WO2019080138A1 - 配置测量间隔的方法、终端设备和网络设备 - Google Patents
配置测量间隔的方法、终端设备和网络设备Info
- Publication number
- WO2019080138A1 WO2019080138A1 PCT/CN2017/108200 CN2017108200W WO2019080138A1 WO 2019080138 A1 WO2019080138 A1 WO 2019080138A1 CN 2017108200 W CN2017108200 W CN 2017108200W WO 2019080138 A1 WO2019080138 A1 WO 2019080138A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- radio frequency
- terminal device
- measurement interval
- network device
- information
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/10—Scheduling measurement reports ; Arrangements for measurement reports
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/309—Measuring or estimating channel quality parameters
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B17/00—Monitoring; Testing
- H04B17/30—Monitoring; Testing of propagation channels
- H04B17/382—Monitoring; Testing of propagation channels for resource allocation, admission control or handover
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W24/00—Supervisory, monitoring or testing arrangements
- H04W24/08—Testing, supervising or monitoring using real traffic
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0055—Transmission or use of information for re-establishing the radio link
- H04W36/0069—Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
- H04W36/00698—Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink using different RATs
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W36/00—Hand-off or reselection arrangements
- H04W36/0005—Control or signalling for completing the hand-off
- H04W36/0083—Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
- H04W36/0085—Hand-off measurements
- H04W36/0088—Scheduling hand-off measurements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/21—Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/51—Allocation or scheduling criteria for wireless resources based on terminal or device properties
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
- H04W8/24—Transfer of terminal data
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W8/00—Network data management
- H04W8/22—Processing or transfer of terminal data, e.g. status or physical capabilities
- H04W8/24—Transfer of terminal data
- H04W8/245—Transfer of terminal data from a network towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
- H04W84/02—Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/02—Terminal devices
- H04W88/06—Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W88/00—Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
- H04W88/08—Access point devices
- H04W88/10—Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/02—Inter-networking arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W92/00—Interfaces specially adapted for wireless communication networks
- H04W92/04—Interfaces between hierarchically different network devices
- H04W92/10—Interfaces between hierarchically different network devices between terminal device and access point, i.e. wireless air interface
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- Embodiments of the present invention relate to the field of communications, and more particularly, to a method, a terminal device, and a network device for configuring a measurement interval.
- 5G fifth generation of mobile communication technology
- 5G 5th generation of mobile communication technology
- eMBB Enhanced Mobile Broadband
- URLLC Ultra-Reliable and Low Latency Communication
- mMTC Massive Machine Type of Communication
- NR New Radio
- LTE Long Term Evolution
- NR's island coverage mode because a large number of LTE deployments are below 6 GHz, there are few spectrums below 6 GHz that can be used for 5G. Therefore, NR must study spectrum applications above 6 GHz, while high-band coverage is limited and signal fading is fast.
- LTE-NR dual connection (Dual Connection (DC) transmission data is supported by a combination of bandwidths to improve system throughput.
- DC Dual Connection
- a method, a terminal device, and a network device for configuring measurement and detection are provided, which enable the terminal device to flexibly process measurement and data transmission and reception processes, reduce the impact of measurement on data transmission and reception, and thereby improve user experience.
- a method of configuring a measurement interval comprising:
- the terminal device performs signal quality measurement according to the at least one measurement interval.
- a method for a network device to configure a measurement interval for a terminal device is proposed.
- the terminal device can flexibly process the measurement and data. The process of sending and receiving reduces the impact of measurement on data transmission and reception, thereby improving the user experience.
- the method before the terminal device receives the configuration information sent by the network device, the method further includes:
- the radio frequency capability information includes at least one of the following information:
- the number of the radio frequency channels supported by the terminal The number of the radio frequency channels supported by the terminal, the spectrum information supported by each radio channel, the radio frequency channel capability information, and the information indicating whether the terminal device supports the measurement of the signal quality according to the measurement interval corresponding to the multiple radio frequency channels. Instructions.
- the radio channel capability information includes at least one of the following information:
- MIMO multiple-input multiple-output
- each of the plurality of radio frequency channels corresponds to a measurement interval.
- the first measurement interval corresponding to the first radio frequency channel of the plurality of radio frequency channels is used only for the first radio frequency channel to perform measurement.
- the plurality of radio frequency channels correspond to the same measurement interval.
- a method of configuring a measurement interval including:
- the network device generates configuration information, where the configuration information includes at least one measurement interval corresponding to multiple radio frequency channels that the terminal device has;
- the network device sends the configuration information to the terminal device.
