WO2019145708A1 - Speaker identification - Google Patents
Speaker identification Download PDFInfo
- Publication number
- WO2019145708A1 WO2019145708A1 PCT/GB2019/050185 GB2019050185W WO2019145708A1 WO 2019145708 A1 WO2019145708 A1 WO 2019145708A1 GB 2019050185 W GB2019050185 W GB 2019050185W WO 2019145708 A1 WO2019145708 A1 WO 2019145708A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- speech
- voice biometric
- speaker
- biometric process
- voice
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification techniques
- G10L17/06—Decision making techniques; Pattern matching strategies
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/30—Authentication, i.e. establishing the identity or authorisation of security principals
- G06F21/31—User authentication
- G06F21/32—User authentication using biometric data, e.g. fingerprints, iris scans or voiceprints
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification techniques
- G10L17/04—Training, enrolment or model building
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification techniques
- G10L17/18—Artificial neural networks; Connectionist approaches
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification techniques
- G10L17/22—Interactive procedures; Man-machine interfaces
- G10L17/24—Interactive procedures; Man-machine interfaces the user being prompted to utter a password or a predefined phrase
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L17/00—Speaker identification or verification techniques
- G10L17/26—Recognition of special voice characteristics, e.g. for use in lie detectors; Recognition of animal voices
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/03—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
- G10L25/18—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
Definitions
- Embodiments described herein relate to methods and devices for analysing speech signals.
- microphones which can be used to detect ambient sounds.
- the ambient sounds include the speech of one or more nearby speaker.
- Audio signals generated by the microphones can be used in many ways. For example, audio signals representing speech can be used as the input to a speech recognition system, allowing a user to control a device or system using spoken commands.
- a method of speaker identification comprising:
- the first voice biometric process makes an initial determination that the speech is the speech of an enrolled user, performing a second voice biometric process on the audio signal to attempt to identify whether the speech is the speech of the enrolled speaker,
- the second voice biometric process is selected to be more discriminative than the first voice biometric process.
- the second voice biometric process is configured to have a lower False Acceptance Rate than the first voice biometric process. In some embodiments, the second voice biometric process is configured to have a lower False Rejection Rate than the first voice biometric process.
- the second voice biometric process is configured to have a lower Equal Error Rate than the first voice biometric process.
- the first voice biometric process is selected as a relatively low power process compared to the second voice biometric process.
- the method comprises making a decision as to whether the speech is the speech of the enrolled speaker, based on a result of the second voice biometric process.
- the method comprises making a decision as to whether the speech is the speech of the enrolled speaker, based on a fusion of a result of the first voice biometric process and a result of the second voice biometric process.
- the first voice biometric process is selected from the following: a process based on analysing a long-term spectrum of the speech; a method using a Gaussian Mixture Model; a method using Mel Frequency Cepstral Coefficients; a method using Principal Component Analysis; a Joint Factor Analysis process; a Tied Mixture of Factor Analyzers process; a method using machine learning techniques such as Deep Neural Nets (DNNs) or Convolutional Neural Nets (CNNs); and a method using a Support Vector Machine.
- DNNs Deep Neural Nets
- CNNs Convolutional Neural Nets
- the second voice biometric process is selected from the following: a method using a Gaussian Mixture Model; a neural net process, a Joint Factor Analysis process; a Tied Mixture of Factor Analyzers process; a method using machine learning techniques such as Deep Neural Nets (DNNs) or Convolutional Neural Nets (CNNs); an x-vector process; and an i-vector process.
- a Gaussian Mixture Model a neural net process, a Joint Factor Analysis process
- Tied Mixture of Factor Analyzers process a method using machine learning techniques such as Deep Neural Nets (DNNs) or Convolutional Neural Nets (CNNs)
- DNNs Deep Neural Nets
- CNNs Convolutional Neural Nets
- the second voice biometric process is a different type of process from the first voice biometric process. That is, the first voice biometric process might be a process selected from the first list above, while the second voice biometric process might be a different process selected from the second list above.
- the first and second voice biometric processes might be the same type of process, but with the second voice biometric process configured to be more discriminative than the first.
- the first and second voice biometric processes might both use Gaussian Mixture Models, with the second process using more mixtures. More specifically, the first voice biometric process might be a 16 mixture Gaussian Mixture Model, while the second voice biometric process might be a 4096 mixture Gaussian Mixture Model.
- the first and second voice biometric processes might both use Deep Neural Nets, with the second process using more weights. In both of these cases, the second more discriminative process might be trained with more data.
- the first voice biometric process is performed in a first device and the second voice biometric process is performed in a second device remote from the first device.
- the first device may comprise a wearable device such as a headset device, a smart glasses device, a smart watch device.
- the second device may comprise a host device such as a mobile phone or tablet computer.
- the first device may be provided as part of a CODEC device or chip, or as part of a digital microphone device or chip.
- the second device may be provided as part of a central processor such as an applications processor, or as part of a dedicated biometrics processor device or chip.
- the first device may be provided as part of a CODEC device or chip, or as part of a digital microphone device or chip, within a product such as a mobile phone, tablet computer, smart speaker or home automation controller, while the second device is provided as part of a central processor such as an applications processor, or as part of a dedicated biometrics processor device or chip, within the same product.
- a first device configured to perform the first voice biometric process
- a second device configured to perform the second voice biometric process.
- the method comprises maintaining the second voice biometric process in a low power state, and activating the second voice biometric process if the first voice biometric process makes an initial determination that the speech is the speech of an enrolled user.
- the second biometric process is power-gated by the first biometric process. This can allow for the first biometric process to operate in a relatively low-power zone of a device, while the second biometric process may be provided in a relatively high-power zone of a device, e.g. within an applications processor or similar.
- the method comprises activating the second voice biometric process in response to an initial determination based on a partial completion of the first voice biometric process that the speech might be the speech of an enrolled user, and deactivating the second voice biometric process in response to a determination based on a completion of the first voice biometric process that the speech is not the speech of the enrolled user.
- the method comprises:
- the method comprises:
- the method comprises:
- the method comprises:
- the method comprises using an initial determination by the first voice biometric process, that the speech is the speech of an enrolled user, as an indication that the received audio signal comprises speech.
- the method comprises:
- the method comprises comparing a similarity score with a first threshold to determine whether the signal contains speech of an enrolled user, and comparing the similarity score with a second, lower, threshold to determine whether the signal contains speech.
- the method comprises determining that the signal contains human speech before it is possible to determine whether the signal contains speech of an enrolled user.
- the first voice biometric process is configured as an analog processing system
- the second voice biometric process is configured as a digital processing system
- a speaker identification system comprising: an input for receiving an audio signal representing speech;
- a first processor for performing a first voice biometric process on the audio signal to attempt to identify whether the speech is the speech of an enrolled speaker; and a second processor for performing a second voice biometric process on the audio signal to attempt to identify whether the speech is the speech of the enrolled speaker,
- the second voice biometric process is initiated if the first voice biometric process makes an initial determination that the speech is the speech of an enrolled user, and wherein the second voice biometric process is selected to be more discriminative than the first voice biometric process.
- the speaker identification system further comprises:
- a buffer for storing the received audio signal, and for supplying the stored received audio signal to the second voice biometric process if the first voice biometric process makes an initial determination that the speech is the speech of an enrolled user.
- the second voice biometric process is configured to have a lower False Acceptance Rate than the first voice biometric process.
- the second voice biometric process is configured to have a lower False Rejection Rate than the first voice biometric process.
- the second voice biometric process is configured to have a lower Equal Error Rate than the first voice biometric process.
- the first voice biometric process is selected as a relatively low power process compared to the second voice biometric process.
- the speaker identification system is configured for making a decision as to whether the speech is the speech of the enrolled speaker, based on a result of the second voice biometric process.
- the speaker identification system is configured for making a decision as to whether the speech is the speech of the enrolled speaker, based on a fusion of a result of the first voice biometric process and a result of the second voice biometric process.
- the first voice biometric process is selected from the following: a process based on analysing a long-term spectrum of the speech; a method using a Gaussian Mixture Model; a method using Mel Frequency Cepstral Coefficients; a method using Principal Component Analysis; a Joint Factor Analysis process; a Tied Mixture of Factor Analyzers process; a method using machine learning techniques such as Deep Neural Nets (DNNs) or Convolutional Neural Nets (CNNs); and a method using a Support Vector Machine.
- DNNs Deep Neural Nets
- CNNs Convolutional Neural Nets
- the second voice biometric process is selected from the following: a neural net process, a Joint Factor Analysis process; a Tied Mixture of Factor Analyzers process; a method using machine learning techniques such as Deep Neural Nets (DNNs) or Convolutional Neural Nets (CNNs); and an i-vector process or an x-vector process.
- a neural net process a Joint Factor Analysis process
- a Tied Mixture of Factor Analyzers process a method using machine learning techniques such as Deep Neural Nets (DNNs) or Convolutional Neural Nets (CNNs)
- DNNs Deep Neural Nets
- CNNs Convolutional Neural Nets
- the speaker identification system comprises:
- the first device includes the first processor
- the second device includes the second processor
- the first device comprises a first integrated circuit
- the second device comprises a second integrated circuit
- the first device comprises a dedicated biometrics integrated circuit.
- the first device is an accessory device.
- the first device is a listening device.
- the second device comprises an applications processor.
- the second device is a handset device.
- the second device is a smartphone.
- the speaker identification system comprises: a trigger phrase detector for attempting to detect a trigger phrase in the received audio signal,
- the first processor is responsive to the trigger phrase detector, and configured to perform the first voice biometric process on the received audio signal in response to detecting of a trigger phrase.
- the speaker identification system comprises:
- a voice activity detector for attempting to detect human speech in the received audio signal
- the first processor is responsive to the trigger phrase detector, and configured to perform the first voice biometric process on the received audio signal responsive to detecting of voice activity.
- the first processor is configured to receive the entire received audio signal for performing the first voice biometric process thereon.
- the first voice biometric process is configured as an analog processing system
- the second voice biometric process is configured as a digital processing system
- a first device as defined above, comprising said first processor.
- a second device as defined above, comprising said second processor.
- a device comprising at least a part of such a system.
- the device may comprise a mobile telephone, an audio player, a video player, a mobile computing platform, a games device, a remote controller device, a toy, a machine, or a home automation controller or a domestic appliance.
- a processor integrated circuit for use in a speaker identification system, the processor integrated circuit comprising: an input for receiving an audio signal representing speech;
- a first processor for performing a first voice biometric process on the audio signal to attempt to identify whether the speech is the speech of an enrolled speaker; and an output, for providing the audio signal to a separate device if the first voice biometric process makes an initial determination that the speech is the speech of an enrolled user.
- the processor integrated circuit further comprises:
- a buffer for storing the received audio signal, and for supplying the stored received audio signal to the output if the first voice biometric process makes an initial determination that the speech is the speech of an enrolled user.
- the first voice biometric process is selected from the following: a process based on analysing a long-term spectrum of the speech; a method using a Gaussian Mixture Model; a method using Mel Frequency Cepstral Coefficients; a method using Principal Component Analysis; a method using machine learning techniques such as Deep Neural Nets (DNNs); and a method using a Support Vector Machine.
- the first voice biometric process is configured as an analog processing system.
- the processor integrated circuit further comprises an anti spoofing block, for performing one or more tests on the received signal to determine whether the received signal has properties that may indicate that it results from a replay attack.
- the first processor, or the device performing the first voice biometric process on the audio signal is configured to perform a spoof detection process on the audio signal, to identify if the audio signal is the result of a replay attack,
- the spoof detection process comprises a relatively low-power spoof detection process.
- the spoof detection process involves analysing the received audio signal to detect low-frequency power levels (for example the power levels at frequencies below 100Hz). If the low-frequency power levels are below a threshold level, this may indicate that the received audio signal is a result of detecting sound resulting from playing a signal through a loudspeaker rather than speech generated by a live person. The received audio signal may then be flagged as a spoof.
- a processor integrated circuit for use in a speaker identification system, the processor integrated circuit comprising:
- a second processor for performing a second voice biometric process on the audio signal to attempt to identify whether the speech is the speech of the enrolled speaker, wherein the second voice biometric process is initiated if a first voice biometric process performed on a separate device makes an initial determination that the speech is the speech of an enrolled user, and
- the second voice biometric process is selected to be more discriminative than the first voice biometric process.
- the processor integrated circuit comprises a decision block, for making a decision as to whether the speech is the speech of the enrolled speaker, based on a result of the second voice biometric process.
- the processor integrated circuit comprises a decision block, for making a decision as to whether the speech is the speech of the enrolled speaker, based on a fusion of a result of the first voice biometric process performed on the separate device and a result of the second voice biometric process.
- the second voice biometric process is selected from the following: a neural net process, a Joint Factor Analysis process; a Tied Mixture of Factor Analyzers process; and an i-vector process.
- the second device comprises an applications processor.
- a computer program product comprising a computer-readable tangible medium, and instructions for performing a method according to the first aspect.
- a non-transitory computer readable storage medium having computer-executable instructions stored thereon that, when executed by processor circuitry, cause the processor circuitry to perform a method according to the first aspect.
- a method of voice activity detection comprising performing at least a part of a voice biometric process suitable for determining whether a signal contains speech of an enrolled user, and generating an output signal when it is determined that the signal contains human speech.
- the method may comprise comparing a similarity score with a first threshold to determine whether the signal contains speech of an enrolled user, and comparing the similarity score with a second, lower, threshold to determine whether the signal contains speech.
- the method may comprise determining that the signal contains human speech before it is possible to determine whether the signal contains speech of an enrolled user.
- a speaker verification method to provide a speaker verification output comprising the steps of:
- the speaker verification process configured to output:
- received speech is a particular acoustic class; performing an audio validation process on the received audio to generate an output that the received audio is valid or invalid, wherein the audio validation process is based at least in part on the sound classification from the speaker verification process; and
- Gating the speaker verification output by using an audio validity check to confirm that the received audio is valid ensures that the speaker verification result is only used for audio which is not from a replay attack or a spoof attack, and additionally or alternatively, ensures that the received audio used in the speaker verification is from the same speaker, and is not from a combative or tail-gating attack.
