[go: up one dir, main page]

WO2019001039A1 - Relay operations in a cellular network - Google Patents

Relay operations in a cellular network Download PDF

Info

Publication number
WO2019001039A1
WO2019001039A1 PCT/CN2018/080527 CN2018080527W WO2019001039A1 WO 2019001039 A1 WO2019001039 A1 WO 2019001039A1 CN 2018080527 W CN2018080527 W CN 2018080527W WO 2019001039 A1 WO2019001039 A1 WO 2019001039A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
group
relay
ues
relay nodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2018/080527
Other languages
French (fr)
Inventor
Salah Eddine HAJRI
Mohamad Assaad
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JRD Communication Shenzhen Ltd
Original Assignee
JRD Communication Shenzhen Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JRD Communication Shenzhen Ltd filed Critical JRD Communication Shenzhen Ltd
Priority to CN201880043278.3A priority Critical patent/CN110800359B/en
Publication of WO2019001039A1 publication Critical patent/WO2019001039A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/026Co-operative diversity, e.g. using fixed or mobile stations as relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/18Processing of user or subscriber data, e.g. subscribed services, user preferences or user profiles; Transfer of user or subscriber data
    • H04W8/186Processing of subscriber group data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/04Terminal devices adapted for relaying to or from another terminal or user

Definitions

  • the present disclosure generally relates to wireless communications, and specifically to relay operations in a cellular network.
  • Current telecommunications networks operate using radio spectrum in which multiple accesses to the communications resources of the radio spectrum is strictly controlled.
  • Each User Equipment (UE) connected to a network is provided a “slice” of the spectrum using a variety of multiple access techniques such as, by way of example only but not limited to, Frequency Division Multiplexing (FDM) , Time Division Multiplexing (TDM) , Code Division Multiplexing (CDM) , and Space Division Multiplexing (SDM) or a combination of one or more of these techniques.
  • FDM Frequency Division Multiplexing
  • TDM Time Division Multiplexing
  • CDM Code Division Multiplexing
  • SDM Space Division Multiplexing
  • 5G New Radio is the name chosen by the Third Generation Partnership Project defining the global 5G telecommunications standard for the specification of a new 5G wireless air interface. 3G and 4G communications standards such as current Long Term Evolution (LTE) /LTE advanced standards were directed to connecting people. Instead, 5G/NR is, at least in part, intended to connect everything and provide a unifying connectivity fabric. 5G/NR may bring about a suite of families such as enhanced Mobile Broadband, massive Machine Type Communications, and Ultra-Reliable and Low Latency Communications (URLLC) .
  • URLLC is defined as one of the key target scenarios to be supported by 5G/NR and should provide low latency communications and high reliability (e.g. URLLC reliability requirement for one transmission of a packet is 1-10 -5 for X bytes (e.g., 20 bytes) with a user plane latency of 1ms) and high reliability.
  • a method performed by a base station for handling communication of user equipments (UE) in a telecommunications network.
  • the base station groups a UE with another UE into a group of relay nodes based on location of the UE relative the other UE.
  • the base station then schedules the group of relay nodes as relay nodes in the telecommunications network.
  • the base station may optionally schedule a different UE to communicate with the UE as the relay node.
  • the base station may optionally schedule a maximum number of different UEs to communicate with each group of UEs.
  • the scheduling is proximity based and may depend on a maximum distance from a center of the group to the different UE.
  • the base station may optionally receive an indication of link quality of a link between the group of relay nodes and the different UE. Furthermore, the base station may receive an indication of link quality of a link between the group of relay nodes and the base station; and may perform communication within the telecommunications network based on the received indications.
  • the location of the UE relative the other UE is within an area of a maximum radius.
  • the object of the invention is to provide a mechanism that improves the capacity of wireless communications networks. This is achieved by scheduling the relay nodes according to a location criterion that enables to provide a good wireless back-haul link between the base station and the relay nodes.
  • a base station apparatus including a processor unit, a storage unit and a communications interface, where the processor unit, storage unit, and communications interface are configured to perform the method (s) as described or as described herein.
  • the methods described herein may be performed by software in machine readable form on a tangible storage medium or computer readable medium e.g. in the form of a computer program comprising computer program code means adapted to perform all the steps of any of the methods described herein when the program is run on a computing device or base station and where the computer program may be embodied on a computer readable medium.
  • tangible (or non-transitory) storage media include disks, thumb drives, memory cards etc. and do not include propagated signals.
  • the software can be suitable for execution on a parallel processor or a serial processor such that the method steps may be carried out in any suitable order, or simultaneously.
  • a computer readable medium comprising a computer program, program code or instructions stored thereon, which when executed on a processor, causes the processor to perform a method for handling communication of UEs as described herein.
  • a computer readable medium comprising a computer program, program code or instructions stored thereon, which when executed on a processor, causes the processor to perform a method for handling communication of UEs as described herein.
  • firmware and software can be valuable, separately tradable commodities. It is intended to encompass software, which runs on or controls “dumb” or standard hardware, to carry out the desired functions. It is also intended to encompass software which “describes” or defines the configuration of hardware, such as HDL (hardware description language) software, as is used for designing silicon chips, or for configuring universal programmable chips, to carry out desired functions.
  • HDL hardware description language
  • a benefit of the claimed solution is that it enables to provide service to a wide area without requiring prior network infrastructure deployment. This is very advantageous for network operators since, using the proposed solution, more UEs may be serviced with the same available resources. Another major benefit of the solution is energy efficiency. Using mobile UEs to mimic a base station means that the cumbersome energy cost of deployed infrastructure is reduced and so is the needed transmission power.
  • Figure 1 is a schematic overview of a telecommunications network according to embodiments herein;
  • FIG. 2 is a schematic overview of a telecommunications network according to embodiments herein;
  • FIG. 3 is a signaling scheme according to embodiments herein;
  • Figure 4 is a block diagram depicting a time slot according to embodiments herein;
  • Figure 5 is a schematic overview depicting grouping of UEs according to embodiments herein;
  • Figure 6 is a schematic overview depicting grouping of UEs according to embodiments herein;
  • Figure 7 is a simplified flow chart illustrating an exemplary method performed by the base station
  • Figure 8 shows a comparison of CDFs
  • Figures 10A-10B are simplified block diagrams illustrating embodiments of a base station.
  • Fig. 1 is a schematic overview depicting a telecommunications network according to embodiments herein.
  • FIG. 1 an example of part of an NR cellular communication system operating in accordance with embodiments of the invention is illustrated and indicated generally at 100 and comprises a base station 101 such as an evolved Node B (eNB) supporting a cell.
  • the base station 101 may support a multiplicity of cells.
  • eNB evolved Node B
  • Telecommunications network 100 may comprise or represent any one or more communication network (s) used for communications between User Equipment (UE) 500 and 800 and other devices, content sources or servers that are connected to the telecommunications network 100.
  • the telecommunication network 100 may also comprise or represent any one or more communication network (s) , one or more network nodes, entities, elements, application servers, servers, base stations or other network devices that are linked, coupled or connected to form the telecommunications network 100.
  • the coupling or links between network nodes may be wired or wireless (for example, radio communications links, optical fibre, etc. ) .
  • the telecommunication network 100 may include any suitable combination of core network (s) and radio access network (s) including network nodes or entities, base stations, access points, etc. that enable communications between the UEs, network node 101 of the telecommunication network 100, content sources and/or other devices connecting to the telecommunication network 100.
  • Examples of telecommunication network 100 may be at least one communication network or combination thereof including, but not limited to, one or more wired and/or wireless telecommunication network (s) , one or more core network (s) , one or more radio access network (s) , one or more computer networks, one or more data communication network (s) , the Internet, the telephone network, wireless network (s) such as the WiMAX, WLAN (s) based on, by way of example only, the IEEE 802.11 standards and/or Wi-Fi networks, or Internet Protocol (IP) networks, packet-switched networks or enhanced packet switched networks, IP Multimedia Subsystem (IMS) networks, or communications networks based on wireless, cellular or satellite technologies such as mobile networks, Global System for Mobile Communications (GSM) , GPRS networks, Wideband Code Division Multiple Access (W-CDMA) , CDMA2000 or Long Term Evolution (LTE) /LTE Advanced networks or any 2nd, 3rd, 4 th or 5
  • GSM Global System for Mobile Communications
  • GPRS Global System
  • a user equipment may be referred to as a wireless device such as a wireless communication terminal, communication equipment, Machine Type Communication (MTC) device, Device to Device (D2D) terminal, or user equipment e.g. smart phone, laptop, mobile phone, sensor, camera, relay, mobile tablets.
  • the base station may be referred to a network node, an access point such as a wireless local area network (WLAN) access point, an access controller, a radio base station such as a NodeB, an evolved Node B (eNB, eNodeB) , a base transceiver station or similar.
  • WLAN wireless local area network
  • eNB evolved Node B
  • eNodeB evolved Node B
  • MIMO Multiple Input Multiple Output
  • TDD Time Division Duplexing
  • K single antenna UEs are present in the coverage area, and a long range base station 101 has M antennas.
  • the base station 101 is allowed to estimate the channel of at most ⁇ UEs using orthogonal pilot sequences with length ⁇ .
  • the maximum number of scheduled UEs per slot is limited by the length of the training period. Scheduling more UEs for uplink requires increasing ⁇ which, consequently, reduces the available resources for data transmission in each time slot, and hence reduces the achievable throughput per UE.
  • Embodiments herein aim to increase the number of scheduled UEs without increasing the maximum training length ⁇ .
  • An option is the deployment of more base stations but this is costly for network operators.
  • Backhaul linked relay systems provide a possible route to improving coverage and capacity, and the current disclosure proposes an intelligent relay selection scheme.
  • a massive MIMO base station is used to provide a low cost and efficient access network that does not need more infrastructure to be deployed.
