WO2019070560A1 - Vascular flow diagnostic system - Google Patents
Vascular flow diagnostic system Download PDFInfo
- Publication number
- WO2019070560A1 WO2019070560A1 PCT/US2018/053700 US2018053700W WO2019070560A1 WO 2019070560 A1 WO2019070560 A1 WO 2019070560A1 US 2018053700 W US2018053700 W US 2018053700W WO 2019070560 A1 WO2019070560 A1 WO 2019070560A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood flow
- logic
- diagnostic system
- blood
- flow sensors
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/026—Measuring blood flow
- A61B5/0285—Measuring or recording phase velocity of blood waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/021—Measuring pressure in heart or blood vessels
- A61B5/02108—Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/026—Measuring blood flow
- A61B5/0261—Measuring blood flow using optical means, e.g. infrared light
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6825—Hand
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6813—Specially adapted to be attached to a specific body part
- A61B5/6829—Foot or ankle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7235—Details of waveform analysis
- A61B5/7253—Details of waveform analysis characterised by using transforms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/42—Details of probe positioning or probe attachment to the patient
- A61B8/4209—Details of probe positioning or probe attachment to the patient by using holders, e.g. positioning frames
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/04—Arrangements of multiple sensors of the same type
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/024—Measuring pulse rate or heart rate
- A61B5/02416—Measuring pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/06—Measuring blood flow
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/48—Diagnostic techniques
- A61B8/488—Diagnostic techniques involving Doppler signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5238—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
- A61B8/5246—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
Definitions
- PAD Peripheral arterial disease
- the ABI value is determined by taking the higher pressure of the two arteries at the ankle, divided by the brachial arterial systolic pressure. In calculating the ABI, the higher of the two brachial systolic pressure measurements is used. Ranges are then consulted to determine a diagnosis, for example:
- the TBI value is determined by taking the pressure of the great toe, divided by the brachial arterial systolic pressure. Ranges are then consulted to determine a diagnosis, for example: [0011] Normal - 0.70 or greater
- FIG. 1 illustrates a conventional diagnostic technique 100 for ankle brachial index (ABI) measurement.
- FIG. 2 illustrates a diagnostic technique 200 in accordance with one embodiment.
- FIG. 3 illustrates a diagnostic technique 300 for toe brachial index (TBI).
- FIG. 4 illustrates an example of the pedal arch 400.
- FIG. 5 illustrates blood vessels in the human foot 500 in accordance with one embodiment.
- FIG. 6 illustrates blood flow acceleration measurement system 600 in accordance with one embodiment.
- FIG. 7 illustrates a diagnostic system 700 a planar acceleration measurement and diagnostic system in accordance with one embodiment.
- FIG. 8 is an example block diagram of a diagnostic system 800 that may incorporate embodiments of the present invention.
- FIG. 9 illustrates a Table 900 in accordance with one embodiment.
- the pedal arch 400 in the foot provides an alternative diagnostic area for PAD, and an alternative approach to conventional ABI and TBI approaches that measure blood pressures.
- Disclosed herein are devices and procedures to utilize correlation between blood flow acceleration time in the pedal/plantar arteries and pathologies involving occluded blood vessels. Such techniques may be employed, for example, to demonstrate if enough blood flow is getting to the foot to heal a wound to prevent amputation.
- Vascular specialists currently do not utilize reliable tools to accurately measure the amount of blood flow the foot. When a patient is in the operating room, there is no clear way for a physician to conclusively determine that enough blood flow is restored to the foot.
- the blood vessels in the human foot 500 include a posterior tibial artery 502, an anterior tibial artery 504, a peroneal artery 506, a lateral tarsal artery 508, a dorsalis pedis artery 510, an arcuate artery 512, a deep plantar artery 514, a lateral plantar artery 516, and a medial plantar artery 518.
- Figure 6 illustrates blood flow acceleration measurement system 600 in accordance with one embodiment.
- the sensors 604 measures a time interval between a diastolic pressure (tl) and a systolic pressure (t2), or vice versa.
- An acceleration time for blood in the measured blood vessel may be computed from the difference of t2-tl (or vice versa).
- the interval t2-tl will typically be less than 100 milliseconds.
- the interval t2-tl will typically exceed 225 milliseconds. See Table 900 in Figure 9.
