean, for example, a hardware component such as software, FPGA, or ASIC. However, '~' is not meant to be limited to software or hardware. '~ Portion' may be configured to be in an addressable storage medium or may be configured to play one or more processors.

일 예로서 '~부'는 소프트웨어 구성요소들, 객체지향 소프트웨어 구성요소들, 클래스 구성요소들 및 태스크 구성요소들과 같은 구성요소들과, 프로세스들, 함수들, 속성들, 프로시저들, 서브루틴들, 프로그램 코드의 세그먼트들, 드라이버들, 펌웨어, 마이크로 코드, 회로, 데이터, 데이터베이스, 데이터 구조들, 테이블들, 어레이들 및 변수들을 포함할 수 있다. 구성요소와 '~부'에서 제공하는 기능은 복수의 구성요소 및 '~부'들에 의해 분리되어 수행될 수도 있고, 다른 추가적인 구성요소와 통합될 수도 있다.As an example, '~' means components such as software components, object-oriented software components, class components, and task components, and processes, functions, properties, procedures, and subs. Routines, segments of program code, drivers, firmware, microcode, circuits, data, databases, data structures, tables, arrays, and variables. The functions provided by the component and the '~' may be performed separately by the plurality of components and the '~', or may be integrated with other additional components.

본 발명의 실시예에 따른 피부 질환 자동 분류 방법은 영상 처리에 의해 피부 질환에 대한 특징들을 추출하고, 추출된 특징들을 기반으로 기계학습 기법의 알고리즘을 통하여 흑색종 등의 피부 질환을 객관적으로 자동 분류할 수 있다. 도 1은 본 발명의 실시예에 따른 피부 질환 자동 분류 방법의 개략적인 흐름도이다. 도 1을 참조하면, 먼저 피부경(dermoscopy)에 의해 피부 병변을 촬영하여 피부경 영상(dermoscopy image)을 획득하고(S1), 피부경 영상을 전처리한 후(S2), 관심 영역(ROI)을 추출한다(S3). 그리고 나서, 영상의 관심 영역에서 흑색종 등의 피부 질환에 관련된 영상 특징들을 추출한다(S4~S5).In the automatic skin disease classification method according to an embodiment of the present invention, features for skin diseases are extracted by image processing, and based on the extracted features, an automatic classification of skin diseases such as melanoma is performed through an algorithm of a machine learning technique. can do. 1 is a schematic flowchart of a method for automatically classifying skin diseases according to an exemplary embodiment of the present invention. Referring to FIG. 1, first, skin lesions are photographed by dermoscopy to obtain a dermoscopy image (S1), and after pretreatment of the dermis image (S2), a region of interest (ROI) is obtained. Extract (S3). Then, image features related to skin diseases such as melanoma are extracted from the region of interest of the image (S4 to S5).

영상 특징들은 화소(pixel) 자체의 정보를 이용한 1차 통계분석에 의해 추출되는 화소 특징들과, 영상으로부터 행렬형태로 변환된 GLCM(Gray-Level Co-occurrence Matrix) 및 GLRLM(Gray Level RunLength Matrix)으로부터 추출된 GLCM 특징들 및 GLRLM 특징들을 포함할 수 있다. 추출된 특징들(화소 특징들, GLCM 특징들 및 GLRLM 특징들)은 서포트 벡터 머신(Support Vector Machine) 등의 기계학습 판별 알고리즘에 적용되어 피부 질환을 분류하는데 활용될 수 있다. 본 발명의 실시예에 의하면, 특히 모반증과 흑색종을 정확하게 자동 분류할 수 있다.Image features include pixel features extracted by first-order statistical analysis using information of the pixel itself, and gray-level co-occurrence matrix (GLCM) and gray level run length matrix (GLRLM) converted from an image into a matrix form. It may include GLCM features and GLRLM features extracted from. The extracted features (pixel features, GLCM features, and GLRLM features) may be applied to machine learning discrimination algorithms such as a Support Vector Machine and used to classify skin diseases. According to an embodiment of the present invention, in particular, it is possible to accurately classify nevus and melanoma correctly.

도 2는 본 발명의 실시예에 따른 피부 질환 자동 분류 장치의 구성도이다. 도 2를 참조하면, 본 발명의 실시예에 따른 피부 질환 자동 분류 장치(100)는 제어부(110), 학습부(120), 영상 획득부(130), 영상 전처리부(140), 피부질환 분류부(150) 및 저장부(160)를 포함할 수 있다. 제어부(110)는 적어도 하나의 프로세서를 포함하고, 학습부(120), 영상 획득부(130), 영상 전처리부(140), 피부질환 분류부(150) 및 저장부(160)를 제어하여 피부 질환 자동 분류를 위한 기능(프로그램)을 실행시킨다.2 is a block diagram of an automatic skin disease classification apparatus according to an embodiment of the present invention. 2, the automatic skin disease classification apparatus 100 according to an embodiment of the present invention, the control unit 110, the learning unit 120, the image acquisition unit 130, the image preprocessor 140, skin disease classification The unit 150 and the storage unit 160 may be included. The controller 110 includes at least one processor and controls the learner 120, the image acquirer 130, the image preprocessor 140, the skin disease classifier 150, and the storage 160. Execute the function (program) for automatic disease classification.

도 3은 본 발명의 실시예에 따른 피부 질환 자동 분류 방법의 흐름도이다. 도 2 및 도 3을 참조하면, 학습부(120)는 흑색종 영상들 및 모반증 영상들을 포함하는 학습 영상 데이터를 이용하여 피부 질환의 특징들을 학습할 수 있다(S10). 실시예에서, 학습부(120)는 공인된 피부질환 데이터베이스의 영상을 이용하여 흑색종에서 나타나는 특징들을 추출하고, 흑색종과 모반증을 분류하기 위한 기계학습 모델을 생성할 수 있다. 학습부(120)는 피부질환 데이터베이스의 영상의 화소값들로부터 히스토그램을 산출하고, 히스토그램을 통계 분석하여 화소 특징들을 추출할 수 있다. 또한, 학습부(120)는 피부질환 데이터베이스의 영상을 GLCM 및 GLRLM으로 각각 변환한 후, GLCM과 GLRLM으로부터 GLCM 특징들 및 GLRLM 특징들을 추출할 수 있다. 학습부(120)는 추출된 화소 특징들, GLCM 특징들 및 GLRLM 특징들을 학습하여, 기계학습 모델을 생성할 수 있다. 학습부(120)에 의해 생성된 기계학습 모델은 이후의 피부 질환 분류에 활용하기 위하여 저장부(160)에 저장될 수 있다.3 is a flowchart of a method for automatically classifying skin diseases according to an exemplary embodiment of the present invention. Referring to FIGS. 2 and 3, the learner 120 may learn features of skin disease using learning image data including melanoma images and nevus images (S10). In an embodiment, the learner 120 may extract features of melanoma using an image of a recognized skin disease database and generate a machine learning model for classifying melanoma and nevus. The learner 120 may calculate a histogram from pixel values of an image of a skin disease database, and extract pixel features by statistically analyzing the histogram. In addition, the learner 120 may convert the images of the skin disease database into GLCM and GLRLM, respectively, and then extract GLCM features and GLRLM features from GLCM and GLRLM. The learner 120 learns the extracted pixel features, GLCM features, and GLRLM features to generate a machine learning model. The machine learning model generated by the learner 120 may be stored in the storage 160 to be used for classification of skin diseases.