- the method before the network device generates configuration information, the method also includes:
- the radio frequency capability information includes at least one of the following information:
- Instructing information, where the network device generates configuration information including:
- the network device generates the configuration information according to the radio frequency capability information.
- the radio channel capability information includes at least one of the following information:
- each of the plurality of radio frequency channels corresponds to a measurement interval.
- the first measurement interval corresponding to the first radio frequency channel of the plurality of radio frequency channels is used only for the first radio frequency channel to perform measurement.
- the plurality of radio frequency channels correspond to the same measurement interval.
- a terminal device including:
- a transceiver unit configured to receive configuration information sent by the network device, where the configuration information includes at least one measurement interval corresponding to multiple radio frequency channels of the terminal device;
- a measuring unit configured to perform signal quality measurement according to the at least one measurement interval.
- a terminal device including:
- a transceiver configured to receive configuration information sent by the network device, where the configuration information includes at least one measurement interval corresponding to multiple radio frequency channels of the terminal device;
- a processor configured to perform signal quality measurement according to the at least one measurement interval.
- a network device including:
- a processing unit configured to generate configuration information, where the configuration information includes at least one measurement interval corresponding to multiple radio frequency channels that the terminal device has;
- transceiver unit configured to send the configuration information to the terminal device.
- a network device including:
- a processor configured to generate configuration information, where the configuration information includes multiple shots of the terminal device At least one measurement interval corresponding to the frequency channel;
- a transceiver configured to send the configuration information to the terminal device.
- a computer readable medium for storing a computer program comprising instructions for performing the method embodiment of the first aspect or the second aspect or the third aspect described above.
- a computer chip comprising: an input interface, an output interface, at least one processor, a memory, the processor is configured to execute code in the memory, and when the code is executed, the processing.
- a computer chip comprising: an input interface, an output interface, at least one processor, and a memory, wherein the processor is configured to execute code in the memory, when the code is executed, the processing.
- a communication system comprising the network device as described above, and the terminal device described above.
- FIG. 1 is an example of an application scenario of the present invention.
- FIG. 2 is a schematic block diagram of a method of configuring a measurement interval according to an embodiment of the present invention.
- FIG. 3 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
- FIG. 4 is a schematic block diagram of another terminal device according to an embodiment of the present invention.
- FIG. 5 is a schematic block diagram of a network device according to an embodiment of the present invention.
- FIG. 6 is a schematic block diagram of another network device according to an embodiment of the present invention.
- FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
- the terminal device 110 is connected to the first network device 130 under the first communication system and the second network device 120 under the second communication system.
- the first network device 130 is a long term evolution (Long Term Evolution).
- Network device under LTE
- the second network device 120 is a network device under New Radio (NR).
- NR New Radio
- the first network device 130 and the second network device 120 may include multiple cells.
- the terminal device 110 Before the terminal device 110 performs cell handover, the terminal device 110 normally measures the power (signal quality) of the target cell and reports it to the first network device 130, and the first network device 130 determines whether to allow the terminal device 110 to switch. Go to the target cell.
- the terminal device 110 can measure the signal quality of the target cell more easily; but if their frequency points are different (inter-frequency measurement), the terminal device 110 It is difficult to perform measurements on the signal quality of the target cell.
- the simplest solution for inter-frequency measurement is to implement two sets of radio frequency (RF) transceivers on the UE.
- RF radio frequency
- a method for a network device to configure a measurement interval for a terminal device is proposed.
- a measurement gap of each radio channel is defined and configured for the terminal.
- the device enables the terminal device to flexibly handle measurement and data transmission and reception processes, and reduces the impact of measurement on data transmission and reception, thereby improving the user experience.
- FIG. 1 is an example of a scenario of an embodiment of the present invention, and an embodiment of the present invention is not limited to that shown in FIG. 1.
- the communication system adapted by the embodiment of the present invention may include at least a plurality of network devices under the first communication system and/or a plurality of network devices under the second communication system.
- the first communication system and the second communication system in the embodiment of the present invention are different, but the specific categories of the first communication system and the second communication system are not limited.
- the first communication system and the second communication system may be various communication systems, such as a Global System of Mobile communication (GSM) system, a Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, LTE Time Division Duplex (TDD) ), Universal Mobile Telecommunication System (UMTS), etc.
- GSM Global System of Mobile communication
- CDMA Code Division Multiple Access
- WCDMA Wideband Code Division Multiple Access
- GPRS General Packet Radio Service
- LTE Long Term Evolution
- TDD Time Division Duplex
- UMTS Universal Mobile Telecommunication System
- the present invention describes various embodiments in connection with network devices (the first to fourth network devices) and terminal devices.