- the sensors 604 may be utilized to measure the plantar acceleration time in the operating room, so that vascular specialists have reliable data to see real time physiologic feedback in the amount of blood flow the distal end point, the foot.
- microvascular bed of tissue may be deployed non-invasively to make measurements at the skin surface.
- Duplex ultrasound imaging is another sensor technology that may be utilized.
- the sensors 604 is disposed in a foot pad that adheres to the bottom of the foot (pedal arch deployment 704), specifically the pedal arch.
- the sensor is coupled with or includes an RF transmitter 706 (Bluetooth, WiFi, or other) connection to an RF receiver 714 of a display system 708 that displays real time waveforms and measures acceleration time pre, during, and post-surgical procedure.
- the display system 708 may communicate with a diagnostic system 710 that includes a diagnostic classifier such as exemplified by Table 900 in Figure 9.
- the sensors 604 may include an array of transducers (as illustrated) strategically positioned to measure acceleration in a network of blood vessels. A collection of readings may be made at each point in time from the sensor array, and collectively analyzed to identify pathologies in blood flow.
- the array of sensors may be positioned to align with key blood vessels for example, the illustrated blood vessels in the human foot 500 of Figure 5.
- the sensors 604 may be arranged to align with the arteries of the deep palmar arch.
- This arch is a series of arteries formed at the junction of the ulnar and radial arteries in the palm of the hand. This semicircular artery branches into the fingers, where its divisions are known as palmar digital branches.
- the sensors 604 may be disposed in a pad placed on the technician's hand or as part of a glove (hand deployment 702) and engaged with the pedal arch by pressing the hand on the pedal arch, or engaged with the deep palmar arch by holding the patient's hand.
- the sensors 604 may be located in a non-weightbearing planar surface 712 upon which the patient can rest a foot or a hand.
- Figure 8 is an example block diagram of a diagnostic system 800, such as display system 708 or diagnostic system 710, that may incorporate embodiments of the present invention.
- Figure 8 is merely illustrative of a machine system to carry out aspects of the technical processes described herein, and does not limit the scope of the claims.
- the diagnostic system 800 typically includes a monitor or graphical user interface 802, a data processing system 820, a communication network interface 812, input device(s) 808, output device(s) 806, and the like.
- the data processing system 820 may include one or more processor(s) 804 that communicate with a number of peripheral devices via a bus subsystem 818.
- peripheral devices may include input device(s) 808, output device(s) 806, communication network interface 812, and a storage subsystem, such as a volatile memory 810 and a nonvolatile memory 814.
- the volatile memory 810 and/or the nonvolatile memory 814 may store computer- executable instructions and thus forming logic 822 that when applied to and executed by the processor(s) 804 implement embodiments of the processes disclosed herein, such as
- the input device(s) 808 include devices and mechanisms for inputting information to the data processing system 820. These may include a keyboard, a keypad, a touch screen incorporated into the monitor or graphical user interface 802, audio input devices such as voice recognition systems, microphones, and other types of input devices. In various embodiments, the input device(s) 808 may be embodied as a computer mouse, a trackball, a track pad, a joystick, wireless remote, drawing tablet, voice command system, eye tracking system, and the like. The input device(s) 808 typically allow a user to select objects, icons, control areas, text and the like that appear on the monitor or graphical user interface 802 via a command such as a click of a button or the like.
- the output device(s) 806 include devices and mechanisms for outputting information from the data processing system 820. These may include speakers, printers, infrared LEDs, and so on as well understood in the art.
- the communication network interface 812 provides an interface to communication networks (e.g., communication network 816) and devices external to the data processing system 820.
- the communication network interface 812 may serve as an interface for receiving data from and transmitting data to other systems.
- Embodiments of the communication network interface 812 may include an Ethernet interface, a modem (telephone, satellite, cable, ISDN), (asynchronous) digital subscriber line (DSL), FireWire, USB, a wireless communication interface such as Bluetooth or Wi-Fi, a near field communication wireless interface, a cellular interface, and the like.
- the communication network interface 812 may be coupled to the communication network 816 via an antenna, a cable, or the like.
- the communication network interface 812 may be physically integrated on a circuit board of the data processing system 820, or in some cases may be implemented in software or firmware, such as "soft modems", or the like.
- the diagnostic system 800 may include logic that enables communications over a network using protocols such as HTTP, TCP/IP, RTP/RTSP, IPX, UDP and the like.
