WO2019159247A1 - Computation device, analysis program, and analysis method - Google Patents
Computation device, analysis program, and analysis method Download PDFInfo
- Publication number
- WO2019159247A1 WO2019159247A1 PCT/JP2018/005026 JP2018005026W WO2019159247A1 WO 2019159247 A1 WO2019159247 A1 WO 2019159247A1 JP 2018005026 W JP2018005026 W JP 2018005026W WO 2019159247 A1 WO2019159247 A1 WO 2019159247A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- feature
- distribution
- correlation
- value
- feature amount
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M1/00—Apparatus for enzymology or microbiology
- C12M1/34—Measuring or testing with condition measuring or sensing means, e.g. colony counters
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
Definitions
- the present invention relates to a calculation device, an analysis program, and an analysis method.
- a calculation device that calculates the correlation between the elements using the feature amounts of the elements constituting the cells, the element of the cells based on an image obtained by imaging the cells.
- a feature amount extraction unit that extracts a plurality of feature amounts each time, a distribution calculation unit that calculates a feature amount distribution of the element from the feature amounts extracted by the feature amount extraction unit, the change in the feature amount, and the feature
- a correlation calculation unit that calculates a correlation between the elements from the distribution of the amount.
- an analysis program for causing a computer to calculate a correlation between the elements using feature amounts of the elements constituting the cells, and based on an image obtained by imaging the cells,
- a feature quantity extracting step for extracting a plurality of feature quantities for each element of the cell;
- a distribution computing step for computing a distribution of the feature quantities of the elements from the feature quantities extracted by the feature quantity extracting step; and a change in the feature quantities
- a correlation calculation step of calculating a correlation between the elements from the distribution of the feature amount.
- an analysis method for calculating a correlation between the elements using feature amounts of elements constituting the cells, wherein the elements of the cells are based on an image obtained by imaging the cells.
- a feature quantity extracting means for extracting a plurality of feature quantities for each; a distribution computing means for computing a feature quantity distribution of the element from the feature quantities extracted by the feature quantity extracting means; the change in the feature quantity and the feature.
- a calculation device for calculating a correlation between the elements using the variable of the element, wherein the variable extraction unit extracts a plurality of variables for each element, and is extracted by the variable extraction unit
- a calculation unit comprising: a distribution calculation unit that calculates a distribution of the variable of the element from the variable to be calculated; and a correlation calculation unit that calculates a correlation between the elements from the change of the variable and the distribution of the variable.
- FIG. 1 is a diagram illustrating an example of a configuration of a microscope observation system 1 according to an embodiment of the present invention.
- the microscope observation system 1 performs image processing on an image acquired by imaging a cell or the like. In the following description, an image acquired by imaging a cell or the like is also simply referred to as a cell image.
- the microscope observation system 1 includes a calculation device 10, a microscope device 20, and a display unit 30.
- the microscope apparatus 20 is a biological microscope and includes an electric stage 21 and an imaging unit 22.
- the electric stage 21 can arbitrarily operate the position of the imaging target in a predetermined direction (for example, a certain direction in a horizontal two-dimensional plane, a vertical direction, or an axial rotation direction).
- the imaging unit 22 includes an imaging element such as a charge-coupled device (CCD) and a complementary MOS (CMOS), and images an imaging target on the electric stage 21.
- the microscope apparatus 20 may not include the electric stage 21 and may be a stage in which the stage does not operate in a predetermined direction.
- the microscope apparatus 20 includes, for example, a differential interference microscope (DIC), a phase contrast microscope, a fluorescence microscope, a confocal microscope, a super-resolution microscope, a two-photon excitation fluorescence microscope, and a light sheet microscope. , A light field microscope, a holographic microscope, an optical coherence tomography (OCT), and the like.
- the microscope apparatus 20 images the culture vessel placed on the electric stage 21. Examples of the culture container include a well plate WP and a slide chamber.
- the microscope apparatus 20 captures transmitted light that has passed through the cells as an image of the cells by irradiating the cells cultured in the many wells W of the well plate WP with light.
- the microscope apparatus 20 can acquire images such as a transmission DIC image of a cell, a phase difference image, a dark field image, and a bright field image. Furthermore, by irradiating the cell with excitation light that excites the fluorescent substance, the microscope apparatus 20 captures fluorescence emitted from the biological substance as an image of the cell. Further, the microscope apparatus 20 captures light emission or phosphorescence from a luminescent substance in the cell as an image of the cell.
- cells are dyed while they are alive, and time-lapse imaging is performed to acquire a cell change image after cell stimulation.
- a cell image is acquired by expressing a fluorescent fusion protein or staining a cell with a chemical reagent or the like while it is alive.
- the cells are fixed and stained to obtain a cell image.
- the fixed cells stop metabolizing. Therefore, in order to observe changes with time in fixed cells after stimulating the cells, it is necessary to prepare a plurality of cell culture containers seeded with the cells. For example, there may be a case where it is desired to observe the change of the cell after the first time and the change of the cell after the second time different from the first time by applying stimulation to the cells. In this case, after stimulating the cells and passing the first time, the cells are fixed and stained to obtain a cell image.
- a cell culture container different from the cells used for the observation at the first time is prepared, and after stimulating the cells for a second time, the cells are fixed and stained to obtain a cell image.
- the time-dependent change in a cell can be estimated by observing the change of the cell in 1st time, and the change of the cell in 2nd time.
- the number of cells used for observing the intracellular change between the first time and the second time is not limited to one. Therefore, images of a plurality of cells are acquired at the first time and the second time, respectively. For example, if the number of cells for observing changes in the cells is 1000, 2000 cells are photographed at the first time and the second time. Therefore, in order to acquire details of changes in cells with respect to a stimulus, a plurality of cell images are required at each timing of imaging from the stimulus, and a large amount of cell images are acquired.
- the microscope apparatus 20 captures, as the above-described cell image, luminescence or fluorescence from the coloring material itself taken into the biological material, or luminescence or fluorescence generated when the substance having the chromophore is bound to the biological material. May be.
- the microscope observation system 1 can acquire a fluorescence image, a confocal image, a super-resolution image, and a two-photon excitation fluorescence microscope image.
- the method of acquiring the cell image is not limited to the optical microscope.
- an electron microscope may be used as a method for acquiring a cell image.
- an image obtained by a different method may be used to acquire the correlation. That is, the type of cell image may be selected as appropriate.
- the cells in this embodiment are, for example, primary culture cells, established culture cells, tissue section cells, and the like.
- the sample to be observed may be observed using an aggregate of cells, a tissue sample, an organ, an individual (animal, etc.), and an image containing the cells may be acquired.
- the state of the cell is not particularly limited, and may be a living state or a fixed state.
- the state of the cell may be “in-vitro”. Of course, you may combine the information of the living state and the fixed information.
- the cells may be treated with chemiluminescent or fluorescent protein (for example, chemiluminescent or fluorescent protein expressed from an introduced gene (such as green fluorescent protein (GFP))) and observed.
- chemiluminescent or fluorescent protein for example, chemiluminescent or fluorescent protein expressed from an introduced gene (such as green fluorescent protein (GFP)
- the cells may be observed using immunostaining or staining with chemical reagents. You may observe combining them. For example, it is possible to select a photoprotein to be used according to the type for discriminating the intracellular nuclear structure (eg, Golgi apparatus).
- pretreatment for analyzing correlation acquisition such as a means for observing these cells and a method for staining cells, may be appropriately selected according to the purpose.
- cell dynamic information is obtained by the most suitable method for obtaining the dynamic behavior of the cell
- information on intracellular signal transmission is obtained by the optimum method for obtaining the intracellular signal transmission. It doesn't matter.
- These pre-processing selected according to the purpose may be different.
- the well plate WP has one or a plurality of wells W.
- the well plate WP has 8 ⁇ 12 96 wells W as shown in FIG.
- the number of well plates WP is not limited to this, and 6 ⁇ 8 48 wells W, 6 ⁇ 4 24 wells W, 3 ⁇ 4 12 wells W, 2 ⁇ 3 6 wells W , 384 wells W of 12 ⁇ 32 or 1536 wells W of 32 ⁇ 48 may be provided.
- Cells are cultured in wells W under certain experimental conditions. Specific experimental conditions include temperature, humidity, culture period, elapsed time since stimulation was applied, type and intensity of stimulation applied, concentration, amount, presence or absence of stimulation, induction of biological characteristics, etc. Including.
- the stimulus is, for example, a physical stimulus such as electricity, sound wave, magnetism, or light, or a chemical stimulus caused by administration of a substance or a drug.
- Biological characteristics include the stage of cell differentiation, morphology, number of cells, behavior of molecules in cells, morphology and behavior of organelles, behavior of each form, structure of nucleus, behavior of DNA molecules, etc. It is a characteristic to show.
- FIG. 2 is a block diagram illustrating an example of a functional configuration of each unit included in the calculation apparatus 10 of the present embodiment.
- the calculation device 10 is a computer device that analyzes an image acquired by the microscope device 20.
- the calculation device 10 analyzes the correlation between the elements using the feature amounts of the elements constituting the cell.
- elements constituting the cell are also referred to as components.
- the calculation device 10 includes a calculation unit 100, a storage unit 200, and a result output unit 300.
- the image processed by the calculation device 10 is not limited to an image captured by the microscope device 20, and for example, an image stored in advance in the storage unit 200 included in the calculation device 10 or an external storage (not shown). It may be an image stored in advance in the apparatus.
- the calculation unit 100 functions when the processor executes a program stored in the storage unit 200. Also, some or all of the functional units of the arithmetic unit 100 may be configured by hardware such as LSI (Large Scale Integration) or ASIC (Application Specific Integrated Circuit).
- the calculation unit 100 includes a cell image acquisition unit 101, a feature amount extraction unit 102, a distribution calculation unit 103, a feature amount arrangement unit 104, and a correlation calculation unit 105.
- the cell image acquisition unit 101 acquires the cell image captured by the imaging unit 22. That is, the cell image acquisition unit 101 acquires a cell image in which cells are captured. The cell image acquisition unit 101 supplies the acquired cell image to the feature amount extraction unit 102.
- the cell image acquired by the cell image acquisition unit 101 includes a plurality of images in which the cell culture state is captured in time series, and a plurality of images in which cells are cultured under various experimental conditions.
- the feature amount extraction unit 102 extracts a plurality of types of feature amounts of the cell image supplied by the cell image acquisition unit 101. That is, the feature amount extraction unit 102 extracts a plurality of feature amounts for each element of the cell based on the image obtained by capturing the cell.
- This feature amount includes the brightness of the cell image, the cell area in the image, the dispersion and shape of the brightness of the cell image in the image, and the like. That is, the feature amount includes a feature derived from information acquired from a captured cell image.
- the feature amount extraction unit 102 uses a plurality of acquired images and extracts information about luminance in the image as a feature amount.
- the feature amount extraction unit 102 extracts, as a feature amount, that a position showing a luminance higher than a predetermined value in the image changes with respect to the stimulus. In addition, for example, the feature amount extraction unit 102 extracts, as a feature amount, that a value indicating luminance in an image changes in response to a stimulus. In addition, for example, when the change in the luminance value with respect to the stimulus is observed in the image and the change in the luminance value is different from the change in the other luminance values, the feature amount extraction unit 102 determines the different luminance values. May be extracted as a feature amount.
- the change in luminance value with respect to the stimulus is a time change after the stimulus is applied to the cell. That is, the feature amount extraction unit 102 may extract a change in luminance value in time series or a change in position indicating luminance as a feature amount. As described above, the change in the feature amount is a time change with respect to the stimulus applied to the cell.
- the feature amount extraction unit 102 may acquire information other than luminance from the image and use it for feature amount extraction.
- the feature quantity extraction unit 102 may acquire color information together with brightness from an image, and extract only a change in brightness indicating a specific color as a feature quantity.
- the feature amount extraction unit 102 is not limited to the luminance in the image, and may extract a cell shape from the image and extract a change in the shape of the cell as a feature amount.
- the luminance value indicating a predetermined component increases with time, even if the luminance value does not change by applying a stimulus, the state where the stimulus is applied and the state where the stimulus is not applied Changes in luminance values are different. Therefore, it is good also as a feature-value changing that the change of the value of a brightness differs in the state which added the stimulus, and the state which does not add a stimulus.
- the feature quantity extraction unit 102 observes each of a plurality of images taken at a predetermined time interval, thereby energetic cells that are less affected by cell contraction, heartbeat cycle, cell movement speed, and stimulation. Changes in the degree of aggregation of nuclear chromatin, which is an indicator of healthy and dying cells, the rate of change in the number and length of neuronal processes, the number of synapses in nerve cells, neural activity such as changes in membrane potential, intracellular Extract dynamic features such as changes in calcium concentration, secondary messenger activity, organelle morphology, intracellular molecular behavior, nuclear morphology, nuclear structure behavior, DNA molecule behavior, etc. Also good. These feature quantity extraction methods use, for example, Fourier transform, wavelet transform, and time differentiation, and use a moving average for noise removal. The feature amount extraction unit 102 supplies the extracted plural types of feature amounts to the distribution calculation unit 103.
- the distribution calculation unit 103 acquires a plurality of types of feature amounts supplied by the feature amount extraction unit 102. That is, the distribution calculation unit 103 calculates the distribution of the feature amounts of the elements constituting the cell from the feature amounts extracted by the feature amount extraction unit 102.
- the feature amount extraction unit 102 extracts a feature amount for each cell, for example. Therefore, the feature amount extracted by the feature amount extraction unit 102 for each cell may be different for each cell. For example, when the feature amount extraction unit 102 extracts a luminance value of a predetermined protein for each cell from a plurality of cells after a predetermined time after the stimulus is applied to the cell, the feature amount extraction unit 102 The brightness of a given protein is extracted from a plurality of different cells.
- the distribution calculation unit 103 calculates the spread of the distribution for each acquired feature amount. For example, the distribution calculation unit 103 calculates the spread of the luminance distribution of the protein after a predetermined time after the stimulation is applied to the cell. The spread of the distribution can vary depending on the time elapsed since the cells were stimulated. Furthermore, the distribution calculation unit 103 calculates the spread of the luminance distribution of the protein at a plurality of times when the predetermined time is changed. In addition, when the feature amount extraction unit 102 extracts feature amounts related to different types of proteins, the distribution calculation unit 103 calculates a feature amount distribution for each type. The distribution calculation unit 103 calculates a value including the spread of the feature amount distribution from the feature amounts extracted by the feature amount extraction unit 102.
- the distribution calculation unit 103 calculates the spread of the feature quantity distribution based on the standard deviation of the feature quantity distribution as an example.
- the distribution calculation unit 103 may calculate the spread of the feature amount distribution based on a quantile such as a quartile of the feature amount distribution.
- the distribution calculation unit 103 determines, for each of a plurality of types of feature quantities, a predetermined time that has elapsed since the stimulation was applied to the cells based on the distribution of feature quantities for each predetermined time that has elapsed since the stimulation was applied to the cells.
- a representative value of each distribution is calculated.
- the representative value of the distribution is, for example, an average value of the distribution.
- the median value or the mode value may be used as the representative value of the distribution.
- the distribution calculated by the distribution calculation unit 103 may be a range of feature value values extracted by the feature value extraction unit 102.
- the distribution calculation unit 103 calculates the feature amount distribution by using the number of cells of each value of the feature amount together with the range of the feature amount value. . Accordingly, the distribution calculation unit 103 calculates the distribution of the feature amount using the number of cells for each value of the feature amount. The distribution calculation unit 103 calculates a histogram using the feature value and the number of cells. In this case, the distribution calculation unit 103 may calculate the feature value range using only the maximum value and the minimum value of the feature value, for example, as the feature value distribution.
- the range of the maximum value and the minimum value of the brightness value is characterized. It does not matter as distribution of quantity.
- a distribution using the number of proteins indicating the luminance value together with the luminance value of the protein may be used.
- the distribution calculation unit 103 supplies the feature distribution unit 104 with the calculated distribution spread and the representative value of the distribution every predetermined time after the stimulation is applied to the cells.
- the information indicating the spread of the feature amount distribution is also referred to as distribution information.
- the distribution calculation unit 103 extracts a plurality of values as feature amounts from the feature amount distribution.
- the distribution calculation unit 103 may use an average value, a median value, or a mode value as a representative value of the distribution according to the type of experiment.
- the distribution calculation unit 103 may use a standard deviation or a quantile as the spread of the distribution according to the type of experiment.
- the feature quantity array unit 104 acquires a representative value and a spread of the feature quantity distribution supplied by the distribution calculation unit 103.
- the distribution calculation unit 103 supplies representative values and spreads of a plurality of types of feature quantity distributions to the feature quantity array unit 104
- the distribution calculation unit 103 sets the representative value of the feature quantity distribution for each type of feature quantity.
- the spread is supplied to the feature quantity array unit 104.
- the feature amount arrangement unit 104 represents the representative of the distribution. Get value and spread.
- the feature quantity arraying unit 104 arranges the feature quantities at predetermined time intervals after the stimulation is applied to the cells, based on the acquired distribution spread and the representative value of the distribution.
- the value of the feature amount arranged every predetermined time after the stimulation is applied to the cell includes a plurality of values in addition to the representative value of the feature amount distribution.
- the value indicating the distribution of the feature amount includes a value in which the spread of the distribution of the feature amount is added in addition to the representative value.
- the spread is a value generated from the feature amount distribution, and is generated by the feature amount array unit 104. Details of how the feature quantity array unit 104 generates the spread of the distribution will be described later.
- the feature quantity arraying unit 104 supplies information on the feature quantities arranged in time series to the correlation calculation unit 105 based on the spread of the distribution of the feature quantities calculated by the distribution calculation unit 103.
