[go: up one dir, main page]

WO2019160135A1 - Simulation system, prosthetic leg blade, simulation method, and program - Google Patents

Simulation system, prosthetic leg blade, simulation method, and program Download PDF

Info

Publication number
WO2019160135A1
WO2019160135A1 PCT/JP2019/005803 JP2019005803W WO2019160135A1 WO 2019160135 A1 WO2019160135 A1 WO 2019160135A1 JP 2019005803 W JP2019005803 W JP 2019005803W WO 2019160135 A1 WO2019160135 A1 WO 2019160135A1
Authority
WO
WIPO (PCT)
Prior art keywords
wearer
prosthetic
data
motion
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2019/005803
Other languages
French (fr)
Japanese (ja)
Inventor
智史 下野
哲哉 川崎
浩明 保原
賢 橋詰
克幸 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Mitsubishi Chemical Corp
National Institute of Advanced Industrial Science and Technology AIST
Mitsubishi Chemicals Holdings Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp, National Institute of Advanced Industrial Science and Technology AIST, Mitsubishi Chemicals Holdings Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2019572310A priority Critical patent/JP7255807B2/en
Publication of WO2019160135A1 publication Critical patent/WO2019160135A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/60Artificial legs or feet or parts thereof
    • A61F2/66Feet; Ankle joints
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means