- the volatile memory 810 and the nonvolatile memory 814 are examples of tangible media configured to store computer readable data and instructions to implement various embodiments of the processes described herein.
- Other types of tangible media include removable memory (e.g., pluggable USB memory devices, mobile device SIM cards), optical storage media such as CD-ROMS, DVDs, semiconductor memories such as flash memories, non-transitory read-only-memories (ROMS), battery-backed volatile memories, networked storage devices, and the like.
- the volatile memory 810 and the nonvolatile memory 814 may be configured to store the basic programming and data constructs that provide the functionality of the disclosed processes and other embodiments thereof that fall within the scope of the present invention.
- Logic 822 that implements embodiments of the present invention may be stored in the volatile memory 810 and/or the nonvolatile memory 814. Said software may be read from the volatile memory 810 and/or nonvolatile memory 814 and executed by the processor(s) 804. The volatile memory 810 and the nonvolatile memory 814 may also provide a repository for storing data used by the software.
- the volatile memory 810 and the nonvolatile memory 814 may include a number of memories including a main random-access memory (RAM) for storage of instructions and data during program execution and a read only memory (ROM) in which read-only non-transitory instructions are stored.
- the volatile memory 810 and the nonvolatile memory 814 may include a file storage subsystem providing persistent (non-volatile) storage for program and data files.
- the volatile memory 810 and the nonvolatile memory 814 may include removable storage systems, such as removable flash memory.
- the bus subsystem 818 provides a mechanism for enabling the various components and subsystems of data processing system 820 communicate with each other as intended. Although the communication network interface 812 is depicted schematically as a single bus, some embodiments of the bus subsystem 818 may utilize multiple distinct busses.
- the diagnostic system 800 may be a mobile device such as a smartphone, a desktop computer, a laptop computer, a rack-mounted computer system, a computer server, or a tablet computer device. As commonly known in the art, the diagnostic system 800 may be implemented as a collection of multiple networked computing devices. Further, the diagnostic system 800 will typically include operating system logic (not illustrated) the types and nature of which are well known in the art.
- Circuitry in this context refers to electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes or devices described herein), circuitry forming a memory device (e.g., forms of random access memory), or circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment).
- a computer program e.g., a general purpose computer configured by a computer program which at least partially carries out processes or devices described herein, or a microprocessor configured by a computer program which at least partially carries out processes or devices described herein
- circuitry forming a memory device e.g., forms of random access memory
- Firmware in this context refers to software logic embodied as processor-executable instructions stored in read-only memories or media.
- Hardware in this context refers to logic embodied as analog or digital circuitry.
- Logic in this context refers to machine memory circuits, non-transitory machine readable media, and/or circuitry which by way of its material and/or material-energy
- configuration comprises control and/or procedural signals, and/or settings and values (such as resistance, impedance, capacitance, inductance, current/voltage ratings, etc.), that may be applied to influence the operation of a device.
- Magnetic media, electronic circuits, electrical and optical memory (both volatile and nonvolatile), and firmware are examples of logic.
- Logic specifically excludes pure signals or software per se (however does not exclude machine memories comprising software and thereby forming configurations of matter).
- Programmable device in this context refers to an integrated circuit designed to be configured and/or reconfigured after manufacturing.
- the term "programmable processor” is another name for a programmable device herein.
- Programmable devices may include programmable processors, such as field programmable gate arrays (FPGAs), configurable hardware logic (CHL), and/or any other type programmable devices.
- Configuration of the programmable device is generally specified using a computer code or data such as a hardware description language (HDL), such as for example Verilog, VHDL, or the like.
- a programmable device may include an array of programmable logic blocks and a hierarchy of reconfigurable interconnects that allow the programmable logic blocks to be coupled to each other according to the descriptions in the HDL code.
- Each of the programmable logic blocks may be configured to perform complex combinational functions, or merely simple logic gates, such as AND, and XOR logic blocks.
- logic blocks also include memory elements, which may be simple latches, flip-flops, hereinafter also referred to as "flops," or more complex blocks of memory.
- signals may arrive at input terminals of the logic blocks at different times.
- association operation may be carried out by an "associator” or “correlator”.
- switching may be carried out by a “switch”, selection by a “selector”, and so on.
