WO2019075747A1 - 麻醉机、氧电池校准系统及其校准方法 - Google Patents
麻醉机、氧电池校准系统及其校准方法 Download PDFInfo
- Publication number
- WO2019075747A1 WO2019075747A1 PCT/CN2017/107102 CN2017107102W WO2019075747A1 WO 2019075747 A1 WO2019075747 A1 WO 2019075747A1 CN 2017107102 W CN2017107102 W CN 2017107102W WO 2019075747 A1 WO2019075747 A1 WO 2019075747A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- calibration
- branch
- oxygen battery
- oxygen
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/08—Bellows; Connecting tubes ; Water traps; Patient circuits
- A61M16/0883—Circuit type
- A61M16/0891—Closed circuit, e.g. for anaesthesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/104—Preparation of respiratory gases or vapours specially adapted for anaesthetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/01—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes specially adapted for anaesthetising
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/20—Valves specially adapted to medical respiratory devices
- A61M16/208—Non-controlled one-way valves, e.g. exhalation, check, pop-off non-rebreathing valves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0006—Calibrating gas analysers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/20—Valves specially adapted to medical respiratory devices
- A61M16/201—Controlled valves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/20—Valves specially adapted to medical respiratory devices
- A61M16/201—Controlled valves
- A61M16/202—Controlled valves electrically actuated
- A61M16/203—Proportional
- A61M16/205—Proportional used for exhalation control
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/22—Carbon dioxide-absorbing devices ; Other means for removing carbon dioxide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/1005—Preparation of respiratory gases or vapours with O2 features or with parameter measurement
- A61M2016/102—Measuring a parameter of the content of the delivered gas
- A61M2016/1025—Measuring a parameter of the content of the delivered gas the O2 concentration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2202/00—Special media to be introduced, removed or treated
- A61M2202/02—Gases
- A61M2202/0208—Oxygen
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2202/00—Special media to be introduced, removed or treated
- A61M2202/04—Liquids
- A61M2202/0468—Liquids non-physiological
- A61M2202/048—Anaesthetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3317—Electromagnetic, inductive or dielectric measuring means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3331—Pressure; Flow
- A61M2205/3334—Measuring or controlling the flow rate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
- A61M2205/52—General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/70—General characteristics of the apparatus with testing or calibration facilities
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/82—Internal energy supply devices
- A61M2205/8206—Internal energy supply devices battery-operated
Definitions
- the invention relates to the technical field of anesthesia equipment, in particular to an anesthesia machine, an oxygen battery calibration system and a calibration method thereof.
- the anesthesia machine will give different oxygen concentrations according to the individual patient's condition.
- the anesthesia machine will usually configure an oxygen battery in the breathing circuit to monitor the gas in real time. Oxygen concentration.
- Oxygen batteries commonly used in anesthesia machines are divided into chemical oxygen batteries and paramagnetic oxygen batteries.
- the former is to measure the oxygen concentration by reacting oxygen molecules with specific chemicals in the oxygen battery to generate current. Different concentrations of oxygen enter the oxygen battery. Different currents will be generated.
- it is necessary to calibrate with a gas of known oxygen concentration, usually two points (such as 21% and 100% oxygen concentration), so as to obtain a corresponding linear relationship between oxygen concentration and current.
- the reverse solution is performed based on the measured current magnitude and the corresponding functional relationship between the oxygen concentration and the current, and the oxygen concentration value at this time is obtained.
- the paramagnetic oxygen battery is based on the paramagnetic characteristics of oxygen.
- the typical measurement method is that when the gas to be tested enters the paramagnetic oxygen battery, it will be absorbed into the magnetic field and hit the internal physics.
- the structure causes the internal physical structure to generate a deflection torque to obtain a linear relationship between the oxygen concentration and the torque (current).
- the reverse solution is performed according to the measured current magnitude and the corresponding functional relationship between the oxygen concentration and the current.
- Oxygen concentration value Paramagnetic oxygen batteries are measured by purely physical principles. In theory, there is no life limit, but usually due to movement, impact, etc., it may cause variation in internal structure and cause measurement deviation. Therefore, it is necessary to make paramagnetic oxygen batteries according to actual needs. Calibrate Often a point (such as 100% oxygen concentration).
- An oxygen battery calibration system comprising:
- a breathing circuit comprising an inspiratory branch, an expiratory branch, an absorption tank branch, an inhalation check valve, a connecting line, and an expiratory check valve, the inspiratory branch and the expiratory branch passing through
- the connection line is connected, the suction check valve is disposed on the suction branch, the exhalation check valve is disposed on the exhalation branch, and one end of the absorption tank branch is opposite to the suction
- the gas branch is connected, and is located at a front end of the suction check valve, and the other end of the absorption tank branch is in communication with the exhalation branch and is located at a rear end of the exhalation check valve;
- An oxygen battery connected to the suction branch and having a connection at a rear end of the suction check valve;
- the calibration management unit controls the calibration gas to enter the inspiratory branch, and flows out through the oxygen battery, the connecting line and the expiratory branch, and the calibration management unit according to the flow through
- the calibration gas of the oxygen battery is calibrated for oxygen concentration.
- the oxygen battery calibration system further includes a bypass branch, the bypass a branch line and the suction branch are connected between the suction check valve and the oxygen battery;
- the calibration management unit controls the calibration gas to enter the intake branch via the bypass branch during oxygen concentration calibration.
- the oxygen battery calibration system further includes a switch component disposed on the absorber tank branch for controlling the on/off of the absorber tank branch;
- the switching member turns off the absorption tank branch, and the calibration gas can enter the suction branch.
- the switching component is an on-off valve or a gas barrier.
- one end of the bypass branch is connected to a common gas outlet or a fresh gas outlet of the anesthesia machine, and the other end is connected to the rear end of the suction branch check valve.
- the input end of the inspiratory branch is in communication with a gas source module of the anesthesia machine, or a common gas outlet, or a fresh gas outlet, and the calibration management unit controls the calibration gas during oxygen concentration calibration Output to the inspiratory branch.
- the calibration management unit calibrates the oxygen battery with at least two calibration gases of different oxygen concentrations.