Definitions

  • the present invention relates to a simulation system, an artificial leg blade, a simulation method, and a program. In particular, it can be used suitably for the design of sports prostheses.
  • This application claims priority based on Japanese Patent Application No. 2018-027376 filed in Japan on February 19, 2018, the contents of which are incorporated herein by reference.
  • Patent Document 1 a golf equipment fitting system capable of calculating an accurate calculation result and outputting a simulation result in a short time even when specifications that greatly affect the swing time are changed, and golf A tool fitting program is known (see, for example, Patent Document 1).
  • the acceleration, angular velocity, and the like at the time of trial hit are detected by a sensor attached to the golf club to be trial hit.
  • data obtained when a golf club that is not actually hit a test is temporarily predicted is predicted by simulation. Fitting is performed.
  • the simulation applied to the golf club described above is applied to a prosthetic limb (that is, a prosthetic leg or a prosthetic hand), an orthosis (that is, a device to be worn on a trunk / limb having a function disorder) or a part thereof.
  • a prosthetic limb that is, a prosthetic leg or a prosthetic hand
  • an orthosis that is, a device to be worn on a trunk / limb having a function disorder
  • an object of the present invention is to provide a simulation system, a prosthetic leg blade, a simulation method, and a program capable of predicting a prosthetic limb or a brace suitable for a wearer.
  • the present invention has the following aspects. ⁇ 1> Fitting product measurement data that is measurement data of a plurality of different fitting prostheses or fitting devices, and wearer measurement data that are measurement data of the wearers of the plurality of fitting artificial limbs or the fitting devices Wearer operation data, which is data indicating the force generated in the wearer, is calculated by inverse dynamics analysis based on the measurement data acquisition unit, the wearer measurement data, and the wearer measurement data A wearer motion data calculation unit, a motion response curved surface calculation unit that calculates a motion response curved surface by a response surface method based on the wearer motion data, and a plurality of the fittings by the wearer based on the motion response curved surface Simulation that predicts motion data of the prosthetic limb or the brace and motion data of the wearer when it is assumed that a prosthetic limb or brace that is different from the prosthetic limb or the trial wearing brace is worn.
  • a time response curved surface calculation unit that calculates a time response curved surface by a response surface method based on the wearer motion data, wherein the simulation execution unit is further based on the time response curved surface,
  • the simulation system according to ⁇ 1> wherein the operation data of the appliance and the operation data of the wearer are predicted.
  • the simulation execution unit predicts the motion data of the artificial limb or the orthosis and the motion data of the wearer by a basis vector method.
  • ⁇ 4> From ⁇ 1> to ⁇ 3> having a selection unit that selects a prosthetic limb or a brace based on the motion data of the prosthetic limb or the brace predicted by the simulation execution unit and the motion data of the wearer.
  • the simulation system according to any one of the above.
  • ⁇ 5> The simulation system according to any one of ⁇ 1> to ⁇ 4>, wherein the motion response curved surface calculation unit calculates a motion response curved surface that is a function of quadratic or higher.
  • Each of the plurality of trial prosthetic limbs is a trial sports prosthetic leg blade, and the simulation execution unit includes a sports prosthetic leg blade height dimension, a sports prosthetic leg rear protrusion amount, and a sports prosthetic leg blade toe length dimension.
  • the simulation system according to any one of ⁇ 1> to ⁇ 5>, wherein at least one is predicted.
  • Each of the plurality of trial prosthetic limbs is a trial sports prosthetic leg blade, and the trial sports prosthetic leg blade has a spec selected from a plurality of specs based on an L9 orthogonal table of an experimental design method.
  • the simulation system according to any one of ⁇ 1> to ⁇ 6>.
  • ⁇ 8> The simulation system according to ⁇ 7>, wherein the specification includes blade rigidity, a height dimension, a backward protrusion amount, and a toe length dimension.
  • the simulation execution unit maximizes a predetermined objective function by repeatedly executing the simulation.
  • the objective function includes at least a function related to a physical load on the wearer.
  • a side end portion B a portion that intersects with the leaf spring main body when a perpendicular is drawn from the straight portion A in the thickness direction, is a crossing portion C, and the rearmost side when a prosthetic leg blade including a leaf spring for a prosthetic leg is attached to the body
  • the portion located at the back surface D is the back portion D
  • the distance of the vertical component between the straight portion A and the ground side end B is the straight portion vertical component distance H
  • the horizontal component distance Lt between the intersection horizontal component distance Lt The horizontal component distance between the intersecting portion C and the back surface portion D is set as the back surface horizontal component distance Lh
  • the ground side end portion B is fixed, and along the direction from the straight line portion A toward the back surface portion D.
  • FIG. 1 is a block diagram illustrating an example of the configuration of a design system 1 for a prosthetic limb / orthorosis or a part thereof according to the first embodiment.
  • the design system 1 includes a prosthetic leg (prosthetic leg or prosthetic hand), an orthosis (equipment to be attached to a trunk / limb with impaired function) or a part thereof, for example, a prosthetic leg blade constituting a part of the prosthetic leg. (Details are sports prosthetic blades).
  • the design system 1 includes a motion data acquisition unit 11, a motion response curved surface calculation unit 13A, a time response curved surface calculation unit 13B, and a simulation execution unit 14.
  • a hardware processor such as a CPU (Central Processing Unit) executing a program (software).
  • Some or all of these components include LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Prosthetic Hardware circuit unit). (including circuit), or may be realized by cooperation of software and hardware.
  • the program may be stored in advance in a storage device such as an HDD (Hard Disk Drive) or a flash memory, or may be stored in a removable storage medium such as a DVD or CD-ROM, and the storage medium is stored in the drive device. It may be installed by being attached.
  • the motion data acquisition unit 11 acquires image data of a prosthetic leg (fitting product) and a prosthetic leg wearer photographed by the photographing unit A (for example, a camera). That is, in the example illustrated in FIG. 1, the photographing unit A does not photograph an image including only the artificial leg, but captures an image including both the artificial leg and the wearer. Specifically, in the example illustrated in FIG. 1, the imaging unit A captures images of the prosthetic leg and the wearer while the wearer wearing the prosthetic leg is running as if during a short-distance running competition. During photographing by the photographing unit A, the prosthetic leg has a behavior associated with running of the wearer.
  • the motion data acquisition unit 11 may be other than a camera, and may acquire motion data instead of image data by using one or more sensors.
  • the motion data acquisition unit 11 includes a try-on product motion data acquisition unit 11A and a wearer motion data acquisition unit 11B.
  • the try-on product operation data obtaining unit 11A obtains data (try-on product operation data) indicating the behavior (motion) occurring in the artificial leg, obtained from the image data photographed by the photographing unit A.
  • the wearer motion data acquisition unit 11B acquires data (wearer motion data) indicating the motion of the running wearer obtained from the image data captured by the image capturing unit A.
  • the imaging unit A captures images of the prosthetic leg and the wearer in a state where the wearer wearing the prosthetic leg is playing a sport other than short-distance running, such as long jump, or the like. May be.
  • the motion response curved surface calculation unit 13A is based on the try-on product operation data acquired by the try-on product operation data acquisition unit 11A and the wearer operation data acquired by the wearer operation data acquisition unit 11B. Then, by using the response surface method, a motion response surface obtained by extracting a method of changing the unique motion of the fitting person and a wrinkle and converting it into a quadratic function is calculated. In the example shown in FIG. 1, since the motion response curved surface calculation unit 13A calculates a motion response curved surface converted into a quadratic function, the motion response curved surface calculation unit 13A calculates a motion response curved surface converted into a linear function. The design system 1 can predict a correct operation.
  • the motion response curved surface calculation unit 13A may calculate a motion response curved surface that is a function of cubic or higher. The more complicated the operation, the higher the order of the response surface. Since the movement of the grip of the golf swing is relatively smooth, it can be handled by the primary. When the impact of running and landing enters, secondary or higher is preferable. Moreover, it is preferable that it is 4th order or less from the point which does not raise
  • the time response curved surface calculation unit 13B is based on the try-on product operation data acquired by the try-on product operation data acquisition unit 11A and the wearer operation data acquired by the wearer operation data acquisition unit 11B.
  • the time response surface is calculated by the response surface method.
  • the simulation execution unit 14 does not actually try on an artificial leg blade (virtual artificial leg blade ( Specifically, the motion data of the virtual prosthetic foot blade and the motion data of the wearer when the prosthetic foot including the virtual sports prosthetic foot blade)) is temporarily tried on by the wearer are predicted.
  • the simulation execution unit 14 includes a body motion analysis unit 14A, an FEM analysis unit 14B, a multi-purpose optimization unit 14C, and an optimum product design unit 14D.
  • the body motion analysis unit 14A is calculated by the motion response curved surface calculated by the motion response curved surface calculation unit 13A and the time response curved surface calculation unit 13B based on the wearer motion data acquired by the wearer motion data acquisition unit 11B.
  • the time response curved surface By using the time response curved surface, analysis of the wearer's movement (for example, analysis of how much load is applied to each part of the wearer's body) is performed.
  • the FEM (Finite Element Method) analysis unit 14B includes an operation response curved surface calculated by the motion response curved surface calculation unit 13A and a time response curved surface calculation unit based on the fitting product motion data acquired by the fitting product motion data acquisition unit 11A.
  • an FEM analysis of the operation of the try-on product (for example, analysis of how the prosthetic leg functions in order for the wearer to run fast) is performed.
  • the FEM analysis unit 14B is not necessarily performed by the FEM, and various discrete analysis methods such as a particle method and a rigid body link model can be used.
  • the multi-objective optimization unit 14C maximizes a predetermined objective function (for example, a function that prevents an excessive load (body load) from being applied to the wearer's body, a function that allows the wearer to run faster), and the like. Analyze.
  • the optimum product design unit 14D designs a prosthetic leg that is optimal for the wearer (specifically, a sports prosthetic leg blade) based on the analysis result in the multi-purpose optimization unit 14C.
  • FIG. 2 is a view for explaining an artificial leg B including an artificial leg blade (specifically, a sports artificial leg blade) B4 designed by the design system 1 shown in FIG.
  • the prosthetic leg B includes a socket B1, a joint B2, a connecting part B3 that connects the socket B1 and the joint B2, a prosthetic blade B4, and a connecting part that connects the joint B2 and the prosthetic leg blade B4.
  • the specification items of the artificial leg blade B4 include, for example, an artificial leg blade rigidity (specifically, a sports artificial leg blade rigidity) that is the rigidity of the artificial leg blade B4 and an artificial leg blade height dimension that is the height dimension of the artificial leg blade B4 ( Specifically, the sports prosthetic blade height dimension) L2, and the prosthetic blade rearward projecting amount (specifically, the sports prosthetic blade rearward projecting amount) L3, which is the rearward projecting amount of the prosthetic blade B4 with respect to the central axis B5X of the connecting portion B5,
  • the prosthetic blade toe length dimension (specifically, the sports prosthetic leg toe length dimension) L4, which is the forward protrusion amount of the toe portion of the artificial leg blade B4 with respect to the central axis B5X of the connecting portion B5, is included.
  • the prosthetic blade B4 may have a specification item different from the specification item described above.
  • the prosthetic limb / orthoresiste or part design system 1 there are three probable prosthetic blade stiffness candidates “high”, “standard”, and “low”.
  • Three levels of “high”, “standard”, and “low” are provided as candidates of the prosthetic leg blade height dimension L2 that is optimal for the wearer, and the prosthetic leg rearward protrusion amount L3 that is optimal for the wearer is set.
  • Three levels of “large”, “standard”, and “small” are provided as candidates, and three types of “long”, “standard”, and “short” are optimal candidates for the prosthetic blade toe length dimension L4 for the wearer.
  • a level is set.
  • the design system 1 includes four items (“prosthetic blade rigidity”, “prosthetic blade height dimension L2”, “prosthetic blade rearward protrusion amount L3”, and “prosthetic leg blade toe length dimension L4”).
  • a number other than 3 may be provided in the specification item of the prosthetic leg blade B4.
  • FIG. 3 shows nine types of try-on prosthetic blades (in detail, which can be actually tried on by the wearer) among 81 types of prosthetic blades (specifically, sports prosthetic blades) that can be designed by the design system 1 shown in FIG.
  • FIG. 6 is a diagram showing an example of a trial wear sports prosthetic leg blade) # 1 to # 9.
  • the wearer of the prosthetic blade does not try on all of the 81 kinds of prosthetic blades having different specifications in order to select an optimum prosthetic blade for the wearer, but 81 kinds of different ones.
  • Test wear artificial leg blades # 1 to # 9 having nine different specs selected from the prosthetic leg blades having specs based on the L9 type orthogonal table in the experimental design method are tried on.
  • the level of the item “Prosthetic leg blade rigidity” (Var. 1) is set to “1” (“High”) in the trial-wearing artificial leg blade # 1, and the item “Prosthetic leg blade height dimension L2” is set.
  • the level of (Var.2) is set to “1” (“high”)
  • the level of the item “prosthetic blade rearward protrusion L3” (Var.3) is set to “1” (“large”)
  • the item The level of “prosthetic blade toe length dimension L4” (Var. 4) is set to “1” (“long”).
  • the level of the item “Prosthetic leg blade rigidity” (Var. 1) is set to “1” (“High”) in the trial-wearing artificial leg blade # 1
  • the item “Prosthetic leg blade height dimension L2” is set.
  • the level of (Var.2) is set to “1” (“high”)
  • the level of the item “prosthetic blade rearward protrusion L3” (Var.3) is set to “1” (“large
  • the level of the item “Prosthetic leg blade stiffness” (Var. 1) is set to “2” (“Standard”) in the trial wear artificial leg blade # 4, and the item “Prosthetic leg blade height dimension” is set.
  • the level of “L2” (Var. 2) is set to “1” (“High”), and the level of the item “Prosthetic leg rear protrusion L3” (Var. 3) is set to “2” (“Standard”).
  • the level of the item “Prosthetic leg toe length dimension L4” (Var. 4) is set to “3” (“short”).
  • the level of the item “Prosthetic leg blade rigidity” (Var.
  • the level of the item “Prosthetic leg blade stiffness” (Var. 1) is set to “3” (“Low”) in the trial-wearing artificial leg blade # 7, and the item “Prosthetic leg blade height dimension” is set.
  • the level of “L2” (Var. 2) is set to “1” (“high”), and the level of the item “prosthetic blade rearward protrusion amount L3” (Var. 3) is set to “3” (“small”).
  • the level of the item “Prosthetic leg toe length dimension L4” (Var. 4) is set to “2” (“Standard”).
  • the level of the item “Prosthetic leg blade rigidity” (Var.1) is set to “3” (“Low”), and the level of the item “Prosthetic leg blade height dimension L2” (Var.2) is set. Is set to “2” (“standard”), the level of the item “prosthetic leg blade protrusion L3” (Var.3) is set to “1” (“large”), and the item “prosthetic leg toe length dimension” is set.
  • the level of “L4” (Var. 4) is set to “3” (“short”).
  • the level of the item “Prosthetic leg blade rigidity” (Var.1) is set to “3” (“Low”), and the level of the item “Prosthetic leg blade height dimension L2” (Var.2) is set. Is set to “3” (“low”), the level of the item “prosthetic leg blade rearward protrusion L3” (Var.3) is set to “2” (“standard”), and the item “prosthetic blade toe length dimension” is set.
  • the level of “L4” (Var. 4) is set to “1” (“long”).
  • FIG. 4 is a block diagram illustrating an example of a configuration of a simulation system 1a according to a modification of the first embodiment.
  • the simulation system 1a supports the design of a prosthetic limb or an orthosis.
  • a prosthetic limb is an artificial limb that is worn and used to restore the form or function of the original limb when a part of the limb is lost by cutting, and includes a prosthetic leg and a prosthetic hand.
  • An orthosis is a device that is worn on the trunk or extremities that have impaired function.
  • the simulation system 1a designs a prosthetic leg blade (specifically, a sports prosthetic leg blade) that constitutes a part of the prosthetic leg as an example of a prosthetic limb or an orthosis.
  • the simulation system 1a includes a measurement data acquisition unit 11a, a wearer motion data calculation unit 12, a motion response curved surface calculation unit 13Aa, a time response curved surface calculation unit 13Ba, a simulation execution unit 14, and a selection unit 15. Yes.
  • These components are realized, for example, when a hardware processor such as a CPU executes a program (software).
  • circuit unit including circuitry
  • the program may be stored in advance in a storage device such as an HDD or a flash memory, or may be stored in a removable storage medium such as a DVD or CD-ROM, and the storage medium is attached to the drive device. May be installed.
  • the measurement data acquisition unit 11a acquires try-on product measurement data that is measurement data of a plurality of different trial-wearing prosthetic legs and wearer measurement data that is measurement data of the wearers of the plurality of try-on prosthetic legs.
  • the difference may be that the specifications of the artificial leg are different.
  • the measurement data acquisition unit 11a acquires image data of a try-on prosthetic leg photographed by the photographing unit A (for example, a camera) as the fitting product measurement data.
  • the measurement data acquisition part 11a acquires the image data of the wearer of the trial wear artificial leg image
  • the imaging unit A does not shoot only the artificial leg, but shoots both the artificial leg and the wearer.
  • the photographing unit A photographs the prosthetic leg and the wearer while the wearer wearing the prosthetic leg is running like in a short-distance running competition.
  • the prosthetic leg has a behavior associated with running of the wearer.
  • the measurement data acquisition unit 11a may acquire measurement data obtained by using one or more sensors instead of image data.
  • the case where the measurement data acquisition unit 11a acquires image data will be described.
  • the measurement data acquisition unit 11a includes a try-on product measurement data acquisition unit 11Aa and a wearer measurement data acquisition unit 11Ba.
  • the try-on product measurement data acquisition unit 11Aa acquires data indicating the behavior occurring on the artificial leg (hereinafter referred to as “try-on product measurement data”) from the image data output by the imaging unit A.
  • the try-on product measurement data acquisition unit 11 ⁇ / b> Aa outputs the acquired try-on product measurement data to the wearer operation data calculation unit 12.
  • the wearer measurement data acquisition unit 11Ba acquires data (hereinafter referred to as “wearer measurement data”) obtained by measuring a running wearer from the image data output by the imaging unit A.
  • the wearer measurement data acquisition unit 11Ba outputs the acquired wearer measurement data to the wearer operation data calculation unit 12.
  • the photographing unit A is obtained by photographing a prosthetic leg and a wearer in a state where a wearer wearing a prosthetic leg is playing a sport other than short-distance running such as a long jump or the like.
  • the obtained image data may be used.
  • the wearer motion data calculation unit 12 acquires the try-on product measurement data output from the try-on product measurement data acquisition unit 11Aa and the wearer measurement data output from the wearer measurement data acquisition unit 11Ba.
  • the wearer operation data calculation unit 12 is data indicating the force exerted by the wearer's whole body based on the fitting product measurement data and the wearer measurement data, in other words, data indicating the force generated in the wearer. Person motion data is calculated.
  • the wearer movement data calculation unit 12 outputs the calculation result of the wearer movement data to the movement response curved surface calculation unit 13Aa and the time response curved surface calculation unit 13Ba.
  • the wearer motion data calculation unit 12 calculates wearer motion data by simulating the wearer's motion.
  • the wearer motion data calculation unit 12 calculates the joint torque by inverse dynamics analysis.
  • the inverse dynamic analysis is a method for calculating the joint torque of each joint from the position coordinates of each joint.
  • each joint is regarded as one rigid body element, and the joint torque is calculated by formulating the coupling relationship.
  • an example of one rigid element is the lower limb. If the mass of each rigid body is M, the moment of inertia is J, the Jacobian matrix is Cr, C ⁇ , the position vector r of each rigid body center of gravity, the angular velocity is ⁇ , the external force is f, the external moment is n, and the Lagrange multiplier is ⁇ . Equation (1) holds.
  • is an arbitrary constant. All symbols are in vector notation.
  • the Lagrange multiplier ⁇ represents the joint torque.
  • the motion response curved surface calculation unit 13Aa acquires the wearer motion data output by the wearer motion data calculation unit 12.
  • the motion response curved surface calculation unit 13Aa calculates a motion response curved surface by a response surface method based on the output wearer motion data.
  • the motion response surface is a quadratic function obtained by extracting how to change the motion unique to the try-on and wrinkles.
  • the simulation system 1a can predict a complicated motion rather than calculating a motion response curved surface converted into a linear function.
  • the motion response curved surface calculation unit 13Aa calculates a motion response curved surface converted to a quadratic function.
  • the motion response curved surface calculation unit 13Aa functions as a function of cubic or higher.
  • the converted motion response curved surface may be calculated. It is preferable that the degree of the motion response curved surface calculated by the motion response curved surface calculation unit 13Aa is higher as the wearer's motion becomes more complicated. For example, since the movement of the grip of a golf swing is relatively smooth, it can be handled by a motion response curved surface converted into a linear function. However, in the case of an operation in which a landing impact such as running occurs, it is preferable that the order of the motion response curved surface is quadratic or higher. Further, from the viewpoint of making overfitting difficult to occur, the order of the motion response curved surface is preferably 4th order or less.
  • the time response curved surface calculation unit 13Ba acquires the wearer motion data output by the wearer motion data calculation unit 12.
  • the time response curved surface calculation unit 13Ba calculates a time response curved surface by a response surface method based on the acquired wearer motion data.
  • the simulation execution unit 14a is a prosthetic leg that is different from the prosthetic leg imaged by the imaging unit A based on the motion response curved surface calculated by the motion response curved surface calculation unit 13Aa and the time response curved surface calculated by the time response curved surface calculation unit 13Ba.
  • the simulation execution unit 14a includes the operation data of the virtual prosthetic leg blade when the artificial leg including the artificial leg blade (virtual prosthetic leg blade (specifically, the virtual sports prosthetic leg blade)) that is not actually tried on is temporarily tried on by the wearer. Predict the wearer's motion data.
  • the simulation execution unit 14a includes a body motion analysis unit 14Aa, an FEM analysis unit 14Ba, a multipurpose optimization unit 14Ca, and an optimum product design unit 14Da.
  • the body motion analysis unit 14Aa acquires the motion response curved surface output by the motion response curved surface calculation unit 13Aa and the time response curved surface output by the time response curved surface calculation unit 13Ba.
  • the body motion analysis unit 14Aa analyzes the wearer's motion based on the acquired motion response curved surface and the time response curved surface.
  • An example of analysis of a wearer's movement is an analysis of how much load is applied to various parts of the wearer's body.
  • the body motion analysis unit 14Aa outputs the analysis result of the wearer's motion to the multipurpose optimization unit 14Ca.
  • the FEM (Finite Element Method) analysis unit 14Ba acquires the motion response surface output by the motion response surface calculation unit 13Aa and the time response surface output by the time response surface calculation unit 13Ba.
  • the FEM analysis unit 14Ba performs FEM analysis of the operation of the try-on product based on the acquired motion response curved surface and the time response curved surface.
  • An example of FEM analysis is an analysis of how the prosthesis is functioning for the wearer to run faster.
  • the FEM analysis unit 14Ba outputs the result of the FEM analysis to the multipurpose optimization unit 14Ca.
  • the multi-objective optimization unit 14Ca acquires the analysis result of the wearer's motion output from the body motion analysis unit 14Aa and the FEM analysis result output from the FEM analysis unit 14Ba.
  • the multi-objective optimization unit 14Ca performs an analysis for maximizing (optimizing) a predetermined objective function based on the acquired analysis result of the wearer's movement and the FEM analysis result.
  • An example of the objective function is a function that prevents an excessive load (body load) from being applied to the wearer's body, a function that allows the wearer to run faster, and the like.
  • the multi-objective optimization unit 14Ca outputs an analysis result for maximizing (optimizing) a predetermined objective function to the optimum product design unit 14Da.
  • the optimum product design unit 14Da acquires an analysis result for maximizing (optimizing) the predetermined objective function output from the multi-objective optimization unit 14Ca.
  • the optimum product design unit 14Da designs a prosthetic leg that is optimal for the wearer (specifically, a sports prosthetic leg blade) based on the obtained analysis result.
  • the optimum product design unit 14Da outputs the result of the design of the prosthetic leg optimum for the wearer to the selection unit 15.
  • the optimal product design unit 14Da includes the “prosthetic leg blade rigidity”, the “prosthetic leg blade height dimension L2”, the “prosthetic leg rear protrusion amount L3”, and the “prosthetic leg blade” included in the four items described above. Information indicating each value (value range) with “toe length dimension L4” is output to selection unit 15.
  • the selection unit 15 acquires the result of the design of the prosthesis most suitable for the wearer output by the optimal product design unit 14Da.
  • the selection unit 15 selects an optimal prosthesis for the wearer based on the acquired result of the design of the optimal prosthesis for the wearer.
  • the selection unit 15 includes the “prosthetic leg blade rigidity”, the “prosthetic leg blade height dimension L2”, the “prosthetic leg rear protrusion amount L3”, and the “prosthetic leg blade toe length” output from the optimum product design unit 14Da.
  • a prosthetic leg having a specification close to each value (value range) with the “prosthetic blade toe length dimension L4” is selected from prosthetic legs manufactured in advance.
  • the selection unit 15 outputs information indicating the selected artificial leg.
  • the simulation system 1a has been described as including the body motion analysis unit 14Aa and the time response curved surface calculation unit 13Ba, but is not limited to this example.
  • the simulation system 1a may not include the time response curved surface calculation unit 13Ba.
  • the body motion analysis unit 14Aa analyzes the wearer's motion based on the acquired motion response curved surface.
  • the FEM analysis unit 14Ba performs FEM analysis of the operation of the try-on product based on the acquired operation response curved surface.
  • the simulation system 1a includes the time response curved surface calculation unit 13Ba, it is possible to improve the accuracy of the analysis of the wearer's motion performed by the body motion analysis unit 14Aa, and the FEM of the try-on product performed by the FEM analysis unit 14Ba. Analysis accuracy can be improved.
  • the simulation system 1a has been described as including the FEM analysis unit 14Ba.
  • the present invention is not limited to this example.
  • the simulation system 1a may not include the FEM analysis unit 14Ba.
  • the multi-objective optimization unit 14Ca performs an analysis for maximizing (optimizing) a predetermined objective function based on the acquired analysis result of the wearer's movement.
  • FIG. 5 is a flowchart for explaining a design method of a prosthetic leg blade (specifically, a sports prosthetic leg blade) that is most suitable for a wearer using the prosthetic limb / orthoresiste or part design system 1 according to the first embodiment.
  • a prosthetic leg blade specifically, a sports prosthetic leg blade
  • the operation of the design system 1 of the first embodiment will be mainly described, but the operation of the simulation system 1a of a modification of the present embodiment will also be described.
  • a reference artificial leg blade (specifically, a reference sports artificial leg blade) is designed. Specifically, nine types of trial-wearing artificial leg blades (specifically, trial-sporting artificial leg blades) # 1 to # 9 shown in FIG.
  • Step S10 can also be applied to the operation of the simulation system 1a.
  • step S20 the photographing unit A photographs nine types of trial wear artificial leg blades # 1 to # 9 and images of the wearer.
  • the photographing unit A is a trial prosthetic leg blade # 1 in a state where the wearer wearing each of the nine types of trial prosthetic leg blades # 1 to # 9 is running like a short distance running competition. Take pictures of # 9 and the wearer.
  • FIG. 6 is a diagram showing an example of the image of the trial-wearing prosthetic leg blade (specifically, a trial-sporting prosthetic leg blade) and the wearer C imaged in step S20 of FIG.
  • the wearer C wears a prosthetic leg B configured in the same manner as the prosthetic leg B shown in FIG. 2, and the prosthetic leg B includes nine types of trial-wearing prosthetic leg blades # 1 to # 9.
  • a trial-wearing prosthetic leg blade # 1 is provided. That is, in the example shown in FIG. 6, the photographing unit A wears a prosthetic leg B provided with (attached to) a trial prosthetic leg blade # 1 as a prosthetic leg blade (specifically, a sports prosthetic leg blade) B4. An image of the person C running at full power is taken.
  • Step S20 can also be applied to the operation of the simulation system 1a.
  • step S ⁇ b> 30 the design system 1 designs an artificial leg blade (specifically, a sports artificial leg blade) B ⁇ b> 4 that is optimal for the wearer C.
  • Step S30 can also be applied to the operation of the simulation system 1a.
  • FIG. 7 the detail of the process in which the design system 1 performed by step S30 performs design of the artificial leg blade B4 optimal for the wearer C is demonstrated.
  • the operation of the design system 1 of the first embodiment will be mainly described, but the operation of the simulation system 1a of a modification of the present embodiment will also be described.
  • step S31 the try-on product operation data acquiring unit 11A obtains data (try-on product operation data) indicating the behavior (operation) occurring in the prosthetic leg blade B4, which is obtained from the image data captured by the image capturing unit A in step S20 in FIG. ) To get.
  • the fitting product motion data acquisition unit 11A is in a state where the wearer C wearing the artificial leg B provided with the trial wearing artificial leg blade (specifically, a trial sports artificial leg blade) # 1 is running at full power.
  • try-on product operation data indicating the behavior occurring in the try-on prosthetic leg blade # 1 is acquired.
  • the wearer C wearing the prosthetic leg B provided with the trial prosthetic leg blades (specifically, the trial sports prosthetic leg blades) # 2 to # 9 is running at full power in the try-on product operation data acquisition unit 11A.
  • try-on product operation data indicating the behavior occurring in the try-on artificial leg blades # 2 to # 9 is acquired.
  • the try-on product measurement data obtaining unit 11Aa obtains try-on product measurement data from the image data output by the photographing unit A (image data photographed in step S20 in FIG. 5). .
  • the fitting product measurement data acquisition unit 11Aa images a state in which the wearer C wearing the artificial leg B to which the trial-wearing artificial leg blade (specifically, a trial sports prosthetic blade) # 1 is attached is running. Try-on product measurement data is acquired from the image data obtained by this.
  • the fitting product measurement data acquisition unit 11Aa displays the state in which the wearer C wearing the artificial leg B to which the trial prosthetic leg blades (specifically, the trial sports prosthetic leg blades) # 2 to # 9 are attached is running. Try-on measurement data is acquired from image data obtained by imaging.
  • the wearer movement data acquisition unit 11B obtains data indicating the movement of the wearer C running at full power (the wearer movement) obtained from the image data captured by the photographing unit A in step S20 of FIG. Data).
  • the wearer operation data acquisition unit 11B is a wearer who is running with full power from image data in a state where the wearer C wearing the artificial leg B with the trial-wearing artificial leg blade # 1 is running with full power. Wearer operation data indicating the operation of C is acquired.
  • the wearer motion data acquisition unit 11B is running at full power from the image data in a state where the wearer C wearing the artificial leg B equipped with the trial wear artificial leg blades # 2 to # 9 is running at full power. Wearer operation data indicating the operation of the wearer C is acquired.
  • the wearer measurement data acquisition unit 11Ba acquires wearer measurement data from the image data output by the imaging unit A (image data captured in step S20 of FIG. 5). . Specifically, the wearer measurement data acquisition unit 11Ba obtains the wearer from the image data obtained by imaging the state in which the wearer C wearing the artificial leg B to which the trial wear artificial leg blade # 1 is attached is running. Get measurement data. Similarly, the wearer measurement data acquisition unit 11Ba obtains from the image data obtained by imaging the state in which the wearer C wearing the artificial leg B to which the trial wearing artificial leg blades # 2 to # 9 are attached is running. Get wearer measurement data.
  • the try-on product operation data and the wearer operation data are acquired by measuring the position (coordinates) of the reflective marker attached to the whole body of the wearer who is the subject of photographing.
  • ⁇ Measurement method Operation data is acquired from the reflection marker attached to the whole body of the subject. This is done by reflecting the infrared rays emitted by the camera from the marker coated with the retroreflective material and capturing the three-dimensional spatial coordinates of each marker on the computer.
  • the operation data such as the try-on product operation data and the wearer operation data are reflected light obtained by reflecting the infrared rays emitted from each of the plurality of imaging units A by the reflection marker attached to the wearer who is the subject of photographing. Is obtained by measuring the three-dimensional spatial coordinates of the reflective marker. From the three-dimensional spatial coordinates of each reflective marker acquired by two or more cameras, the translational and rotational speed, acceleration, and travel distance of the entire body (of the fitting person), each segment, and each joint, Calculate physical features such as angles. In addition, a plurality of force plates buried in the ground are used to measure ground reaction forces in the three directions of front and rear, left and right, and vertical, and moments around each axis.
  • FIG. 8 shows an operation obtained by converting the image shown in FIG. 6 in order to acquire the try-on product operation data in step S31 of FIG. 7 and to acquire the wearer operation data in step S32 of FIG. It is a figure which shows an example of the image for an analysis.
  • the trial wearing artificial leg blade (specifically, a trial sports artificial leg blade) # 1 shown in FIG. 6 is expressed by 24 points.
  • the wearer C is reproduced on the computer of the design system 1. Specifically, for example, the portion from the right hand to the fingertip of the wearer C in the example shown in FIG. 6 is represented by four points.
  • the acceleration applied to the portion from the right hand of the wearer C to the fingertip is computable.
  • the body load applied to each part of the wearer C's whole body can be calculated while the wearer C who wears the artificial leg B provided with the trial wear artificial leg blade # 1 is running at full power. Even when the simulation system 1a acquires the fitting product measurement data and the wearer measurement data, the motion analysis image can be used.
  • the measured running data is represented by f 1 to f m (m is an integer of m> 1). m is the number of each of the try-on product operation data and the wearer operation data, and here corresponds to the number of blades.
  • the measured running data is expressed by f 1 to f 9 .
  • the running data is from f 1 to f 9 , but the value varies depending on the number of trial runs of the blades.
  • fj (ti) is running data of the wearer who wears the j-th artificial leg blade (specifically, a sports artificial leg blade).
  • fj (ti) indicates the position coordinates ⁇ rx, ry, rz ⁇ of each marker attached to the wearer's body.
  • the relationship of Expression (2) is obtained.
  • the equation (2) is solved for each ti.
  • w, x, y, z representing the four specifications (design variables) are design variables
  • w is the first specification (sport prosthetic leg blade rigidity)
  • x is the second specification (sports).
  • y is a third spec (sport prosthetic leg blade rearward protrusion amount)
  • z is a fourth spec (sport prosthetic leg blade toe length dimension).
  • numbers 1 to n in w 1 to w n , x 1 to x n , y 1 to y n , and z 1 to z n correspond to the numbers of the blades.
  • Equation (3) a 1 to a 15 are coefficients of the response surface.
  • a generalized inverse matrix A + also called a Moore-Penrose inverse matrix or a pseudo inverse matrix
  • This is a technique for obtaining an approximate solution when there is no exact solution. That is, this is a technique for obtaining a solution that minimizes the error between the approximate solution and the exact solution. Since this is a general mathematical method, details are omitted.
  • numerical calculation software “MATLAB (registered trademark)” manufactured by MathWorks was used.
  • the coefficients a 1 to a 15 are values corresponding to the skill of the test runner (the try-on person) and the habit of running. That is, by this process, even if w, x, y, and z are changed to specifications that are not actually measured, running data represented by the function f is obtained as shown in Expression (4). . In other words, the following is obtained as an approximate value of the body position coordinate ⁇ rx, ry, rz ⁇ data of each marker with respect to an arbitrary ⁇ w, x, y, z ⁇ by the equation (4).
  • the running data for any blade that has not been measured is expressed as shown in equation (4). Equation (4) is a response surface.
  • the motion response phase and the time response phase can be calculated from Formula (2) to Formula (4).
  • the running data described above also corresponds to try-on product measurement data and wearer measurement data.
  • Formula (2) to Formula (4) is applicable also to the simulation system 1a.
  • step S33 the motion response surface calculation unit 13A performs the response surface method based on the try-on product motion data acquired in step S31 and the wearer motion data acquired in step S32.
  • an action response curved surface obtained by extracting the manner of changing the unique action of the fitting person C and the wrinkle and converting it into a quadratic function is calculated.
  • Step S33 can also be applied when the motion response curved surface calculation unit 13Aa of the simulation system 1a calculates a motion response curved surface.
  • step S34 the time response curved surface calculation unit 13B calculates a time response curved surface by a response surface method based on the try-on product motion data acquired in step S31 and the wearer motion data acquired in step S32. .
  • the time response curved surface can be calculated by equations (5) to (7). Equation (5) is running data.
  • g 1 to g m (m is an integer satisfying m> 1) is measured running data.
  • m is the number of each of the try-on product operation data and the wearer operation data, and here corresponds to the number of blades.
  • the measured running data is expressed as g 1 to g 9 .
  • the running data is from g 1 to g 9 , but the value varies depending on the number of trial runs of the blades.
  • gj (ti) is running data of the wearer who wears the jth artificial leg blade (specifically, a sports artificial leg blade).
  • gj (ti) indicates the position coordinates ⁇ rx, ry, rz ⁇ of each marker attached to the wearer's body.
  • the relationship of Expression (2) is obtained.
  • the equation (5) is solved for each ti.
  • w, x, y, z representing the four specifications (design variables) are design variables
  • w is the first specification (sport prosthetic leg blade rigidity)
  • x is the second specification (sports).
  • y is a third spec (sport prosthetic leg blade rearward protrusion amount)
  • z is a fourth spec (sport prosthetic leg blade toe length dimension).
  • the numbers 1 to n in w 1 to w n , x 1 to x n , y 1 to y n , and z 1 to z n correspond to the numbers of the blades.
  • Equation (6) b 1 to b 15 are coefficients of the response surface.
  • a generalized inverse matrix B + also called Moore-Penrose inverse matrix or pseudo inverse matrix
  • This is a technique for obtaining an approximate solution when there is no exact solution. That is, it is a technique for obtaining a solution that minimizes the error between the approximate solution and the exact solution. Since this is a general mathematical method, details are omitted.
  • numerical calculation software “MATLAB (registered trademark)” manufactured by MathWorks was used.
  • the coefficients b 1 to b 15 are values corresponding to the skill of the test runner (the try-on person) and the habit of running. That is, even if w, x, y, and z are changed to specifications that are not actually measured by this process, running data represented by the function g is obtained as shown in Expression (7). . In other words, the following is obtained as an approximate value of the body position coordinate ⁇ rx, ry, rz ⁇ data of each marker with respect to an arbitrary ⁇ w, x, y, z ⁇ by the equation (7).
  • the running data for any blade that has not been measured is expressed as shown in equation (7). Equation (7) is a response surface.
  • the time response situation can be calculated by Equation (5) to Equation (7).
  • the running data described above also corresponds to try-on product measurement data and wearer measurement data.
  • Formula (5) to Formula (7) is applicable also to the simulation system 1a.
  • g 1 to g 9 are the operating times of the prosthetic limbs provided with each trial wearing prosthetic leg blade (specifically, a trial sports prosthetic blade).
  • the coefficients b 1 to b 15 obtained by the equation (6) are values corresponding to the wearer's operating time.
  • g 1 (w, x, y, z) is calculated based on Expression (7).
  • Step S34 can also be applied when the motion response curved surface calculation unit 13Aa of the simulation system 1a calculates a time response curved surface.
  • step S35 the simulation executing unit 14 uses a prosthetic blade (virtual prosthetic blade (not described in detail) that is not actually tried on the basis of the motion response curved surface calculated in step S33 and the time response curved surface calculated in step S34.
  • a prosthetic blade virtual prosthetic blade (not described in detail) that is not actually tried on the basis of the motion response curved surface calculated in step S33 and the time response curved surface calculated in step S34.
  • a virtual sports prosthetic leg blade that is, prosthetic leg blades other than the trial prosthetic leg blades # 1 to # 9 out of 81 different types of prosthetic leg blades (specifically, sports prosthetic leg blades)).
  • the operation data of the virtual prosthetic leg blade and the operation data of the wearer when B is temporarily tried on by the wearer C are predicted.
  • the simulation execution unit 14 uses the basis vector method to generate virtual artificial leg blades having specifications different from the specifications of the trial-wearing artificial leg blades # 1 to # 9. Specifically, the simulation execution unit 14 performs the simulation while changing the shape of the prosthetic blade based on a certain pattern as needed.
  • the simulation execution unit 14 uses a basis vector method, but in other examples, the simulation execution unit 14 may use a method other than the basis vector method.
  • the basis vector method is a method for obtaining an optimal shape by combining basic shape candidates (basis vectors) that can be considered by a designer with respect to an original shape. Each basis vector has a weighting coefficient, and the basis vector changes its shape by multiplying the weighting coefficient.
  • the sports prosthetic blade height dimension, the sports prosthetic leg rearward protrusion amount, and the sports prosthetic leg toe length dimension correspond to the basis vector, and the sports prosthetic leg blade height dimension and the sports prosthetic leg blade rearward protrusion amount.
  • the simulation is executed while sequentially changing the toe length dimension of the sports prosthetic blade.
  • the golf shaft is a simple rod and does not change its shape, but the prosthesis has various shape variations.
  • the simulation can be executed without cutting the mesh again by deforming each finite element used in the simulation by using the basis vector with the same weight.
  • the selection unit 15 selects a prosthetic leg blade having specifications close to the four items (parameters) described above based on the prediction result of the virtual prosthetic leg movement data and the prediction result of the wearer movement data. For example, the selection unit 15 may select a prosthetic blade based on a statistic such as an average value of four items (parameters). By comprising in this way, an artificial leg blade can be selected objectively irrespective of subjectivity.
  • step S35 is a diagram for explaining an example of processing executed by the design system 1 for the prosthetic limbs / orthorosis or the component of the first embodiment in step S35 of FIG.
  • the body motion analysis unit 14A uses the motion response curved surface calculated in step S33 and the time response curved surface in step S34 based on the wearer motion data acquired in step S32. Analysis of the movement of the wearer C (for example, analysis of how much body load is applied to each part of the wearer's body) is performed.
  • step S35B the FEM analysis unit 14B uses the motion response curved surface calculated in step S33 and the time response curved surface calculated in step S34 based on the try-on product motion data acquired in step S31.
  • FEM analysis of the operation of a try-on product (prosthetic leg B including the above-mentioned 81 different types of prosthetic leg blades (specifically, sports prosthetic leg blades)) (e.g. Analyze how it works).
  • This FEM analysis is, for example, an analysis by a dynamic finite element method that can be executed by using commercially available finite element method software.
  • step S35C the multi-objective optimization unit 14C performs a predetermined objective function (for example, a function that prevents the wearer C from applying an excessive physical load, a function that allows the wearer C to run faster), and the like. Perform analysis to maximize. Specifically, the multi-objective optimization unit 14C maximizes the predetermined objective function described above by repeatedly executing simulation.
  • step S35D the optimal product design unit 14D selects the optimal prosthetic blade for the wearer C from among the 81 types of prosthetic foot blades having the above-described different specifications based on the analysis result in the multipurpose optimization unit 14C. Design (select) B4.
  • the prosthetic leg blade B4 that is most suitable for the wearer C may be a prosthetic leg blade B4 other than the above-described trial-wearing prosthetic leg blades (specifically, trial-sporting prosthetic leg blades) # 1 to # 9.
  • Steps S35A to S35D can be applied to processing performed by the simulation execution unit 14a of the simulation system 1a.
  • FIG. 10 is a diagram illustrating an example of a plate spring for a prosthetic leg.
  • FIG. 10 shows a leaf spring 100 for an artificial leg.
  • FIG. 11 is a partially enlarged view of a leaf spring for a prosthetic leg.
  • FIG. 11 shows an enlarged view of a plate spring for a prosthetic leg included in the range E shown in FIG. 10 and 11, the vertical downward direction when the prosthetic leaf spring 100 is used is the vertical direction, and the direction orthogonal to the vertical direction is the horizontal direction.
  • the straight portion in the thickness direction of the body side end attached to the body (wearer) side through the connecting component is defined as a straight portion A, and the ground side end on the side installed on the ground Is the ground side end B, and when the perpendicular line is dropped from the straight line portion A in the thickness direction, the portion that intersects the leaf spring main body is the intersection C, and when the artificial leg blade including the leaf spring 100 for the artificial leg is attached to the body.
  • a portion located on the most back side is defined as a back portion D.
  • the distance of the vertical component between the straight portion A and the ground side end B is defined as the straight portion vertical component distance H
  • the horizontal between the ground side end B and the intersection C is set.
  • the distance between the component distances is defined as the intersection horizontal component distance Lt
  • the horizontal component distance between the intersection C and the back surface portion D is defined as the back surface horizontal component distance Lh.
  • a straight line portion in the thickness direction orthogonal to the straight line portion A is defined as a straight line portion T.
  • FIG. 12 is a diagram illustrating the amount of bending of the prosthetic leaf spring.
  • FIG. 12 shows a case where the ground side end portion B is fixed and a load of 1000 N is applied to the position P of 50 mm in the vertical direction along the direction from the straight line portion A to the back surface portion D.
  • a load of 1000 N is applied to the position P in the vertical direction
  • the prosthetic leaf spring 100 is bent in the vertical direction.
  • a difference in distance between the straight portion vertical component distance H before the prosthetic leg spring 100 is bent and the straight portion vertical component distance Ha after the prosthetic leg spring 100a is bent is defined as a deflection amount S.
  • the prosthetic leg spring 100 When a user wearing a prosthetic leg blade including a prosthetic leg spring 100 runs, in order to maximize the speed, the prosthetic leg spring 100 satisfies the following (1) to (4). A favorable result was obtained. (1) 235 mm ⁇ H ⁇ 285 mm (2) ⁇ 10 mm ⁇ Lt ⁇ 30 mm (3) 220 mm ⁇ Lh ⁇ 280 mm (4) 35mm ⁇ S ⁇ 45mm.
  • H is too small, it is felt hard for the wearer, and there is a possibility that the prosthetic leg side hurts.
  • H When H is too large, a sense of stability in the deflection direction cannot be obtained.
  • Kneee bending means that a moment acts in a direction in which the knee joint portion of the artificial leg bends. When a knee break occurs, the wearer cannot escape. When Lt is too large, it becomes difficult to take a forward leaning posture, and it becomes difficult to increase the running speed. In addition, there is a high possibility that the toe of the prosthetic blade touches the ground, and the risk of falling over and falling is increased.
  • the prosthetic leg spring 100 when the user who wears the prosthetic leg blade including the prosthetic leg spring 100 is a beginner, the prosthetic leg spring 100 preferably satisfies the following (1b) to (4b). Obtained. If the user wearing the prosthetic blade is a beginner, the knee bending moment is minimized. In general, knee bending is the greatest risk of falls for a prosthetic leg user. Therefore, a prosthetic leg with a minimized knee bending moment is suitable for a general prosthetic leg user in order to minimize the risk of falling.
  • the rigidity of the leaf spring 100 for the artificial leg is preferably 55 to 75 mm, the height is 185 to 235 mm, the toe length is 50 to 90 mm, and the heel length is 220 to 280 mm. It was. (1b) 185 mm ⁇ H ⁇ 235 mm (2b) 50 mm ⁇ Lt ⁇ 90 mm (3b) 220 mm ⁇ Lh ⁇ 280 mm (4b) 55 mm ⁇ S ⁇ 75 mm
  • the motion response curved surface calculation unit 13A that calculates the motion response curved surface by the response surface method based on the fitted product motion data and the wearer motion data, and the try-on product motion data and the wearer motion acquired by the motion data acquisition unit 11
  • a time response surface calculator 13B that calculates a time response surface by a response surface method based on the data, an action response surface, and a time response surface
  • Part 14 is provided. Therefore, according to the design system 1 of the prosthetic limb / equipment or a part thereof according to the first embodiment, a prosthetic limb that is not actually tried on as a prosthetic limb / equipment suitable for the wearer or a part thereof while ensuring the safety of the wearer. ⁇ You can select the brace or its parts.
  • the simulation system 1a of the modification of 1st Embodiment is the measurement data of the fitting product measurement data which are the measurement data of a plurality of different trial-wearing prosthetics or the trial-wearing device, and the measurement data of the wearer of the plurality of trial-wearing prosthetics or the trial-wearing device. Based on the measurement data acquisition unit 11a that acquires certain wearer measurement data, the wearer measurement data, and the wearer measurement data, the wearer operation data that is data indicating the force generated in the wearer is reversed.
  • Wearer motion data calculation unit 12 calculated by dynamic analysis, motion response curved surface based on the wearer motion data, motion response curved surface calculation unit 13Aa that calculates the response surface by response surface method, and wear based on motion response curved surface
  • the operation data of the prosthesis or the orthosis and the operation data of the wearer And a simulation execution unit 14a to predict.
  • the simulation system 1a of the modified example of the first embodiment can predict a prosthetic limb or a brace suitable for the wearer.
  • the prosthetic limb / equipment or part design system 1 according to the second embodiment is configured in the same manner as the prosthetic limb / equipment or part design system 1 according to the first embodiment described above, except as described below. Therefore, according to the prosthetic limb / equipment or its part design system 1 according to the second embodiment, the same effects as those of the prosthetic limb / equipment or its part design system 1 according to the first embodiment described above are obtained, except as described below. be able to.
  • prosthetic limbs For example, prosthetic limbs, wrist joint orthosis, shoulder joint orthosis, cervical vertebra orthosis, thoracic vertebra orthosis, lumbar orthosis, sacroiliac orthosis, hip joint orthosis, knee joint orthosis, short leg orthosis and any of those parts Do the design.
  • a program for realizing each function of the design system 1 of the prosthesis / orthoresistive or its parts and the function of the simulation system 1a is recorded on a computer-readable recording medium, and the program recorded on the recording medium is recorded on the computer
  • the processing of each unit described above may be performed by causing the system to read and execute.
  • “loading and executing a program recorded on a recording medium into a computer system” includes installing the program in the computer system.
  • the “computer system” here includes an OS and hardware such as peripheral devices. Further, the “computer system” may include a plurality of computer devices connected via a network including a communication line such as the Internet, WAN, LAN, and dedicated line.
  • the “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system.
  • the recording medium storing the program may be a non-transitory recording medium such as a CD-ROM.
  • the recording medium also includes a recording medium provided inside or outside that is accessible from the distribution server in order to distribute the program.
  • the code of the program stored in the recording medium of the distribution server may be different from the code of the program that can be executed by the terminal device. That is, the format stored in the distribution server is not limited as long as it can be downloaded from the distribution server and installed in a form that can be executed by the terminal device.
  • the program may be divided into a plurality of parts, downloaded at different timings, and combined in the terminal device, or the distribution server that distributes each of the divided programs may be different.
  • the “computer-readable recording medium” holds a program for a certain period of time, such as a volatile memory (RAM) inside a computer system that becomes a server or a client when the program is transmitted via a network.
  • the program may be for realizing a part of the functions described above.
  • achieve the function mentioned above in combination with the program already recorded on the computer system what is called a difference file (difference program) may be sufficient.
  • part or all of the above-described functions may be realized as an integrated circuit such as an LSI (Large Scale Integration).
  • LSI Large Scale Integration
  • Each function described above may be individually made into a processor, or a part or all of them may be integrated into a processor.
  • the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • an integrated circuit based on the technology may be used.
  • a motion response surface calculation unit that calculates a motion response surface by a response surface method based on the try-on product motion data and the wearer motion data acquired by the motion data acquisition unit;
  • a time response surface calculation unit that calculates a time response surface by a response surface method based on the try-on product operation data and the wearer operation data acquired by the operation data acquisition unit;
  • Based on the motion response curved surface and the time response curved surface, the virtual prosthesis, the orthosis or the part of the virtual prosthesis, the orthosis, or the part that is not actually tried on is temporarily tried by the wearer,
  • the motion response curved surface calculated by the motion response curved surface calculation unit is functionalized into a quadratic or higher function.
  • the plurality of trial prosthetic limbs and orthoses or parts thereof are a plurality of trial sports prosthetic blades,
  • the items of the specifications of the plurality of trial-wearing sports prosthetic blades include at least one of the sports prosthetic blade height dimension, the sports prosthetic blade rearward protrusion amount, and the sports prosthetic blade toe length dimension,
  • the said simulation execution part produces
  • the plurality of trial sports prostheses are: From 81 types of specifications obtained by having each of the four items including the sports prosthetic blade height dimension, the sports prosthetic blade rear protrusion amount, and the sports prosthetic blade toe length dimension having three levels, Nine specifications selected based on the L9 orthogonal table in the design of experiments, The prosthetic limb / orthoresister or the parts design system according to appendix 3 or appendix 4.
  • the four items are sports prosthetic leg blade rigidity, sports prosthetic leg blade height dimension, sports prosthetic leg blade protrusion amount, and sports prosthetic leg blade toe length dimension.
  • the simulation execution unit maximizes a predetermined objective function by repeatedly executing the simulation.
  • the objective function includes at least the body load of the wearer.
  • a plurality of try-on prosthetic limbs / apparatus or parts thereof having different specifications, and a plurality of try-on prosthetic limbs / apparatus or parts of the prosthesis operation data An operation data acquisition step for acquiring wearer operation data which is operation data of the wearer of the brace or its parts; An operation response surface calculation step for calculating an operation response surface by a response surface method based on the try-on product operation data and the wearer operation data acquired in the operation data acquisition step; A time response surface calculation step for calculating a time response surface by a response surface method based on the try-on product operation data and the wearer operation data acquired in the operation data acquisition step; Based on the motion response curved surface and the time response curved surface, the virtual prosthesis, the orthosis or the part of the virtual prosthesis, the orthosis, or the part that is not actually tried on is temporarily tried by the wearer, And a simulation execution step for predicting the wearer's motion data.