- the correlation calculation unit 105 acquires the feature quantity array supplied by the feature quantity array unit 104. In the present embodiment, it is possible to acquire a temporal change in the feature amount with respect to the stimulus by arranging the feature amount at every predetermined time after the stimulus is applied to the cell.
- the feature quantity array is a feature quantity arranged based on a predetermined order. In the present embodiment, the feature quantity array is a feature quantity arranged in order of a predetermined time after the stimulation is applied to the cell. Therefore, in the present embodiment, the correlation calculation unit 105 acquires a temporal change in the feature amount for each component.
- the correlation calculation unit 105 calculates the correlation between the constituent elements from the correlation between the feature quantities of the constituent elements of the cell using the acquired feature quantity array.
- the correlation calculation unit 105 calculates the correlation between the constituent elements based on the temporal change of the feature amount with respect to the stimulus and the spread of the feature amount distribution calculated by the distribution calculation unit 103. That is, the correlation calculation unit 105 calculates the correlation between elements from the change in the feature value and the distribution of the feature value. Here, the correlation calculation unit 105 calculates the correlation between the elements based on the extracted plurality of feature amounts.
- the correlation calculation unit 105 calculates a network indicating each correlation based on the calculated correlation. That is, the correlation calculation unit 105 generates a correlation diagram (in this example, a network) related to the correlation between the elements calculated by the correlation calculation unit 105. A method by which the correlation calculation unit 105 calculates the network will be described later.
- the correlation calculation unit 105 supplies the calculated correlation and the calculated network to the result output unit 300.
- the result output unit 300 outputs the correlation and network supplied by the correlation calculation unit 105 to the display unit 30. That is, the result output unit 300 displays the correlation diagram (in this example, a network) on the display device.
- the result output unit 300 may output the correlation and network supplied by the correlation calculation unit 105 to an output device other than the display unit 30, a storage device, or the like.
- the display unit 30 displays the correlation output from the result output unit 300 and the network.
- FIG. 3 is a flowchart illustrating an example of a calculation procedure of the calculation unit 100 according to the present embodiment. Note that the calculation procedure shown here is an example, and the calculation procedure may be omitted or added.
- the cell image acquisition unit 101 acquires a cell image (step S10).
- This cell image includes images of a plurality of types of biological tissues having different sizes such as genes, proteins, and organelles. That is, an image obtained by imaging cells includes a plurality of cells.
- the cell image includes cell shape information. Since the cell image includes phenotype, metabolite, protein, and gene information, the calculation device 10 can analyze the correlation between them.
- the feature amount extraction unit 102 extracts the cell image included in the cell image acquired in step S10 for each cell (step S20).
- the feature amount extraction unit 102 extracts a cell image by performing image processing on the cell image.
- the feature amount extraction unit 102 extracts a cell image by performing image contour extraction, pattern matching, and the like.
- the feature quantity extraction unit 102 determines the cell type for the cell image extracted in step S20 (step S30). Further, the feature amount extraction unit 102 determines the constituent elements of the cells included in the cell image extracted in step S20 based on the determination result in step S30 (step S40).
- the cell components include cell organelles (organelles) such as cell nucleus, lysosome, Golgi apparatus, mitochondria, and proteins constituting organelles.
- the cell type is determined, but the cell type may not be determined. In this case, if the type of cell to be introduced is determined in advance, the information may be used. Of course, the type of cell need not be specified.
- the feature quantity extraction unit 102 extracts the feature quantity of the image for each cell component determined in step S40 (step S50).
- the feature amount includes a luminance value of the pixel, an area of a certain area in the image, a variance value of the luminance of the pixel, and the like. Further, there are a plurality of types of feature amounts according to the constituent elements of the cells.
- the feature amount of the image of the cell nucleus includes the total luminance value in the nucleus, the area of the nucleus, and the like.
- the feature amount of the cytoplasm image includes the total luminance value in the cytoplasm, the area of the cytoplasm, and the like.
- the feature amount of the image of the whole cell includes the total luminance value in the cell, the area of the cell, and the like.
- the feature amount of the mitochondrial image includes the fragmentation rate.
- the feature amount extraction unit 102 may extract the feature amount by normalizing it to a value between 0 (zero) and 1, for example.
- the feature amount extraction unit 102 may extract feature amounts based on information on experimental conditions for cells associated with cell images. For example, in the case of a cell image captured when an antibody is reacted with a cell, the feature amount extraction unit 102 may extract a characteristic amount that is unique when the antibody is reacted. In addition, in the case of a cell image captured when cells are stained or when fluorescent proteins are added to cells, the feature quantity extraction unit 102 is used when the cells are stained or when fluorescent proteins are added to the cells A characteristic amount peculiar to each may be extracted.
- the storage unit 200 may include an experimental condition storage unit 202.
- the experimental condition storage unit 202 stores information on experimental conditions for cells associated with cell images for each cell image.
- the experimental condition information includes, for example, cell conditions, image acquisition conditions, cell processing conditions, and the like.
- Cell conditions include, for example, the type of cell, whether it is a control cell or an inhibitory cell.
- the conditions at the time of image acquisition include, for example, imaging conditions such as the type of microscope apparatus used and the magnification at the time of image acquisition.
- the treatment conditions for the cells include, for example, staining conditions when the cells are stained, types of stimulation applied to the cells, and the like. If the experiment condition storage unit 202 does not store the experiment conditions, the experiment conditions may be input using an input unit (not shown).
- An input unit (not shown) includes, for example, a touch panel, a mouse, or a keyboard.
- information may be obtained from another device.
- the microscope apparatus 20 may obtain information on experimental conditions.
- information on experimental conditions may be obtained from a public database or literature.
- the captured image may be compared with an image included in a public database or literature, the type of cell included in the captured image may be specified, and the information may be used.
- FIG. 4 is a diagram illustrating an example of a feature amount extraction result by the feature amount extraction unit 102 of the present embodiment.
- the feature amount extraction unit 102 extracts a plurality of feature amounts for the protein P1 for each cell and for each time.
- the feature amount extraction unit 102 extracts feature amounts for N cells from the cell C1 to the cell CN.
- the feature amount extraction unit 102 extracts feature amounts for seven times from time 1 to time 7.
- the feature quantity extraction unit 102 extracts K types of feature quantities from the feature quantity k1 to the feature quantity kK.
- the feature amount extraction unit 102 extracts feature amounts in the directions of the three axes.
- an axis in the cell direction is described as axis Nc
- an axis in the time direction as axis N
- an axis in the feature quantity direction as axis d1.
- a plurality of cells are included in an image obtained by capturing cells, and the feature amount extraction unit 102 extracts a plurality of feature amounts for each element from the plurality of cells.
- the K types of feature quantities from the feature quantity k1 to the feature quantity kK are combinations of feature quantities for the protein P1.
- the types and combinations of feature quantities may differ.
- the feature amount extraction unit 102 supplies the feature amount extracted in step S50 to the distribution calculation unit 103.
- the correlation calculation unit 105 calculates the correlation between the constituent elements based on the temporal change of the feature amount with respect to the stimulus and the spread of the feature amount distribution calculated by the distribution calculation unit 103. (Step S60). The details of the process in which the correlation calculation unit 105 calculates the correlation will be described with reference to FIG. The correlation calculation unit 105 calculates a network representing the correlation using the correlation calculated in step S60.
- FIG. 5 is a flowchart showing an example of detailed processing in step S60 shown in FIG.
- the distribution calculation unit 103 calculates, for each of a plurality of types of feature amounts supplied by the feature amount extraction unit 102, feature amount distribution information for each predetermined time that has elapsed since the stimulation was applied to the cells. (Step S601). Here, when a plurality of types of feature amounts are extracted by the feature amount extraction unit 102, the distribution calculation unit 103 calculates the spread of the distribution and the representative value of the distribution for each feature amount.
- the feature quantity arraying unit 104 arranges the feature quantities in a time series of a predetermined time after the stimulation is applied to the cells (step S602). Furthermore, in the present embodiment, the feature amounts are arranged every predetermined time after the stimulation is applied to the cells. In the present embodiment, since the distribution information of the feature amount is extracted from the distribution calculation unit 103, when the feature amount is arranged every predetermined time after the stimulation is applied to the cell, the distribution spread and The feature amount having the representative value of the distribution is arranged. Here, when the distribution calculation unit 103 calculates the spread of the distribution and the representative value of the distribution for each feature amount, the feature amount arrangement unit 104 applies the stimulus to the cell for each feature amount. The feature amounts are arranged in a time series of a predetermined time.
- the correlation calculation unit 105 calculates the correlation between the feature values using the distribution spread for each predetermined time and the representative value of the distribution supplied from the feature value array unit 104 after the stimulus is applied to the cells. (Step S603).
- the correlation between the constituent elements is calculated from the correlation between the feature quantities.
- the correlation calculation unit 105 calculates the correlation between the feature amounts by using the spread of the feature amount at each elapsed time from the stimulus and the representative value of the distribution for each feature amount. Therefore, the correlation calculation unit 105 uses the feature quantity distribution of the first constituent element constituting the cell and the feature quantity distribution of the second constituent element constituting the cell to use the feature of the first constituent element.
- the correlation calculation unit 105 When the correlation between the quantity and the feature quantity of the second component is calculated and it is determined that there is a correlation, it is determined that there is a correlation between the first component and the second component.
- the correlation calculation unit 105 generates a matrix X based on a plurality of types of feature amounts extracted by the feature amount array unit 104, and calculates a partial correlation coefficient of the matrix X by the Graphic Lasso method. Note that the method by which the correlation calculation unit 105 calculates the partial correlation coefficient is not limited to the Graphic Lasso method, and any calculation method may be used.
- FIG. 6 is a diagram illustrating an example of a change in feature amount over time of a stimulated cell.
- the feature amount A, the feature amount B, and the feature amount C at four times of time t1, time t2, time t3, and time t4 are illustrated.
- the representative values of the distributions are shown with error bars indicating the spread of each distribution.
- the size of the error bar indicating the spread of the distribution is, for example, twice the standard deviation of the distribution, and the middle point of the error bar coincides with the representative value.
- the spread of each distribution of the feature quantity A, the feature quantity B, and the feature quantity C increases in the order of the feature quantity A, the feature quantity B, and the feature quantity C.
- a small distribution spread that is, a small error bar indicates a high reliability of the feature amount. Therefore, in the feature amount A, the feature amount B, and the feature amount C, the reliability decreases in the order of the feature amount A, the feature amount B, and the feature amount C.
- the size of the error bar can vary from time to time. That is, the distribution of the feature amount can vary depending on the time elapsed since the cell was stimulated.
- FIG. 7 is a diagram illustrating an example of a correlation between feature quantities having different distributions according to the present embodiment.
- the correlation between the feature quantity 1 and the feature quantity 2 the correlation between the feature quantity 3 and the feature quantity 4, and the feature quantity 5 and the feature quantity 6 are illustrated. Correlation with is shown.
- the distribution of the feature quantity 1 and the distribution of the feature quantity 2 do not spread.
- the distribution of the feature quantity 3 and the distribution of the feature quantity 4 have the same size spread.
- the distribution of the feature quantity 5 and the distribution of the feature quantity 6 have the same size spread.
- the spread of the distribution of each feature value is indicated by using a circle having a radius as a standard deviation.
- the distribution of the feature quantity 3 and the distribution of the feature quantity 4 is smaller than the distribution of the feature quantity 5 and the distribution of the feature quantity 6.
- the correlation calculation unit 105 calculates the correlation between elements higher as the spread of the feature amount distribution after the predetermined time with respect to the stimulus is smaller. That is, the correlation calculation unit 105 calculates a higher correlation strength value between elements as the spread of the feature amount distribution after a predetermined time with respect to the stimulus is smaller. Thus, the correlation calculation unit 105 calculates the strength of correlation between elements based on the distribution.
- FIG. 8 is a diagram illustrating an example of a change in feature amount over time of a cell to which the distribution spread of this embodiment is added.
- the representative value of the distribution of the feature amount 7 at the four times of time t1, time t2, time t3, and time t4 is shown together with an error bar indicating the spread of the distribution of each time.
- the feature quantity arraying unit 104 extracts a feature quantity spread other than the representative value from the feature quantity distribution.
- the feature value is arranged in the error bar range indicating the feature value distribution in addition to the feature value corresponding to the black circle indicating the representative value. Has been.
- one value is extracted from the feature value in the error bar that is larger than the representative value and smaller than the representative value, and one value is extracted from the feature value in the error bar. .
- one value of the feature amount in the error bar that is larger than the representative value is set as the first variance value.
- One value of the feature amount in the error bar that is smaller than the representative value is set as the second variance value.
- the first variance value uses the largest value among the error bars.
- the second variance value is the smallest value among the error bars.
- the first variance value and the second variance value extracted by the feature quantity array unit 104 at the four times of time t1, time t2, time t3, and time t4 are the distribution of the feature quantity 7. Displayed with representative values. Accordingly, in FIG. 8B, two values other than the representative value can be extracted from the feature value distribution at each time based on the feature value distribution information.
- FIG. 9 is a diagram illustrating an example of a correlation between feature quantities in which a first variance value and a second variance value are added in addition to the representative values of the present embodiment.
- the representative value of the distribution of the feature quantity 8, the first variance value of the feature quantity 8, the second variance value of the feature quantity 8, the representative value of the distribution of the feature quantity 9, the first variance value of the feature quantity 9, and the feature quantity 9 A correlation with the second variance value is shown as a correlation between the feature quantity 8 and the feature quantity 9.
- the correlation between the feature quantity 8 and the feature quantity 9 extracted from four different times with respect to the stimulus is shown.
- the intersection of the representative value of the feature amount 8 and the representative value of the feature amount 9 that has passed a predetermined time with respect to the stimulus is represented by a black circle.
- FIG. 9A in the Cartesian coordinate system in which the value of the feature value 9 is the Y axis and the value of the feature value 8 is the X axis, the representative value of the feature value 8 and the feature value 9 that have passed for a predetermined time with respect to the stimulus.
- a pair with a representative value is represented as a black circle.
- the feature amount 8 the first variance value and the second variance value are calculated for each representative value as shown in FIG. 8B.
- the difference between the representative value of the feature value 8 and the first variance value is equal to the difference between the representative value of the feature value 8 and the second variance value.
- the difference between the representative value of the feature value 9 and the first variance value is equal to the difference between the representative value of the feature value 9 and the second variance value. Further, the difference between the representative value of the feature value 8 and the first variance value is equal to the difference between the representative value of the feature value 9 and the first variance value. Therefore, in the present embodiment, the correlation between the feature quantity 8 and the feature quantity 9 is an area surrounded by the first variance value and the second variance value of the feature quantity 8 and the feature quantity 9, respectively. In A), the area is indicated by a chain line around the black circle.
- the correlation between the feature quantity 8 and the feature quantity 9 is an example of a correlation when there is a positive correlation between the feature quantity 8 and the feature quantity 9.
- the correlation calculation unit 105 calculates the representative value of the feature quantity 8, the first variance value, the second variance value, the representative value of the feature quantity 9, and the first variance. The value and the second variance value are used.
- the first variance value and the second variance value are used in addition to the representative points of the feature quantities, but the present invention is not limited to this.
- the first variance value of one feature quantity, the second variance value of the other feature quantity, the second variance value of one feature, and the first variance value of the other feature quantity And may be used to calculate the correlation.
- the intersection of the second variance value of the feature value 8 and the first variance value of the feature value 9, the first variance value of the feature value 8, and A positive correlation may be calculated using the intersection of the second variance values of the feature amount 9.
- FIG. 10 is a diagram illustrating an example of a positive correlation in which the first variance value and the second variance are added in addition to the representative value of the present embodiment.
- a correlation with the second variance value is shown as a correlation between the feature quantity 10 and the feature quantity 11.
- the distribution of the feature quantity 10 and the distribution of the feature quantity 11 have different sizes of variance at each time.
- the correlation between the feature quantity 10 and the feature quantity 11 is an example of a correlation when there is a positive correlation between the feature quantity 10 and the feature quantity 11.
- FIG. 11 is a diagram illustrating an example of a negative correlation in which the first variance value and the second variance are added in addition to the representative value of the present embodiment.
- a correlation with the second variance value is shown as a correlation between the feature quantity 12 and the feature quantity 13.
- the distribution of the feature quantity 12 and the distribution of the feature quantity 13 have distribution spreads of different sizes at each time.
- the correlation between the feature quantity 12 and the feature quantity 13 is an example of a correlation when there is a negative correlation between the feature quantity 12 and the feature quantity 13.
- the feature amounts 1 to 12 are feature amounts of elements constituting the cell.
- the elements constituting the cell include the first element (for example, the element corresponding to the feature amount 1) and the second element (for example, the element corresponding to the feature amount 2).
- a correlation between the first element and the second element is calculated using the distribution of the feature quantity of the first element and the distribution of the feature quantity of the second element.
- the distribution calculation unit 103 extracts a plurality of values as the feature quantity of the first element from the distribution of the feature quantity of the first element, and extracts a plurality of values as the feature quantity of the second element from the distribution of the feature quantity of the second element. To do.
- the calculation device 10 calculates the correlation between the first element and the second element using the extracted feature quantities of the first elements and the extracted feature quantities of the second elements.
- the feature amount of the first element includes a predetermined value, a value larger than the predetermined value, and a value smaller than the predetermined value
- the feature amount of the second element is larger than the predetermined value and the predetermined value. Value and a value smaller than a predetermined value.