- the network device may refer to any entity on the network side that is used to send or receive signals.
- it may be a machine type communication (MTC) user equipment, a base station in GSM or CDMA (Base Transceiver Station (BTS), a base station (NodeB) in WCDMA, an evolved base station (Evolutional Node B, eNB or eNodeB) in LTE, a base station device in a 5G network, and the like.
- MTC machine type communication
- GSM Global System
- CDMA Base Transceiver Station
- NodeB base station
- Evolutional Node B eNode B
- eNB evolved base station
- 5G network 5G network
- the terminal device 110 can be any terminal device. Specifically, the terminal device can communicate with one or more core networks (Core Network) via a Radio Access Network (RAN), and can also be referred to as an access terminal, a user equipment (User Equipment, UE), and a user. Unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device. For example, it can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), and a wireless communication function. Handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and terminal devices in 5G networks, and the like.
- Core Network Radio Access Network
- RAN Radio Access Network
- UE User Equipment
- Unit subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless
- FIG. 2 is a schematic flowchart of a method for configuring measurement detection according to an embodiment of the present invention.
- the method includes:
- the network device generates configuration information.
- the network device sends the configuration information to the terminal device.
- the terminal device performs signal quality measurement according to the configuration.
- the terminal device receives the configuration information sent by the network device, where the configuration information includes at least one measurement interval corresponding to the multiple radio frequency channels of the terminal device; and then performs signal quality measurement according to the at least one measurement interval.
- the measurement interval configured by the terminal device may be used for performing inter-frequency measurement or intra-frequency measurement.
- the measurement interval configured by the terminal device (current cell) is not used for transmitting data nor for receiving data, therefore, The terminal device can switch to the target cell and perform signal quality measurement, and then switch back to the current cell (continue normal transmission and reception work).
- the measurement interval must be kept synchronized between the terminal device and the network device (for example, measuring the start position of the detection, measuring the length of the detection, measuring the number of detections, etc.).
- the measurement interval based on the radio frequency channel is defined, that is, a measurement gap is configured for the radio frequency channel. It should be understood that this measurement gap only affects the data transmission and reception of the receiving (Rx) data channel/transmission (Tx) data channel in the RF channel; it has no effect on the data transmission and reception of other RF channels.
- the multiple radio frequency channels in the embodiment of the present invention may be divided based on a frequency range, or may be based on
- the classification of the communication system is not specifically limited in the embodiment of the present invention.
- the terminal device can support multiple RF channels (especially in a dual-link scenario), the measured band or supported band that each RF channel can perform is different depending on the capabilities of the RF channel ( Power amplifier PA and antenna support).
- the terminal device for example, a mobile phone
- the terminal device After accessing the network, the terminal device needs to report the band information that the terminal device can support, and the information of the band combination supported by the carrier aggregation (CA). , information on the band combinations supported in the dual link (DC) scenario and the ability to measure related.
- CA carrier aggregation
- the terminal device may send the radio frequency capability information of the terminal device to the network device before receiving the configuration information sent by the network device, so that the network device generates the configuration according to the radio frequency capability information.
- Information so that the network device generates the configuration information according to the radio frequency capability information.
- the radio frequency capability information includes at least one of the following information:
- the number of radio channels supported by the terminal The number of radio channels supported by the terminal, the spectrum information supported by each radio channel, the radio channel capability information, and indication information indicating whether the terminal device supports signal quality measurement according to the measurement interval corresponding to the multiple radio channels.
- the network device before generating the configuration information, the network device needs to report its own radio frequency capability information, so that the network device generates the configuration information according to the radio frequency capability information of the terminal device.
- the RF channel capability information includes at least one of the following information:
- each of the plurality of radio frequency channels can correspond to one measurement interval.
- the first measurement interval corresponding to the first radio frequency channel of the plurality of radio frequency channels is used only for the first radio frequency channel to perform measurement.
- Gap1 is used for RF channel RF-CH1
- gap2 is used for RF channel RF-CH2.
- Gap1 is used when the measurement that the terminal device needs to make is only located on the RF channel RF-CH1.
- the terminal device performs measurement in gap1 the downlink reception of the terminal device on the radio frequency channel RF-CH2 is not affected.
- the plurality of radio frequency channels correspond to the same measurement interval.
- the network device configures the terminal device with gap3 for measurement across the RF channel RF-CH1/RF channel RF-CH2.
- FIG. 3 is a schematic block diagram of a terminal device according to an embodiment of the present invention.