Landscapes

  • Health & Medical Sciences (AREA)
  • Transplantation (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Prostheses (AREA)

Abstract

This simulation system has: a measurement data acquisition unit for acquiring prototype measurement data which is measurement data of multiple different prototype prosthetic limbs or prototype prostheses and wearer measurement data which is data of a wearer wearing the multiple different prototype prosthetic limbs or prototype prostheses; a wearer motion data calculation unit for calculating wearer motion data by an inverse dynamic analysis on the basis of the prototype measurement data and the wearer measurement data; a motion response surface calculation unit for calculating a motion response surface by a response surface method on the basis of the wearer motion data; and a simulation execution unit which, assuming that the wearer is wearing a different prototype prosthetic limb or prototype prosthesis from the multiple different prototype prosthetic limbs or prototype prostheses, predicts motion data for the prototype prosthetic limb or prototype prosthesis and motion data for the wearer on the basis of the motion response surface.

Description

シミュレーションシステム、義足ブレード、シミュレーション方法およびプログラムSimulation system, artificial leg blade, simulation method and program

 本発明は、シミュレーションシステム、義足ブレード、シミュレーション方法、およびプログラムに関する。特に、スポーツ用義足の設計に好適に使用できる。
 本願は、2018年2月19日に、日本に出願された特願2018-027376号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a simulation system, an artificial leg blade, a simulation method, and a program. In particular, it can be used suitably for the design of sports prostheses.
This application claims priority based on Japanese Patent Application No. 2018-027376 filed in Japan on February 19, 2018, the contents of which are incorporated herein by reference.

 従来、ゴルフ用具をフィッティングする技術に関して、スイング時間に大きく影響するスペックを変化させた場合にも正確な計算結果を算出し、短時間でシミュレーション結果を出力することができるゴルフ用具フィッティングシステム、及びゴルフ用具フィッティングプログラムが知られている(例えば特許文献1参照)。特許文献1に記載された技術では、試打されるゴルフクラブに取り付けられたセンサによって、試打時の加速度、角速度などが検出される。また、特許文献1に記載された技術では、試打時に検出された加速度、角速度などに基づき、実際には試打されないゴルフクラブが仮に試打される場合に得られるデータが、シミュレーションによって予測され、ゴルフクラブのフィッティングが行われる。 Conventionally, regarding golf equipment fitting technology, a golf equipment fitting system capable of calculating an accurate calculation result and outputting a simulation result in a short time even when specifications that greatly affect the swing time are changed, and golf A tool fitting program is known (see, for example, Patent Document 1). In the technique described in Patent Document 1, the acceleration, angular velocity, and the like at the time of trial hit are detected by a sensor attached to the golf club to be trial hit. Further, in the technique described in Patent Document 1, based on the acceleration, angular velocity, and the like detected at the time of a trial hit, data obtained when a golf club that is not actually hit a test is temporarily predicted is predicted by simulation. Fitting is performed.

国際公開第2014/132885号International Publication No. 2014/132858

 前述したゴルフクラブに適用されたシミュレーションを、義肢(つまり、義足または義手)・装具(つまり、機能に障害のある体幹・四肢に装着する器具)あるいはその部品に適用することを考える。
 ゴルフクラブのフィッティングが行われる場合には、どのようなゴルフクラブが選定されても、そのゴルフクラブを使用するユーザが故障してしまうおそれは殆ど無い。そのため、ゴルフクラブの試打時にユーザの動作データが検出されない。つまり、ユーザの動作データを反映させたシミュレーションは行われない。
 一方、義肢・装具あるいはその部品のフィッティングが行われる場合には、着用者に適していない義肢・装具あるいはその部品が選定されると、その義肢・装具あるいはその部品を着用する着用者が怪我をしてしまうおそれがある。そのため、義肢・装具あるいはその部品のフィッティングが行われる場合には、義肢・装具あるいはその部品の動作(挙動)を考慮することに加えて、義肢・装具あるいはその部品の着用者の動作も考慮する必要がある。
 また、義肢・装具あるいはその部品の動作(挙動)は、ゴルフクラブの動作(挙動)よりも複雑である。そのため、義肢・装具あるいはその部品のシミュレーションを行う場合には、特許文献1に記載されたシミュレーションよりも複雑な演算を行う必要がある。
Consider that the simulation applied to the golf club described above is applied to a prosthetic limb (that is, a prosthetic leg or a prosthetic hand), an orthosis (that is, a device to be worn on a trunk / limb having a function disorder) or a part thereof.
When a golf club is fitted, there is almost no possibility that a user who uses the golf club will break down regardless of which golf club is selected. Therefore, the user's motion data is not detected when the golf club is tried. That is, the simulation reflecting the user operation data is not performed.
On the other hand, when fitting a prosthetic limb or orthosis or its parts, if a prosthetic limb or orthosis or its part that is not suitable for the wearer is selected, the wearer who wears the prosthetic limb or orthosis or the part is injured. There is a risk of it. For this reason, when fitting a prosthetic limb / orthoresistive or part thereof, in addition to considering the movement (behavior) of the prosthetic limb / orthoric or its part, consider the movement of the wearer of the prosthetic limb / orthoric or its part. There is a need.
In addition, the operation (behavior) of the prosthetic limb / orthorax or its components is more complicated than the operation (behavior) of the golf club. For this reason, when performing simulation of a prosthetic limb or orthosis or its parts, it is necessary to perform more complicated calculation than the simulation described in Patent Document 1.

 このような事情に鑑み、本発明は、着用者に適した義肢又は装具を予測できるシミュレーションシステム、義足ブレード、シミュレーション方法、およびプログラムを提供することを目的とする。 In view of such circumstances, an object of the present invention is to provide a simulation system, a prosthetic leg blade, a simulation method, and a program capable of predicting a prosthetic limb or a brace suitable for a wearer.

 本発明は、下記の態様を有する。
 <1>異なる複数の試着用義肢又は試着用装具の計測データである試着品計測データと、複数の前記試着用義肢又は前記試着用装具の着用者の計測データである着用者計測データとを取得する計測データ取得部と、前記着用者計測データと、前記着用者計測データとに基づいて、着用者に生じている力を示すデータである着用者動作データを、逆動力学解析によって算出する着用者動作データ算出部と、前記着用者動作データに基づいて、動作応答曲面を、応答曲面法によって算出する動作応答曲面算出部と、前記動作応答曲面に基づいて、前記着用者が複数の前記試着用義肢又は前記試着用装具とは異なる義肢又は装具を着用したと仮定した場合に、前記義肢又は前記装具の動作データと、前記着用者の動作データとを予測するシミュレーション実行部とを有する、シミュレーションシステム。
 <2>前記着用者動作データに基づいて、時間応答曲面を、応答曲面法によって算出する時間応答曲面算出部を有し、前記シミュレーション実行部は、前記時間応答曲面にさらに基づいて、前記義肢又は前記装具の動作データと、前記着用者の動作データとを予測する、<1>に記載のシミュレーションシステム。
 <3>前記シミュレーション実行部は、ベーシスベクトル法によって、前記義肢又は前記装具の動作データと、前記着用者の動作データとを予測する、<1>又は<2>に記載のシミュレーションシステム。
 <4>前記シミュレーション実行部が予測した前記義肢又は前記装具の前記動作データと、前記着用者の前記動作データとに基づいて、義肢又は装具を選定する選定部を有する<1>から<3>のいずれか一項に記載のシミュレーションシステム。
 <5>前記動作応答曲面算出部は、2次以上の関数に関数化されている動作応答曲面を算出する、<1>から<4>のいずれか一項に記載のシミュレーションシステム。
 <6>複数の前記試着用義肢の各々は、試着用スポーツ義足ブレードであり、前記シミュレーション実行部は、スポーツ義足ブレード高さ寸法と、スポーツ義足ブレード後方突出量と、スポーツ義足ブレードつま先長さ寸法とのうち、少なくとも一つを予測する、<1>から<5>のいずれか一項に記載のシミュレーションシステム。
 <7>複数の前記試着用義肢の各々は、試着用スポーツ義足ブレードであり、前記試着用スポーツ義足ブレードは、複数のスペックから、実験計画法のL9型直交表に基づいて選定されたスペックを有する、<1>から<6>のいずれか一項に記載のシミュレーションシステム。
 <8>前記スペックは、ブレード剛性と、高さ寸法と、後方突出量と、つま先長さ寸法とを含む、<7>に記載のシミュレーションシステム。
 <9>前記シミュレーション実行部は、シミュレーションを繰り返し実行することによって、所定の目的関数を最大化する、<1>から<8>のいずれか一項に記載のシミュレーションシステム。
 <10>前記目的関数は、少なくとも前記着用者の身体負荷に関する関数を含む、<9>に記載のシミュレーションシステム。
 <11><1>から<10>のいずれか一項に記載のシミュレーションシステムによって予測された前記義肢又は前記装具の前記動作データと、前記着用者の前記動作データとに基づいて、選定された義足ブレードであって、接続部品を介して身体(着用者)側に装着される身体側端部の厚み方向の直線部を直線部Aとし、地面に設置される側の地面側端部を地面側端部Bとし、厚み方向の直線部Aから垂線を下した時に板バネ本体と交差する部分を交差部Cとし、義足用の板バネを含む義足ブレードを身体へ装着した際に最も背面側に位置する部分を背面部Dとし、前記直線部Aと前記地面側端部Bとの間の垂直成分の距離を直線部垂直成分距離Hとし、前記地面側端部Bと交差部Cとの間の水平成分距離の距離を交差部水平成分距離Ltとし、前記交差部Cと背面部Dとの間の水平成分距離を背面部水平成分距離Lhとし、前記地面側端部Bを固定し、前記直線部Aから前記背面部Dへ向かう方向に沿って、50mmの位置Pに垂直方向に1000Nの荷重をかけた場合に、前記義足用の板バネが撓む前の直線部垂直成分距離Hと、前記義足用の板バネが撓んだ後の直線部垂直成分距離Haとの距離の差を撓み量Sとした場合に、
 235mm≦H≦285mm
 -10mm≦Lt≦30mm
 220mm≦Lh≦280mm
 35mm≦S≦45mm
 である、義足ブレードである。
 <12>異なる複数の試着用義肢又は試着用装具の計測データである試着品計測データと、複数の前記試着用義肢又は前記試着用装具の着用者の計測データである着用者計測データとを取得するステップと、前記着用者計測データと、前記着用者計測データとに基づいて、着用者に生じている力を示すデータである着用者動作データを、逆動力学解析によって算出するステップと、前記着用者動作データに基づいて、動作応答曲面を、応答曲面法によって算出するステップと、前記動作応答曲面に基づいて、前記着用者が複数の前記試着用義肢又は前記試着用装具とは異なる義肢又は装具を着用したと仮定した場合に、前記義肢又は前記装具の動作データと、前記着用者の動作データとを予測するステップとを有する、コンピュータが実行するシミュレーション方法。
 <13>コンピュータに、異なる複数の試着用義肢又は試着用装具の計測データである試着品計測データと、複数の前記試着用義肢又は前記試着用装具の着用者の計測データである着用者計測データとを取得するステップと、前記着用者計測データと、前記着用者計測データとに基づいて、着用者に生じている力を示すデータである着用者動作データを、逆動力学解析によって算出するステップと、前記着用者動作データに基づいて、動作応答曲面を、応答曲面法によって算出するステップと、前記動作応答曲面に基づいて、前記着用者が複数の前記試着用義肢又は前記試着用装具とは異なる義肢又は装具を着用したと仮定した場合に、前記義肢又は前記装具の動作データと、前記着用者の動作データとを予測するステップとを実行させる、プログラム。
The present invention has the following aspects.
<1> Fitting product measurement data that is measurement data of a plurality of different fitting prostheses or fitting devices, and wearer measurement data that are measurement data of the wearers of the plurality of fitting artificial limbs or the fitting devices Wearer operation data, which is data indicating the force generated in the wearer, is calculated by inverse dynamics analysis based on the measurement data acquisition unit, the wearer measurement data, and the wearer measurement data A wearer motion data calculation unit, a motion response curved surface calculation unit that calculates a motion response curved surface by a response surface method based on the wearer motion data, and a plurality of the fittings by the wearer based on the motion response curved surface Simulation that predicts motion data of the prosthetic limb or the brace and motion data of the wearer when it is assumed that a prosthetic limb or brace that is different from the prosthetic limb or the trial wearing brace is worn. And a tio down execution unit, the simulation system.
<2> A time response curved surface calculation unit that calculates a time response curved surface by a response surface method based on the wearer motion data, wherein the simulation execution unit is further based on the time response curved surface, The simulation system according to <1>, wherein the operation data of the appliance and the operation data of the wearer are predicted.
<3> The simulation system according to <1> or <2>, wherein the simulation execution unit predicts the motion data of the artificial limb or the orthosis and the motion data of the wearer by a basis vector method.
<4> From <1> to <3> having a selection unit that selects a prosthetic limb or a brace based on the motion data of the prosthetic limb or the brace predicted by the simulation execution unit and the motion data of the wearer. The simulation system according to any one of the above.
<5> The simulation system according to any one of <1> to <4>, wherein the motion response curved surface calculation unit calculates a motion response curved surface that is a function of quadratic or higher.
<6> Each of the plurality of trial prosthetic limbs is a trial sports prosthetic leg blade, and the simulation execution unit includes a sports prosthetic leg blade height dimension, a sports prosthetic leg rear protrusion amount, and a sports prosthetic leg blade toe length dimension. The simulation system according to any one of <1> to <5>, wherein at least one is predicted.
<7> Each of the plurality of trial prosthetic limbs is a trial sports prosthetic leg blade, and the trial sports prosthetic leg blade has a spec selected from a plurality of specs based on an L9 orthogonal table of an experimental design method. The simulation system according to any one of <1> to <6>.
<8> The simulation system according to <7>, wherein the specification includes blade rigidity, a height dimension, a backward protrusion amount, and a toe length dimension.
<9> The simulation system according to any one of <1> to <8>, wherein the simulation execution unit maximizes a predetermined objective function by repeatedly executing the simulation.
<10> The simulation system according to <9>, wherein the objective function includes at least a function related to a physical load on the wearer.
<11><1> to <10> are selected based on the motion data of the prosthetic limb or the orthosis predicted by the simulation system according to any one of <10> and the motion data of the wearer. It is a prosthetic leg blade, and the straight portion in the thickness direction of the body side end portion that is attached to the body (wearer) side through the connecting part is defined as a straight portion A, and the ground side end portion on the side installed on the ground is the ground. A side end portion B, a portion that intersects with the leaf spring main body when a perpendicular is drawn from the straight portion A in the thickness direction, is a crossing portion C, and the rearmost side when a prosthetic leg blade including a leaf spring for a prosthetic leg is attached to the body The portion located at the back surface D is the back portion D, the distance of the vertical component between the straight portion A and the ground side end B is the straight portion vertical component distance H, and the ground side end B and the intersection C The horizontal component distance Lt between the intersection horizontal component distance Lt The horizontal component distance between the intersecting portion C and the back surface portion D is set as the back surface horizontal component distance Lh, the ground side end portion B is fixed, and along the direction from the straight line portion A toward the back surface portion D. When a load of 1000 N is applied to the position P of 50 mm in the vertical direction, the linear component vertical component distance H before the prosthetic leg spring is deflected and the prosthetic leg spring after being flexed When the difference in distance from the straight line vertical component distance Ha is the amount of deflection S,
235mm ≦ H ≦ 285mm
−10 mm ≦ Lt ≦ 30 mm
220mm ≦ Lh ≦ 280mm
35mm ≦ S ≦ 45mm
It is a prosthetic leg blade.
<12> Fitting product measurement data that is measurement data of a plurality of different fitting prostheses or fitting devices, and wearer measurement data that are measurement data of the wearers of the plurality of fitting artificial limbs or fitting devices Calculating wearer motion data, which is data indicating the force generated in the wearer, based on the wearer measurement data and the wearer measurement data, by inverse dynamics analysis, and A step of calculating a motion response curved surface by a response surface method based on the wearer motion data, and a prosthetic limb that is different from the plurality of trial wear prostheses or the trial wear devices based on the motion response curved surface, or When assuming that a brace has been worn, the computer executes a step of predicting the motion data of the prosthetic limb or the brace and the motion data of the wearer. Simulation method.
<13> On the computer, fitting measurement data that is measurement data of a plurality of different fitting prostheses or fitting devices, and wearer measurement data that is measurement data of the wearers of the plurality of fitting artificial limbs or fitting devices And calculating wearer motion data, which is data indicating the force generated in the wearer, based on the wearer measurement data and the wearer measurement data by inverse dynamics analysis. And a step of calculating a motion response curved surface by a response surface method based on the wearer motion data, and a plurality of the trial prosthetic limbs or the trial wearer based on the motion response curved surface. When it is assumed that a different prosthesis or orthosis is worn, the operation data of the prosthesis or the orthosis and the operation data of the wearer are predicted. Program.

 本発明によれば、着用者に適した義肢又は装具を予測できるシミュレーションシステム、シミュレーション方法、およびプログラムを提供できる。 According to the present invention, it is possible to provide a simulation system, a simulation method, and a program capable of predicting a prosthetic limb or a brace suitable for a wearer.

第1実施形態の義肢・装具あるいはその部品の設計システムの構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the design system of the prosthesis, the orthosis, or its components of 1st Embodiment. 義足ブレードを含む義足を説明するための図である。It is a figure for demonstrating the artificial leg containing an artificial leg blade. 設計システムが設計可能な81種類の義足ブレードのうち、着用者が実際に試着可能な9種類の試着用義足ブレードの一例を示す図である。It is a figure which shows an example of 9 types of trial-wearing artificial leg blades which a wearer can actually try on among 81 types of artificial-leg blades which a design system can design. 第1実施形態の変形例のシミュレーションシステムの構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the simulation system of the modification of 1st Embodiment. 第1実施形態の義肢・装具あるいはその部品の設計システムを用いた着用者に最適な義足ブレードの設計方法を説明するためのフローチャートである。It is a flowchart for demonstrating the design method of the prosthetic leg blade most suitable for the wearer using the design system of the prosthesis, the orthosis, or its components of 1st Embodiment. 試着用義足ブレードおよび着用者の画像の一例を示す図である。It is a figure which shows an example of a trial wear artificial leg blade and a wearer's image. 第1実施形態の義肢・装具あるいはその部品の設計システムによって実行される処理の一例を説明するための図である。It is a figure for demonstrating an example of the process performed by the design system of the prosthesis, the orthosis, or its components of 1st Embodiment. 試着品動作データを取得するため、および、着用者動作データを取得するために、画像を変換することによって得られた動作解析用画像の一例を示す図である。It is a figure which shows an example of the image for motion analysis obtained by converting an image in order to acquire try-on goods motion data and in order to acquire wearer motion data. 第1実施形態の義肢・装具あるいはその部品の設計システムによって実行される処理の一例を説明するための図である。It is a figure for demonstrating an example of the process performed by the design system of the prosthesis, the orthosis, or its components of 1st Embodiment. 義足用の板バネの一例を示す図である。It is a figure which shows an example of the leaf | plate spring for artificial legs. 義足用の板バネの部分拡大図である。It is the elements on larger scale of the leaf | plate spring for artificial legs. 義足用の板バネの撓み量を示す図である。It is a figure which shows the amount of bending of the leaf | plate spring for artificial legs.

 以下、添付図面を参照し、本発明の実施形態のシミュレーションシステム、シミュレーション方法、およびプログラムについて説明する。 Hereinafter, a simulation system, a simulation method, and a program according to an embodiment of the present invention will be described with reference to the accompanying drawings.

<第1実施形態>
 図1は第1実施形態の義肢・装具あるいはその部品の設計システム1の構成の一例を示すブロック図である。
 図1に示す例では、設計システム1が、義肢(義足または義手)・装具(機能に障害のある体幹・四肢に装着する器具)あるいはその部品として、例えば義足の一部を構成する義足ブレード(詳細には、スポーツ義足ブレード)の設計を行う。設計システム1は、動作データ取得部11と、動作応答曲面算出部13Aと、時間応答曲面算出部13Bと、シミュレーション実行部14とを備えている。これらの構成要素は、例えば、CPU(Central Processing Unit)などのハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。これらの構成要素のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、GPU(Graphics Processing Unit)などのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予めHDD(Hard Disk Drive)やフラッシュメモリなどの記憶装置に格納されていてもよいし、DVDやCD-ROMなどの着脱可能な記憶媒体に格納されており、記憶媒体がドライブ装置に装着されることでインストールされてもよい。
<First Embodiment>
FIG. 1 is a block diagram illustrating an example of the configuration of a design system 1 for a prosthetic limb / orthorosis or a part thereof according to the first embodiment.
In the example shown in FIG. 1, the design system 1 includes a prosthetic leg (prosthetic leg or prosthetic hand), an orthosis (equipment to be attached to a trunk / limb with impaired function) or a part thereof, for example, a prosthetic leg blade constituting a part of the prosthetic leg. (Details are sports prosthetic blades). The design system 1 includes a motion data acquisition unit 11, a motion response curved surface calculation unit 13A, a time response curved surface calculation unit 13B, and a simulation execution unit 14. These components are realized by, for example, a hardware processor such as a CPU (Central Processing Unit) executing a program (software). Some or all of these components include LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array), and GPU (Graphics Prosthetic Hardware circuit unit). (including circuit), or may be realized by cooperation of software and hardware. The program may be stored in advance in a storage device such as an HDD (Hard Disk Drive) or a flash memory, or may be stored in a removable storage medium such as a DVD or CD-ROM, and the storage medium is stored in the drive device. It may be installed by being attached.

 動作データ取得部11は、撮影部A(例えばカメラ)によって撮影される義足(試着品)および義足の着用者の画像データを取得する。
 つまり、図1に示す例では、撮影部Aが、義足のみを含む画像を撮影するのではなく、義足および着用者の両方を含む画像を撮影する。詳細には、図1に示す例では、撮影部Aは、義足を着用した着用者が短距離走の競技中のように走っている状態で、義足および着用者の画像を撮影する。撮影部Aによる撮影中、義足には、着用者が走ることに伴う挙動が生じている。
 なお、動作データ取得部11は、カメラ以外であってもよく、センサを一つ以上使用することにより、画像データの代わりに動作データを取得することとしてもよい。
 また、動作データ取得部11は、試着品動作データ取得部11Aと、着用者動作データ取得部11Bとを備えている。試着品動作データ取得部11Aは、撮影部Aが撮影する画像データから得られる、義足に生じている挙動(動作)を示すデータ(試着品動作データ)を取得する。着用者動作データ取得部11Bは、撮影部Aが撮影する画像データから得られる、走っている着用者の動作を示すデータ(着用者動作データ)を取得する。
 他の例では、撮影部Aは、義足を着用した着用者が、例えば走り幅跳びなど、短距離走以外の競技をしている状態、あるいは、それに近い状態で、義足および着用者の画像を撮影してもよい。
The motion data acquisition unit 11 acquires image data of a prosthetic leg (fitting product) and a prosthetic leg wearer photographed by the photographing unit A (for example, a camera).
That is, in the example illustrated in FIG. 1, the photographing unit A does not photograph an image including only the artificial leg, but captures an image including both the artificial leg and the wearer. Specifically, in the example illustrated in FIG. 1, the imaging unit A captures images of the prosthetic leg and the wearer while the wearer wearing the prosthetic leg is running as if during a short-distance running competition. During photographing by the photographing unit A, the prosthetic leg has a behavior associated with running of the wearer.
The motion data acquisition unit 11 may be other than a camera, and may acquire motion data instead of image data by using one or more sensors.
The motion data acquisition unit 11 includes a try-on product motion data acquisition unit 11A and a wearer motion data acquisition unit 11B. The try-on product operation data obtaining unit 11A obtains data (try-on product operation data) indicating the behavior (motion) occurring in the artificial leg, obtained from the image data photographed by the photographing unit A. The wearer motion data acquisition unit 11B acquires data (wearer motion data) indicating the motion of the running wearer obtained from the image data captured by the image capturing unit A.
In another example, the imaging unit A captures images of the prosthetic leg and the wearer in a state where the wearer wearing the prosthetic leg is playing a sport other than short-distance running, such as long jump, or the like. May be.