- implementations by which processes and/or systems described herein can be effected e.g., hardware, software, or firmware
- the preferred vehicle will vary with the context in which the processes are deployed. If an implementer determines that speed and accuracy are paramount, the implementer may opt for a hardware or firmware implementation; alternatively, if flexibility is paramount, the implementer may opt for a solely software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, or firmware.
- logic may be distributed throughout one or more devices, and/or may be comprised of combinations memory, media, processing circuits and controllers, other circuits, and so on. Therefore, in the interest of clarity and correctness logic may not always be distinctly illustrated in drawings of devices and systems, although it is inherently present therein. The techniques and procedures described herein may be
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Medical Informatics (AREA)
- Pathology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Hematology (AREA)
- Physiology (AREA)
- Cardiology (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Artificial Intelligence (AREA)
- Psychiatry (AREA)
- Signal Processing (AREA)
- Vascular Medicine (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
A diagnostic system includes one or more blood flow sensors adapted to contact but not penetrate the skin of the pedal arch and aligned with blood vessels of the pedal arch. Readings from the blood flow sensors are transformed into blood flow acceleration times, and the blood flow acceleration times are used to identify a blood flow pathology.
Description
VASCULAR FLOW DIAGNOSTIC SYSTEM
CROSS-REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority and benefit under 35 U.S.C. 119(e) to US Application Serial Number 62/566,760, titled "VASCULAR FLOW DIAGNOSTIC SYSTEM", filed on 10/2/2017, which is incorporated by reference herein in its entirety.
BACKGROUND
[0002] Peripheral arterial disease (PAD) is a serious problem, affects at least 12 million people in the US. PAD is found most commonly in people over age 50 with a history of smoking, diabetes, high blood pressure or heart disease. PAD occurs when arteries in the legs become narrowed or blocked (occluded) by plaque build-up, reducing blood flow to the limbs. PAD can lead to interventions including amputation if left untreated.
[0003] With technological advances in vascular interventions and tools (wires and catheters and devices), advances in ultrasound detail, and the exponential rise in critical limb ischemia (CLI) the treatment of amputation prevention is being spotlighted across the country. The current practice to track if a patient has critical limb ischemia is perform (blood pressures) ankle-brachial indices (diagnostic technique 100 of Figure 1 and diagnostic technique 200 of Figure 2) and toe-brachial indices (diagnostic technique 300 of Figure 3).
[0004] In a typical ABI approach (Figure 1), the ABI value is determined by taking the higher pressure of the two arteries at the ankle, divided by the brachial arterial systolic pressure. In calculating the ABI, the higher of the two brachial systolic pressure measurements is used. Ranges are then consulted to determine a diagnosis, for example:
[0005] 1.2 or greater - Medial Wall Calcification (Diabetics)
[0006] 0.90- 1.2 Normal
[0007] 0.79-0.89 - Mild Arterial Disease
[0008] 0.50-0.78 - Moderate Arterial Disease
[0009] 0.49 or less - Severe Arterial Disease - Critical limb ischemia
[0010] In a typical TBI approach (Figure 2), the TBI value is determined by taking the pressure of the great toe, divided by the brachial arterial systolic pressure. Ranges are then consulted to determine a diagnosis, for example:
[0011] Normal - 0.70 or greater
[0012] Abnormal - 0.70 or less
[0013] These methods are widely known for not producing reliable diagnoses, especially in the case of diabetes where the measurements are very often erroneous.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS
[0014] To easily identify the discussion of any particular element or act, the most significant digit or digits in a reference number refer to the figure number in which that element is first introduced.
[0015] FIG. 1 illustrates a conventional diagnostic technique 100 for ankle brachial index (ABI) measurement.
[0016] FIG. 2 illustrates a diagnostic technique 200 in accordance with one embodiment.
[0017] FIG. 3 illustrates a diagnostic technique 300 for toe brachial index (TBI).
[0018] FIG. 4 illustrates an example of the pedal arch 400.
[0019] FIG. 5 illustrates blood vessels in the human foot 500 in accordance with one embodiment.
[0020] FIG. 6 illustrates blood flow acceleration measurement system 600 in accordance with one embodiment.
[0021] FIG. 7 illustrates a diagnostic system 700 a planar acceleration measurement and diagnostic system in accordance with one embodiment.
[0022] FIG. 8 is an example block diagram of a diagnostic system 800 that may incorporate embodiments of the present invention.