- the speaker verification method may output an indication that the received audio is spoken by an identified speaker.
- a predefined condition e.g. a speaker probability score or log likelihood ratio exceeds a predefined probability threshold, or a speaker distance score is beneath a predefined distance threshold
- the speaker verification output comprises an indication that the received audio is spoken by an identified speaker, based on the speaker ID score output by the speaker verification process. It will be understood that if the speaker ID score satisfies a predefined condition, e.g. a speaker probability score exceeds a predefined probability threshold or log likelihood ratio, or a speaker distance score is beneath a predefined distance threshold, accordingly the method may generate the speaker verification output based on the satisfied condition.
- a predefined condition e.g. a speaker probability score exceeds a predefined probability threshold or log likelihood ratio, or a speaker distance score is beneath a predefined distance threshold
- the speaker ID score output by the speaker verification process may be provided as the speaker verification output for the method. It will be further understood that such an indication of an identified speaker may be output in combination with the speaker ID score.
- the sound classification will be understood as an indication of the acoustic classes present in received audio, for example sound mixtures, phonemes, phones, senones, etc.
- the audio validation process is additionally based at least in part on the speaker ID score from the speaker verification process.
- the step of performing an audio validation process comprises:
- AS anti-spoofing
- the anti-spoofing process comprises determining the probability of a replay attack or a presentation attack on the speaker verification method.
- the anti-spoofing process may comprise:
- a loudspeaker-detection-based anti-spoofing system such as those described in co-pending US patent application numbers 62/571959, 62/585721 , 62/585660, 62/571978, 16/017072, the contents of which are incorporated by reference herein.
- the outputs of such different anti-spoofing processes may be combined or fused to provide an anti-spoofing decision.
- the output values of the different processes may be provided with different weights to account for such factors as the usage situations or environment, device characteristics, etc.
- the step of performing an audio validation process comprises:
- SCD speaker change detection
- the SCD process is based on a time-windowed speaker ID score, such as that described in co-pending US patent application number 16/122033, the contents of which are incorporated by reference herein.
- the SCD process may be performed on statistics derived from a frame-by-frame scoring of the received audio.
- the SCD process may comprise:
- any other suitable speaker change detection method such as that described in (Ajmera, Jitendra & Mccowan, lain & Bourlard, Herve. (2004). Robust Speaker Change Detection. Signal Processing Letters, IEEE. 11. 649 - 651. 10.1109/LSP.2004.831666).
- the SCD process defines accurate boundaries for the processing of the received audio, and prevents exploitation of the speaker verification method by combative or tail- gating attacks.
- the outputs of such different SCD processes may be combined or fused to provide an SCD decision.
- the output values of the different processes may be provided with different weights to account for such factors as the usage situations or environment, device characteristics, etc.
- the output of the SCD process may be used as an input to the speaker verification process, wherein the output of the SCD process defines that portion of the received audio on which a speaker verification process should be performed. For example, if the SCD process analyses speaker scores on a frame-by- frame basis to determine the point of speaker change, then the SCD output may define the total range of frames to process to determine the final speaker ID score, as it has been determined that all of those frames are spoken by the same speaker.
- the method further comprises the steps of:
- Such additional processing may comprise speech recognition of the received audio for use in command processing, or the received audio may be processed using a more discriminative speaker recognition process, for example for relatively high security operations.
- the step of performing a speaker recognition process comprises:
- the different speaker recognition processes are selected to have low correlation between the approaches, so that the fusion of the respective speaker recognition scores provides an improved or more accurate speaker ID score, due to the low cross-correlation between the processes used.
- the speaker recognition processes comprises one or more of the following: a Gaussian Mixture Model (GMM) based approach;
- GMM Gaussian Mixture Model
- JFA Joint Factor Analysis
- ML-DNN machine learning or deep neural net based process
- the step of performing a speaker recognition process comprises the steps of:
- the scoring may comprise a distance calculation, probability metrics, a log likelihood ratio, or any suitable scoring technique for use in speaker recognition, for example as described in“Fundamentals of Speaker Recognition,” Homayoon Beigi. ISBN: 978-0- 387-77592-0.
- the method comprises the step of:
- the step of performing a speaker recognition process is performed responsive to receipt of a trigger signal, for example a keyword detection.
- the method comprises the step of monitoring for a trigger signal, for example performing a voice keyword detection process.
- the step of performing a speaker recognition process is performed continuously for all received audio.
- the method comprises the step of generating an output from the speaker verification process responsive to a trigger detection, such as a keyword detect.
- the step of gating the output of the speaker verification process is based on or responsive to a trigger detection, such as a keyword detect.
- the use of such a two-stage biometrics scoring system allows for the primary biometrics scoring to be a relatively low-power and/or always-on solution, while the secondary biometrics scoring may be a relatively high-power and/or occasionally triggered solution, or a solution power-gated by the primary biometrics scoring.
- the second speaker ID score may be output as a simple flag to identify the notionally verified speaker, or the second speaker ID score may be output as a probability value or a distance metric as appropriate. Further details on an appropriate method incorporating such primary and secondary biometrics scoring may be found in co pending US patent application number 15/877660, the contents of which are incorporated by reference herein.
- the primary biometrics scoring may be performed as part of a relatively low power system, e.g. an always-on system.
- the method comprises the step of fusing the speaker ID score from the primary biometrics scoring with the second speaker ID score of the secondary biometrics scoring to provide a speaker authentication result.
- the speaker recognition method is configured such that:
- the primary biometrics scoring is selected to have a relatively high False Acceptance Rate (FAR), and a relatively low False Rejection Rate (FRR).
- FAR False Acceptance Rate
- FRR False Rejection Rate
- the secondary biometrics scoring is selected to have a relatively low FAR.
- a speaker verification system to provide a speaker verification output, the system comprising:
- a speaker verification module coupled with the input, the speaker verification module arranged to process the audio signal to provide:
- received speech is a particular acoustic class
- an audio validation module coupled with the input and the speaker verification module, the audio validation module arranged to generate an output that the received audio is valid or invalid, the output based at least in part on the sound classification provided by the speaker verification module; and a gating module configured to gate the output of the speaker verification module based on the output of the audio validation module, such that the speaker verification system only provides a speaker verification output for valid received audio.
- a multi-stage speaker verification system comprising:
- a first device including a first processor, the first device comprising the above- described speaker verification system, the first device arranged to provide a first speaker verification output based on the received audio signal;
- a second device including a second processor, the second device coupled with the first device, the second device configured to perform a secondary biometrics scoring based on the received audio signal to provide a second speaker verification output, the secondary biometrics scoring performed responsive to the receipt of a first speaker verification output from the first device,
- the secondary biometrics scoring is selected to be more discriminative than, different to, or more accurate than the primary biometrics scoring.
- the system further comprises a fusion module, wherein the fusion module is arranged to fuse the first speaker verification output and the second speaker verification output to provide a fused speaker verification output.
- the first device is provided as a first integrated circuit
- the second device is provided as a second integrated circuit.
- the first device may be provided as part of a CODEC device or chip, or as part of a digital microphone device or chip.
- the first biometrics process can be performed on the audio as it is received by the system, and can reduce the risk of distortion of audio due to conversion losses, bandwidth restrictions, etc., and/or reduce the risk of malicious attacks on the audio stream by reducing the possible attack vectors between the point where the audio is received and where the first biometric process is performed.
- the second device may be provided as part of a central processor such as an applications processor, or as part of a dedicated biometrics processor device or chip.
- the first device is provided as a relatively low-power, always-on device, and the second device is provided as a relatively high-power, occasionally triggered device, preferably power-gated by the first device.
- the first and second devices are communicatively coupled.
- the first and second devices are provided as elements of the same system, e.g.
- the first device may be communicatively coupled with second device, at least in part via a wireless connection.
- the first device may be provided in a headset system wirelessly coupled with the second device provided in a host system such as a mobile phone.
- the first device of the multi-stage speaker verification system wherein the first device is provided with an output for wired or wireless connection to the second device.
- the second device of the multi stage speaker verification system wherein the second device is provided with an input for wired or wireless connection to the first device.
- the first voice biometric process may be replaced by any other suitable biometric process, for example an ear biometric process. It will be understood that the above details may equally apply to embodiments wherein the first voice biometric process is replaced by any other suitable biometric process.
- a method of user identification comprising:
- the ear biometric process may be used to power gate the voice biometric process.
- the ear biometric process will be different to the voice biometric process, thereby providing individual discriminative results.
- the outputs of the ear biometric process and the voice biometric process can be combined or fused to provide an output to identify a user.
- the ear biometric process may be performed in a device such as a headset or earphone, with the voice biometric process performed in the same device, or in a coupled host device, e.g. a mobile phone handset.
- the ear biometric process and the voice biometric process may be performed in the same host device, e.g. a mobile phone handset.
- the first acoustic signal may comprise an ultrasonic audio signal (for example in the region from 18kHz - 48kHz) and/or an audible audio signal.
- an ultrasonic audio signal for example in the region from 18kHz - 48kHz
- an audible audio signal for example in the region from 18kHz - 48kHz
- An example of a system having both ear and voice biometric processes, and additionally where the outputs of such processes are fused, may be found in co-pending US patent application number 16/118950, the contents of which are incorporated by reference herein.
- the voice biometric process is selected to be more discriminative than the ear biometric process.
- this may include that the voice biometric process is more accurate, or requires more processing resources to provide a more accurate result.
- a system for user identification comprising:
- a first device including a first processor, the first device configured to receive a first acoustic signal representing an acoustic response received proximate a user’s ear, and further configured to perform an ear biometric process on the first acoustic signal to attempt to identify whether the acoustic response is indicative of the ear of an enrolled user to provide a first user verification output;
- a second device including a second processor, the second device coupled with the first device, the second device configured to receive a second audio signal representing speech, and further configured to perform a voice biometrics process based on the second audio signal to provide a second user verification output, the voice biometrics scoring performed responsive to the receipt of a first user verification output from the first device,
- voice biometrics scoring is selected to be different to the ear biometrics scoring.
- the method further comprises the steps of:
- the second biometric process can be speculatively initiated before the first biometric process makes a further or final determination as to whether the speech is the speech of an enrolled user.
- the second biometric process By speculatively initiating the second process, accordingly there is a corresponding reduction in the overall system latency.
- the system is arranged such that: the first device including the first processor is configured to continue to perform the first voice biometric process on the audio signal after the initial determination, to provide a further determination whether the speech is the speech of an enrolled user; and
- second device including the second processor is configured such that the output of the second voice biometric process is gated by the further determination of the first voice biometric process.
- Figure 1 illustrates an example smartphone.
- Figure 2 is an example schematic diagram, illustrating the form of the smartphone.
- Figure 3 is an example flow chart illustrating a method of analysing an audio signal
- Figure 4 is an example block diagram illustrating a system for analysing an audio signal
- Figure 5 is an example block diagram illustrating an alternative system for analysing an audio signal
- Figure 6 is an example block diagram illustrating an alternative system for analysing an audio signal
- Figure 7 illustrates an example use of the method of Figure 3
- Figure 8 illustrates a second example use of the method of Figure 3
- Figure 9 is an example block diagram illustrating a further system for analysing an audio signal
- Figure 10 is an example block diagram illustrating a further system for analysing an audio signal
- Figure 11 is an example block diagram illustrating a further system for analysing an audio signal
- Figure 12 is an example block diagram illustrating a preferred implementation of the invention
- Figure 13 is an example block diagram illustrating an embodiment of a first portion of the system of Figure 12;
- Figure 14 is an example block diagram illustrating an embodiment of a second portion of the system of Figure 12;
- Figure 15 is an example block diagram illustrating an embodiment of a third portion of the system of Figure 12;
- Figure 16 is an example flow chart illustrating an embodiment of a method
- Figure 17 is an example plot of the system outputs for a sequential speaker verification system and for a speculative-initiation speaker verification system
- Figure 18 illustrates an embodiment of a system in accordance with another embodiment
- Figure 19 illustrates an embodiment of a system in accordance with another embodiment.
- Figure 1 illustrates one example of a device in which the system may be embodied, namely a smartphone 10, having a microphone 12 for detecting ambient sounds.
- the microphone is of course used for detecting the speech of a user who is holding the smartphone 10 close to their face.
- FIG. 2 is a schematic diagram, illustrating the form of the smartphone 10.
- Figure 2 shows various interconnected components of the smartphone 10. It will be appreciated that the smartphone 10 will in practice contain many other components, but the following description is sufficient for an understanding of embodiments of the present disclosure.
- Figure 2 shows the microphone 12 mentioned above.
- the smartphone 10 is provided with multiple microphones 12, 12a, 12b, etc.
- Figure 2 also shows a memory 14, which may in practice be provided as a single component or as multiple components.
- the memory 14 is provided for storing data and program instructions.
- FIG. 2 also shows a processor 16, which again may in practice be provided as a single component or as multiple components.
- a processor 16 may be an applications processor of the smartphone 10.
- FIG. 2 also shows a transceiver 18, which is provided for allowing the smartphone 10 to communicate with external networks.
- the transceiver 18 may include circuitry for establishing an internet connection either over a WiFi local area network or over a cellular network.
- FIG 2 also shows audio processing circuitry 20, for performing operations on the audio signals detected by the microphone 12 as required.
- the audio processing circuitry 20 may filter the audio signals or perform other signal processing operations.
- the smartphone 10 is provided with voice biometric functionality, and with control functionality.
- the smartphone 10 is able to perform various functions in response to spoken commands from an enrolled user.
- the biometric functionality is able to distinguish between spoken commands from the enrolled user, and the same commands when spoken by a different person.