 図1に示す例では、動作応答曲面算出部13Aが、試着品動作データ取得部11Aにより取得された試着品動作データと、着用者動作データ取得部11Bにより取得された着用者動作データとに基づき、応答曲面法によって、試着者特有の動作の変え方および癖を抽出して2次関数化した動作応答曲面を算出する。
 図1に示す例では、動作応答曲面算出部13Aが2次関数化した動作応答曲面を算出するため、動作応答曲面算出部13Aが1次関数化した動作応答曲面を算出する場合よりも、複雑な動作を設計システム1は予測することができる。
 他の例では、動作応答曲面算出部13Aが、3次以上の関数に関数化した動作応答曲面を算出してもよい。
 動作が複雑になるほど、応答曲面の次数が高い方が好ましい。ゴルフスイングのグリップの動きは比較的スムーズなため1次で対応可能である。ランニング、着地の衝撃が入る場合は2次以上が好ましい。また、オーバーフィッティングを起こしにくい点からは、4次以下であることが好ましい。
In the example shown in FIG. 1, the motion response curved surface calculation unit 13A is based on the try-on product operation data acquired by the try-on product operation data acquisition unit 11A and the wearer operation data acquired by the wearer operation data acquisition unit 11B. Then, by using the response surface method, a motion response surface obtained by extracting a method of changing the unique motion of the fitting person and a wrinkle and converting it into a quadratic function is calculated.
In the example shown in FIG. 1, since the motion response curved surface calculation unit 13A calculates a motion response curved surface converted into a quadratic function, the motion response curved surface calculation unit 13A calculates a motion response curved surface converted into a linear function. The design system 1 can predict a correct operation.
In another example, the motion response curved surface calculation unit 13A may calculate a motion response curved surface that is a function of cubic or higher.
The more complicated the operation, the higher the order of the response surface. Since the movement of the grip of the golf swing is relatively smooth, it can be handled by the primary. When the impact of running and landing enters, secondary or higher is preferable. Moreover, it is preferable that it is 4th order or less from the point which does not raise | generate overfitting.

 図1に示す例では、時間応答曲面算出部13Bが、試着品動作データ取得部11Aにより取得された試着品動作データと、着用者動作データ取得部11Bにより取得された着用者動作データとに基づき、応答曲面法によって時間応答曲面を算出する。
 シミュレーション実行部14は、動作応答曲面算出部13Aによって算出された動作応答曲面と、時間応答曲面算出部13Bによって算出された時間応答曲面とに基づき、実際には試着されない義足ブレード(仮想義足ブレード(詳細には、仮想スポーツ義足ブレード))を含む義足が着用者によって仮に試着された場合における仮想義足ブレードの動作データと、着用者の動作データとを予測する。シミュレーション実行部14は、身体動作解析部14Aと、FEM解析部14Bと、多目的最適化部14Cと、最適品設計部14Dとを備えている。
In the example illustrated in FIG. 1, the time response curved surface calculation unit 13B is based on the try-on product operation data acquired by the try-on product operation data acquisition unit 11A and the wearer operation data acquired by the wearer operation data acquisition unit 11B. The time response surface is calculated by the response surface method.
Based on the motion response curved surface calculated by the motion response curved surface calculation unit 13A and the time response curved surface calculated by the time response curved surface calculation unit 13B, the simulation execution unit 14 does not actually try on an artificial leg blade (virtual artificial leg blade ( Specifically, the motion data of the virtual prosthetic foot blade and the motion data of the wearer when the prosthetic foot including the virtual sports prosthetic foot blade)) is temporarily tried on by the wearer are predicted. The simulation execution unit 14 includes a body motion analysis unit 14A, an FEM analysis unit 14B, a multi-purpose optimization unit 14C, and an optimum product design unit 14D.

 身体動作解析部14Aは、着用者動作データ取得部11Bにより取得された着用者動作データに基づいて、動作応答曲面算出部13Aによって算出された動作応答曲面と、時間応答曲面算出部13Bによって算出された時間応答曲面とを利用することにより、着用者の動作の解析(例えば、着用者の身体の各所にどの程度の負荷がかかっているかの解析)を行う。
 FEM(Finite Element Method)解析部14Bは、試着品動作データ取得部11Aにより取得された試着品動作データに基づいて、動作応答曲面算出部13Aによって算出された動作応答曲面と、時間応答曲面算出部13Bによって算出された時間応答曲面とを利用することにより、試着品の動作のFEM解析(例えば、着用者が速く走るために義足がどのように機能しているかの解析)を行う。なお、FEM解析部14Bは必ずしもFEMで行う必要はなく、粒子法、剛体リンクモデル等、種々の離散的解析手法を用いることができる。
 多目的最適化部14Cは、所定の目的関数(例えば、着用者の身体に過剰な負荷(身体負荷)がかからないようにする関数、着用者が速く走れるようにする関数など)を最大化するための解析を行う。
 最適品設計部14Dは、多目的最適化部14Cにおける解析結果に基づいて、着用者にとって最適な義足(詳細には、スポーツ義足ブレード)を設計する。
The body motion analysis unit 14A is calculated by the motion response curved surface calculated by the motion response curved surface calculation unit 13A and the time response curved surface calculation unit 13B based on the wearer motion data acquired by the wearer motion data acquisition unit 11B. By using the time response curved surface, analysis of the wearer's movement (for example, analysis of how much load is applied to each part of the wearer's body) is performed.
The FEM (Finite Element Method) analysis unit 14B includes an operation response curved surface calculated by the motion response curved surface calculation unit 13A and a time response curved surface calculation unit based on the fitting product motion data acquired by the fitting product motion data acquisition unit 11A. By using the time response curved surface calculated by 13B, an FEM analysis of the operation of the try-on product (for example, analysis of how the prosthetic leg functions in order for the wearer to run fast) is performed. Note that the FEM analysis unit 14B is not necessarily performed by the FEM, and various discrete analysis methods such as a particle method and a rigid body link model can be used.
The multi-objective optimization unit 14C maximizes a predetermined objective function (for example, a function that prevents an excessive load (body load) from being applied to the wearer's body, a function that allows the wearer to run faster), and the like. Analyze.
The optimum product design unit 14D designs a prosthetic leg that is optimal for the wearer (specifically, a sports prosthetic leg blade) based on the analysis result in the multi-purpose optimization unit 14C.

 図2は図1に示す設計システム1によって設計される義足ブレード(詳細には、スポーツ義足ブレード)B4を含む義足Bを説明するための図である。
 図2に示す例では、義足Bが、ソケットB1と、ジョイントB2と、ソケットB1とジョイントB2とを接続する接続部B3と、義足ブレードB4と、ジョイントB2と義足ブレードB4とを接続する接続部B5とを備えている。
 義足ブレードB4が有するスペックの項目には、例えば、義足ブレードB4の剛性である義足ブレード剛性(詳細には、スポーツ義足ブレード剛性)と、義足ブレードB4の高さ寸法である義足ブレード高さ寸法(詳細には、スポーツ義足ブレード高さ寸法)L2と、接続部B5の中心軸線B5Xに対する義足ブレードB4の後方突出量である義足ブレード後方突出量(詳細には、スポーツ義足ブレード後方突出量)L3と、接続部B5の中心軸線B5Xに対する義足ブレードB4のつま先部分の前方突出量である義足ブレードつま先長さ寸法(詳細には、スポーツ義足ブレードつま先長さ寸法)L4とが含まれる。
 他の例では、義足ブレードB4が、上述したスペックの項目とは異なるスペックの項目を有していてもよい。
FIG. 2 is a view for explaining an artificial leg B including an artificial leg blade (specifically, a sports artificial leg blade) B4 designed by the design system 1 shown in FIG.
In the example shown in FIG. 2, the prosthetic leg B includes a socket B1, a joint B2, a connecting part B3 that connects the socket B1 and the joint B2, a prosthetic blade B4, and a connecting part that connects the joint B2 and the prosthetic leg blade B4. B5.
The specification items of the artificial leg blade B4 include, for example, an artificial leg blade rigidity (specifically, a sports artificial leg blade rigidity) that is the rigidity of the artificial leg blade B4 and an artificial leg blade height dimension that is the height dimension of the artificial leg blade B4 ( Specifically, the sports prosthetic blade height dimension) L2, and the prosthetic blade rearward projecting amount (specifically, the sports prosthetic blade rearward projecting amount) L3, which is the rearward projecting amount of the prosthetic blade B4 with respect to the central axis B5X of the connecting portion B5, The prosthetic blade toe length dimension (specifically, the sports prosthetic leg toe length dimension) L4, which is the forward protrusion amount of the toe portion of the artificial leg blade B4 with respect to the central axis B5X of the connecting portion B5, is included.
In another example, the prosthetic blade B4 may have a specification item different from the specification item described above.

 第1実施形態の義肢・装具あるいはその部品の設計システム1の一例では、実験計画法に基づき、着用者にとって最適な義足ブレード剛性の候補として「高い」、「標準」、「低い」の3つの水準が設けられ、着用者にとって最適な義足ブレード高さ寸法L2の候補として「高い」、「標準」、「低い」の3つの水準が設けられ、着用者にとって最適な義足ブレード後方突出量L3の候補として「大きい」、「標準」、「小さい」の3つの水準が設けられ、着用者にとって最適な義足ブレードつま先長さ寸法L4の候補として「長い」、「標準」、「短い」の3つの水準が設けられる。
 つまり、この例では、設計システム1は、4つの項目(「義足ブレード剛性」、「義足ブレード高さ寸法L2」、「義足ブレード後方突出量L3」および「義足ブレードつま先長さ寸法L4」)のそれぞれが上述した3つの水準を有することにより得られる、81(=3)種類の異なるスペックを有する義足ブレードB4の中から、着用者にとって最適な義足ブレードB4を設計(選定)する。
 第1実施形態の義肢・装具あるいはその部品の設計システム1の他の例では、義足ブレードB4が有するスペックの項目に、3以外の数の水準が設けられてもよい。
In the example of the prosthetic limb / orthoresiste or part design system 1 according to the first embodiment, based on the experimental design method, there are three probable prosthetic blade stiffness candidates “high”, “standard”, and “low”. Three levels of “high”, “standard”, and “low” are provided as candidates of the prosthetic leg blade height dimension L2 that is optimal for the wearer, and the prosthetic leg rearward protrusion amount L3 that is optimal for the wearer is set. Three levels of “large”, “standard”, and “small” are provided as candidates, and three types of “long”, “standard”, and “short” are optimal candidates for the prosthetic blade toe length dimension L4 for the wearer. A level is set.
That is, in this example, the design system 1 includes four items (“prosthetic blade rigidity”, “prosthetic blade height dimension L2”, “prosthetic blade rearward protrusion amount L3”, and “prosthetic leg blade toe length dimension L4”). The prosthetic blade B4 that is optimal for the wearer is designed (selected) from among the 81 (= 3 4 ) different types of prosthetic blade B4 obtained by having the above three levels.
In another example of the prosthetic limb / equipment or its component design system 1 according to the first embodiment, a number other than 3 may be provided in the specification item of the prosthetic leg blade B4.

 図3は図1に示す設計システム1が設計可能な81種類の義足ブレード(詳細には、スポーツ義足ブレード)のうち、着用者が実際に試着可能な9種類の試着用義足ブレード(詳細には、試着用スポーツ義足ブレード)#1~#9の一例を示す図である。
 図3に示す例では、義足ブレードの着用者が、その着用者にとって最適な義足ブレードを選定するために、81種類の異なるスペックを有する義足ブレードのすべてを試着するのではなく、81種類の異なるスペックを有する義足ブレードの中から実験計画法におけるL9型直交表に基づいて選定された9種類の異なるスペックを有する試着用義足ブレード#1~#9を試着する。
FIG. 3 shows nine types of try-on prosthetic blades (in detail, which can be actually tried on by the wearer) among 81 types of prosthetic blades (specifically, sports prosthetic blades) that can be designed by the design system 1 shown in FIG. FIG. 6 is a diagram showing an example of a trial wear sports prosthetic leg blade) # 1 to # 9.
In the example shown in FIG. 3, the wearer of the prosthetic blade does not try on all of the 81 kinds of prosthetic blades having different specifications in order to select an optimum prosthetic blade for the wearer, but 81 kinds of different ones. Test wear artificial leg blades # 1 to # 9 having nine different specs selected from the prosthetic leg blades having specs based on the L9 type orthogonal table in the experimental design method are tried on.

 図3に示す例では、試着用義足ブレード#1において、項目「義足ブレード剛性」(Var.1)の水準が「1」(「高い」)に設定され、項目「義足ブレード高さ寸法L2」(Var.2)の水準が「1」(「高い」)に設定され、項目「義足ブレード後方突出量L3」(Var.3)の水準が「1」(「大きい」)に設定され、項目「義足ブレードつま先長さ寸法L4」(Var.4)の水準が「1」(「長い」)に設定されている。
 試着用義足ブレード#2では、項目「義足ブレード剛性」(Var.1)の水準が「1」(「高い」)に設定され、項目「義足ブレード高さ寸法L2」(Var.2)の水準が「2」(「標準」)に設定され、項目「義足ブレード後方突出量L3」(Var.3)の水準が「2」(「標準」)に設定され、項目「義足ブレードつま先長さ寸法L4」(Var.4)の水準が「2」(「標準」)に設定されている。
 試着用義足ブレード#3では、項目「義足ブレード剛性」(Var.1)の水準が「1」(「高い」)に設定され、項目「義足ブレード高さ寸法L2」(Var.2)の水準が「3」(「低い」)に設定され、項目「義足ブレード後方突出量L3」(Var.3)の水準が「3」(「小さい」)に設定され、項目「義足ブレードつま先長さ寸法L4」(Var.4)の水準が「3」(「短い」)に設定されている。
In the example shown in FIG. 3, the level of the item “Prosthetic leg blade rigidity” (Var. 1) is set to “1” (“High”) in the trial-wearing artificial leg blade # 1, and the item “Prosthetic leg blade height dimension L2” is set. The level of (Var.2) is set to “1” (“high”), the level of the item “prosthetic blade rearward protrusion L3” (Var.3) is set to “1” (“large”), and the item The level of “prosthetic blade toe length dimension L4” (Var. 4) is set to “1” (“long”).
In the trial-wearing artificial leg blade # 2, the level of the item “Prosthetic leg blade rigidity” (Var. 1) is set to “1” (“High”), and the level of the item “Prosthetic leg blade height dimension L2” (Var. 2) is set. Is set to “2” (“standard”), the level of the item “prosthetic leg blade rearward protrusion L3” (Var.3) is set to “2” (“standard”), and the item “prosthetic leg blade toe length dimension” is set. The level of “L4” (Var. 4) is set to “2” (“standard”).
In the trial wear artificial leg blade # 3, the level of the item “Prosthetic leg blade rigidity” (Var. 1) is set to “1” (“High”), and the level of the item “Prosthetic leg blade height dimension L2” (Var. 2) is set. Is set to “3” (“low”), the level of the item “prosthetic leg blade protrusion L3” (Var. 3) is set to “3” (“small”), and the item “prosthetic leg toe length dimension” is set. The level of “L4” (Var. 4) is set to “3” (“short”).

 また、図3に示す例では、試着用義足ブレード#4において、項目「義足ブレード剛性」(Var.1)の水準が「2」(「標準」)に設定され、項目「義足ブレード高さ寸法L2」(Var.2)の水準が「1」(「高い」)に設定され、項目「義足ブレード後方突出量L3」(Var.3)の水準が「2」(「標準」)に設定され、項目「義足ブレードつま先長さ寸法L4」(Var.4)の水準が「3」(「短い」)に設定されている。
 試着用義足ブレード#5では、項目「義足ブレード剛性」(Var.1)の水準が「2」(「標準」)に設定され、項目「義足ブレード高さ寸法L2」(Var.2)の水準が「2」(「標準」)に設定され、項目「義足ブレード後方突出量L3」(Var.3)の水準が「3」(「小さい」)に設定され、項目「義足ブレードつま先長さ寸法L4」(Var.4)の水準が「1」(「長い」)に設定されている。
 試着用義足ブレード#6では、項目「義足ブレード剛性」(Var.1)の水準が「2」(「標準」)に設定され、項目「義足ブレード高さ寸法L2」(Var.2)の水準が「3」(「低い」)に設定され、項目「義足ブレード後方突出量L3」(Var.3)の水準が「1」(「大きい」)に設定され、項目「義足ブレードつま先長さ寸法L4」(Var.4)の水準が「2」(「標準」)に設定されている。
In the example shown in FIG. 3, the level of the item “Prosthetic leg blade stiffness” (Var. 1) is set to “2” (“Standard”) in the trial wear artificial leg blade # 4, and the item “Prosthetic leg blade height dimension” is set. The level of “L2” (Var. 2) is set to “1” (“High”), and the level of the item “Prosthetic leg rear protrusion L3” (Var. 3) is set to “2” (“Standard”). The level of the item “Prosthetic leg toe length dimension L4” (Var. 4) is set to “3” (“short”).
In the trial-wearing artificial leg blade # 5, the level of the item “Prosthetic leg blade rigidity” (Var. 1) is set to “2” (“Standard”), and the level of the item “Prosthetic leg blade height dimension L2” (Var. 2) is set. Is set to “2” (“standard”), the level of the item “prosthetic leg blade protrusion L3” (Var. 3) is set to “3” (“small”), and the item “prosthetic blade toe length dimension” is set. The level of “L4” (Var. 4) is set to “1” (“long”).
In the trial prosthetic blade # 6, the level of the item “Prosthetic leg blade rigidity” (Var. 1) is set to “2” (“Standard”), and the level of the item “Prosthetic leg blade height dimension L2” (Var. 2) is set. Is set to “3” (“low”), the level of the item “prosthetic leg blade rearward protrusion L3” (Var.3) is set to “1” (“large”), and the item “prosthetic leg blade toe length dimension” is set. The level of “L4” (Var. 4) is set to “2” (“standard”).

 また、図3に示す例では、試着用義足ブレード#7において、項目「義足ブレード剛性」(Var.1)の水準が「3」(「低い」)に設定され、項目「義足ブレード高さ寸法L2」(Var.2)の水準が「1」(「高い」)に設定され、項目「義足ブレード後方突出量L3」(Var.3)の水準が「3」(「小さい」)に設定され、項目「義足ブレードつま先長さ寸法L4」(Var.4)の水準が「2」(「標準」)に設定されている。
 試着用義足ブレード#8では、項目「義足ブレード剛性」(Var.1)の水準が「3」(「低い」)に設定され、項目「義足ブレード高さ寸法L2」(Var.2)の水準が「2」(「標準」)に設定され、項目「義足ブレード後方突出量L3」(Var.3)の水準が「1」(「大きい」)に設定され、項目「義足ブレードつま先長さ寸法L4」(Var.4)の水準が「3」(「短い」)に設定されている。
 試着用義足ブレード#9では、項目「義足ブレード剛性」(Var.1)の水準が「3」(「低い」)に設定され、項目「義足ブレード高さ寸法L2」(Var.2)の水準が「3」(「低い」)に設定され、項目「義足ブレード後方突出量L3」(Var.3)の水準が「2」(「標準」)に設定され、項目「義足ブレードつま先長さ寸法L4」(Var.4)の水準が「1」(「長い」)に設定されている。
In the example shown in FIG. 3, the level of the item “Prosthetic leg blade stiffness” (Var. 1) is set to “3” (“Low”) in the trial-wearing artificial leg blade # 7, and the item “Prosthetic leg blade height dimension” is set. The level of “L2” (Var. 2) is set to “1” (“high”), and the level of the item “prosthetic blade rearward protrusion amount L3” (Var. 3) is set to “3” (“small”). The level of the item “Prosthetic leg toe length dimension L4” (Var. 4) is set to “2” (“Standard”).
In the trial-wearing artificial leg blade # 8, the level of the item “Prosthetic leg blade rigidity” (Var.1) is set to “3” (“Low”), and the level of the item “Prosthetic leg blade height dimension L2” (Var.2) is set. Is set to “2” (“standard”), the level of the item “prosthetic leg blade protrusion L3” (Var.3) is set to “1” (“large”), and the item “prosthetic leg toe length dimension” is set. The level of “L4” (Var. 4) is set to “3” (“short”).
In the trial-wearing artificial leg blade # 9, the level of the item “Prosthetic leg blade rigidity” (Var.1) is set to “3” (“Low”), and the level of the item “Prosthetic leg blade height dimension L2” (Var.2) is set. Is set to “3” (“low”), the level of the item “prosthetic leg blade rearward protrusion L3” (Var.3) is set to “2” (“standard”), and the item “prosthetic blade toe length dimension” is set. The level of “L4” (Var. 4) is set to “1” (“long”).

 次に、第1実施形態の変形例のシミュレーションシステム1aについて説明する。
 図4は、第1実施形態の変形例のシミュレーションシステム1aの構成の一例を示すブロック図である。
 シミュレーションシステム1aは、義肢又は装具の設計を支援する。義肢とは、切断により四肢の一部を欠損した場合に、元の手足の形態又は機能を復元するために装着、使用する人工の手足であり、義足と、義手とが含まれる。装具とは、機能に障害がある体幹、四肢に装着する器具である。
 本実施形態の変形例では、シミュレーションシステム1aが、義肢又は装具の一例として、義足の一部を構成する義足ブレード(詳細には、スポーツ義足ブレード)の設計を行う場合について説明を続ける。
 シミュレーションシステム1aは、計測データ取得部11aと、着用者動作データ算出部12と、動作応答曲面算出部13Aaと、時間応答曲面算出部13Baと、シミュレーション実行部14と、選定部15とを備えている。これらの構成要素は、例えば、CPUなどのハードウェアプロセッサがプログラム(ソフトウェア)を実行することにより実現される。これらの構成要素のうち一部または全部は、LSIやASIC、FPGA、GPUなどのハードウェア(回路部;circuitryを含む)によって実現されてもよいし、ソフトウェアとハードウェアの協働によって実現されてもよい。プログラムは、予めHDDやフラッシュメモリなどの記憶装置に格納されていてもよいし、DVDやCD-ROMなどの着脱可能な記憶媒体に格納されており、記憶媒体がドライブ装置に装着されることでインストールされてもよい。
Next, a simulation system 1a according to a modification of the first embodiment will be described.
FIG. 4 is a block diagram illustrating an example of a configuration of a simulation system 1a according to a modification of the first embodiment.
The simulation system 1a supports the design of a prosthetic limb or an orthosis. A prosthetic limb is an artificial limb that is worn and used to restore the form or function of the original limb when a part of the limb is lost by cutting, and includes a prosthetic leg and a prosthetic hand. An orthosis is a device that is worn on the trunk or extremities that have impaired function.
In the modified example of the present embodiment, the description continues when the simulation system 1a designs a prosthetic leg blade (specifically, a sports prosthetic leg blade) that constitutes a part of the prosthetic leg as an example of a prosthetic limb or an orthosis.
The simulation system 1a includes a measurement data acquisition unit 11a, a wearer motion data calculation unit 12, a motion response curved surface calculation unit 13Aa, a time response curved surface calculation unit 13Ba, a simulation execution unit 14, and a selection unit 15. Yes. These components are realized, for example, when a hardware processor such as a CPU executes a program (software). Some or all of these components may be realized by hardware (circuit unit; including circuitry) such as LSI, ASIC, FPGA, GPU, etc., or by cooperation of software and hardware. Also good. The program may be stored in advance in a storage device such as an HDD or a flash memory, or may be stored in a removable storage medium such as a DVD or CD-ROM, and the storage medium is attached to the drive device. May be installed.

 計測データ取得部11aは、異なる複数の試着用義足の計測データである試着品計測データと、複数の試着用義足の着用者の計測データである着用者計測データとを取得する。ここで、異なるとは、義足のスペックが異なることであってもよい。例えば、計測データ取得部11aは、試着品計測データとして、撮影部A(例えばカメラ)によって撮影された試着用義足の画像データを取得する。また、計測データ取得部11aは、着用者計測データとして、撮影部Aによって撮影された試着用義足の着用者の画像データを取得する。
 撮影部Aは、義足のみを撮影するのではなく、義足および着用者の両方を撮影する。詳細には、撮影部Aは、義足を着用した着用者が短距離走の競技中のように走っている状態で、義足および着用者を撮影する。撮影部Aによる撮影中、義足には、着用者が走ることに伴う挙動が生じている。
 なお、計測データ取得部11aは、センサを一つ以上使用することにより得られる計測データを、画像データの代わりに取得してもよい。ここでは、一例として、計測データ取得部11aが、画像データを取得する場合について説明を続ける。
The measurement data acquisition unit 11a acquires try-on product measurement data that is measurement data of a plurality of different trial-wearing prosthetic legs and wearer measurement data that is measurement data of the wearers of the plurality of try-on prosthetic legs. Here, the difference may be that the specifications of the artificial leg are different. For example, the measurement data acquisition unit 11a acquires image data of a try-on prosthetic leg photographed by the photographing unit A (for example, a camera) as the fitting product measurement data. Moreover, the measurement data acquisition part 11a acquires the image data of the wearer of the trial wear artificial leg image | photographed by the imaging | photography part A as wearer measurement data.
The imaging unit A does not shoot only the artificial leg, but shoots both the artificial leg and the wearer. Specifically, the photographing unit A photographs the prosthetic leg and the wearer while the wearer wearing the prosthetic leg is running like in a short-distance running competition. During photographing by the photographing unit A, the prosthetic leg has a behavior associated with running of the wearer.
The measurement data acquisition unit 11a may acquire measurement data obtained by using one or more sensors instead of image data. Here, as an example, the case where the measurement data acquisition unit 11a acquires image data will be described.

 計測データ取得部11aは、試着品計測データ取得部11Aaと、着用者計測データ取得部11Baとを備えている。試着品計測データ取得部11Aaは、撮影部Aが出力する画像データから、義足に生じている挙動を示すデータ(以下「試着品計測データ」という)を取得する。試着品計測データ取得部11Aaは、取得した試着品計測データを、着用者動作データ算出部12へ出力する。着用者計測データ取得部11Baは、撮影部Aが出力する画像データから、走っている着用者を計測することによって得られるデータ(以下「着用者計測データ」という)を取得する。着用者計測データ取得部11Baは、取得した着用者計測データを、着用者動作データ算出部12へ出力する。
 ここでは、一例として、義足を着用した着用者が走っている状態で、義足および着用者を撮影することによって得られた画像データを使用した場合について説明を続ける。他の例では、撮影部Aは、義足を着用した着用者が、走り幅跳びなど、短距離走以外の競技をしている状態、あるいは、それに近い状態で、義足および着用者を撮影することによって得られた画像データを使用してもよい。
The measurement data acquisition unit 11a includes a try-on product measurement data acquisition unit 11Aa and a wearer measurement data acquisition unit 11Ba. The try-on product measurement data acquisition unit 11Aa acquires data indicating the behavior occurring on the artificial leg (hereinafter referred to as “try-on product measurement data”) from the image data output by the imaging unit A. The try-on product measurement data acquisition unit 11 </ b> Aa outputs the acquired try-on product measurement data to the wearer operation data calculation unit 12. The wearer measurement data acquisition unit 11Ba acquires data (hereinafter referred to as “wearer measurement data”) obtained by measuring a running wearer from the image data output by the imaging unit A. The wearer measurement data acquisition unit 11Ba outputs the acquired wearer measurement data to the wearer operation data calculation unit 12.
Here, as an example, a case where image data obtained by photographing the prosthetic leg and the wearer while the wearer wearing the prosthetic leg is running will be described. In another example, the photographing unit A is obtained by photographing a prosthetic leg and a wearer in a state where a wearer wearing a prosthetic leg is playing a sport other than short-distance running such as a long jump or the like. The obtained image data may be used.