- the terminal device 300 includes:
- the transceiver unit 310 is configured to receive configuration information that is sent by the network device, where the configuration information includes at least one measurement interval corresponding to the multiple radio frequency channels that the terminal device has;
- the measuring unit 320 is configured to perform signal quality measurement according to the at least one measurement interval.
- the transceiver unit 310 is further configured to:
- the radio frequency capability information of the terminal device is sent to the network device, so that the network device generates the configuration information according to the radio frequency capability information.
- the radio frequency capability information includes at least one of the following information:
- the number of radio channels supported by the terminal The number of radio channels supported by the terminal, the spectrum information supported by each radio channel, the radio channel capability information, and indication information indicating whether the terminal device supports signal quality measurement according to the measurement interval corresponding to the multiple radio channels.
- the RF channel capability information includes at least one of the following information:
- each of the plurality of radio frequency channels corresponds to one measurement interval.
- the first measurement interval corresponding to the first radio frequency channel of the multiple radio frequency channels is used only for the first radio frequency channel to perform measurement.
- the plurality of radio frequency channels correspond to the same measurement interval.
- the transceiving unit 310 can be implemented by a transceiver, and the measuring unit 320 can be implemented by a processor.
- the terminal device 400 may include a processor 410, a transceiver 420, and a memory 430.
- the memory 430 can be used to store indication information, and can also be used to store code, instructions, and the like executed by the processor 410.
- the various components in the terminal device 400 are connected by a bus system, wherein the bus system includes a power bus, a control bus, and a status signal bus in addition to the data bus.
- the terminal device 400 shown in FIG. 4 can implement the various processes implemented by the terminal device in the foregoing method embodiment of FIG. 2. To avoid repetition, details are not described herein again.
- FIG. 5 is a schematic block diagram of a network device according to an embodiment of the present invention.
- the processing unit 510 is configured to generate configuration information, where the configuration information includes multiple At least one measurement interval corresponding to one radio frequency channel;
- the transceiver unit 520 is configured to send the configuration information to the terminal device.
- the transceiver unit 510 is further configured to:
- the radio frequency capability information of the terminal device that is sent by the terminal device is received; the processing unit 510 is specifically configured to generate the configuration information according to the radio frequency capability information.
- the radio frequency capability information includes at least one of the following information:
- the number of radio channels supported by the terminal The number of radio channels supported by the terminal, the spectrum information supported by each radio channel, the radio channel capability information, and indication information indicating whether the terminal device supports signal quality measurement according to the measurement interval corresponding to the multiple radio channels.
- the RF channel capability information includes at least one of the following information:
- each of the plurality of radio frequency channels corresponds to one measurement interval.
- the first measurement interval corresponding to the first radio frequency channel of the multiple radio frequency channels is used only for the first radio frequency channel to perform measurement.
- the plurality of radio frequency channels correspond to the same measurement interval.
- network device 600 can include a processor 610, a transceiver 620, and a memory 630.
- the memory 630 can be used to store indication information, and can also be used to store code, instructions, and the like executed by the processor 610.
- the various components in the network device 600 are connected by a bus system, wherein the bus system includes a power bus, a control bus, and a status signal bus in addition to the data bus.
- the network device 600 shown in FIG. 6 can implement the various processes implemented by the network device in the foregoing method embodiment of FIG. 2. To avoid repetition, details are not described herein again.
- each step of the method embodiment in the embodiment of the present invention may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software. More specifically, the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
- the software modules can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like. The storage medium is located in the memory, and the processor reads the memory The information in the memory, combined with its hardware, completes the steps of the above method.
- the processor may be an integrated circuit chip with signal processing capability, and the methods, steps, and logic blocks disclosed in the embodiments of the present invention may be implemented or executed.
- the above processor may be a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or Other programmable logic devices, transistor logic devices, discrete hardware components, and the like.
- the general purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
- the memory may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
- the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (ROMM), an erasable programmable read only memory (erasable PROM, EPROM), or an electrical Erase programmable EPROM (EEPROM) or flash memory.
- the volatile memory can be a random access memory (RAM) that acts as an external cache.
- the memory in the embodiment of the present invention may also be a static random access memory (SRAM), a dynamic random access memory (DRAM), or a dynamic random access memory (DRAM).
- SDRAM Synchronous dynamic random access memory
- DDR double data rate synchronous dynamic random access memory
- ESDRAM enhanced synchronous dynamic random access memory
- SLDRAM synchronous connection Synchro link DRAM
- DR RAM direct memory bus
- the words “at time” as used herein may be interpreted as “if” or “if” or “when” or “response” Determine “or” in response to the test.