- certain embodiments of the present disclosure relate to operation of a smartphone or another portable electronic device with some sort of voice operability, for example a tablet or laptop computer, a games console, a home control system, a home entertainment system, an in-vehicle entertainment system, a domestic appliance, or the like, in which the voice biometric functionality is performed in the device that is intended to carry out the spoken command.
- Certain other embodiments relate to systems in which the voice biometric functionality is performed on a smartphone or other device, which then transmits the commands to a separate device if the voice biometric functionality is able to confirm that the speaker was the enrolled user.
- the spoken commands are transmitted using the transceiver 18 to a remote speech recognition system, which determines the meaning of the spoken commands.
- the speech recognition system may be located on one or more remote server in a cloud computing environment. Signals based on the meaning of the spoken commands are then returned to the smartphone 10 or other local device.
- a first part of the voice biometric functionality is performed on the smartphone 10 or other device that is located close to the user. Then, as described in more detail below, a signal may be transmitted using the transceiver 18 to a remote system, which performs a second part of the voice biometric functionality.
- the speech recognition system may be located on one or more remote server in a cloud computing environment. Signals based on the meaning of the spoken commands are then returned to the smartphone 10 or other local device. Methods described herein proceed from the recognition that different parts of a user’s speech have different properties.
- speech can be divided into voiced sounds and unvoiced or voiceless sounds.
- a voiced sound is one in which the vocal cords of the speaker vibrate, and a voiceless sound is one in which they do not.
- voiced and unvoiced sounds have different frequency properties, and that these different frequency properties can be used to obtain useful information about the speech signal.
- Figure 3 is a flow chart, illustrating a method of analysing an audio signal
- Figures 4 and 5 are block diagrams illustrating functional blocks in the analysis system.
- an audio signal which is expected to contain speech, is generated by a microphone 12 of the system shown in Figures 4 and 5, in response to the detected sound.
- the microphone 12 may be provided by any suitable audio transceiver capable of providing an audio signal in response to detected sound.
- this may comprise a loudspeaker configured to operate as a microphone, a surface audio transceiver configured to receive sound, etc.
- the audio signal may for example be expected to contain the speech of a specific speaker, who has previously enrolled in the speaker recognition system.
- the aim of the method may be to determine whether the person speaking is indeed the enrolled speaker, in order to determine whether any commands that are spoken by that person should be acted upon.
- the signal generated by the microphone 12 is passed to a pre-processing block 80.
- the signal received from the microphone 12 is an analog signal
- the pre processing block 80 includes an analog-digital converter, for converting the signal into a digital form.
- the received signal may be divided into frames, which may for example have lengths in the range of 10-100 ms, and then passed to a voice activity detection block. Frames that are considered to contain speech are then output from the pre-processing block 80. In other embodiments, different acoustic classes of speech are considered. In that case, for example, frames that are considered to contain voiced speech are output from the pre-processing block 80.
- the speech processing system is a trigger-dependent system.
- the frames that are considered to contain voiced speech are then output from the pre-processing block 80 only when that trigger phrase has been detected.
- a voice activity detection step if voice activity is detected, a voice keyword detection (trigger phrase detection) process is initiated; and the audio signal is output from the pre-processing block 80 only if voice activity is detected and if the keyword (trigger phrase) is detected.
- the speech processing system does not rely on the use of a trigger phrase. In such cases, all frames that are considered to contain voiced speech are output from the pre-processing block 80.
- the signal output from the pre-processing block 80 is passed to a first voice biometric block (Vbid) 82 and, in step 62 of the process shown in Figure 3, a first voice biometric process is performed on the audio signal.
- Vbid voice biometric block
- the process passes to step 66, and ends. Any speech thereafter may be disregarded, until such time as there is evidence that a different person has started speaking.
- the signal output from the pre-processing block 80 is also passed to a buffer 83, the output of which is connected to a second voice biometric block (Vbio2) 84. If, in step 64 of the process shown in Figure 3, the first voice biometric process has made a provisional or initial determination that the speech might be the speech of the enrolled speaker, the second voice biometric block 84 is activated.
- Vbio2 voice biometric block
- a second voice biometric process is performed on the audio signal that was stored in the buffer 83. Again, this second biometric process attempts to identify whether the speech is the speech of an enrolled speaker.
- the second voice biometric process performed in step 68 is selected to be more discriminative than the first voice biometric process performed in step 62.
- the term“more discriminative” may mean that the second voice biometric process is configured to have a lower False Acceptance Rate (FAR), a lower False Rejection Rate (FRR), or a lower Equal Error Rate (EER) than the first voice biometric process.
- FAR False Acceptance Rate
- FRR False Rejection Rate
- EER Equal Error Rate
- the first voice biometric process performed in the first voice biometric block 82 is configured to have a relatively high False Acceptance Rate (FAR), and a relatively low False Rejection Rate (FRR), while the second voice biometric process performed in the second voice biometric block 84 is configured to have a relatively low FAR.
- FAR False Acceptance Rate
- FRR False Rejection Rate
- the first voice biometric process performed in the first voice biometric block 82 may be configured to have a FAR of greater than 5%, for example 8-12%, and specifically 10%; and may be configured to have a FRR of less than 3%, for example 0.5-2%, and specifically 1 %.
- the second voice biometric process performed in the second voice biometric block 84 may be configured to have a FAR of less than 0.1%, for example 0.005-0.05%, and specifically 0.01 % (1/10000); and may be configured to have a FRR of greater than 3%, for example 3- 8%, and specifically 5%.
- the first voice biometric process may be selected as a relatively low power, and/or less computationally expensive, process, compared to the second voice biometric process.
- the first voice biometric process may be running on all detected speech, while the higher power and/or more computationally expensive second voice biometric process may be maintained in a low power or inactive state, and activated only when the first process already suggests that there is a high probability that the speech is the speech of the enrolled speaker.
- the first voice biometric process may be used without using a voice activity detection block in the pre-processing block 80. In those embodiments, all frames (or all frames that are considered to contain a noticeable signal level) are output from the pre-processing block 80.
- the first voice biometric process is such that it is considered more preferable to run the first voice biometric process on the entire audio signal than to run a dedicated voice activity detector on the entire audio signal and then run the first voice biometric process on the frames of the audio signal that contain speech.
- the second voice biometric block 84 is activated when the first voice biometric process has completed, and has made a provisional or initial determination based on the whole of a speech segment that the speech might be the speech of the enrolled speaker.
- the second voice biometric block 84 is activated before the first voice biometric process has completed.
- the provisional or initial determination may be based on an initial part of a speech segment or alternatively may be based on a partial calculation relating to the whole of a speech segment.
- the second voice biometric block 84 is deactivated if the final determination by the first voice biometric process is that there is a relatively low probability the speech is the speech of the enrolled speaker.
- the first voice biometric process may be a voice biometric process selected from a group comprising: a process based on analysing a long-term spectrum of the speech, as described in UK Patent Application No. 1719734.4; a method using a simple Gaussian Mixture Model (GMM); a method using Mel Frequency Cepstral Coefficients (MFCC); a method using Principle Component Analysis (PCA); a Joint Factor Analysis process; a Tied Mixture of Factor Analyzers process; a method using machine learning techniques such as Deep Neural Nets (DNNs) or Convolutional Neural Nets (CNNs); and a method using a Support Vector Machine (SVM), amongst others.
- GMM Gaussian Mixture Model
- MFCC Mel Frequency Cepstral Coefficients
- PCA Principle Component Analysis
- Joint Factor Analysis process a Tied Mixture of Factor Analyzers process
- DNNs Deep Neural Nets
- CNNs Convolutional Neural Nets
- the second voice biometric process may be a voice biometric process selected from a group comprising: a neural net (NN) process; a Joint Factor Analysis (JFA) process; a Tied Mixture of Factor Analyzers (TMFA); a method using machine learning techniques such as Deep Neural Nets (DNNs) or Convolutional Neural Nets (CNNs); and an i-vector process or an x-vector process, amongst others.
- NN neural net
- JFA Joint Factor Analysis
- TMFA Tied Mixture of Factor Analyzers
- DNNs Deep Neural Nets
- CNNs Convolutional Neural Nets
- i-vector process or an x-vector process amongst others.
- the first and second voice biometric processes might be the same type of process, but with the second voice biometric process configured to be more discriminative than the first.
- the first and second voice biometric processes might both use Gaussian Mixture Models, with the second process using more mixtures. More specifically, the first voice biometric process might be a 16 mixture Gaussian Mixture Model, while the second voice biometric process might be a 4096 mixture Gaussian Mixture Model.
- the first and second voice biometric processes might both use Deep Neural Nets, with the second process using more weights. In both of these cases, the second more discriminative process might be trained with more data.
- the first voice biometric process may be configured as an analog processing biometric system, with the second voice biometric process configured as a digital processing biometric system.
- Figure 6 is a block diagram illustrating functional blocks in the analysis system in that case.
- an audio signal which is expected to contain speech, is generated by a microphone 12 in response to the detected sound.
- the audio signal may for example be expected to contain the speech of a specific speaker, who has previously enrolled in the speaker recognition system.
- the aim of the method may be to determine whether the person speaking is indeed the enrolled speaker, in order to determine whether any commands that are spoken by that person should be acted upon.
- the signal generated by the microphone 12 is passed to a first voice biometric block, which in this embodiment is an analog processing circuit (VbidA) 120, that is a computing circuit constructed using resistors, inductors, op amps, etc.
- VbidA analog processing circuit
- This performs a first voice biometric process on the audio signal. As is conventional for a voice biometric process, this attempts to identify, as in step 64 of the process shown in Figure 3, whether the speech is the speech of an enrolled speaker.
- the process ends. Any speech thereafter may be disregarded, until such time as there is evidence that a different person has started speaking.
- the signal generated by the microphone 12 is passed to a pre-processing block, which includes at least an analog-digital converter (ADC) 122, for converting the signal into a digital form.
- ADC analog-digital converter
- the pre-processing block may also divide the received signal into frames, which may for example have lengths in the range of 10-100 ms.
- the signal output from the pre-processing block including the analog-digital converter 122 is passed to a buffer 124, the output of which is connected to a second voice biometric block (Vbio2) 84. If the first voice biometric process makes a provisional or initial determination that the speech might be the speech of the enrolled speaker, the second voice biometric block 84 is activated, and the relevant part of the data stored in the buffer 124 is output to the second voice biometric block 84.
- Vbio2 voice biometric block
- a second voice biometric process is performed on the relevant part of the audio signal that was stored in the buffer 124. Again, this second biometric process attempts to identify whether the speech is the speech of an enrolled speaker.
- the second voice biometric process is selected to be more discriminative than the first voice biometric process.
- the term“more discriminative” may mean that the second voice biometric process is configured to have a lower False Acceptance Rate (FAR), a lower False Rejection Rate (FRR), or a lower Equal Error Rate (EER) than the first voice biometric process.
- FAR False Acceptance Rate
- FRR False Rejection Rate
- EER Equal Error Rate
- the analog first voice biometric process will typically use analog computing circuitry, and will therefore typically be a relatively low power process, compared to the second voice biometric process. This means that the first voice biometric process can be running on all signals that are considered to contain a noticeable signal level, without the need for a separate voice activity detector.
- the second voice biometric block 84 is activated when the first voice biometric process has completed, and has made a provisional or initial determination based on the whole of a speech segment that the speech might be the speech of the enrolled speaker.
- the second voice biometric block 84 is activated before the first voice biometric process has completed.
- the provisional or initial determination can be based on an initial part of a speech segment or alternatively can be based on a partial calculation relating to the whole of a speech segment.
- the second voice biometric block 84 is deactivated if the final determination by the first voice biometric process is that there is a relatively low probability the speech is the speech of the enrolled speaker.
- the second voice biometric process may be a voice biometric process selected from a group comprising: a neural net (NN) process; a Joint Factor Analysis (JFA) process; a Tied Mixture of Factor Analyzers (TMFA); a method using machine learning techniques such as Deep Neural Nets (DNNs) or Convolutional Neural Nets (CNNs); and an i-vector process or an x-vector process, amongst others.
- NN neural net
- JFA Joint Factor Analysis
- TMFA Tied Mixture of Factor Analyzers
- DNNs Deep Neural Nets
- CNNs Convolutional Neural Nets
- i-vector process or an x-vector process amongst others.
- the first voice biometric process makes an initial attempt to identify whether the speech is the speech of the enrolled speaker. If that process determines that there is a sufficiently high probability that the speech is the speech of the enrolled speaker, the second voice biometric process makes an attempt to identify whether the speech is the speech of the enrolled speaker.
- the output from the second voice biometric process 84 is passed to a decision block 86, which decides whether to accept that the speech is the speech of the enrolled speaker.
- the second voice biometric process 84 may generate a likelihood score, and the decision block 86 may compare this with a threshold value, with that threshold value potentially being set based on a required security level.
- the threshold value may be set to be low, ensuring a low False Rejection Rate but with an increased False
- the threshold value may be set to be high, ensuring a low False Acceptance Rate, but with an increased False Rejection Rate.
- the second voice biometric process 84 may be a relatively computationally expensive process, so that in any event the combination of the False Acceptance Rate and the False Rejection Rate (or the Equal Error Rate) is better than can be obtained from the first voice biometric process.
- the outputs from the first voice biometric process 82, 120 and from the second voice biometric process 84 are both passed to a fusion and decision block 90.
- this signal may be passed to an analog-digital converter (ADC) 126 to put the signal into a digital form before passing it to the fusion and decision block 90.
- ADC analog-digital converter
- the fusion and decision block 90 combines the scores from the two processes and decides whether to accept that the speech is the speech of the enrolled speaker.
- the combined score ST may be a weighted sum of these two scores, i.e. :
- the fusion and decision block 90 may combine the decisions from the two processes and decide whether to accept that the speech is the speech of the enrolled speaker.
- the fusion and decision block 90 may then decide to accept that the speech is the speech of the enrolled speaker if both of the scores exceeds the respective threshold.
- the first and second voice biometric processes may both be performed in a device such as the smartphone 10. However, in other examples, the first and second voice biometric processes may be performed in separate devices.