- the oxygen battery is a chemical oxygen battery.
- the oxygen cell is a paramagnetic oxygen cell
- the calibration management unit calibrates the oxygen cell with at least one calibration gas of oxygen concentration.
- An anesthesia machine comprising an anesthetic providing device, an exhaust gas discharging device, and an oxygen battery calibration system according to any of the above technical features;
- One end of an inspiratory branch of the breathing circuit of the oxygen battery calibration system is in communication with the anesthetic supply device, and one end of the expiratory limb of the breathing circuit is in communication with the exhaust gas discharge device;
- the anesthetic supply device supplies an inhalation gas containing anesthetic to the breathing circuit, and after the inhaled gas enters the inspiratory branch, is supplied to the patient via the connecting line, and at the same time, the patient's exhaled gas The expiratory limb is also reached via a connecting line of the breathing circuit.
- the anesthesia machine is provided with one or more of a gas source module, a common gas outlet and a fresh gas outlet, and when the oxygen battery is calibrated, the gas source module, the common A gas outlet or the fresh gas outlet provides a calibration gas to the suction branch.
- the anesthesia machine further includes an exhalation device disposed between the expiratory limb and the exhaust gas discharge device for regulating the flow or pressure of the exhaled gas.
- the anesthesia machine further includes a control unit that controls the oxygen battery calibration system to perform an oxygen battery calibration when the anesthesia machine self-tests.
- the anesthesia machine self-test further includes a gas tightness test or a standby flow control system test.
- the calibration method being applied to an oxygen battery calibration system, the oxygen battery calibration system comprising a breathing circuit and an oxygen battery, the breathing circuit comprising an inspiratory branch, an expiratory branch And connecting a pipeline, the oxygen battery is connected to the suction branch, and the connection is located at a rear end of the suction check valve;
- the calibration method includes the following steps:
- Oxygen concentration calibration is performed based on the calibration gas flowing through the oxygen cell.
- the anesthesia machine, the oxygen battery calibration system and the calibration method thereof of the invention can realize the automatic calibration of the oxygen battery without manual intervention, ensure the reliability of the operation of the oxygen battery, and enable the anesthesia machine to operate normally.
- FIG. 1 is a schematic view of an oxygen battery calibration system according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram of an embodiment of an oxygen battery calibration system according to another embodiment of the present invention.
- FIG. 3 is a schematic view of another embodiment of the oxygen battery calibration system shown in FIG. 2;
- FIG. 4 is a schematic diagram of a gas path of an anesthesia machine according to another embodiment of the present invention.
- 110-breathing circuit 111-inhalation branch; 112-exhalation branch; 113-absorbent branch; 114-inhalation check valve; 115-exhalation check valve; 116-connecting line; CO 2 absorption tank;
- the present invention provides an oxygen battery calibration system 100 that includes a breathing circuit 110, an oxygen battery 120, and a calibration management unit.
- the oxygen battery calibration system 100 can be used in the anesthesia machine shown in FIG.
- the oxygen battery calibration system 100 is used in an anesthesia machine for calibrating the oxygen battery 120 of the anesthesia machine, so that the oxygen battery 120 can reliably detect the oxygen concentration in the gas of the breathing circuit 110 during use, so that the patient gas is supplied.
- the oxygen concentration in the medium can meet the actual needs and ensure the safety of the patient.
- the calibration gas is passed through the calibration gas of the oxygen battery 120 for oxygen concentration calibration.
- the oxygen battery 120 herein refers to a medical oxygen battery.
- the oxygen battery calibration system 100 of the present invention can also be used for calibration of the oxygen concentration of the oxygen battery 120 in other devices, such as a ventilator or the like.
- the breathing circuit 110 includes an inspiratory limb 111, an expiratory limb 112, an absorption tank branch 113, an inhalation check valve 114, a connecting line 116, and an expiratory check valve 115, and an inspiratory branch.
- the 111 is connected to the expiratory limb 111 through the connecting line 116, the inhalation check valve 114 is disposed on the inspiratory branch 111, and the exhalation check valve 115 is disposed on the expiratory branch 112, and the absorption tank branch 113 is One end is in communication with the inspiratory branch 111, and one end of the absorption tank branch 113 is located at the front end of the inhalation check valve 114, and the other end of the absorption tank branch 113 is in communication with the expiratory branch 112, and is located in the exhalation check valve.
- the oxygen battery 120 is connected to the suction branch 111, and the connection is located at the rear end of the suction check valve 114.
- the first end of the breathing circuit 110 is in communication with the anesthetic providing device 200
- the second end of the breathing circuit 110 is in communication with the exhaust gas discharge device
- the breathing circuit 110 is also in communication with the breathing end of the patient.
- the first end here refers to the intake end of the breathing circuit 110
- the second end refers to the air outlet end of the breathing circuit 110.
- the anesthetic supply device 200 supplies the inhaled gas containing the anesthetic to the breathing circuit 110 and delivers it to the patient, and the exhaled gas containing the anesthetic exhaled by the patient is purified by the CO2 absorption tank 117 in the circuit and reused, and the excess gas is treated by the exhaust gas discharge device.
- the exhaust gas discharge means may be an exhaust gas discharge means, an exhaust gas recovery means, or other means capable of treating the exhaust gas.
- the intake end of the inspiratory branch 111 can communicate with the anesthetic supply device 200 of the anesthesia machine, and the connection line 116 is used to connect the outlet end of the inspiratory limb 111, the intake end of the expiratory limb 112, and the patient.
- the breathing end of the expiratory limb 112 is in communication with the exhaust gas discharge device.
- the intake end of the inspiratory branch 111 coincides with the intake end of the breathing circuit 110, which is the same end
- the outlet end of the expiratory branch 112 coincides with the outlet end of the breathing circuit 110, which is the same end. .
- the inhaled gas containing the anesthetic delivered by the anesthetic supply device enters the inspiratory branch 111, and enters the respiratory end of the patient through the inspiratory branch 111 via the connecting line 116 to provide anesthetic to the patient; the exhaled gas of the patient enters the connection through the respiratory end Line 116 is passed through the connecting line 116 into the expiratory limb 112.