- the phrase “if determined” or “if detected (condition or event stated)” It can be interpreted as “when determined” or “in response to determination” or “when detected (condition or event stated)” or “in response to detection (condition or event stated)”.
- the disclosed systems, devices, and methods may be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of the unit is only a logical function division.
- multiple units or components may be combined.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
- each functional unit in the embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the technical solution of the embodiments of the present invention may be embodied in the form of a software product stored in a storage medium.
- the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method of the embodiments of the present invention.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory, a random access memory, a magnetic disk, or a magnetic disk. And other media that can store program code.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Databases & Information Systems (AREA)
- Quality & Reliability (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
Description
Claims (24)
- 一种配置测量间隔的方法,其特征在于,包括:终端设备接收网络设备发送的配置信息,所述配置信息包括所述终端设备具有的多个射频通道对应的至少一个测量间隔;所述终端设备根据所述至少一个测量间隔,进行信号质量测量。
- 根据权利要求1所述的方法,其特征在于,所述终端设备接收网络设备发送的配置信息之前,所述方法还包括:所述终端设备向所述网络设备发送所述终端设备的射频能力信息,以便所述网络设备根据所述射频能力信息生成所述配置信息;其中,所述射频能力信息包括以下信息中的至少一项:所述终端支持的射频通道的个数、每个射频通道支持的频谱信息、射频通道能力信息以及用于指示所述终端设备是否支持按照所述多个射频通道对应的测量间隔进行信号质量测量的指示信息。
- 根据权利要求2所述的方法,其特征在于,所述射频通道能力信息包括一下信息中的至少一项:所述多个射频通道的数量、多输入多输出MIMO能力、数据接收通道的数量、数据发送通道的数量以及载波聚合的支持能力。
- 根据权利要求1至3中任一项所述的方法,其特征在于,所述多个射频通道中的每个射频通道对应一个测量间隔。
- 根据权利要求4所述的方法,其特征在于,所述多个射频通道中第一射频通道对应的第一测量间隔只用于所述第一射频通道执行测量。
- 根据权利要求1至3中任一项所述的方法,其特征在于,所述多个射频通道对应同一个测量间隔。
- 一种配置测量间隔的方法,其特征在于,包括:网络设备生成配置信息,所述配置信息包括终端设备具有的多个射频通道对应的至少一个测量间隔;所述网络设备向所述终端设备发送所述配置信息。
- 根据权利要求7所述的方法,其特征在于,所述网络设备生成配置信息之前,所述方法还包括:所述网络设备接收所述终端设备发送的所述终端设备的射频能力信息;其中,所述射频能力信息包括以下信息中的至少一项:所述终端支持的射频通道的个数、每个射频通道支持的频谱信息、射频通道能力信息以及用于指示所述终端设备是否支持按照所述多个射频通道对应的测量间隔进行信号质量测量的指示信息:其中,所述网络设备生成配置信息,包括:所述网络设备根据所述射频能力信息生成所述配置信息。
- 根据权利要求8所述的方法,其特征在于,所述射频通道能力信息包括一下信息中的至少一项:所述多个射频通道的数量、多输入多输出MIMO能力、数据接收通道的数量、数据发送通道的数量以及载波聚合的支持能力。
- 根据权利要求7至9中任一项所述的方法,其特征在于,所述多个射频通道中的每个射频通道对应一个测量间隔。
- 根据权利要求10所述的方法,其特征在于,所述多个射频通道中第一射频通道对应的第一测量间隔只用于所述第一射频通道执行测量。
- 根据权利要求7至9中任一项所述的方法,其特征在于,所述多个射频通道对应同一个测量间隔。
- 一种终端设备,其特征在于,包括:收发单元,用于接收网络设备发送的配置信息,所述配置信息包括所述终端设备具有的多个射频通道对应的至少一个测量间隔;测量单元,用于根据所述至少一个测量间隔,进行信号质量测量。
- 根据权利要求13所述的终端设备,其特征在于,所述收发单元还用于:接收网络设备发送的配置信息之前,向所述网络设备发送所述终端设备的射频能力信息,以便所述网络设备根据所述射频能力信息生成所述配置信息;其中,所述射频能力信息包括以下信息中的至少一项:所述终端支持的射频通道的个数、每个射频通道支持的频谱信息、射频通道能力信息以及用于指示所述终端设备是否支持按照所述多个射频通道对应的测量间隔进行信号质量测量的指示信息。
- 根据权利要求14所述的终端设备,其特征在于,所述射频通道能力信息包括一下信息中的至少一项:所述多个射频通道的数量、多输入多输出MIMO能力、数据接收通道的数量、数据发送通道的数量以及载波聚合的支持能力。
- 根据权利要求13至15中任一项所述的终端设备,其特征在于,所述多个射频通道中的每个射频通道对应一个测量间隔。
- 根据权利要求16所述的终端设备,其特征在于,所述多个射频通道中第一射频通道对应的第一测量间隔只用于所述第一射频通道执行测量。
- 根据权利要求13至15中任一项所述的终端设备,其特征在于,所述多个射频通道对应同一个测量间隔。
- 一种网络设备,其特征在于,包括:处理单元,用于生成配置信息,所述配置信息包括终端设备具有的多个射频通道对应的至少一个测量间隔;收发单元,用于向所述终端设备发送所述配置信息。