[0023] FIG. 9 illustrates a Table 900 in accordance with one embodiment.
DETAILED DESCRIPTION
[0024] The pedal arch 400 in the foot (Figure 4) provides an alternative diagnostic area for PAD, and an alternative approach to conventional ABI and TBI approaches that measure blood pressures. Disclosed herein are devices and procedures to utilize correlation between blood flow acceleration time in the pedal/plantar arteries and pathologies involving occluded blood vessels. Such techniques may be employed, for example, to demonstrate if enough blood flow is getting to the foot to heal a wound to prevent amputation.
[0025] Vascular specialists currently do not utilize reliable tools to accurately measure the amount of blood flow the foot. When a patient is in the operating room, there is no clear way for a physician to conclusively determine that enough blood flow is restored to the foot.
[0026] Referring to Figure 5, the blood vessels in the human foot 500 include a posterior tibial artery 502, an anterior tibial artery 504, a peroneal artery 506, a lateral tarsal artery 508, a dorsalis pedis artery 510, an arcuate artery 512, a deep plantar artery 514, a lateral plantar artery 516, and a medial plantar artery 518.
[0027] Figure 6 illustrates blood flow acceleration measurement system 600 in accordance with one embodiment. The sensors 604 measures a time interval between a diastolic pressure (tl) and a systolic pressure (t2), or vice versa. An acceleration time for blood in the measured blood vessel may be computed from the difference of t2-tl (or vice versa).
[0028] For an un-occluded blood vessel 608, the interval t2-tl will typically be less than 100 milliseconds. For an occluded blood vessel 606 including an occlusion 602, the interval t2-tl will typically exceed 225 milliseconds. See Table 900 in Figure 9.
[0029] The sensors 604 may be utilized to measure the plantar acceleration time in the operating room, so that vascular specialists have reliable data to see real time physiologic feedback in the amount of blood flow the distal end point, the foot.
[0030] Slow acceleration time predicts low arterial blood supply areas for wound healing. Options for one or more sensors 604 to measure the acceleration time include continuous wave doppler and infra-red sensors. Photoplethysmography (PPG) is a simple and low-cost optical technique for the sensors 604 that can be used to detect blood volume changes in the
microvascular bed of tissue. It may be deployed non-invasively to make measurements at the skin surface. Duplex ultrasound imaging is another sensor technology that may be utilized.
[0031] In the diagnostic system 700 embodiment of Figure 7, the sensors 604 is disposed in a foot pad that adheres to the bottom of the foot (pedal arch deployment 704), specifically the pedal arch. The sensor is coupled with or includes an RF transmitter 706 (Bluetooth, WiFi, or other) connection to an RF receiver 714 of a display system 708 that displays real time waveforms and measures acceleration time pre, during, and post-surgical procedure. The display system 708 may communicate with a diagnostic system 710 that includes a diagnostic classifier such as exemplified by Table 900 in Figure 9.
[0032] The sensors 604 may include an array of transducers (as illustrated) strategically positioned to measure acceleration in a network of blood vessels. A collection of readings may
be made at each point in time from the sensor array, and collectively analyzed to identify pathologies in blood flow. The array of sensors may be positioned to align with key blood vessels for example, the illustrated blood vessels in the human foot 500 of Figure 5.
[0033] In some embodiments, the sensors 604 may be arranged to align with the arteries of the deep palmar arch. This arch is a series of arteries formed at the junction of the ulnar and radial arteries in the palm of the hand. This semicircular artery branches into the fingers, where its divisions are known as palmar digital branches.
[0034] In another embodiment, the sensors 604 may be disposed in a pad placed on the technician's hand or as part of a glove (hand deployment 702) and engaged with the pedal arch by pressing the hand on the pedal arch, or engaged with the deep palmar arch by holding the patient's hand.
[0035] In yet another embodiment, the sensors 604 may be located in a non-weightbearing planar surface 712 upon which the patient can rest a foot or a hand.
[0036] Figure 8 is an example block diagram of a diagnostic system 800, such as display system 708 or diagnostic system 710, that may incorporate embodiments of the present invention. Figure 8 is merely illustrative of a machine system to carry out aspects of the technical processes described herein, and does not limit the scope of the claims. One of ordinary skill in the art would recognize other variations, modifications, and alternatives. In one embodiment, the diagnostic system 800 typically includes a monitor or graphical user interface 802, a data processing system 820, a communication network interface 812, input device(s) 808, output device(s) 806, and the like.