영상 획득부(130)는 피부 병변 부위를 촬영하여 영상을 획득할 수 있다(S20). 실시예에서, 영상 획득부(130)는 흑색종으로 의심되는 피부 병변을 촬영하여 피부경 영상을 획득하는 피부경(dermoscopy)을 포함할 수 있다. 영상 획득부(130)에 의해 획득된 영상은 저장부(160)에 저장될 수 있다.The image acquirer 130 may acquire an image by photographing a skin lesion part (S20). In an embodiment, the image acquirer 130 may include dermoscopy for acquiring a dermoscopic image by photographing a skin lesion suspected of melanoma. The image acquired by the image acquirer 130 may be stored in the storage 160.

피부경 영상은 촬영하는 전문의마다 영상의 초점과 질병의 위치가 영상 내에서 다르게 나타날 수 있다. 또한, 환자의 피부 상태와 모발로 인하여 영상에서 질환을 제외한 다양한 잡음이 발생하게 된다. 이러한 잡음은 영상에서 특징들을 추출하는데 오류를 발생시킬 수 있다. 이러한 문제점을 방지하기 위하여, 영상 전처리부(140)는 피부경 영상을 이진 영상으로 변환한 후, 모발 및 피부각질 등의 잡음을 제거하고(S30), 피부경 영상에서 피부 병변 만을 포함하는 관심 영역을 추출할 수 있다. 영상 전처리부(140)에 의해 전처리된 영상은 저장부(160)에 저장될 수 있다.In the dermoscopic image, the focus of the image and the location of the disease may be different within the image for each specialist. In addition, due to the skin condition and hair of the patient, various noises except the disease are generated in the image. This noise can cause errors in extracting features from the image. In order to prevent this problem, the image preprocessing unit 140 converts the dermal image to a binary image, removes noise such as hair and keratin (S30), and a region of interest including only skin lesions in the dermal image. Can be extracted. The image preprocessed by the image preprocessor 140 may be stored in the storage 160.

도 4는 도 3의 단계 S30의 구체적인 흐름도이다. 도 2 및 도 4를 참조하면, 영상 전처리부(140)는 피부경 영상을 이진 영상으로 변환한다(S32). 실시예에서, Otsu 기법 등에 의해, 피부경 영상의 화소값들의 히스토그램에서 유사한 값을 가지는 객체들의 집합을 추출하여, 분할 영역간의 분산을 최대화시키는 문턱치값을 만들 수 있다. 전체 분산은 클래스 내의 분산과 클래스들 간의 분산의 합으로 나타낼 수 있으며, 하기의 수식 (1) 내지 (3)과 같이 표현될 수 있다.4 is a detailed flowchart of step S30 of FIG. 3. 2 and 4, the image preprocessor 140 converts the dermoscopic image into a binary image (S32). In an embodiment, the Otsu technique may extract a set of objects having similar values from the histogram of pixel values of the dermal image, thereby creating a threshold value for maximizing variance between divided regions. The total variance may be expressed as the sum of the variance in the class and the variance between the classes, and may be expressed as in Equations (1) to (3) below.

[수식 (1) 내지 (3)][Formulas (1) to (3)]

Figure PCTKR2019002438-appb-I000001
Figure PCTKR2019002438-appb-I000001

수식 (1) 내지 (3)에서, σω 2는 클래스 내의 분산, σc 2는 클래스들 간 분산, ωi는 클래스 i에 화소가 포함될 확률의 가중치, μ는 클래스의 평균값이다. 이진 영상에는 피부 질환 분류의 정확성을 떨어뜨리는 불필요한 정보인 잡음이 제거되지 않고 포함될 수 있다. 잡음은 주로 환자의 모발이나 피부 각질 등의 피부 상태에 의하여 발생하게 된다. 이러한 잡음은 피부 병변 부위의 특징을 추출하는데 오류를 발생시키며, 정확도를 저하시키는 문제점을 발생시킨다.In Equations (1) to (3), σ ω 2 is the variance in the class, σ c 2 is the variance between the classes, ω i is the weight of the probability that the pixel is included in the class i, and μ is the average value of the class. Binary images may include noise, which is unnecessary information that reduces the accuracy of skin disease classification. The noise is mainly caused by skin conditions such as hair or keratin of the patient. This noise causes errors in extracting the features of the skin lesions and causes problems of deterioration of accuracy.

이러한 문제점을 보완하기 위하여, 영상 전처리부(140)는 전처리 과정에서 획득한 이진 영상을 기반으로 잡음을 제거한다. 잡음 정보는 영상에서 피부 질환과 비교하여 크기 정보가 상대적으로 작은 것이 특징이므로, 영상 전처리부(140)는 이러한 잡음의 크기 특징을 이용하여 잡음을 제거하고, 잡음이 제거된 영상을 기반으로 관심 영역을 추출할 수 있다.To compensate for this problem, the image preprocessor 140 removes noise based on the binary image obtained in the preprocessing process. Since the noise information is characterized in that the size information is relatively smaller than the skin disease in the image, the image preprocessing unit 140 removes the noise by using the size of the noise, and the region of interest based on the image from which the noise is removed Can be extracted.

도 5는 피부경 영상에서 추출된 객체들의 크기 분포도의 예시도이다. 통상적으로 모발, 피부각질 등의 크기는 피부 병변(Lesion component)(예를 들어, 흑색종)의 크기보다 작기 때문에, 피부 병변과의 크기 차이가 설정값을 초과하는 작은 크기의 객체들을 피부경 영상에서 제거함으로써, 모발이나 피부각질 등의 잡음(noise)을 제거할 수 있다. 피부 병변의 경우 영상에서 가장 많은 화소들을 포함하고 있으며, 상대적으로 잡음은 병변보다 작은 크기의 구성요소를 가지게 된다.5 is an exemplary diagram of size distribution diagrams of objects extracted from a dermoscopic image. Typically, the size of hair, keratin, etc. is smaller than the size of the skin component (e.g., melanoma), so that small-sized objects whose size difference from the skin lesion exceeds the set value are obtained. By removing from, it is possible to remove noise such as hair and dead skin cells. Skin lesions contain the largest number of pixels in the image, and the noise has a smaller component than the lesion.

영상 전처리부(140)는 피부 병변 부위 이외의 모발, 정상피부, 피부각질과 같은 잡음을 제거하기 위하여 전처리 과정에서 획득한 이진 영상을 기반으로 구성요소들(객체들)의 크기를 비교할 수 있다. 즉, 영상 전처리부(140)는 이진 영상에서 피부 병변보다 작은 크기의 객체들(예를 들어, 모발, 피부각질 등)을 검출할 수 있다(S34). 영상 전처리부(140)는 피부 병변과 객체 간의 크기 차이를 기반으로 모발 및 피부각질을 포함하는 잡음을 제거한다(S36).The image preprocessor 140 may compare the sizes of the components (objects) based on a binary image obtained in the preprocessing process to remove noise such as hair, normal skin, and keratin other than the skin lesion. That is, the image preprocessor 140 may detect objects (eg, hair, keratin, etc.) having a smaller size than the skin lesion in the binary image (S34). The image preprocessor 140 removes noise including hair and skin keratin based on the size difference between the skin lesion and the object (S36).

도 6은 본 발명의 실시예에 따라 피부경 영상을 전처리하는 과정의 예시도이다. 도 6의 (a)는 피부경 영상으로부터 변환된 이진 영상, (b)는 잡음 제거된 이진 영상, (c)는 피부 병변 경계를 추출한 결과, (d)는 관심 영역 추출 결과이다. 도 6의 (b)에서, 모발이나 피부각질 등에 의해 발생하는 잡음이 효과적으로 제거된 것을 확인할 수 있다.6 is an exemplary view of a process of preprocessing a dermoscopic image according to an embodiment of the present invention. 6A shows a binary image converted from a dermal image, (B) a noise-removed binary image, (c) a skin lesion boundary, and (d) shows a region of interest extraction. In Figure 6 (b), it can be confirmed that the noise caused by hair or keratin, etc. is effectively removed.