  • a large number of mobile UEs are selected as relay nodes to provide two layers of massive MIMO.
  • the telecommunications network is transformed to a combination of virtual massive MIMO cells connected to the core network with a wireless back-haul through a link with the long range massive MIMO base station.
  • relay clusters can be established using existing LTE and 5G control plans, once the disclosure herein has identified appropriate UEs and relay clusters.
  • the method proposed in this invention enables more UEs to be scheduled in the system without requiring any additional resources for training. It also allows the coverage area of the network to be increased with the existing infrastructure while reducing, at the same time, the energy consumption of the telecommunications network.
  • the advantages may be achieved through selecting a number of co-located mobile UEs to act as relay nodes according to an optimized framework.
  • the basic concept of the invention is depicted in Fig. 2.
  • Fig. 3 is a signalling scheme according to embodiments herein. Assuming a coherence time slot of duration T s , in a conventional TDD protocol, this time slot is divided between uplink channel estimation, and data transmission in the uplink (UL) and downlink (DL) .
  • the uplink channel estimation is done using orthogonal training sequences of length ⁇ . This means that, at each time slot, at maximum ⁇ UEs can be scheduled for training when using a conventional TDD protocol.
  • This limitation in the training duration also results in reusing the same pilot sequences in different cells giving rise to pilot contamination between cells if the cells cannot be sufficient separated.
  • Scheduling more UEs in conventional massive MIMO TDD systems requires an increase in ⁇ which reduces the part of each coherence interval that is dedicated for data transmission.
  • the current disclosure aims to overcome this limitation by using some of the mobile UEs as relay nodes in order to mimic massive MIMO base stations without requiring any costly back-haul link or infrastructure.
  • the main concept is to use co-located UEs in the covered area as relay nodes. These relay nodes will be organised in groups based on their location.
  • the scheduled relay nodes may be considered as the antennas of a virtual Massive MIMO base station. Practically, the proposed invention can be compared to a massive MIMO system with a wireless back-haul.
  • the base station 101 groups the UEs 500 into groups based on their location relative one another, in particular the base station 101 determines UEs that are considered as co-located.
  • the UEs or relay nodes 500, in each group of UEs provide an array gain comparable to that of a classical massive MIMO base station. Communication among the relays may not be necessary, regardless of their large number, due to the coordination by the base station. This means that signalling overhead is reduced and should not act to limit system capacity.
  • only co-located UEs are selected as relay nodes. This means that the UEs from each group will have comparable second order channel statistics and hence their channel covariance matrices are concentrated in the same signal subspace.
  • This condition is set in order to manage the level of inter-relay interference. If another time period L is assumed and during this period, it may be assumed that the second order statistics of the channel which depend on user locations, are constant.
  • the base station 101 may use a graph optimization framework in order to optimally identify groups of co-located UEs in the network to be scheduled as relay nodes.
  • the relay selection optimization problem will identify N r eligible relay groups. Practically, this invention divides the area into small cells serviced each by a cluster of relay nodes densely distributed in its centre.
  • the base station 101 then schedules the UEs 500 that are considered co-located as relay nodes in the telecommunications network.
  • Each coherence slot is divided into 3 major parts as shown in Figure 4. Note that these parts do not have to be performed following the order given in Figure 4. Any other order can be used, provided they are duplexed in time.
  • One part is dedicated for training, which starts with Uplink training between the relay node and the long range base station 101, followed by Uplink training between the scheduled UEs 800 and the relay nodes 500.
  • the two other parts of the interval will be dedicated, respectively, for uplink and downlink data transmission.
  • the transmission on the link R-U between the relay nodes 500 and the scheduled UEs 800 and on the link B-R between the base station 101 and the relay nodes 500 will be separated in time. This is done in order to avoid self-interference at the relay level which can be very problematic due to the small distances between the relay nodes.
  • the periods of time dedicated to each link will be computed by the base station 101 with respective proportions 1- ⁇ and ⁇ . ⁇ will depend on the bottleneck of the system, meaning the link with the lowest rate.
  • the users within each relay group will be scheduled for uplink training at each time slot. Since these UEs are clustered geographically, their channel covariance matrices may be spanned by the same signal space eigenvectors.
  • the graph optimization framework will also minimize the difference between the channel covariance matrices of the relay nodes 500 within a given group. This allows to considerably reduce the interference between groups and enables a reuse the same pilot sequences among the groups.
  • the base station 101 may further schedule other UEs 800 connected to the relay nodes.
  • the base station 101 may then determine channel estimates for a link between the base station 101 and the group of UEs.
  • the received training signal at the base station 101 may be written as:
  • the base station 101 can use a matched filter, zero forcing or MMSE receiver and an estimate of its channel. Once the relay channel estimated, the remaining UEs in the network will associate with the nearest relay group in order to start transmission. Each group is allowed to communicate at most with ⁇ r UEs. Note that in the proposed invention, only relay nodes are allowed to communicate with the backhaul linked base station 101. This enables to reduce the transmission power used in both uplink and downlink since the communication distances are reduced.
  • the base station 101 may further determine channel estimate of a link between the group of UEs, i.e. the group of relay nodes, and the UE 800.
  • UEs 800 scheduled for transmission may send their pilot sequences.
  • the received training signal at the relay node k in relay group r may be given by:
  • the wireless channel between the relay node k, r and the UE i associated with group denotes the uplink pilot sequences used by the scheduled UEs for data transmission and denotes an additive white Gaussian noise vector at relay node k, r.
  • the channels between each UE l and each relay node k from its serving group r will be estimated individually by the relay node. This can be done for example using MMSE or any other estimation method.
  • each relay node k, r may apply, independently, the conjugate of its locally obtained channel estimate
  • Each relay node from group r may then send the decoded signal to the base station 101.
  • the base station 101 may combine the received signal from all relay nodes in the group and the achievable rate R lr of the l th UE communicating with the r th relay cluster may then be:
  • the minimum rate provided by group r is the interference due to pilot contamination and represents the impact of the rest of the interference plus channel estimation error and noise.
  • the maximum number of relays per group ⁇ increases, decreases with a rate proportional to the variance of the relays large scale fading coefficients. Consequently, the proposed location based relay selection method results in reducing interference.
  • the base station 101 may use the conjugate of the estimates of the channel between the base station 101 and the different groups in order to precode the data.
  • the received downlink data signal at the relay node k group r may be given by:
  • d sj denotes the data symbol intended to relay node s in group j and denotes an additive white Gaussian noise coefficient.
  • the received downlink data signal at UE l, communicating with group r may be given by:
  • d ij denotes the data symbol intended to the i th UE communicating with group j, and denotes an additive white Gaussian noise coefficient.
  • N r The number of the established groups, denoted N r , will be derived by the graph optimization problem. It depends on the maximum allowed distance between the relay nodes denoted by R max .
  • R max is a design parameter that depend on UE density. The value of R max may satisfy the following condition:
  • ⁇ d refers to the spatial density of UEs 500 in the covered area.
  • the condition guarantees the existence of the required number of relay nodes per group, on average.
  • R max can be lowered resulting in denser distribution of the relays in the groups which improves the achievable throughput. This is quite promising for urban areas, where the occurrence of a concentration of connected UEs in a restricted area is highly probable, specially in IoT applications. This means that we can actually leverage the high demand in order to provide more throughput and schedule more UEs.
  • Another design parameter in the proposed solution is the maximum distance between a UE 800 and its serving group d max .
  • d max also depends on UE density and its value may verify the following condition:
  • This condition guarantees the scheduling of the desired number of UEs, on average.
  • the proposed solution enables to schedule more users, achieve higher throughput, increase coverage and reduce the energy and infrastructure requirements of the network.
  • Figure 7 illustrates exemplifying methods performed by the base station 101. According to the various embodiments herein, one or more of the following steps may be performed as applicable.
  • the same or similar reference numerals have been used to denote the same or similar steps, or actions.
  • the method may use as inputs: UEs position in the covered area.
  • a maximum training duration for relay nodes per slot denoted ⁇ .
  • a maximum duration per slot dedicated to training between the relay nodes and the scheduled UEs 800 denoted ⁇ r .
  • a maximum radius R max A maximum distance between a UE 800 and its serving group d max .
  • the output may be: establishing a link between the base station, N r groups, and all UEs 800 scheduled to communicate with the groups.
  • the full clustered massive MIMO relay method which is executed at the beginning of each period L, may follow:
  • the base station groups a UE 500 and another UE 500 into a group of relay nodes based on location of the UE relative the other UE.
  • the location of the UE relative the other UE may be within an area of a maximum radius.
  • the base station 101 starts by establishing the groups of UEs.
  • relay nodes from each group may need to be located within the area with the maximum radius R max .
  • the base station 101 starts by clustering or grouping the covered UEs according to their location. Note that the number of groups will depend on R max . Then the UEs selected as relay nodes will be grouped in N r groups containing each, at maximum ⁇ UE from each location based group.
  • Each group will relay the signal of the scheduled UEs 800 for data transmission within its neighbourhood.
  • a UE 800 may be scheduled for data transmission if its covered by either the base station 101 or one of the relay nodes. Note that these groups are not required to contain the same number of scheduled UEs. This will be decided by the maximum allowed distance between the relay group centre and the scheduled UE 800 denoted by d max . Since classical clustering algorithms cannot provide the required user grouping, it is herein developed an optimized relay selection method based on two consecutive graph problems. The following clustering method may be applied in this step:
  • the base station 101 may start by constructing a location based graph G (V, E) where each vertex v ⁇ V represents a UE as pictured in figure 6. An edge e (v, u) between UE u and v is inserted whenever the distance between the two UEs is lower or equal to R max . Note that the resulting graph is actually an interval graph. This reduces the complexity of finding the optimal relay user grouping.
  • the base station 101 may solve a Cardinality Constrained Graph Partitioning into Cliques with Submodular Cost optimization problem.
  • C1 a Cardinality Constrained Graph Partitioning into Cliques with Submodular Cost optimization problem.
  • a clique is a subset of vertices of an undirected graph such that its induced subgraph is complete.
  • the problem is to find a partition of the graph G (V, E) into cliques with a maximum of ⁇ UEs per clique such that the cost function f is minimized.
  • the considered submodular cost function ma be given by:
  • C ui denotes the covariance matrix of the channel between relay node u in cluster i and the Massive MIMO base station.
  • Problem (C1) can be solved in polynomial time for interval graphs whereas it is NP-hard for general graphs.
  • a second graph G′ (V′, E′) may then be constructed.
  • Each vertex v′ inV′ represents one of the cliques that resulted from problem (C1) .
  • Each clique represents a cluster of relay nodes.
  • An edge e′ (v′, u′) between clusters u′ and v′ is inserted whenever the distance between the two clusters is greater or equal to 2d max . This will result in yet another interval graph.
  • the base station 101 may then solve a maximum clique problem on G′ (V′, E′) .
  • the maximum clique problem search for a clique of maximum cardinality in G′ (V′, E′) which, practically, results in scheduling the largest number of relay groups with a minimum inter-group distance of 2d max .
  • the following may be performed by the base station 101:
  • the base station 101 constructs G′ (V′, E′) where, each vertex v′ ⁇ V′ represents one of the cliques that resulted from problem (C1) .
  • the base station 101 then solve a maximum clique problem (C2) in order to find the clique of maximum cardinality in G′ (V′, E′) .
  • C2 a maximum clique problem
  • the base station 101 can apply the following algorithm:
  • the base station 101 then schedules the group of relay nodes, that is the UE and the other UE, as relay nodes in the telecommunications network.
  • the base station 101 may schedule a different UE 800 to communicate with the UE 500 as the relay node.
  • the scheduling of the different UE may comprise scheduling a maximum number of different UEs to communicate with each group of UEs, wherein the scheduling is proximity based and depends on a maximum distance from a center of the group to the different UE.
  • the base station 101 may schedule at maximum ⁇ r UEs 800 to communicate with each selected group. This scheduling may be proximity based and may depend on the maximum distance d max from the relay center to the UE 800.
  • the base station 101 may receive an indication of link quality of a link between the group of relay nodes and the different UE 800.
  • the base station may further receive an indication of link quality of a link between the group of relay nodes and the base station 101.
  • the base station 101 may thus schedule the UEs 800 for uplink training in the two links on separated slots with respective lengths ⁇ and ⁇ r .
  • the base station 101 may estimate only the channels of the relay nodes during the first part of uplink training.
  • Each relay node may estimate the channels to every scheduled UE 800 communicating with its group. No communication among the relays is necessary.
  • Each relay node will do its processing independently and may forward the resulting signal to the base station 101 after applying a Matched filter receiver.
  • the base station 101 may then perform communication within the telecommunications network based on the received indications. Hence, after acquiring channel state information on both links, the rest of the coherence slot will be dedicated for data transmission in the uplink and downlink separately for the two links.
  • Steps 703 and 704 may be applied by the base station 101 at the beginning of each coherence slot in the period L.
  • the disclosure above provides a protocol that enables massive relay scheduling while reducing the need for expensive infrastructure to maintain the coverage of the network. It also enables to schedule more UEs with the same resources while increasing the achievable throughput. Another advantage of the proposed solution is it low signaling overhead since no communication among the relay nodes is required. Being based only on slow changing side information i.e. the location of the UEs, the disclosure provides a very practical low cost solution for the network operator.
  • a power consumption model is utilised, for example based on that disclosed in Emil Luca Sanguinetti, Jakob Hoydis and Mérouane Debbah, Designing multi-user MIMO for energy efficiency: When is massive MIMO the answer?, IEEE Wireless Communications and Networking Conference (WCNC) , Apr 2014, Istanbul, Turkey. Proceedings of WCNC, 2014.
  • the considered model takes into consideration the architectural, transceiver chain and Radio Frequency (RF) power consumptions.
  • Figure 8 shows a comparison of the CDFs of the achievable sum rates in the three scenarios where the same number of users is scheduled for data transmission. A considerable improvement of the achievable sum rate CDF can be seen using the disclosure hereinbefore. This gain is achieved without any infrastructure modification which render the proposed invention a very cost efficient solution for future network generations and specially for IoT applications.
  • Figure 9 shows a comparison of the energy efficiency CDF in the three scenarios. Owing to the absence of per-deployed infrastructure, the disclosure enables considerable improvement in the achievable energy efficiency of the system while increasing its capacity.
  • OFDMA Orthogonal Frequency-Division Multiple Access
  • FDMA single-carrier and multi-carrier transmitters/receivers based on OFDM and other carrier formats
  • OFDM Orthogonal Frequency-Division Multiple Access
  • CDMA Code Division Multiple Access
  • TDMA time division multiple access
  • FDMA Frequency Division Multiple Access
  • SDMA Space Division Multiple Access
  • FIGS 10A and 10B illustrate embodiments of the base station 101.
  • Figure 10A illustrates various components of an exemplary computing-based base station 101 which may be implemented to include the functionality of the base station 101 as disclosed herein.
  • the computing-based device comprises one or more processors 802 which may be microprocessors, controllers or any other suitable type of processors for processing computer executable instructions to control the operation of the base station in order to perform measurements, receive measurement reports, schedule and/or allocate communication resources as described in the process (es) and method (s) as described herein.
  • processors 802 may be microprocessors, controllers or any other suitable type of processors for processing computer executable instructions to control the operation of the base station in order to perform measurements, receive measurement reports, schedule and/or allocate communication resources as described in the process (es) and method (s) as described herein.
  • the processors 802, or processor unit may include one or more fixed function blocks (also referred to as accelerators) which implement the methods and/or processes as described herein in hardware (rather than software or firmware) .
  • fixed function blocks also referred to as accelerators
  • Platform software and/or computer executable instructions comprising an operating system 804A or any other suitable platform software may be provided at the computing-based device to enable application software to be executed on the base station.
  • software and/or computer executable instructions may include functionality to perform the methods of Figure 7.
  • the computing device may be used to implement the base station and may include software and/or computer executable instructions that may include functionality to perform the methods of Figure 7.
  • Computer-readable media may include, for example, computer storage media such as memory 804 and communications media.
  • Computer storage media, such as memory 804 includes volatile and non-volatile, removable and non-removable media implemented in any method or technology.
  • a data store 804B of the memory 804 is configured for storage of information such as computer readable instructions, data structures, program modules or other data.
  • Computer storage media may include, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other non-transmission medium that can be used to store information for access by a computing device.
  • communication media may embody computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave, or other transport mechanism.
  • computer storage media does not include communication media.
  • the computer storage media such as the memory 804
  • the storage may be distributed or located remotely and accessed via a network or other communication link, e.g. using communication interface 806.
  • the computing-based device may also optionally or if desired comprises an input/output controller 810 arranged to output display information to a display device 812 which may be separate from or integral to the computing-based device.
  • the display information may provide a graphical user interface.
  • the input/output controller 810 is also arranged to receive and process input from one or more devices, such as a user input device 814, e.g. a mouse or a keyboard. This user input may be used to set scheduling for communication, or for allocating communication resources, or to set which communications resources are of a first type and/or of a second type etc.
  • the display device 812 may also act as the user input device 814 if it is a touch sensitive display device.
  • the input/output controller 810 may also output data to devices other than the display device, e.g. other computing devices via communication interface 806, any other communication interface, or a locally connected printing device/computing devices etc.
  • FIG 10B illustrates a schematic block diagram of the base station 101 according to another embodiment.
  • the base station comprises a grouping module 881, a scheduling module 882, and optionally a receiving module 883, and a performing module 884, which are configured to perform the steps performed by the base station 101 according to Figure 7.
  • modules may be implemented using digital logic and/or one or more microcontrollers, microprocessors, or other digital hardware.
  • ′computer′ is used herein to refer to any device with processing capability such that it can execute instructions. Those skilled in the art will realise that such processing capabilities are incorporated into many different devices and therefore the term ′computer′ or ′computing device′ includes PCs, servers, base stations, eNBs, network nodes and other network elements and many other devices.
  • a remote computer may store an example of the process described as software.
  • a local or terminal computer may access the remote computer and download a part or all of the software to run the program.
  • the local computer may download pieces of the software as needed, or execute some software instructions at the local terminal and some at the remote computer (or computer network) .
  • the remote computer or computer network
  • ′an′ item refers to one or more of those items.
  • ′comprising′ is used herein to mean including the method blocks, features or elements identified, but that such blocks, features or elements do not comprise an exclusive list and a method or apparatus may contain additional blocks, features or elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The invention relates to a method performed by a base station for handling communication of user equipments, UE, in a telecommunications network. The base station groups a UE (500) and another UE into a group of relay nodes based on location of the UE relative the other UE; and schedule the group of relay nodes as relay nodes in the telecommunications network.