- the calculation device 10 includes a value of a feature amount that satisfies a condition that is greater than a predetermined value for the feature amount of the first element and that is less than the predetermined value for the feature amount of the second element; A positive correlation between the first element and the second element is obtained by using a feature quantity value that satisfies a condition that is smaller than the predetermined value in the feature quantity of the first element and that is greater than the predetermined value in the feature quantity of the second element. calculate.
- the calculation device 10 includes a value of a feature amount that satisfies a condition that is greater than a predetermined value for the feature amount of the first element and that is greater than the predetermined value for the feature amount of the second element.
- the negative correlation between the first element and the second element is calculated using the feature quantity value that satisfies a condition that is smaller than the predetermined value for the feature quantity of one element and that is smaller than the predetermined value for the feature quantity of the second element.
- the predetermined value is a median value or an average value of the distribution of the feature amount.
- FIG. 12 is a diagram illustrating an example of a feature amount matrix for each cell to which the first variance value and the second variance value of the present embodiment are added.
- the matrix X is a matrix having an axis N in the row direction and an axis d in the column direction.
- the (3 * i + 1) -th column of the matrix X (where i 0 to d ⁇ 1, and 3 * i means that 3 is multiplied by i, and so on).
- each element of the matrix X is indicated by the average value and standard deviation of the cell population, but statistics such as the median value and the mode value may be used instead of the average value.
- a quantile such as a quartile may be used instead of the standard deviation.
- a matrix X of feature values for each cell may be used.
- FIG. 13 is a diagram illustrating an example of the correlation and partial correlation coefficient calculated by the correlation calculation unit 105.
- each of the feature quantity A, feature quantity B, feature quantity C, feature quantity D, feature quantity E, and feature quantity F at eight times indicating the time elapsed since the stimulation was applied to the cell. Representative values of the distribution are shown with error bars indicating the extent of each distribution.
- the size of the error bar of the feature amount A, the feature amount B, the feature amount C, and the feature amount E is 0.1
- the size of the error bar of the feature amount D is 0.2
- the feature amount The size of the error bar for F is 0.3.
- the feature amount A and the feature amount B are large at time 1.
- the feature quantity C and the feature quantity D are large at time 3.
- the feature quantity E and feature quantity F are large at time 6.
- the value of the partial correlation coefficient between the feature amount A and the feature amount B is 0.167.
- the value of the partial correlation coefficient between the feature quantity C and the feature quantity D is 0.135.
- the value of the partial correlation coefficient between the feature quantity E and the feature quantity F is 0.098.
- the value of the partial correlation coefficient between other feature amounts is 0 (zero).
- the partial correlation coefficient between the feature quantity A and the feature quantity B is calculated as the correlation between the feature quantity A and the feature quantity B having both error bar sizes of 0.1.
- the partial correlation coefficient between the feature quantity C and the feature quantity D is a correlation between the feature quantity C having an error bar size of 0.1 and the feature quantity D having an error bar size of 0.2. It is calculated.
- the partial correlation coefficient between the feature quantity C and the feature quantity D is compared with the value of the partial correlation coefficient between the feature quantity E and the feature quantity F, the partial correlation coefficient between the feature quantity C and the feature quantity D Is larger than the value of the partial correlation coefficient between the feature quantity E and the feature quantity F.
- the partial correlation coefficient between the feature quantity E and the feature quantity F is calculated as the correlation between the feature quantity E having an error bar size of 0.1 and the feature quantity F having an error bar size of 0.3. It is a thing. That is, the smaller the error bar of the feature amount distribution, the higher the correlation value. Thus, the correlation calculation unit 105 calculates a higher correlation value as the spread of the feature amount distribution is smaller.
- FIG. 14 is a diagram illustrating an example of the partial correlation coefficient calculated by the correlation calculation unit 105.
- the network illustrated in FIG. 14 includes node A, node B, node C, node D, node E, and node F, and edges that connect the respective nodes.
- the node indicates a feature amount used for edge calculation.
- the edge indicates a correlation between nodes connected by the edge, that is, a correlation between feature amounts.
- the magnitude of the partial correlation coefficient between nodes is shown by adding shades to edges. The greater the partial correlation coefficient between nodes, the darker the edges.
- an edge when the correlation calculation unit 105 calculates the correlation using only the representative value of the feature amount distribution is referred to as an original edge.
- the edge when the correlation calculation unit 105 calculates the correlation using the information on the feature quantity distribution together with the representative value of the feature quantity distribution is referred to as an edge with reliability.
- the reliability means high reliability of the feature amount.
- the edge with reliability includes information related to the distribution of the feature amount of the element. In other words, the network shown in FIG. 14, that is, the correlation diagram includes information regarding the distribution of the feature amounts of the elements.
- a deviation indicating an original edge corresponding to an edge AB connecting the node A and the node B, an edge CD connecting the node C and the node D, and an edge EF connecting the node E and the node F is shown.
- the value of the correlation coefficient is 1.00.
- the value of the edge with reliability indicating edge AB is 1.00.
- the value of the edge with reliability indicating the edge CD is 0.81.
- the value of the edge with reliability indicating the edge EF is 0.59.
- the value of the partial correlation coefficient between other nodes is 0, and there is no edge. Therefore, the shading is lighter in the order of edge AB, edge CD, and edge EF.
- the original edge and the edge with reliability are standardized so that the maximum value is 1.00.
- the value of the partial correlation coefficient indicating the edge AB, the value of the partial correlation coefficient indicating the edge CD, and the value of the partial correlation coefficient indicating the edge EF are the partial correlation coefficients shown in FIG. Are the values obtained by dividing and normalizing by the partial correlation coefficient value 0.167 between the feature value A and the feature value B, which is the maximum value of.
- FIG. 15 is a diagram illustrating another example of the partial correlation coefficient calculated by the correlation calculation unit 105.
- FIG. 15 partial correlation coefficients among the feature amount A, the feature amount B, the feature amount C, the feature amount D, the feature amount E, and the feature amount F are shown.
- the thickness of each edge is displayed thicker as the value of the partial correlation coefficient is larger.
- an edge connecting nodes corresponding to these feature quantities is not displayed.
- the calculation device 10 includes the feature amount extraction unit 102, the distribution calculation unit 103, and the correlation calculation unit 105, and uses the feature amounts of the elements constituting the cell, and uses the feature amounts of the elements. Analyze the correlation.
- the feature amount extraction unit 102 extracts a plurality of feature amounts for each element of the cell based on the image obtained by capturing the cell.
- the distribution calculation unit 103 calculates the distribution of element feature amounts from the feature amounts extracted by the feature amount extraction unit 102.
- the feature quantity array unit 104 can calculate information on the feature quantity distribution by arranging the feature quantities of the constituent elements together with the information on the feature quantity distribution calculated by the distribution calculation unit 103. .
- the correlation calculation unit 105 changes the feature amount of the constituent elements constituting the cells with respect to the stimulus after the predetermined time with respect to the stimulus and the constituent elements of the constituent elements with respect to the stimulus after the predetermined time with respect to the stimulus calculated by the distribution calculation unit 103. Based on the distribution of the feature amount, the correlation of the elements constituting the cell is calculated. With this configuration, the correlation between the elements can be calculated in consideration of the reliability of the feature amount data.
- the correlation calculation unit 105 calculates the strength of the correlation between elements based on the distribution of the feature values of the elements constituting the cell. With this configuration, the correlation between feature quantities can be calculated based on the reliability of the feature quantity data.
- the correlation calculation unit 105 calculates a higher correlation strength value between the elements as the distribution spread is smaller. With this configuration, the higher the reliability of the feature amount data, the higher the correlation between the feature amounts.
- the spread of the element feature amount distribution is calculated based on the standard deviation of the distribution.
- the spread of the distribution of the feature amount of the element is calculated based on the quantile of this distribution.
- the distribution calculation unit 103 extracts a plurality of values as feature amounts from the distribution of the feature amounts of the elements, and the correlation calculation unit 105 is based on the plurality of feature amounts extracted by the distribution calculation unit 103. To calculate the correlation between the elements. With this configuration, the reliability of the correlation between elements can be improved as compared with the case where one value is extracted as a feature quantity from the distribution of the feature quantity of the element and the correlation between the elements is calculated.
- the elements constituting the cell include the first element and the second element
- the correlation calculation unit 105 calculates the distribution of the feature quantity of the first element and the feature quantity of the second element.
- the correlation between the first element and the second element is calculated using the distribution.
- the distribution calculation unit 103 extracts a plurality of values as the feature values of the first element from the distribution of the feature values of the first element, and the distribution of the feature values of the second element A plurality of values are extracted as feature quantities of the second element, and the feature quantities of the plurality of first elements extracted and the feature quantities of the plurality of second elements extracted are used to calculate the first element and the second element. Calculate the correlation. With this configuration, the correlation between elements can be easily calculated based on a small amount of data reflecting the distribution of data for each feature amount.
- the representative value of the feature quantity distribution is the median value and / or the average value of the distribution.
- the change in the feature value is a change in time with respect to the stimulus applied to the cell.
- the spread of the distribution may vary depending on the time that has elapsed since the cells were stimulated.
- the calculation device 10 includes an image acquisition unit (cell image acquisition unit 101) that acquires a cell image in which cells are imaged.
- image acquisition unit 101 acquires a cell image in which cells are imaged.
- the calculation device 10 includes a correlation calculation unit 105 that generates a network that is a correlation diagram regarding the correlation between elements constituting the cells calculated by the correlation calculation unit 105, that is, an image generation unit.
- a correlation calculation unit 105 that generates a network that is a correlation diagram regarding the correlation between elements constituting the cells calculated by the correlation calculation unit 105, that is, an image generation unit.
- the correlation diagram includes information on the distribution of the feature amount of the element.
- a plurality of cells are included in an image obtained by capturing cells, and a plurality of feature amounts are calculated for each element from the plurality of cells.
- a correlation output unit 105 that is, a result output unit 300 that displays on the display device a network that is a correlation diagram based on the correlation of feature amounts generated by the image generation unit, that is, a display control unit is provided.
- FIG. 16 is a flowchart illustrating another example of the calculation procedure of the calculation unit 100 according to the present embodiment.
- the processing from step S10 to step S603 and step S70 is the same as the processing from step S10 to step S70 shown in FIG. 3 and from step S601 to step S603 shown in FIG. The description is omitted.
- the correlation calculation unit 105 determines whether or not the calculated correlation value is appropriate (step S604).
- the feature amount extracted from the abnormal cell image spreads the feature amount distribution. May become larger than usual.
- the correlation value between the components calculated by the correlation calculation unit 105 becomes smaller than an appropriate value.
- the storage unit 200 may include a feature amount storage unit 201.
- the feature quantity storage unit 201 stores the lowest value predicted as a correlation value for each correlation between feature quantities.
- the minimum value predicted as the correlation value may be determined based on past experiment records and the experience of the user of the calculation device 10.
- the lowest value predicted as the correlation value may be determined based on the correlation value calculated by the calculation device 10.
- step S604 determines that all the calculated correlation values are larger than the minimum predicted value as the correlation value stored in the feature amount storage unit 201 (step S604: YES).
- the calculation is performed.
- the correlation and network are supplied to the result output unit 300.
- the correlation calculation unit 105 determines that there is a calculated correlation value that is smaller than the minimum value of predicted values stored as the correlation value stored in the feature amount storage unit 201 (step S604: NO)
- an abnormal signal that is a signal indicating that the calculated correlation value is abnormal is supplied to the result output unit 300.
- the result output unit 300 when acquiring the abnormal signal supplied by the correlation calculation unit 105, causes the display unit 30 to output a message indicating that there is an invalid correlation (step S605).
- the user of the calculation device 10 selects a cell image to be excluded from the cell images acquired by the cell image acquisition unit 101 (step S606). ).
- a user of the calculation device 10 inputs an operation signal indicating a cell image to be excluded from the operation unit (not shown) to the calculation device 10.
- the feature quantity extraction unit 102 excludes the cell image and extracts the cell image included in the remaining cell image for each cell based on the operation signal indicating the cell image to be excluded input from the operation unit (not shown). (Step S20).
- the feature quantity extraction unit 102 may specify a cell image from which a feature quantity whose feature quantity is larger than a predetermined value is specified, and supply a list indicating the specified cell image to the result output unit 300.
- the result output unit 300 may cause the display unit 30 to output a list of cell images from which feature amounts are extracted that are greater than a predetermined value.
- the predetermined value is a value such as twice or three times the spread of the feature amount distribution calculated by the distribution calculation unit 103, for example.
- the distribution calculation unit 103 calculates the spread of the distribution of the feature value, and adds the calculated spread to the representative value of the distribution or subtracts the distribution spread data from the representative value of the distribution.
- the distribution calculation unit 103 may generate the spread by adding a value obtained by multiplying the spread by a coefficient having a predetermined value to the representative value of the distribution or subtracting it from the representative value of the distribution.
- the calculation device 10 adjusts the influence of the representative value on the correlation value and the influence of the standard deviation of the feature amount distribution on the correlation value. Can do.
- the distribution of the feature amount has a distribution spread because a plurality of cells are included in the cell image, and the calculation device 10 takes in the influence of the spread of the distribution to calculate the feature amount.
- the type of spread of the distribution that the calculation apparatus 10 incorporates when calculating the correlation between the feature amounts is not limited to this.
- the calculation device 10 may calculate a correlation between feature amounts using an error due to an experimental condition instead of the standard deviation of the distribution described in the present embodiment.
- the error due to experimental conditions is, for example, an error due to cell staining.
- the feature amount correlation is calculated using the temporal change of the feature amount with respect to the stimulus applied to the cell, but the change used for the feature amount correlation calculation is not limited to time.
- the correlation between the feature amounts may be calculated using a change in the feature amount with respect to the amount of the drug solution related to the stimulus applied to the cell.
- the correlation between the feature amounts of the elements constituting the cell is used as an example using an image obtained by imaging the cell, but the present invention is not limited to this.
- the feature quantity related to the cell may be extracted using a technique other than an image.
- a feature amount extracted by Western blotting may be used.
- the analysis apparatus calculates a correlation between elements using a variable of the element.
- the analysis device may include a variable extraction unit, a distribution calculation unit, and a correlation calculation unit.
- the variable extraction unit extracts a plurality of variables for each element.
- the distribution calculation unit calculates the distribution of the variable of the element from the variable extracted by the variable extraction unit.
- the correlation calculation unit calculates the correlation between the elements from the change in the variable and the distribution of the variable.
- the correlation between the feature quantities of the cells is calculated, but the target of the correlation calculation is not limited to the feature quantities of the cells.
- the correlation between elements is calculated using element variables.
- the variable distribution of the element is calculated by extracting a plurality of variables for each element.
- the correlation between elements is calculated from the change of the element and the distribution of variables.
- the elements are temperature and snow cover
- the element variables are the average temperature and the number of snow days
- the correlation between elements is the correlation between temperature and snow cover.
- a program for executing each process of the calculation device 10 in the embodiment of the present invention is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into a computer system and executed.
- the various processes described above may be performed.
- the “computer system” referred to here may include an OS and hardware such as peripheral devices. Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used.
- the “computer-readable recording medium” means a flexible disk, a magneto-optical disk, a ROM, a writable nonvolatile memory such as a flash memory, a portable medium such as a CD-ROM, a hard disk built in a computer system, etc. This is a storage device.
- the “computer-readable recording medium” refers to a volatile memory (for example, DRAM (Dynamic) in a computer system serving as a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. Random Access Memory)), etc. that hold a program for a certain period of time.
- the program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium.
- the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line.
- the program may be for realizing a part of the functions described above. Furthermore, what can implement
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Microbiology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Sustainable Development (AREA)
- Medicinal Chemistry (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
本発明は、算出装置、解析プログラム及び解析方法に関するものである。 The present invention relates to a calculation device, an analysis program, and an analysis method.
生物科学や医学等において、生物の健康や疾患等の状態は、例えば、細胞や細胞内の小器官等の状態と関連性があることが知られている。そのため、これら関連性を解析することは、生物科学や医学等の諸処の課題を解決する一つの手段になる。また、細胞間、或いは細胞内で伝達される情報の伝達経路を解析することは、例えば、工業用途でのバイオセンサーや、疾病予防を目的とした製薬等の研究に役立てることができる。細胞や組織片等に関する種々の解析技術として、例えば、画像処理を用いた技術が知られている(例えば、特許文献1参照)。従来から、より詳細に上述した関連性を解析することが望まれていた。 In biological sciences and medicine, it is known that the state of living organisms, diseases, and the like are related to, for example, the state of cells and organelles in cells. Therefore, analyzing these relationships is one means for solving problems in various fields such as biological science and medicine. In addition, analysis of the transmission pathway of information transmitted between cells or within cells can be used for, for example, biosensors in industrial applications and pharmaceutical research for the purpose of disease prevention. As various analysis techniques related to cells, tissue pieces, and the like, for example, techniques using image processing are known (see, for example, Patent Document 1). Conventionally, it has been desired to analyze the relationship described above in more detail.
本発明の第1の態様によると、細胞を構成する要素の特徴量を用い、前記要素間の相関を算出する算出装置であって、前記細胞が撮像された画像に基づいて、前記細胞の要素毎に特徴量を複数抽出する特徴量抽出部と、前記特徴量抽出部により抽出される特徴量から、前記要素の特徴量の分布を算出する分布算出部と、前記特徴量の変化と前記特徴量の分布とから、前記要素間の相関を算出する相関算出部とを備える、算出装置である。 According to the first aspect of the present invention, there is provided a calculation device that calculates the correlation between the elements using the feature amounts of the elements constituting the cells, the element of the cells based on an image obtained by imaging the cells. A feature amount extraction unit that extracts a plurality of feature amounts each time, a distribution calculation unit that calculates a feature amount distribution of the element from the feature amounts extracted by the feature amount extraction unit, the change in the feature amount, and the feature And a correlation calculation unit that calculates a correlation between the elements from the distribution of the amount.