- the exhaled gas passes through the CO2 absorption tank 117, and after the CO2 is absorbed, it is reused, and the excess gas is discharged from the exhaust gas discharge device through the exhalation valve.
- the connecting line 116 includes a Y-shaped tube or a connecting tube for connecting the inspiratory branch 111 and the expiratory branch 112.
- the ends of the Y-shaped tube are respectively associated with the inspiratory branch 111, the expiratory limb 112, and the patient. connection.
- the Y-tube can facilitate the inhalation of gas into the patient via the inspiratory limb 111
- the breathing end also allows the patient's exhaled gas to enter the expiratory limb 112.
- the inhalation check valve 114 is disposed on the inspiratory branch 111, so that the inhalation gas flowing through the inhalation check valve 114 can be prevented from flowing back, so that the inhaled gas flows in a single direction; the exhalation branch 112 is provided with exhalation
- the one-way valve 115 is such that the return of the exhaled gas flowing through the exhalation check valve 115 can be prevented, so that the exhaled gas flows in a single direction.
- the suction check valve 114 is located downstream of the junction of the suction branch 111 and the absorption tank branch 113, that is, the suction gas first passes through the junction of the suction branch 111 and the absorption tank branch 113 in the intake branch 111.
- the exhalation check valve 115 Flowing through the suction check valve 114; the exhalation check valve 115 is located upstream of the junction of the expiratory limb 112 and the absorption canister branch 113, that is, the exhaled gas first passes through the exhalation check valve 115 in the expiratory limb 112. It then flows through the junction of the expiratory limb 112 and the absorption tank branch 113.
- the oxygen battery 120 is configured to detect whether the concentration of oxygen in the inhaled gas delivered by the anesthesia machine is up to standard. Specifically, the oxygen battery 120 can detect the concentration of oxygen in the inhaled gas delivered to the patient through the inhalation circuit 111 to ensure the content provided for the patient.
- the concentration of oxygen in the inhaled gas of the anesthetic can meet the demand and ensure the safety during use. If the concentration of oxygen in the inhaled gas containing the anesthetic is lower or higher than the preset oxygen concentration of the anesthesia machine, it may cause a safety hazard to the patient.
- the oxygen battery 120 After the oxygen battery 120 is used for a period of time, there is a certain deviation between the oxygen concentration detected by the oxygen battery 120 and the actual oxygen concentration. Therefore, the oxygen battery 120 needs to be calibrated periodically or on demand to ensure that the oxygen battery 120 can accurately detect the oxygen concentration in the inhaled gas, ensure the reliability of the oxygen concentration detection, and thereby ensure the anesthesia machine works reliably.
- the oxygen concentration calibration of the oxygen battery 120 is achieved by a calibration gas, and the calibration management unit is used to control the flow of the calibration gas.
- the calibration management unit controls the calibration gas to enter the inspiratory limb 111 and through the oxygen cell 120, the connection line 116, and the expiratory limb 112.
- the calibration management unit performs oxygen concentration calibration based on the calibration gas flowing through the oxygen battery 120.
- the calibration management unit collects a current corresponding to the oxygen content in the calibration gas output by the oxygen battery 120, thereby obtaining a linear function relationship between the oxygen concentration and the output current, and the calibration management unit may further obtain a linear relationship relationship between the obtained oxygen concentrations. Stored in the memory of the anesthesia machine.
- control unit of the anesthesia machine can inversely calculate the oxygen concentration of the test gas from the current value of the output of the oxygen battery 120 according to the linear relationship of the oxygen concentration stored in the memory.
- control unit and the calibration management unit of the anesthesia machine may be two different components, or may be the same component, such as a board and controller integrated with software algorithms.
- the calibration management unit can calibrate the oxygen battery 120 with at least two calibration gases of different oxygen concentrations. This can ensure the accuracy of the oxygen battery 120 concentration calibration and improve the safety factor during use.
- a calibration gas having an oxygen concentration of 21% and a calibration gas having an oxygen concentration of 100% are respectively introduced into the breathing circuit 110.
- a calibration gas having an oxygen concentration of 21% is first introduced into the suction branch 111, and the flow rate is 5 L/min and stays for 1 min to stabilize the current value output by the oxygen battery 120, and the calibration management unit collects And storing the current output value of the oxygen battery 120; then, introducing a calibration gas having an oxygen concentration of 100% into the inhalation branch 111, the flow rate is 5 L/min and staying for 1 min to stabilize the current value output by the oxygen battery 120, and calibrating
- the management unit samples and stores the current oxygen battery 120 output current value into the memory, and the calibration management unit obtains a linear relationship of the oxygen concentration according to the correspondence between the current value of the two calibration points and the oxygen concentration value and stores it in the memory to complete the oxygenation.
- the oxygen concentration of the calibration gas introduced into the inspiratory branch 111 can also be selected from any other controllable two oxygen concentrations, such as 30% and 90%.
- the oxygen concentration of the calibration gas to the breathing circuit 110 may be one or more of the oxygen concentrations of the calibration gas of 30%, 40%, and 90%, respectively, in addition to the above 21% and 100%.
- calibration can be performed only with a calibration gas of oxygen concentration.
- the oxygen battery 120 is a paramagnetic oxygen battery
- the calibration management unit calibrates the oxygen battery 120 with at least one calibration gas of oxygen concentration.
- Paramagnetic oxygen cells can be calibrated with only a calibration gas of oxygen concentration; they can also be calibrated with two or more calibration gases of oxygen concentration.
- a calibration gas having an oxygen concentration of 21% or a calibration gas having an oxygen concentration of 100% is introduced into the intake branch 111.
- a calibration gas having an oxygen concentration of 21% is introduced into the breathing circuit 110, the flow rate is 5 L/min and stays for 1 min to stabilize the current output from the oxygen battery 120, and the calibration management unit collects and stores the current oxygen.
- the battery 120 outputs a current value
- the calibration management unit samples and stores the current oxygen battery 120 output current value into the memory; or, the breathing circuit 110 is supplied with a calibration gas having an oxygen concentration of 100%, and the flow rate is 5 L/min.