Description

Relay Operations In A cellular Network Technical Field
The present disclosure generally relates to wireless communications, and specifically to relay operations in a cellular network.
Background
Current telecommunications networks operate using radio spectrum in which multiple accesses to the communications resources of the radio spectrum is strictly controlled. Each User Equipment (UE) connected to a network is provided a “slice” of the spectrum using a variety of multiple access techniques such as, by way of example only but not limited to, Frequency Division Multiplexing (FDM) , Time Division Multiplexing (TDM) , Code Division Multiplexing (CDM) , and Space Division Multiplexing (SDM) or a combination of one or more of these techniques. Even with a combination of these techniques, with the popularity of mobile telecommunications, the capacity of current and future telecommunications networks is may be limiting.
5G New Radio (5G/NR) is the name chosen by the Third Generation Partnership Project defining the global 5G telecommunications standard for the specification of a new 5G wireless air interface. 3G and 4G communications standards such as current Long Term Evolution (LTE) /LTE advanced standards were directed to connecting people. Instead, 5G/NR is, at least in part, intended to connect everything and provide a unifying connectivity fabric. 5G/NR may bring about a suite of families such as enhanced Mobile Broadband, massive Machine Type Communications, and Ultra-Reliable and Low Latency Communications (URLLC) . URLLC is defined as one of the key target scenarios to be supported by 5G/NR and should provide low latency communications and high reliability (e.g. URLLC reliability requirement for one transmission of a packet is 1-10 -5 for X bytes (e.g., 20 bytes) with a user plane latency of 1ms) and high reliability.
The high demand in data traffic coupled with the ever increasing number of connected devices and the emergence of Internet of Things (IoT) puts a heavy burden on telecommunications networks.
Thus, there is a desire and a need for a mechanism that further improves the capacity of wireless communications networks.
Summary
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not  intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
According to an aspect, there is provided a method performed by a base station for handling communication of user equipments (UE) in a telecommunications network. The base station groups a UE with another UE into a group of relay nodes based on location of the UE relative the other UE. The base station then schedules the group of relay nodes as relay nodes in the telecommunications network.
The base station may optionally schedule a different UE to communicate with the UE as the relay node.
The base station may optionally schedule a maximum number of different UEs to communicate with each group of UEs. The scheduling is proximity based and may depend on a maximum distance from a center of the group to the different UE.
The base station may optionally receive an indication of link quality of a link between the group of relay nodes and the different UE. Furthermore, the base station may receive an indication of link quality of a link between the group of relay nodes and the base station; and may perform communication within the telecommunications network based on the received indications.
Optionally, the location of the UE relative the other UE is within an area of a maximum radius.
The object of the invention is to provide a mechanism that improves the capacity of wireless communications networks. This is achieved by scheduling the relay nodes according to a location criterion that enables to provide a good wireless back-haul link between the base station and the relay nodes.
According to further aspects of the invention there is provided a base station apparatus including a processor unit, a storage unit and a communications interface, where the processor unit, storage unit, and communications interface are configured to perform the method (s) as described or as described herein.
The methods described herein may be performed by software in machine readable form on a tangible storage medium or computer readable medium e.g. in the form of a computer program comprising computer program code means adapted to perform all the steps of any of the methods described herein when the program is run on a computing device or base station and where the computer program may be embodied on a computer readable  medium. Examples of tangible (or non-transitory) storage media include disks, thumb drives, memory cards etc. and do not include propagated signals. The software can be suitable for execution on a parallel processor or a serial processor such that the method steps may be carried out in any suitable order, or simultaneously. For example, another other aspect of the invention there is provided a computer readable medium comprising a computer program, program code or instructions stored thereon, which when executed on a processor, causes the processor to perform a method for handling communication of UEs as described herein.
In a further aspect of the invention there is provided a computer readable medium comprising a computer program, program code or instructions stored thereon, which when executed on a processor, causes the processor to perform a method for handling communication of UEs as described herein.
This acknowledges that firmware and software can be valuable, separately tradable commodities. It is intended to encompass software, which runs on or controls “dumb” or standard hardware, to carry out the desired functions. It is also intended to encompass software which “describes” or defines the configuration of hardware, such as HDL (hardware description language) software, as is used for designing silicon chips, or for configuring universal programmable chips, to carry out desired functions.
The preferred features may be combined as appropriate, as would be apparent to a skilled person, and may be combined with any of the aspects of the invention.
A benefit of the claimed solution is that it enables to provide service to a wide area without requiring prior network infrastructure deployment. This is very advantageous for network operators since, using the proposed solution, more UEs may be serviced with the same available resources. Another major benefit of the solution is energy efficiency. Using mobile UEs to mimic a base station means that the cumbersome energy cost of deployed infrastructure is reduced and so is the needed transmission power.
Brief Description of the Drawings
Further details, aspects and embodiments will be described, by way of example only, with reference to the drawings. Elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. Like reference numerals have been included in the respective drawings to ease understanding.
Figure 1is a schematic overview of a telecommunications network according to embodiments herein;
Figure 2 is a schematic overview of a telecommunications network according to embodiments herein;
Figure 3 is a signaling scheme according to embodiments herein;
Figure 4 is a block diagram depicting a time slot according to embodiments herein;
Figure 5 is a schematic overview depicting grouping of UEs according to embodiments herein;
Figure 6 is a schematic overview depicting grouping of UEs according to embodiments herein;
Figure 7 is a simplified flow chart illustrating an exemplary method performed by the base station;
Figure 8 shows a comparison of CDFs;
Figure 9 shows a comparison of energy efficiency; and
Figures 10A-10B are simplified block diagrams illustrating embodiments of a base station.
Detailed Description
Fig. 1 is a schematic overview depicting a telecommunications network according to embodiments herein.
Those skilled in the art will recognize and appreciate that the specifics of the examples described are merely illustrative of some embodiments and that the teachings set forth herein are applicable in a variety of alternative settings.
Referring now to FIG. 1, an example of part of an NR cellular communication system operating in accordance with embodiments of the invention is illustrated and indicated generally at 100 and comprises a base station 101 such as an evolved Node B (eNB) supporting a cell. The base station 101 may support a multiplicity of cells.
Telecommunications network 100 may comprise or represent any one or more communication network (s) used for communications between User Equipment (UE) 500 and 800 and other devices, content sources or servers that are connected to the telecommunications network 100. The telecommunication network 100 may also comprise or  represent any one or more communication network (s) , one or more network nodes, entities, elements, application servers, servers, base stations or other network devices that are linked, coupled or connected to form the telecommunications network 100. The coupling or links between network nodes may be wired or wireless (for example, radio communications links, optical fibre, etc. ) . The telecommunication network 100 may include any suitable combination of core network (s) and radio access network (s) including network nodes or entities, base stations, access points, etc. that enable communications between the UEs, network node 101 of the telecommunication network 100, content sources and/or other devices connecting to the telecommunication network 100.
Examples of telecommunication network 100 that may be used in certain embodiments of the described apparatus, methods and systems may be at least one communication network or combination thereof including, but not limited to, one or more wired and/or wireless telecommunication network (s) , one or more core network (s) , one or more radio access network (s) , one or more computer networks, one or more data communication network (s) , the Internet, the telephone network, wireless network (s) such as the WiMAX, WLAN (s) based on, by way of example only, the IEEE 802.11 standards and/or Wi-Fi networks, or Internet Protocol (IP) networks, packet-switched networks or enhanced packet switched networks, IP Multimedia Subsystem (IMS) networks, or communications networks based on wireless, cellular or satellite technologies such as mobile networks, Global System for Mobile Communications (GSM) , GPRS networks, Wideband Code Division Multiple Access (W-CDMA) , CDMA2000 or Long Term Evolution (LTE) /LTE Advanced networks or any 2nd, 3rd, 4 th or 5 th Generation and beyond type communication networks and the like.
A user equipment may be referred to as a wireless device such as a wireless communication terminal, communication equipment, Machine Type Communication (MTC) device, Device to Device (D2D) terminal, or user equipment e.g. smart phone, laptop, mobile phone, sensor, camera, relay, mobile tablets. The base station may be referred to a network node, an access point such as a wireless local area network (WLAN) access point, an access controller, a radio base station such as a NodeB, an evolved Node B (eNB, eNodeB) , a base transceiver station or similar.
It is herein assumed a single cell massive Multiple Input Multiple Output (MIMO) system in Time Division Duplexing (TDD) mode with pilot based uplink channel estimation. K single antenna UEs are present in the coverage area, and a long range base station 101 has M antennas. At each slot the base station 101 is allowed to estimate the channel of at most τ UEs using orthogonal pilot sequences with length τ. In classical massive MIMO systems, the maximum number of scheduled UEs per slot is limited by the length of the training period.  Scheduling more UEs for uplink requires increasing τ which, consequently, reduces the available resources for data transmission in each time slot, and hence reduces the achievable throughput per UE.
Embodiments herein aim to increase the number of scheduled UEs without increasing the maximum training length τ. An option is the deployment of more base stations but this is costly for network operators. Backhaul linked relay systems provide a possible route to improving coverage and capacity, and the current disclosure proposes an intelligent relay selection scheme. A massive MIMO base station is used to provide a low cost and efficient access network that does not need more infrastructure to be deployed.
A large number of mobile UEs are selected as relay nodes to provide two layers of massive MIMO. By scheduling these relay nodes in an optimized manner, the telecommunications network is transformed to a combination of virtual massive MIMO cells connected to the core network with a wireless back-haul through a link with the long range massive MIMO base station.
Previous relay based solutions required the deployment of a large number of access points with costly back-haul links. In the current disclosure, no additional signalling is needed among the relay nodes since relay selection and UE scheduling is performed by the base station 101. The relay clusters can be established using existing LTE and 5G control plans, once the disclosure herein has identified appropriate UEs and relay clusters.
The method proposed in this invention enables more UEs to be scheduled in the system without requiring any additional resources for training. It also allows the coverage area of the network to be increased with the existing infrastructure while reducing, at the same time, the energy consumption of the telecommunications network. The advantages may be achieved through selecting a number of co-located mobile UEs to act as relay nodes according to an optimized framework. The basic concept of the invention is depicted in Fig. 2.