本発明の第2の態様によると、コンピュータに、細胞を構成する要素の特徴量を用い、前記要素間の相関を算出させる解析プログラムであって、前記細胞が撮像された画像に基づいて、前記細胞の要素毎に特徴量を複数抽出する特徴量抽出ステップと、前記特徴量抽出ステップにより抽出される特徴量から、前記要素の特徴量の分布を演算する分布演算ステップと、前記特徴量の変化と前記特徴量の分布とから、前記要素間の相関を算出する相関算出ステップとを実行させるための、解析プログラムである。 According to a second aspect of the present invention, there is provided an analysis program for causing a computer to calculate a correlation between the elements using feature amounts of the elements constituting the cells, and based on an image obtained by imaging the cells, A feature quantity extracting step for extracting a plurality of feature quantities for each element of the cell; a distribution computing step for computing a distribution of the feature quantities of the elements from the feature quantities extracted by the feature quantity extracting step; and a change in the feature quantities And a correlation calculation step of calculating a correlation between the elements from the distribution of the feature amount.
本発明の第3の態様によると、細胞を構成する要素の特徴量を用い、前記要素間の相関を算出する解析方法であって、前記細胞が撮像された画像に基づいて、前記細胞の要素毎に特徴量を複数抽出する特徴量抽出手段と、前記特徴量抽出手段により抽出される特徴量から、前記要素の特徴量の分布を演算する分布演算手段と、前記特徴量の変化と前記特徴量の分布とから、前記要素間の相関を算出する相関算出手段とを実行させるための、解析方法である。 According to a third aspect of the present invention, there is provided an analysis method for calculating a correlation between the elements using feature amounts of elements constituting the cells, wherein the elements of the cells are based on an image obtained by imaging the cells. A feature quantity extracting means for extracting a plurality of feature quantities for each; a distribution computing means for computing a feature quantity distribution of the element from the feature quantities extracted by the feature quantity extracting means; the change in the feature quantity and the feature This is an analysis method for executing correlation calculation means for calculating a correlation between the elements based on the distribution of quantities.
本発明の第4の態様によると、要素の変量を用い、前記要素間の相関を算出する算出装置であって、前記要素毎に変量を複数抽出する変量抽出部と、前記変量抽出部により抽出される変量から、前記要素の変量の分布を演算する分布演算部と、前記変量の変化と前記変量の分布とから、前記要素間の相関を算出する相関算出部とを備える、算出装置である。 According to a fourth aspect of the present invention, there is provided a calculation device for calculating a correlation between the elements using the variable of the element, wherein the variable extraction unit extracts a plurality of variables for each element, and is extracted by the variable extraction unit A calculation unit comprising: a distribution calculation unit that calculates a distribution of the variable of the element from the variable to be calculated; and a correlation calculation unit that calculates a correlation between the elements from the change of the variable and the distribution of the variable. .
[実施形態]
以下、図面を参照して、本発明の実施の形態について説明する。図1は、本発明の実施形態による顕微鏡観察システム1の構成の一例を示す図である。
[Embodiment]
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram illustrating an example of a configuration of a
顕微鏡観察システム1は、細胞等を撮像することにより取得される画像に対して、画像処理を行う。以下の説明において、細胞等を撮像することにより取得される画像を、単に細胞画像とも記載する。
顕微鏡観察システム1は、算出装置10と、顕微鏡装置20と、表示部30とを備える。
The
The
顕微鏡装置20は、生物顕微鏡であり、電動ステージ21と、撮像部22とを備える。電動ステージ21は、所定の方向(例えば、水平方向の二次元平面内のある方向あるいは、垂直方向、軸回転方向)に、撮像対象物の位置を任意に稼働可能である。
撮像部22は、CCD(Charge-Coupled Device)やCMOS(Complementary MOS)などの撮像素子を備えており、電動ステージ21上の撮像対象物を撮像する。なお、顕微鏡装置20に電動ステージ21を備えていなくてもよく、ステージが所定方向に稼働しないステージとしても構わない。
The
The
より具体的には、顕微鏡装置20は、例えば、微分干渉顕微鏡(Differential Interference Contrast microscope;DIC)や位相差顕微鏡、蛍光顕微鏡、共焦点顕微鏡、超解像顕微鏡、二光子励起蛍光顕微鏡、ライトシート顕微鏡、ライトフィールド顕微鏡、ホログラフィック顕微鏡、光干渉断層撮像法(Optical Coherence Tomography;OCT)等の機能を有する。
顕微鏡装置20は、電動ステージ21上に載置された培養容器を撮像する。この培養容器とは、例えば、ウェルプレートWPやスライドチャンバ―などがある。顕微鏡装置20は、ウェルプレートWPが有する多数のウェルWの中に培養された細胞に光を照射することで、細胞を透過した透過光を細胞の画像として撮像する。これによって、顕微鏡装置20は、細胞の透過DIC画像や、位相差画像、暗視野画像、明視野画像等の画像を取得することができる。
さらに、細胞に蛍光物質を励起する励起光を照射することで、顕微鏡装置20は、生体物質から発光される蛍光を細胞の画像として撮像する。さらに、顕微鏡装置20は、細胞中の発光物質からの発光あるいは燐光を細胞の画像として撮像する。
More specifically, the
The
Furthermore, by irradiating the cell with excitation light that excites the fluorescent substance, the
本実施形態では、細胞を生きたまま染色し、タイムラプス撮影することで、細胞刺激後の細胞の変化画像を取得する。本実施形態においては、蛍光融合タンパク質を発現させるか、もしくは細胞を生きたままで化学試薬などにより染色するなどし、細胞画像を取得する。更に別の本実施形態では、細胞を固定して染色し、細胞画像を取得する。固定された細胞は代謝が止まる。したがって、細胞に刺激を加えた後、細胞内の経時変化を固定細胞で観察する場合には、細胞を播種した複数の細胞培養容器を用意する必要がある。例えば、細胞に刺激を加え、第1時間後の細胞の変化と、第1時間とは異なる第2時間後の細胞の変化を観察したい場合がある。この場合には、細胞に刺激を加えて第1時間を経過した後に、細胞を固定して染色し、細胞画像を取得する。 In the present embodiment, cells are dyed while they are alive, and time-lapse imaging is performed to acquire a cell change image after cell stimulation. In this embodiment, a cell image is acquired by expressing a fluorescent fusion protein or staining a cell with a chemical reagent or the like while it is alive. In yet another embodiment, the cells are fixed and stained to obtain a cell image. The fixed cells stop metabolizing. Therefore, in order to observe changes with time in fixed cells after stimulating the cells, it is necessary to prepare a plurality of cell culture containers seeded with the cells. For example, there may be a case where it is desired to observe the change of the cell after the first time and the change of the cell after the second time different from the first time by applying stimulation to the cells. In this case, after stimulating the cells and passing the first time, the cells are fixed and stained to obtain a cell image.
一方、第1時間での観察に用いた細胞とは異なる細胞培養容器を用意し、細胞に刺激を加え第2時間を経過した後に、細胞を固定し、染色して、細胞画像を取得する。これにより、第1時間の細胞の変化と、第2時間での細胞の変化とを観察することで、細胞内の経時変化を推定することができる。また、第1時間と第2時間との細胞内の変化を観察することに用いる細胞の数は1つに限られない。したがって、第1時間と第2時間とで、それぞれ複数の細胞の画像を取得することになる。例えば、細胞内の変化を観察する細胞の数が、1000個だった場合には、第1時間と第2時間とで2000個の細胞を撮影することになる。したがって、刺激に対する細胞内の変化の詳細を取得しようとする場合には、刺激からの撮像するタイミング毎に、複数の細胞画像が必要となり、大量の細胞画像が取得される。 On the other hand, a cell culture container different from the cells used for the observation at the first time is prepared, and after stimulating the cells for a second time, the cells are fixed and stained to obtain a cell image. Thereby, the time-dependent change in a cell can be estimated by observing the change of the cell in 1st time, and the change of the cell in 2nd time. Further, the number of cells used for observing the intracellular change between the first time and the second time is not limited to one. Therefore, images of a plurality of cells are acquired at the first time and the second time, respectively. For example, if the number of cells for observing changes in the cells is 1000, 2000 cells are photographed at the first time and the second time. Therefore, in order to acquire details of changes in cells with respect to a stimulus, a plurality of cell images are required at each timing of imaging from the stimulus, and a large amount of cell images are acquired.
また、顕微鏡装置20は、生体物質内に取り込まれた発色物質そのものから発光或いは蛍光や、発色団を持つ物質が生体物質に結合することによって生じる発光或いは蛍光を、上述した細胞の画像として撮像してもよい。これにより、顕微鏡観察システム1は、蛍光画像、共焦点画像、超解像画像、二光子励起蛍光顕微鏡画像を取得することができる。
なお、細胞の画像を取得する方法は、光学顕微鏡に限られない。例えば、細胞の画像を取得する方法は、電子顕微鏡でも構わない。また、細胞の画像は、異なる方式により得られた画像を用い、相関を取得しても構わない。すなわち、細胞の画像の種類は適宜選択しても構わない。
Further, the
Note that the method of acquiring the cell image is not limited to the optical microscope. For example, an electron microscope may be used as a method for acquiring a cell image. Further, as the cell image, an image obtained by a different method may be used to acquire the correlation. That is, the type of cell image may be selected as appropriate.
本実施形態における細胞は、例えば、初代培養細胞や、株化培養細胞、組織切片の細胞等である。細胞を観察するために、観察される試料は、細胞の集合体や組織試料、臓器、個体(動物など)を用い観察し、細胞を含む画像を取得しても構わない。なお、細胞の状態は、特に制限されず、生きている状態であっても、或いは固定されている状態であってもよい。細胞の状態は、“in-vitro”であっても構わない。勿論、生きている状態の情報と、固定されている情報とを組み合わせても構わない。 The cells in this embodiment are, for example, primary culture cells, established culture cells, tissue section cells, and the like. In order to observe cells, the sample to be observed may be observed using an aggregate of cells, a tissue sample, an organ, an individual (animal, etc.), and an image containing the cells may be acquired. The state of the cell is not particularly limited, and may be a living state or a fixed state. The state of the cell may be “in-vitro”. Of course, you may combine the information of the living state and the fixed information.
また、細胞を、化学発光或いは蛍光タンパク質(例えば、導入された遺伝子(緑色蛍光タンパク質(GFP)など)から発現された化学発光或いは蛍光タンパク質)で処理し、観察しても構わない。あるいは、細胞を、免疫染色や化学試薬による染色を用いて観察しても構わない。それらを組み合わせて観察しても構わない。例えば、細胞内の核内構造(例えば、ゴルジ体など)を判別する種類に応じて、用いる発光タンパク質を選択することも可能である。
また、これらの細胞を観察する手段、細胞を染色する方法などの相関取得を解析するための前処理は、目的に応じて適宜選択しても構わない。例えば、細胞の動的挙動を得る場合に最適な手法により細胞の動的な情報を取得して、細胞内のシグナル伝達を得る場合には最適な手法により細胞内のシグナル伝達に関する情報を取得しても構わない。これら、目的に応じて選択される前処理が異なっていても構わない。
Alternatively, the cells may be treated with chemiluminescent or fluorescent protein (for example, chemiluminescent or fluorescent protein expressed from an introduced gene (such as green fluorescent protein (GFP))) and observed. Alternatively, the cells may be observed using immunostaining or staining with chemical reagents. You may observe combining them. For example, it is possible to select a photoprotein to be used according to the type for discriminating the intracellular nuclear structure (eg, Golgi apparatus).
In addition, pretreatment for analyzing correlation acquisition, such as a means for observing these cells and a method for staining cells, may be appropriately selected according to the purpose. For example, cell dynamic information is obtained by the most suitable method for obtaining the dynamic behavior of the cell, and information on intracellular signal transmission is obtained by the optimum method for obtaining the intracellular signal transmission. It doesn't matter. These pre-processing selected according to the purpose may be different.
ウェルプレートWPは、1個ないし複数のウェルWを有する。この一例では、ウェルプレートWPは、図1に示すように8×12の96個のウェルWを有する。ウェルプレートWPの数はこれに限られず、6×8の48個のウェルW、6×4の24個のウェルW、3×4の12個のウェルW、2×3の6個のウェルW、12×32の384個のウェルW、あるいは32×48の1536個のウェルWを有していても構わない。細胞は、ウェルWの中において、特定の実験条件のもと培養される。特定の実験条件とは、温度、湿度、培養期間、刺激が付与されてからの経過時間、付与される刺激の種類や強さ、濃度、量、刺激の有無、生物学的特徴の誘導等を含む。刺激とは、例えば、電気、音波、磁気、光等の物理的刺激や、物質や薬物の投与による化学的刺激等である。また、生物学的特徴とは、細胞の分化の段階や、形態、細胞数、細胞内の分子の挙動、オルガネラの形態や挙動、各形体、核内構造体の挙動、DNA分子の挙動等を示す特徴である。 The well plate WP has one or a plurality of wells W. In this example, the well plate WP has 8 × 12 96 wells W as shown in FIG. The number of well plates WP is not limited to this, and 6 × 8 48 wells W, 6 × 4 24 wells W, 3 × 4 12 wells W, 2 × 3 6 wells W , 384 wells W of 12 × 32 or 1536 wells W of 32 × 48 may be provided. Cells are cultured in wells W under certain experimental conditions. Specific experimental conditions include temperature, humidity, culture period, elapsed time since stimulation was applied, type and intensity of stimulation applied, concentration, amount, presence or absence of stimulation, induction of biological characteristics, etc. Including. The stimulus is, for example, a physical stimulus such as electricity, sound wave, magnetism, or light, or a chemical stimulus caused by administration of a substance or a drug. Biological characteristics include the stage of cell differentiation, morphology, number of cells, behavior of molecules in cells, morphology and behavior of organelles, behavior of each form, structure of nucleus, behavior of DNA molecules, etc. It is a characteristic to show.
図2は、本実施形態の算出装置10が備える各部の機能構成の一例を示すブロック図である。算出装置10は、顕微鏡装置20によって取得された画像を解析するコンピュータ装置である。算出装置10は、細胞を構成する要素の特徴量を用い、要素間の相関を解析する。以下、細胞を構成する要素を構成要素とも呼ぶ。
算出装置10は、演算部100と、記憶部200と、結果出力部300とを備える。
FIG. 2 is a block diagram illustrating an example of a functional configuration of each unit included in the
The
なお、算出装置10によって画像処理される画像は、顕微鏡装置20によって撮像される画像だけに限らず、例えば、算出装置10が備える記憶部200に予め記憶されている画像や、不図示の外部記憶装置に予め記憶されている画像であってもよい。
Note that the image processed by the
演算部100は、プロセッサが記憶部200に格納されたプログラムを実行することにより機能する。また、これらの演算部100の各機能部のうちの一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)等のハードウェアによって構成されていてもよい。演算部100は、細胞画像取得部101と、特徴量抽出部102と、分布算出部103と、特徴量配列部104と、相関算出部105とを備える。
The calculation unit 100 functions when the processor executes a program stored in the
細胞画像取得部101は、撮像部22が撮像した細胞画像を取得する。つまり、細胞画像取得部101は、細胞が撮像された細胞画像を取得する。細胞画像取得部101は、取得した細胞画像を特徴量抽出部102に供給する。ここで、細胞画像取得部101が取得する細胞画像には、細胞の培養状態が時系列に撮像された複数の画像や、様々な実験条件において細胞が培養された複数の画像が含まれる。
The cell
特徴量抽出部102は、細胞画像取得部101が供給する細胞画像の複数種類の特徴量を抽出する。つまり、特徴量抽出部102は、細胞が撮像された画像に基づいて、細胞の要素毎に特徴量を複数抽出する。この特徴量には、細胞画像の輝度、画像中の細胞面積、画像中の細胞画像の輝度の分散、形などが含まれる。
すなわち、この特徴量には、撮像される細胞画像から取得される情報から導出される特徴が含まれる。例えば、特徴量抽出部102は、取得される複数の画像を用い、画像における輝度に関する情報を特徴量として抽出する。また、例えば、特徴量抽出部102は、画像において予め定められた値よりも高い輝度を示す位置が、刺激に対して変化することを特徴量として抽出する。また、例えば、特徴量抽出部102は、画像において輝度を示す値が、刺激に対して変化することを特徴量として抽出する。また、例えば、特徴量抽出部102は、画像において刺激に対する輝度の値の変化を観察した場合に、輝度の値の変化が他の輝度の値の変化と異なる場合には、その異なる輝度の値の変化を特徴量として抽出しても構わない。ここで刺激に対する輝度の値の変化とは、刺激を細胞に加えてからの時間変化である。すなわち、特徴量抽出部102は、時系列での輝度の値の変化もしくは、輝度を示す位置の変化を特徴量として抽出しても構わない。このように特徴量の変化は、細胞に加えられた刺激に対する時間変化である。
The feature
That is, the feature amount includes a feature derived from information acquired from a captured cell image. For example, the feature
また、特徴量抽出部102は、画像から輝度以外の情報を取得して、特徴量の抽出に用いても構わない。例えば、特徴量抽出部102は、画像から輝度とともに色情報を取得し、特定の色を示す輝度の変化のみを特徴量として抽出しても構わない。また、特徴量抽出部102は、画像内の輝度に限られず、画像から細胞の形状を抽出し、その細胞の形状の変化を特徴量として抽出しても構わない。
なお、所定の構成要素を示す輝度の値が時間とともに大きくなる場合に、刺激を加えることで、輝度の値が変化しなくなった場合においても、刺激を加えた状態と刺激を加えない状態とでは輝度の値の変化が異なる。そのため、刺激を加えた状態と刺激を加えない状態とでは輝度の値の変化が異なることを、特徴量が変化することとしても良い。
The feature
In addition, when the luminance value indicating a predetermined component increases with time, even if the luminance value does not change by applying a stimulus, the state where the stimulus is applied and the state where the stimulus is not applied Changes in luminance values are different. Therefore, it is good also as a feature-value changing that the change of the value of a brightness differs in the state which added the stimulus, and the state which does not add a stimulus.