 着用者動作データ算出部12は、試着品計測データ取得部11Aaが出力した試着品計測データと、着用者計測データ取得部11Baが出力した着用者計測データとを取得する。着用者動作データ算出部12は、試着品計測データと、着用者計測データとに基づいて、着用者の全身が発揮する力、換言すれば、着用者に生じている力を示すデータである着用者動作データを算出する。着用者動作データ算出部12は、着用者動作データの算出結果を、動作応答曲面算出部13Aaと、時間応答曲面算出部13Baとへ出力する。着用者動作データ算出部12は、着用者の動作をシミュレートすることによって、着用者動作データを算出する。着用者が発揮している力の一例は、関節トルクである。具体的には、着用者動作データ算出部12は、逆動力学解析によって、関節トルクを算出する。ここで、逆動力学解析とは、各関節の位置座標から各関節の関節トルクを算出するための手法である。逆動力学解析では、それぞれの関節間を一つの剛体要素とみなし、その連成関係を定式化することによって関節トルクが算出される。例えば、一つの剛体要素の一例は、下肢である。
 各剛体の質量をMとし、慣性モーメントをJとし、ヤコビアンマトリックスをCr,Cθとし、各剛体重心の位置ベクトルr、角速度をω、外力をf、外モーメントをnとし、ラグランジュ乗数をλとすると、式(1)が成り立つ。式(1)において、γは任意の定数である。各記号は全てベクトル表記である。
The wearer motion data calculation unit 12 acquires the try-on product measurement data output from the try-on product measurement data acquisition unit 11Aa and the wearer measurement data output from the wearer measurement data acquisition unit 11Ba. The wearer operation data calculation unit 12 is data indicating the force exerted by the wearer's whole body based on the fitting product measurement data and the wearer measurement data, in other words, data indicating the force generated in the wearer. Person motion data is calculated. The wearer movement data calculation unit 12 outputs the calculation result of the wearer movement data to the movement response curved surface calculation unit 13Aa and the time response curved surface calculation unit 13Ba. The wearer motion data calculation unit 12 calculates wearer motion data by simulating the wearer's motion. An example of the force exerted by the wearer is joint torque. Specifically, the wearer motion data calculation unit 12 calculates the joint torque by inverse dynamics analysis. Here, the inverse dynamic analysis is a method for calculating the joint torque of each joint from the position coordinates of each joint. In inverse dynamic analysis, each joint is regarded as one rigid body element, and the joint torque is calculated by formulating the coupling relationship. For example, an example of one rigid element is the lower limb.
If the mass of each rigid body is M, the moment of inertia is J, the Jacobian matrix is Cr, Cθ, the position vector r of each rigid body center of gravity, the angular velocity is ω, the external force is f, the external moment is n, and the Lagrange multiplier is λ. Equation (1) holds. In the formula (1), γ is an arbitrary constant. All symbols are in vector notation.

Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001

 式(1)において、ラグランジュ乗数λが関節トルクを示す。
 動作応答曲面算出部13Aaは、着用者動作データ算出部12が出力した着用者動作データを取得する。動作応答曲面算出部13Aaは、出力した着用者動作データに基づいて、応答曲面法によって、動作応答曲面を算出する。動作応答曲面は、試着者特有の動作の変え方および癖を抽出して2次関数化したものである。
 動作応答曲面算出部13Aaが2次関数化した動作応答曲面を算出することによって、1次関数化した動作応答曲面を算出するよりも、複雑な動作をシミュレーションシステム1aは予測することができる。
 本実施形態では、動作応答曲面算出部13Aaが2次関数化した動作応答曲面を算出する場合について説明を続けるが、他の例では、動作応答曲面算出部13Aaが、3次以上の関数に関数化した動作応答曲面を算出してもよい。
 着用者の動作が複雑になるほど、動作応答曲面算出部13Aaが算出する動作応答曲面の次数が高い方が好ましい。例えば、ゴルフスイングのグリップの動きは比較的スムーズなため1次関数化した動作応答曲面で対応可能である。しかし、ランニングなどの着地の衝撃が入る動作の場合は、動作応答曲面の次数が2次以上であることが好ましい。また、オーバーフィッティングを起こしにくくする観点からは、動作応答曲面の次数が4次以下であることが好ましい。
In equation (1), the Lagrange multiplier λ represents the joint torque.
The motion response curved surface calculation unit 13Aa acquires the wearer motion data output by the wearer motion data calculation unit 12. The motion response curved surface calculation unit 13Aa calculates a motion response curved surface by a response surface method based on the output wearer motion data. The motion response surface is a quadratic function obtained by extracting how to change the motion unique to the try-on and wrinkles.
When the motion response curved surface calculation unit 13Aa calculates a motion response curved surface converted into a quadratic function, the simulation system 1a can predict a complicated motion rather than calculating a motion response curved surface converted into a linear function.
In this embodiment, the case where the motion response curved surface calculation unit 13Aa calculates a motion response curved surface converted to a quadratic function will be described. In another example, the motion response curved surface calculation unit 13Aa functions as a function of cubic or higher. The converted motion response curved surface may be calculated.
It is preferable that the degree of the motion response curved surface calculated by the motion response curved surface calculation unit 13Aa is higher as the wearer's motion becomes more complicated. For example, since the movement of the grip of a golf swing is relatively smooth, it can be handled by a motion response curved surface converted into a linear function. However, in the case of an operation in which a landing impact such as running occurs, it is preferable that the order of the motion response curved surface is quadratic or higher. Further, from the viewpoint of making overfitting difficult to occur, the order of the motion response curved surface is preferably 4th order or less.

 時間応答曲面算出部13Baは、着用者動作データ算出部12が出力した着用者動作データを取得する。時間応答曲面算出部13Baは、取得した着用者動作データに基づいて、応答曲面法によって、時間応答曲面を算出する。
 シミュレーション実行部14aは、動作応答曲面算出部13Aaによって算出された動作応答曲面と、時間応答曲面算出部13Baによって算出された時間応答曲面とに基づいて、撮影部Aが撮像した義足とは異なる義足を着用したと仮定した場合に、着用したと仮定した義足の動作データと、着用者の動作データとを予測する。つまり、シミュレーション実行部14aは、実際には試着されない義足ブレード(仮想義足ブレード(詳細には、仮想スポーツ義足ブレード))を含む義足が着用者によって仮に試着された場合における仮想義足ブレードの動作データと、着用者の動作データとを予測する。
 シミュレーション実行部14aは、身体動作解析部14Aaと、FEM解析部14Baと、多目的最適化部14Caと、最適品設計部14Daとを備えている。
The time response curved surface calculation unit 13Ba acquires the wearer motion data output by the wearer motion data calculation unit 12. The time response curved surface calculation unit 13Ba calculates a time response curved surface by a response surface method based on the acquired wearer motion data.
The simulation execution unit 14a is a prosthetic leg that is different from the prosthetic leg imaged by the imaging unit A based on the motion response curved surface calculated by the motion response curved surface calculation unit 13Aa and the time response curved surface calculated by the time response curved surface calculation unit 13Ba. When it is assumed that the user wears, the motion data of the artificial leg assumed to be worn and the motion data of the wearer are predicted. In other words, the simulation execution unit 14a includes the operation data of the virtual prosthetic leg blade when the artificial leg including the artificial leg blade (virtual prosthetic leg blade (specifically, the virtual sports prosthetic leg blade)) that is not actually tried on is temporarily tried on by the wearer. Predict the wearer's motion data.
The simulation execution unit 14a includes a body motion analysis unit 14Aa, an FEM analysis unit 14Ba, a multipurpose optimization unit 14Ca, and an optimum product design unit 14Da.

 身体動作解析部14Aaは、動作応答曲面算出部13Aaが出力した動作応答曲面と、時間応答曲面算出部13Baが出力した時間応答曲面とを取得する。身体動作解析部14Aaは、取得した動作応答曲面と、時間応答曲面とに基づいて、着用者の動作の解析を行う。着用者の動作の解析の一例は、着用者の身体の各所にどの程度の負荷がかかっているかの解析である。身体動作解析部14Aaは、着用者の動作の解析結果を、多目的最適化部14Caへ出力する。
 FEM(Finite Element Method)解析部14Baは、動作応答曲面算出部13Aaが出力した動作応答曲面と、時間応答曲面算出部13Baが出力した時間応答曲面とを取得する。FEM解析部14Baは、取得した動作応答曲面と、時間応答曲面とに基づいて、試着品の動作のFEM解析を行う。FEM解析の一例は、着用者が速く走るために義足がどのように機能しているかの解析である。FEM解析部14Baは、FEM解析の結果を、多目的最適化部14Caへ出力する。
The body motion analysis unit 14Aa acquires the motion response curved surface output by the motion response curved surface calculation unit 13Aa and the time response curved surface output by the time response curved surface calculation unit 13Ba. The body motion analysis unit 14Aa analyzes the wearer's motion based on the acquired motion response curved surface and the time response curved surface. An example of analysis of a wearer's movement is an analysis of how much load is applied to various parts of the wearer's body. The body motion analysis unit 14Aa outputs the analysis result of the wearer's motion to the multipurpose optimization unit 14Ca.
The FEM (Finite Element Method) analysis unit 14Ba acquires the motion response surface output by the motion response surface calculation unit 13Aa and the time response surface output by the time response surface calculation unit 13Ba. The FEM analysis unit 14Ba performs FEM analysis of the operation of the try-on product based on the acquired motion response curved surface and the time response curved surface. An example of FEM analysis is an analysis of how the prosthesis is functioning for the wearer to run faster. The FEM analysis unit 14Ba outputs the result of the FEM analysis to the multipurpose optimization unit 14Ca.

 多目的最適化部14Caは、身体動作解析部14Aaが出力した着用者の動作の解析結果と、FEM解析部14Baが出力したFEM解析の結果とを取得する。多目的最適化部14Caは、取得した着用者の動作の解析結果と、FEM解析の結果とに基づいて、所定の目的関数を最大化(最適化)するための解析を行う。目的関数の一例は、着用者の身体に過剰な負荷(身体負荷)がかからないようにする関数、着用者が速く走れるようにする関数などである。多目的最適化部14Caは、所定の目的関数を最大化(最適化)するための解析結果を、最適品設計部14Daへ出力する。
 最適品設計部14Daは、多目的最適化部14Caが出力した所定の目的関数を最大化(最適化)するための解析結果を取得する。最適品設計部14Daは、取得した解析結果に基づいて、着用者にとって最適な義足(詳細には、スポーツ義足ブレード)を設計する。最適品設計部14Daは、着用者にとって最適な義足の設計の結果を、選定部15へ出力する。具体的には、最適品設計部14Daは、前述した4つの項目に含まれる「義足ブレード剛性」と、「義足ブレード高さ寸法L2」と、「義足ブレード後方突出量L3」と、「義足ブレードつま先長さ寸法L4」との各々の値(値の範囲)を示す情報を、選定部15へ出力する。
The multi-objective optimization unit 14Ca acquires the analysis result of the wearer's motion output from the body motion analysis unit 14Aa and the FEM analysis result output from the FEM analysis unit 14Ba. The multi-objective optimization unit 14Ca performs an analysis for maximizing (optimizing) a predetermined objective function based on the acquired analysis result of the wearer's movement and the FEM analysis result. An example of the objective function is a function that prevents an excessive load (body load) from being applied to the wearer's body, a function that allows the wearer to run faster, and the like. The multi-objective optimization unit 14Ca outputs an analysis result for maximizing (optimizing) a predetermined objective function to the optimum product design unit 14Da.
The optimum product design unit 14Da acquires an analysis result for maximizing (optimizing) the predetermined objective function output from the multi-objective optimization unit 14Ca. The optimum product design unit 14Da designs a prosthetic leg that is optimal for the wearer (specifically, a sports prosthetic leg blade) based on the obtained analysis result. The optimum product design unit 14Da outputs the result of the design of the prosthetic leg optimum for the wearer to the selection unit 15. Specifically, the optimal product design unit 14Da includes the “prosthetic leg blade rigidity”, the “prosthetic leg blade height dimension L2”, the “prosthetic leg rear protrusion amount L3”, and the “prosthetic leg blade” included in the four items described above. Information indicating each value (value range) with “toe length dimension L4” is output to selection unit 15.

 選定部15は、最適品設計部14Daが出力した着用者にとって最適な義足の設計の結果を取得する。選定部15は、取得した着用者にとって最適な義足の設計の結果に基づいて、着用者にとって最適な義足を選定する。具体的には、選定部15は、最適品設計部14Daが出力した「義足ブレード剛性」と、「義足ブレード高さ寸法L2」と、「義足ブレード後方突出量L3」と、「義足ブレードつま先長さ寸法L4」との各々の値(値の範囲)を示す情報を取得し、取得した「義足ブレード剛性」と、「義足ブレード高さ寸法L2」と、「義足ブレード後方突出量L3」と、「義足ブレードつま先長さ寸法L4」との各々の値(値の範囲)に近い値をスペックに有する義足を、予め製造されている義足から選定する。選定部15は、選定した義足を示す情報を出力する。 The selection unit 15 acquires the result of the design of the prosthesis most suitable for the wearer output by the optimal product design unit 14Da. The selection unit 15 selects an optimal prosthesis for the wearer based on the acquired result of the design of the optimal prosthesis for the wearer. Specifically, the selection unit 15 includes the “prosthetic leg blade rigidity”, the “prosthetic leg blade height dimension L2”, the “prosthetic leg rear protrusion amount L3”, and the “prosthetic leg blade toe length” output from the optimum product design unit 14Da. Information indicating each value (range of values) of the length dimension L4, the acquired "prosthetic leg blade rigidity", "prosthetic leg blade height dimension L2", "prosthetic leg blade rearward protrusion amount L3", A prosthetic leg having a specification close to each value (value range) with the “prosthetic blade toe length dimension L4” is selected from prosthetic legs manufactured in advance. The selection unit 15 outputs information indicating the selected artificial leg.

 前述した実施形態の変形例では、シミュレーションシステム1aが、身体動作解析部14Aaと、時間応答曲面算出部13Baとを備える場合について説明したが、この例に限られない。例えば、シミュレーションシステム1aが、時間応答曲面算出部13Baを備えないようにしてもよい。この場合、身体動作解析部14Aaは、取得した動作応答曲面に基づいて、着用者の動作の解析を行う。また、FEM解析部14Baは、取得した動作応答曲面に基づいて、試着品の動作のFEM解析を行う。シミュレーションシステム1aが、時間応答曲面算出部13Baを備えることによって、身体動作解析部14Aaが実行する着用者の動作の解析の精度を向上できるとともに、FEM解析部14Baが実行する試着品の動作のFEM解析の精度を向上できる。
 前述した実施形態の変形例では、シミュレーションシステム1aが、FEM解析部14Baを備える場合について説明したが、この例に限られない。例えば、シミュレーションシステム1aが、FEM解析部14Baを備えないようにしてもよい。この場合、多目的最適化部14Caは、取得した着用者の動作の解析結果に基づいて、所定の目的関数を最大化(最適化)するための解析を行う。シミュレーションシステム1aが、FEM解析部14Baを備えることによって、多目的最適化部14Caが実行する所定の目的関数を最大化(最適化)するための解析の精度を向上できる。
In the modified example of the above-described embodiment, the simulation system 1a has been described as including the body motion analysis unit 14Aa and the time response curved surface calculation unit 13Ba, but is not limited to this example. For example, the simulation system 1a may not include the time response curved surface calculation unit 13Ba. In this case, the body motion analysis unit 14Aa analyzes the wearer's motion based on the acquired motion response curved surface. Further, the FEM analysis unit 14Ba performs FEM analysis of the operation of the try-on product based on the acquired operation response curved surface. Since the simulation system 1a includes the time response curved surface calculation unit 13Ba, it is possible to improve the accuracy of the analysis of the wearer's motion performed by the body motion analysis unit 14Aa, and the FEM of the try-on product performed by the FEM analysis unit 14Ba. Analysis accuracy can be improved.
In the modification of the embodiment described above, the simulation system 1a has been described as including the FEM analysis unit 14Ba. However, the present invention is not limited to this example. For example, the simulation system 1a may not include the FEM analysis unit 14Ba. In this case, the multi-objective optimization unit 14Ca performs an analysis for maximizing (optimizing) a predetermined objective function based on the acquired analysis result of the wearer's movement. By providing the FEM analysis unit 14Ba in the simulation system 1a, it is possible to improve the accuracy of analysis for maximizing (optimizing) a predetermined objective function executed by the multi-objective optimization unit 14Ca.

 本実施形態の設計システムの動作について説明する。
 図5は、第1実施形態の義肢・装具あるいはその部品の設計システム1を用いた着用者に最適な義足ブレード(詳細には、スポーツ義足ブレード)の設計方法を説明するためのフローチャートである。ここでは、第1実施形態の設計システム1の動作について主に説明するが、本実施形態の変形例のシミュレーションシステム1aの動作についても併せて説明する。
 ステップS10において、基準義足ブレード(詳細には、基準スポーツ義足ブレード)の設計が行われる。詳細には、基準義足ブレードとして、図3に示す9種類の試着用義足ブレード(詳細には、試着用スポーツ義足ブレード)#1~#9の設計が行われる。
 ステップS10は、シミュレーションシステム1aの動作にも適用できる。
 次いで、ステップS20では、撮影部Aが、9種類の試着用義足ブレード#1~#9および着用者の画像を撮影する。詳細には、撮影部Aは、9種類の試着用義足ブレード#1~#9のそれぞれを着用した着用者が短距離走の競技中のように走っている状態で、試着用義足ブレード#1~#9および着用者の画像を撮影する。
The operation of the design system of this embodiment will be described.
FIG. 5 is a flowchart for explaining a design method of a prosthetic leg blade (specifically, a sports prosthetic leg blade) that is most suitable for a wearer using the prosthetic limb / orthoresiste or part design system 1 according to the first embodiment. Here, the operation of the design system 1 of the first embodiment will be mainly described, but the operation of the simulation system 1a of a modification of the present embodiment will also be described.
In step S10, a reference artificial leg blade (specifically, a reference sports artificial leg blade) is designed. Specifically, nine types of trial-wearing artificial leg blades (specifically, trial-sporting artificial leg blades) # 1 to # 9 shown in FIG. 3 are designed as reference artificial leg blades.
Step S10 can also be applied to the operation of the simulation system 1a.
Next, in step S20, the photographing unit A photographs nine types of trial wear artificial leg blades # 1 to # 9 and images of the wearer. Specifically, the photographing unit A is a trial prosthetic leg blade # 1 in a state where the wearer wearing each of the nine types of trial prosthetic leg blades # 1 to # 9 is running like a short distance running competition. Take pictures of # 9 and the wearer.

 図6は、図5のステップS20において撮影された試着用義足ブレード(詳細には、試着用スポーツ義足ブレード)および着用者Cの画像の一例を示す図である。
 図6に示す例では、着用者Cは、図2に示す義足Bと同様に構成された義足Bを着用しており、その義足Bには、9種類の試着用義足ブレード#1~#9のうちの例えば試着用義足ブレード#1が備えられている。
 つまり、図6に示す例では、撮影部Aは、義足ブレード(詳細には、スポーツ義足ブレード)B4として、例えば試着用義足ブレード#1が備えられた(取り付けられた)義足Bを着用した着用者Cが全力で走っている状態の画像を撮影する。
 ステップS20は、シミュレーションシステム1aの動作にも適用できる。
FIG. 6 is a diagram showing an example of the image of the trial-wearing prosthetic leg blade (specifically, a trial-sporting prosthetic leg blade) and the wearer C imaged in step S20 of FIG.
In the example shown in FIG. 6, the wearer C wears a prosthetic leg B configured in the same manner as the prosthetic leg B shown in FIG. 2, and the prosthetic leg B includes nine types of trial-wearing prosthetic leg blades # 1 to # 9. For example, a trial-wearing prosthetic leg blade # 1 is provided.
That is, in the example shown in FIG. 6, the photographing unit A wears a prosthetic leg B provided with (attached to) a trial prosthetic leg blade # 1 as a prosthetic leg blade (specifically, a sports prosthetic leg blade) B4. An image of the person C running at full power is taken.
Step S20 can also be applied to the operation of the simulation system 1a.

 図5の説明に戻り、次いで、ステップS30では、設計システム1が、着用者Cに最適な義足ブレード(詳細には、スポーツ義足ブレード)B4の設計を行う。
 ステップS30は、シミュレーションシステム1aの動作にも適用できる。
 以下、図7を参照して、ステップS30で行われる設計システム1が、着用者Cに最適な義足ブレードB4の設計を行う処理の詳細について説明する。ここでは、第1実施形態の設計システム1の動作について主に説明するが、本実施形態の変形例のシミュレーションシステム1aの動作についても併せて説明する。
 図7は、図5のステップS30において第1実施形態の義肢・装具あるいはその部品の設計システム1によって実行される処理の一例を説明するための図である。
 ステップS31において、試着品動作データ取得部11Aは、撮影部Aが図5のステップS20において撮影した画像データから得られる、義足ブレードB4に生じている挙動(動作)を示すデータ(試着品動作データ)を取得する。
 詳細には、試着品動作データ取得部11Aは、試着用義足ブレード(詳細には、試着用スポーツ義足ブレード)#1が備えられた義足Bを着用した着用者Cが全力で走っている状態の画像データから、試着用義足ブレード#1に生じている挙動を示す試着品動作データを取得する。同様に、試着品動作データ取得部11Aは、試着用義足ブレード(詳細には、試着用スポーツ義足ブレード)#2~#9が備えられた義足Bを着用した着用者Cが全力で走っている状態の画像データから、試着用義足ブレード#2~#9に生じている挙動を示す試着品動作データを取得する。
Returning to the description of FIG. 5, next, in step S <b> 30, the design system 1 designs an artificial leg blade (specifically, a sports artificial leg blade) B <b> 4 that is optimal for the wearer C.
Step S30 can also be applied to the operation of the simulation system 1a.
Hereinafter, with reference to FIG. 7, the detail of the process in which the design system 1 performed by step S30 performs design of the artificial leg blade B4 optimal for the wearer C is demonstrated. Here, the operation of the design system 1 of the first embodiment will be mainly described, but the operation of the simulation system 1a of a modification of the present embodiment will also be described.
FIG. 7 is a diagram for explaining an example of processing executed by the design system 1 for a prosthetic limb / equipment of the first embodiment or its parts in step S30 of FIG.
In step S31, the try-on product operation data acquiring unit 11A obtains data (try-on product operation data) indicating the behavior (operation) occurring in the prosthetic leg blade B4, which is obtained from the image data captured by the image capturing unit A in step S20 in FIG. ) To get.
Specifically, the fitting product motion data acquisition unit 11A is in a state where the wearer C wearing the artificial leg B provided with the trial wearing artificial leg blade (specifically, a trial sports artificial leg blade) # 1 is running at full power. From the image data, try-on product operation data indicating the behavior occurring in the try-on prosthetic leg blade # 1 is acquired. Similarly, the wearer C wearing the prosthetic leg B provided with the trial prosthetic leg blades (specifically, the trial sports prosthetic leg blades) # 2 to # 9 is running at full power in the try-on product operation data acquisition unit 11A. From the image data of the state, try-on product operation data indicating the behavior occurring in the try-on artificial leg blades # 2 to # 9 is acquired.

 シミュレーションシステム1aの場合には、ステップS31において、試着品計測データ取得部11Aaは、撮影部Aが出力する画像データ(図5のステップS20において撮影した画像データ)から、試着品計測データを取得する。
 詳細には、試着品計測データ取得部11Aaは、試着用義足ブレード(詳細には、試着用スポーツ義足ブレード)#1が取り付けられた義足Bを着用した着用者Cが走っている状態を撮像することによって得られた画像データから、試着品計測データを取得する。同様に、試着品計測データ取得部11Aaは、試着用義足ブレード(詳細には、試着用スポーツ義足ブレード)#2~#9が取り付けられた義足Bを着用した着用者Cが走っている状態を撮像することによって得られた画像データから、試着品計測データを取得する。
In the case of the simulation system 1a, in step S31, the try-on product measurement data obtaining unit 11Aa obtains try-on product measurement data from the image data output by the photographing unit A (image data photographed in step S20 in FIG. 5). .
Specifically, the fitting product measurement data acquisition unit 11Aa images a state in which the wearer C wearing the artificial leg B to which the trial-wearing artificial leg blade (specifically, a trial sports prosthetic blade) # 1 is attached is running. Try-on product measurement data is acquired from the image data obtained by this. Similarly, the fitting product measurement data acquisition unit 11Aa displays the state in which the wearer C wearing the artificial leg B to which the trial prosthetic leg blades (specifically, the trial sports prosthetic leg blades) # 2 to # 9 are attached is running. Try-on measurement data is acquired from image data obtained by imaging.

 次いで、ステップS32では、着用者動作データ取得部11Bは、撮影部Aが図5のステップS20において撮影した画像データから得られる、全力で走っている着用者Cの動作を示すデータ(着用者動作データ)を取得する。
 詳細には、着用者動作データ取得部11Bは、試着用義足ブレード#1が備えられた義足Bを着用した着用者Cが全力で走っている状態の画像データから、全力で走っている着用者Cの動作を示す着用者動作データを取得する。同様に、着用者動作データ取得部11Bは、試着用義足ブレード#2~#9が備えられた義足Bを着用した着用者Cが全力で走っている状態の画像データから、全力で走っている着用者Cの動作を示す着用者動作データを取得する。
Next, in step S32, the wearer movement data acquisition unit 11B obtains data indicating the movement of the wearer C running at full power (the wearer movement) obtained from the image data captured by the photographing unit A in step S20 of FIG. Data).
Specifically, the wearer operation data acquisition unit 11B is a wearer who is running with full power from image data in a state where the wearer C wearing the artificial leg B with the trial-wearing artificial leg blade # 1 is running with full power. Wearer operation data indicating the operation of C is acquired. Similarly, the wearer motion data acquisition unit 11B is running at full power from the image data in a state where the wearer C wearing the artificial leg B equipped with the trial wear artificial leg blades # 2 to # 9 is running at full power. Wearer operation data indicating the operation of the wearer C is acquired.