Fig. 3 is a signalling scheme according to embodiments herein. Assuming a coherence time slot of duration T s, in a conventional TDD protocol, this time slot is divided between uplink channel estimation, and data transmission in the uplink (UL) and downlink (DL) . The uplink channel estimation is done using orthogonal training sequences of length τ. This means that, at each time slot, at maximum τ UEs can be scheduled for training when using a conventional TDD protocol. This limitation in the training duration also results in reusing the same pilot sequences in different cells giving rise to pilot contamination between cells if the cells cannot be sufficient separated. Scheduling more UEs in conventional massive MIMO TDD systems requires an increase in τ which reduces the part of each coherence  interval that is dedicated for data transmission. The current disclosure aims to overcome this limitation by using some of the mobile UEs as relay nodes in order to mimic massive MIMO base stations without requiring any costly back-haul link or infrastructure. The main concept is to use co-located UEs in the covered area as relay nodes. These relay nodes will be organised in groups based on their location. The scheduled relay nodes may be considered as the antennas of a virtual Massive MIMO base station. Practically, the proposed invention can be compared to a massive MIMO system with a wireless back-haul.
Referring to Figure 3, at step 301 the base station 101 groups the UEs 500 into groups based on their location relative one another, in particular the base station 101 determines UEs that are considered as co-located. The UEs or relay nodes 500, in each group of UEs provide an array gain comparable to that of a classical massive MIMO base station. Communication among the relays may not be necessary, regardless of their large number, due to the coordination by the base station. This means that signalling overhead is reduced and should not act to limit system capacity. In this example, only co-located UEs are selected as relay nodes. This means that the UEs from each group will have comparable second order channel statistics and hence their channel covariance matrices are concentrated in the same signal subspace. This condition is set in order to manage the level of inter-relay interference. If another time period L is assumed and during this period, it may be assumed that the second order statistics of the channel which depend on user locations, are constant. At the beginning of each interval L, the base station 101 may use a graph optimization framework in order to optimally identify groups of co-located UEs in the network to be scheduled as relay nodes. The relay selection optimization problem will identify N r eligible relay groups. Practically, this invention divides the area into small cells serviced each by a cluster of relay nodes densely distributed in its centre.
At step 302 the base station 101 then schedules the UEs 500 that are considered co-located as relay nodes in the telecommunications network. Each coherence slot is divided into 3 major parts as shown in Figure 4. Note that these parts do not have to be performed following the order given in Figure 4. Any other order can be used, provided they are duplexed in time. One part is dedicated for training, which starts with Uplink training between the relay node and the long range base station 101, followed by Uplink training between the scheduled UEs 800 and the relay nodes 500. The two other parts of the interval will be dedicated, respectively, for uplink and downlink data transmission. Note that the transmission on the link R-U between the relay nodes 500 and the scheduled UEs 800 and on the link B-R between the base station 101 and the relay nodes 500 will be separated in time. This is done in order to avoid self-interference at the relay level which can be very  problematic due to the small distances between the relay nodes. The periods of time dedicated to each link will be computed by the base station 101 with respective proportions 1-γ and γ. γ will depend on the bottleneck of the system, meaning the link with the lowest rate. The users within each relay group will be scheduled for uplink training at each time slot. Since these UEs are clustered geographically, their channel covariance matrices may be spanned by the same signal space eigenvectors. The graph optimization framework will also minimize the difference between the channel covariance matrices of the relay nodes 500 within a given group. This allows to considerably reduce the interference between groups and enables a reuse the same pilot sequences among the groups.
At step 303 the base station 101 may further schedule other UEs 800 connected to the relay nodes.
At step 304 the base station 101 may then determine channel estimates for a link between the base station 101 and the group of UEs. During the uplink training phase between the relay nodes 500 and the base station 101, the received training signal at the base station 101 may be written as:
Figure PCTCN2018080527-appb-000001
Here, 
Figure PCTCN2018080527-appb-000002
represents the wireless channel between the base station 101 and relay node i in group or cluster k. q i∈C τ×1, i=1..τ denotes the uplink pilot sequences used by the relay nodes
Figure PCTCN2018080527-appb-000003
and
Figure PCTCN2018080527-appb-000004
denotes a white Gaussian noise vector. In order to decode the signal of each relay i, k, the base station 101 can use a matched filter, zero forcing or MMSE receiver and an estimate of its channel. Once the relay channel estimated, the remaining UEs in the network will associate with the nearest relay group in order to start transmission. Each group is allowed to communicate at most with τ r UEs. Note that in the proposed invention, only relay nodes are allowed to communicate with the backhaul linked base station 101. This enables to reduce the transmission power used in both uplink and downlink since the communication distances are reduced.
At step 305 the base station 101 may further determine channel estimate of a link between the group of UEs, i.e. the group of relay nodes, and the UE 800. For example, UEs 800 scheduled for transmission may send their pilot sequences. The received training signal at the relay node k in relay group r may be given by:
Figure PCTCN2018080527-appb-000005
Here
Figure PCTCN2018080527-appb-000006
represents the wireless channel between the relay node k, r and the UE i associated with group
Figure PCTCN2018080527-appb-000007
denotes the uplink pilot sequences used by the scheduled UEs for data transmission
Figure PCTCN2018080527-appb-000008
and
Figure PCTCN2018080527-appb-000009
denotes an additive white Gaussian noise vector at relay node k, r. The channels 
Figure PCTCN2018080527-appb-000010
between each UE l and each relay node k from its serving group r will be estimated individually by the relay node. This can be done for example using MMSE or any other estimation method.
At step 306 once all channel estimates are performed such as Channel State information (CSI) estimates, data transmission will start. In order to decode the uplink data signal coming from the scheduled UE l, r, each relay node k, r may apply, independently, the conjugate of its locally obtained channel estimate
Figure PCTCN2018080527-appb-000011
Each relay node from group r may then send the decoded signal to the base station 101. At this stage, the base station 101 may combine the received signal from all relay nodes in the group and the achievable rate R lr of the l th UE communicating with the r th relay cluster may then be:
Figure PCTCN2018080527-appb-000012
Figure PCTCN2018080527-appb-000013
Here
Figure PCTCN2018080527-appb-000014
is the minimum rate provided by group r, 
Figure PCTCN2018080527-appb-000015
is the interference due to pilot contamination and
Figure PCTCN2018080527-appb-000016
represents the impact of the rest of the interference plus channel estimation error and noise. When the maximum number of relays per group τ increases, 
Figure PCTCN2018080527-appb-000017
decreases with a rate proportional to the variance of the relays large scale fading coefficients. Consequently, the proposed location based relay selection method results in reducing interference.
During the downlink phase on link B-R, the base station 101 may use the conjugate of the estimates of the channel between the base station 101 and the different  groups in order to precode the data. The received downlink data signal at the relay node k group r may be given by:
Figure PCTCN2018080527-appb-000018
Where, d sj denotes the data symbol intended to relay node s in group j and
Figure PCTCN2018080527-appb-000019
denotes an additive white Gaussian noise coefficient. During the downlink phase on link R-U, the relay node k in group r may precode the data signal using the conjugate of the locally obtained channel estimate
Figure PCTCN2018080527-appb-000020
to every i, i=1..τ r connected with group r. The received downlink data signal at UE l, communicating with group r may be given by:
Figure PCTCN2018080527-appb-000021
Where, d ij denotes the data symbol intended to the i th UE communicating with group j, and
Figure PCTCN2018080527-appb-000022
denotes an additive white Gaussian noise coefficient. The number of the established groups, denoted N r, will be derived by the graph optimization problem. It depends on the maximum allowed distance between the relay nodes denoted by R max. R max is a design parameter that depend on UE density. The value of R max may satisfy the following condition:
Figure PCTCN2018080527-appb-000023
λ d refers to the spatial density of UEs 500 in the covered area. The condition guarantees the existence of the required number of relay nodes per group, on average. In the presence of a large number of connected UEs, R max can be lowered resulting in denser distribution of the relays in the groups which improves the achievable throughput. This is quite promising for urban areas, where the occurrence of a concentration of connected UEs in a restricted area is highly probable, specially in IoT applications. This means that we can actually leverage the high demand in order to provide more throughput and schedule more UEs. Another design parameter in the proposed solution is the maximum distance between a UE 800 and its serving group d max. d max also depends on UE density and its value may verify the following condition:
Figure PCTCN2018080527-appb-000024
This condition guarantees the scheduling of the desired number of UEs, on average. Compared with a classical massive MIMO system in TDD mode, the proposed solution enables to schedule more users, achieve higher throughput, increase coverage and reduce the energy and infrastructure requirements of the network.
Figure 7 illustrates exemplifying methods performed by the base station 101. According to the various embodiments herein, one or more of the following steps may be performed as applicable. The same or similar reference numerals have been used to denote the same or similar steps, or actions. The method may use as inputs: UEs position in the covered area. A maximum training duration for relay nodes per slot denoted τ. A maximum duration per slot dedicated to training between the relay nodes and the scheduled UEs 800 denoted τ r. A maximum radius R max. A maximum distance between a UE 800 and its serving group d max. The output may be: establishing a link between the base station, N r groups, and all UEs 800 scheduled to communicate with the groups.
The full clustered massive MIMO relay method, which is executed at the beginning of each period L, may follow:
At Step 701 the base station groups a UE 500 and another UE 500 into a group of relay nodes based on location of the UE relative the other UE. The location of the UE relative the other UE may be within an area of a maximum radius. Thus, the base station 101 starts by establishing the groups of UEs. In this invention, relay nodes from each group may need to be located within the area with the maximum radius R max. In order to select the UEs of the group, the base station 101 starts by clustering or grouping the covered UEs according to their location. Note that the number of groups will depend on R max. Then the UEs selected as relay nodes will be grouped in N r groups containing each, at maximum τ UE from each location based group. Each group will relay the signal of the scheduled UEs 800 for data transmission within its neighbourhood. A UE 800 may be scheduled for data transmission if its covered by either the base station 101 or one of the relay nodes. Note that these groups are not required to contain the same number of scheduled UEs. This will be decided by the maximum allowed distance between the relay group centre and the scheduled UE 800 denoted by d max. Since classical clustering algorithms cannot provide the required user grouping, it is herein developed an optimized relay selection method based on two consecutive graph problems. The following clustering method may be applied in this step:
The base station 101 may start by constructing a location based graph G (V, E) where each vertex v∈V represents a UE as pictured in figure 6. An edge e (v, u) between UE u and v is inserted whenever the distance between the two UEs is lower or equal to R max. Note that the resulting graph is actually an interval graph. This reduces the complexity of finding the optimal relay user grouping.
Once the graph G (V, E) is constructed, the base station 101 may solve a Cardinality Constrained Graph Partitioning into Cliques with Submodular Cost optimization problem. We denote this problem by (C1) . In graph theory, a clique is a subset of vertices of an undirected graph such that its induced subgraph is complete. Formally, the problem is to find a partition of the graph G (V, E) into cliques
Figure PCTCN2018080527-appb-000025
with a maximum of τ UEs per clique such that the cost function f is minimized. The considered submodular cost function ma be given by:
Figure PCTCN2018080527-appb-000026
Where C ui denotes the covariance matrix of the channel between relay node u in cluster i and the Massive MIMO base station. Problem (C1) can be solved in polynomial time for interval graphs whereas it is NP-hard for general graphs.