- the first voice biometric process may be performed in a device such as the smartphone 10. Then, the received audio signal may be transmitted over a network 100 to a remote device (for example a cloud-based biometric processor 102) using the transceiver 18 only in the event that the first voice biometric process has made a provisional or initial determination that the speech might be the speech of the enrolled speaker. The second voice biometric process may then be performed in the remote device 102.
- a remote device for example a cloud-based biometric processor 102
- the second voice biometric process may then be performed in the remote device 102.
- an accessory such as a headset 110 or other listening device such as a pair of earbuds, may be in use in conjunction with a device such as the smartphone 10.
- the first voice biometric processes may be performed in the accessory device such as the headset 110.
- the received audio signal may be transmitted to the smartphone 10 only in the event that the first voice biometric process has made a provisional or initial determination that the speech might be the speech of the enrolled speaker.
- the second voice biometric processes may then be performed in the smartphone 10.
- wireless transmission circuitry in the accessory device may be activated, to transmit data to the host device, only when it is determined in the accessory device that the speech might be that of the enrolled speaker.
- the accessory device may for example comprise a wearable device such as a headset device, a smart glasses device, or a smart watch device.
- the host device may comprise a device such as a mobile phone or tablet computer.
- the first voice biometric process can be performed in a first device, which may be a wearable device, while the second voice biometric process can be performed in a second device, which may be a different wearable device.
- a first device such as a headset
- the second voice biometric process is performed in a second device such as a watch
- the second device has greater onboard battery power and/or greater onboard computing power
- the first voice biometric process might itself be divided between two accessory devices.
- a first component of the first voice biometric process can be performed in a first accessory device, which may be a wearable device such as a headset, while a second component of the first voice biometric process can be performed in a second accessory device, which may be a different wearable device.
- the results of the first and second components of the first voice biometric process can be fused or combined, to produce a result, with a received audio signal being transmitted to the smartphone 10 only in the event that the combined result of the first voice biometric process leads to a provisional or initial determination that the speech might be the speech of the enrolled speaker.
- first and second voice biometric processes are both performed in a device such as the smartphone 10, they may be performed in separate integrated circuits.
- Figure 9 shows one example of separated integrated circuits.
- Figure 9 corresponds generally to Figure 4, but shows that the pre-processing block 80, the first voice biometric process 82, and the buffer 83 are provided on a first integrated circuit 140, for example a dedicated low-power biometrics chip.
- This chip may operate in an“always on” manner, such that all received signals are passed to the first biometric process 82.
- the first biometric process 82 may act as a voice activity detector.
- the first biometric process 82 may be activated in response to a voice activity detector (either within the pre-processing block 80 or separate from the first integrated circuit 140) determining that the signal contains speech.
- a voice activity detector either within the pre-processing block 80 or separate from the first integrated circuit 140
- the first integrated circuit may be a codec, or may be part of a digital microphone device or chip, or a smart codec or speaker amplifier chip.
- the first integrated circuit 140 may contain an anti-spoofing block 142, for performing one or more tests on the received signal to determine whether the received signal has properties that may indicate that it results not from the user speaking into the device, but from a replay attack where a recording of the enrolled user’s voice is used to try and gain illicit access to the system. If the output of the anti-spoofing block 142 indicates that the received signal may result from a replay attack, then this output may be used to prevent the second voice biometric process being activated, or may be used to gate the output from the first integrated circuit 140. Alternatively, the output of the anti-spoofing block 142 may be passed to the decision block 86 for its use in making its decision on whether to act on the spoken input. It will be understood that the anti-spoofing block 142 may be arranged to perform a plurality of separate anti spoofing processes, as described below, the outputs of which may be fused together into a single anti-spoofing output.
- the second voice biometric process 84 and the decision block 86 are provided on a second integrated circuit 144, for example a high-power, high- performance chip, such as the applications processor or other processor of the smartphone, or a dedicated biometrics processor device or chip.
- a second integrated circuit 144 for example a high-power, high- performance chip, such as the applications processor or other processor of the smartphone, or a dedicated biometrics processor device or chip.
- Figure 10 shows another example of separated integrated circuits.
- the pre-processing block 80, the first voice biometric process 82, and the buffer 83 are provided on a first integrated circuit 150, for example a dedicated low-power biometrics chip.
- This chip may operate in an “always on” manner, such that all received signals are passed to the first biometric process 82.
- the first biometric process 82 may act as a voice activity detector.
- the first biometric process 82 may be activated in response to a voice activity detector (either within the pre-processing block 80 or separate from the first integrated circuit 150) determining that the signal contains speech.
- the first integrated circuit 150 may contain an anti-spoofing block 142, for performing one or more tests on the received signal to determine whether the received signal has properties that may indicate that it results not from the user speaking into the device, but from a replay attack where a recording of the enrolled user’s voice is used to try and gain illicit access to the system. If the output of the anti-spoofing block 142 indicates that the received signal may result from a replay attack, then this output may be used to prevent the second voice biometric process being activated, or may be passed to the fusion and decision block 90 for its use in making its decision on whether to act on the spoken input.
- the second voice biometric process 84 and the fusion and decision block 90 are provided on a second integrated circuit 152, for example a high-power, high- performance chip, such as the applications processor of the smartphone.
- the pre-processing block 80 is used to output a framed or sampled digital signal for further processing, it will be understood that the pre-processing block 80 may additionally or alternatively be configured to output a continuous digital signal, and/or an analog signal from the microphone 12. It will be understood that the pre-processing block 80 may be configured to provide different output signals to different downstream processing modules. For example, the pre processing block 80 may provide the first voice biometric process 82 with a framed digital signal, and in parallel provide the anti-spoofing block 142 with a streamed continuous analog or digital signal for anti-spoof processing.
- Figure 11 shows another example of this division of the functionality.
- Figure 11 corresponds generally to Figure 6, but shows that the analog first voice biometric process 120, the analog-digital converters (ADCs) 122, 126, and the buffer 124 are provided on a first integrated circuit 160, for example a dedicated low-power biometrics chip.
- This chip may operate in an“always on” manner, such that all received signals are passed to the analog first biometric process 120.
- the first biometric process 120 may act as a voice activity detector.
- the first integrated circuit 160 may contain an anti-spoofing block 142, for performing one or more tests on the received signal to determine whether the received signal has properties that may indicate that it results not from the user speaking into the device, but from a replay attack where a recording of the enrolled user’s voice is used to try and gain illicit access to the system. If the output of the anti-spoofing block 142 indicates that the received signal may result from a replay attack, then this output may be used to prevent the second voice biometric process being activated, or may be passed to the fusion and decision block 90 for its use in making its decision on whether to act on the spoken input.
- the second voice biometric process 84 and the fusion and decision block 90 are provided on a second integrated circuit 162, for example a high-power, high- performance chip, such as the applications processor of the smartphone.
- the first biometric process 82 may act as a voice activity detector.
- the first biometric process 120 may act as a voice activity detector.
- a voice biometric may be used as a voice activity detector because there is a similarity between the processes.
- a voice biometric process typically compares features extracted from the received speech against a voiceprint that is made of features extracted from the enrolled user’s speech. If the similarity score exceeds a particular threshold, meaning that the degree of similarity is high enough, then the received speech is considered to be that of the enrolled user. If it is determined by the first voice biometric process that the speech is the speech of an enrolled user, this determination may be used as an indication that the received audio signal comprises speech.
- the similarity score may also be compared with a lower threshold. If the similarity score exceeds that lower threshold, then this condition will typically be insufficient to say that the received signal contains the speech of the enrolled user, but it will be possible to say that the received signal does contain speech. Similarly, it may be possible to determine that the received signal does contain speech, before it is possible to determine with any certainty that the received signal contains the speech of the enrolled user. For example, in the case where the first voice biometric process is based on analysing a long-term spectrum of the speech, it may be necessary to look at, say, 100 frames of the signal in order to obtain a statistically robust spectrum, that may be used to determine whether the specific features of that spectrum are characteristic of the particular enrolled speaker. However, it may already be possible after a much smaller number of samples, for example 10-20 frames, to determine that the spectrum is that of human speech rather than of a noise source, a mechanical sound, or the like.
- an intermediate output may be generated and used as a voice activity detection signal.
- This intermediate output may be supplied to any other processing block in the system, for example to control whether a speech recognition process should be enabled.
- the first integrated circuits 140, 150, 160 may be provided with information relating to the specific microphone 12 or audio transceiver to which the circuit is coupled to receive the audio signal. Such information may comprise characteristic information about the device performance e.g. nonlinearities in device operation. Such information may comprise pre-loaded data which may be programmed into the first integrated circuit 140, 150, 160 during manufacture, i.e. when it is known what specific microphone 12 or other audio transceiver is being used. Additionally or alternatively, the first integrated circuit 140, 150, 160 may be provided with a monitoring module which is configured to monitor the operation of the microphone 12 to track any operational drift or variations in the performance of the component, e.g. due to temperature changes, device wear-and- tear, etc. Such monitoring may be accomplished through the use of suitable voltage or current monitoring systems coupled to the microphone 12.
- Such characteristic information may be used as an input to the respective processing modules of the circuits 140, 150, 160, such that the device-specific information may be taken account in the processing of data from the microphone 12.
- the first biometric process 82 or the anti-spoofing module 142 may take account of
- the first integrated circuits 140, 150, 160 may be provided separately from the respective second integrated circuits 142, 152, 162. That is, any one of the first integrated circuits 140, 150, 160 may be supplied as a stand alone device, which may then be connected to any other device providing any required functionality. Similarly, any one of the second integrated circuits 142, 152, 162 may be supplied as a stand-alone device, which may then be connected to receive inputs from any other device providing the required signals.
- a first biometric process is performed on some data representing speech, and a second biometric process may also be performed.
- the intention is that, if the second biometric process is performed, it should be performed on the same data as that on which the first biometric process is performed.
- a data integrity process may also be performed.
- digital data representing speech is received at a first processor for performing a first voice biometric process.
- this first processor is the first voice biometric block (Vbid) 82.
- the first voice biometric block 82 performs a biometric process on the data to attempt to identify whether the speech is the speech of an enrolled speaker.
- the first voice biometric block 82 generates a Message Authentication Code or Message Authentication Certificate (MAC).
- MAC Message Authentication Code
- the first voice biometric block 82 may generate the MAC only if the first voice biometric process makes an initial determination that the speech is the speech of an enrolled user. If the first voice biometric process makes an initial determination that the speech is the speech of an enrolled user, the first voice biometric block 82 may send a signal to a second processor to activate it. This activation signal may include the generated MAC.
- the digital data representing speech may also be received at a second processor for performing a second voice biometric process.
- this second processor is the second voice biometric block (Vbio2) 84. If the second voice biometric block 84 is activated, it performs a second biometric process on the data to attempt to identify whether the speech is the speech of an enrolled speaker.
- the second voice biometric block 84 may be activated by an activation signal received from the first voice biometric block 82, and this activation signal may also include the Message Authentication Certificate (MAC) generated by the first voice biometric block 82.
- MAC Message Authentication Certificate
- the second voice biometric block 84 also generates a Message
- the second voice biometric block 84 compares the MAC that it has generated with the MAC that it received from the first voice biometric block 82. Since each MAC is calculated as a function of the received data, and since the first voice biometric block 82 and the second voice biometric block 84 should receive the same data, the two MACs may be compared, and it is expected that they should be found to be the same. If they are found to be different, then this may indicate that the system has been subject to an attack by injecting invalid data, and the authentication process may be terminated.
- a suitable MAC may be generated and verified by the first voice biometric block 82 and the second voice biometric block 84 is to pass the received digital data to a hash module which performs a hash of the data in appropriate frames.
- the hash module may determine a hash value, H, for example according to the known SHA-256 algorithm as will be understood by skilled in the art, although other hash functions may also be appropriate.
- the hash value may be digitally signed using a signing module.
- the signing module may apply a known cryptographic signing protocol, e.g. based on the RSA algorithm or Elliptic-curve-cryptography (ECC) using a private key Kpn vate that is known to the first voice biometric block 82.
- ECC Elliptic-curve-cryptography
- a 256 bit hash value, H is calculated by the hash module, and the signing module pads this value to a higher bit hash, for instance a 2048 bit padded hash, P, as would be understood by one skilled in the art.
- P bit padded hash
- Kp rivate (d, N) the Message Authentication Certificate (MAC), e.g. a 2048-bit MAC, is generated using modular exponentiation, e.g. the MAC is generated by raising P to power of d modulo N:
- MAC Message Authentication Certificate
- the exponent d is a 32-bit word and the modulus N is a 2048-bit word.
- the MAC is then transmitted to the second voice biometric block 84 as required.
- the MAC may be encoded with the activation signal, or may simply be added to the activation signal to be transmitted in a predefined way, e.g. as the first or last 2048 bits defined with respect to some frame boundary.
- the second voice biometric block (Vbio2) 84 When the second voice biometric block (Vbio2) 84 receives the MAC, it can extract the hash that was used to generate the MAC.
- the MAC may be passed to a cryptographic module where, using the public key Kp Ubiic (e, N) and the corresponding RSA or ECC algorithm, the value of the signed padded hash value Ps may be extracted by raising the MAC to the power of e modulo N.
- the full domain hash may thus be calculated as:
- the second voice biometric block (Vbio2) 84 also includes a hash module that performs the same hash and padding process using the data that it has received from the buffer 83, as was applied by the first voice biometric block (Vbid) 82 on its received data. This process determines a padded hash value PR for the received data. The two padded hash values Ps and PR may then be compared, and a data validity signal generated indicating that the data is valid, if the two padded hash values are the same, or that the data is invalid, if the values differ.
- the system may be configured to perform speculative automatic speech recognition (ASR), wherein an ASR module is engaged to recognise speech e.g. voice commands, in the received audio.
- ASR speculative automatic speech recognition
- a data integrity checking system may be employed.