이진 영상에서 잡음이 제거되면, 영상 전처리부(140)는 잡음이 제거된 영상을 이용하여 피부 병변 부위에 대한 정보를 추출하고, 추출한 정보를 기반으로 정상 피부에 대한 정보를 최소화하는 영상 재구성을 진행한다. 실시예에서, 영상 전처리부(140)는 피부경 영상에서 정상 피부의 화소값을 0으로 변환하여 피부 병변 만을 포함하는 관심 영역을 추출할 수 있다(S38).When the noise is removed from the binary image, the image preprocessor 140 extracts information on the skin lesion area by using the image from which the noise is removed, and proceeds with image reconstruction to minimize information on normal skin based on the extracted information. do. In an embodiment, the image preprocessor 140 may extract the ROI including only the skin lesion by converting the pixel value of the normal skin to 0 in the dermal image (S38).

실시예에서, 영상 전처리부(140)는 영상의 피부 병변 부위에 대한 경계선을 추출하고, 추출한 경계선을 기반으로 피부 병변 부위에 대한 크기를 계산할 수 있다. 영상 전처리부(140)는 계산된 피부 병변 부위의 크기를 기반으로 병변 부위에서부터 정상 피부에 대한 정보를 제거하고, 피부 병변 부위를 제외한 영역에서 특징이 추출되는 것을 방지하기 위하여 피부 병변 부위를 제외한 나머지 영역(정상 피부)의 화소 값을 0으로 변환하여 도 6의 (d)에 도시된 바와 같이 관심 영역을 추출할 수 있다. 이에 따라, 정상 피부와 잡음으로 발생하는 특징들의 오류를 최소화할 수 있다.In an embodiment, the image preprocessor 140 may extract a boundary line for the skin lesion area of the image and calculate a size of the skin lesion area based on the extracted boundary line. The image preprocessor 140 removes the information on the normal skin from the lesion area based on the calculated size of the skin lesion area, and removes the skin lesion area to prevent the feature from being extracted from the area except the skin lesion area. The region of interest may be extracted by converting the pixel value of the region (normal skin) to 0, as shown in FIG. Accordingly, it is possible to minimize the error of features caused by normal skin and noise.

종래에 전문의는 임상적인 경험을 기반으로 육안으로 피부경 영상을 확인하여 ABCD 방법 등에 의해 질환을 진단하게 되는데, 이러한 주관적인 진단은 오류를 발생시킬 수 있는 문제점이 있다. 이러한 문제점을 보완하기 위하여 본 발명의 실시예에서는 피부경 영상에서 화소 정보를 모두 활용하고, 화소 군집의 유사성을 기반으로 2개의 변환 행렬들을 생성하고, 변환 행렬들로부터 특징들을 추출하여 피부 질환을 분류한다.In the related art, a specialist diagnoses a disease by the ABCD method by visually confirming the dermal image based on clinical experience. Such a subjective diagnosis has a problem that may cause an error. To solve this problem, an embodiment of the present invention utilizes all of the pixel information in the dermal image, generates two transformation matrices based on the similarity of pixel clusters, and classifies skin diseases by extracting features from the transformation matrices. do.

도 7은 본 발명의 실시예에 따른 피부 질환 자동 분류 장치를 구성하는 피부질환 분류부의 구성도이다. 도 2, 도 3 및 도 7을 참조하면, 피부질환 분류부(150)는 피부경 영상의 화소들의 밝기값들과 히스토그램, 영상 정보로부터 생성된 2개의 변환 매트릭스들(GLCM, GLRLM)을 통하여, 관심 영역에서 피부 질환과 관련된 다양한 특징들(화소 특징들, GLCM 특징들 및 GLRLM 특징들)을 추출하고(S40~S90), 추출된 특징들을 학습부(120)에 의해 학습된 기계학습 모델(예를 들어, 서포트 벡터 머신 모델)에 적용하여 흑색종 등의 피부 질환을 분류할 수 있다(S100). 실시예에서, 피부질환 분류부(150)는 히스토그램 산출부(151), 화소 특징 추출부(152), GLCM 변환부(153), GLCM 특징 추출부(154), GLRLM 변환부(155), GLRLM 특징 추출부(156) 및 분류기(157)를 포함할 수 있다.7 is a block diagram of a skin disease classification unit constituting an automatic skin disease classification apparatus according to an embodiment of the present invention. 2, 3, and 7, the skin disease classifying unit 150 may use two transformation matrices GLCM and GLRLM generated from brightness values, histograms, and image information of pixels of the dermal image. In the region of interest, various features related to skin disease (pixel features, GLCM features, and GLRLM features) are extracted (S40 ˜ S90), and the extracted features are machine learning models learned by the learning unit 120 (eg, For example, it may be applied to a support vector machine model) to classify skin diseases such as melanoma (S100). In an embodiment, the skin disease classifier 150 may include a histogram calculator 151, a pixel feature extractor 152, a GLCM converter 153, a GLCM feature extractor 154, a GLRLM converter 155, and a GLRLM. The feature extractor 156 and the classifier 157 may be included.

히스토그램 산출부(151)는 피부 병변을 촬영한 영상의 관심 영역에서 화소들의 밝기값들의 히스토그램(Histogram)을 산출한다(S40). 화소 특징 추출부(152)는 화소들의 밝기값들의 히스토그램을 1차 통계분석하여 화소 특징들을 추출한다(S50). 화소 정보만을 이용한 화소 특징들은 화소 고유의 정보와 화소 정보의 빈도수를 이용하는 히스토그램에 관련된 특징들로, 영상의 전체적인 정보를 나타내는 중요한 특징으로 활용될 수 있다.The histogram calculator 151 calculates a histogram of brightness values of pixels in the ROI of the image of the skin lesion (S40). The pixel feature extractor 152 extracts pixel features by first performing statistical analysis on a histogram of brightness values of pixels (S50). Pixel features using only pixel information are features related to histograms using pixel-specific information and frequency of pixel information, and may be used as important features representing overall information of an image.

실시예에서, 화소 특징 추출부(152)는 영상의 화소값들의 평균, 표준편차, 스큐(skew), 커토시스(kurtosis), 엔트로피(entropy) 및 제곱평균제곱근(root mean square)을 포함하는 화소 특징들을 추출할 수 있다. 수식 (4) 내지 (7)은 피부 병변에 대한 특징 추출에 사용되는 화소 특징들의 수식이다.In an embodiment, the pixel feature extractor 152 includes a pixel including an average, standard deviation, skew, kutosis, entropy, and root mean square of pixel values of an image. Features can be extracted. Equations (4) to (7) are equations of pixel features used for feature extraction for skin lesions.

[수식 (4) 내지 (7)][Formulas (4) to (7)]

Figure PCTKR2019002438-appb-I000002
Figure PCTKR2019002438-appb-I000002

수식 (4) 내지 (7)에서, X는 관심 영역 안의 화소 정보(화소값), P는 관심 영역 안의 화소에 대한 히스토그램, N은 화소 개수, Ent는 히스토그램의 엔트로피, Kur는 화소값들의 커토시스, RMS는 화소값들의 제곱평균제곱근, STD는 화소값들의 표준편차이다.In Equations (4) to (7), X is pixel information (pixel value) in the region of interest, P is a histogram for pixels in the region of interest, N is the number of pixels, Ent is the entropy of the histogram, and Kur is the keratos of the pixel values. , RMS is the root mean square of the pixel values, and STD is the standard deviation of the pixel values.