[0037] As depicted in Figure 8, the data processing system 820 may include one or more processor(s) 804 that communicate with a number of peripheral devices via a bus subsystem 818. These peripheral devices may include input device(s) 808, output device(s) 806, communication network interface 812, and a storage subsystem, such as a volatile memory 810 and a nonvolatile memory 814.
[0038] The volatile memory 810 and/or the nonvolatile memory 814 may store computer- executable instructions and thus forming logic 822 that when applied to and executed by the processor(s) 804 implement embodiments of the processes disclosed herein, such as
measurement of blood flow acceleration in the pedal arch, and classifying an associated pathology.
[0039] The input device(s) 808 include devices and mechanisms for inputting information to the data processing system 820. These may include a keyboard, a keypad, a touch screen incorporated into the monitor or graphical user interface 802, audio input devices such as voice recognition systems, microphones, and other types of input devices. In various embodiments, the input device(s) 808 may be embodied as a computer mouse, a trackball, a track pad, a joystick, wireless remote, drawing tablet, voice command system, eye tracking system, and the like. The input device(s) 808 typically allow a user to select objects, icons, control areas, text and the like that appear on the monitor or graphical user interface 802 via a command such as a click of a button or the like.
[0040] The output device(s) 806 include devices and mechanisms for outputting information from the data processing system 820. These may include speakers, printers, infrared LEDs, and so on as well understood in the art.
[0041] The communication network interface 812 provides an interface to communication networks (e.g., communication network 816) and devices external to the data processing system 820. The communication network interface 812 may serve as an interface for receiving data from and transmitting data to other systems. Embodiments of the communication network interface 812 may include an Ethernet interface, a modem (telephone, satellite, cable, ISDN), (asynchronous) digital subscriber line (DSL), FireWire, USB, a wireless communication interface such as Bluetooth or Wi-Fi, a near field communication wireless interface, a cellular interface, and the like.
[0042] The communication network interface 812 may be coupled to the communication network 816 via an antenna, a cable, or the like. In some embodiments, the communication network interface 812 may be physically integrated on a circuit board of the data processing system 820, or in some cases may be implemented in software or firmware, such as "soft modems", or the like.
[0043] The diagnostic system 800 may include logic that enables communications over a network using protocols such as HTTP, TCP/IP, RTP/RTSP, IPX, UDP and the like.
[0044] The volatile memory 810 and the nonvolatile memory 814 are examples of tangible media configured to store computer readable data and instructions to implement various embodiments of the processes described herein. Other types of tangible media include removable memory (e.g., pluggable USB memory devices, mobile device SIM cards), optical storage media such as CD-ROMS, DVDs, semiconductor memories such as flash memories,
non-transitory read-only-memories (ROMS), battery-backed volatile memories, networked storage devices, and the like. The volatile memory 810 and the nonvolatile memory 814 may be configured to store the basic programming and data constructs that provide the functionality of the disclosed processes and other embodiments thereof that fall within the scope of the present invention.
[0045] Logic 822 that implements embodiments of the present invention may be stored in the volatile memory 810 and/or the nonvolatile memory 814. Said software may be read from the volatile memory 810 and/or nonvolatile memory 814 and executed by the processor(s) 804. The volatile memory 810 and the nonvolatile memory 814 may also provide a repository for storing data used by the software.
[0046] The volatile memory 810 and the nonvolatile memory 814 may include a number of memories including a main random-access memory (RAM) for storage of instructions and data during program execution and a read only memory (ROM) in which read-only non-transitory instructions are stored. The volatile memory 810 and the nonvolatile memory 814 may include a file storage subsystem providing persistent (non-volatile) storage for program and data files. The volatile memory 810 and the nonvolatile memory 814 may include removable storage systems, such as removable flash memory.
[0047] The bus subsystem 818 provides a mechanism for enabling the various components and subsystems of data processing system 820 communicate with each other as intended. Although the communication network interface 812 is depicted schematically as a single bus, some embodiments of the bus subsystem 818 may utilize multiple distinct busses.
[0048] It will be readily apparent to one of ordinary skill in the art that the diagnostic system 800 may be a mobile device such as a smartphone, a desktop computer, a laptop computer, a rack-mounted computer system, a computer server, or a tablet computer device. As commonly known in the art, the diagnostic system 800 may be implemented as a collection of multiple networked computing devices. Further, the diagnostic system 800 will typically include operating system logic (not illustrated) the types and nature of which are well known in the art.