- An example of such a system is as described in co-pending US patent application number 16/115654, which is
- a speaker verification system 200 which receives audio comprising speech from an input 202 such as a microphone or any other suitable interface or audio transceiver for receiving audio signals.
- the system 200 comprises a speaker validation module 204, and an audio validation module 206.
- the speaker validation module 204 performs an initial speaker validation process on the received audio from the input 202, and provides outputs in the form of a speaker ID score representing an initial likelihood that the received speech is from a particular speaker and a sound classification representing the likelihood that the received speech is a particular acoustic class.
- the audio validation module 206 is configured to determine if the received audio is valid or invalid. In particular, the audio validation module 206 is configured to detect if the received audio is all from a single speaker, and/or to determine if the received audio is genuine audio, or is the product of a spoof or replay attack, wherein a hacker or other malicious actor is trying to deceive the speaker verification system 200.
- the speaker validation module 204 is coupled with the audio validation module 206, such that the audio validation module 206 makes the determination on whether the received audio is valid or invalid based at least in part on the output of the speaker validation module 204.
- the output of the audio validation module 206 is based at least in part on the sound classification representing the likelihood that the received speech is a particular acoustic class, which is output by the speaker validation module 204.
- the output of the audio validation module 206 is used in a decision gating module 208, such that the output of the speaker verification system 200 is only allowed (a) when the speaker validation module 204 has made an initial determination that the received speech is the speech of an enrolled user, and (b) when the audio validation module 206 has determined that the received audio is valid. Accordingly, the output of the audio validation module 206 is used to gate the output of the speaker validation module 204 at the gating module 208.
- Gating the speaker verification output by using an audio validity check to confirm that the received audio is valid ensures that the speaker verification result is only used for audio which is not from a replay attack or a spoof attack, and additionally or alternatively, ensures that the received audio used in the speaker verification is from the same speaker, and is not from a combative or tail- gating attack.
- a combative speech attack occurs when the speaker changes between the initial voice trigger and the subsequent command (e.g. Speaker 1 :“Hello Computer”, Speaker 2: “Order me a beer”).
- a tail-gating speech attack occurs when a second speaker appends an additional command onto the end of a valid command from a first speaker (e.g. Speaker 1 :“Hello Computer, order me a pizza”, Speaker 2:“And a beer”).
- the output of the decision gating module 208 may be used as the input to a secondary biometrics system, e.g. to a second integrated circuit 144, 152, 162 as described in the embodiments above.
- the output of the decision gating module 208 may be simply a trigger for a relatively more discriminative secondary biometrics scoring process, or the output of the decision gating module 208 may comprise the speaker ID score from the speaker validation module 204, which may be fused with a later biometrics module as described above.
- the speaker verification system 200 may be provided with a trigger detection module 210, which is arranged to initialise at least a portion of the speaker verification system 200 on detection of a suitable trigger.
- a trigger may comprise a voice keyword detected in the received audio, e.g. a trigger phrase such as“Hello Computer” or similar.
- the trigger detection may receive inputs from other sources, e.g. system inputs such as button presses, proximity detection, optical sensors, etc. which may be indicative of user interaction with the speaker verification system 200.
- the trigger detection module 210 is coupled with the speaker validation module 204, such that at least a portion of the speaker validation module 204 is initialised in response to the detection of a suitable trigger, but it will be understood that the trigger detection module 210 may additionally or alternatively be coupled with the audio validation module 206 or the decision gating module 208, where at least a portion of such modules are initialised in response to the detection of a suitable trigger.
- the speaker verification system 200 may be provided with an audio buffer 212 arranged to buffer the audio received from the input 202.
- a buffer 212 may be used as described in the above embodiments, wherein the buffered audio may be provided to a downstream biometrics module for further processing.
- the output of the buffer 212 from the system 200 may be controlled by the gating module 208, such that data is only sent for further processing when it is determined that the received audio is valid, and that the speaker validation module 204 has determined that the received audio comprises speech from an enrolled user.
- Such additional processing may comprise speech recognition of the received audio for use in command processing, or the received audio may be processed using a more discriminative speaker recognition process, for example for relatively high security operations.
- an output of the audio validation module 206 may be used as an input to the speaker validation module 204, as described in more detail below.
- FIG 13 shows an example implementation of the speaker validation module 204, which is arranged to receive audio comprising speech from input 202.
- the module 204 comprises a feature extraction module 214 which is configured to perform a feature extraction operation on the received audio.
- the feature extract version of the audio is then passed to a classifier module 216, which is arranged to perform a classification of the received audio, to identify what type of sounds are present in the received audio.
- the classification may be performed using any suitable classification process, e.g. a Gaussian Mixture Model (GMM) process, or may utilise a machine learning process wherein a neural net has been trained to recognise sound classes.
- the classifier module 216 will output an appropriate sound classification indicative of the sounds present in the received audio, which may be used in subsequent speaker recognition scoring as described below.
- the sound classification is provided as an output 222 from the speaker validation module 204, which may be used as an input to the audio validation module 206, as described above.
- GMM Gaussian Mixture Model
- the sound classification may be provided as an indication of the acoustic classes present in received audio, for example sound mixtures, phonemes, phones, senones, etc.
- the sound classification provides information about the distribution of detected acoustic classes within the total received audio. This may also be called the mixture model.
- the sound classification that is generated by the classifier 216 provides information about the sounds that are present in the speech, but also provides information about the identity of the person speaking, because the most likely mixtures produced from the speech of a first person uttering a specific sound will differ from the most likely mixtures produced from the speech of a second person uttering the same sound.
- a change in the most likely mixtures can correspond to a speaker change.
- the mixture can also be used by scoring it against a mixture model obtained for a particular speaker.
- the sound classification could be generated frame-by-frame or could be generated over a group of frames. For example, a particular group of frames might correspond to a phoneme, though the length of each phoneme in an utterance will depend on the articulation rate, and the classification identifies which most likely mixtures correspond to the phoneme.
- the sound classification is passed to a scoring or distance module 218, which acts to score the received audio against a series of stored speaker models 220 representing different enrolled speakers, based on the determined sound classification.
- the scoring may comprise calculating a distance metric for the distance the speech of the received audio is from the speech of an enrolled speaker, a probability metric that the speech of the received audio is the speech of an enrolled speaker, or a log likelihood ratio that the speech of the received audio is that of an enrolled speaker.
- the scoring may be performed using any suitable measures, e.g. a Joint Factor Analysis (JFA) based approach; a speaker recognition process based on tracking of the fundamental frequency of a speaker, for example as described in co-pending US patent application number 62/728421 , which is
- JFA Joint Factor Analysis
- ML-DNN machine learning or deep neural net based process
- the speaker validation module 204 is configured to output a speaker ID score, which represents the likelihood that the received speech is from a particular speaker.
- the speaker ID score is provided as an output 224, which may be used as an input to the audio validation module 206 as described above.
- the scoring or distance module 218 may output separate scores representing the respective likelihoods that the received speech is from those enrolled speakers.
- the speaker ID score may be further used as output 204a, which is used as an input to the decision gating module 208.
- the speaker validation module 206 may comprise any suitable speaker recognition system for example as described in“Fundamentals of Speaker Recognition”, Homayoon Beigi. ISBN: 978-0-387-77592-0.
- the speaker validation module 204 may be configured to perform a plurality of different speaker recognition processes in parallel, and to combine or fuse the outputs of the different processes to provide the speaker ID score.
- the plurality of different processes are selected to have low cross correlation between the approaches, which translates into a robust and accurate speaker ID output.
- Figure 14 shows an example implementation of the audio validation module 206, which is arranged to receive audio comprising speech from input 202.
- the audio validation module 206 receives as inputs the sound classification 222 and the speaker ID score 224 as calculated by the speaker validation module 204.
- the audio validation module is arranged to determine whether or not the audio received at the input 202 is valid.
- an anti-spoofing module 226 and a speaker change detection module 228.
- the anti-spoofing module 226 is arranged to receive the sound classification 222 and the input audio 202, and to determine the probability of a replay attack or a
- the anti-spoofing process may comprise:
- a magnetic-power-level-based anti-spoofing system such as those described in co-pending US patent application numbers 16/020406, 16/018795, which are incorporated by reference herein; a loudspeaker-detection-based anti-spoofing system, such as those described in co-pending US patent application numbers 62/571959, 62/585721 , 62/585660, 62/571978, 16/017072, which are incorporated by reference herein.
- the outputs of such different anti-spoofing processes may be combined or fused to provide an anti-spoofing decision.
- the output values of the different processes may be provided with different weights to account for such factors as the usage situations or environment, device characteristics, etc.
- the speaker change detection module 228 is arranged to receive the input audio 202, the sound classification 222 and the speaker ID score 224, and to determine a change of speaker in the received audio based on some combination of the received inputs.
- the speaker change detection module 228 is configured to implement a speaker change detection process based on a time-windowed biometric speaker ID score, such as that described in co-pending US patent application number 16/122033, which is incorporated by reference herein.
- the speaker change detection module 228 may be arranged to implement speaker change detection process based on:
- any other suitable speaker change detection method such as that described in (Ajmera, Jitendra & Mccowan, lain & Bourlard, Herve. (2004). Robust Speaker Change Detection. Signal Processing Letters, IEEE. 11. 649 - 651. 10.1109/LSP.2004.831666), which is incorporated by reference herein.
- SCD speaker change detection
- the speaker verification system prevents exploitation by so-called combative or tail-gating attacks.
- the outputs of such different SCD processes may be combined or fused to provide an SCD decision.
- the output values of the different processes may be provided with different weights to account for such factors as the usage situations or environment, device characteristics, etc.
- the output of the audio validation module 206 may be used as an input to the speaker verification module 204.
- Such a configuration may be of use for embodiments where the speaker verification module 204 is operating in an always-on mode, to ensure that the speaker verification process is performed on correct portions of the received audio.
- the output of the audio validation module 206 may be used to reset the operation of the speaker validation module 204.
- the output of the SCD module 228 may be used as an input to the speaker validation module 204, wherein the output of the SCD process module 228 sets a boundary on that portion of the received audio on which a speaker verification process should be performed.
- the SCD module 228 is configured to analyse speaker scores on an audio frame-by-frame basis to determine the point of speaker change, then the SCD output may define the total range of audio frames to process to determine the final speaker ID score, as it has been determined by the SCD module 228 that all of those frames are spoken by the same speaker.
- the output of the SCD module 228 may be used to reset the operation of the speaker validation module 204 on detection of a change in speaker in the received audio.
- the anti spoofing module 226 may also identify non-malicious environmental conditions that could affect accurate processing of the received audio. For example, a relatively high level of ultrasonics present in the received audio signal, e.g. from an ultrasonic motion sensor, may result in distortions or inaccurate outputs from the speaker validation module 204. Accordingly, the output from anti-spoofing module 226 may be used as an input to the speaker validation module 204 to set a boundary on portions of the received audio which are deemed to produce a safe and accurate speaker validation output. Most typically, this will mean that the speaker validation process is performed only on the speech of the intended speaker, in the event of a tail-gating speech attack.
- the anti-spoofing module 226 and the speaker validation module 204 may be configured such that the speaker validation process is performed only on the live speech of the intended speaker, in the event of a replay attack.
- the output of anti-spoofing module 226 may be used to reset the operation of the speaker validation module 204 in the event of detection of“unsafe” received audio.
- the output of the anti-spoofing module 226 and the output of the speaker change detection module 228 may be combined or fused, for example using an AND gate 230, to provide an indication that the received audio is or is not valid. Such an indication may then be output by the audio validation module 206 as output 206a, for use in the decision gating module 208.
- the output 206a of the audio validation module 206 may comprise both the output of the anti-spoofing module 226 and the output of the speaker change detection module 228, and wherein the fusion or combination of such outputs may be performed in the decision gating module 208, to provide an audio validity result.
- the output of the audio validation module 206 is used as an input to the speaker verification module 204
- the input to the speaker verification module 204 may comprise the combined or fused output 206a, and/or comprise some combination of the individual outputs of the anti spoofing module 226 and the speaker change detection module 228, shown in Figure 14 as outputs 226a and 228a respectively.
- Figure 15 provides an illustration of an embodiment of the decision gating module 208, which receives the output 204a of the speaker validation module 204 and the output 206a of the audio validation module 206.
- the decision gating module 208 comprises a speaker validity check 232 which checks whether a speaker has been identified from the received audio from the output 204a of the speaker validity module 204, and further comprises an audio validity check 234 which checks whether the received audio is valid from the output 206a of the audio validity module 206. If both checks are passed, the decision gating module 208 comprises a power gating or fusion module 236, which is arranged to generate an output signal 208a.
- the output 208a of the decision gating module 208 may comprise a simple enable signal to allow for the power-gating of downstream processing systems, as described above.
- the output 208a may comprise an indicator of the speaker initially identified by the speaker validation module 204.
- the output 208a may comprise the speaker ID score 204a, which may be used in a subsequent score fusion operation as described above.
- the output 208a may further comprise the output 206a of the audio validation module 206, which may be provided as a single indicator of the validity of the received audio, or which may comprise separate outputs relating to the specific anti spoofing or speaker change detection scores. The provision of such scores may allow for further downstream processing of anti-spoofing and/or speaker change detection processes. It will be understood that the output 208a of the decision gating module 208 may be used as the output signal from the speaker verification system 200.
- the output of the speaker verification system 200 may be used in combination with a secondary biometrics system, e.g. to a second integrated circuit 144, 152, 162 as described in the
- the speaker verification system 200 is provided as a primary biometrics system, e.g. as the first integrated circuit 140, 150, 160 as described in the embodiments above.
- the primary biometrics scoring may be performed as part of a relatively low power system, e.g. an always-on system or a low- power island within a device such as a mobile phone handset or device accessory.
- the primary biometrics scoring is operable to power-gate the secondary biometrics scoring, which may be provided as part of a relatively high-power system, e.g. a device applications processor or dedicated biometrics chip having relatively high processing power.
- the primary and secondary systems are selected to perform different biometrics scoring on the received audio.