수식(4)의 엔트로피(entropy)는 무질서도의 척도로서, 영상 내의 픽셀들의 히스토그램들의 빈도에 관한 특징을 나타낸다. 수식 (5)의 커토시스(kurtosis)는 영상 내의 화소값들의 분포가 특정 값에 얼마나 많이 분포하는지를 확률분포로 알 수 있는 척도를 나타낸다. 수식 (6)과 (7)의 제곱평균제곱근(root mean square)과 표준편차(standard deviation)는 화소값들의 변화 크기에 대한 통계적 척도와 행렬 내의 값들의 산포도에 관련된 화소 특징으로 사용될 수 있다.Entropy in Equation (4) is a measure of disorder, which is a feature of the frequency of histograms of pixels in an image. Kurtosis of Equation (5) represents a measure of probability distribution indicating how much the distribution of pixel values in an image is distributed at a specific value. The root mean square and standard deviation of Eqs. (6) and (7) can be used as a statistical measure of the magnitude of change in pixel values and as a pixel feature related to the scatter of values in the matrix.

GLCM 변환부(153)는 화소의 연속성에 관련된 특징을 추출하기 위하여, 영상의 관심 영역 내 화소값들을 화소값들 간의 인접성을 나타내는 회색도 동시발생 행렬(GLCM; Gray-Level Co-occurrence Matrix)로 변환한다(S60). 도 8은 본 발명의 실시예에 따라 영상으로부터 변환된 회색도 동시발생 행렬(GLCM)의 예시도이다.In order to extract a feature related to pixel continuity, the GLCM converter 153 converts the pixel values in the ROI of the image into a gray-level co-occurrence matrix (GLCM) representing the adjacency between the pixel values. The conversion is made (S60). 8 is an exemplary diagram of a gray degree co-occurrence matrix (GLCM) converted from an image according to an embodiment of the present invention.

GLCM은 인접한 화소들의 화소값들의 빈도를 나타낸 것으로, N×N 크기(N은 전체 화소값들의 개수임)를 갖는 행렬이다. GLCM 변환부(153)는 X번째(X는 N 이하의 정수) 화소값, Y번째(Y는 N 이하의 정수) 화소값에 해당하는 인접 화소군이 발견될 때마다 (X, Y) 픽셀의 값을 1씩 증가시켜 GLCM을 생성할 수 있다. 도 8의 예에서, 화소값 '1'을 가지는 화소들이 연속된 빈도가 1이므로 GLCM의 1행 1열의 성분은 1이고, 화소값 '2'(GLCM의 2번째 행)를 가지는 화소와 화소값 '1'(GLCM의 1번째 열)을 가지는 화소가 연속된 빈도가 2이므로 GLCM의 2행 1열의 성분이 2가 된다. 이렇게 변환된 GLCM을 사용하여, 관심 영역 내의 영상에서 어느 한 화소와 인접 화소와의 연속성에 대한 분석이 가능하게 된다.GLCM represents the frequency of pixel values of adjacent pixels, and is a matrix having an N × N size (N is the total number of pixel values). The GLCM conversion unit 153 generates an image of (X, Y) pixels whenever an adjacent pixel group corresponding to the X th (X is an integer less than or equal to N) pixel value and the Y th (Y is an integer less than or equal to N) pixel value is found. You can create GLCM by increasing the value by 1. In the example of FIG. 8, since the pixels having the pixel value '1' have a continuous frequency of 1, the component of the first row and the first column of the GLCM is 1, and the pixel having the pixel value '2' (the second row of the GLCM) and the pixel value Since pixels having '1' (the first column of GLCM) have a continuous frequency of 2, the components of the second row and the first column of GLCM become two. By using the converted GLCM, it is possible to analyze the continuity of one pixel and an adjacent pixel in the image in the ROI.

GLCM 특징 추출부(154)는 회색도 동시발생 행렬(GLCM)의 화소값들을 기반으로 GLCM 특징들을 추출한다(S70). 실시예에서, GLCM 특징 추출부(154)는 회색도 동시발생 행렬(GLCM)의 화소값들의 자가상관관계(auto-correlation), 대조도(대비도)(contrast), 상관관계(correlation), 비유사도(dissimilarity), 에너지(energy) 및 동질성(균질성)(homogeneity)을 포함하는 GLCM 특징들을 추출할 수 있다. 실시예에서, GLCM 특징 추출부(154)는 하기의 수식 (8) 내지 (10)에 따라 GLCM에서 GLCM 특징들을 추출할 수 있다.The GLCM feature extractor 154 extracts the GLCM features based on pixel values of the gray degree co-generation matrix GLCM (S70). In an embodiment, the GLCM feature extractor 154 may include auto-correlation, contrast, correlation and analogy of pixel values of a gray-level co-occurrence matrix (GLCM). GLCM features can be extracted including dissimilarity, energy and homogeneity. In an embodiment, the GLCM feature extractor 154 may extract GLCM features from GLCM according to Equations (8) to (10) below.

[수식 (8) 내지 (10)][Formulas (8) to (10)]

Figure PCTKR2019002438-appb-I000003
Figure PCTKR2019002438-appb-I000003

수식 (8) 내지 (10)에서, Cont는 GLCM의 화소값들의 대조도, Corr은 GLCM의 상관관계, Homo는 GLCM의 동질성, i와 j는 행렬의 위치, P(i,j)는 GLCM의 화소값, Ng는 GLCM으로 변환되기 전의 영상의 화소값, μx는 px의 평균값, Px(i)는 GLCM에서 행에 대한 확률, μy는 py의 평균값, Py(i)는 GLCM에서 열에 대한 확률, σx는 px의 표준편차, σy는 py의 표준편차이다.In Equations (8) to (10), Cont is the contrast of pixel values of GLCM, Corr is the correlation of GLCM, Homo is the homogeneity of GLCM, i and j are the positions of the matrix, and P (i, j) is the GLCM Pixel value, N g is the pixel value of the image before conversion to GLCM, μ x is the mean value of p x , P x (i) is the probability for the row in GLCM, μ y is the mean value of p y , and P y (i) Is the probability of heat in GLCM, σ x is the standard deviation of p x , and σ y is the standard deviation of p y .

수식(8)의 대조도(contrast)는 영상 내의 화소의 대비도가 얼마인지에 대한 척도의 특징으로 사용된다. 수식(9)의 상관관계(correlation)는 영상 내의 화소 값들이 서로 얼마나 유사한지에 대한 척도의 특징으로 사용된다. 수식 (10)의 동질성(homogeneity)은 영상의 화소들에 얼마나 유사한 화소값들이 분포되어 있는지에 대한 척도의 특징으로 사용된다.Contrast of Equation (8) is used as a feature of the measure of the contrast of the pixels in the image. The correlation of Equation 9 is used as a feature of the measure of how similar the pixel values in the image are to each other. The homogeneity of equation (10) is used as a feature of the measure of how similar pixel values are distributed in the pixels of an image.