 シミュレーションシステム1aの場合には、ステップS32において、着用者計測データ取得部11Baは、撮影部Aが出力する画像データ(図5のステップS20において撮影した画像データ)から、着用者計測データを取得する。
 詳細には、着用者計測データ取得部11Baは、試着用義足ブレード#1が取り付けられた義足Bを着用した着用者Cが走っている状態を撮像することによって得られた画像データから、着用者計測データを取得する。同様に、着用者計測データ取得部11Baは、試着用義足ブレード#2~#9が取り付けられた義足Bを着用した着用者Cが走っている状態を撮像することによって得られた画像データから、着用者計測データを取得する。
In the case of the simulation system 1a, in step S32, the wearer measurement data acquisition unit 11Ba acquires wearer measurement data from the image data output by the imaging unit A (image data captured in step S20 of FIG. 5). .
Specifically, the wearer measurement data acquisition unit 11Ba obtains the wearer from the image data obtained by imaging the state in which the wearer C wearing the artificial leg B to which the trial wear artificial leg blade # 1 is attached is running. Get measurement data. Similarly, the wearer measurement data acquisition unit 11Ba obtains from the image data obtained by imaging the state in which the wearer C wearing the artificial leg B to which the trial wearing artificial leg blades # 2 to # 9 are attached is running. Get wearer measurement data.

 ここで、設計システム1における試着品動作データと着用者動作データとを取得する方法の一例について説明する。試着品動作データと着用者動作データとは、撮影対象である試着者の全身に貼付した反射マーカの位置(座標)を計測することによって取得される。
 ・計測手法
 動作データは撮影対象の全身に貼付した反射マーカより取得される。これはカメラが発光する赤外線を、再帰性反射材が塗付されたマーカが反射し、各マーカの三次元空間座標をコンピュータ上に取り込むことによって行われる。つまり、試着品動作データ、着用者動作データなどの動作データは、撮影対象である試着者に貼付した反射マーカが、複数の撮像部Aの各々が発光する赤外線を反射することによって得られる反射光に基づいて、その反射マーカの三次元空間座標を計測することによって得られる。2台以上のカメラによって取得された各反射マーカの三次元空間座標から、任意に定義された(試着者の)身体全体および各セグメント・各関節における並進・および回転の速度、加速度、移動距離、角度などの物理的特徴量を算出する。また、地面に埋没させた複数枚のフォースプレートを使用し、前後・左右・鉛直の3方向の地面反力と各軸回りのモーメントを計測する。上述した三次元空間座標と地面反力データに逆動力学計算を適用することによって、任意に定義された身体全体および各セグメント・各関節における並進・および回転の力およびモーメントを算出する。シミュレーションシステム1aの場合にも、この計測手法を適用できる。
Here, an example of a method for acquiring the try-on product operation data and the wearer operation data in the design system 1 will be described. The try-on product operation data and the wearer operation data are acquired by measuring the position (coordinates) of the reflective marker attached to the whole body of the wearer who is the subject of photographing.
・ Measurement method Operation data is acquired from the reflection marker attached to the whole body of the subject. This is done by reflecting the infrared rays emitted by the camera from the marker coated with the retroreflective material and capturing the three-dimensional spatial coordinates of each marker on the computer. In other words, the operation data such as the try-on product operation data and the wearer operation data are reflected light obtained by reflecting the infrared rays emitted from each of the plurality of imaging units A by the reflection marker attached to the wearer who is the subject of photographing. Is obtained by measuring the three-dimensional spatial coordinates of the reflective marker. From the three-dimensional spatial coordinates of each reflective marker acquired by two or more cameras, the translational and rotational speed, acceleration, and travel distance of the entire body (of the fitting person), each segment, and each joint, Calculate physical features such as angles. In addition, a plurality of force plates buried in the ground are used to measure ground reaction forces in the three directions of front and rear, left and right, and vertical, and moments around each axis. By applying inverse dynamics calculation to the above-described three-dimensional space coordinates and ground reaction force data, translational and rotational forces and moments in the arbitrarily defined whole body, each segment, and each joint are calculated. This measurement method can also be applied to the simulation system 1a.

 図8は図7のステップS31において試着品動作データを取得するため、および、図7のステップS32において着用者動作データを取得するために、図6に示す画像を変換することによって得られた動作解析用画像の一例を示す図である。
 図8に示す例では、図6に示す例の試着用義足ブレード(詳細には、試着用スポーツ義足ブレード)#1が、24個の点によって表現されている。図8に示すような動作解析用画像を単位時間経過毎に作成して解析することにより、24個の点に相当する位置にかかる加速度を算出することができる。その結果、試着用義足ブレード#1が備えられた義足Bを着用した着用者Cの全力走行中における試着用義足ブレード#1の挙動(動作)を算出することができる。
 また、図8に示す例では、着用者Cが設計システム1のコンピュータ上で再現されている。詳細には、例えば、図6に示す例の着用者Cの右手から指先までの部分が、4個の点によって表現されている。図8に示すような動作解析用画像を単位時間経過毎に作成して解析することにより、着用者Cの右手から指先までの部分にかかる加速度を算出することができる。同様に、着用者Cの全身の各部位にかかる加速度を算出することができる。その結果、試着用義足ブレード#1が備えられた義足Bを着用した着用者Cの全力走行中に、着用者Cの全身の各部位にかかる身体負荷を算出することができる。
 シミュレーションシステム1aが、試着品計測データと、着用者計測データとを取得する場合にも、この動作解析用画像を使用できる。
FIG. 8 shows an operation obtained by converting the image shown in FIG. 6 in order to acquire the try-on product operation data in step S31 of FIG. 7 and to acquire the wearer operation data in step S32 of FIG. It is a figure which shows an example of the image for an analysis.
In the example shown in FIG. 8, the trial wearing artificial leg blade (specifically, a trial sports artificial leg blade) # 1 shown in FIG. 6 is expressed by 24 points. By creating and analyzing the motion analysis image as shown in FIG. 8 every unit time, it is possible to calculate the acceleration applied to the positions corresponding to 24 points. As a result, it is possible to calculate the behavior (operation) of the trial-wearing prosthetic leg blade # 1 during the full power travel of the wearer C wearing the prosthetic leg B provided with the trial-wearing prosthetic leg blade # 1.
In the example shown in FIG. 8, the wearer C is reproduced on the computer of the design system 1. Specifically, for example, the portion from the right hand to the fingertip of the wearer C in the example shown in FIG. 6 is represented by four points. By creating and analyzing a motion analysis image as shown in FIG. 8 every time unit time elapses, it is possible to calculate the acceleration applied to the portion from the right hand of the wearer C to the fingertip. Similarly, the acceleration concerning each site | part of the wearer's C whole body is computable. As a result, the body load applied to each part of the wearer C's whole body can be calculated while the wearer C who wears the artificial leg B provided with the trial wear artificial leg blade # 1 is running at full power.
Even when the simulation system 1a acquires the fitting product measurement data and the wearer measurement data, the motion analysis image can be used.

 ここで、ランニングデータについて説明する。ランニングデータとは、反射マーカの三次元空間座標に基づく、動作データの計測結果であり、試着品動作データと、着用者動作データとに対応する。ランニングデータは、式(2)で表される。 Here, we will explain the running data. The running data is a measurement result of motion data based on the three-dimensional spatial coordinates of the reflective marker, and corresponds to try-on product motion data and wearer motion data. The running data is expressed by equation (2).

Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002

 式(2)に関して説明する。計測されたランニングデータをf~f(mは、m>1の整数)で表す。mは、試着品動作データと、着用者動作データとの各々の数であり、ここでは、ブレードの数に対応する。本実施形態では、計測されたランニングデータをf~fで表現する。また、時間tはt={t1,…,tn}に離散化する。なお、本実施形態では9本のブレードで試走したため、ランニングデータはf~fまでだが、その数値はブレードの試走本数によって変わる。さらに、fj(ti)は、j番目の義足ブレード(詳細には、スポーツ義足ブレード)を着用した着用者のランニングデータである。具体的には、fj(ti)は、着用者の身体に取り付けた各マーカの位置座標{rx,ry,rz}を示す。
 9本の義足ブレードのそれぞれの4つのスペック(設計変数)を{wi,xj,yj,zj}(j=1…9)で表した場合、式(2)の関係が得られる。そして、各tiに対して、式(2)を解いていく。
The equation (2) will be described. The measured running data is represented by f 1 to f m (m is an integer of m> 1). m is the number of each of the try-on product operation data and the wearer operation data, and here corresponds to the number of blades. In the present embodiment, the measured running data is expressed by f 1 to f 9 . The time t is discretized into t = {t1,..., Tn}. In this embodiment, since the trial run was performed with nine blades, the running data is from f 1 to f 9 , but the value varies depending on the number of trial runs of the blades. Further, fj (ti) is running data of the wearer who wears the j-th artificial leg blade (specifically, a sports artificial leg blade). Specifically, fj (ti) indicates the position coordinates {rx, ry, rz} of each marker attached to the wearer's body.
When the four specifications (design variables) of each of the nine prosthetic blades are represented by {wi, xj, yj, zj} (j = 1... 9), the relationship of Expression (2) is obtained. Then, the equation (2) is solved for each ti.

 ここで、4つのスペック(設計変数)を表すw,x,y,zは、それぞれ設計変数であり、wは第1のスペック(スポーツ義足ブレード剛性)であり、xは第2のスペック(スポーツ義足ブレード高さ寸法)であり、yは第3のスペック(スポーツ義足ブレード後方突出量)であり、zは第4のスペック(スポーツ義足ブレードつま先長さ寸法)である。また、式(2)において、w~w、x~x、y~y、z~zにおける1~nの番号は各ブレードの番号に対応する。
 式(2)を解くことにより、式(3)が得られる。
Here, w, x, y, z representing the four specifications (design variables) are design variables, w is the first specification (sport prosthetic leg blade rigidity), and x is the second specification (sports). Prosthetic leg blade height dimension), y is a third spec (sport prosthetic leg blade rearward protrusion amount), and z is a fourth spec (sport prosthetic leg blade toe length dimension). In Formula (2), numbers 1 to n in w 1 to w n , x 1 to x n , y 1 to y n , and z 1 to z n correspond to the numbers of the blades.
By solving equation (2), equation (3) is obtained.

Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003

 式(3)において、a~a15は、応答曲面の係数である。
 式(2)には、一般には厳密な解は存在しない。そこで、式(2)を解くために、一般化逆行列A(ムーア・ペンローズ逆行列、擬似逆行列とも言う)が用いられる。これは、厳密な解が存在しない場合に近似解を求める手法である。すなわち、近似解と厳密解との誤差を最小とする解を求める手法である。一般的な数学的手法であるため、詳細は省略する。なお、ここでは、式(2)を解くために、MathWorks社製数値計算ソフト「MATLAB(登録商標)」が用いた。
 係数a~a15は、試走者(試着者)の技量とランニングの癖に相当する値である。つまり、この処理によって、w、x、y、zを実際には計測していないスペックに変更したとしても、式(4)に示すように関数fで表されるランニングデータが求められることになる。換言すると、式(4)によって任意の{w,x,y,z}に対する各マーカの身体位置座標{rx,ry,rz}データの近似値として下記が得られる。計測していない任意のブレードによるランニングデータは式(4)で示すように表わされる。式(4)が応答曲面である。
In Equation (3), a 1 to a 15 are coefficients of the response surface.
There is generally no exact solution in equation (2). Therefore, a generalized inverse matrix A + (also called a Moore-Penrose inverse matrix or a pseudo inverse matrix) is used to solve the equation (2). This is a technique for obtaining an approximate solution when there is no exact solution. That is, this is a technique for obtaining a solution that minimizes the error between the approximate solution and the exact solution. Since this is a general mathematical method, details are omitted. Here, in order to solve the equation (2), numerical calculation software “MATLAB (registered trademark)” manufactured by MathWorks was used.
The coefficients a 1 to a 15 are values corresponding to the skill of the test runner (the try-on person) and the habit of running. That is, by this process, even if w, x, y, and z are changed to specifications that are not actually measured, running data represented by the function f is obtained as shown in Expression (4). . In other words, the following is obtained as an approximate value of the body position coordinate {rx, ry, rz} data of each marker with respect to an arbitrary {w, x, y, z} by the equation (4). The running data for any blade that has not been measured is expressed as shown in equation (4). Equation (4) is a response surface.

Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004

 式(2)から式(4)により、動作応答局面と、時間応答局面とを算出できる。
 前述したランニングデータは、試着品計測データと、着用者計測データとにも対応する。また、式(2)から式(4)は、シミュレーションシステム1aにも適用できる。
The motion response phase and the time response phase can be calculated from Formula (2) to Formula (4).
The running data described above also corresponds to try-on product measurement data and wearer measurement data. Moreover, Formula (2) to Formula (4) is applicable also to the simulation system 1a.

 図7の説明に戻り、次いで、ステップS33では、動作応答曲面算出部13Aが、ステップS31において取得された試着品動作データと、ステップS32において取得された着用者動作データとに基づき、応答曲面法によって、試着者Cの特有の動作の変え方および癖を抽出して2次関数化した動作応答曲面を算出する。ここでは、前述した式(2)から式(5)によって、動作応答局面が算出された場合について説明を続ける。
 ステップS33は、シミュレーションシステム1aの動作応答曲面算出部13Aaが、動作応答曲面を算出する場合にも適用できる。
Returning to the description of FIG. 7, in step S33, the motion response surface calculation unit 13A performs the response surface method based on the try-on product motion data acquired in step S31 and the wearer motion data acquired in step S32. Thus, an action response curved surface obtained by extracting the manner of changing the unique action of the fitting person C and the wrinkle and converting it into a quadratic function is calculated. Here, the description will be continued for the case where the motion response phase is calculated by the above-described equations (2) to (5).
Step S33 can also be applied when the motion response curved surface calculation unit 13Aa of the simulation system 1a calculates a motion response curved surface.

 次いで、ステップS34では、時間応答曲面算出部13Bが、ステップS31において取得された試着品動作データと、ステップS32において取得された着用者動作データとに基づき、応答曲面法によって時間応答曲面を算出する。時間応答曲面は、式(5)から式(7)によって算出することができる。式(5)は、ランニングデータである。 Next, in step S34, the time response curved surface calculation unit 13B calculates a time response curved surface by a response surface method based on the try-on product motion data acquired in step S31 and the wearer motion data acquired in step S32. . The time response curved surface can be calculated by equations (5) to (7). Equation (5) is running data.

Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005

 式(5)において、g~g(mは、m>1の整数)は、計測されたランニングデータである。mは、試着品動作データと、着用者動作データとの各々の数であり、ここでは、ブレードの数に対応する。本実施形態では、計測されたランニングデータをg~gで表現する。また、時間tはt={t1,…,tn}に離散化する。なお、本実施形態では9本のブレードで試走したため、ランニングデータはg~gまでだが、その数値はブレードの試走本数によって変わる。さらに、gj(ti)は、j番目の義足ブレード(詳細には、スポーツ義足ブレード)を着用した着用者のランニングデータである。具体的には、gj(ti)は、着用者の身体に取り付けた各マーカの位置座標{rx,ry,rz}を示す。
 9本の義足ブレードのそれぞれの4つのスペック(設計変数)を{wi,xj,yj,zj}(j=1…9)で表した場合、式(2)の関係が得られる。そして、各tiに対して、式(5)を解いていく。
In Equation (5), g 1 to g m (m is an integer satisfying m> 1) is measured running data. m is the number of each of the try-on product operation data and the wearer operation data, and here corresponds to the number of blades. In the present embodiment, the measured running data is expressed as g 1 to g 9 . The time t is discretized into t = {t1,..., Tn}. In this embodiment, since the trial run was performed with nine blades, the running data is from g 1 to g 9 , but the value varies depending on the number of trial runs of the blades. Further, gj (ti) is running data of the wearer who wears the jth artificial leg blade (specifically, a sports artificial leg blade). Specifically, gj (ti) indicates the position coordinates {rx, ry, rz} of each marker attached to the wearer's body.
When the four specifications (design variables) of each of the nine prosthetic blades are represented by {wi, xj, yj, zj} (j = 1... 9), the relationship of Expression (2) is obtained. Then, the equation (5) is solved for each ti.

 ここで、4つのスペック(設計変数)を表すw,x,y,zは、それぞれ設計変数であり、wは第1のスペック(スポーツ義足ブレード剛性)であり、xは第2のスペック(スポーツ義足ブレード高さ寸法)であり、yは第3のスペック(スポーツ義足ブレード後方突出量)であり、zは第4のスペック(スポーツ義足ブレードつま先長さ寸法)である。また、式(5)において、w~w、x~x、y~y、z~zにおける1~nの番号は各ブレードの番号に対応する。
 式(2)を解くことにより、式(6)が得られる。
Here, w, x, y, z representing the four specifications (design variables) are design variables, w is the first specification (sport prosthetic leg blade rigidity), and x is the second specification (sports). Prosthetic leg blade height dimension), y is a third spec (sport prosthetic leg blade rearward protrusion amount), and z is a fourth spec (sport prosthetic leg blade toe length dimension). In Equation (5), the numbers 1 to n in w 1 to w n , x 1 to x n , y 1 to y n , and z 1 to z n correspond to the numbers of the blades.
By solving equation (2), equation (6) is obtained.

Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006

 式(6)において、b~b15は、応答曲面の係数である。
 式(5)には、一般には厳密な解は存在しない。そこで、式(5)を解くために、一般化逆行列B(ムーア・ペンローズ逆行列、擬似逆行列とも言う)が用いられる。これは、厳密な解が存在しない場合に近似解を求める手法である。すなわち、近似解と厳密解の誤差を最小とする解を求める手法である。一般的な数学的手法であるため、詳細は省略する。なお、ここでは、式(5)を解くために、MathWorks社製数値計算ソフト「MATLAB(登録商標)」が用いた。
In Equation (6), b 1 to b 15 are coefficients of the response surface.
There is generally no exact solution in equation (5). Therefore, a generalized inverse matrix B + (also called Moore-Penrose inverse matrix or pseudo inverse matrix) is used to solve the equation (5). This is a technique for obtaining an approximate solution when there is no exact solution. That is, it is a technique for obtaining a solution that minimizes the error between the approximate solution and the exact solution. Since this is a general mathematical method, details are omitted. Here, in order to solve the equation (5), numerical calculation software “MATLAB (registered trademark)” manufactured by MathWorks was used.

 係数b~b15は、試走者(試着者)の技量とランニングの癖に相当する値である。つまり、この処理によって、w、x、y、zを実際には計測していないスペックに変更したとしても、式(7)に示すように関数gで表されるランニングデータが求められることになる。換言すると、式(7)によって任意の{w,x,y,z}に対する各マーカの身体位置座標{rx,ry,rz}データの近似値として下記が得られる。計測していない任意のブレードによるランニングデータは式(7)で示すように表わされる。式(7)が応答曲面である。 The coefficients b 1 to b 15 are values corresponding to the skill of the test runner (the try-on person) and the habit of running. That is, even if w, x, y, and z are changed to specifications that are not actually measured by this process, running data represented by the function g is obtained as shown in Expression (7). . In other words, the following is obtained as an approximate value of the body position coordinate {rx, ry, rz} data of each marker with respect to an arbitrary {w, x, y, z} by the equation (7). The running data for any blade that has not been measured is expressed as shown in equation (7). Equation (7) is a response surface.

Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007

 式(5)から式(7)により、時間応答局面を算出できる。
 前述したランニングデータは、試着品計測データと、着用者計測データとにも対応する。また、式(5)から式(7)は、シミュレーションシステム1aにも適用できる。
 式(5)におけるg~gは、各試着用義足ブレード(詳細には、試着用スポーツ義足ブレード)が備えられた義足の動作時間である。そして、式(6)で求められた係数b~b15が着用者の動作時間に相当する値である。
 次に、式(7)に基づき、g(w,x,y,z)が算出される。
 ステップS34は、シミュレーションシステム1aの動作応答曲面算出部13Aaが、時間応答曲面を算出する場合にも適用できる。
The time response situation can be calculated by Equation (5) to Equation (7).
The running data described above also corresponds to try-on product measurement data and wearer measurement data. Moreover, Formula (5) to Formula (7) is applicable also to the simulation system 1a.
In Equation (5), g 1 to g 9 are the operating times of the prosthetic limbs provided with each trial wearing prosthetic leg blade (specifically, a trial sports prosthetic blade). The coefficients b 1 to b 15 obtained by the equation (6) are values corresponding to the wearer's operating time.
Next, g 1 (w, x, y, z) is calculated based on Expression (7).
Step S34 can also be applied when the motion response curved surface calculation unit 13Aa of the simulation system 1a calculates a time response curved surface.

 次いで、ステップS35では、シミュレーション実行部14が、ステップS33において算出された動作応答曲面と、ステップS34において算出された時間応答曲面とに基づき、実際には試着されない義足ブレード(仮想義足ブレード(詳細には、仮想スポーツ義足ブレード))(つまり、81種類の異なるスペックを有する義足ブレード(詳細には、スポーツ義足ブレード)のうちの、試着用義足ブレード#1~#9を除く義足ブレード)を含む義足Bが着用者Cによって仮に試着された場合における仮想義足ブレードの動作データと、着用者の動作データとを予測する。詳細には、シミュレーション実行部14は、ベーシスベクトル法を用いることによって、試着用義足ブレード#1~#9のそれぞれのスペックとは異なるスペックを有する仮想義足ブレードを生成する。具体的には、シミュレーション実行部14は、義足ブレードの形状を、あるパターンに基づいて随時変えながら、シミュレーションを行う。
 図7に示す例では、シミュレーション実行部14がベーシスベクトル法を用いるが、他の例では、シミュレーション実行部14がベーシスベクトル法以外の手法を用いてもよい。
 ベーシスベクトル法とは、オリジナル形状に対して設計者が考えられる基本形状候補(ベーシスベクトル)をベースとして、それらの組み合わせにより最適形状を求める手法である。各ベーシスベクトルはそれぞれ重み係数を持ち、重み係数を掛けることによりベーシスベクトルは形状変化する。本実施例では、スポーツ義足ブレード高さ寸法と、スポーツ義足ブレード後方突出量と、スポーツ義足ブレードつま先長さ寸法とがベーシスベクトルに相当し、スポーツ義足ブレード高さ寸法と、スポーツ義足ブレード後方突出量と、スポーツ義足ブレードつま先長さ寸法とを順次変化させながらシミュレーションを実行する。ゴルフシャフトは単なる棒で形状が変わらないが、義足は、形状のバリエーションが様々である。ベーシスベクトル法を使用することによって、それぞれの部分について、どう変えるかを指定できる。この際、シミュレーションで用いる各有限要素にも同様の重みでのベーシスベクトルを用いて要素を変形させることで、再度メッシュを切ることなくシミュレーションを実行できる。
 ステップS35は、シミュレーションシステム1aのシミュレーション実行部14aが、仮想義足ブレードの動作データと、着用者の動作データとを予測する場合にも適用できる。
 ステップS35の後、シミュレーションシステム1aでは、シミュレーション実行部14aは、仮想義足ブレードの動作データの予測結果と、着用者の動作データの予測結果とを、選定部15へ出力する。選定部15は、シミュレーション実行部14aが出力した仮想義足ブレードの動作データの予測結果と、着用者の動作データの予測結果とを取得し、取得した仮想義足ブレードの動作データの予測結果と、着用者の動作データの予測結果とに基づいて、義足ブレード選定する。例えば、選定部15は、仮想義足ブレードの動作データの予測結果と、着用者の動作データの予測結果とに基づいて、前述した4つの項目(パラメータ)に近いスペックを有する義足ブレードを選定する。例えば、選定部15は、4つの項目(パラメータ)の平均値などの統計量に基づいて、義足ブレードを選定してもよい。このように構成することによって、主観によらず、客観的に義足ブレードを選定できる。
Next, in step S35, the simulation executing unit 14 uses a prosthetic blade (virtual prosthetic blade (not described in detail) that is not actually tried on the basis of the motion response curved surface calculated in step S33 and the time response curved surface calculated in step S34. Is a virtual sports prosthetic leg blade)) (that is, prosthetic leg blades other than the trial prosthetic leg blades # 1 to # 9 out of 81 different types of prosthetic leg blades (specifically, sports prosthetic leg blades)). The operation data of the virtual prosthetic leg blade and the operation data of the wearer when B is temporarily tried on by the wearer C are predicted. Specifically, the simulation execution unit 14 uses the basis vector method to generate virtual artificial leg blades having specifications different from the specifications of the trial-wearing artificial leg blades # 1 to # 9. Specifically, the simulation execution unit 14 performs the simulation while changing the shape of the prosthetic blade based on a certain pattern as needed.
In the example illustrated in FIG. 7, the simulation execution unit 14 uses a basis vector method, but in other examples, the simulation execution unit 14 may use a method other than the basis vector method.
The basis vector method is a method for obtaining an optimal shape by combining basic shape candidates (basis vectors) that can be considered by a designer with respect to an original shape. Each basis vector has a weighting coefficient, and the basis vector changes its shape by multiplying the weighting coefficient. In this embodiment, the sports prosthetic blade height dimension, the sports prosthetic leg rearward protrusion amount, and the sports prosthetic leg toe length dimension correspond to the basis vector, and the sports prosthetic leg blade height dimension and the sports prosthetic leg blade rearward protrusion amount. The simulation is executed while sequentially changing the toe length dimension of the sports prosthetic blade. The golf shaft is a simple rod and does not change its shape, but the prosthesis has various shape variations. By using the basis vector method, you can specify how to change each part. At this time, the simulation can be executed without cutting the mesh again by deforming each finite element used in the simulation by using the basis vector with the same weight.
Step S35 can also be applied when the simulation execution unit 14a of the simulation system 1a predicts the motion data of the virtual artificial leg blade and the motion data of the wearer.
After step S35, in the simulation system 1a, the simulation execution unit 14a outputs the prediction result of the motion data of the virtual artificial leg blade and the prediction result of the wearer's motion data to the selection unit 15. The selection unit 15 acquires the prediction result of the motion data of the virtual prosthetic leg blade output from the simulation execution unit 14a and the prediction result of the motion data of the wearer, and the prediction result of the acquired motion data of the virtual prosthetic leg blade and the wear The prosthetic blade is selected based on the prediction result of the person's motion data. For example, the selection unit 15 selects a prosthetic leg blade having specifications close to the four items (parameters) described above based on the prediction result of the virtual prosthetic leg movement data and the prediction result of the wearer movement data. For example, the selection unit 15 may select a prosthetic blade based on a statistic such as an average value of four items (parameters). By comprising in this way, an artificial leg blade can be selected objectively irrespective of subjectivity.