- the calibration management unit collects and stores the current oxygen battery 120 output current value
- the calibration management unit samples and stores the current oxygen battery 120 output current value into the memory.
- the control unit draws a linear function relationship according to the correspondence between the current value of the calibration point and the oxygen concentration value and stores it in the memory to complete the calibration operation of the oxygen battery 120.
- a calibration gas having an oxygen concentration of 21% and a calibration gas having an oxygen concentration of 100% may be introduced into the intake branch 111, respectively.
- the oxygen concentration of the calibration gas to the breathing circuit 110 can also be selected from any other controllable one or two oxygen concentrations, such as 30% and 90%.
- the oxygen concentration of the calibration gas to the breathing circuit 110 may be one or more of the oxygen concentrations of the calibration gas of 30%, 40%, and 90%, respectively, in addition to the above 21% and 100%.
- the flow rate and residence time of the calibration gas that is introduced into the inspiratory branch 111 can also be set according to the specific structure and volume of the breathing circuit, for example, 5 min/min flow rate stays for 3 min, 8 L/min flow rate 2 min, 10 L/ The min flow stays for 1 min, etc., and the relationship between the flow rate and the residence time is such that the gas species in the measurement area of the oxygen battery is completely replaced and stabilized.
- the oxygen battery 120 When the oxygen battery 120 is being calibrated, it is necessary to turn off the anesthetic supply device 200 so that the calibration gas supplied from the anesthesia machine enters the inspiratory branch 111, and the calibration gas is input into the inspiratory branch 111.
- the calibration management unit controls the calibration gas to enter the inspiratory branch 111 and flows out through the oxygen battery 120, the connecting line 116, and the expiratory branch 112.
- the calibration management unit performs oxygen concentration calibration according to the calibration gas flowing through the oxygen battery 120.
- the oxygen battery 120 can output a corresponding current value according to the actual oxygen concentration value in the calibration gas, and the calibration management unit stores the obtained oxygen concentration as a function of the current value in a memory to realize oxygen. Calibration operation of battery 120.
- the oxygen battery calibration system 100 of the present invention enables the calibration gas to flow out of the inspiratory bypass 111 through the rear end of the inspiratory check valve 114, after the connection line 116, and then out of the expiratory limb 112.
- the calibration management unit controls the calibration gas to pass directly into the expiratory limb 112 through the inspiratory limb 111 without disconnecting the connecting line 116. Since the oxygen battery 120 is connected to the suction branch 111 at the rear end of the suction check valve 114, when the calibration gas flows in the intake branch 111, the measurement region of the oxygen battery 120 can be combined with the suction branch 111.
- the calibration gas is replaced, and the automatic calibration in the oxygen battery 120 is realized to ensure the reliability of the operation of the oxygen battery 120, so that the anesthesia machine can be positive Work often.
- the calibration gas enters the connecting line 116 through the rear end of the suction check valve 114 in several forms, as detailed below:
- the oxygen battery calibration system 100 further includes a bypass branch 130, and the bypass branch 130 and the inspiratory branch 111 are connected to the inhalation check valve 114 and the oxygen battery 120. between.
- the calibration management unit controls the calibration gas to enter the intake branch 111 via the bypass branch 130 during calibration. That is, a bypass branch 130 is separately provided, and the bypass branch 130 is directly introduced into the intake branch 111 at the rear end of the suction check valve 114, and is located before the oxygen battery 120, that is, the calibration gas passes through the bypass. After the branch 130 enters the inspiratory branch 111, it flows through the oxygen battery 120.
- the calibration gas can only flow along the inspiratory branch 111 through the oxygen battery 120 and the connecting line 116 into the expiratory branch 112, thereby preventing the calibration gas from entering the absorption tank.
- the calibration management unit controls the calibration gas to enter the inspiratory branch 111 through the bypass branch 130, and flows through the oxygen battery 120 and the connecting line 116 into the exhalation branch 112 to realize the oxygen battery.
- the automatic calibration of 120 ensures the reliability of the operation of the oxygen battery 120, so that the anesthesia machine can operate normally.
- one end of the bypass branch 130 is connected to the common gas outlet or the fresh gas outlet of the anesthesia machine, and the other end is connected to the rear end of the check valve of the inspiratory branch 111. It can be understood that both the common gas outlet and the fresh gas outlet can deliver the calibration gas.
- the calibration management unit controls the calibration gas to flow out from the common gas outlet or the fresh gas outlet and enter the bypass branch 130, and then enters the intake branch 111 through the bypass branch 130, and flows through the oxygen battery 120 and the connecting line 116.
- automatic calibration of the oxygen battery 120 is achieved to ensure the reliability of the operation of the oxygen battery 120, so that the anesthesia machine can operate normally.
- the oxygen battery calibration system 100 further includes a switch member 140 disposed on the absorption tank branch 113 for controlling the passage of the absorption tank branch 113. Broken.
- the switch member 140 turns off the absorption tank branch 113, and the calibration gas can enter the intake branch 111. Since the switching member 140 turns off the absorption tank branch 113 and the calibration gas flows in the suction branch 111, the calibration gas cannot flow along the absorption tank branch 113, and can only continue to flow along the suction branch 111, and can The front end of the suction check valve 114 flows to the rear end. And through the oxygen battery 120 and the connecting line 116 into the expiratory branch 112, the automatic calibration of the oxygen battery 120 is realized, and the reliability of the operation of the oxygen battery 120 is ensured, so that the anesthesia machine can operate normally.
- the switch member 140 is an on-off valve, a gas barrier, or other component that enables the absorber branch to shut off or prevent a large amount of gas from flowing through the absorber branch. In this way, all or most of the calibration gas can flow into the inspiratory limb 111 and out through the expiratory limb 112 via the connecting line 116.
- the switch member 140 may be disposed between the CO 2 absorption tank 117 and the intake branch 111, as shown in FIG. 2, or may be disposed between the CO 2 absorption tank 117 and the expiratory branch 112, as shown in FIG. It is to be noted that it is sufficient to ensure that the switching member 140 turns off the absorption tank branch 113 or provides sufficient gas flow resistance in the absorption tank branch 113.