また、特徴量抽出部102は、所定の時間間隔で撮像された複数の画像の各々を観察することによって、細胞の収縮、心拍拍動周期、細胞移動速度、刺激の影響が少ない細胞である元気な細胞や死につつある細胞の指標である核内クロマチンの凝集度の変化、神経細胞の突起の数や長さの変化率、神経細胞のシナプスの数、膜電位変化などの神経活動、細胞内カルシウム濃度変化、2次メッセンジャーの活動度、オルガネラの形態変化、細胞内の分子の挙動、核形態、核内構造体の挙動、DNA分子の挙動等の動的な特徴量を抽出するようにしてもよい。これら特徴量抽出方法は、例えばフーリエ変換、ウェーブレット変換、時間微分を用い、ノイズ除去のために移動平均を用いる。
特徴量抽出部102は、抽出した複数種類の特徴量を分布算出部103に供給する。
In addition, the feature
The feature
分布算出部103は、特徴量抽出部102が供給する複数種類の特徴量を取得する。つまり、分布算出部103は、特徴量抽出部102により抽出される特徴量から、細胞を構成する要素の特徴量の分布を算出する。ここで特徴量抽出部102は、例えば、細胞毎に特徴量を抽出する。したがって、特徴量抽出部102が細胞毎に抽出する特徴量は、細胞毎に異なり得る。例えば、特徴量抽出部102が、細胞に刺激が加えられてから経過した所定時間後の複数の細胞から、細胞毎に所定のタンパク質の輝度の値を抽出する場合に、特徴量抽出部102は複数の異なる細胞から所定のタンパク質の輝度を抽出することとなる。このため、細胞毎にタンパク質の輝度の値は異なり得る。このため、特徴量としての輝度の値は分布を持つこととなる。そこで、分布算出部103は、取得した特徴量毎の分布の広がりを算出する。例えば、分布算出部103は、細胞に刺激が加えられてから経過した所定時間後におけるタンパク質の輝度の分布の広がりを算出する。分布の広がりは、細胞が刺激されてから経過した時間に応じて異なり得る。
さらに、分布算出部103は、所定時間を変えた複数の時間でのタンパク質の輝度の分布の広がりを算出する。また、分布算出部103は、特徴量抽出部102が種類の異なるタンパク質に関連する特徴量を抽出する場合には、その種類毎に特徴量の分布を算出する。分布算出部103は、特徴量抽出部102が抽出する特徴量から、特徴量の分布の広がりを含む値を算出する。
The
Furthermore, the
分布算出部103は、特徴量の分布の広がりを、一例として特徴量の分布の標準偏差に基づいて算出する。なお、分布算出部103は、特徴量の分布の広がりを、特徴量の分布の四分位数などの分位数に基づいて算出してもよい。
The
また、分布算出部103は、複数種類の特徴量毎に、細胞に刺激が加えられてから経過した所定時間毎の特徴量の分布に基づいて、細胞に刺激が加えられてから経過した所定時間毎の分布の代表値を算出する。本実施形態においては、分布の代表値とは、例えば分布の平均値である。なお、分布の代表値として中央値や最頻値を用いてもよい。
なお、分布算出部103が算出する分布は、特徴量抽出部102が抽出する特徴量の値の範囲を分布としても構わない。例えば、分布算出部103は、所定の特徴量を複数の細胞から抽出した場合に、特徴量の値の範囲とともに、特徴量のそれぞれの値の細胞の数を用い、特徴量の分布を算出する。したがって、分布算出部103は、特徴量の値毎の細胞の数を用い、特徴量の分布を算出する。分布算出部103は、特徴量の値と細胞の数とを用いた、ヒストグラムを算出する。この場合に、分布算出部103は、特徴量の値の範囲、例えば、特徴量の値の最大値と最小値とのみを用いたものを特徴量の分布として算出しても構わない。例えば、特徴量として所定のタンパク質の輝度である場合には、特徴量抽出部102が抽出するタンパク質の輝度の値が複数ある場合には、輝度の値の最大値と最小値との範囲を特徴量の分布としても構わない。勿論、タンパク質の輝度の値と共に、その輝度の値を示すタンパク質の数を用いた分布でも構わない。
In addition, the
Note that the distribution calculated by the
分布算出部103は、算出した分布の広がり、及び細胞に刺激が加えられてから経過した所定時間毎の分布の代表値を特徴量配列部104へ供給する。以下、特徴量の分布の広がりを示す情報を分布情報とも呼ぶ。このように、分布算出部103は、特徴量の分布から複数の値を特徴量として抽出する。
なお、分布算出部103は、実験の種類に応じて、分布の代表値として平均値や中央値や最頻値を使い分けてもよい。分布算出部103は、実験の種類に応じて、分布の広がりとして標準偏差や分位点を使い分けてもよい。
The
The
特徴量配列部104は、分布算出部103が供給する特徴量の分布の代表値と広がりとを取得する。分布算出部103が複数種類の特徴量の分布の代表値と広がりとを特徴量配列部104に供給する場合に、分布算出部103は、特徴量の種類毎に特徴量の分布の代表値と広がりとを特徴量配列部104に供給する。さらに、分布算出部103が、所定種類の特徴量の刺激に対する細胞に刺激が加えられてから経過した所定時間毎の特徴量の分布情報を供給する場合に、特徴量配列部104は分布の代表値と広がりを取得する。特徴量配列部104は、取得した分布の広がり、及び分布の代表値から、細胞に刺激が加えられてから経過した所定時間毎に特徴量を配列する。ここで、細胞に刺激が加えられてから経過した所定時間毎に配置される特徴量の値には、特徴量の分布の代表値の他に、複数の値を含む。特徴量の分布を示す値には、代表値の他に、特徴量の分布の広がりが追加された値を含む。広がりとは、特徴量の分布から生成される値であり、特徴量配列部104により生成される。特徴量配列部104が分布の広がりを生成する方法の詳細については後述する。このように、特徴量配列部104は、分布算出部103により算出される特徴量の分布の広がりから、時系列に配列した特徴量に関する情報を相関算出部105へ供給する。
The feature
相関算出部105は、特徴量配列部104が供給する特徴量配列を取得する。本実施形態においては、細胞に刺激が加えられてから経過した所定時間毎に、特徴量を並べることで、刺激に対する特徴量の経時変化を取得することが可能となる。特徴量配列とは、所定の順序に基づいて並べられた特徴量のことである。本実施形態では、特徴量配列とは、細胞に刺激が加えられてから経過した所定時間順に並べられた特徴量のことである。したがって、本実施形態では、相関算出部105は、構成要素毎の特徴量の経時変化を取得する。相関算出部105は、取得した特徴量配列を用いて、細胞の構成要素の特徴量同士の相関から、構成要素同士の相関を算出する。相関算出部105は、刺激に対する特徴量の経時変化と、分布算出部103が算出した特徴量の分布の広がりとに基づいて、構成要素の相関を算出する。つまり、相関算出部105は、特徴量の変化と特徴量の分布とから、要素間の相関を算出する。ここで相関算出部105は、抽出した複数の特徴量に基づいて、要素間の相関を算出する。
The
相関算出部105は、算出した相関に基づいて、それぞれの相関を示すネットワークを算出する。つまり、相関算出部105は、相関算出部105が算出する、要素間の相関に関する相関図(この一例において、ネットワーク)を生成する。相関算出部105がネットワークを算出する方法は後述する。
相関算出部105は、算出した相関、及び算出したネットワークを結果出力部300に供給する。
The
The
結果出力部300は、相関算出部105が供給する相関、及びネットワークを表示部30に出力する。つまり、結果出力部300は、相関図(この一例において、ネットワーク)を表示装置に表示させる。なお、結果出力部300は、相関算出部105が供給する相関、及びネットワークを、表示部30以外の出力装置や、記憶装置などに出力してもよい。
表示部30は、結果出力部300が出力する相関、及びネットワークを表示する。
The
The
上述した演算部100の具体的な演算手順について、図3を参照して説明する。 A specific calculation procedure of the calculation unit 100 described above will be described with reference to FIG.
図3は、本実施形態の演算部100の演算手順の一例を示す流れ図である。なお、ここに示す演算手順は、一例であって、演算手順の省略や演算手順の追加が行われてもよい。
細胞画像取得部101は、細胞画像を取得する(ステップS10)。この細胞画像には、遺伝子、タンパク質、オルガネラなど、大きさが相違する複数の種類の生体組織の画像が含まれている。つまり、細胞が撮像された画像には複数の細胞が含まれている。また、細胞画像には、細胞の形状情報が含まれている。細胞画像には、表現型、代謝物、タンパク質、遺伝子の情報が含まれているため、算出装置10は、それらの間の相関を解析することができる。
FIG. 3 is a flowchart illustrating an example of a calculation procedure of the calculation unit 100 according to the present embodiment. Note that the calculation procedure shown here is an example, and the calculation procedure may be omitted or added.
The cell
特徴量抽出部102は、ステップS10において取得された細胞画像に含まれる細胞の画像を、細胞毎に抽出する(ステップS20)。特徴量抽出部102は、細胞画像に対して画像処理を施すことにより、細胞の画像を抽出する。この一例では、特徴量抽出部102は、画像の輪郭抽出やパターンマッチングなどを施すことにより、細胞の画像を抽出する。
The feature
次に、特徴量抽出部102は、ステップS20において抽出された細胞の画像について、細胞の種類を判定する(ステップS30)。さらに、特徴量抽出部102は、ステップS30における判定結果に基づいて、ステップS20において抽出された細胞の画像に含まれる細胞の構成要素を判定する(ステップS40)。ここで、細胞の構成要素には、細胞核、リソソーム、ゴルジ体、ミトコンドリアなどの細胞小器官(オルガネラ)や、オルガネラを構成するタンパク質などが含まれる。なお、ステップS30では細胞の種類を判定しているが、細胞の種類を判定しなくても構わない。この場合には、予め導入する細胞の種類が判定している場合には、その情報を使用しても構わない。勿論、細胞の種類を特定しなくても構わない。
Next, the feature
次に、特徴量抽出部102は、ステップS40において判定された細胞の構成要素ごとに、画像の特徴量を抽出する(ステップS50)。この特徴量には、画素の輝度値、画像内のある領域の面積、画素の輝度の分散値などが含まれる。また、特徴量には、細胞の構成要素に応じた複数の種類がある。一例として、細胞核の画像の特徴量には、核内総輝度値や、核の面積などが含まれる。細胞質の画像の特徴量には、細胞質内総輝度値や、細胞質の面積などが含まれる。また、細胞全体の画像の特徴量には、細胞内総輝度値や、細胞の面積などが含まれる。また、ミトコンドリアの画像の特徴量には、断片化率が含まれる。なお、特徴量抽出部102は、特徴量を、例えば0(ゼロ)から1までの間の値に正規化して抽出してもよい。
Next, the feature
また、特徴量抽出部102は、細胞画像に対応付けられている細胞に対する実験の条件の情報に基づいて、特徴量を抽出してもよい。例えば、細胞について抗体を反応させた場合において撮像された細胞画像の場合には、特徴量抽出部102は、抗体を反応させた場合に特有の特徴量を抽出してもよい。また、細胞を染色した場合、又は細胞に蛍光タンパクを付与した場合において撮像された細胞画像の場合には、特徴量抽出部102は、細胞を染色した場合、又は細胞に蛍光タンパクを付与した場合に特有の特徴量を抽出してもよい。
これらの場合、記憶部200は、実験条件記憶部202を備えていてもよい。この実験条件記憶部202には、細胞画像に対応付けられている細胞に対する実験の条件の情報を、細胞画像毎に記憶される。実験の条件の情報には、例えば、細胞の条件、画像を取得時の条件、細胞に対して処理の条件などを含む。細胞の条件とは、例えば、細胞の種類、コントロール細胞あるは阻害細胞のどちらかであるかを含む。また、画像を取得時の条件には、例えば、用いた顕微鏡装置の種類、画像取得時の倍率等の撮像条件を含む。また、細胞に対して処理の条件には、例えば、細胞を染色した場合の染色条件、細胞に対して加えられる刺激の種類などを含む。
また、実験条件記憶部202が実験条件を記憶していない場合には、不図示の入力部を用いて、実験条件を入力しても構わない。不図示の入力部は、例えば、タッチパネル、マウス、又はキーボードなどを備えている。また、算出装置10に実験条件が記憶していない場合には、他の装置から情報を入手しても構わない。例えば、顕微鏡装置20が実験条件の情報を入手しても構わない。また、例えば、公共のデータベースや文献から実験条件の情報を入手しても構わない。この場合に、撮像された画像と、公共のデータベースや文献に含まれる画像とを比較し、撮像された画像に含まれる細胞の種類を特定し、その情報を用いても構わない。
In addition, the feature
In these cases, the
If the experiment
ここで特徴量抽出部102が抽出する、あるタンパク質の特徴量の抽出結果について、図4を参照して説明する。
図4は、本実施形態の特徴量抽出部102による特徴量の抽出結果の一例を示す図である。特徴量抽出部102は、タンパク質P1について、細胞ごと、かつ時刻ごとに、複数の特徴量を抽出する。この一例において、特徴量抽出部102は、細胞C1から細胞CNまでのN個の細胞について、特徴量を抽出する。また、この一例において、特徴量抽出部102は、時刻1から時刻7までの7つの時刻について、特徴量を抽出する。また、この一例において、特徴量抽出部102は、特徴量k1から特徴量kKまでの、K種類の特徴量を抽出する。つまり、この一例において、特徴量抽出部102は、三軸の方向に、特徴量を抽出する。ここで、細胞方向の軸を軸Ncと、時間方向の軸を軸Nと、特徴量方向の軸を軸d1と、それぞれ記載する。このように、細胞が撮像された画像には複数の細胞が含まれ、特徴量抽出部102は、複数の細胞から要素毎に特徴量を複数抽出する。
Here, a feature amount extraction result of a certain protein extracted by the feature
FIG. 4 is a diagram illustrating an example of a feature amount extraction result by the feature
なお、特徴量k1から特徴量kKまでのK種類の特徴量とは、タンパク質P1についての特徴量の組み合わせである。タンパク質P1以外のタンパク質、又は、タンパク質P1以外の細胞内の構成要素については、特徴量の種類や組み合わせが相違する場合がある。 Note that the K types of feature quantities from the feature quantity k1 to the feature quantity kK are combinations of feature quantities for the protein P1. For proteins other than protein P1 or in-cell components other than protein P1, the types and combinations of feature quantities may differ.
特徴量抽出部102は、ステップS50において抽出した特徴量を、分布算出部103に供給する。
The feature
相関算出部105は、刺激に対する特徴量の経時変化と、分布算出部103が算出した特徴量の分布の広がりとに基づいて、構成要素の相関を算出する。(ステップS60)。相関算出部105が相関を算出する工程の詳細については図5を参照して説明する。
相関算出部105は、ステップS60において算出された相関を用いて、相関を表すネットワークを算出する。
The
The
図5は、図3に示すステップS60の詳細な処理の一例を示す流れ図である。 FIG. 5 is a flowchart showing an example of detailed processing in step S60 shown in FIG.