- the speaker recognition system is configured such that: the primary biometrics scoring is selected to have a relatively high False
- FAR Acceptance Rate
- FRR False Rejection Rate
- the secondary biometrics scoring is selected to have a relatively low FAR, and a relatively high FRR.
- any subsequent fusion of the biometric scores will result in a combined score having low FAR and low FRR.
- Figure 16 provides a flow chart for an embodiment of a speaker verification method implemented by the systems shown in Figures 12-15.
- the method receives audio comprising speech (step 302).
- classification of the received audio is performed (step 304) to identify acoustic classes or sound mixtures present in the received audio. It will be understood that this step may comprise a feature extraction from the received audio.
- speaker recognition is performed (step 306) based on stored speaker models (step 308) to at least initially identify the speaker from the received audio.
- the speaker recognition (step 306) produces a speaker ID score which may comprise a probability or likelihood that the speech is that of one specific enrolled speaker.
- the speaker ID score may then be used as the output 204a of the speaker validation module 204 (step 310).
- the audio validation module 206 is arranged to perform the steps of performing an anti-spoofing check (step 312) based on the received audio and the identified audio classification, and/or a speaker change detection check based on the received audio, the identified audio classification, and/or the speaker ID score (step 314).
- the outputs of both the anti-spoofing check (step 312) and the speaker change detection check (314) are combined to provide the output 206a of the audio validation module 206 (step 316).
- the outputs produced by steps 310 and 312 are combined at a decision gating check (step 318), which checks that a speaker has been identified for received audio, and that the received audio is valid.
- step 320 if such a check is passed, then an output accordingly may be generated (step 322) which may be used for power gating and/or further downstream processing, as described above. If the check at 320 is not passed, then the system may return to receiving audio.
- the system may be configured to provide further outputs based on the individual steps of the above-described method. For example, if the anti spoofing module identifies that a spoof or a replay attack is taking place, the system may generate a warning to a user, or may act to restrict device access until a further authorisation check is passed. In addition, and as described above, the detection of a speaker change detection in the received audio may prompt the system to generate an output based on the total audio received for a specific speaker, the speaker change setting a boundary for the processing of the audio to identify a speaker from the received audio.
- the above-described systems may be provided with additional security measures to prevent against malicious access to potentially sensitive data.
- the systems may be configured to clear or wipe the contents of any data buffers based on the output of the various modules. For example, in the event of an anti-spoof module detecting that a spoof or a replay attack is taking place, the system may be arranged to wipe the contents of the audio buffers or any other buffers to prevent access to any sensitive data.
- biometric scoring systems may comprise a plurality of different respective scoring systems, wherein the output of such systems may be combined or fused to provide a single output.
- the output of the first biometric process may be used to speculatively initiate the second biometric process.
- the speculative starting of the second biometric process may be initiated once the output of the first biometric process has reached a first threshold value indicative that an enrolled user has been provisionally recognised by the first biometric process.
- the output of the first biometric process may comprise a probability estimate that the received speech is that of an enrolled speaker, wherein a confidence level that such a probability estimate is correct increases over time, due to the greater duration of received speech available to the first biometric process.
- an example of received audio comprising speech is indicated at 400, with examples of the outputs of various biometric processes plotted over time in response the received speech.
- A1 is the output of a speaker verification process based on a first biometric process and B1 is the output of a speaker verification process based on a second biometric process, when configured in a purely sequential system.
- A2 is the output of a speaker verification process based on a first biometric process and B2 is the output of a speaker verification process based on a second biometric process, when configured in a system allowing for speculative initiation of the second biometric process.
- an audio sample 400 comprising a speech command (“OK Computer, what is the weather like for today?”) is received at starting time to, wherein the output A1 of the speaker verification process of the first biometric process performed on the audio 400 is tracked following time t1.
- the first biometric process continues until the output reaches threshold P1 at time t2, indicating that a particular user has been identified.
- the initial identification of a user by the first biometric process is effectively used to power-gate the second biometric process.
- the output A2 of the speaker verification process of the second biometric process is tracked following time t3.
- the second biometric process continues until the output reaches threshold P2 at time t4, thereby indicating that the second biometric process has identified a user from the received audio.
- such an identification may be combined or fused with the output of the first biometric process, and/or may be used to trigger further downstream processing of the received audio or to allow the identified user authorised access to features or services.
- the speaker verification process of the first biometric process continues as before, producing output A2.
- threshold P3 is selected to be equivalent to a threshold indicative of a probability level equivalent to 60% of P1 that a particular user has been identified, but it will be understood that other threshold levels may be chosen, e.g. 50% of P1 , 75% of P1 , etc.
- the speaker verification process for the second biometric process continues as before until the defined threshold P2 for safely identifying a user is reached.
- P2 due to the speculative initiation of the second biometric process at the earlier time t6, P2 can be reached at time t7, which is faster by time At than the total time t4 taken by the sequential system.
- the time difference At represents a reduction in the overall latency of the system by the use of such a speculative initiation process.
- the first device may be configured to instruct the second biometric process of the second device to halt any further processing at time t2, and any buffers or cache provided with the second biometric process cleared or reset for future operation.
- the above speculative initiation use-case may be implemented for any of the above-described embodiments, e.g. wherein the speaker verification process for the first biometric process is performed by the Vbid module 82, the Vbida module 120, or the speaker validation module 204, with the speaker verification process for the second biometric process performed by the appropriate Vbio2 module 84.
- pre-processing module 80 may equally apply to the embodiments of Figures 12-16, i.e. that a pre-processing module may be used to provide a plurality of different signals to different processing modules of the system, e.g. a sampled or framed digital signal, a continuously- streamed digital signal, a continuously-streamed analog signal.
- a pre-processing module may be used to provide a plurality of different signals to different processing modules of the system, e.g. a sampled or framed digital signal, a continuously- streamed digital signal, a continuously-streamed analog signal.
- the speaker validation module 204, the audio validation module 206, and/or the trigger detect module 210 may utilise one or more of the different signals in their respective processing systems.
- inventions of Figures 12-16 may further comprise additional input data in the form of predefined characteristic information regarding the input 202 and/or a monitoring system configured to monitor the operational characteristics of the input 202.
- the processing modules of the validation module 204, the audio validation module 206, and/or the trigger detect module 210 may utilise such device-specific data in their respective processes, to account for device-specific characteristics and nonlinearities.
- the first voice biometric process may be replaced by any other suitable biometric process, for example an ear biometric process.
- an ear biometric process it will be understood that the system may be provided with a plurality of microphones or audio transceivers, wherein at least one microphone or audio transceiver is configured to output an audio signal representing an audio response proximate to a user’s ear.
- Such an ear biometric process may be used to power gate the voice biometric process.
- the ear biometric process will be different to the voice biometric process, thereby providing individual discriminative results.
- the outputs of the ear biometric process and the voice biometric process may be combined or fused to provide an output to identify a user.
- the ear biometric process may be performed in a device such as a headset or earphone, with the voice biometric process performed in the same device, or in a coupled host device, e.g. a mobile phone handset.
- the ear biometric process and the voice biometric process may be performed in the same host device, e.g. a mobile phone handset.
- the first audio signal may comprise an ultrasonic audio signal and/or an audio signal in the audible range.
- Figure 18 illustrates an embodiment of such a system.
- Figure 18 shows a shows a speaker verification system 500, which receives audio comprising speech from an input 502 such as a high-resolution microphone.
- the system 500 comprises a first device 504 and a second device 506.
- the first device 504 may be an accessory device such as a headset or other wearable device, while the second device 506 is a host device such as a smartphone or other suitable device.
- the first and second devices 504, 506 are separate integrated circuits within a product such as a
- the first and second devices 504, 506 may be supplied independently of each other.
- the form of the first device is not dependent on the form of the second device, and the form of the second device is not dependent on the form of the first device.
- the first device 504 has some similarity to the device illustrated in Figure 12, and is described in more detail above.
- the first device 504 comprises a first biometric validation module 508, and an audio validation module 510.
- the first biometric validation module 508 is connected to an input and/or output module 512, and performs an initial user validation process, which results in an output in the form of a user ID score representing an initial likelihood that the user is a particular enrolled user.
- the first biometric validation module 508 may operate with any suitable biometric, such as a retina scan, a fingerprint scan, an ear biometric, and a voice biometric.
- the first biometric validation module 508 may operate with any combination of suitable biometrics, with the scores generated by the different biometrics being combined, or fused, to produce a user ID score representing an initial likelihood that the user is a particular enrolled user.
- the input and/or output module 512 comprises suitable inputs and/or outputs for use with the first biometric validation module 508.
- the input and/or output module 512 comprises a camera; when the first biometric validation module 508 operates with an ear biometric, the input and/or output module 512 comprises a microphone and a loudspeaker; and when the first biometric validation module 508 operates with a voice biometric, the input and/or output module 512 comprises at least a microphone.
- the first biometric validation module 508 is an ear biometric validation module.
- a signal is sent from the first biometric validation module 508 to the input/output module 512, causing a test acoustic signal to be generated in the region of a user’s ear.
- the test acoustic signal may conveniently be an ultrasonic signal, for example in the region of 18kHz to 48kHz.
- the input/output module 512 may therefore include a loudspeaker, for example located in an earphone being worn by the user.
- the input/output module 512 may also include a microphone, again for example located in an earphone being worn by the user, and positioned such that it can detect the test acoustic signal after it has been modified by its interaction with the ear of the user.
- a microphone again for example located in an earphone being worn by the user, and positioned such that it can detect the test acoustic signal after it has been modified by its interaction with the ear of the user.
- the signal detected by the microphone is then supplied to the first biometric validation module 508 for analysis. Specifically, the modification of the acoustic signal that is caused by the interaction with the ear of the user is compared with a model of the ear of one or more enrolled user, and the first biometric validation module 508 then generates one or more corresponding user ID score, representing an initial likelihood that the user is that enrolled user.
- the audio validation module 510 is configured to determine if the received audio is valid or invalid.
- the audio validation module 510 is configured to detect if the received audio is all from a single speaker, and/or to determine if the received audio is genuine audio, or is the product of a spoof or replay attack, wherein a hacker or other malicious actor is trying to deceive the speaker verification system 500.
- the audio validation module 510 may include an anti-spoofing module and/or a speaker change detection module.
- the output of the audio validation module 510 is used in a decision gating module 514, such that the output of the first device 504 is only allowed (a) when the first biometric validation module 508 has made an initial determination that the user is the enrolled user, and (b) when the audio validation module 510 has determined that the received audio is valid. Accordingly, the output of the audio validation module 510 is used to gate the output of the first biometric validation module 508 at the gating module 514.
- the link between the first device 504 and the second device 506, which may be a wired or wireless link, is enabled only if the output of the first device 504 is allowed.
- Gating the first biometric verification output by using an audio validity check to confirm that the received audio is valid ensures that the final speaker verification result is only used for audio which is not from a replay attack or a spoof attack, and additionally or alternatively, ensures that the received audio used in the speaker verification is from the same speaker, and is not from a combative or tail-gating attack.
- the output of the decision gating module 514 may be used as an input to the second device 506, and more specifically to a speaker validation block 516, which operates with a relatively more discriminative secondary biometrics scoring process.
- the secondary biometric process may be a voice biometric process.
- the output of the decision gating module 514 may comprise the user ID score from the first biometric validation module 508, which may be fused with the output of the second biometric validation block 516 to produce an overall speaker verification output 518.
- the voice biometric process performed by the speaker validation block 516 may be configured to be more discriminative than the ear biometric process or other biometric process performed by the first biometric validation block 508.
- the system 500 may be provided, for example in the first device 504, with a trigger detection module 520, which is arranged to initialise the first biometric validation system 508 on detection of a suitable trigger.
- a trigger may comprise a voice keyword detected in the received audio, e.g. a trigger phrase such as“Hello Computer” or similar.
- the trigger detection may receive inputs from other sources, e.g. system inputs such as button presses, proximity detection, optical sensors, etc. which may be indicative of user interaction with the speaker verification system 500.
- the trigger detection module 520 may itself comprise a“lightweight” biometric module, that is a low-power, but relatively non- discriminative biometric.
- the biometric process performed by the first biometric validation block 508 may be initiated only if the biometric process performed by the trigger detection module 520 indicates that an enrolled user may be speaking.
- the biometric process performed by the trigger detection module 520 may comprise confirming whether the main frequency component of the detected speech (for example, when a predetermined trigger phrase is detected) is consistent with the expected enrolled user.
- the system 500 may be provided, for example in the first device 504 as shown in Figure 18 (though it may be in the second device 506 or elsewhere in a device such as a smartphone) with an audio buffer 522 arranged to buffer the audio received from the input 502.
- a buffer 522 may be used as described in the above embodiments, wherein the buffered audio may be provided to the second biometrics module 516 for further processing.
- the output of the buffer 522 may be controlled by the gating module 514, such that data is only sent for further processing when it is determined that the received audio is valid, and when the first biometric validation module 508 has determined that the user is an enrolled user.
- Such additional processing may comprise speech recognition of the received audio for use in command processing, or the received audio may be processed using a more discriminative speaker recognition process, for example for relatively high security operations.
- the system may be configured to allow partial access to services, functions, or stored data of a device based on the output of the first biometric process, with complete access to all services, functions, or stored data only allowed based on the output of the second biometric process.
- ASR speculative automatic speech recognition
- ASR may be performed to identify user voice commands in parallel with the first biometric process to identify a user
- access to relatively low- security or low-sensitivity services or applications may be enabled based on the output of the first biometric process, and commands relating to such services may be executed after ASR processing has identified an appropriate command relating to such services.
- a mobile phone device may allow commands relating to the operation of music services or information queries such as weather forecasting applications to be performed based on the output of the first biometric process.
- commands relate to relatively high-security or high-sensitivity services, e.g. banking applications, personal data, etc.
- access may be enabled or commands acted upon only when the second biometric process has provided a positive user
- Allowing for such speculative execution of commands relating to some applications based on the first biometric process may act to reduce latency and provide improved user interaction of the device, while preserving the relatively high security requirements for relatively sensitive applications, where a user may be less concerned about responsiveness as long as the high security access level is maintained.