- the input end of the inspiratory branch 111 may be connected to the air source module of the anesthesia machine, or the common gas outlet, or the fresh gas outlet.
- the calibration management unit controls the calibration gas output to the inspiratory branch. 111.
- the gas source module, the common gas outlet and the fresh gas outlet are capable of conveying the calibration gas.
- the calibration management unit controls the calibration gas to flow out from the gas source module, the common gas outlet or the fresh gas outlet, and enters the suction branch 111, and flows through the suction check valve 114, through the oxygen battery 120, and the connection line 116 to enter the call.
- automatic calibration of the oxygen battery 120 is achieved to ensure the reliability of the operation of the oxygen battery 120, so that the anesthesia machine can operate normally.
- the calibration gas may be flow-regulated by a flow meter or a control valve or the like, and then enter the bypass branch 130, and then enter the intake branch by the rear end of the suction check valve 114. 111; or, after the absorption tank branch 113 is turned off by the switch member 140, the calibration gas is flow-regulated by a flow meter or a control valve, and then enters the intake branch 111.
- the communication between the various components of the oxygen battery 120 calibration system is achieved by a pipeline or a direct assembly seal. In some portions, the components are directly connected to the inspiratory limb 111 and the expiratory limb 112.
- an inspiratory flow sensor is disposed on the inspiratory branch 111 to detect the flow rate of the inhaled gas in the inspiratory branch 111, to prevent the flow rate of the inhaled gas from being too large or too small, to ensure safe use; and on the expiratory branch 112 Setting an expiratory flow sensor to detect the call in the expiratory limb 112 The flow rate of the gas is avoided, and the flow rate of the exhaled gas is prevented from being too large or too small to ensure safe use.
- the present invention also provides an anesthesia machine comprising an anesthetic supply device 200, an exhaust gas discharge device (not shown), and an oxygen battery calibration system 100 as in the above embodiment.
- the intake end of the inspiratory limb 111 of the breathing circuit 110 of the oxygen battery calibration system 100 is in communication with the anesthetic supply device 200, and the outlet end of the expiratory limb 112 of the breathing circuit 110 is in communication with the exhaust gas discharge device via the exhalation valve.
- the anesthetic supply device 200 supplies the inhalation gas containing the anesthetic to the breathing circuit 110.
- the inhaled gas After the inhaled gas enters the inspiratory branch 111, it is supplied to the respiratory end of the patient via the connecting line 116, and the patient's breathing end is also Can send out the patient's exhaled gas.
- the CO 2 in the exhaled gas is absorbed by the CO 2 absorption tank 117 in the breathing circuit 110 and reused, and the excess exhaled gas is purified by the exhaust gas discharge device through the exhalation valve 320. This can avoid direct pollution and pollution in the atmosphere, while avoiding the impact on medical personnel.
- the anesthesia machine also has one or more of a gas source module, a common gas outlet, and a fresh gas outlet.
- the calibration gas can enter the inspiratory branch 111 through the gas source module, the common gas outlet or the fresh gas outlet, and flow through the oxygen battery 120 and the connecting line 116 into the expiratory branch 112.
- the automatic calibration of the oxygen battery 120 ensures the reliability of the operation of the oxygen battery 120, so that the anesthesia machine can operate normally.
- the anesthesia machine further includes an exhalation device 300 disposed between the expiratory limb 112 and the exhaust gas discharge device for regulating the pressure or flow rate of the exhaled gas.
- the exhalation device 300 includes a pressure regulating structure and an exhalation valve 320.
- the intake end and the outlet end of the exhalation valve 320 are respectively connected to the expiratory line 310.
- One end of the exhalation valve 320 is connected to one end of the expiratory branch 112 through the exhalation line 310, and the other end of the exhalation valve is exhaled.
- Line 320 is in communication with the exhaust gas discharge device.
- the exhalation valve 320 is for exhaling the exhaled gas of the patient, and the exhaled gas of the patient can enter the exhalation valve 320 through the expiratory line 310 through the expiratory limb 112, and then is regulated by the exhalation valve 320 and then discharged.
- the pressure control structure is used to adjust the flow rate or pressure of the exhalation gas sent by the exhalation valve 320 to adjust the valve closing pressure of the exhalation valve 320 to achieve the purpose of closing the exhalation valve 320 with the set pressure.
- the pressure control structure may be an Adjustable Pressure Limitation (APL valve) or other structure capable of realizing exhaled gas pressure regulation.
- the pressure control structure includes a regulating line 340 for inputting and outputting the regulating gas, and a regulating valve 330 disposed on the regulating line 340.
- the output end of the regulating valve 330 is in communication with the exhalation valve 320, and the regulating valve
- the pressure or flow rate of the regulated gas in the conditioning line 340 can be adjusted to achieve pressure regulation of the exhaled gas in the exhalation valve 320.
- the anesthesia machine further includes a control unit that controls the oxygen battery calibration system to perform oxygen battery calibration when the anesthesia machine self-tests.
- the anesthesia machine self-test includes one or more of air tightness detection, standby flow control system detection, flow sensor calibration, and the like.
- the control unit can control the self-test when the anesthesia machine is turned on, the self-test during standby, or the self-test according to the control signal input by the user.
- the calibration of the oxygen battery is completed together with the self-test of the anesthesia machine, and no operator intervention or care is required at all, which reduces the burden on the operator, and avoids the measurement of the oxygen concentration when the anesthesia machine is used due to the operator forgetting the calibration. The safety hazard caused by the patient. Further, the calibration of the oxygen battery is completed together with the self-checking of the anesthesia machine, and the operation of disconnecting the connecting line by the operator can be omitted.
- the invention also provides a calibration method for an oxygen battery calibration system, the calibration method being applied to the oxygen battery calibration system 100 described above; the calibration method comprises the following steps:
- the oxygen concentration calibration is performed based on the calibration gas flowing through the oxygen battery 120.