GLRLM 변환부(155)는 영상의 화소값들을 화소값들의 연속길이를 나타내는 회색도 연속길이 행렬(GLRLM; Gray Level RunLength Matrix)로 변환한다(S80). 도 9는 본 발명의 실시예에 따라 영상으로부터 변환된 회색도 연속길이 행렬(GLRLM)의 예시도이다. GLRLM은 특정 밝기 값을 가진 화소가 얼마나 길게 연속적으로 동일한 값으로 유지되는지(군집성)에 관한 행렬로, 관심 영역 내의 영상에서 화소값이 연속하여 나타나는 빈도를 누적하여 생성될 수 있다. GLRLM의 행은 화소값들이고, 열은 화소값의 연속 횟수이다. GLRLM 변환부(153)는 x번째(x는 N 이하의 정수) 화소값이 y번 연속하여 나타날 때마다, (x, y) 픽셀의 값을 1씩 증가시켜 GLRLM을 생성할 수 있다. 도 9의 예에서, 화소값 '1'(GLRLM의 1행)을 가지는 화소가 연속하여 2번(GLRLM의 2열) 출현한 빈도가 1이므로, 1행 2열 성분값이 1이고, 화소값 '4'(GLRLM의 4행)를 가지는 화소가 연속하여 3번(GLRLM의 3열) 출현한 빈도가 1이므로, 4행 3열 성분값이 1이 된다.The GLRLM converter 155 converts the pixel values of the image into a gray level run length matrix (GLRLM) representing a continuous length of the pixel values (S80). 9 is an exemplary diagram of a gray scale continuous length matrix (GLRLM) converted from an image according to an embodiment of the present invention. The GLRLM is a matrix of how long pixels having a specific brightness value are continuously maintained at the same value (grouping). The GLRLM may be generated by accumulating the frequency of successive pixel values in an image in the ROI. The rows of GLRLM are pixel values, and the columns are the number of successive pixel values. The GLRLM converter 153 may generate the GLRLM by incrementing the value of the (x, y) pixel by 1 each time the x-th (x is an integer less than or equal to N) pixel appears consecutively y times. In the example of FIG. 9, since the frequency of the pixel having the pixel value '1' (one row of GLRLMs) appears twice in succession (two columns of GLRLMs), the one-row, two-column component value is one, and the pixel value is one. Since the frequency of the pixel having '4' (four rows of GLRLMs) appears three times consecutively (three columns of GLRLMs), the four-row, three-column component value is one.

GLRLM 특징 추출부(156)는 회색도 연속길이 행렬의 화소값들을 기반으로 GLRLM 특징들을 추출한다(S90). 실시예에서, GLRLM 특징 추출부(156)는 회색도 연속길이 행렬(GLRLM)의 화소값들을 기반으로 SRE(Short Run Emphasis), LRE(Long Run Emphasis), GLNU(Gray Level Non-Uniformity), RP(Run Percentage), RLNU(Run Length Non-Uniformity) 및 HGLRE(High Gray Level Run Emphasis)를 포함하는 GLRLM 특징들을 추출할 수 있다.The GLRLM feature extractor 156 extracts GLRLM features based on the pixel values of the gray continuous length matrix (S90). In an exemplary embodiment, the GLRLM feature extractor 156 may include short run emphasis (SRE), long run emphasis (LRE), gray level non-uniformity (GLNU), and RP based on pixel values of a gray scale continuous length matrix (GLRLM). GLRLM features can be extracted including Run Percentage, Run Length Non-Uniformity (RLNU), and High Gray Level Run Emphasis (HGLRE).

분류기(157)는 화소 특징들, GLCM 특징들 및 GLRLM 특징들을 기계학습 모델에 적용하여 피부 질환을 분류한다(S100). 실시예에서, 기계학습 모델은 서포트 벡터 머신(SVM; Support Vector Machine) 모델을 포함할 수 있다. 본 발명의 실시예에 의하면, 육안으로 판단하기 어려운 객관적 피부 질환 특징들을 추출하여 피부 질환의 분류에 활용함으로써, 높은 정확도로 흑색종, 모반증 등의 피부 질환을 분류할 수 있으며, 주관적 판단을 배제하고 객관적으로 피부 질환을 분류할 수 있다.The classifier 157 classifies skin diseases by applying pixel features, GLCM features, and GLRLM features to a machine learning model (S100). In an embodiment, the machine learning model can include a support vector machine (SVM) model. According to an embodiment of the present invention, by extracting the characteristics of the objective skin diseases that are difficult to determine with the naked eye and using them for classification of skin diseases, it is possible to classify skin diseases such as melanoma and nevus with high accuracy, and exclude subjective judgment. And can objectively classify skin diseases.

본 발명의 실시예에 따른 피부 질환 자동 분류 방법의 피부 질환 분류 성능 및 유효성을 평가하기 위하여, DerMIS와 Dermquest의 공인된 흑색종 데이터 43개와 76개의 영상에 대하여 학습과 테스트를 진행하고, MATLAB R2017a(MathWorks) 환경에서 실험을 수행하여, 동일한 학습데이터와 시험데이터를 이용하여 피부 분류 정확도를 종래 방식과 비교하였다. SVM 학습을 위해, 학습데이터를 전처리하고 관심 영역을 추출한 후, 관심 영역의 영상을 이용하여 화소와 GLCM과 GLRLM 변환을 수행하고, 변환된 행렬들에서 특징 값들을 추출하였다. 도 10은 본 발명의 실시예에 따라 기계학습에 사용된 흑색종 영상들(a)과 모반증 영상들(b)의 예시도이다.In order to evaluate the skin disease classification performance and effectiveness of the automatic skin disease classification method according to an embodiment of the present invention, learning and testing 43 and 76 images of authorized melanoma data of DerMIS and Dermquest, and MATLAB R2017a ( The experiment was performed in MathWorks) environment and the skin classification accuracy was compared with the conventional method using the same learning data and test data. For SVM learning, after preprocessing the training data and extracting the region of interest, the pixel, GLCM, and GLRLM transformations were performed using the image of the region of interest, and feature values were extracted from the transformed matrices. 10 is an exemplary diagram of melanoma images (a) and nevus images (b) used in machine learning according to an embodiment of the present invention.

Figure PCTKR2019002438-appb-I000004
Figure PCTKR2019002438-appb-I000004

표 1은 학습데이터에 사용된 흑색종(Melanoma)과 모반증(Nevus)에 대한 특징 값들(Pixel features, GLCM features, GLRLM features)을 나타낸다. 표 1로부터, 흑색종과 모반증이 지니는 특징으로 인하여 화소 정보에서 육안으로는 크게 보이지 않던 차이점들이 변환 행렬들(GLCM, GLRLM)로부터 추출된 특징 값들에서 나타나는 것을 확인할 수 있다. 이러한 특징 값들을 이용하여 임의의 테스트 영상을 이용하여 SVM 분류기를 통해 피부 질환 분류를 수행하였다.도 11은 본 발명의 실시예에 따른 피부 질환 자동 분류 방법의 피부 질환 분류 정확도 성능을 보여주는 도면이다. 도 11에서 Alpha는 ABCD 방법만을 이용하여 흑색종과 모반증을 분류하였을 때의 분류 정확도, Beta는 ABCD 방법과 화소 기반의 특징을 이용한 경우의 분류 정확도, Theta는 ABCD 방법과 화소 특징들 및 GLCM 특징들을 이용한 경우의 분류 정확도, Delta는 ABCD 방법과 화소 특징들, GLCM 특징들 및 GLRLM 특징들을 모두 적용한 경우의 분류 정확도이다.Table 1 shows the feature values (Pixel features, GLCM features, GLRLM features) for melanoma and Nevus used in the training data. From Table 1, it can be seen that differences that were not visible to the naked eye in pixel information due to the characteristics of melanoma and nevus appear in feature values extracted from the transformation matrices GLCM and GLRLM. Skin characteristic classification was performed through the SVM classifier using any test image using these feature values. FIG. 11 is a diagram illustrating skin disease classification accuracy performance of an automatic skin disease classification method according to an exemplary embodiment of the present invention. In FIG. 11, Alpha represents classification accuracy when melanoma and nevus are classified using only ABCD method, Beta represents classification accuracy using ABCD method and pixel-based feature, and Theta represents ABCD method, pixel feature, and GLCM feature. Is the classification accuracy when the ABCD method, pixel features, GLCM features, and GLRLM features are applied.