- system may be configured to provide for different bandwidths or sample rates between the first and second devices.
- the system may be configured to vary the sample rates between processes.
- speech used in an Automatic Speech Recognition (ASR) process may have a lower bandwidth requirement than speech used in a voice biometrics process, which may itself have a lower bandwidth requirement when compared with a high-accuracy anti-spoofing process.
- ASR Automatic Speech Recognition
- a voice biometrics process may be provided with an audio signal having a sample rate of approximately 16kHz
- an anti-spoofing process may be provided with an audio signal having a sample rate of approximately 192kHz.
- Figure 19 illustrates an embodiment of such a system.
- Figure 19 shows a speaker verification system 401 , which receives audio comprising speech from an input 402 such as a high-resolution microphone that is capable of generating signals with a high sample rate such as 192kHz, or any other suitable interface or audio transceiver for receiving audio signals.
- the system 401 comprises a first device 404 and a second device 406.
- the first device 404 may be an accessory device such as a headset or other wearable device, while the second device 406 is a host device such as a smartphone or other suitable device.
- the first and second devices 404, 406 are separate integrated circuits within a product such as a
- the first and second devices 404, 406 may be supplied independently of each other.
- the form of the first device is not dependent on the form of the second device, and the form of the second device is not dependent on the form of the first device.
- the first device 404 is generally similar to the device illustrated in Figure 12, and described in more detail above.
- the first device 404 comprises a speaker validation module 408, and an audio validation module 410.
- the speaker validation module 408 performs an initial speaker validation process on the received audio from the input 402, and provides outputs in the form of a speaker ID score representing an initial likelihood that the received speech is from a particular speaker and a sound classification representing the likelihood that the received speech is a particular acoustic class.
- the audio validation module 410 is configured to determine if the received audio is valid or invalid.
- the audio validation module 410 is configured to detect if the received audio is all from a single speaker, and/or to determine if the received audio is genuine audio, or is the product of a spoof or replay attack, wherein a hacker or other malicious actor is trying to deceive the speaker verification system 401.
- the speaker validation module 408 is coupled with the audio validation module 410, such that the audio validation module 410 makes the determination on whether the received audio is valid or invalid based at least in part on the output of the speaker validation module 408.
- the output of the audio validation module 410 is based at least in part on the sound classification representing the likelihood that the received speech is a particular acoustic class, which is output by the speaker validation module 408.
- the output of the audio validation module 410 is used in a decision gating module 412, such that the output of the first device 404 is only allowed (a) when the speaker validation module 408 has made an initial determination that the received speech is the speech of an enrolled user, and (b) when the audio validation module 410 has determined that the received audio is valid. Accordingly, the output of the audio validation module 410 is used to gate the output of the speaker validation module 408 at the gating module 412.
- Gating the speaker verification output by using an audio validity check to confirm that the received audio is valid ensures that the speaker verification result is only used for audio which is not from a replay attack or a spoof attack, and additionally or alternatively, ensures that the received audio used in the speaker verification is from the same speaker, and is not from a combative or tail- gating attack.
- the output of the decision gating module 412 may be used as an input to the second device 406, and more specifically to a speaker validation block 414, which operates with a relatively more discriminative secondary biometrics scoring process.
- the output of the decision gating module 412 may comprise the speaker ID score from the speaker validation module 408, which may be fused with the output of the second speaker validation block 414 to produce an overall speaker verification output 416.
- the system 401 may be provided, for example in the first device 404, with a trigger detection module 418, which is arranged to initialise the speaker validation system 408 on detection of a suitable trigger.
- a trigger may comprise a voice keyword detected in the received audio, e.g. a trigger phrase such as“Hello Computer” or similar.
- the trigger detection may receive inputs from other sources, e.g. system inputs such as button presses, proximity detection, optical sensors, etc. which may be indicative of user interaction with the speaker verification system 401.
- the system 401 may be provided, for example in the first device 404 as shown in Figure 19 (though it may be in the second device 406 or elsewhere in a device such as a smartphone) with an audio buffer 420 arranged to buffer the audio received from the input 402.
- a buffer 420 may be used as described in the above embodiments, wherein the buffered audio may be provided to the second biometrics module 414 for further processing.
- the output of the buffer 420 may be controlled by the gating module 412, such that data is only sent for further processing when it is determined that the received audio is valid, and that the speaker validation module 408 has determined that the received audio comprises speech from an enrolled user.
- the first device 404 may be configured to receive an input signal having a relatively high sample rate, and therefore a relatively high bandwidth.
- Such a high bandwidth signal may be required by an anti-spoofing module, for example if the anti-spoofing module is configured for identifying the presence or absence of ultrasonic frequencies in the received audio, and using the presence or absence of the ultrasonic frequencies as an indication as to whether the audio signal results from a replay attack.
- Figure 19 shows that the input signal is applied to a downsampler 422, and it is the decimated or downsampled version of the input signal that is passed to the speaker validation block 408, and also to the audio buffer 420.
- the audio signal may be passed to downstream processing components.
- the audio signal may be passed to an automatic speech recognition (ASR) system, which identifies the content of the speech, by contrast with a speaker recognition system, which provides information about a person who is speaking.
- ASR automatic speech recognition
- An ASR system may operate with a signal having a sample rate even lower than that required by a voice biometrics system, and therefore the output of the audio buffer 420 may be passed to a second downsampler 424 before it is supplied on an output 426 to a subsequent processing block that performs the ASR process.
- the subsequent processing block that performs the ASR process may be provided in the same product as the first device 404 and/or the second device 406, or it may be provided remotely.
- the supply of the further downsampled or decimated signal on the output 426 may be controlled such that a signal is only supplied to the subsequent processing block if the second speaker validation process has confirmed that the person speaking is a properly enrolled speaker.
- the first device may perform a decimation of the sample rate of the received audio, wherein the second device is configured to process the decimated version of the received audio.
- the decimation may be adjustable based on input received from downstream processing components, e.g. sample rate requirements for processing operations performed by the downstream components.
- a reduced bandwidth or sample rate between modules or devices can provide improved overall system efficiency due to a reduction in power consumption of the system, for example when the first device is located separate to the second device, and connected using e.g. a wireless data link, a reduction in the bandwidth of data to be communicated via said link can provide improvements to the power consumption and battery life of such devices.
- the first device may be configured to not initialise communications links between the first and second devices if the audio is not verified or validated by the system of the first device, e.g. not initialise a wireless
- processor control code for example on a non volatile carrier medium such as a disk, CD- or DVD-ROM, programmed memory such as read only memory (Firmware), or on a data carrier such as an optical or electrical signal carrier.
- a non volatile carrier medium such as a disk, CD- or DVD-ROM
- programmed memory such as read only memory (Firmware)
- a data carrier such as an optical or electrical signal carrier.
- DSP Digital Signal Processor
- ASIC Application Specific
- the code may comprise conventional program code or microcode or, for example code for setting up or controlling an ASIC or FPGA.
- the code may also comprise code for dynamically configuring re-configurable apparatus such as re-programmable logic gate arrays.
- the code may comprise code for a hardware description language such as Verilog TM or VHDL (Very high speed integrated circuit Hardware Description
- the code may be distributed between a plurality of coupled components in communication with one another.
- the embodiments may also be implemented using code running on a field- (re)programmable analogue array or similar device in order to configure analogue hardware.
- module shall be used to refer to a functional unit or block which may be implemented at least partly by dedicated hardware components such as custom defined circuitry and/or at least partly be implemented by one or more software processors or appropriate code running on a suitable general purpose processor or the like.
- a module may itself comprise other modules or functional units.
- a module may be provided by multiple components or sub-modules which need not be co-located and could be provided on different integrated circuits and/or running on different processors.
- Embodiments may be implemented in a host device, especially a portable and/or battery powered host device such as a mobile computing device for example a laptop or tablet computer, a games console, a remote control device, a home automation controller or a domestic appliance including a domestic temperature or lighting control system, a toy, a machine such as a robot, an audio player, a video player, or a mobile telephone for example a smartphone.
- a host device especially a portable and/or battery powered host device such as a mobile computing device for example a laptop or tablet computer, a games console, a remote control device, a home automation controller or a domestic appliance including a domestic temperature or lighting control system, a toy, a machine such as a robot, an audio player, a video player, or a mobile telephone for example a smartphone.
- a method of speaker identification comprising:
- the first voice biometric process makes an initial determination that the speech is the speech of an enrolled user, performing a second voice biometric process on the audio signal to attempt to identify whether the speech is the speech of the enrolled speaker,
- the second voice biometric process is selected to be more discriminative than the first voice biometric process.
- a method according to embodiment 1 comprising making a decision as to whether the speech is the speech of the enrolled speaker, based on a result of the second voice biometric process. 7. A method according to embodiment 1 , comprising making a decision as to whether the speech is the speech of the enrolled speaker, based on a fusion of a result of the first voice biometric process and a result of the second voice biometric process.
- the first voice biometric process is selected from the following: a process based on analysing a long term spectrum of the speech; a method using a Gaussian Mixture Model; a method using Mel Frequency Cepstral Coefficients; a method using Principal Component Analysis; a method using machine learning techniques such as Deep Neural Nets (DNNs); and a method using a Support Vector Machine.
- the second voice biometric process is selected from the following: a neural net process, a Joint Factor Analysis process; a Tied Mixture of Factor Analyzers process; and an i-vector process.
- a method comprising maintaining the second voice biometric process in a low power state, and activating the second voice biometric process if the first voice biometric process makes an initial determination that the speech is the speech of an enrolled user.
- a method comprising activating the second voice biometric process in response to an initial determination based on a partial completion of the first voice biometric process that the speech might be the speech of an enrolled user, and deactivating the second voice biometric process in response to a determination based on a completion of the first voice biometric process that the speech is not the speech of the enrolled user.
- a method comprising using an initial determination by the first voice biometric process, that the speech is the speech of an enrolled user, as an indication that the received audio signal comprises speech.
- a method according to embodiment 19, comprising comparing a similarity score with a first threshold to determine whether the signal contains speech of an enrolled user, and comparing the similarity score with a second, lower, threshold to determine whether the signal contains speech.
- a method according to any preceding embodiment further comprising performing one or more tests on the received audio signal, to determine whether the received audio signal has properties that indicate that it may result from a replay attack.
- a method according to embodiment 23, comprising performing the second voice biometric process on the received audio signal only if it is determined that the received audio signal does not have properties that indicate that it may result from a replay attack.
- a speaker identification system comprising:
- a first device including a first processor for performing a first voice biometric process on the audio signal to attempt to identify whether the speech is the speech of an enrolled speaker;
- a second device including a second processor for performing a second voice biometric process on the audio signal to attempt to identify whether the speech is the speech of the enrolled speaker
- the second voice biometric process is initiated if the first voice biometric process makes an initial determination that the speech is the speech of an enrolled user
- the second voice biometric process is selected to be more discriminative than the first voice biometric process.
- a speaker identification system according to embodiment 25, wherein the first device comprises a first integrated circuit, and the second device comprises a second integrated circuit.
- a speaker identification system according to embodiment 25 or 26, wherein the first device comprises a dedicated biometrics integrated circuit. 28. A speaker identification system according to embodiment 27, wherein the first device is an accessory device.
- a speaker identification system according to embodiment 28, wherein the first device is a listening device.
- a speaker identification system according to embodiment 25 or 26, wherein the second device comprises an applications processor.
- a speaker identification system according to embodiment 30, wherein the second device is a handset device.
- a speaker identification system according to embodiment 31 , wherein the second device is a smartphone.
- a speaker identification system according to any of embodiments 25 to 32,
- the first device is arranged to perform a spoof detection process on the audio signal, to identify if the audio signal is the result of an audio spoof attack, and wherein the output of the first voice biometric process is gated by the output of the spoof detection process, such that, if a spoof attack is detected, the first voice biometric process is prevented from initiating the second voice biometric process.
- a speaker verification method to provide a speaker verification output comprising the steps of:
- the speaker verification process configured to output:
- AS anti-spoofing
- step of performing an audio validation process comprises:
- a speaker change detection (SCD) process based on a combination of at least one or more of the following: the speaker ID score; the sound classification; the received audio.
- SCD speaker change detection
- GMM Gaussian Mixture Model
- JFA Joint Factor Analysis
- ML-DNN machine learning or deep neural net based process
- step of performing a speaker recognition process is performed on features extracted from the received audio.
- step of performing a speaker recognition process is performed responsive to receipt of a trigger signal, for example a keyword detection.
- a speaker recognition method comprising the steps of:
- the primary biometrics scoring is selected to have a relatively high False Acceptance Rate (FAR), and a relatively low False Rejection Rate (FRR).
- FAR False Acceptance Rate
- FRR False Rejection Rate
- a speaker verification system to provide a speaker verification output, the system comprising:
- a speaker verification module coupled with the input, the speaker verification module arranged to process the audio signal to provide:
- an audio validation module coupled with the input and the speaker verification module, the audio validation module arranged to generate an output indicating a validity of the received audio, the output based at least in part on the sound
- a gating module configured to gate the output of the speaker verification module based on the output of the audio validation module, such that the speaker ID score is output only for valid received audio.
- a multi-stage speaker verification system comprising:
- a first device including a first processor, the first device comprising speaker verification system of embodiment 59, the first device arranged to provide a first speaker verification output based on the received audio signal;
- a second device including a second processor, the second device coupled with the first device, the second device configured to perform a secondary biometrics scoring based on the received audio signal to provide a second speaker verification output, the secondary biometrics scoring performed responsive to the receipt of a first speaker verification output from the first device, wherein the secondary biometrics scoring is selected to be different to the primary biometrics scoring.
- system further comprises a fusion module, wherein the fusion module is arranged to fuse the first speaker verification output and the second speaker verification output to provide a fused speaker verification output.