- the calibration management unit controls the calibration gas to enter the inspiratory branch 111 and flows out through the oxygen battery 120, the connecting line 116, and the expiratory branch 112 without the need to connect the connecting line 116. disconnect.
- the calibration management unit performs oxygen calibration of the oxygen battery 120 based on the calibration gas flowing through the oxygen battery 120.
- the oxygen battery 120 can output a corresponding current value according to the actual oxygen concentration value in the calibration gas, and the control unit stores the oxygen concentration as a function of the current value to realize the calibration operation of the oxygen battery 120.
Landscapes
- Health & Medical Sciences (AREA)
- Anesthesiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Pulmonology (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Hematology (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Emergency Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Hybrid Cells (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Respiratory Apparatuses And Protective Means (AREA)
Abstract
Description
Claims (15)
- 一种氧电池校准系统,其特征在于,包括:呼吸回路,包括吸气支路、呼气支路、吸收罐支路、吸气单向阀、连接管路及呼气单向阀,所述吸气支路和所述呼气支路通过所述连接管路连通,所述吸气单向阀设置于所述吸气支路上,所述呼气单向阀设置于所述呼气支路上,所述吸收罐支路的一端与所述吸气支路连通,且位于所述吸气单向阀的前端,所述吸收罐支路的另一端与所述呼气支路连通,且位于所述呼气单向阀的后端;氧电池,连接于所述吸气支路上,且连接处位于所述吸气单向阀的后端;以及校准管理单元,所述校准管理单元控制标定气体进入所述吸气支路,并经所述氧电池、所述连接管路及所述呼气支路流出,所述校准管理单元根据流经所述氧电池的标定气体进行氧气浓度校准。
- 根据权利要求1所述的氧电池校准系统,其特征在于,所述氧电池校准系统还包括旁通支路,所述旁通支路与所述吸气支路连接于所述吸气单向阀与氧电池之间;所述校准管理单元在进行氧气浓度校准时控制标定气体经旁通支路进入所述吸气支路。
- 根据权利要求1所述的氧电池校准系统,其特征在于,所述氧电池校准系统还包括开关部件,所述开关部件设置于所述吸收罐支路上,用于控制所述吸收罐支路的通断;在进行氧气浓度校准时,所述开关部件关断所述吸收罐支路,标定气体能够进入所述吸气支路。
- 根据权利要求3所述的氧电池校准系统,其特征在于,所述开关部件为开关阀或气阻。
- 根据权利要求2所述的氧电池校准系统,其特征在于,所述旁通支路 一端连接于麻醉机的共同气体出口或新鲜气体出口,另外一端连接于所述吸气支路单向阀后端。
- 根据权利要求3至4任一项所述的氧电池校准系统,其特征在于,所述吸气支路的输入端与麻醉机的气源模块,或共同气体出口,或新鲜气体出口连通,在进行氧气浓度校准时,所述校准管理单元控制标定气体输出到所述吸气支路。
- 根据权利要求1所述的氧电池校准系统,其特征在于,所述校准管理单元通过至少两种不同氧气浓度的标定气体对氧电池进行校准。
- 根据权利要求1-7任一项所述的氧电池校准系统,其特征在于,所述氧电池为化学氧电池。
- 根据权利要求1-6任一项所述的氧电池校准系统,其特征在于,所述氧电池为顺磁氧氧电池,所述校准管理单元通过至少一种氧气浓度的标定气体对氧电池进行校准。
- 一种麻醉机,其特征在于,包括麻药提供装置、废气排放装置及如权利要求1至9任一项所述的氧电池校准系统;所述氧电池校准系统的呼吸回路的吸气支路的一端与所述麻药提供装置连通,所述呼吸回路的呼气支路的一端与所述废气排放装置连通;麻醉机在使用时,所述麻药提供装置向所述呼吸回路提供含有麻药的吸入气体,吸入气体进入所述吸气支路后,经所述连接管路提供给患者,同时,患者的呼出气体还通过所述呼吸回路的连接管路到达所述呼气支路。
- 根据权利要求10所述的麻醉机,其特征在于,所述麻醉机上设置气源模块、共同气体出口与新鲜气体出口中的一个或多个,所述氧电池校准时,所述气源模块、所述共同气体出口或所述新鲜气体出口向所述吸气支路提供标定气体。
- 根据权利要求10所述的麻醉机,其特征在于,所述麻醉机还包括呼气装置,所述呼气装置设置于所述呼气支路与所述废气排放装置之间,用于调节呼出气体的流量或压力。
- 根据权利要求10所述的麻醉机,其特征在于,所述麻醉机还包括控制单元,所述控制单元在所述麻醉机自检时控制所述氧电池校准系统进行氧电池校准。
- 根据权利要求13所述的麻醉机,其特征在于,所述麻醉机自检还包括气密性检测、流量控制系统测试或流量传感器校准中的一个或多个。
- 一种氧电池校准系统的校准方法,其特征在于,所述校准方法应用于权利要求1-9任一项所述的氧电池校准系统,所述氧电池校准系统包括呼吸回路及氧电池,所述呼吸回路包括吸气支路、呼气支路及连接管路,所述氧电池连接于所述吸气支路上,且连接处位于所述吸气单向阀的后端;所述校准方法包括如下步骤:控制标定气体进入所述吸气支路,并经所述氧电池、所述连接管路及所述呼气支路流出;根据流经所述氧电池的标定气体进行氧气浓度校准。
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP17929072.1A EP3711804B1 (en) | 2017-10-20 | 2017-10-20 | Anesthesia machine and calibration method |
| PCT/CN2017/107102 WO2019075747A1 (zh) | 2017-10-20 | 2017-10-20 | 麻醉机、氧电池校准系统及其校准方法 |
| CN201780094243.8A CN111093746B (zh) | 2017-10-20 | 2017-10-20 | 麻醉机、氧电池校准系统及其校准方法 |
| US16/846,262 US20200238038A1 (en) | 2017-10-20 | 2020-04-10 | Anesthesia machine, oxygen battery calibration system and calibration method thereof |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/CN2017/107102 WO2019075747A1 (zh) | 2017-10-20 | 2017-10-20 | 麻醉机、氧电池校准系统及其校准方法 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/846,262 Continuation US20200238038A1 (en) | 2017-10-20 | 2020-04-10 | Anesthesia machine, oxygen battery calibration system and calibration method thereof |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2019075747A1 true WO2019075747A1 (zh) | 2019-04-25 |
Family
ID=66174211
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2017/107102 Ceased WO2019075747A1 (zh) | 2017-10-20 | 2017-10-20 | 麻醉机、氧电池校准系统及其校准方法 |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US20200238038A1 (zh) |
| EP (1) | EP3711804B1 (zh) |
| CN (1) | CN111093746B (zh) |