A second graph G′ (V′, E′) may then be constructed. Each vertex v′ inV′ represents one of the cliques that resulted from problem (C1) . Each clique represents a cluster of relay nodes. An edge e′ (v′, u′) between clusters u′ and v′ is inserted whenever the distance between the two clusters is greater or equal to 2d max. This will result in yet another interval graph. The base station 101 may then solve a maximum clique problem on G′ (V′, E′) . We denote this problem by (C2) . The maximum clique problem search for a clique of maximum cardinality in G′ (V′, E′) which, practically, results in scheduling the largest number of relay groups with a minimum inter-group distance of 2d max.
In order to solve the relay establishing problems (C1) and (C2) , the following may be performed by the base station 101:
Solve (C1) in G (V, E) without the cardinality constraints on the number of UEs per clique. (C1) can be solved in polynomial time in interval graphs using a dynamic programming approach. This will result in a given number of cliques
K i, i=1..N.
Solve problem (C1) with cardinality constraints in every resulting clique K i, i=1..N.
The base station 101 constructs G′ (V′, E′) where, each vertex v′∈V′ represents one of the cliques that resulted from problem (C1) .
The base station 101 then solve a maximum clique problem (C2) in order to find the clique of maximum cardinality in G′ (V′, E′) . As an example, the base station 101 can apply the following algorithm:
Initialize the maximum clique size S=0 and the number of iterations Iter.
For k in range (1, Iter) do:
Figure PCTCN2018080527-appb-000027
Figure PCTCN2018080527-appb-000028
At step 702 the base station 101 then schedules the group of relay nodes, that is the UE and the other UE, as relay nodes in the telecommunications network.
At step 703 the base station 101 may schedule a different UE 800 to communicate with the UE 500 as the relay node. The scheduling of the different UE may  comprise scheduling a maximum number of different UEs to communicate with each group of UEs, wherein the scheduling is proximity based and depends on a maximum distance from a center of the group to the different UE. Thus, the base station 101 may schedule at maximum τ r UEs 800 to communicate with each selected group. This scheduling may be proximity based and may depend on the maximum distance d max from the relay center to the UE 800.
At step 704 the base station 101 may receive an indication of link quality of a link between the group of relay nodes and the different UE 800. The base station may further receive an indication of link quality of a link between the group of relay nodes and the base station 101. The base station 101 may thus schedule the UEs 800 for uplink training in the two links on separated slots with respective lengths τ and τ r. The base station 101 may estimate only the channels of the relay nodes during the first part of uplink training. Each relay node may estimate the channels to every scheduled UE 800 communicating with its group. No communication among the relays is necessary. Each relay node will do its processing independently and may forward the resulting signal to the base station 101 after applying a Matched filter receiver.
At step 705 the base station 101 may then perform communication within the telecommunications network based on the received indications. Hence, after acquiring channel state information on both links, the rest of the coherence slot will be dedicated for data transmission in the uplink and downlink separately for the two links.
Steps  703 and 704 may be applied by the base station 101 at the beginning of each coherence slot in the period L.
The disclosure above provides a protocol that enables massive relay scheduling while reducing the need for expensive infrastructure to maintain the coverage of the network. It also enables to schedule more UEs with the same resources while increasing the achievable throughput. Another advantage of the proposed solution is it low signaling overhead since no communication among the relay nodes is required. Being based only on slow changing side information i.e. the location of the UEs, the disclosure provides a very practical low cost solution for the network operator.
As an example consider a single cell system where τ=30 and τ r=20. All scheduled UEs for data transmission are distributed randomly within 0.8 km from their serving relay group. The long range base station is equipped with M=100 antennas. Three scenarios are compared; in the first one, the proposed method is used. In the second scenario, all scheduled UEs will be served according to the conventional TDD protocol for  massive MIMO; meaning that all UEs will be served by the base station without going through relays. In the third scenario the same area is covered by N r small base stations, equipped each with M s=30 antennas. In the three systems, the same number of users is scheduled for data transmission. The coherence interval is divided between uplink training and data transmission. We consider γ=0.5, the time slot duration T s=1ms and the available bandwidth B=20Mhz.
A power consumption model is utilised, for example based on that disclosed in Emil
Figure PCTCN2018080527-appb-000029
Luca Sanguinetti, Jakob Hoydis and Mérouane Debbah, Designing multi-user MIMO for energy efficiency: When is massive MIMO the answer?, IEEE Wireless Communications and Networking Conference (WCNC) , Apr 2014, Istanbul, Turkey. Proceedings of WCNC, 2014. The considered model takes into consideration the architectural, transceiver chain and Radio Frequency (RF) power consumptions.
Figure 8 shows a comparison of the CDFs of the achievable sum rates in the three scenarios where the same number of users is scheduled for data transmission. A considerable improvement of the achievable sum rate CDF can be seen using the disclosure hereinbefore. This gain is achieved without any infrastructure modification which render the proposed invention a very cost efficient solution for future network generations and specially for IoT applications.
Figure 9 shows a comparison of the energy efficiency CDF in the three scenarios. Owing to the absence of per-deployed infrastructure, the disclosure enables considerable improvement in the achievable energy efficiency of the system while increasing its capacity.
Although the above description describes, by way of example only but is not limited to, the use of Orthogonal Frequency-Division Multiple Access (OFDMA) , single-carrier and multi-carrier transmitters/receivers based on OFDM and other carrier formats, it is to be appreciated by the skilled person that the following description may be applied, not only to OFDMA, FDMA or SC-FDMA or other OFDM related systems, but also to other communication systems, receivers and transmitters, such as, by way of example only but is not limited to, Code Division Multiple Access (CDMA) systems, time division multiple access (TDMA) systems, any other Frequency Division Multiple Access (FDMA) systems, or Space Division Multiple Access (SDMA) systems, or any other suitable communication system or combinations thereof.
Figures 10A and 10B illustrate embodiments of the base station 101.
Figure 10A illustrates various components of an exemplary computing-based base station 101 which may be implemented to include the functionality of the base station 101 as disclosed herein.
The computing-based device comprises one or more processors 802 which may be microprocessors, controllers or any other suitable type of processors for processing computer executable instructions to control the operation of the base station in order to perform measurements, receive measurement reports, schedule and/or allocate communication resources as described in the process (es) and method (s) as described herein.
In some examples, for example where a system on a chip architecture is used, the processors 802, or processor unit, may include one or more fixed function blocks (also referred to as accelerators) which implement the methods and/or processes as described herein in hardware (rather than software or firmware) .
Platform software and/or computer executable instructions comprising an operating system 804A or any other suitable platform software may be provided at the computing-based device to enable application software to be executed on the base station. Depending on the functionality and capabilities of the computing device and application of the computing device, software and/or computer executable instructions may include functionality to perform the methods of Figure 7.
For example, the computing device may be used to implement the base station and may include software and/or computer executable instructions that may include functionality to perform the methods of Figure 7.
The software and/or computer executable instructions may be provided using any computer-readable media that is accessible by computing based device. Computer-readable media may include, for example, computer storage media such as memory 804 and communications media. Computer storage media, such as memory 804, includes volatile and non-volatile, removable and non-removable media implemented in any method or technology. A data store 804B of the memory 804 is configured for storage of information such as computer readable instructions, data structures, program modules or other data.
Computer storage media may include, but is not limited to, RAM, ROM, EPROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other non-transmission medium that can be used to store information for access by a computing device. In contrast, communication media may embody  computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave, or other transport mechanism. As defined herein, computer storage media does not include communication media. Although the computer storage media, such as the memory 804, is shown within the computing-based device it will be appreciated that the storage may be distributed or located remotely and accessed via a network or other communication link, e.g. using communication interface 806.
The computing-based device may also optionally or if desired comprises an input/output controller 810 arranged to output display information to a display device 812 which may be separate from or integral to the computing-based device. The display information may provide a graphical user interface. The input/output controller 810 is also arranged to receive and process input from one or more devices, such as a user input device 814, e.g. a mouse or a keyboard. This user input may be used to set scheduling for communication, or for allocating communication resources, or to set which communications resources are of a first type and/or of a second type etc. In an embodiment the display device 812 may also act as the user input device 814 if it is a touch sensitive display device. The input/output controller 810 may also output data to devices other than the display device, e.g. other computing devices via communication interface 806, any other communication interface, or a locally connected printing device/computing devices etc.
Figure 10B illustrates a schematic block diagram of the base station 101 according to another embodiment. The base station comprises a grouping module 881, a scheduling module 882, and optionally a receiving module 883, and a performing module 884, which are configured to perform the steps performed by the base station 101 according to Figure 7. As will be readily understood by those familiar with communications design, that modules may be implemented using digital logic and/or one or more microcontrollers, microprocessors, or other digital hardware.
The term ′computer′ is used herein to refer to any device with processing capability such that it can execute instructions. Those skilled in the art will realise that such processing capabilities are incorporated into many different devices and therefore the term ′computer′ or ′computing device′ includes PCs, servers, base stations, eNBs, network nodes and other network elements and many other devices.
Those skilled in the art will realise that storage devices utilised to store program instructions can be distributed across a network. For example, a remote computer may store an example of the process described as software. A local or terminal computer may access the remote computer and download a part or all of the software to run the program.
Alternatively, the local computer may download pieces of the software as needed, or execute some software instructions at the local terminal and some at the remote computer (or computer network) . Those skilled in the art will also realise that by utilising conventional techniques known to those skilled in the art that all, or a portion of the software instructions may be carried out by a dedicated circuit, such as a DSP, programmable logic array, or the like.
Any range or device value given herein may be extended or altered without losing the effect sought, as will be apparent to the skilled person.
It will be understood that the benefits and advantages described above may relate to one example or embodiment or may relate to several examples or embodiments. The examples or embodiments are not limited to those that solve any or all of the stated problems or those that have any or all of the stated benefits and advantages.
Any reference to ′an′ item refers to one or more of those items. The term ′comprising′ is used herein to mean including the method blocks, features or elements identified, but that such blocks, features or elements do not comprise an exclusive list and a method or apparatus may contain additional blocks, features or elements.
The steps of the methods described herein may be carried out in any suitable order, or simultaneously where appropriate. Additionally, individual blocks may be deleted from any of the methods without departing from the spirit and scope of the subject matter described herein. Aspects of any of the examples described above may be combined with aspects of any of the other examples described to form further examples without losing the effect sought.
It will be understood that the above description of a preferred embodiment is given by way of example only and that various modifications may be made by those skilled in the art. Although various embodiments have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of the claims.