分布算出部103は、特徴量抽出部102が供給する複数種類の特徴量毎に、細胞に刺激が加えられてから経過した所定時間毎の特徴量の分布情報を算出する。(ステップS601)。ここで、複数種類の特徴量が特徴量抽出部102により抽出された場合には、分布算出部103は、特徴量毎に、分布の広がり、及び分布の代表値を算出する。
The
特徴量配列部104は、細胞に刺激が加えられてから経過した所定時間の時系列に特徴量を配列する(ステップS602)。さらに、本実施形態においては、細胞に刺激が加えられてから経過した所定時間毎に、特徴量を配列する。本実施形態では、分布算出部103から、特徴量の分布情報を抽出しているので、特徴量を細胞に刺激が加えられてから経過した所定時間毎に配列する場合には、分布の広がりと分布の代表値を持った特徴量を配列することとなる。ここで、分布算出部103が、特徴量毎に、分布の広がり、及び分布の代表値を算出した場合には、特徴量配列部104は、特徴量毎に、細胞に刺激が加えられてから経過した所定時間の時系列に特徴量を配列する。
The feature
相関算出部105は、特徴量配列部104から供給される、細胞に刺激が加えられてから経過した所定時間毎の分布の広がり、及び分布の代表値を用いて、特徴量同士の相関を算出する(ステップS603)。ここで特徴量抽出部102により抽出される特徴量には対応する構成要素が特定されているので、特徴量同士の相関から、構成要素同士の相関が算出される。相関算出部105は、特徴量のそれぞれに、刺激からの経時時刻毎の特徴量の広がり、及び分布の代表値を用いて、特徴量同士の相関を算出する。したがって、相関算出部105は、細胞を構成する第1の構成要素の特徴量の分布と、細胞を構成する第2の構成要素の特徴量の分布とを用いて、第1の構成要素の特徴量と第2の構成要素の特徴量との相関を算出し、相関があると判定すると、第1の構成要素と第2の構成要素とには相関があると判定する。
相関算出部105は、特徴量配列部104が抽出した複数種類の特徴量毎に基づいて行列Xを生成し、Graphical Lasso法により行列Xの偏相関係数を算出する。なお、相関算出部105が偏相関係数を算出する方法はGraphical Lasso法に限られず、どの様な算出方法を用いてもよい。
The
The
図6は、刺激された細胞の時間経過による特徴量の変化の一例を示す図である。図6の(A)、(B)、(C)の各図では、一例として時刻t1、時刻t2、時刻t3、及び時刻t4の4つの時刻における特徴量A、特徴量B、及び特徴量Cの分布の代表値が、各分布の広がりを示すエラーバーとともに示されている。ここで分布の広がりを示すエラーバーの大きさは、一例として分布の標準偏差の2倍であり、エラーバーの中点は代表値と一致している。
特徴量A、特徴量B、及び特徴量Cの各分布の広がりは、特徴量A、特徴量B、特徴量Cの順に大きくなっている。分布の広がりの小ささ、つまりエラーバーの小ささは、特徴量の信頼性の高さを示す。したがって、特徴量A、特徴量B、及び特徴量Cでは、特徴量A、特徴量B、特徴量Cの順に信頼性が低くなっている。エラーバーの大きさは、時刻毎に異なり得る。つまり、特徴量の分布広がりは、細胞が刺激されてから経過した時間に応じて異なり得る。
FIG. 6 is a diagram illustrating an example of a change in feature amount over time of a stimulated cell. In each of FIGS. 6A, 6B, and 6C, as an example, the feature amount A, the feature amount B, and the feature amount C at four times of time t1, time t2, time t3, and time t4 are illustrated. The representative values of the distributions are shown with error bars indicating the spread of each distribution. Here, the size of the error bar indicating the spread of the distribution is, for example, twice the standard deviation of the distribution, and the middle point of the error bar coincides with the representative value.
The spread of each distribution of the feature quantity A, the feature quantity B, and the feature quantity C increases in the order of the feature quantity A, the feature quantity B, and the feature quantity C. A small distribution spread, that is, a small error bar indicates a high reliability of the feature amount. Therefore, in the feature amount A, the feature amount B, and the feature amount C, the reliability decreases in the order of the feature amount A, the feature amount B, and the feature amount C. The size of the error bar can vary from time to time. That is, the distribution of the feature amount can vary depending on the time elapsed since the cell was stimulated.
図7は、本実施形態の分布の異なる特徴量同士の相関関係の一例を示す図である。(A)、(B)、(C)の各図では、一例として特徴量1と特徴量2との相関関係、特徴量3と特徴量4との相関関係、及び特徴量5と特徴量6との相関関係が示されている。特徴量1の分布と特徴量2の分布は広がりをもたない。特徴量3の分布と特徴量4の分布とは互いに同じ大きさの広がりをもつ。特徴量5の分布と特徴量6の分布とは互いに同じ大きさの広がりをもつ。(B)、(C)の各図では、各特徴量の分布の広がりは、標準偏差を半径とする円を用いて示されている。特徴量3の分布と特徴量4の分布の広がりは、特徴量5の分布と特徴量6の分布の広がりよりも小さい。
FIG. 7 is a diagram illustrating an example of a correlation between feature quantities having different distributions according to the present embodiment. In each of the diagrams (A), (B), and (C), as an example, the correlation between the
相関算出部105は、刺激に対する所定時間後の特徴量の分布の広がりが小さいほど、要素間の相関を高く算出する。つまり、相関算出部105は、刺激に対する所定時間後の特徴量の分布の広がりが小さいほど要素間の相関の強さの値を高く算出する。このように、相関算出部105は、要素間の相関の強さを分布に基づいて算出する。
The
図8は、本実施形態の分布の広がりが追加された細胞の時間経過による特徴量の変化の一例を示す図である。図8(A)では、一例として時刻t1、時刻t2、時刻t3、及び時刻t4の4つの時刻における特徴量7の分布の代表値が、各時刻の分布の広がりを示すエラーバーとともに示されている。
特徴量配列部104は、特徴量の分布から、代表値以外に特徴量の広がりを抽出する。例えば、図8(B)の時刻t1においては、特徴量は代表値を示す黒丸に相当する特徴量の値以外に、特徴量の分布を示すエラーバーの範囲内にも特徴量の値が配列されている。本実施形態においては時刻t1より、代表値以外に、代表値よりも大きくエラーバー内の特徴量から1つの値、また、代表値よりも小さくエラーバー内の特徴量から1つの値を抽出する。本実施形態では、代表値よりも大きくエラーバー内の特徴量の一つの値を第1分散値とする。また、代表値よりも小さくエラーバー内の特徴量の一つの値を第2分散値とする。本実施形態では、第1分散値はエラーバーの中で最も大きい値を用いる。また、本実施形態では、第2分散値はエラーバーの中で最も小さい値を用いる。
図8(B)では、時刻t1、時刻t2、時刻t3、及び時刻t4の4つの時刻において、特徴量配列部104が抽出した第1分散値及び第2分散値が、特徴量7の分布の代表値とともに表示されている。したがって、図8(B)においては、特徴量の分布情報に基づいて、時刻毎に代表値以外に2つの値を特徴量の分布から抽出することが可能となる。
FIG. 8 is a diagram illustrating an example of a change in feature amount over time of a cell to which the distribution spread of this embodiment is added. In FIG. 8A, as an example, the representative value of the distribution of the
The feature
In FIG. 8B, the first variance value and the second variance value extracted by the feature
図9は、本実施形態の代表値以外に第1分散値及び第2分散値が追加された特徴量同士の相関関係の一例を示す図である。特徴量8の分布の代表値、特徴量8の第1分散値及び特徴量8の第2分散値と、特徴量9の分布の代表値、特徴量9の第1分散値及び特徴量9の第2分散値との相関関係が、特徴量8と特徴量9との相関関係として示されている。本実施形態においては、刺激に対する異なる4つの時間から抽出された特徴量8と特徴量9との相関関係を示している。刺激に対して所定時間を経過した特徴量8の代表値と特徴量9の代表値との交点を黒丸で表している。図9(A)においては、特徴量9の値をY軸とし、特徴量8の値をX軸した直交座標系において、刺激に対して所定時間経過した特徴量8の代表値と特徴量9の代表値との組を黒丸として表している。本実施形態では、特徴量8は、代表値毎に図8(B)に記したように第1分散値と第2分散値とが算出されている。一方、特徴量9においても同様である。本実施形態においては、特徴量8の代表値と第1分散値との差と、特徴量8の代表値と第2分散値との差が等しい。さらに、特徴量9の代表値と第1分散値との差と、特徴量9の代表値と第2分散値との差が等しい。また、特徴量8の代表値と第1分散値との差と、特徴量9の代表値と第1分散値との差とが等しい。したがって、本実施形態においては、特徴量8と特徴量9との相関は、特徴量8と特徴量9のそれぞれの第1分散値と第2分散値とで囲まれる領域になり、図9(A)においては、黒丸の周囲に鎖線でその領域を表している。特徴量8と特徴量9の相関関係は、特徴量8と特徴量9との間に正の相関がある場合の相関関係の例である。相関算出部105は、特徴量8と特徴量9との相関関係の算出には、特徴量8の代表値、第1分散値及び第2分散値と、特徴量9の代表値、第1分散値及び第2分散値とを用いる。
FIG. 9 is a diagram illustrating an example of a correlation between feature quantities in which a first variance value and a second variance value are added in addition to the representative values of the present embodiment. The representative value of the distribution of the feature quantity 8, the first variance value of the feature quantity 8, the second variance value of the feature quantity 8, the representative value of the distribution of the feature quantity 9, the first variance value of the feature quantity 9, and the feature quantity 9 A correlation with the second variance value is shown as a correlation between the feature quantity 8 and the feature quantity 9. In the present embodiment, the correlation between the feature quantity 8 and the feature quantity 9 extracted from four different times with respect to the stimulus is shown. The intersection of the representative value of the feature amount 8 and the representative value of the feature amount 9 that has passed a predetermined time with respect to the stimulus is represented by a black circle. In FIG. 9A, in the Cartesian coordinate system in which the value of the feature value 9 is the Y axis and the value of the feature value 8 is the X axis, the representative value of the feature value 8 and the feature value 9 that have passed for a predetermined time with respect to the stimulus. A pair with a representative value is represented as a black circle. In the present embodiment, as the feature amount 8, the first variance value and the second variance value are calculated for each representative value as shown in FIG. 8B. On the other hand, the same applies to the feature amount 9. In the present embodiment, the difference between the representative value of the feature value 8 and the first variance value is equal to the difference between the representative value of the feature value 8 and the second variance value. Furthermore, the difference between the representative value of the feature value 9 and the first variance value is equal to the difference between the representative value of the feature value 9 and the second variance value. Further, the difference between the representative value of the feature value 8 and the first variance value is equal to the difference between the representative value of the feature value 9 and the first variance value. Therefore, in the present embodiment, the correlation between the feature quantity 8 and the feature quantity 9 is an area surrounded by the first variance value and the second variance value of the feature quantity 8 and the feature quantity 9, respectively. In A), the area is indicated by a chain line around the black circle. The correlation between the feature quantity 8 and the feature quantity 9 is an example of a correlation when there is a positive correlation between the feature quantity 8 and the feature quantity 9. For calculating the correlation between the feature quantity 8 and the feature quantity 9, the
なお、上述の実施形態では、特徴量同士の相関を算出する場合に、それぞれの特徴量の代表点以外に第1分散値と第2分散値とを用いたがこれに限られない。例えば、特徴量同士に相関がある場合には、一方の特徴量の第1分散値と他方の特徴量の第2分散値と、一方の第2分散値と他方の特徴量の第1分散値とを用いて、相関を算出するようにしても構わない。例えば、図9(A)のように正の相関がある場合であれば、特徴量8の第2分散値及び特徴量9の第1分散値の交点と、特徴量8の第1分散値及び特徴量9の第2分散値の交点とを用いて、正の相関を算出しても構わない。 In the above-described embodiment, when calculating the correlation between feature quantities, the first variance value and the second variance value are used in addition to the representative points of the feature quantities, but the present invention is not limited to this. For example, when there is a correlation between feature quantities, the first variance value of one feature quantity, the second variance value of the other feature quantity, the second variance value of one feature, and the first variance value of the other feature quantity And may be used to calculate the correlation. For example, if there is a positive correlation as shown in FIG. 9A, the intersection of the second variance value of the feature value 8 and the first variance value of the feature value 9, the first variance value of the feature value 8, and A positive correlation may be calculated using the intersection of the second variance values of the feature amount 9.
図10は、本実施形態の代表値以外に第1分散値と第2分散とが追加された正の相関関係の一例を示す図である。特徴量10の分布の代表値、特徴量10の第1分散値及び特徴量10の第2分散値と、特徴量11の分布の代表値、特徴量11の第1分散値及び特徴量11の第2分散値との相関関係が、特徴量10と特徴量11との相関関係として示されている。特徴量10の分布と特徴量11の分布とは各時刻において互いに異なる大きさの分散をもつ。特徴量10と特徴量11の相関関係は、特徴量10と特徴量11との間に正の相関がある場合の相関関係の例である。
FIG. 10 is a diagram illustrating an example of a positive correlation in which the first variance value and the second variance are added in addition to the representative value of the present embodiment. The representative value of the distribution of the
図11は、本実施形態の代表値以外に第1分散値と第2分散とが追加された負の相関関係の一例を示す図である。特徴量12の分布の代表値、特徴量12の第1分散値及び特徴量12の第2分散値と、特徴量13の分布の代表値、特徴量13の第1分散値及び特徴量13の第2分散値との相関関係が、特徴量12と特徴量13との相関関係として示されている。特徴量12の分布と特徴量13の分布とは各時刻において互いに異なる大きさの分布の広がりをもつ。特徴量12と特徴量13の相関関係は、特徴量12と特徴量13との間に負の相関がある場合の相関関係の例である。 FIG. 11 is a diagram illustrating an example of a negative correlation in which the first variance value and the second variance are added in addition to the representative value of the present embodiment. The representative value of the distribution of the feature quantity 12, the first variance value of the feature quantity 12, the second variance value of the feature quantity 12, the representative value of the distribution of the feature quantity 13, the first variance value of the feature quantity 13, and the feature quantity 13. A correlation with the second variance value is shown as a correlation between the feature quantity 12 and the feature quantity 13. The distribution of the feature quantity 12 and the distribution of the feature quantity 13 have distribution spreads of different sizes at each time. The correlation between the feature quantity 12 and the feature quantity 13 is an example of a correlation when there is a negative correlation between the feature quantity 12 and the feature quantity 13.
上記の特徴量1~特徴量12は、細胞を構成する要素の特徴量である。このように、細胞を構成する要素には、第1要素(例えば、特徴量1に対応する要素)と第2要素(例えば、特徴量2に対応する要素)とを含み、相関算出部は、第1要素の特徴量の分布と、第2要素の特徴量の分布とを用いて、第1要素と第2要素間との相関を算出する。
分布算出部103は、第1要素の特徴量の分布から複数の値を第1要素の特徴量として抽出し、第2要素の特徴量の分布から複数の値を第2要素の特徴量として抽出する。算出装置10は、抽出した複数の第1要素の特徴量と、抽出した複数の第2要素の特徴量とを用い、第1要素と第2要素の相関を算出する。ここで第1要素の特徴量には、所定値と、所定値よりも大きい値と、所定値よりも小さい値を含み、第2要素の特徴量には、所定値と、所定値よりも大きい値と、所定値よりも小さい値を含む。
図9及び図10において説明したように、算出装置10は、第1要素の特徴量では所定値よりも大きく、第2要素の特徴量では所定値よりも小さい条件を満たす特徴量の値と、第1要素の特徴量では所定値よりも小さく、第2要素の特徴量では所定値よりも大きい条件を満たす特徴量の値とを用いて、第1要素と第2要素との正の相関を算出する。また、図11において説明したように、算出装置10は、第1要素の特徴量では所定値よりも大きく、第2要素の特徴量では所定値よりも大きい条件を満たす特徴量の値と、第1要素の特徴量では所定値よりも小さく、第2要素の特徴量では所定値よりも小さい条件を満たす特徴量の値とを用いて、第1要素と第2要素との負の相関を算出する。
ここで所定値は、特徴量の分布の中央値及び又は平均値である。
The feature amounts 1 to 12 are feature amounts of elements constituting the cell. As described above, the elements constituting the cell include the first element (for example, the element corresponding to the feature amount 1) and the second element (for example, the element corresponding to the feature amount 2). A correlation between the first element and the second element is calculated using the distribution of the feature quantity of the first element and the distribution of the feature quantity of the second element.
The
As described with reference to FIGS. 9 and 10, the
Here, the predetermined value is a median value or an average value of the distribution of the feature amount.
なお、特徴量同士に負の相関がある場合には、特徴量12の第1分散値と特徴量13の第1分散値の交点と、特徴量12の第2分散値と特徴量13の第2分散値の交点とを用いて、特徴量12と特徴量13との負の相関を算出しても構わない。 If there is a negative correlation between the feature quantities, the intersection of the first variance value of the feature quantity 12 and the first variance value of the feature quantity 13 and the second variance value of the feature quantity 12 and the first variance of the feature quantity 13 You may calculate the negative correlation of the feature-value 12 and the feature-value 13 using the intersection of 2 dispersion values.
図12は、本実施形態の第1分散値と第2分散値とが追加された細胞毎の特徴量の行列の一例を示す図である。行列Xは、行方向に軸Nを、列方向に軸dをとった行列である。行列Xの第(3*i+1)列(ここで、i=0~d-1。また、3*iは、3にiを乗算することを意味する。以下同様である。)は、第2分散値に関する値をもつ。行列Xの第(3*i+2)列(ここで、i=0~d-1)は、特徴量の分布の代表値を値にもつ。行列Xの第(3*i+3)列(ここで、i=0~d-1)は、第1分散値に関する値を値をもつ。図12では、行列Xの各要素を、細胞集団の平均値及び標準偏差によって示しているが、平均値の代わりに中央値や最頻値といった統計量を使用することもできる。また、標準偏差の代わりに四分位点などの分位点を用いてもよい。勿論、細胞毎の特徴量の行列Xとしても構わない。 FIG. 12 is a diagram illustrating an example of a feature amount matrix for each cell to which the first variance value and the second variance value of the present embodiment are added. The matrix X is a matrix having an axis N in the row direction and an axis d in the column direction. The (3 * i + 1) -th column of the matrix X (where i = 0 to d−1, and 3 * i means that 3 is multiplied by i, and so on). Has a value for the variance value. The (3 * i + 2) th column of the matrix X (where i = 0 to d−1) has a representative value of the distribution of feature values. The (3 * i + 3) th column (where i = 0 to d−1) of the matrix X has a value related to the first variance value. In FIG. 12, each element of the matrix X is indicated by the average value and standard deviation of the cell population, but statistics such as the median value and the mode value may be used instead of the average value. In addition, a quantile such as a quartile may be used instead of the standard deviation. Of course, a matrix X of feature values for each cell may be used.
図13は、相関算出部105が算出する相関と偏相関係数の一例を示す図である。
図13では、一例として、細胞に刺激が加えられてから経過した時間を示す8つの時刻における特徴量A、特徴量B、特徴量C、特徴量D、特徴量E、及び特徴量Fの各分布の代表値が、各分布の広がりを示すエラーバーとともに示されている。
FIG. 13 is a diagram illustrating an example of the correlation and partial correlation coefficient calculated by the
In FIG. 13, as an example, each of the feature quantity A, feature quantity B, feature quantity C, feature quantity D, feature quantity E, and feature quantity F at eight times indicating the time elapsed since the stimulation was applied to the cell. Representative values of the distribution are shown with error bars indicating the extent of each distribution.