| WO (1) | WO2019075747A1 (zh) |
Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5806513A (en) * | 1996-10-11 | 1998-09-15 | Ohmeda Inc. | Method and apparatus for controlling a medical anesthesia delivery system |
| WO2008000299A1 (en) * | 2006-06-29 | 2008-01-03 | Maquet Critical Care Ab | Anaesthesia apparatus and method for operating an anaesthesia apparatus |
| CN101288791A (zh) * | 2007-04-18 | 2008-10-22 | 深圳迈瑞生物医疗电子股份有限公司 | 一种麻醉机呼吸装置及其流量传感器的标定方法 |
| CN101468221A (zh) * | 2007-12-29 | 2009-07-01 | 北京谊安医疗系统股份有限公司 | 麻醉吸收回路 |
| CN102580213A (zh) * | 2012-03-21 | 2012-07-18 | 深圳市科曼医疗设备有限公司 | 麻醉机通气系统及其流量校准方法 |
| CN103893879A (zh) * | 2012-12-27 | 2014-07-02 | 北京谊安医疗系统股份有限公司 | 一种呼吸机或麻醉机及其氧浓度自动校验方法 |
| CN203786078U (zh) * | 2014-04-04 | 2014-08-20 | 山东新华医用环保设备有限公司 | 自动校准的氧浓度变送器 |
| CN104215677A (zh) * | 2013-06-05 | 2014-12-17 | 北京谊安医疗系统股份有限公司 | 麻醉机及其氧气浓度监测方法和氧气浓度监测装置 |
Family Cites Families (28)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5701888A (en) * | 1996-08-05 | 1997-12-30 | Ohmeda Inc. | Automatic air wash for anesthesia system |
| US7007693B2 (en) * | 1999-08-03 | 2006-03-07 | The Research Foundatilon Of State University Of New York | Device and method of reducing bias flow in oscillatory ventilators |
| DE10014959C1 (de) * | 2000-03-25 | 2001-05-03 | Draeger Medizintech Gmbh | Vorrichtung zur Messung eines Atemgasbestandteils in einer Atemgasleitung |
| DE10210292A1 (de) * | 2001-03-09 | 2002-10-31 | Go Hirabayashi | Auf Wärmestrahlung beruhendes, künstliches Beatmungssystem mit Co¶2¶-Absorbens und Kanister zur Benutzung darin |
| US20040107965A1 (en) * | 2002-09-16 | 2004-06-10 | Hickle Randall S. | System and method for monitoring gas supply and delivering gas to a patient |
| US7353824B1 (en) * | 2004-08-30 | 2008-04-08 | Forsyth David E | Self contained breathing apparatus control system for atmospheric use |
| CN101547716B (zh) * | 2005-11-16 | 2013-06-26 | 心肺技术公司 | 旁流型呼吸气体监测系统和方法 |
| US7788963B2 (en) * | 2006-10-31 | 2010-09-07 | Ric Investments, Llc | System and method for calibrating a determination of partial pressure of one or more gaseous analytes |
| AT9946U1 (de) * | 2006-12-28 | 2008-06-15 | Sieber Arne Dipl Ing Dr | Sauerstoffpartialdruckmessvorrichtung für kreislauftauchgeräte |
| EP2205322B1 (en) * | 2007-10-29 | 2017-05-31 | Poseidon Diving Systems | Oxygen control in breathing apparatus |
| CN101932355B (zh) * | 2007-11-12 | 2015-07-22 | 马奎特紧急护理公司 | 从麻醉呼吸机到患者的多种麻醉剂的输送的调节 |
| WO2009062550A1 (en) * | 2007-11-14 | 2009-05-22 | Maquet Critical Care Ab | Anesthetic breathing apparatus having improved monitoring of anesthetic agent |
| EP2298399B1 (de) * | 2009-09-16 | 2016-02-10 | Drägerwerk AG & Co. KGaA | Anästhesievorrichtung und Verfahren zum Betreiben einer Anästhesievorrichtung |
| CN102441213B (zh) * | 2010-10-09 | 2015-08-19 | 深圳迈瑞生物医疗电子股份有限公司 | 氧电池座组件、氧电池组件及麻醉机 |
| US8770191B2 (en) * | 2011-01-07 | 2014-07-08 | General Electric Company | System and method for providing mechanical ventilation support to a patient |
| JP2012202973A (ja) * | 2011-03-28 | 2012-10-22 | Nakajima Jidosha Denso:Kk | 可燃性ガスを含有する被処理物の処理装置 |
| CN102721691A (zh) * | 2011-04-08 | 2012-10-10 | 南京分析仪器厂有限公司 | 一种磁力机械式氧分析器用减波电路 |
| US9032954B2 (en) * | 2011-10-01 | 2015-05-19 | Jerome Bernstein | Anesthesia machine CO2 absorber bypass |
| DE102011118265B4 (de) * | 2011-11-11 | 2016-06-30 | Drägerwerk AG & Co. KGaA | Beatmungsvorrichtung |
| CN103217320B (zh) * | 2012-01-19 | 2016-12-14 | 深圳迈瑞生物医疗电子股份有限公司 | 一种气体处理装置及医疗设备 |
| JP5927013B2 (ja) * | 2012-04-16 | 2016-05-25 | 日本光電工業株式会社 | 生体情報モニタ装置 |
| EP3108241A1 (en) * | 2014-02-19 | 2016-12-28 | Mallinckrodt Hospital Products IP Limited | Methods for compensating long term sensitivity drift of electrochemical gas sensors exposed to nitric oxide |
| ES2739692T3 (es) * | 2014-05-09 | 2020-02-03 | Ino Therapeutics Llc | Sistema para la administración de gas terapéutico |
| CN105476637B (zh) * | 2014-09-19 | 2020-10-16 | Ge医疗系统环球技术有限公司 | 校准麻醉机的呼气流量传感器的方法及装置 |
| CN105517612B (zh) * | 2014-12-02 | 2018-06-12 | 深圳迈瑞生物医疗电子股份有限公司 | 麻醉机呼吸系统及麻醉机 |