- a method of user identification comprising:
- the ear biometric process makes an initial determination that the acoustic response is indicative of the ear of an enrolled user, performing a voice biometric process on the second audio signal to attempt to identify whether the speech is the speech of the enrolled user.
- a system for user identification comprising:
- a first device including a first processor, the first device configured to receive a first acoustic signal representing an acoustic response received proximate a user’s ear, and further configured to perform an ear biometric process on the first acoustic signal to attempt to identify whether the acoustic response is indicative of the ear of an enrolled user to provide a first user verification output;
- a second device including a second processor, the second device coupled with the first device, the second device configured to receive a second audio signal representing speech, and further configured to perform a voice biometrics process based on the second audio signal to provide a second user verification output, the voice biometrics scoring performed responsive to the receipt of a first user verification output from the first device.
- the first device including the first processor is configured to continue to perform the first voice biometric process on the audio signal after the initial determination, to provide a further determination whether the speech is the speech of an enrolled user;
- a method of speaker identification comprising:
- the first voice biometric process makes an initial determination that the speech is the speech of an enrolled user, performing a second voice biometric process on the audio signal to attempt to identify whether the speech is the speech of the enrolled speaker,
- the first voice biometric process is configured to have a False Accept Rate and a False Reject Rate
- the second voice biometric process is configured to have a lower False Accept Rate than the first voice biometric process.
- a method according to embodiment 71 wherein the first voice biometric process is configured to have a False Reject Rate below 5%.
- a method of speaker identification comprising:
- the audio validation process comprises monitoring at least one ultrasound component of the received audio signal
- a method according to embodiment 74, wherein the step of performing the audio validation process comprises determining whether the received audio signal may result from a replay attack. 76. A method according to embodiment 75, wherein the step of performing the audio validation process comprises determining whether the received audio signal contains an ultrasound component.
- a method according to one of embodiments 74-77 comprising downsampling the received audio signal to a sample rate below 20kHz.
- a method according to one of embodiments 74-78 comprising downsampling the received audio signal to a first sample rate
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Business, Economics & Management (AREA)
- Computer Hardware Design (AREA)
- Game Theory and Decision Science (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Telephone Function (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Circuit For Audible Band Transducer (AREA)
Abstract
Description
Claims
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR1020207022108A KR20200108858A (en) | 2018-01-23 | 2019-01-23 | Speaker identification |
| CN201980009737.0A CN111656440A (en) | 2018-01-23 | 2019-01-23 | Speaker identification |
| GB2009795.2A GB2583420B (en) | 2018-01-23 | 2019-01-23 | Speaker identification |
Applications Claiming Priority (6)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US15/877,660 | 2018-01-23 | ||
| US15/877,660 US11264037B2 (en) | 2018-01-23 | 2018-01-23 | Speaker identification |
| GBGB1809474.8A GB201809474D0 (en) | 2018-01-23 | 2018-06-08 | Speaker identification |
| GB1809474.8 | 2018-06-08 | ||
| US201862733755P | 2018-09-20 | 2018-09-20 | |
| US62/733,755 | 2018-09-20 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2019145708A1 true WO2019145708A1 (en) | 2019-08-01 |
Family
ID=67395939
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/GB2019/050185 Ceased WO2019145708A1 (en) | 2018-01-23 | 2019-01-23 | Speaker identification |
Country Status (4)
| Country | Link |
|---|---|
| KR (1) | KR20200108858A (en) |
| CN (1) | CN111656440A (en) |
| GB (3) | GB2583420B (en) |
| WO (1) | WO2019145708A1 (en) |
Cited By (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020044019A1 (en) * | 2018-08-31 | 2020-03-05 | Cirrus Logic International Semiconductor Limited | Biometric authentication |
| US11051117B2 (en) | 2017-11-14 | 2021-06-29 | Cirrus Logic, Inc. | Detection of loudspeaker playback |
| WO2021154600A1 (en) * | 2020-01-27 | 2021-08-05 | Pindrop Security, Inc. | Robust spoofing detection system using deep residual neural networks |
| WO2021165637A1 (en) * | 2020-02-20 | 2021-08-26 | Cirrus Logic International Semiconductor Limited | Audio system with digital microphone |
| WO2021250368A1 (en) * | 2020-06-10 | 2021-12-16 | Cirrus Logic International Semiconductor Limited | Voice authentication device |
| WO2022040524A1 (en) * | 2020-08-21 | 2022-02-24 | Pindrop Security, Inc. | Improving speaker recognition with quality indicators |
| US11341974B2 (en) | 2020-05-21 | 2022-05-24 | Cirrus Logic, Inc. | Authenticating received speech |
| US11755701B2 (en) | 2017-07-07 | 2023-09-12 | Cirrus Logic Inc. | Methods, apparatus and systems for authentication |
| US12327564B1 (en) * | 2021-09-06 | 2025-06-10 | Amazon Technologies, Inc. | Voice-based user recognition |
| US12367868B2 (en) | 2021-12-21 | 2025-07-22 | Samsung Electronics Co., Ltd. | Electronic apparatus and controlling method thereof |
Families Citing this family (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN113327618B (en) * | 2021-05-17 | 2024-04-19 | 西安讯飞超脑信息科技有限公司 | Voiceprint discrimination method, voiceprint discrimination device, computer device and storage medium |
| CN113327617B (en) * | 2021-05-17 | 2024-04-19 | 西安讯飞超脑信息科技有限公司 | Voiceprint discrimination method, voiceprint discrimination device, computer device and storage medium |
| CN113516987B (en) * | 2021-07-16 | 2024-04-12 | 科大讯飞股份有限公司 | Speaker recognition method, speaker recognition device, storage medium and equipment |
| CN120600051A (en) * | 2025-07-31 | 2025-09-05 | 支付宝(杭州)信息技术有限公司 | Voiceprint recognition test system and voiceprint recognition test method |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1399915A2 (en) * | 2001-06-19 | 2004-03-24 | Securivox Ltd | Speaker recognition system |
| US20150356974A1 (en) * | 2013-01-17 | 2015-12-10 | Nec Corporation | Speaker identification device, speaker identification method, and recording medium |
| US20170351487A1 (en) * | 2016-06-06 | 2017-12-07 | Cirrus Logic International Semiconductor Ltd. | Voice user interface |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20020194003A1 (en) * | 2001-06-05 | 2002-12-19 | Mozer Todd F. | Client-server security system and method |
| WO2006054205A1 (en) * | 2004-11-16 | 2006-05-26 | Koninklijke Philips Electronics N.V. | Audio device for and method of determining biometric characteristincs of a user. |
| JP5015939B2 (en) * | 2005-09-22 | 2012-09-05 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Method and apparatus for acoustic outer ear characterization |
| CN104658533A (en) * | 2013-11-20 | 2015-05-27 | 中兴通讯股份有限公司 | Terminal unlocking method and device as well as terminal |
| US9384738B2 (en) * | 2014-06-24 | 2016-07-05 | Google Inc. | Dynamic threshold for speaker verification |
| CN105575395A (en) * | 2014-10-14 | 2016-05-11 | 中兴通讯股份有限公司 | Voice wake-up method and apparatus, terminal, and processing method thereof |
| CN106448663B (en) * | 2016-10-17 | 2020-10-23 | 海信集团有限公司 | Voice awakening method and voice interaction device |
| GB201801530D0 (en) * | 2017-07-07 | 2018-03-14 | Cirrus Logic Int Semiconductor Ltd | Methods, apparatus and systems for authentication |
-
2019
- 2019-01-23 WO PCT/GB2019/050185 patent/WO2019145708A1/en not_active Ceased
- 2019-01-23 KR KR1020207022108A patent/KR20200108858A/en not_active Ceased
- 2019-01-23 GB GB2009795.2A patent/GB2583420B/en active Active
- 2019-01-23 CN CN201980009737.0A patent/CN111656440A/en active Pending
- 2019-01-23 GB GB2210986.2A patent/GB2609093B/en active Active
- 2019-01-23 GB GB2210387.3A patent/GB2608710B/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP1399915A2 (en) * | 2001-06-19 | 2004-03-24 | Securivox Ltd | Speaker recognition system |
| US20150356974A1 (en) * | 2013-01-17 | 2015-12-10 | Nec Corporation | Speaker identification device, speaker identification method, and recording medium |
| US20170351487A1 (en) * | 2016-06-06 | 2017-12-07 | Cirrus Logic International Semiconductor Ltd. | Voice user interface |
Cited By (24)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11755701B2 (en) | 2017-07-07 | 2023-09-12 | Cirrus Logic Inc. | Methods, apparatus and systems for authentication |
| US11051117B2 (en) | 2017-11-14 | 2021-06-29 | Cirrus Logic, Inc. | Detection of loudspeaker playback |
| WO2020044019A1 (en) * | 2018-08-31 | 2020-03-05 | Cirrus Logic International Semiconductor Limited | Biometric authentication |
| GB2590013A (en) * | 2018-08-31 | 2021-06-16 | Cirrus Logic Int Semiconductor Ltd | Biometric Authentication |
| GB2590013B (en) * | 2018-08-31 | 2022-07-06 | Cirrus Logic Int Semiconductor Ltd | Biometric Authentication |
| WO2021154600A1 (en) * | 2020-01-27 | 2021-08-05 | Pindrop Security, Inc. | Robust spoofing detection system using deep residual neural networks |
| US12417772B2 (en) | 2020-01-27 | 2025-09-16 | Pindrop Security, Inc. | Robust spoofing detection system using deep residual neural networks |
| AU2021212621B2 (en) * | 2020-01-27 | 2024-02-22 | Pindrop Security, Inc. | Robust spoofing detection system using deep residual neural networks |
| US11862177B2 (en) | 2020-01-27 | 2024-01-02 | Pindrop Security, Inc. | Robust spoofing detection system using deep residual neural networks |
| US20210264923A1 (en) * | 2020-02-20 | 2021-08-26 | Cirrus Logic International Semiconductor Ltd. | Audio system with digital microphone |
| WO2021165637A1 (en) * | 2020-02-20 | 2021-08-26 | Cirrus Logic International Semiconductor Limited | Audio system with digital microphone |
| KR20220139400A (en) * | 2020-02-20 | 2022-10-14 | 시러스 로직 인터내셔널 세미컨덕터 리미티드 | Audio system with digital microphone |
| US11488606B2 (en) | 2020-02-20 | 2022-11-01 | Cirrus Logic, Inc. | Audio system with digital microphone |
| GB2607505A (en) * | 2020-02-20 | 2022-12-07 | Cirrus Logic Int Semiconductor Ltd | Audio system with digital microphone |
| KR102493866B1 (en) | 2020-02-20 | 2023-01-30 | 시러스 로직 인터내셔널 세미컨덕터 리미티드 | Audio system with digital microphone |
| US11894000B2 (en) | 2020-05-21 | 2024-02-06 | Cirrus Logic Inc. | Authenticating received speech |
| US11341974B2 (en) | 2020-05-21 | 2022-05-24 | Cirrus Logic, Inc. | Authenticating received speech |
| US11721346B2 (en) | 2020-06-10 | 2023-08-08 | Cirrus Logic, Inc. | Authentication device |
| GB2609171A (en) * | 2020-06-10 | 2023-01-25 | Cirrus Logic Int Semiconductor Ltd | Voice authentication device |
| WO2021250368A1 (en) * | 2020-06-10 | 2021-12-16 | Cirrus Logic International Semiconductor Limited | Voice authentication device |
| WO2022040524A1 (en) * | 2020-08-21 | 2022-02-24 | Pindrop Security, Inc. | Improving speaker recognition with quality indicators |
| US12190905B2 (en) | 2020-08-21 | 2025-01-07 | Pindrop Security, Inc. | Speaker recognition with quality indicators |
| US12327564B1 (en) * | 2021-09-06 | 2025-06-10 | Amazon Technologies, Inc. | Voice-based user recognition |
| US12367868B2 (en) | 2021-12-21 | 2025-07-22 | Samsung Electronics Co., Ltd. | Electronic apparatus and controlling method thereof |
Also Published As
| Publication number | Publication date |
|---|---|
| GB2583420B (en) | 2022-09-14 |
| GB2608710A (en) | 2023-01-11 |
| GB2609093B (en) | 2023-05-10 |
| GB202210387D0 (en) | 2022-08-31 |
| GB2583420A (en) | 2020-10-28 |
| GB2609093A (en) | 2023-01-25 |
| GB202009795D0 (en) | 2020-08-12 |
| GB2608710B (en) | 2023-05-17 |
| CN111656440A (en) | 2020-09-11 |
| GB202210986D0 (en) | 2022-09-07 |
| KR20200108858A (en) | 2020-09-21 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11475899B2 (en) | Speaker identification | |
| US11735189B2 (en) | Speaker identification | |
| US11694695B2 (en) | Speaker identification | |
| WO2019145708A1 (en) | Speaker identification | |
| US12026241B2 (en) | Detection of replay attack | |
| CN111213203B (en) | Secure voice biometric authentication | |
| US11056118B2 (en) | Speaker identification | |
| US20180130475A1 (en) | Methods and apparatus for biometric authentication in an electronic device | |
| WO2017212206A1 (en) | Voice user interface | |
| KR20190015488A (en) | Voice user interface | |
| GB2552722A (en) | Speaker recognition | |
| US20190147890A1 (en) | Audio peripheral device | |
| US11900730B2 (en) | Biometric identification | |
| CN107533415B (en) | Method and device for voiceprint detection | |
| US11437022B2 (en) | Performing speaker change detection and speaker recognition on a trigger phrase | |
| US11894000B2 (en) | Authenticating received speech | |
| US11935541B2 (en) | Speech recognition | |
| US11710475B2 (en) | Methods and apparatus for obtaining biometric data |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19702675 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 202009795 Country of ref document: GB Kind code of ref document: A Free format text: PCT FILING DATE = 20190123 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 20207022108 Country of ref document: KR Kind code of ref document: A |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 19702675 Country of ref document: EP Kind code of ref document: A1 |