- 根据权利要求19所述的网络设备,其特征在于,所述收发单元还用于:生成配置信息之前,接收所述终端设备发送的所述终端设备的射频能力信息;其中,所述射频能力信息包括以下信息中的至少一项:所述终端支持的射频通道的个数、每个射频通道支持的频谱信息、射频通道能力信息以及用于指示所述终端设备是否支持按照所述多个射频通道对应的测量间隔进行信号质量测量的指示信息;所述处理单元具体用于:根据所述射频能力信息生成所述配置信息。
- 根据权利要求20所述的网络设备,其特征在于,所述射频通道能力信息包括一下信息中的至少一项:所述多个射频通道的数量、多输入多输出MIMO能力、数据接收通道的数量、数据发送通道的数量以及载波聚合的支持能力。
- 根据权利要求19至21中任一项所述的网络设备,其特征在于,所述多个射频通道中的每个射频通道对应一个测量间隔。
- 根据权利要求22所述的网络设备,其特征在于,所述多个射频通道中第一射频通道对应的第一测量间隔只用于所述第一射频通道执行测量。
- 根据权利要求19至21中任一项所述的网络设备,其特征在于,所述多个射频通道对应同一个测量间隔。
Priority Applications (8)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CN2017/108200 WO2019080138A1 (zh) | 2017-10-28 | 2017-10-28 | 配置测量间隔的方法、终端设备和网络设备 |
| CN202010075262.XA CN111132220A (zh) | 2017-10-28 | 2017-10-28 | 配置测量间隔的方法、终端设备和网络设备 |
| EP17929490.5A EP3700255B1 (en) | 2017-10-28 | 2017-10-28 | Method, terminal device and network device for configuring measurement intervals |
| CN201780092455.2A CN110786042A (zh) | 2017-10-28 | 2017-10-28 | 配置测量间隔的方法、终端设备和网络设备 |
| JP2020523756A JP7062761B2 (ja) | 2017-10-28 | 2017-10-28 | 測定間隔の構成方法、端末デバイス及びネットワークデバイス |
| AU2017437322A AU2017437322A1 (en) | 2017-10-28 | 2017-10-28 | Method, terminal device and network device for configuring measurement intervals |
| KR1020207014514A KR102397550B1 (ko) | 2017-10-28 | 2017-10-28 | 측정 간격의 구성 방법, 단말기 디바이스 및 네트워크 디바이스 |
| US16/752,176 US11490281B2 (en) | 2017-10-28 | 2020-01-24 | Method, terminal device and network device for configuring measurement intervals |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CN2017/108200 WO2019080138A1 (zh) | 2017-10-28 | 2017-10-28 | 配置测量间隔的方法、终端设备和网络设备 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/752,176 Continuation US11490281B2 (en) | 2017-10-28 | 2020-01-24 | Method, terminal device and network device for configuring measurement intervals |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2019080138A1 true WO2019080138A1 (zh) | 2019-05-02 |
Family
ID=66247091
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2017/108200 Ceased WO2019080138A1 (zh) | 2017-10-28 | 2017-10-28 | 配置测量间隔的方法、终端设备和网络设备 |
Country Status (7)
| Country | Link |
|---|---|
| US (1) | US11490281B2 (zh) |
| EP (1) | EP3700255B1 (zh) |
| JP (1) | JP7062761B2 (zh) |
| KR (1) | KR102397550B1 (zh) |
| CN (2) | CN111132220A (zh) |
| AU (1) | AU2017437322A1 (zh) |
| WO (1) | WO2019080138A1 (zh) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020244444A1 (zh) * | 2019-06-04 | 2020-12-10 | 华为技术有限公司 | 射频能力配置方法及装置 |
| CN115669045A (zh) * | 2020-06-09 | 2023-01-31 | Oppo广东移动通信有限公司 | 一种释放配置的方法及装置、终端设备、网络设备 |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11683708B2 (en) * | 2017-10-06 | 2023-06-20 | Telefonaktiebolaget Lm Ericsson (Publ) | Dynamic change of measurement gaps |
| CN110166978B (zh) * | 2018-02-13 | 2020-12-22 | 华为技术有限公司 | 通信方法、第一终端设备和第二终端设备 |
| CN113498092B (zh) * | 2020-04-03 | 2023-06-02 | 维沃移动通信有限公司 | 信号测量、测量间隔配置、测量上报方法及相关设备 |
| EP4243484B1 (en) | 2021-03-01 | 2025-06-25 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Measurement interval configuration methods, terminal device and network device |