[0049] "Circuitry" in this context refers to electrical circuitry having at least one discrete electrical circuit, electrical circuitry having at least one integrated circuit, electrical circuitry having at least one application specific integrated circuit, circuitry forming a general purpose computing device configured by a computer program (e.g., a general purpose computer configured by a computer program which at least partially carries out processes or devices
described herein, or a microprocessor configured by a computer program which at least partially carries out processes or devices described herein), circuitry forming a memory device (e.g., forms of random access memory), or circuitry forming a communications device (e.g., a modem, communications switch, or optical-electrical equipment).
[0050] "Firmware" in this context refers to software logic embodied as processor-executable instructions stored in read-only memories or media.
[0051] "Hardware" in this context refers to logic embodied as analog or digital circuitry.
[0052] "Logic" in this context refers to machine memory circuits, non-transitory machine readable media, and/or circuitry which by way of its material and/or material-energy
configuration comprises control and/or procedural signals, and/or settings and values (such as resistance, impedance, capacitance, inductance, current/voltage ratings, etc.), that may be applied to influence the operation of a device. Magnetic media, electronic circuits, electrical and optical memory (both volatile and nonvolatile), and firmware are examples of logic. Logic specifically excludes pure signals or software per se (however does not exclude machine memories comprising software and thereby forming configurations of matter).
[0053] "Programmable device" in this context refers to an integrated circuit designed to be configured and/or reconfigured after manufacturing. The term "programmable processor" is another name for a programmable device herein. Programmable devices may include programmable processors, such as field programmable gate arrays (FPGAs), configurable hardware logic (CHL), and/or any other type programmable devices. Configuration of the programmable device is generally specified using a computer code or data such as a hardware description language (HDL), such as for example Verilog, VHDL, or the like. A programmable device may include an array of programmable logic blocks and a hierarchy of reconfigurable interconnects that allow the programmable logic blocks to be coupled to each other according to the descriptions in the HDL code. Each of the programmable logic blocks may be configured to perform complex combinational functions, or merely simple logic gates, such as AND, and XOR logic blocks. In most FPGAs, logic blocks also include memory elements, which may be simple latches, flip-flops, hereinafter also referred to as "flops," or more complex blocks of memory. Depending on the length of the interconnections between different logic blocks, signals may arrive at input terminals of the logic blocks at different times.
[0054] "Software" in this context refers to logic implemented as processor-executable instructions in a machine memory (e.g. read/write volatile or nonvolatile memory or media).
[0055] Herein, references to "one embodiment" or "an embodiment" do not necessarily refer to the same embodiment, although they may. Unless the context clearly requires otherwise, throughout the description and the claims, the words "comprise," "comprising," and the like are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense; that is to say, in the sense of "including, but not limited to." Words using the singular or plural number also include the plural or singular number respectively, unless expressly limited to a single one or multiple ones. Additionally, the words "herein," "above," "below" and words of similar import, when used in this application, refer to this application as a whole and not to any particular portions of this application. When the claims use the word "or" in reference to a list of two or more items, that word covers all of the following interpretations of the word: any of the items in the list, all of the items in the list and any combination of the items in the list, unless expressly limited to one or the other. Any terms not expressly defined herein have their conventional meaning as commonly understood by those having skill in the relevant art(s).
[0056] Various logic functional operations described herein may be implemented in logic that is referred to using a noun or noun phrase reflecting said operation or function. For example, an association operation may be carried out by an "associator" or "correlator". Likewise, switching may be carried out by a "switch", selection by a "selector", and so on.
[0057] Those skilled in the art will recognize that it is common within the art to describe devices or processes in the fashion set forth herein, and thereafter use standard engineering practices to integrate such described devices or processes into larger systems. At least a portion of the devices or processes described herein can be integrated into a network processing system via a reasonable amount of experimentation. Various embodiments are described herein and presented by way of example and not limitation.