본 발명의 실시예에 의하면, 육안으로 확인이 어려운 화소의 미세한 정보(화소 특징들)와 인접 화소들의 유사성을 기반으로 한 변환 행렬들 및 변환 행렬들에서 추출한 GLCM/GLRLM 특징들을 적용하여 흑색종의 분류 정확도가 향상되는 것을 확인할 수 있다. 본 발명의 실시예에 따른 피부 질환 자동 분류 방법은 피부 질환 판별에 있어서 정량적이고 객관적인 분석 및 진단에 활용될 수 있으며, 특히 흑색종과 같은 피부 질환에 대한 조기 발견 시스템에 유용하게 활용될 수 있다. 또한, 본 발명의 실시예에 따른 피부 질환 자동 분류 방법은 흑색종 이외의 다른 피부 질환에 대해서도 조직 검사와 같은 침습적인 진단을 진행하기 전에 효과적으로 질환에 대한 정보를 제공하는데 활용될 수 있다.According to an embodiment of the present invention, melanoma may be applied by applying micromatrix information (pixel features) that are difficult to visually identify and transformation matrixes based on similarity of adjacent pixels and GLCM / GLRLM features extracted from transformation matrices. It can be seen that the classification accuracy is improved. The method for automatically classifying skin diseases according to an embodiment of the present invention may be used for quantitative and objective analysis and diagnosis in determining skin diseases, and may be particularly useful for an early detection system for skin diseases such as melanoma. In addition, the automatic skin disease classification method according to an embodiment of the present invention can be utilized to effectively provide information about the disease before the invasive diagnosis such as biopsy for other skin diseases other than melanoma.

본 발명의 실시예에 따른 피부 질환 자동 분류 방법은 예를 들어 컴퓨터에서 실행될 수 있는 프로그램으로 작성 가능하고, 컴퓨터로 읽을 수 있는 기록매체를 이용하여 상기 프로그램을 동작시키는 범용 디지털 컴퓨터에서 구현될 수 있다. 컴퓨터로 읽을 수 있는 기록매체는 SRAM(Static RAM), DRAM(Dynamic RAM), SDRAM(Synchronous DRAM) 등과 같은 휘발성 메모리, ROM(Read Only Memory), PROM(Programmable ROM), EPROM(Electrically Programmable ROM), EEPROM(Electrically Erasable and Programmable ROM), 플래시 메모리 장치, PRAM(Phase-change RAM), MRAM(Magnetic RAM), RRAM(Resistive RAM), FRAM(Ferroelectric RAM)과 같은 불휘발성 메모리, 플로피 디스크, 하드 디스크 또는 광학적 판독 매체 예를 들어 시디롬, 디브이디 등과 같은 형태의 저장매체일 수 있으나, 이에 제한되지는 않는다.The method for automatically classifying skin diseases according to an exemplary embodiment of the present invention may be implemented by, for example, a computer executable program, and may be implemented in a general-purpose digital computer operating the program using a computer readable recording medium. . The computer-readable recording medium may be volatile memory such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), Nonvolatile memory, such as electrically erasable and programmable ROM (EEPROM), flash memory device, phase-change RAM (PRAM), magnetic RAM (MRAM), resistive RAM (RRAM), ferroelectric RAM (FRAM), floppy disk, hard disk, or Optical reading media may be, for example, but not limited to, a storage medium in the form of CD-ROM, DVD, and the like.

이상의 실시예들은 본 발명의 이해를 돕기 위하여 제시된 것으로, 본 발명의 범위를 제한하지 않으며, 이로부터 다양한 변형 가능한 실시예들도 본 발명의 범위에 속하는 것임을 이해하여야 한다. 본 발명의 기술적 보호범위는 청구범위의 기술적 사상에 의해 정해져야 할 것이며, 본 발명의 기술적 보호범위는 청구범위의 문언적 기재 그 자체로 한정되는 것이 아니라 실질적으로는 기술적 가치가 균등한 범주의 발명까지 미치는 것임을 이해하여야 한다.The above embodiments are presented to aid the understanding of the present invention, and do not limit the scope of the present invention, from which it should be understood that various modifications are within the scope of the present invention. The technical protection scope of the present invention should be defined by the technical spirit of the claims, and the technical protection scope of the present invention is not limited to the literary description of the claims per se, but the invention is in the range of substantially equal technical values. It should be understood that it extends to.

Claims (15)