 図9を参照して、ステップS35の詳細について説明する。
 図9は図7のステップS35において第1実施形態の義肢・装具あるいはその部品の設計システム1によって実行される処理の一例を説明するための図である。
 ステップS35Aにおいて、身体動作解析部14Aが、ステップS32において取得された着用者動作データに基づいて、ステップS33において算出された動作応答曲面と、ステップS34において時間応答曲面とを利用することにより、着用者Cの動作の解析(例えば、着用者の身体の各所にどの程度の身体負荷がかかっているかの解析)を行う。
 次いで、ステップS35Bでは、FEM解析部14Bが、ステップS31において取得された試着品動作データに基づいて、ステップS33において算出された動作応答曲面と、ステップS34において算出された時間応答曲面とを利用することにより、試着品(上述した81種類の異なるスペックを有する義足ブレード(詳細には、スポーツ義足ブレード)を含む義足B)の動作のFEM解析(例えば、着用者Cが速く走るために義足Bがどのように機能しているかの解析)を行う。このFEM解析は、例えば、市販の有限要素法ソフトウェアを用いることによって実行できる動的有限要素法による解析などである。
Details of step S35 will be described with reference to FIG.
FIG. 9 is a diagram for explaining an example of processing executed by the design system 1 for the prosthetic limbs / orthorosis or the component of the first embodiment in step S35 of FIG.
In step S35A, the body motion analysis unit 14A uses the motion response curved surface calculated in step S33 and the time response curved surface in step S34 based on the wearer motion data acquired in step S32. Analysis of the movement of the wearer C (for example, analysis of how much body load is applied to each part of the wearer's body) is performed.
Next, in step S35B, the FEM analysis unit 14B uses the motion response curved surface calculated in step S33 and the time response curved surface calculated in step S34 based on the try-on product motion data acquired in step S31. FEM analysis of the operation of a try-on product (prosthetic leg B including the above-mentioned 81 different types of prosthetic leg blades (specifically, sports prosthetic leg blades)) (e.g. Analyze how it works). This FEM analysis is, for example, an analysis by a dynamic finite element method that can be executed by using commercially available finite element method software.

 次いで、ステップS35Cでは、多目的最適化部14Cが、所定の目的関数(例えば、着用者Cの身体に過剰な身体負荷がかからないようにする関数、着用者Cが速く走れるようにする関数など)を最大化するための解析を行う。詳細には、多目的最適化部14Cは、シミュレーションを繰り返し実行することによって、上述した所定の目的関数を最大化する。
 次いで、ステップS35Dでは、最適品設計部14Dが、多目的最適化部14Cにおける解析結果に基づいて、上述した上述した81種類の異なるスペックを有する義足ブレードの中から、着用者Cにとって最適な義足ブレードB4を設計(選定)する。つまり、着用者Cにとって最適な義足ブレードB4が、上述した試着用義足ブレード(詳細には、試着用スポーツ義足ブレード)#1~#9以外の義足ブレードB4になることもあり得る。
 ステップS35AからステップS35Dは、シミュレーションシステム1aのシミュレーション実行部14aが行う処理に適用できる。
Next, in step S35C, the multi-objective optimization unit 14C performs a predetermined objective function (for example, a function that prevents the wearer C from applying an excessive physical load, a function that allows the wearer C to run faster), and the like. Perform analysis to maximize. Specifically, the multi-objective optimization unit 14C maximizes the predetermined objective function described above by repeatedly executing simulation.
Next, in step S35D, the optimal product design unit 14D selects the optimal prosthetic blade for the wearer C from among the 81 types of prosthetic foot blades having the above-described different specifications based on the analysis result in the multipurpose optimization unit 14C. Design (select) B4. In other words, the prosthetic leg blade B4 that is most suitable for the wearer C may be a prosthetic leg blade B4 other than the above-described trial-wearing prosthetic leg blades (specifically, trial-sporting prosthetic leg blades) # 1 to # 9.
Steps S35A to S35D can be applied to processing performed by the simulation execution unit 14a of the simulation system 1a.

 本実施形態の変形例のシミュレーションシステム1aを使用してシミュレーションを行った結果について説明する。シミュレーションシステム1aを使用して、義足用ブレードを設計した。
 図10は、義足用の板バネの一例を示す図である。図10には、義足用の板バネ100が示される。図11は、義足用の板バネの部分拡大図である。図11には、図10に示される範囲Eに含まれる義足用の板バネの拡大図が示される。図10と、図11とにおいて、義足用の板バネ100が使用されるときの鉛直下向き方向を垂直方向とし、その垂直方向に直交する方向を水平方向とする。
 義足用の板バネ100において、接続部品を介して身体(着用者)側に装着される身体側端部の厚み方向の直線部を直線部Aとし、地面に設置される側の地面側端部を地面側端部Bとし、厚み方向の直線部Aから垂線を下した時に板バネ本体と交差する部分を交差部Cとし、義足用の板バネ100を含む義足ブレードを身体へ装着した際に最も背面側に位置する部分を背面部Dとする。
 さらに、義足用の板バネ100において、直線部Aと地面側端部Bとの間の垂直成分の距離を直線部垂直成分距離Hとし、地面側端部Bと交差部Cとの間の水平成分距離の距離を交差部水平成分距離Ltとし、交差部Cと背面部Dとの間の水平成分距離を背面部水平成分距離Lhとする。
 また、直線部Aに直交する厚み方向の直線部を直線部Tとする。
 図12は、義足用の板バネの撓み量を示す図である。図12には、地面側端部Bを固定し、直線部Aから背面部Dへ向かう方向に沿って、50mmの位置Pに垂直方向に1000Nの荷重をかけた場合について示す。位置Pに垂直方向に1000Nの荷重をかけることによって、義足用の板バネ100が垂直方向に撓む。義足用の板バネ100が撓む前の直線部垂直成分距離Hと、義足用の板バネ100aが撓んだ後の直線部垂直成分距離Haとの距離の差を撓み量Sとする。
The result of having performed simulation using the simulation system 1a of the modification of this embodiment is demonstrated. A prosthetic blade was designed using the simulation system 1a.
FIG. 10 is a diagram illustrating an example of a plate spring for a prosthetic leg. FIG. 10 shows a leaf spring 100 for an artificial leg. FIG. 11 is a partially enlarged view of a leaf spring for a prosthetic leg. FIG. 11 shows an enlarged view of a plate spring for a prosthetic leg included in the range E shown in FIG. 10 and 11, the vertical downward direction when the prosthetic leaf spring 100 is used is the vertical direction, and the direction orthogonal to the vertical direction is the horizontal direction.
In the leaf spring 100 for a prosthetic leg, the straight portion in the thickness direction of the body side end attached to the body (wearer) side through the connecting component is defined as a straight portion A, and the ground side end on the side installed on the ground Is the ground side end B, and when the perpendicular line is dropped from the straight line portion A in the thickness direction, the portion that intersects the leaf spring main body is the intersection C, and when the artificial leg blade including the leaf spring 100 for the artificial leg is attached to the body. A portion located on the most back side is defined as a back portion D.
Further, in the leaf spring 100 for a prosthetic leg, the distance of the vertical component between the straight portion A and the ground side end B is defined as the straight portion vertical component distance H, and the horizontal between the ground side end B and the intersection C is set. The distance between the component distances is defined as the intersection horizontal component distance Lt, and the horizontal component distance between the intersection C and the back surface portion D is defined as the back surface horizontal component distance Lh.
A straight line portion in the thickness direction orthogonal to the straight line portion A is defined as a straight line portion T.
FIG. 12 is a diagram illustrating the amount of bending of the prosthetic leaf spring. FIG. 12 shows a case where the ground side end portion B is fixed and a load of 1000 N is applied to the position P of 50 mm in the vertical direction along the direction from the straight line portion A to the back surface portion D. When a load of 1000 N is applied to the position P in the vertical direction, the prosthetic leaf spring 100 is bent in the vertical direction. A difference in distance between the straight portion vertical component distance H before the prosthetic leg spring 100 is bent and the straight portion vertical component distance Ha after the prosthetic leg spring 100a is bent is defined as a deflection amount S.

 義足用の板バネ100を含む義足ブレードを装着する使用者が走る場合に、その速度を最大とするには、義足用の板バネ100が、以下の(1)から(4)を満たすことが好ましいという結果が得られた。
 (1) 235mm≦H≦285mm
 (2) -10mm≦Lt≦30mm
 (3) 220mm≦Lh≦280mm
 (4) 35mm≦S≦45mm
 なお、Hが小さすぎる場合には装着者には硬く感じられ、義足側の腰部を痛める可能性がある。Hが大きすぎる場合には、たわみ方向の安定感が得られない。そのため、好ましくは245mm≦H≦275mm、より好ましくは250mm≦H≦270mmである。
 また、Ltが小さすぎる場合には、いわゆる「膝折れ」のリスクが増大する。膝折れとは、義足の膝関節部が曲がる方向へモーメントが働くことである。膝折れが発生すると装着者は転倒を免れない。Ltが大きすぎる場合には、前傾姿勢を取ることが難しくなり、走速度を高めることが困難となる。また、義足ブレードのつま先が地面に触れる可能性が高くなり、こちらもつまずいて転倒するリスクが増大する。そのため、好ましくは0mm≦Lt≦20mm、より好ましくは5mm≦Lt≦15mmである。
 また、Lhが小さすぎる場合には、ブレードの反発方向が上向きに近づくため、走速度の増大が困難となる。Lhが大きすぎる場合には、ランニング時にかかと部が臀部に当たってしまう。そのため、好ましくは230mm≦Lh≦270mm、より好ましくは240mm≦Lh≦260mmである。
 また、Sは小さすぎる場合には、装着者にとって硬く感じられ、装用感として悪いものとなる。Sが大きすぎる場合には、たわみ戻りのタイミングが遅れることとなり、走速度を高めることが困難になる。そのため、好ましくは37mm≦S≦43mm、より好ましくは39mm≦S≦41mmである。ただし、Sは装着者の筋力や体重にも依存するため、一概には言えない。
 また、義足用の板バネ100を含む義足ブレードを装着する使用者の踏込力最大とするには、義足用の板バネ100が、以下の(1a)から(4a)を満たすことが好ましいという結果が得られた。
 (1a) 185mm≦H≦235mm
 (2a) -10mm≦Lt≦30mm
 (3a) 140mm≦Lh≦200mm
 (4a) 35mm≦S≦45mm
 また、義足用の板バネ100を含む義足ブレードを装着する使用者が初心者である場合には、義足用の板バネ100が、以下の(1b)から(4b)を満たすことが好ましいという結果が得られた。義足ブレードを装着する使用者が初心者である場合には、膝折れモーメントを最小化する。一般に、義足ユーザにとって膝折れが転倒の最大のリスクとなる。そのため、膝折れモーメントを最小化した義足は、転倒リスクを最小限にするため、一般義足ユーザに好適とされる。この場合には、義足用の板バネ100の剛性が55~75mm、高さが185~235mm、つま先長さが50~90mm、かかと長さが220~280mmを満たすことが好ましいという結果が得られた。
 (1b) 185mm≦H≦235mm
 (2b) 50mm≦Lt≦90mm
 (3b) 220mm≦Lh≦280mm
 (4b) 55mm≦S≦75mm
When a user wearing a prosthetic leg blade including a prosthetic leg spring 100 runs, in order to maximize the speed, the prosthetic leg spring 100 satisfies the following (1) to (4). A favorable result was obtained.
(1) 235 mm ≦ H ≦ 285 mm
(2) −10 mm ≦ Lt ≦ 30 mm
(3) 220 mm ≦ Lh ≦ 280 mm
(4) 35mm ≦ S ≦ 45mm
In addition, when H is too small, it is felt hard for the wearer, and there is a possibility that the prosthetic leg side hurts. When H is too large, a sense of stability in the deflection direction cannot be obtained. Therefore, it is preferably 245 mm ≦ H ≦ 275 mm, more preferably 250 mm ≦ H ≦ 270 mm.
If Lt is too small, the risk of so-called “knee break” increases. Knee bending means that a moment acts in a direction in which the knee joint portion of the artificial leg bends. When a knee break occurs, the wearer cannot escape. When Lt is too large, it becomes difficult to take a forward leaning posture, and it becomes difficult to increase the running speed. In addition, there is a high possibility that the toe of the prosthetic blade touches the ground, and the risk of falling over and falling is increased. Therefore, it is preferably 0 mm ≦ Lt ≦ 20 mm, more preferably 5 mm ≦ Lt ≦ 15 mm.
In addition, when Lh is too small, the rebound direction of the blade approaches upward, and it is difficult to increase the running speed. When Lh is too large, the heel part hits the buttocks during running. Therefore, it is preferably 230 mm ≦ Lh ≦ 270 mm, more preferably 240 mm ≦ Lh ≦ 260 mm.
Moreover, when S is too small, it will be hard for a wearer and will become bad as a feeling of wear. If S is too large, the deflection return timing will be delayed, making it difficult to increase the running speed. Therefore, it is preferably 37 mm ≦ S ≦ 43 mm, more preferably 39 mm ≦ S ≦ 41 mm. However, since S depends on the muscle strength and weight of the wearer, it cannot be said unconditionally.
In addition, in order to maximize the stepping force of the user who wears the prosthetic blade blade including the prosthetic leaf spring 100, it is preferable that the prosthetic leaf spring 100 satisfies the following (1a) to (4a). was gotten.
(1a) 185 mm ≦ H ≦ 235 mm
(2a) −10 mm ≦ Lt ≦ 30 mm
(3a) 140 mm ≦ Lh ≦ 200 mm
(4a) 35 mm ≦ S ≦ 45 mm
Moreover, when the user who wears the prosthetic leg blade including the prosthetic leg spring 100 is a beginner, the prosthetic leg spring 100 preferably satisfies the following (1b) to (4b). Obtained. If the user wearing the prosthetic blade is a beginner, the knee bending moment is minimized. In general, knee bending is the greatest risk of falls for a prosthetic leg user. Therefore, a prosthetic leg with a minimized knee bending moment is suitable for a general prosthetic leg user in order to minimize the risk of falling. In this case, it is preferable that the rigidity of the leaf spring 100 for the artificial leg is preferably 55 to 75 mm, the height is 185 to 235 mm, the toe length is 50 to 90 mm, and the heel length is 220 to 280 mm. It was.
(1b) 185 mm ≦ H ≦ 235 mm
(2b) 50 mm ≦ Lt ≦ 90 mm
(3b) 220 mm ≦ Lh ≦ 280 mm
(4b) 55 mm ≦ S ≦ 75 mm

<第1実施形態のまとめ>
 第1実施形態の義肢・装具あるいはその部品の設計システム1では、上述したように、スペックの異なる複数の試着用義肢・装具あるいはその部品の着用時における複数の試着用義肢・装具あるいはその部品の動作データである試着品動作データと、複数の試着用義肢・装具あるいはその部品の着用者の動作データである着用者動作データとを取得する動作データ取得部11と、動作データ取得部11により取得された試着品動作データと着用者動作データとに基づき、応答曲面法によって動作応答曲面を算出する動作応答曲面算出部13Aと、動作データ取得部11により取得された試着品動作データと着用者動作データとに基づき、応答曲面法によって時間応答曲面を算出する時間応答曲面算出部13Bと、動作応答曲面と時間応答曲面とに基づき、実際には試着されない仮想義肢・装具あるいその部品が着用者によって仮に試着された場合における仮想義肢・装具あるいその部品の動作データと、着用者の動作データとを予測するシミュレーション実行部14とが備えられている。
 そのため、第1実施形態の義肢・装具あるいはその部品の設計システム1によれば、着用者の安全性を担保しつつ、着用者に適した義肢・装具あるいはその部品として、実際には試着されない義肢・装具あるいその部品も選定することができる。
<Summary of First Embodiment>
In the design system 1 of the prosthetic limbs / equipment or parts thereof according to the first embodiment, as described above, a plurality of trial limbs / equipment or parts thereof at the time of wearing a plurality of trial limbs / equipment or parts thereof having different specifications are used. Acquired by the operation data acquisition unit 11 and the operation data acquisition unit 11 for acquiring the operation data of the try-on product which is operation data and the wearer operation data which is the operation data of the wearer of a plurality of trial wear artificial limbs and orthoses or parts thereof The motion response curved surface calculation unit 13A that calculates the motion response curved surface by the response surface method based on the fitted product motion data and the wearer motion data, and the try-on product motion data and the wearer motion acquired by the motion data acquisition unit 11 A time response surface calculator 13B that calculates a time response surface by a response surface method based on the data, an action response surface, and a time response surface Based on the above, when a virtual prosthesis, orthosis, or part that is not actually tried on is temporarily tried on by a wearer, a simulation is performed to predict the motion data of the virtual prosthesis, the brace, or the part, and the wearer's movement data. Part 14 is provided.
Therefore, according to the design system 1 of the prosthetic limb / equipment or a part thereof according to the first embodiment, a prosthetic limb that is not actually tried on as a prosthetic limb / equipment suitable for the wearer or a part thereof while ensuring the safety of the wearer.・ You can select the brace or its parts.

<第1実施形態の変形例のまとめ>
 第1実施形態の変形例のシミュレーションシステム1aは、異なる複数の試着用義肢又は試着用装具の計測データである試着品計測データと、複数の試着用義肢又は試着用装具の着用者の計測データである着用者計測データとを取得する計測データ取得部11aと、着用者計測データと、着用者計測データとに基づいて、着用者に生じている力を示すデータである着用者動作データを、逆動力学解析によって算出する着用者動作データ算出部12と、着用者動作データに基づいて、動作応答曲面を、応答曲面法によって算出する動作応答曲面算出部13Aaと、動作応答曲面に基づいて、着用者が複数の試着用義肢又は前記試着用装具とは異なる義肢又は装具を着用したと仮定した場合に、義肢又は装具の動作データと、着用者の動作データとを予測するシミュレーション実行部14aとを備えている。
 動作応答曲面に基づいて、着用者が複数の試着用義肢又は試着用装具とは異なる義肢又は装具を着用したと仮定した場合に、義肢又は装具の動作データと、着用者の動作データとを予測するため、第1実施形態の変形例のシミュレーションシステム1aは、着用者に適した義肢又は装具を予測できる。
<Summary of Modifications of First Embodiment>
The simulation system 1a of the modification of 1st Embodiment is the measurement data of the fitting product measurement data which are the measurement data of a plurality of different trial-wearing prosthetics or the trial-wearing device, and the measurement data of the wearer of the plurality of trial-wearing prosthetics or the trial-wearing device. Based on the measurement data acquisition unit 11a that acquires certain wearer measurement data, the wearer measurement data, and the wearer measurement data, the wearer operation data that is data indicating the force generated in the wearer is reversed. Wearer motion data calculation unit 12 calculated by dynamic analysis, motion response curved surface based on the wearer motion data, motion response curved surface calculation unit 13Aa that calculates the response surface by response surface method, and wear based on motion response curved surface When it is assumed that the person wears a plurality of trial prosthetic limbs or a prosthetic limb or orthosis different from the trial orthosis, the operation data of the prosthesis or the orthosis and the operation data of the wearer And a simulation execution unit 14a to predict.
Based on the motion response surface, if it is assumed that the wearer wears a different prosthetic limb or brace from a plurality of trial limbs or trial braces, the prosthetic limb or brace motion data and the wearer motion data are predicted. Therefore, the simulation system 1a of the modified example of the first embodiment can predict a prosthetic limb or a brace suitable for the wearer.

<第2実施形態>
 以下、本発明の義肢・装具あるいはその部品の設計システム、義肢・装具あるいはその部品の設計方法およびプログラムの第2実施形態について、添付図面を参照して説明する。
 第2実施形態の義肢・装具あるいはその部品の設計システム1は、後述する点を除き、上述した第1実施形態の義肢・装具あるいはその部品の設計システム1と同様に構成されている。従って、第2実施形態の義肢・装具あるいはその部品の設計システム1によれば、後述する点を除き、上述した第1実施形態の義肢・装具あるいはその部品の設計システム1と同様の効果を奏することができる。
Second Embodiment
Hereinafter, a second embodiment of a prosthetic limb / orthoresiste or its part design system, prosthesis / orthoral or its part design method and program according to the present invention will be described with reference to the accompanying drawings.
The prosthetic limb / equipment or part design system 1 according to the second embodiment is configured in the same manner as the prosthetic limb / equipment or part design system 1 according to the first embodiment described above, except as described below. Therefore, according to the prosthetic limb / equipment or its part design system 1 according to the second embodiment, the same effects as those of the prosthetic limb / equipment or its part design system 1 according to the first embodiment described above are obtained, except as described below. be able to.

 上述したように、第1実施形態の義肢・装具あるいはその部品の設計システム1は義足ブレード(詳細には、スポーツ義足ブレード)の設計を行うが、第2実施形態の義肢・装具あるいはその部品の設計システム1は義足ブレード以外の義肢(義足または義手)・装具(機能に障害のある体幹・四肢に装着する器具)あるいはその部品の設計を行う。
 詳細には、第2実施形態の義肢・装具あるいはその部品の設計システム1は、第1実施形態の義肢・装具あるいはその部品の設計システム1と同様の手法によって(つまり、仮想義肢・仮想装具などを生成することによって)、例えば、義肢、手関節装具、肩関節装具、頚椎装具、胸椎装具、腰椎装具、仙腸装具、股関節装具、膝関節装具、短下肢装具およびそれらの部品のいずれかの設計を行う。
As described above, the design system 1 for the prosthetic limb / equipment or its part according to the first embodiment designs a prosthetic limb blade (specifically, a sports prosthetic leg blade). The design system 1 designs a prosthetic limb (prosthetic leg or prosthetic hand) other than a prosthetic braid, an orthosis (a device to be worn on a trunk or limb with a function disorder), or parts thereof.
Specifically, the prosthetic limb / orthoresistive device or its part design system 1 according to the second embodiment is the same as the prosthetic limb / orthorid or its part design system 1 according to the first embodiment (that is, virtual prosthetic limb / virtual orthosis, etc.). For example, prosthetic limbs, wrist joint orthosis, shoulder joint orthosis, cervical vertebra orthosis, thoracic vertebra orthosis, lumbar orthosis, sacroiliac orthosis, hip joint orthosis, knee joint orthosis, short leg orthosis and any of those parts Do the design.

 以上、本発明を実施するための形態について実施形態を用いて説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々の変形及び置換を加えることができる。上述した各実施形態に記載の構成を組み合わせてもよい。例えば、第2の実施形態と、第1実施形態の変形例とが組み合わされてもよい。 As mentioned above, although the form for implementing this invention was demonstrated using embodiment, this invention is not limited to such embodiment at all, In the range which does not deviate from the summary of this invention, various deformation | transformation and substitution Can be added. You may combine the structure as described in each embodiment mentioned above. For example, the second embodiment and the modified example of the first embodiment may be combined.

 なお、義肢・装具あるいはその部品の設計システム1の各機能、シミュレーションシステム1aの各機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより上述の各部の処理を行ってもよい。ここで、「記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行する」とは、コンピュータシステムにプログラムをインストールすることを含む。ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、インターネットやWAN、LAN、専用回線等の通信回線を含むネットワークを介して接続された複数のコンピュータ装置を含んでもよい。
 また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。このように、プログラムを記憶した記録媒体は、CD-ROM等の非一過性の記録媒体であってもよい。また、記録媒体には、当該プログラムを配信するために配信サーバからアクセス可能な内部または外部に設けられた記録媒体も含まれる。配信サーバの記録媒体に記憶されるプログラムのコードは、端末装置で実行可能な形式のプログラムのコードと異なるものでもよい。すなわち、配信サーバからダウンロードされて端末装置で実行可能な形でインストールができるものであれば、配信サーバで記憶される形式は問わない。
A program for realizing each function of the design system 1 of the prosthesis / orthoresistive or its parts and the function of the simulation system 1a is recorded on a computer-readable recording medium, and the program recorded on the recording medium is recorded on the computer The processing of each unit described above may be performed by causing the system to read and execute. Here, “loading and executing a program recorded on a recording medium into a computer system” includes installing the program in the computer system. The “computer system” here includes an OS and hardware such as peripheral devices. Further, the “computer system” may include a plurality of computer devices connected via a network including a communication line such as the Internet, WAN, LAN, and dedicated line.
The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM or a CD-ROM, and a hard disk incorporated in a computer system. As described above, the recording medium storing the program may be a non-transitory recording medium such as a CD-ROM. The recording medium also includes a recording medium provided inside or outside that is accessible from the distribution server in order to distribute the program. The code of the program stored in the recording medium of the distribution server may be different from the code of the program that can be executed by the terminal device. That is, the format stored in the distribution server is not limited as long as it can be downloaded from the distribution server and installed in a form that can be executed by the terminal device.

 なお、プログラムを複数に分割し、それぞれ異なるタイミングでダウンロードした後に端末装置で合体される構成や、分割されたプログラムのそれぞれを配信する配信サーバが異なっていてもよい。さらに「コンピュータ読み取り可能な記録媒体」とは、ネットワークを介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、上述した機能の一部を実現するためのものであってもよい。さらに、上述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。 Note that the program may be divided into a plurality of parts, downloaded at different timings, and combined in the terminal device, or the distribution server that distributes each of the divided programs may be different. Furthermore, the “computer-readable recording medium” holds a program for a certain period of time, such as a volatile memory (RAM) inside a computer system that becomes a server or a client when the program is transmitted via a network. Including things. The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, what is called a difference file (difference program) may be sufficient.

 また、上述した機能の一部または全部を、LSI(Large Scale Integration)等の集積回路として実現してもよい。上述した各機能は個別にプロセッサ化してもよいし、一部、または全部を集積してプロセッサ化してもよい。また、集積回路化の手法はLSIに限らず専用回路、または汎用プロセッサで実現してもよい。また、半導体技術の進歩によりLSIに代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いてもよい。 Further, part or all of the above-described functions may be realized as an integrated circuit such as an LSI (Large Scale Integration). Each function described above may be individually made into a processor, or a part or all of them may be integrated into a processor. Further, the method of circuit integration is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. In addition, when an integrated circuit technology that replaces LSI appears due to the advancement of semiconductor technology, an integrated circuit based on the technology may be used.