図13では、特徴量A、特徴量B、特徴量C及び特徴量Eのエラーバーの大きさは0.1であり、特徴量Dのエラーバーの大きさは0.2であり、特徴量Fのエラーバーの大きさは0.3である。特徴量A及び特徴量Bは、時刻1において特徴量が大きくなっている。特徴量C及び特徴量Dは、時刻3において特徴量が大きくなっている。特徴量E及び特徴量Fは、時刻6において特徴量が大きくなっている。
特徴量Aと特徴量Bとの偏相関係数の値は0.167である。特徴量Cと特徴量Dとの偏相関係数の値は0.135である。特徴量Eと特徴量Fとの偏相関係数の値は0.098である。その他の特徴量同士の偏相関係数の値は0(ゼロ)である。
In FIG. 13, the size of the error bar of the feature amount A, the feature amount B, the feature amount C, and the feature amount E is 0.1, the size of the error bar of the feature amount D is 0.2, and the feature amount The size of the error bar for F is 0.3. The feature amount A and the feature amount B are large at
The value of the partial correlation coefficient between the feature amount A and the feature amount B is 0.167. The value of the partial correlation coefficient between the feature quantity C and the feature quantity D is 0.135. The value of the partial correlation coefficient between the feature quantity E and the feature quantity F is 0.098. The value of the partial correlation coefficient between other feature amounts is 0 (zero).
特徴量Aと特徴量Bとの偏相関係数の値と、特徴量Cと特徴量Dとの偏相関係数の値とを比較すると、特徴量Aと特徴量Bとの偏相関係数の値の方が特徴量Cと特徴量Dとの偏相関係数の値よりも大きい。特徴量Aと特徴量Bとの偏相関係数は、エラーバーの大きさがともに0.1である特徴量Aと特徴量Bとの相関として算出されたものである。一方、特徴量Cと特徴量Dとの偏相関係数は、エラーバーの大きさが0.1である特徴量Cとエラーバーの大きさが0.2である特徴量Dとの相関として算出されたものである。 When the value of the partial correlation coefficient between the feature quantity A and the feature quantity B is compared with the value of the partial correlation coefficient between the feature quantity C and the feature quantity D, the partial correlation coefficient between the feature quantity A and the feature quantity B Is larger than the value of the partial correlation coefficient between the feature quantity C and the feature quantity D. The partial correlation coefficient between the feature quantity A and the feature quantity B is calculated as the correlation between the feature quantity A and the feature quantity B having both error bar sizes of 0.1. On the other hand, the partial correlation coefficient between the feature quantity C and the feature quantity D is a correlation between the feature quantity C having an error bar size of 0.1 and the feature quantity D having an error bar size of 0.2. It is calculated.
特徴量Cと特徴量Dとの偏相関係数の値と、特徴量Eと特徴量Fとの偏相関係数の値とを比較すると、特徴量Cと特徴量Dとの偏相関係数の値の方が特徴量Eと特徴量Fとの偏相関係数の値よりも大きい。特徴量Eと特徴量Fとの偏相関係数は、エラーバーの大きさが0.1である特徴量Eとエラーバーの大きさが0.3である特徴量Fとの相関として算出されたものである。
つまり、特徴量の分布のエラーバーが小さいほど相関の値は高く算出される。このように、相関算出部105は、特徴量の分布の広がりが小さいほど相関の値を高く算出する。
When the value of the partial correlation coefficient between the feature quantity C and the feature quantity D is compared with the value of the partial correlation coefficient between the feature quantity E and the feature quantity F, the partial correlation coefficient between the feature quantity C and the feature quantity D Is larger than the value of the partial correlation coefficient between the feature quantity E and the feature quantity F. The partial correlation coefficient between the feature quantity E and the feature quantity F is calculated as the correlation between the feature quantity E having an error bar size of 0.1 and the feature quantity F having an error bar size of 0.3. It is a thing.
That is, the smaller the error bar of the feature amount distribution, the higher the correlation value. Thus, the
図14及び図15を参照して、相関算出部105がステップS603において算出する行列Xの偏相関係数と、ネットワークの一例について説明する。
図14は、相関算出部105が算出する偏相関係数の一例を示す図である。
図14に示すネットワークには、ノードA、ノードB、ノードC、ノードDと、ノードEと、ノードFとそれぞれのノードを繋ぐエッジが含まれる。ノードは、エッジの算出に用いた特徴量を示す。エッジは、そのエッジによって繋がれるノードとノードとの相関関係、つまり特徴量同士の相関を示す。図14に示すネットワークでは、一例としてエッジに濃淡をつけることによりノードとノードとの偏相関係数の大きさを示している。ノードとノードとの偏相関係数が大きいほど、エッジの濃淡は濃くなる。
With reference to FIG. 14 and FIG. 15, an example of the partial correlation coefficient of the matrix X calculated by the
FIG. 14 is a diagram illustrating an example of the partial correlation coefficient calculated by the
The network illustrated in FIG. 14 includes node A, node B, node C, node D, node E, and node F, and edges that connect the respective nodes. The node indicates a feature amount used for edge calculation. The edge indicates a correlation between nodes connected by the edge, that is, a correlation between feature amounts. In the network shown in FIG. 14, as an example, the magnitude of the partial correlation coefficient between nodes is shown by adding shades to edges. The greater the partial correlation coefficient between nodes, the darker the edges.
図14において、相関算出部105が、特徴量の分布の代表値のみを用いて相関を算出した場合のエッジをオリジナルエッジという。相関算出部105が、特徴量の分布の代表値ともに、特徴量の分布に関する情報を用いて相関を算出した場合のエッジを信頼度付きエッジという。信頼度とは、特徴量の信頼性の高さを意味する。信頼度付きエッジでは、要素の特徴量の分布に関する情報が含まれる。つまり、図14に示すネットワーク、つまり相関図には、要素の特徴量の分布に関する情報が含まれる。
In FIG. 14, an edge when the
ノードAとノードBとを接続するエッジA-B、ノードCとノードDとを接続するエッジC-D、及びノードEとノードFとを接続するエッジE-Fに対応するオリジナルエッジを示す偏相関係数の値は1.00である。エッジA-Bを示す信頼度付きエッジの値は1.00である。エッジC-Dを示す信頼度付きエッジの値は0.81である。エッジE-Fを示す信頼度付きエッジの値は0.59である。他のノード同士の偏相関係数の値は0であり、エッジは存在しない。したがって、濃淡は、エッジA-B、エッジC-D、エッジE-Fの順に淡くなっている。 A deviation indicating an original edge corresponding to an edge AB connecting the node A and the node B, an edge CD connecting the node C and the node D, and an edge EF connecting the node E and the node F is shown. The value of the correlation coefficient is 1.00. The value of the edge with reliability indicating edge AB is 1.00. The value of the edge with reliability indicating the edge CD is 0.81. The value of the edge with reliability indicating the edge EF is 0.59. The value of the partial correlation coefficient between other nodes is 0, and there is no edge. Therefore, the shading is lighter in the order of edge AB, edge CD, and edge EF.
なお、オリジナルエッジと信頼度付きエッジとは、各々最大値が1.00となるように規格化されている。エッジA-Bを示す偏相関係数の値、エッジC-Dを示す偏相関係数の値、及びエッジE-Fを示す偏相関係数の値は、図13で示した偏相関係数の最大値である特徴量Aと特徴量Bとの偏相関係数の値0.167により、各々除算され正規化された値である。 The original edge and the edge with reliability are standardized so that the maximum value is 1.00. The value of the partial correlation coefficient indicating the edge AB, the value of the partial correlation coefficient indicating the edge CD, and the value of the partial correlation coefficient indicating the edge EF are the partial correlation coefficients shown in FIG. Are the values obtained by dividing and normalizing by the partial correlation coefficient value 0.167 between the feature value A and the feature value B, which is the maximum value of.
図15は、相関算出部105が算出する偏相関係数の別の一例を示す図である。図15では、特徴量A、特徴量B、特徴量C、特徴量D、特徴量E、及び特徴量Fの間の偏相関係数が示されている。
図15に示す信頼度付きエッジの例では、偏相関係数の値が大きいほど各エッジの太さを太くして表示している。ただし、特徴量同士の偏相関係数の値が所定の値以下である場合、これらの特徴量に対応するノード同士を繋ぐエッジは表示されない。
FIG. 15 is a diagram illustrating another example of the partial correlation coefficient calculated by the
In the example of the edge with reliability shown in FIG. 15, the thickness of each edge is displayed thicker as the value of the partial correlation coefficient is larger. However, when the value of the partial correlation coefficient between feature quantities is equal to or less than a predetermined value, an edge connecting nodes corresponding to these feature quantities is not displayed.
以上説明したように、本実施形態の算出装置10は、特徴量抽出部102と、分布算出部103と、相関算出部105とを備え、細胞を構成する要素の特徴量を用い、前記要素間の相関を解析する。特徴量抽出部102は、細胞が撮像された画像に基づいて、細胞の要素毎に特徴量を複数抽出する。分布算出部103は、特徴量抽出部102により抽出される特徴量から、要素の特徴量の分布を算出する。特徴量配列部104は、構成要素の特徴量と、分布算出部103が算出する特徴量の分布に関する情報とを合わせて配列することで、特徴量の分布に関する情報を算出することを可能とする。相関算出部105は、刺激に対する所定時間後の刺激に対する細胞を構成する構成要素の特徴量の経時変化と、分布算出部103が算出した刺激に対する所定時間後の刺激に対する細胞を構成する構成要素の特徴量の分布とに基づいて、細胞を構成する要素の相関を算出する。この構成により、特徴量のデータの信頼性を加味して、要素間の相関を算出することができる。
As described above, the
また、相関算出部105は、要素間の相関の強さを、細胞を構成する要素の特徴量の分布に基づいて算出する。この構成により、特徴量のデータの信頼性に基づいて、特徴量同士の相関を算出することができる。
Also, the
また、相関算出部105は、分布の広がりが小さいほど、前記要素間の相関の強さの値を高く算出する。この構成により、特徴量のデータの信頼性が高いほど、特徴量同士の相関を高く算出することができる。
Also, the
また、本実施形態においては、要素の特徴量の分布の広がりは、この分布の標準偏差に基づいて算出される。この構成により、特徴量のデータの信頼性を標準偏差に基づいて評価することができる。 Further, in the present embodiment, the spread of the element feature amount distribution is calculated based on the standard deviation of the distribution. With this configuration, the reliability of the feature amount data can be evaluated based on the standard deviation.
また、本実施形態においては、要素の特徴量の分布の広がりは、この分布の分位数に基づいて算出される。この構成により、特徴量のデータの信頼性を分位数に基づいて評価することができる。 Further, in the present embodiment, the spread of the distribution of the feature amount of the element is calculated based on the quantile of this distribution. With this configuration, the reliability of the feature amount data can be evaluated based on the quantile.
また、本実施形態においては、分布算出部103は、要素の特徴量の分布から複数の値を特徴量として抽出し、相関算出部105は、分布算出部103が抽出した複数の特徴量に基づいて、要素間の相関を算出する。この構成により、要素の特徴量の分布から1つの値を特徴量として抽出して要素間の相関を算出する場合に比べて、要素間の相関の信頼度を向上させることができる。
In this embodiment, the
また、本実施形態においては、細胞を構成する要素には、第1要素と第2要素とを含み、相関算出部105は、第1要素の特徴量の分布と、第2要素の特徴量の分布とを用いて第1要素と第2要素との相関を算出する。この構成により、特徴量毎のデータの信頼性に基づいて要素間の相関を算出することができる。
In the present embodiment, the elements constituting the cell include the first element and the second element, and the
また、本実施形態においては、算出装置10は、分布算出部103は、第1要素の特徴量の分布から複数の値を第1要素の特徴量として抽出し、第2要素の特徴量の分布から複数の値を第2要素の特徴量として抽出し、抽出した複数の第1要素の特徴量と、抽出した複数の第2要素の特徴量とを用い、第1要素と第2要素との相関を算出する。この構成により、特徴量毎のデータの分布を反映した少ないデータに基づいて要素間の相関を簡便に算出することができる。
Further, in the present embodiment, in the
また、本実施形態においては、特徴量の分布の代表値は、分布の中央値及び又は平均値である。この構成により、特徴量の分布の代表値に基づいて特徴量同士の相関を簡便に算出することができる。 Further, in the present embodiment, the representative value of the feature quantity distribution is the median value and / or the average value of the distribution. With this configuration, the correlation between the feature amounts can be easily calculated based on the representative value of the feature amount distribution.
また、本実施形態においては、特徴量の変化は、細胞に加えられた刺激に対する時間変化である。この構成により、細胞に加えられた刺激に対する時間についての、要素間の相関を算出することができる。 In the present embodiment, the change in the feature value is a change in time with respect to the stimulus applied to the cell. With this configuration, it is possible to calculate a correlation between elements with respect to time with respect to a stimulus applied to a cell.
また、本実施形態においては、分布の広がりは、細胞が刺激されてから経過した時間に応じて異なり得る。この構成により、特徴量のデータの細胞が刺激されてから経過した時間毎の信頼性を加味して、特徴量同士の相関を算出することができる。 In this embodiment, the spread of the distribution may vary depending on the time that has elapsed since the cells were stimulated. With this configuration, it is possible to calculate the correlation between feature amounts in consideration of the reliability for each time that has elapsed since the cells of the feature amount data are stimulated.
また、本実施形態においては、算出装置10は、細胞が撮像された細胞画像を取得する画像取得部(細胞画像取得部101)を備える。この構成により、細胞画像を外部から取得することができる。
Moreover, in the present embodiment, the
また、本実施形態においては、算出装置10は、相関算出部105が算出する細胞を構成する要素間の相関に関する相関図であるネットワークを生成する相関算出部105、つまり画像生成部を備える。この構成により、算出した特徴量同士の相関を画像として表現できる。
Further, in the present embodiment, the
また、本実施形態においては、相関図には、要素の特徴量の分布に関する情報が含まれる。この構成により、算出した特徴量同士の相関の信頼度を画像として表現できる。 Further, in the present embodiment, the correlation diagram includes information on the distribution of the feature amount of the element. With this configuration, the reliability of the correlation between the calculated feature quantities can be expressed as an image.
また、本実施形態においては、細胞が撮像された画像には複数の細胞が含まれ、複数の細胞から要素毎に特徴量を複数算出する。この構成により、複数の細胞について要素間の相関を算出することができる。 Further, in the present embodiment, a plurality of cells are included in an image obtained by capturing cells, and a plurality of feature amounts are calculated for each element from the plurality of cells. With this configuration, the correlation between elements can be calculated for a plurality of cells.
また、本実施形態においては、相関算出部105、つまり画像生成部が生成する特徴量の相関に基づく相関図であるネットワークを表示装置に表示させる結果出力部300、つまり表示制御部を備える。この構成により、算出した特徴量同士の相関を表現した画像を表示することができる。
Also, in the present embodiment, a
[変形例]
次に図16を参照して、演算部100の演算手順の別の一例を説明する。
図16は、本実施形態の演算部100の演算手順の別の一例を示す流れ図である。図16に示す流れ図において、ステップS10からステップS603、及びステップS70の処理は、図3で示したステップS10からステップS70及び図5で示したステップS601からステップS603までの各処理と同様であるため、説明を省略する。
[Modification]
Next, another example of the calculation procedure of the calculation unit 100 will be described with reference to FIG.
FIG. 16 is a flowchart illustrating another example of the calculation procedure of the calculation unit 100 according to the present embodiment. In the flowchart shown in FIG. 16, the processing from step S10 to step S603 and step S70 is the same as the processing from step S10 to step S70 shown in FIG. 3 and from step S601 to step S603 shown in FIG. The description is omitted.