Claims (9)

  1. A method performed by a base station for handling communication of UEs in a telecommunicationsnetwork, the method comprising the steps of 
    grouping (701) a UE (500) and another UE into a group of relay nodes based on location of theUErelative the other UE; and
    scheduling (702) the group of relay nodes as relay nodesin the telecommunications network.
  2. The method accordingto claim 1, further comprising the step ofscheduling (703) a differentUE (800) to communicate with the UE (500) as the relay node.
  3. The method according to claim 2, wherein the scheduling of the differentUE comprises scheduling a maximum number of different UEs to communicate with each group of UEs, wherein the scheduling is proximity based and depends on a maximum distance from a centreof the group to the differentUE.
  4. The method according to claim2 or claim 3, further comprisingthe steps of 
    receiving (704) an indication of link quality of a link between the group of relay nodesand the differentUE;
    receiving (704) an indication of link quality of a link between the group of relay nodes and the base station; and
    performing (705) communication within the telecommunications network based on the received indications.
  5. The method according to any of claims 1-4, wherein the location of the UE relative the other UE is within an area of a maximum radius.
  6. A computer readablemedium comprising program code stored thereon, which whenexecuted on a processor, causes the processor to perform a method according to any one of claims 1-5.
  7.  A non-transitory computer readable medium having computer readable instructions stored thereon for execution by a processor to perform the method according to any of claims1-5.
  8. The non-transitory computer readable medium of claim 7comprising at least one of:a hard disk, a Compact Disc, an optical storage device, a magnetic storage device, a Read  Only Memory, a Programmable Read Only Memory, an Erasable Programmable Read Only Memory, an Electrically Erasable Programmable Read Only Memory and a Flash memoryand a Solid State Drive.
  9. A base stationapparatus comprising a processor, a storage unit and a communications interface, wherein the processor unit, storage unit, and communications interface are configured toperform the method as claimed in any one of claims 1-5.
PCT/CN2018/080527 2017-06-30 2018-03-26 Relay operations in a cellular network Ceased WO2019001039A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880043278.3A CN110800359B (en) 2017-06-30 2018-03-26 Relay station operation in cellular networks

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB1710498.5 2017-06-30
GB1710498.5A GB2565269A (en) 2017-06-30 2017-06-30 Relay operations in a cellular network

Publications (1)

Publication Number Publication Date
WO2019001039A1 true WO2019001039A1 (en) 2019-01-03