| CN117063526A (zh) * | 2022-03-14 | 2023-11-14 | 北京小米移动软件有限公司 | 信息处理方法及装置、通信设备及存储介质 |
| CN121013184A (zh) * | 2024-05-23 | 2025-11-25 | 华为技术有限公司 | 一种通信方法及相关装置 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101466106A (zh) * | 2008-12-30 | 2009-06-24 | 上海无线通信研究中心 | 一种移动通信系统中多信道的测量方法及小区切换方法 |
| CN101616434A (zh) * | 2008-06-27 | 2009-12-30 | 展讯通信(上海)有限公司 | 测量上报的方法及设备 |
| CN101784075A (zh) * | 2009-01-21 | 2010-07-21 | 大唐移动通信设备有限公司 | 一种配置测量间隙的方法、基站和终端 |
| WO2011150842A1 (zh) * | 2010-09-30 | 2011-12-08 | 华为技术有限公司 | 测量间隙配置方法、终端及网络设备 |
| CN103428758A (zh) * | 2012-05-14 | 2013-12-04 | 中兴通讯股份有限公司 | 一种测量管理方法和网络端、测量方法和用户设备 |
| WO2016171513A1 (ko) * | 2015-04-22 | 2016-10-27 | 삼성전자 주식회사 | 비인가 대역을 지원하는 무선 통신 시스템에서 데이터 송수신 방법 및 장치 |
Family Cites Families (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR101670513B1 (ko) * | 2009-06-01 | 2016-10-31 | 엘지전자 주식회사 | 무선 통신 시스템에서 측정 결과 보고 방법 및 장치 |
| US20150245235A1 (en) * | 2014-02-24 | 2015-08-27 | Yang Tang | Measurement gap patterns |
| CN103888987B (zh) * | 2014-03-21 | 2017-12-19 | 电信科学技术研究院 | 一种数据传输及其控制方法及装置 |
| US20150327104A1 (en) | 2014-05-08 | 2015-11-12 | Candy Yiu | Systems, methods, and devices for configuring measurement gaps for dual connectivity |
| US9729175B2 (en) * | 2014-05-08 | 2017-08-08 | Intel IP Corporation | Techniques to manage radio frequency chains |
| EP3193525B1 (en) * | 2014-09-12 | 2021-02-24 | Nec Corporation | Wireless station, wireless terminal and method for terminal measurement |
| WO2016080899A1 (en) * | 2014-11-18 | 2016-05-26 | Telefonaktiebolaget L M Ericsson (Publ) | Methods and apparatuses for determining unsynchronised or synchronised dual connectivity mode of a user equipment |
| EP3266267B1 (en) * | 2015-03-06 | 2022-04-27 | Samsung Electronics Co., Ltd. | Method and apparatus for performing and reporting measurements by user equipment configured with multiple carriers in mobile communication systems |
| CN107637120B (zh) * | 2015-04-09 | 2022-03-18 | 苹果公司 | 基于每个分量载波的增强的测量间隙配置的信令 |
| EP3288306B1 (en) * | 2015-05-15 | 2020-08-05 | Huawei Technologies Co., Ltd. | Device and method for reporting carrier aggregation capability and measuring carrier |
| US20170019819A1 (en) * | 2015-07-16 | 2017-01-19 | Qualcomm Incorporated | Dynamic handover synchronization |
| CN106535215B (zh) * | 2015-09-11 | 2019-10-15 | 中国移动通信集团公司 | 一种载波聚合下的增强测量方法和装置 |
-
2017
- 2017-10-28 WO PCT/CN2017/108200 patent/WO2019080138A1/zh not_active Ceased
- 2017-10-28 CN CN202010075262.XA patent/CN111132220A/zh active Pending
- 2017-10-28 CN CN201780092455.2A patent/CN110786042A/zh active Pending
- 2017-10-28 EP EP17929490.5A patent/EP3700255B1/en active Active
- 2017-10-28 JP JP2020523756A patent/JP7062761B2/ja active Active
- 2017-10-28 AU AU2017437322A patent/AU2017437322A1/en not_active Abandoned
- 2017-10-28 KR KR1020207014514A patent/KR102397550B1/ko active Active
-
2020
- 2020-01-24 US US16/752,176 patent/US11490281B2/en active Active
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101616434A (zh) * | 2008-06-27 | 2009-12-30 | 展讯通信(上海)有限公司 | 测量上报的方法及设备 |