相関算出部105は、算出した相関の値が妥当であるか否かを判定する(ステップS604)。細胞画像取得部101が取得した細胞画像の中に、実験の条件などにより異常な細胞画像が混在している場合、異常な細胞画像から抽出された特徴量のために、特徴量の分布の広がりが通常よりも大きくなってしまうことが考えられる。特徴量の分布の広がりが通常よりも大きくなってしまう場合、相関算出部105が算出した構成要素間の相関の値が妥当な値より小さくなってしまうことが考えられる。
The
この場合、記憶部200は、特徴量記憶部201を備えていてもよい。この特徴量記憶部201には、相関の値として予測される値の最低値が特徴量同士の相関毎に記憶されている。相関の値として予測される値の最低値は、過去の実験記録や算出装置10の使用者の経験に基づいて決定されてよい。相関の値として予測される値の最低値は、算出装置10が算出した相関の値に基づいて決定されてもよい。
In this case, the
相関算出部105は、算出した相関の値の全てについて、特徴量記憶部201に記憶される相関の値として予測される値の最低値より大きいと判定する場合(ステップS604:YES)、算出した相関、及びネットワークを結果出力部300に供給する。一方、相関算出部105は、算出した相関の値の中に、特徴量記憶部201に記憶される相関の値として予測される値の最低値より小さいものがあると判定する場合(ステップS604:NO)、算出した相関の値に異常があることを示す信号である異常信号を結果出力部300に供給する。
When the
結果出力部300は、相関算出部105が供給する異常信号を取得すると、妥当でない相関があることを示すメッセージを表示部30に出力させる(ステップS605)。
The
算出装置10の使用者は、表示部30に妥当でない相関があることを示すメッセージが表示された場合、細胞画像取得部101が取得した細胞画像の中から除外する細胞画像を選択する(ステップS606)。算出装置10の使用者は、不図示の操作部から、除外する細胞画像を示す操作信号を算出装置10に入力する。特徴量抽出部102は、不図示の操作部から入力された除外する細胞画像を示す操作信号に基づいて、細胞画像を除外し残りの細胞画像に含まれる細胞の画像を、細胞毎に抽出する(ステップS20)。
When a message indicating that there is an invalid correlation is displayed on the
なお、特徴量抽出部102は、特徴量が所定の値より大きい特徴量が抽出された細胞画像を特定し、特定した細胞画像を示すリストを結果出力部300に供給してもよい。その場合、結果出力部300は、特徴量が所定の値より大きい特徴量が抽出された細胞画像のリストを表示部30に出力させてもよい。ここで、所定の値とは、例えば分布算出部103が算出する特徴量の分布の広がりの2倍、3倍などの値である。
Note that the feature
なお、本実施形態では、分布算出部103は、特徴量の分布の広がりを算出し、算出した広がりを分布の代表値に加える、または分布の代表値から差し引くことにより、分布の広がりのデータを生成する場合について説明したが、分布算出部103が分布の広がりを算出する方法はこれに限らない。分布算出部103は、例えば、広がりに所定の値をもつ係数を乗じた値を分布の代表値に加える、または分布の代表値から差し引くことにより広がりを生成してもよい。分布算出部103が分布の広がりに所定の値をもつ係数を乗じる場合、算出装置10は、代表値が相関値に与える影響と特徴量の分布の標準偏差が相関値に与える影響を調整することができる。
In the present embodiment, the
なお、本実施形態では、特徴量の分布は、細胞画像に複数の細胞が含まれていることにより分布に広がりをもち、算出装置10が、この分布の広がりの影響を取り入れて特徴量同士の相関を算出する場合について説明をしたが、算出装置10が、特徴量同士の相関を算出するときに取り入れる分布の広がりの種類はこれに限らない。算出装置10は、例えば、実験条件による誤差を、本実施形態において説明した分布の標準偏差の代わりに用いて特徴量同士の相関を算出してもよい。ここで実験条件による誤差とは、例えば細胞の染色による誤差である。
In the present embodiment, the distribution of the feature amount has a distribution spread because a plurality of cells are included in the cell image, and the
なお、本実施形態においては、細胞に加えられた刺激に対する特徴量の時間変化を用い、特徴量の相関を算出していたが、特徴量の相関算出に用いる変化は時間に限られない。例えば、細胞に加える刺激に関する薬液の量に対する特徴量の変化を用い、特徴量の相関を算出しても構わない。 Note that, in the present embodiment, the feature amount correlation is calculated using the temporal change of the feature amount with respect to the stimulus applied to the cell, but the change used for the feature amount correlation calculation is not limited to time. For example, the correlation between the feature amounts may be calculated using a change in the feature amount with respect to the amount of the drug solution related to the stimulus applied to the cell.
なお、本実施形態においては、細胞が撮像された画像を用い、細胞が構成する要素の特徴量の相関を例に挙げていたがこれに限られない。例えば、細胞に関する特徴量は画像以外の手法を用いて、特徴量を抽出しても構わない。例えば、ウェスタンブロッティングで抽出した特徴量を用いる場合でも構わない。 In the present embodiment, the correlation between the feature amounts of the elements constituting the cell is used as an example using an image obtained by imaging the cell, but the present invention is not limited to this. For example, the feature quantity related to the cell may be extracted using a technique other than an image. For example, a feature amount extracted by Western blotting may be used.
細胞に関する特徴量は画像以外の手法を用いて、特徴量を抽出する場合、解析装置は、要素の変量を用い、要素間の相関を算出する。解析装置は、変量抽出部と、分布演算部と、相関算出部とを備えていてよい。ここで変量抽出部は、要素毎に変量を複数抽出する。分布演算部は、変量抽出部により抽出される変量から、要素の変量の分布を演算する。相関算出部は、変量の変化と変量の分布とから、要素間の相関を算出する。
この構成により、画像以外の手法を用いて抽出された特徴量を用いて、要素間の相関を算出することができる。
In the case of extracting a feature quantity related to a cell using a technique other than an image, the analysis apparatus calculates a correlation between elements using a variable of the element. The analysis device may include a variable extraction unit, a distribution calculation unit, and a correlation calculation unit. Here, the variable extraction unit extracts a plurality of variables for each element. The distribution calculation unit calculates the distribution of the variable of the element from the variable extracted by the variable extraction unit. The correlation calculation unit calculates the correlation between the elements from the change in the variable and the distribution of the variable.
With this configuration, it is possible to calculate a correlation between elements using a feature amount extracted using a technique other than an image.
さらに、上述の実施形態においては、細胞の特徴量の相関を算出したが、相関の算出の対象は細胞の特徴量に限られない。例えば、要素の変量を用い、要素間の相関を算出する。この場合に、要素毎の変量を複数抽出することで、要素の変量の分布を演算する。その要素の変化と変量の分布から要素間の相関を算出する。例えば、要素とは、気温と積雪であり、要素の変量とは、平均気温と積雪日数であり、要素間の相関とは、気温と積雪との間の相関関係である。 Furthermore, in the above-described embodiment, the correlation between the feature quantities of the cells is calculated, but the target of the correlation calculation is not limited to the feature quantities of the cells. For example, the correlation between elements is calculated using element variables. In this case, the variable distribution of the element is calculated by extracting a plurality of variables for each element. The correlation between elements is calculated from the change of the element and the distribution of variables. For example, the elements are temperature and snow cover, the element variables are the average temperature and the number of snow days, and the correlation between elements is the correlation between temperature and snow cover.
なお、本発明の実施形態における算出装置10の各処理を実行するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、当該記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより、上述した種々の処理を行ってもよい。
Note that a program for executing each process of the
なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものであってもよい。また、「コンピュータシステム」は、WWWシステムを利用している場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、フラッシュメモリ等の書き込み可能な不揮発性メモリ、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。 Note that the “computer system” referred to here may include an OS and hardware such as peripheral devices. Further, the “computer system” includes a homepage providing environment (or display environment) if a WWW system is used. The “computer-readable recording medium” means a flexible disk, a magneto-optical disk, a ROM, a writable nonvolatile memory such as a flash memory, a portable medium such as a CD-ROM, a hard disk built in a computer system, etc. This is a storage device.
さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(例えばDRAM(Dynamic Random Access Memory))のように、一定時間プログラムを保持しているものも含むものとする。また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。 Further, the “computer-readable recording medium” refers to a volatile memory (for example, DRAM (Dynamic) in a computer system serving as a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. Random Access Memory)), etc. that hold a program for a certain period of time. The program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line. The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, what is called a difference file (difference program) may be sufficient.
以上、本発明の実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。 As described above, the embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and includes design and the like within a scope not departing from the gist of the present invention.
1…顕微鏡観察システム、10…算出装置、20…顕微鏡装置、30…表示部、101…細胞画像取得部、102…特徴量抽出部、103…分布算出部、104…特徴量配列部、105…相関算出部、200…記憶部、201…特徴量記憶部、202…実験条件記憶部、300…結果出力部
DESCRIPTION OF
Claims (21)
前記細胞が撮像された画像に基づいて、前記細胞の要素毎に特徴量を複数抽出する特徴量抽出部と、
前記特徴量抽出部により抽出される特徴量から、前記要素の特徴量の分布を算出する分布算出部と、
前記特徴量の変化と前記特徴量の分布とから、前記要素間の相関を算出する相関算出部とを備える、算出装置。 A calculation device that calculates the correlation between the elements using the feature amounts of the elements constituting the cell,
A feature amount extraction unit that extracts a plurality of feature amounts for each element of the cell based on an image of the cells imaged;
A distribution calculation unit that calculates a distribution of the feature amount of the element from the feature amount extracted by the feature amount extraction unit;
A calculation apparatus comprising: a correlation calculation unit that calculates a correlation between the elements from the change in the feature quantity and the distribution of the feature quantity.
前記相関算出部は、前記分布算出部が抽出した複数の前記特徴量に基づいて、前記要素間の相関を算出する、請求項1~5のいずれか1項に記載の算出装置。 The distribution calculation unit extracts a plurality of values as the feature amount from the distribution of the feature amount,
6. The calculation device according to claim 1, wherein the correlation calculation unit calculates a correlation between the elements based on the plurality of feature amounts extracted by the distribution calculation unit.
前記相関算出部は、前記第1要素の特徴量の分布と、前記第2要素の特徴量の分布とを用いて、前記第1要素と前記第2要素間との相関を算出する、請求項1~6のいずれか一項に記載の算出装置。 The element includes a first element and a second element,
The correlation calculation unit calculates a correlation between the first element and the second element by using a feature amount distribution of the first element and a feature amount distribution of the second element. The calculation device according to any one of 1 to 6.
前記第2要素の特徴量の分布から複数の値を前記第2要素の特徴量として抽出し、
前記前記分布算出部が抽出した複数の前記第1要素の前記特徴量と、前記前記分布算出部が抽出した複数の前記第2要素の前記特徴量とを用い、前記第1要素と前記第2要素の相関を算出する、請求項7に記載の算出装置。 The distribution calculation unit extracts a plurality of values as the feature amount of the first element from the distribution of the feature amount of the first element,
Extracting a plurality of values from the distribution of feature values of the second element as feature values of the second element;
Using the feature amounts of the plurality of first elements extracted by the distribution calculation unit and the feature amounts of the plurality of second elements extracted by the distribution calculation unit, the first element and the second element The calculation device according to claim 7, wherein the correlation between elements is calculated.
前記第2要素の前記特徴量には、所定値と、前記所定値よりも大きい値と、前記所定値よりも小さい値を含み、
前記前記分布算出部が抽出した複数の前記第1要素の前記特徴量と、前記前記分布算出部が抽出した複数の前記第2要素の前記特徴量とを用い、前記第1要素と前記第2要素の相関を算出する、請求項8に記載の算出装置。 The feature amount of the first element includes a predetermined value, a value larger than the predetermined value, and a value smaller than the predetermined value,
The feature amount of the second element includes a predetermined value, a value larger than the predetermined value, and a value smaller than the predetermined value,
Using the feature amounts of the plurality of first elements extracted by the distribution calculation unit and the feature amounts of the plurality of second elements extracted by the distribution calculation unit, the first element and the second element The calculation apparatus according to claim 8, wherein the correlation of elements is calculated.
前記第1要素の前記特徴量では所定値よりも小さく、前記第2要素の前記特徴量では所定値よりも大きい条件を満たす特徴量の値とを用いて、
前記第1要素と前記第2要素との正の相関を算出する若しくは、
前記第1要素の前記特徴量では所定値よりも大きく、前記第2要素の前記特徴量では所定値よりも大きい条件を満たす特徴量の値と、
前記第1要素の前記特徴量では所定値よりも小さく、前記第2要素の前記特徴量では所定値よりも小さい条件を満たす特徴量の値とを用いて、
前記第1要素と前記第2要素との負の相関を算出する、請求項9に記載の算出装置。 A value of a feature value that satisfies a condition that is greater than a predetermined value in the feature value of the first element and that is less than a predetermined value in the feature value of the second element;
The feature amount of the first element is smaller than a predetermined value, and the feature amount of the second element is larger than a predetermined value.
Calculating a positive correlation between the first element and the second element, or
A value of a feature amount that satisfies a condition that is greater than a predetermined value in the feature amount of the first element and that is greater than a predetermined value in the feature amount of the second element;
The feature amount of the first element is smaller than a predetermined value, and the feature amount of the second element is a value of a feature amount that satisfies a condition smaller than a predetermined value.
The calculation device according to claim 9, wherein a negative correlation between the first element and the second element is calculated.
細胞を構成する要素の特徴量を用い、前記要素間の相関を算出させる解析プログラムであって、
前記細胞が撮像された画像に基づいて、前記細胞の要素毎に特徴量を複数抽出する特徴量抽出ステップと、
前記特徴量抽出ステップにより抽出される特徴量から、前記要素の特徴量の分布を演算する分布演算ステップと、
前記特徴量の変化と前記特徴量の分布とから、前記要素間の相関を算出する相関算出ステップとを実行させるための、解析プログラム。 On the computer,
An analysis program for calculating the correlation between the elements using the feature quantities of the elements constituting the cell,
A feature amount extraction step of extracting a plurality of feature amounts for each element of the cell based on an image of the cells imaged;
A distribution calculation step of calculating a distribution of the feature quantity of the element from the feature quantity extracted by the feature quantity extraction step;
An analysis program for executing a correlation calculation step of calculating a correlation between the elements from the change in the feature quantity and the distribution of the feature quantity.
前記細胞が撮像された画像に基づいて、前記細胞の要素毎に特徴量を複数抽出する特徴量抽出手段と、
前記特徴量抽出手段により抽出される特徴量から、前記要素の特徴量の分布を演算する分布演算手段と、
前記特徴量の変化と前記特徴量の分布とから、前記要素間の相関を算出する相関算出手段とを実行させるための、解析方法。 An analysis method for calculating a correlation between the elements using feature amounts of elements constituting cells,
A feature amount extracting means for extracting a plurality of feature amounts for each element of the cell based on an image of the cells imaged;
A distribution calculation means for calculating a distribution of the feature quantity of the element from the feature quantity extracted by the feature quantity extraction means;
An analysis method for executing a correlation calculation unit that calculates a correlation between the elements from the change in the feature quantity and the distribution of the feature quantity.
前記要素毎に変量を複数抽出する変量抽出部と、
前記変量抽出部により抽出される変量から、前記要素の変量の分布を演算する分布演算部と、
前記変量の変化と前記変量の分布とから、前記要素間の相関を算出する相関算出部とを備える、算出装置。 A calculation device that calculates a correlation between elements using a variable of an element,
A variable extractor for extracting a plurality of variables for each element;
A distribution calculation unit for calculating the distribution of the variable of the element from the variable extracted by the variable extraction unit;
A calculation apparatus comprising: a correlation calculation unit that calculates a correlation between the elements from the change in the variable and the distribution of the variable.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2018/005026 WO2019159247A1 (en) | 2018-02-14 | 2018-02-14 | Computation device, analysis program, and analysis method |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/JP2018/005026 WO2019159247A1 (en) | 2018-02-14 | 2018-02-14 | Computation device, analysis program, and analysis method |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2019159247A1 true WO2019159247A1 (en) | 2019-08-22 |
Family
ID=67619779
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2018/005026 Ceased WO2019159247A1 (en) | 2018-02-14 | 2018-02-14 | Computation device, analysis program, and analysis method |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2019159247A1 (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2017109860A1 (en) * | 2015-12-22 | 2017-06-29 | 株式会社ニコン | Image processing apparatus |
| JP2017207900A (en) * | 2016-05-18 | 2017-11-24 | 大日本印刷株式会社 | Data output restriction device for 3D object modeling |
-
2018
- 2018-02-14 WO PCT/JP2018/005026 patent/WO2019159247A1/en not_active Ceased
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2017109860A1 (en) * | 2015-12-22 | 2017-06-29 | 株式会社ニコン | Image processing apparatus |
| JP2017207900A (en) * | 2016-05-18 | 2017-11-24 | 大日本印刷株式会社 | Data output restriction device for 3D object modeling |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Wang et al. | Live-cell imaging and analysis reveal cell phenotypic transition dynamics inherently missing in snapshot data | |
| Sità et al. | A deep-learning approach for online cell identification and trace extraction in functional two-photon calcium imaging | |
| US8320655B2 (en) | Process and system for analyzing the expression of biomarkers in cells | |
| US11321836B2 (en) | Image-processing device, image-processing method, and image-processing program for setting cell analysis area based on captured image | |
| US11379983B2 (en) | Analysis device, analysis program, and analysis method | |
| JP6756339B2 (en) | Image processing device and image processing method | |
| Delestro et al. | In vivo large-scale analysis of Drosophila neuronal calcium traces by automated tracking of single somata | |
| JP6818041B2 (en) | Analytical equipment, analysis method, and program | |
| Cunha et al. | Machine learning in microscopy–insights, opportunities and challenges | |
| Knyshov et al. | Pretrained convolutional neural networks perform well in a challenging test case: identification of plant bugs (Hemiptera: Miridae) using a small number of training images | |
| US20200372652A1 (en) | Calculation device, calculation program, and calculation method | |
| JP6777147B2 (en) | Image selection device, image selection program, arithmetic unit, and display device | |
| WO2018193612A1 (en) | Correlation calculation device, correlation calculation method, and correlation calculation program | |
| WO2018066039A1 (en) | Analysis device, analysis method, and program | |
| WO2019159247A1 (en) | Computation device, analysis program, and analysis method | |
| JP6999118B2 (en) | Image processing equipment | |
| WO2018109826A1 (en) | Analysis device, analysis program, and analysis method | |
| WO2020070885A1 (en) | Determination device, determination program, and determination method | |
| WO2018122908A1 (en) | Analysis device, analysis program and analysis method | |
| WO2020090089A1 (en) | Determination device, determination method, and determination program | |
| Cai et al. | Compressive streak microscopy for fast sampling of fluorescent reporters of neural activity | |
| Pujol Masiá | Interpreting killer mechanisms of gamma-delta T-cells with Machine Learning | |
| KR20230040873A (en) | Joint histogram based fluorescent signal unmixing method and device | |
| Hoeppner | A biologist's perspective on computer vision | |
| WO2018142570A1 (en) | Image processing device, analysis device, image processing method, image processing program, and display device |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18906431 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 18906431 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: JP |