피부 병변을 촬영한 영상에서 화소들의 밝기값들의 히스토그램을 산출하고, 상기 히스토그램을 통계분석하여 화소 특징을 추출하는 단계;Calculating a histogram of brightness values of pixels in an image of a skin lesion, and extracting pixel features by statistically analyzing the histogram; 상기 영상의 화소값들을 상기 화소값들 간의 인접성을 나타내는 회색도 동시발생 행렬(GLCM; Gray-Level Co-occurrence Matrix)로 변환하는 단계;Converting pixel values of the image into a gray-level co-occurrence matrix (GLCM) representing adjacency between the pixel values; 상기 회색도 동시발생 행렬의 화소값들을 기반으로 GLCM 특징을 추출하는 단계;Extracting a GLCM feature based on pixel values of the gray degree co-occurrence matrix; 상기 영상의 화소값들을 상기 화소값들의 연속길이를 나타내는 회색도 연속길이 행렬(GLRLM; Gray Level RunLength Matrix)로 변환하는 단계;Converting pixel values of the image into a gray level run length matrix (GLRLM) representing a continuous length of the pixel values; 상기 회색도 연속길이 행렬의 화소값들을 기반으로 GLRLM 특징을 추출하는 단계; 및Extracting a GLRLM feature based on pixel values of the gray continuous length matrix; And 상기 화소 특징, 상기 GLCM 특징 및 상기 GLRLM 특징을 기계학습 모델에 적용하여 피부 질환을 분류하는 단계를 포함하는 피부 질환 자동 분류 방법.And classifying the skin disease by applying the pixel feature, the GLCM feature, and the GLRLM feature to a machine learning model. 제1항에 있어서,The method of claim 1, 상기 화소 특징은 상기 영상의 화소값들의 평균, 표준편차, 스큐(skew), 커토시스(kurtosis), 엔트로피(entropy) 및 제곱평균제곱근(root mean square)을 포함하는 피부 질환 자동 분류 방법.Wherein the pixel characteristic comprises an average, standard deviation, skew, kottosis, entropy, and root mean square of pixel values of the image. 제1항에 있어서,The method of claim 1, 상기 GLCM 특징은 상기 회색도 동시발생 행렬의 화소값들의 자가상관관계(auto-correlation), 대조도(contrast), 상관관계(correlation), 비유사도(dissimilarity), 에너지(energy) 및 동질성(homogeneity)을 포함하는 피부 질환 자동 분류 방법.The GLCM feature is characterized by auto-correlation, contrast, correlation, dissimilarity, energy, and homogeneity of pixel values of the grayscale co-occurrence matrix. Skin disease automatic classification method comprising a. 제1항에 있어서,The method of claim 1, 상기 GLRLM 특징은 상기 회색도 연속길이 행렬의 화소값들을 기반으로 추출되는 SRE(Short Run Emphasis), LRE(Long Run Emphasis), GLNU(Gray Level Non-Uniformity), RP(Run Percentage), RLNU(Run Length Non-Uniformity) 및 HGLRE(High Gray Level Run Emphasis)를 포함하는 피부 질환 자동 분류 방법.The GLRLM features include short run emphasis (SRE), long run emphasis (LRE), gray level non-uniformity (GLNU), run percentage (RPN), and RLNU (run) extracted based on pixel values of the gray-scale continuous length matrix. Automatic classification of skin diseases including Length Non-Uniformity (HGLRE) and High Gray Level Run Emphasis (HGLRE). 제1항에 있어서,The method of claim 1, 상기 기계학습 모델은 서포트 벡터 머신(SVM; Support Vector Machine) 모델을 포함하는 피부 질환 자동 분류 방법.The machine learning model includes a support vector machine (SVM) model for automatically classifying skin diseases. 제1항에 있어서,The method of claim 1, 피부경(dermoscopy)을 이용하여 상기 피부 병변을 촬영하여 피부경 영상을 획득하는 단계;Capturing the skin lesion using dermoscopy to obtain a dermoscopic image; 상기 피부경 영상을 이진 영상으로 변환하고, 상기 이진 영상에서 상기 피부 병변보다 작은 크기의 객체를 검출하는 단계;Converting the dermal image into a binary image and detecting an object of a smaller size than the skin lesion in the binary image; 상기 피부 병변과 상기 객체의 크기 차이를 기반으로 모발 및 피부각질을 포함하는 잡음을 제거하는 단계; 및Removing noise including hair and skin keratin based on the size difference between the skin lesion and the object; And 상기 피부경 영상에서 정상 피부의 화소값을 0으로 변환하여 피부 병변 만을 포함하는 관심 영역을 추출하는 단계를 더 포함하는 피부 질환 자동 분류 방법.And extracting a region of interest including only skin lesions by converting pixel values of normal skin to 0 in the dermal image. 제1항에 있어서,The method of claim 1, 흑색종 영상들 및 모반증 영상들을 포함하는 학습 영상 데이터를 기반으로 상기 화소 특징, 상기 GLCM 특징 및 상기 GLRLM 특징을 학습하여 상기 기계학습 모델을 생성하는 단계를 더 포함하고,Generating the machine learning model by learning the pixel feature, the GLCM feature, and the GLRLM feature based on training image data including melanoma images and nevus images, 상기 피부 질환을 분류하는 단계는 학습된 상기 기계학습 모델을 기반으로 상기 피부 병변을 흑색종과 모반증 중 어느 하나로 분류하는 단계를 포함하는 피부 질환 자동 분류 방법.The classifying the skin disease may include classifying the skin lesion into any one of melanoma and nevus based on the learned machine learning model. 제1항의 피부 질환 자동 분류 방법을 실행하기 위한 프로그램이 기록된 컴퓨터로 판독 가능한 기록 매체.A computer-readable recording medium having recorded thereon a program for executing the method for automatically classifying skin diseases. 적어도 하나의 프로세서를 포함하는 피부 질환 자동 분류 장치에 있어서,An apparatus for automatically classifying skin diseases including at least one processor, 상기 적어도 하나의 프로세서는,The at least one processor, 피부 병변을 촬영한 영상에서 화소들의 밝기값들의 히스토그램을 산출하고, 상기 히스토그램을 통계분석하여 화소 특징을 추출하고;Calculating a histogram of brightness values of pixels in an image of a skin lesion, and extracting pixel characteristics by statistically analyzing the histogram; 상기 영상의 화소값들을 상기 화소값들 간의 인접성을 나타내는 회색도 동시발생 행렬(GLCM; Gray-Level Co-occurrence Matrix)로 변환하고;Converting pixel values of the image into a Gray-Level Co-occurrence Matrix (GLCM) representing adjacency between the pixel values; 상기 회색도 동시발생 행렬의 화소값들을 기반으로 GLCM 특징을 추출하고;Extract a GLCM feature based on pixel values of the gray degree co-occurrence matrix; 상기 영상의 화소값들을 상기 화소값들의 연속길이를 나타내는 회색도 연속길이 행렬(GLRLM; Gray Level RunLength Matrix)로 변환하고;Converting pixel values of the image into a gray level run length matrix (GLRLM) representing a continuous length of the pixel values; 상기 회색도 연속길이 행렬의 화소값들을 기반으로 GLRLM 특징을 추출하고; 그리고Extract a GLRLM feature based on pixel values of the gray continuous length matrix; And 상기 화소 특징, 상기 GLCM 특징 및 상기 GLRLM 특징을 기계학습 모델에 적용하여 피부 질환을 분류하도록 구성되는 피부 질환 자동 분류 장치.And apply the pixel feature, the GLCM feature, and the GLRLM feature to a machine learning model to classify skin diseases. 제9항에 있어서,The method of claim 9, 상기 화소 특징은 상기 영상의 화소값들의 평균, 표준편차, 스큐(skew), 커토시스(kurtosis), 엔트로피(entropy) 및 제곱평균제곱근(root mean square)을 포함하는 피부 질환 자동 분류 장치.And the pixel characteristic comprises an average, standard deviation, skew, kottosis, entropy, and root mean square of pixel values of the image. 제9항에 있어서,The method of claim 9, 상기 GLCM 특징은 상기 회색도 동시발생 행렬의 화소값들의 자가상관관계(auto-correlation), 대조도(contrast), 상관관계(correlation), 비유사도(dissimilarity), 에너지(energy) 및 동질성(homogeneity)을 포함하는 피부 질환 자동 분류 장치.The GLCM feature is characterized by auto-correlation, contrast, correlation, dissimilarity, energy, and homogeneity of pixel values of the grayscale co-occurrence matrix. Skin disease automatic classification device comprising a. 제9항에 있어서,The method of claim 9, 상기 GLRLM 특징은 상기 회색도 연속길이 행렬의 화소값들을 기반으로 추출되는 SRE(Short Run Emphasis), LRE(Long Run Emphasis), GLNU(Gray Level Non-Uniformity), RP(Run Percentage), RLNU(Run Length Non-Uniformity) 및 HGLRE(High Gray Level Run Emphasis)를 포함하는 피부 질환 자동 분류 장치.The GLRLM features include short run emphasis (SRE), long run emphasis (LRE), gray level non-uniformity (GLNU), run percentage (RPN), and RLNU (run) extracted based on pixel values of the gray-scale continuous length matrix. Automatic device for classifying skin diseases including Length Non-Uniformity (HGLRE) and High Gray Level Run Emphasis (HGLRE). 제9항에 있어서,The method of claim 9, 상기 기계학습 모델은 서포트 벡터 머신(SVM; Support Vector Machine) 모델을 포함하는 피부 질환 자동 분류 장치.The machine learning model is a skin disease automatic classification device comprising a support vector machine (SVM) model. 제9항에 있어서,The method of claim 9, 상기 적어도 하나의 프로세서는,The at least one processor, 피부경(dermoscopy)에 의해 상기 피부 병변을 촬영한 피부경 영상을 이진 영상으로 변환하고;Converting the dermoscopic image of the skin lesion to a binary image by dermoscopy; 상기 이진 영상에서 상기 피부 병변보다 작은 크기의 객체를 검출하고;Detecting an object of a smaller size than the skin lesion in the binary image; 상기 피부 병변과 상기 객체의 크기 차이를 기반으로 모발 및 피부각질을 포함하는 잡음을 제거하고; 그리고Removing noise including hair and dead skin cells based on the size difference between the skin lesion and the object; And 상기 피부경 영상에서 정상 피부의 화소값을 0으로 변환하여 피부 병변 만을 포함하는 관심 영역을 추출하도록 구성되는 피부 질환 자동 분류 장치.And automatically extracting an ROI including only skin lesions by converting pixel values of normal skin to 0 in the dermal image. 제9항에 있어서,The method of claim 9, 상기 적어도 하나의 프로세서는,The at least one processor, 흑색종 영상들 및 모반증 영상들을 포함하는 학습 영상 데이터를 이용하여 상기 화소 특징, 상기 GLCM 특징 및 상기 GLRLM 특징을 학습하여 상기 기계학습 모델을 생성하고; 그리고Generate the machine learning model by learning the pixel feature, the GLCM feature, and the GLRLM feature using training image data including melanoma images and nevus images; And 상기 학습 영상 데이터를 이용하여 학습된 상기 기계학습 모델을 기반으로 상기 피부 병변을 흑색종과 모반증 중 어느 하나로 분류하도록 구성되는 피부 질환 자동 분류 장치.And automatically classify the skin lesion into one of melanoma and nevus based on the machine learning model trained using the learning image data.
PCT/KR2019/002438 2018-02-28 2019-02-28 Apparatus for automatic classification of skin disease, and method for automatic classification of skin disease Ceased WO2019168381A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180024342 2018-02-28
KR10-2018-0024342 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019168381A1 true WO2019168381A1 (en) 2019-09-06