 なお、以上の説明に関して更に以下の付記を開示する。
 (付記1)スペックの異なる複数の試着用義肢・装具あるいはその部品の着用時における前記複数の試着用義肢・装具あるいはその部品の動作データである試着品動作データと、前記複数の試着用義肢・装具あるいはその部品の着用者の動作データである着用者動作データとを取得する動作データ取得部と、
 前記動作データ取得部により取得された前記試着品動作データと前記着用者動作データとに基づき、応答曲面法によって動作応答曲面を算出する動作応答曲面算出部と、
 前記動作データ取得部により取得された前記試着品動作データと前記着用者動作データとに基づき、応答曲面法によって時間応答曲面を算出する時間応答曲面算出部と、
 前記動作応答曲面と前記時間応答曲面とに基づき、実際には試着されない仮想義肢・装具あるいその部品が前記着用者によって仮に試着された場合における前記仮想義肢・装具あるいその部品の動作データと、前記着用者の動作データとを予測するシミュレーション実行部と
 を有する義肢・装具あるいはその部品の設計システム。
 (付記2)前記動作応答曲面算出部が算出する前記動作応答曲面は、2次以上の関数に関数化されている、
 付記1に記載の義肢・装具あるいはその部品の設計システム。
 (付記3)前記複数の試着用義肢・装具あるいはその部品は、複数の試着用スポーツ義足ブレードであり、
 前記複数の試着用スポーツ義足ブレードが有するスペックの項目には、少なくともスポーツ義足ブレード高さ寸法、スポーツ義足ブレード後方突出量およびスポーツ義足ブレードつま先長さ寸法のいずれかが含まれる、
 付記1または付記2に記載の義肢・装具あるいはその部品の設計システム。
 (付記4)前記シミュレーション実行部は、ベーシスベクトル法を用いることによって、前記複数の試着用スポーツ義足ブレードのそれぞれのスペックとは異なるスペックを有する仮想スポーツ義足ブレードを生成する、
 付記3に記載の義肢・装具あるいはその部品の設計システム。
 (付記5)前記複数の試着用スポーツ義足は、
 前記スポーツ義足ブレード高さ寸法と、前記スポーツ義足ブレード後方突出量と、前記スポーツ義足ブレードつま先長さ寸法とを含む4つの項目のそれぞれが3つの水準を有することにより得られる81種類のスペックから、実験計画法におけるL9型直交表に基づいて選定された9種類のスペックを有する、
 付記3または付記4に記載の義肢・装具あるいはその部品の設計システム。
 (付記6)前記4つの項目は、スポーツ義足ブレード剛性、前記スポーツ義足ブレード高さ寸法、前記スポーツ義足ブレード後方突出量、および、前記スポーツ義足ブレードつま先長さ寸法である、
 付記5に記載の義肢・装具あるいはその部品の設計システム。
 (付記7)前記シミュレーション実行部は、シミュレーションを繰り返し実行することによって、所定の目的関数を最大化する、
 付記1から付記6のいずれか一項に記載の義肢・装具あるいはその部品の設計システム。
 (付記8)前記目的関数は、少なくとも前記着用者の身体負荷を含む、
 付記7に記載の義肢・装具あるいはその部品の設計システム。
 (付記9)スペックの異なる複数の試着用義肢・装具あるいはその部品の着用時における前記複数の試着用義肢・装具あるいはその部品の動作データである試着品動作データと、前記複数の試着用義肢・装具あるいはその部品の着用者の動作データである着用者動作データとを取得する動作データ取得ステップと、
 前記動作データ取得ステップにおいて取得された前記試着品動作データと前記着用者動作データとに基づき、応答曲面法によって動作応答曲面を算出する動作応答曲面算出ステップと、
 前記動作データ取得ステップにおいて取得された前記試着品動作データと前記着用者動作データとに基づき、応答曲面法によって時間応答曲面を算出する時間応答曲面算出ステップと、
 前記動作応答曲面と前記時間応答曲面とに基づき、実際には試着されない仮想義肢・装具あるいその部品が前記着用者によって仮に試着された場合における前記仮想義肢・装具あるいその部品の動作データと、前記着用者の動作データとを予測するシミュレーション実行ステップと
 を有する義肢・装具あるいはその部品の設計方法。
 (付記10)コンピュータに、
 スペックの異なる複数の試着用義肢・装具あるいはその部品の着用時における前記複数の試着用義肢・装具あるいはその部品の動作データである試着品動作データと、前記複数の試着用義肢・装具あるいはその部品の着用者の動作データである着用者動作データとを取得する動作データ取得ステップと、
 前記動作データ取得ステップにおいて取得された前記試着品動作データと前記着用者動作データとに基づき、応答曲面法によって動作応答曲面を算出する動作応答曲面算出ステップと、
 前記動作データ取得ステップにおいて取得された前記試着品動作データと前記着用者動作データとに基づき、応答曲面法によって時間応答曲面を算出する時間応答曲面算出ステップと、
 前記動作応答曲面と前記時間応答曲面とに基づき、実際には試着されない仮想義肢・装具あるいその部品が前記着用者によって仮に試着された場合における前記仮想義肢・装具あるいその部品の動作データと、前記着用者の動作データとを予測するシミュレーション実行ステップと
 を実行させるためのプログラム。
In addition, the following additional notes are disclosed regarding the above description.
(Appendix 1) A plurality of try-on prosthetic limbs / apparatuses or parts thereof having different specifications, and a plurality of try-on prosthetic limbs / apparatuses or operation data of the parts thereof; An operation data acquisition unit for acquiring wearer operation data which is operation data of the wearer of the brace or its parts;
A motion response surface calculation unit that calculates a motion response surface by a response surface method based on the try-on product motion data and the wearer motion data acquired by the motion data acquisition unit;
A time response surface calculation unit that calculates a time response surface by a response surface method based on the try-on product operation data and the wearer operation data acquired by the operation data acquisition unit;
Based on the motion response curved surface and the time response curved surface, the virtual prosthesis, the orthosis or the part of the virtual prosthesis, the orthosis, or the part that is not actually tried on is temporarily tried by the wearer, A design system for a prosthetic limb / orthoresiste or a part thereof having a simulation execution unit for predicting the wearer's motion data.
(Supplementary Note 2) The motion response curved surface calculated by the motion response curved surface calculation unit is functionalized into a quadratic or higher function.
The prosthetic limb / orthoresister or part design system according to appendix 1.
(Appendix 3) The plurality of trial prosthetic limbs and orthoses or parts thereof are a plurality of trial sports prosthetic blades,
The items of the specifications of the plurality of trial-wearing sports prosthetic blades include at least one of the sports prosthetic blade height dimension, the sports prosthetic blade rearward protrusion amount, and the sports prosthetic blade toe length dimension,
A design system for the prosthetic limb or orthosis or parts thereof according to appendix 1 or appendix 2.
(Additional remark 4) The said simulation execution part produces | generates the virtual sports prosthetic leg blade which has a specification different from each specification of these trial wearing sports prosthetic leg blades by using a basis vector method.
The prosthetic limb / orthoresister or part design system according to appendix 3.
(Appendix 5) The plurality of trial sports prostheses are:
From 81 types of specifications obtained by having each of the four items including the sports prosthetic blade height dimension, the sports prosthetic blade rear protrusion amount, and the sports prosthetic blade toe length dimension having three levels, Nine specifications selected based on the L9 orthogonal table in the design of experiments,
The prosthetic limb / orthoresister or the parts design system according to appendix 3 or appendix 4.
(Appendix 6) The four items are sports prosthetic leg blade rigidity, sports prosthetic leg blade height dimension, sports prosthetic leg blade protrusion amount, and sports prosthetic leg blade toe length dimension.
A prosthetic limb / orthoresister or part design system according to appendix 5.
(Appendix 7) The simulation execution unit maximizes a predetermined objective function by repeatedly executing the simulation.
The prosthetic limb / orthorm or a part design system according to any one of supplementary notes 1 to 6.
(Supplementary Note 8) The objective function includes at least the body load of the wearer.
A prosthetic limb / orthoresister or part design system according to appendix 7.
(Supplementary note 9) A plurality of try-on prosthetic limbs / apparatus or parts thereof having different specifications, and a plurality of try-on prosthetic limbs / apparatus or parts of the prosthesis operation data, An operation data acquisition step for acquiring wearer operation data which is operation data of the wearer of the brace or its parts;
An operation response surface calculation step for calculating an operation response surface by a response surface method based on the try-on product operation data and the wearer operation data acquired in the operation data acquisition step;
A time response surface calculation step for calculating a time response surface by a response surface method based on the try-on product operation data and the wearer operation data acquired in the operation data acquisition step;
Based on the motion response curved surface and the time response curved surface, the virtual prosthesis, the orthosis or the part of the virtual prosthesis, the orthosis, or the part that is not actually tried on is temporarily tried by the wearer, And a simulation execution step for predicting the wearer's motion data.
(Appendix 10)
A plurality of try-on prosthetic limbs / apparatus or parts thereof when wearing a plurality of try-on prosthetic limbs / apparatus or parts thereof; An operation data acquisition step for acquiring the wearer operation data which is the operation data of the wearer;
An operation response surface calculation step for calculating an operation response surface by a response surface method based on the try-on product operation data and the wearer operation data acquired in the operation data acquisition step;
A time response surface calculation step for calculating a time response surface by a response surface method based on the try-on product operation data and the wearer operation data acquired in the operation data acquisition step;
Based on the motion response curved surface and the time response curved surface, the virtual prosthesis, the orthosis or the part of the virtual prosthesis, the orthosis, or the part that is not actually tried on is temporarily tried by the wearer, And a simulation execution step for predicting the movement data of the wearer.

1…設計システム、11…動作データ取得部、11A…試着品動作データ取得部、11B…着用者動作データ取得部、13A…動作応答曲面算出部、13B…時間応答曲面算出部、14…シミュレーション実行部、14A…身体動作解析部、14B…FEM解析部、14C…多目的最適化部、14D…最適品設計部、A…撮影部、B…義足、B1…義足ソケット、B2…義足ジョイント、B3…義足接続部、B4…義足ブレード、B5…義足接続部、B5X…中心軸線、C…着用者、L2…義足ブレード高さ寸法、L3…義足ブレード後方突出量、L4…義足ブレードつま先長さ寸法、1a…シミュレーションシステム、11a…計測データ取得部、11Aa…試着品計測データ取得部、11Ba…着用者計測データ取得部、12…着用者動作データ算出部、13Aa…動作応答曲面算出部、13Ba…時間応答曲面算出部、14a…シミュレーション実行部、14Aa…身体動作解析部、14Ba…FEM解析部、14Ca…多目的最適化部、14Da…最適品設計部、15…選定部 DESCRIPTION OF SYMBOLS 1 ... Design system, 11 ... Motion data acquisition part, 11A ... Try-on product motion data acquisition part, 11B ... Wearer motion data acquisition part, 13A ... Motion response curved surface calculation part, 13B ... Time response curved surface calculation part, 14 ... Simulation execution 14A ... body motion analysis unit 14B ... FEM analysis unit 14C ... multipurpose optimization unit 14D ... optimal product design unit A ... photographing unit B ... prosthetic leg B1 ... prosthetic socket B2 ... prosthetic joint B3 ... Prosthetic foot connection part, B4 ... Prosthetic leg blade, B5 ... Prosthetic leg connection part, B5X ... Center axis, C ... Wearer, L2 ... Prosthetic leg blade height dimension, L3 ... Prosthetic leg rear protrusion amount, L4 ... Prosthetic leg blade toe length dimension, DESCRIPTION OF SYMBOLS 1a ... Simulation system, 11a ... Measurement data acquisition part, 11Aa ... Try-on product measurement data acquisition part, 11Ba ... Wearer measurement data acquisition part, 12 ... Wearer movement Data calculation unit, 13Aa ... motion response curved surface calculation unit, 13Ba ... time response curved surface calculation unit, 14a ... simulation execution unit, 14Aa ... body motion analysis unit, 14Ba ... FEM analysis unit, 14Ca ... multipurpose optimization unit, 14Da ... optimal product Design department, 15 ... Selection department

Claims (13)

 異なる複数の試着用義肢又は試着用装具の計測データである試着品計測データと、複数の前記試着用義肢又は前記試着用装具の着用者の計測データである着用者計測データとを取得する計測データ取得部と、
 前記着用者計測データと、前記着用者計測データとに基づいて、着用者に生じている力を示すデータである着用者動作データを、逆動力学解析によって算出する着用者動作データ算出部と、
 前記着用者動作データに基づいて、動作応答曲面を、応答曲面法によって算出する動作応答曲面算出部と、
 前記動作応答曲面に基づいて、前記着用者が複数の前記試着用義肢又は前記試着用装具とは異なる義肢又は装具を着用したと仮定した場合に、前記義肢又は前記装具の動作データと、前記着用者の動作データとを予測するシミュレーション実行部と
 を有する、シミュレーションシステム。
Measurement data for acquiring try-on product measurement data that is measurement data of a plurality of different try-on prostheses or try-on devices, and wearer measurement data that is measurement data of a wearer of the plurality of try-on prosthetics or the test-on devices An acquisition unit;
Based on the wearer measurement data and the wearer measurement data, a wearer operation data calculation unit that calculates wearer operation data, which is data indicating the force generated in the wearer, by reverse dynamic analysis,
Based on the wearer motion data, a motion response curved surface calculation unit that calculates a motion response curved surface by a response surface method;
Based on the motion response curved surface, when it is assumed that the wearer wears a plurality of prosthetic limbs or prosthetic limbs different from the trial rigging, the operation data of the prosthetic limbs or the orthotics and the wear A simulation execution unit that predicts motion data of a person.
 前記着用者動作データに基づいて、時間応答曲面を、応答曲面法によって算出する時間応答曲面算出部を有し、
 前記シミュレーション実行部は、前記時間応答曲面にさらに基づいて、前記義肢又は前記装具の動作データと、前記着用者の動作データとを予測する、請求項1に記載のシミュレーションシステム。
Based on the wearer motion data, a time response curved surface calculation unit that calculates a time response curved surface by a response surface method,
The simulation system according to claim 1, wherein the simulation execution unit predicts the operation data of the artificial limb or the orthosis and the operation data of the wearer based on the time response curved surface.
 前記シミュレーション実行部は、ベーシスベクトル法によって、前記義肢又は前記装具の動作データと、前記着用者の動作データとを予測する、請求項1又は請求項2に記載のシミュレーションシステム。 The simulation system according to claim 1 or 2, wherein the simulation execution unit predicts motion data of the prosthetic limb or the orthosis and motion data of the wearer by a basis vector method.  前記シミュレーション実行部が予測した前記義肢又は前記装具の前記動作データと、前記着用者の前記動作データとに基づいて、義肢又は装具を選定する選定部
 を有する請求項1から請求項3のいずれか一項に記載のシミュレーションシステム。
4. The method according to claim 1, further comprising: a selection unit that selects a prosthetic limb or an orthosis based on the motion data of the prosthetic limb or the orthosis predicted by the simulation execution unit and the motion data of the wearer. The simulation system according to one item.
 前記動作応答曲面算出部は、2次以上の関数に関数化されている動作応答曲面を算出する、請求項1から請求項4のいずれか一項に記載のシミュレーションシステム。 The simulation system according to any one of claims 1 to 4, wherein the motion response curved surface calculation unit calculates a motion response curved surface that is functionalized into a quadratic or higher function.  複数の前記試着用義肢の各々は、試着用スポーツ義足ブレードであり、
 前記シミュレーション実行部は、スポーツ義足ブレード高さ寸法と、スポーツ義足ブレード後方突出量と、スポーツ義足ブレードつま先長さ寸法とのうち、少なくとも一つを予測する、
 請求項1から請求項5のいずれか一項に記載のシミュレーションシステム。
Each of the plurality of trial prosthetic limbs is a trial sports prosthetic blade,
The simulation execution unit predicts at least one of a sports prosthetic leg blade height dimension, a sports prosthetic leg blade rearward protrusion amount, and a sports prosthetic leg blade toe length dimension.
The simulation system according to any one of claims 1 to 5.
 複数の前記試着用義肢の各々は、試着用スポーツ義足ブレードであり、
 前記試着用スポーツ義足ブレードは、複数のスペックから、実験計画法のL9型直交表に基づいて選定されたスペックを有する、
 請求項1から請求項6のいずれか一項に記載のシミュレーションシステム。
Each of the plurality of trial prosthetic limbs is a trial sports prosthetic blade,
The trial sports prosthetic blade has a spec selected from a plurality of specs based on the L9 orthogonal table of the experimental design method.
The simulation system according to any one of claims 1 to 6.
 前記スペックは、ブレード剛性と、高さ寸法と、後方突出量と、つま先長さ寸法とを含む、
 請求項7に記載のシミュレーションシステム。
The specifications include blade rigidity, height dimension, rearward protrusion amount, and toe length dimension.
The simulation system according to claim 7.
 前記シミュレーション実行部は、シミュレーションを繰り返し実行することによって、所定の目的関数を最大化する、
 請求項1から請求項8のいずれか一項に記載のシミュレーションシステム。
The simulation execution unit maximizes a predetermined objective function by repeatedly executing a simulation.
The simulation system according to any one of claims 1 to 8.
 前記目的関数は、少なくとも前記着用者の身体負荷に関する関数を含む、
 請求項9に記載のシミュレーションシステム。
The objective function includes at least a function related to a body load of the wearer,
The simulation system according to claim 9.
 請求項1から請求項10のいずれか一項に記載のシミュレーションシステムによって予測された前記義肢又は前記装具の前記動作データと、前記着用者の前記動作データとに基づいて、選定された義足ブレードであって、
 接続部品を介して身体(着用者)側に装着される身体側端部の厚み方向の直線部を直線部Aとし、地面に設置される側の地面側端部を地面側端部Bとし、厚み方向の直線部Aから垂線を下した時に板バネ本体と交差する部分を交差部Cとし、義足用の板バネを含む義足ブレードを身体へ装着した際に最も背面側に位置する部分を背面部Dとし、
 前記直線部Aと前記地面側端部Bとの間の垂直成分の距離を直線部垂直成分距離Hとし、前記地面側端部Bと交差部Cとの間の水平成分距離の距離を交差部水平成分距離Ltとし、前記交差部Cと背面部Dとの間の水平成分距離を背面部水平成分距離Lhとし、前記地面側端部Bを固定し、前記直線部Aから前記背面部Dへ向かう方向に沿って、50mmの位置Pに垂直方向に1000Nの荷重をかけた場合に、前記義足用の板バネが撓む前の直線部垂直成分距離Hと、前記義足用の板バネが撓んだ後の直線部垂直成分距離Haとの距離の差を撓み量Sとした場合に、
 235mm≦H≦285mm
 -10mm≦Lt≦30mm
 220mm≦Lh≦280mm
 35mm≦S≦45mm
 である、義足ブレード。
A prosthetic blade selected based on the motion data of the prosthetic limb or the orthosis predicted by the simulation system according to any one of claims 1 to 10, and the motion data of the wearer. There,
The straight-line portion in the thickness direction of the body-side end portion attached to the body (wearer) side through the connecting component is defined as a straight-line portion A, and the ground-side end portion on the side installed on the ground is defined as the ground-side end portion B. The portion that intersects with the leaf spring body when the perpendicular is drawn from the straight portion A in the thickness direction is defined as the intersection portion C, and the portion that is located on the most back side when the artificial leg blade including the leaf spring for the artificial leg is attached to the body is the back surface. Part D,
The distance of the vertical component between the straight line part A and the ground side end part B is defined as a straight line part vertical component distance H, and the distance of the horizontal component distance between the ground side edge part B and the intersection part C is defined as a cross part. A horizontal component distance Lt is set, a horizontal component distance between the intersection C and the back surface portion D is set as a back surface horizontal component distance Lh, the ground side end portion B is fixed, and the straight portion A is transferred to the back surface portion D. When a load of 1000 N is applied vertically to a position P of 50 mm along the direction of heading, the straight portion vertical component distance H before the prosthetic leg spring is deflected and the prosthetic leg spring are deflected. When the difference in distance from the straight portion vertical component distance Ha after bending is defined as the deflection amount S,
235mm ≦ H ≦ 285mm
−10 mm ≦ Lt ≦ 30 mm
220mm ≦ Lh ≦ 280mm
35mm ≦ S ≦ 45mm
Is a prosthetic blade.
 異なる複数の試着用義肢又は試着用装具の計測データである試着品計測データと、複数の前記試着用義肢又は前記試着用装具の着用者の計測データである着用者計測データとを取得するステップと、
 前記着用者計測データと、前記着用者計測データとに基づいて、着用者に生じている力を示すデータである着用者動作データを、逆動力学解析によって算出するステップと、
 前記着用者動作データに基づいて、動作応答曲面を、応答曲面法によって算出するステップと、
 前記動作応答曲面に基づいて、前記着用者が複数の前記試着用義肢又は前記試着用装具とは異なる義肢又は装具を着用したと仮定した場合に、前記義肢又は前記装具の動作データと、前記着用者の動作データとを予測するステップと
 を有する、コンピュータが実行するシミュレーション方法。
A step of acquiring fitting product measurement data which is measurement data of a plurality of different fitting prostheses or fitting devices, and wearer measurement data which is measurement data of a wearer of the plurality of fitting artificial limbs or the fitting devices; ,
Based on the wearer measurement data and the wearer measurement data, calculating wearer operation data that is data indicating the force generated in the wearer by inverse dynamics analysis; and
Based on the wearer motion data, calculating a motion response surface by a response surface method;
Based on the motion response curved surface, when it is assumed that the wearer wears a plurality of prosthetic limbs or prosthetic limbs different from the trial rigging, the operation data of the prosthetic limbs or the orthotics and the wear A computer-implemented simulation method comprising: predicting a person's motion data.
 コンピュータに、
 異なる複数の試着用義肢又は試着用装具の計測データである試着品計測データと、複数の前記試着用義肢又は前記試着用装具の着用者の計測データである着用者計測データとを取得するステップと、
 前記着用者計測データと、前記着用者計測データとに基づいて、着用者に生じている力を示すデータである着用者動作データを、逆動力学解析によって算出するステップと、
 前記着用者動作データに基づいて、動作応答曲面を、応答曲面法によって算出するステップと、
 前記動作応答曲面に基づいて、前記着用者が複数の前記試着用義肢又は前記試着用装具とは異なる義肢又は装具を着用したと仮定した場合に、前記義肢又は前記装具の動作データと、前記着用者の動作データとを予測するステップと
 を実行させる、プログラム。
On the computer,
A step of acquiring fitting product measurement data which is measurement data of a plurality of different fitting prostheses or fitting devices, and wearer measurement data which is measurement data of a wearer of the plurality of fitting artificial limbs or the fitting devices; ,
Based on the wearer measurement data and the wearer measurement data, calculating wearer operation data that is data indicating the force generated in the wearer by inverse dynamics analysis; and
Based on the wearer motion data, calculating a motion response surface by a response surface method;
Based on the motion response curved surface, when it is assumed that the wearer wears a plurality of prosthetic limbs or prosthetic limbs different from the trial rigging, the operation data of the prosthetic limbs or the orthotics and the wear For predicting the motion data of a person.
PCT/JP2019/005803 2018-02-19 2019-02-18 Simulation system, prosthetic leg blade, simulation method, and program Ceased WO2019160135A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019572310A JP7255807B2 (en) 2018-02-19 2019-02-18 Simulation system, simulation method and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-027376 2018-02-19
JP2018027376 2018-02-19

Publications (1)

Publication Number Publication Date
WO2019160135A1 true WO2019160135A1 (en) 2019-08-22

Family

ID=67619398

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/005803 Ceased WO2019160135A1 (en) 2018-02-19 2019-02-18 Simulation system, prosthetic leg blade, simulation method, and program

Country Status (2)

Country Link
JP (1) JP7255807B2 (en)
WO (1) WO2019160135A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2025048890A (en) * 2023-09-20 2025-04-03 ソフトバンクグループ株式会社 system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140081422A1 (en) * 2012-09-10 2014-03-20 Ortho Transmission, Llc Transcutaneous Implant for Skeletal Attachment of External Prosthetic Devices
WO2014132885A1 (en) * 2013-02-27 2014-09-04 三菱レイヨン株式会社 Golf implement fitting system and golf implement fitting program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140081422A1 (en) * 2012-09-10 2014-03-20 Ortho Transmission, Llc Transcutaneous Implant for Skeletal Attachment of External Prosthetic Devices
WO2014132885A1 (en) * 2013-02-27 2014-09-04 三菱レイヨン株式会社 Golf implement fitting system and golf implement fitting program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YUICHIRO HAYASHI ET AL.: "Multiple objective optimization of the prosthetic foot structure based on biomechanical evidence for the jumping movements of a trans-femoral amputee", IEEE EXPLORE DIGITAL LIBRARY, December 2016 (2016-12-01), pages 301 - 306, XP033059975, Retrieved from the Internet <URL:https://ieeexplore.ieee.org/document/7844015> [retrieved on 20190307], doi:10.1109/SII.2016.7844015 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2025048890A (en) * 2023-09-20 2025-04-03 ソフトバンクグループ株式会社 system

Also Published As

Publication number Publication date
JP7255807B2 (en) 2023-04-11
JPWO2019160135A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
ES2611196T3 (en) Diagnostic system of the way of running and scoring procedure of the way of running
Pàmies-Vilà et al. Analysis of different uncertainties in the inverse dynamic analysis of human gait
Lin et al. A computationally efficient method for assessing muscle function during human locomotion
Lugrís et al. Solution methods for the double-support indeterminacy in human gait
Hammer et al. Tailoring anatomical muscle paths: a sheath-like solution for muscle routing in musculoskeletal computer models
JP6649323B2 (en) Gait analysis system and method
Gordon et al. Effectively quantifying the performance of lower-limb exoskeletons over a range of walking conditions
Harrison et al. A coupled biomechanical-smoothed particle hydrodynamics model for predicting the loading on the body during elite platform diving
Ojeda et al. The effect of kinematic constraints in the inverse dynamics problem in biomechanics
TW201225008A (en) System for estimating location of occluded skeleton, method for estimating location of occluded skeleton and method for reconstructing occluded skeleton
Quental et al. A multibody methodological approach to the biomechanics of swimmers including hydrodynamic forces
Yeadon et al. Parameter determination for a computer simulation model of a diver and a springboard
Yu et al. A passive movement method for parameter estimation of a musculo-skeletal arm model incorporating a modified hill muscle model
JP2020135834A (en) Parameter determination method, parameter determination device, and parameter determination program
JP7255807B2 (en) Simulation system, simulation method and program
Moreira et al. A biomechanical multibody foot model for forward dynamic analysis
Kłodowski et al. Flexible multibody approach in forward dynamic simulation of locomotive strains in human skeleton with flexible lower body bones
Nicolas et al. From bone to plausible bipedal locomotion using inverse kinematics
Nohara et al. Multiple regression based imputation for individualizing template human model from a small number of measured dimensions
Oberhofer et al. Anatomically-based musculoskeletal modeling: prediction and validation of muscle deformation during walking
León et al. The model of the human hand
JP2006110217A (en) Muscle activity estimation method, program, storage medium, muscle activity estimation system, and muscle activity database
Pettersson et al. Optimisation of multiple phase human movements
Luo et al. A subject-specific dynamics model for predicting impact force in elderly lateral fall
Haraguchi et al. Human and Passive Lower-Limb Exoskeleton Interaction Analysis: Computational Study with Dynamics Simulation using Nonlinear Model Predictive Control

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754567

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019572310

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19754567

Country of ref document: EP

Kind code of ref document: A1