Family

ID=59592568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/080527 Ceased WO2019001039A1 (en) 2017-06-30 2018-03-26 Relay operations in a cellular network

Country Status (3)

Country Link
CN (1) CN110800359B (en)
GB (1) GB2565269A (en)
WO (1) WO2019001039A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020236429A1 (en) * 2019-05-22 2020-11-26 Google Llc User-equipment-coordination set for disengaged mode
US11638272B2 (en) 2019-09-19 2023-04-25 Google Llc User-equipment-coordination-set selective participation
US11641566B2 (en) 2019-07-25 2023-05-02 Google Llc User-equipment-coordination-set regrouping
CN116916410A (en) * 2023-08-03 2023-10-20 兰州理工大学 A wireless communication network relay selection method based on variational autoencoders
US11804877B2 (en) 2019-09-19 2023-10-31 Google Llc Enhanced beam searching for active coordination sets
US11889322B2 (en) 2019-03-12 2024-01-30 Google Llc User-equipment coordination set beam sweeping
US12114394B2 (en) 2019-01-02 2024-10-08 Google Llc Multiple active-coordination-set aggregation for mobility management
US12114173B2 (en) 2019-02-21 2024-10-08 Google Llc User-equipment-coordination set for a wireless network using an unlicensed frequency band
US12136967B2 (en) 2018-12-28 2024-11-05 Google Llc User-equipment-coordination set for a wireless network
US12177821B2 (en) 2019-01-28 2024-12-24 Google Llc Dynamic carrier subband operation for active coordination sets

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113595756B (en) * 2021-06-11 2024-04-16 西安邮电大学 Network modeling method, communication equipment and network for heterogeneous nodes and links

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188706A (en) * 2011-12-29 2013-07-03 上海贝尔股份有限公司 Method and device for cooperation transmission between user terminals
WO2014166439A1 (en) * 2013-07-09 2014-10-16 中兴通讯股份有限公司 Trunking multicast decision method, trunking terminal, trunking server and storage medium
WO2014166440A1 (en) * 2013-07-09 2014-10-16 中兴通讯股份有限公司 Cluster relay method, device, system and storage medium
US20150382142A1 (en) * 2013-03-07 2015-12-31 Lg Electronics Inc. Method for adjusting proximity service range and filtering method therefor
CN105376847A (en) * 2016-01-14 2016-03-02 江苏大学 Vehicular relaying cluster power distribution method for security of 5G IOV physical layer
WO2017000373A1 (en) * 2015-06-30 2017-01-05 宇龙计算机通信科技(深圳)有限公司 Resource scheduling method, terminal, base station and system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7508798B2 (en) * 2002-12-16 2009-03-24 Nortel Networks Limited Virtual mimo communication system
US7965687B2 (en) * 2005-12-15 2011-06-21 Sasken Communications Technologies Method and system for multiple-input-multiple-output (MIMO) communication in a wireless network
US8031605B2 (en) * 2008-03-31 2011-10-04 Intel Corporation System and method for node-clustering and multi-hop routing in wideband wireless ad-hoc networks
EP2110999B1 (en) * 2008-04-15 2012-12-12 NTT DoCoMo, Inc. Method and apparatus for forwarding data in a wireless network
EP2477343A1 (en) * 2011-01-13 2012-07-18 Alcatel Lucent Cooperating cluster for wireless transmissions
US8976662B2 (en) * 2012-02-09 2015-03-10 Qualcomm Incorporated Apparatus and method for opportunistic relay association
US9301308B2 (en) * 2012-12-21 2016-03-29 Telefonaktiebolaget L M Ericsson (Publ) Determining a cluster set of mobile devices
WO2015004142A1 (en) * 2013-07-08 2015-01-15 Nec Europe Ltd. Method for deciding to handover user equipment in a mobile communicaton network
WO2015005540A1 (en) * 2013-07-11 2015-01-15 엘지전자 주식회사 Broadcasting method using device-to-device (d2d) communication in wireless communication system
US20160219578A1 (en) * 2015-01-28 2016-07-28 Electronics And Telecommunications Research Institute Cooperative multi-antenna transmitting and receiving method and apparatus for mobile communication system, and method for configuring cluster for the same
GB2537842A (en) * 2015-04-27 2016-11-02 Fujitsu Ltd A communications system, method and gateway device
CN106454992B (en) * 2015-08-07 2020-06-30 上海诺基亚贝尔股份有限公司 Method for selecting a relay terminal, corresponding remote terminal and relay terminal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188706A (en) * 2011-12-29 2013-07-03 上海贝尔股份有限公司 Method and device for cooperation transmission between user terminals
US20150382142A1 (en) * 2013-03-07 2015-12-31 Lg Electronics Inc. Method for adjusting proximity service range and filtering method therefor
WO2014166439A1 (en) * 2013-07-09 2014-10-16 中兴通讯股份有限公司 Trunking multicast decision method, trunking terminal, trunking server and storage medium
WO2014166440A1 (en) * 2013-07-09 2014-10-16 中兴通讯股份有限公司 Cluster relay method, device, system and storage medium
WO2017000373A1 (en) * 2015-06-30 2017-01-05 宇龙计算机通信科技(深圳)有限公司 Resource scheduling method, terminal, base station and system
CN105376847A (en) * 2016-01-14 2016-03-02 江苏大学 Vehicular relaying cluster power distribution method for security of 5G IOV physical layer

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12136967B2 (en) 2018-12-28 2024-11-05 Google Llc User-equipment-coordination set for a wireless network
US12114394B2 (en) 2019-01-02 2024-10-08 Google Llc Multiple active-coordination-set aggregation for mobility management
US12177821B2 (en) 2019-01-28 2024-12-24 Google Llc Dynamic carrier subband operation for active coordination sets
US12114173B2 (en) 2019-02-21 2024-10-08 Google Llc User-equipment-coordination set for a wireless network using an unlicensed frequency band
US11889322B2 (en) 2019-03-12 2024-01-30 Google Llc User-equipment coordination set beam sweeping
US11956850B2 (en) 2019-05-22 2024-04-09 Google Llc User-equipment-coordination set for disengaged mode
WO2020236429A1 (en) * 2019-05-22 2020-11-26 Google Llc User-equipment-coordination set for disengaged mode
JP7084559B2 (en) 2019-05-22 2022-06-14 グーグル エルエルシー User equipment coordination set for disengagement mode
JP2022526460A (en) * 2019-05-22 2022-05-24 グーグル エルエルシー User equipment coordination set for disengagement mode
US10893572B2 (en) 2019-05-22 2021-01-12 Google Llc User-equipment-coordination set for disengaged mode
US11641566B2 (en) 2019-07-25 2023-05-02 Google Llc User-equipment-coordination-set regrouping
US11804877B2 (en) 2019-09-19 2023-10-31 Google Llc Enhanced beam searching for active coordination sets
US11638272B2 (en) 2019-09-19 2023-04-25 Google Llc User-equipment-coordination-set selective participation
CN116916410A (en) * 2023-08-03 2023-10-20 兰州理工大学 A wireless communication network relay selection method based on variational autoencoders

Also Published As

Publication number Publication date
CN110800359B (en) 2024-03-19
CN110800359A (en) 2020-02-14
GB2565269A (en) 2019-02-13
GB201710498D0 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
WO2019001039A1 (en) Relay operations in a cellular network
US12396010B2 (en) Method and user equipment for determining resource for sidelink communication
US12212395B2 (en) Beam diversity for multi-slot communication channel
US10680734B2 (en) System and method for interference cancellation using terminal cooperation
CN117561758B (en) Method and apparatus for communication
WO2019097356A1 (en) Methods and apparatuses for time and frequency tracking reference signal use in new radio
US11464013B2 (en) Coordinated link adaptation and packet scheduling in dynamic spectrum sharing
US20230354268A1 (en) Method and apparatus for resource allocation for sidelink positioning in a wireless communication system
US12045721B2 (en) Method and device for transmitting OFDM signal, and method and device for receiving OFDM signal
US12414134B2 (en) Control channel detection in terminal device
WO2022044729A1 (en) Terminal, wireless communication method, and base station
WO2019025660A1 (en) User equipment capabilities coordination for evolved universal mobile telecommunications system terrestrial radio access (e-utran) and new radio (nr) mixed deployments
US12245201B2 (en) Indication of non-preferred resources for sidelink communications
CN110999462B (en) Method and apparatus for two modes coexistence of vehicle-to-vehicle communication
WO2023197134A1 (en) Frequency domain resource allocation indications for transform precoding in multiple transmit receive point deployments
KR20250050926A (en) Sidelink-based positioning method and device
WO2018024081A1 (en) Electronic device and method for use in network control point and central processing node
US12476773B2 (en) Resource restrictions for sub-band full-duplex (SBFD) and dynamic time division duplex (TDD) operation
US20250126613A1 (en) Indicating unused transmit occasions in uplink control information
WO2025111911A1 (en) Enhanced suspension state for multiple configured grant based configurations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823575

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823575

Country of ref document: EP

Kind code of ref document: A1