Family

ID=67805902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002438 Ceased WO2019168381A1 (en) 2018-02-28 2019-02-28 Apparatus for automatic classification of skin disease, and method for automatic classification of skin disease

Country Status (2)

Country Link
KR (1) KR102208087B1 (en)
WO (1) WO2019168381A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12169922B2 (en) 2022-03-10 2024-12-17 Sys-Tech Solutions, Inc. Synthetic image generation using artificial intelligence
US12462345B2 (en) 2022-03-10 2025-11-04 Sys-Tech Solutions, Inc. Glare mitigation techniques in symbologies

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102416828B1 (en) * 2020-12-28 2022-07-05 주식회사 래디센 Method and system for real-time automatic X-ray Raw Image reading
WO2023018254A1 (en) * 2021-08-11 2023-02-16 고려대학교 산학협력단 Method and apparatus for diagnosing skin disease by using image processing
KR102847255B1 (en) * 2021-08-11 2025-08-18 고려대학교 산학협력단 Method and apparatus for remote skin disease diagnosing using augmented and virtual reality
KR102481763B1 (en) 2022-03-31 2022-12-26 한국외국어대학교 연구산학협력단 Apparatus and method for skin lesion classification

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070090249A (en) * 2004-12-17 2007-09-05 루미다임 인크. Combined total internal reflection and tissue imaging device and method
KR20090049487A (en) * 2007-11-13 2009-05-18 성균관대학교산학협력단 Automatic grade determination and weight calculation system of chicken carcass
KR20140094975A (en) * 2013-01-23 2014-07-31 경일대학교산학협력단 Method and Apparatus of Skin Pigmentation Detection Using Projection Transformed Block Coefficient

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101812406B1 (en) * 2016-03-16 2017-12-27 동국대학교 산학협력단 The method and system for diagnosing skin disease

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070090249A (en) * 2004-12-17 2007-09-05 루미다임 인크. Combined total internal reflection and tissue imaging device and method
KR20090049487A (en) * 2007-11-13 2009-05-18 성균관대학교산학협력단 Automatic grade determination and weight calculation system of chicken carcass
KR20140094975A (en) * 2013-01-23 2014-07-31 경일대학교산학협력단 Method and Apparatus of Skin Pigmentation Detection Using Projection Transformed Block Coefficient

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HAM, SUNG-WON: "Algorithm for Automatic Distintion of Determining Acral Lentiginous Melanoma (ALM) and Nevus", THESIS, 29 May 2019 (2019-05-29), Retrieved from the Internet <URL:http://dcollection.ewha.ac.kr/public_resource/pdf/000000117452_20190602184929.pdf> [retrieved on 20150600] *
INGRID NURTANIO ET AL.: "Classifying Cyst and Tumor Lesion Using Support Vector Machine Based on Dental Panoramic Images Texture Features", IAENG INTERNATIONAL JOURNAL OF COMPUTER SCIENCE, vol. 40, 9 February 2013 (2013-02-09), XP055635298 *
KOO ET AL: "Melanoma Classification Algorithm using Gray-level Conversion Matrix Feature and Support Vector Machine", KOREA MULTIMEDIA SOCIETY, vol. 21, no. 2, 28 February 2018 (2018-02-28), pages 130 - 137, XP055635329 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12169922B2 (en) 2022-03-10 2024-12-17 Sys-Tech Solutions, Inc. Synthetic image generation using artificial intelligence
US12462345B2 (en) 2022-03-10 2025-11-04 Sys-Tech Solutions, Inc. Glare mitigation techniques in symbologies

Also Published As

Publication number Publication date
KR102208087B1 (en) 2021-01-27
KR20190104001A (en) 2019-09-05

Similar Documents

Publication Publication Date Title
WO2019168381A1 (en) Apparatus for automatic classification of skin disease, and method for automatic classification of skin disease
CN114612389B (en) Fundus image quality evaluation method and device based on multi-source and multi-scale feature fusion
Chiu A novel approach based on computerized image analysis for traditional Chinese medical diagnosis of the tongue
CN107049263A (en) Leucoderma condition-inference and cosmetic effect evaluating method and system based on image procossing
Marques et al. On the role of texture and color in the classification of dermoscopy images
Hatanaka et al. Improvement of automated detection method of hemorrhages in fundus images
ALbahbah et al. Detection of caries in panoramic dental X-ray images using back-propagation neural network
WO2019189972A1 (en) Method for analyzing iris image by artificial intelligence so as to diagnose dementia
Hsieh et al. A mask R-CNN based automatic assessment system for nail psoriasis severity
KR102095730B1 (en) Method for detecting lesion of large intestine disease based on deep learning
Suhendra et al. A novel approach to multi-class atopic dermatitis disease severity scoring using multi-class SVM
Kumar et al. Automatic detection of red lesions in digital color retinal images
Fu et al. Key-frame selection in WCE video based on shot detection
WO2022158843A1 (en) Method for refining tissue specimen image, and computing system performing same
Arnold et al. Indistinct frame detection in colonoscopy videos
Sindhu et al. Automatic detection of colonic polyps and tumor in wireless capsule endoscopy images using hybrid patch extraction and supervised classification
WO2022119347A1 (en) Method, apparatus, and recording medium for analyzing coronary plaque tissue through ultrasound image-based deep learning
CN111127414B (en) Perfusion image judgment system and method based on OPENCV and intelligent terminal
WO2025018825A1 (en) Method, device, and computer program for integrated prediction of disease prognosis using image and non-image data
Lokuarachchi et al. Detection of red lesions in retinal images using image processing and machine learning techniques
JPH1119077A (en) Method and device for detection of tumor shadow in radiation image
WO2022059596A1 (en) Skin surface analysis device and skin surface analysis method
ZHANG et al. Advances in tongue diagnosis objectification of traditional Chinese medicine
CN120672707B (en) Methods, systems, and terminals for predicting the risk of polyp lesions in endoscopic images
Audytra et al. Application of dynamic segmentation in stroke detection software with ANN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760231

Country of ref document: EP

Kind code of ref document: A1