| CN105709318B (zh) * | 2014-12-03 | 2018-02-02 | 深圳市科曼医疗设备有限公司 | 呼吸装置及其氧浓度检测机构 |
| CN104784793B (zh) * | 2015-04-14 | 2017-10-10 | 深圳市科曼医疗设备有限公司 | 呼吸机及呼吸机的氧传感器自动校准方法 |
| CN105597210B (zh) * | 2016-02-25 | 2018-05-11 | 深圳市诺然美泰科技股份有限公司 | 兼容上升式和下降式风箱呼吸回路的麻醉系统 |
-
2017
- 2017-10-20 CN CN201780094243.8A patent/CN111093746B/zh active Active
- 2017-10-20 WO PCT/CN2017/107102 patent/WO2019075747A1/zh not_active Ceased
- 2017-10-20 EP EP17929072.1A patent/EP3711804B1/en active Active
-
2020
- 2020-04-10 US US16/846,262 patent/US20200238038A1/en not_active Abandoned
Patent Citations (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5806513A (en) * | 1996-10-11 | 1998-09-15 | Ohmeda Inc. | Method and apparatus for controlling a medical anesthesia delivery system |
| WO2008000299A1 (en) * | 2006-06-29 | 2008-01-03 | Maquet Critical Care Ab | Anaesthesia apparatus and method for operating an anaesthesia apparatus |
| CN101288791A (zh) * | 2007-04-18 | 2008-10-22 | 深圳迈瑞生物医疗电子股份有限公司 | 一种麻醉机呼吸装置及其流量传感器的标定方法 |
| CN101468221A (zh) * | 2007-12-29 | 2009-07-01 | 北京谊安医疗系统股份有限公司 | 麻醉吸收回路 |
| CN102580213A (zh) * | 2012-03-21 | 2012-07-18 | 深圳市科曼医疗设备有限公司 | 麻醉机通气系统及其流量校准方法 |
| CN103893879A (zh) * | 2012-12-27 | 2014-07-02 | 北京谊安医疗系统股份有限公司 | 一种呼吸机或麻醉机及其氧浓度自动校验方法 |
| CN104215677A (zh) * | 2013-06-05 | 2014-12-17 | 北京谊安医疗系统股份有限公司 | 麻醉机及其氧气浓度监测方法和氧气浓度监测装置 |
| CN203786078U (zh) * | 2014-04-04 | 2014-08-20 | 山东新华医用环保设备有限公司 | 自动校准的氧浓度变送器 |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP3711804A4 * |
Also Published As
| Publication number | Publication date |
|---|---|
| EP3711804A1 (en) | 2020-09-23 |
| CN111093746A (zh) | 2020-05-01 |
| EP3711804A4 (en) | 2020-09-23 |
| CN111093746B (zh) | 2023-02-28 |
| EP3711804B1 (en) | 2025-06-18 |
| US20200238038A1 (en) | 2020-07-30 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP7067925B2 (ja) | 高度なガス源を関するシステム及び方法並びに/又は治療ガスの供給システム及び方法並びに/又は治療ガス供給の増強性能検証 | |
| US5957129A (en) | On-line fault detection and correction in anesthesia delivery system | |
| EP0916358B1 (en) | Emergency oxygen flowmeter arrangement | |
| US8141552B2 (en) | Respiratory anaesthesia apparatus with device for measuring the xenon concentration | |
| CN102355921B (zh) | 用于提供气化麻醉剂的装置、集合体和方法 | |
| CN102908706B (zh) | 电子流量监控器、控制方法及麻醉机 | |
| CN113195965B (zh) | 用于医用气体递送模块的方法和系统 | |
| JP2017517361A5 (zh) | ||
| US20090250054A1 (en) | Anaesthesia apparatus and method for operating an anaesthesia apparatus | |
| US8978652B2 (en) | Anesthetic breathing apparatus having improved monitoring of anesthetic agent | |
| US20050103338A1 (en) | Apparatus and method for supplying respiratory gas to a patient | |
| CN105727412A (zh) | 一种麻醉机系统及其控制方法 | |
| EP3479862A1 (en) | Method for inhalation effect on the body, and apparatus for implementing same | |
| CN102908705A (zh) | 电子流量监控器、控制方法及麻醉机 | |
| CN111093746B (zh) | 麻醉机、氧电池校准系统及其校准方法 | |
| CN117839006A (zh) | 用于在人工呼吸期间检测泄漏的设备和方法 | |
| AU2017100108A4 (en) | Method for Monitoring Gas Analyser and Breathing Apparatus | |
| US20240316298A1 (en) | Device for calibrating the sensors of an no delivery apparatus | |
| US20240100287A1 (en) | Hybrid single-limb medical ventilation | |
| US20250242124A1 (en) | Process and device for locating a leak | |
| US20240366907A1 (en) | Apparatus for delivering gaseous nitric oxide in proportional or pulsed mode | |
| US20250269136A1 (en) | NO supply installation to supply an emergency flow in the case of malfunctioning of the flow sensor | |
| US20230277798A1 (en) | Device and method for regulating a gas flow | |
| WO2024069315A1 (en) | Hybrid single-limb medical ventilation | |
| JPH0999085A (ja) | 人工呼吸器用吸入ガス混合装置 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17929072 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2017929072 Country of ref document: EP Effective date: 20200316 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2017929072 Country of ref document: EP Effective date: 20200520 |
|
| WWG | Wipo information: grant in national office |
Ref document number: 2017929072 Country of ref document: EP |