| CN101466106A (zh) * | 2008-12-30 | 2009-06-24 | 上海无线通信研究中心 | 一种移动通信系统中多信道的测量方法及小区切换方法 |
| CN101784075A (zh) * | 2009-01-21 | 2010-07-21 | 大唐移动通信设备有限公司 | 一种配置测量间隙的方法、基站和终端 |
| WO2011150842A1 (zh) * | 2010-09-30 | 2011-12-08 | 华为技术有限公司 | 测量间隙配置方法、终端及网络设备 |
| CN103428758A (zh) * | 2012-05-14 | 2013-12-04 | 中兴通讯股份有限公司 | 一种测量管理方法和网络端、测量方法和用户设备 |
| WO2016171513A1 (ko) * | 2015-04-22 | 2016-10-27 | 삼성전자 주식회사 | 비인가 대역을 지원하는 무선 통신 시스템에서 데이터 송수신 방법 및 장치 |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP3700255A4 * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020244444A1 (zh) * | 2019-06-04 | 2020-12-10 | 华为技术有限公司 | 射频能力配置方法及装置 |
| US12137463B2 (en) | 2019-06-04 | 2024-11-05 | Huawei Technologies Co., Ltd. | Radio frequency capability configuration method and apparatus |
| CN115669045A (zh) * | 2020-06-09 | 2023-01-31 | Oppo广东移动通信有限公司 | 一种释放配置的方法及装置、终端设备、网络设备 |
Also Published As
| Publication number | Publication date |
|---|---|
| AU2017437322A1 (en) | 2020-06-18 |
| EP3700255B1 (en) | 2021-10-06 |
| EP3700255A4 (en) | 2020-11-18 |
| CN111132220A (zh) | 2020-05-08 |
| EP3700255A1 (en) | 2020-08-26 |
| KR102397550B1 (ko) | 2022-05-13 |
| JP7062761B2 (ja) | 2022-05-06 |
| US20200162957A1 (en) | 2020-05-21 |
| KR20200079270A (ko) | 2020-07-02 |
| CN110786042A (zh) | 2020-02-11 |
| JP2021503739A (ja) | 2021-02-12 |
| US11490281B2 (en) | 2022-11-01 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2019080138A1 (zh) | 配置测量间隔的方法、终端设备和网络设备 | |
| US11277852B2 (en) | Data transmission method, terminal device, and network device | |
| US11234153B2 (en) | Method for setting measurement interval and network device | |
| WO2019084800A1 (zh) | 上报射频能力的方法、终端设备和网络设备 | |
| WO2019095159A1 (zh) | 确定非竞争随机接入资源的方法、网络设备和终端设备 | |
| WO2019071576A1 (zh) | 传输数据的方法、终端设备和网络设备 | |
| CN112672384B (zh) | 上报射频能力的方法、终端设备和网络设备 | |
| US20210153084A1 (en) | Wireless communication method, terminal device, and network device | |
| WO2019100340A1 (zh) | 随机接入的方法、上报频谱的方法、终端设备和网络设备 | |
| WO2019084799A1 (zh) | 上报频谱的方法、终端设备和网络设备 | |
| CN109691175B (zh) | 测量同步信号块的方法和设备 | |
| WO2019071625A1 (zh) | 传输数据的方法、终端设备和网络设备 | |
| WO2019109313A1 (zh) | 测量频点的方法、网络设备和终端设备 | |
| TWI759500B (zh) | 無線資源管理測量的方法和設備 | |
| US11310696B2 (en) | Method for transmitting information by selecting target uplink carrier, terminal device, and network device | |
| CN116981055A (zh) | 一种通信方法、通信装置及通信系统 | |
| KR20250171483A (ko) | 통신 방법 및 통신 장치 | |
| WO2019080137A1 (zh) | 传输数据的方法、网络设备和终端设备 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17929490 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2020523756 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 20207014514 Country of ref document: KR Kind code of ref document: A |
|
| ENP | Entry into the national phase |
Ref document number: 2017929490 Country of ref document: EP Effective date: 20200520 |
|
| ENP | Entry into the national phase |
Ref document number: 2017437322 Country of ref document: AU Date of ref document: 20171028 Kind code of ref document: A |