[0058] Those having skill in the art will appreciate that there are various logic
implementations by which processes and/or systems described herein can be effected (e.g., hardware, software, or firmware), and that the preferred vehicle will vary with the context in which the processes are deployed. If an implementer determines that speed and accuracy are paramount, the implementer may opt for a hardware or firmware implementation; alternatively, if flexibility is paramount, the implementer may opt for a solely software implementation; or, yet again alternatively, the implementer may opt for some combination of hardware, software, or firmware. Hence, there are numerous possible implementations by which the processes described herein may be effected, none of which is inherently superior to the other in that any
vehicle to be utilized is a choice dependent upon the context in which the implementation will be deployed and the specific concerns (e.g., speed, flexibility, or predictability) of the implementer, any of which may vary. Those skilled in the art will recognize that optical aspects of implementations may involve optically-oriented hardware, software, and or firmware.
[0059] Those skilled in the art will appreciate that logic may be distributed throughout one or more devices, and/or may be comprised of combinations memory, media, processing circuits and controllers, other circuits, and so on. Therefore, in the interest of clarity and correctness logic may not always be distinctly illustrated in drawings of devices and systems, although it is inherently present therein. The techniques and procedures described herein may be
implemented via logic distributed in one or more computing devices. The particular distribution and choice of logic will vary according to implementation.
Claims
Claim 1. A diagnostic system comprising:
one or more blood flow sensors adapted to contact but not penetrate the skin;
the blood flow sensors adapted in an arrangement to align with blood vessels of the pedal arch;
logic to transform readings from the blood flow sensors into blood flow acceleration times; and
logic to apply the blood flow acceleration times to identify a blood flow pathology.
Claim 2. The diagnostic system of claim 1, the blood flow sensors arranged in a planar surface.
Claim 3. The diagnostic system of claim 1, wherein the planar surface is non-weightbearing.
Claim 4. A method comprising:
arranging one or more blood flow sensors in contact with a pedal arch;
the blood flow sensors adapted in an arrangement to align with blood vessels of the pedal arch;
transforming readings from the blood flow sensors into blood flow acceleration times; and
applying the blood flow acceleration times to identify a blood flow pathology.
Claim 5. A diagnostic system comprising:
one or more blood flow sensors adapted to contact but not penetrate the skin;
the blood flow sensors adapted in an arrangement to align with blood vessels of the palm of the hand;
logic to transform readings from the blood flow sensors into blood flow acceleration times; and
logic to apply the blood flow acceleration times to identify a blood flow pathology.
Claim 6. The diagnostic system of claim 5, the blood flow sensors arranged in a non- weightbearing planar surface.
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CA3073090A CA3073090A1 (en) | 2017-10-02 | 2018-10-01 | Vascular flow diagnostic system |
| US16/785,398 US11903688B2 (en) | 2017-10-02 | 2020-02-07 | Vascular flow diagnostic system |
| US18/444,096 US20250248681A1 (en) | 2017-10-02 | 2024-02-16 | Vascular flow diagnostic system |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762566760P | 2017-10-02 | 2017-10-02 | |
| US62/566,760 | 2017-10-02 |
Related Child Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US16/785,398 Continuation US11903688B2 (en) | 2017-10-02 | 2020-02-07 | Vascular flow diagnostic system |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2019070560A1 true WO2019070560A1 (en) | 2019-04-11 |
Family
ID=65995236
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2018/053700 Ceased WO2019070560A1 (en) | 2017-10-02 | 2018-10-01 | Vascular flow diagnostic system |
Country Status (3)
| Country | Link |
|---|---|
| US (2) | US11903688B2 (en) |
| CA (1) | CA3073090A1 (en) |
| WO (1) | WO2019070560A1 (en) |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4432374A (en) * | 1980-11-29 | 1984-02-21 | Hiroshi Osanai | Plethysmographic acceleration pulse wave meter |
| DE4214263A1 (en) * | 1992-05-03 | 1993-11-04 | Maximilian Dr Moser | Garment has sensors coming into contact with body parts - where values received by sensors are led to central collector |
| US20020091320A1 (en) * | 2000-09-29 | 2002-07-11 | Kevin Crutchfield | Systems and methods for investigating blood flow |
| US20140249431A1 (en) * | 2010-12-28 | 2014-09-04 | Matt Banet | Body-worn system for continuous, noninvasive measurement of cardiac output, stroke volume, cardiac power, and blood pressure |
| US20150359457A1 (en) * | 2012-12-17 | 2015-12-17 | Reflx Labs, Inc. | Foot-mounted sensor systems for tracking body movement |
| US20170251929A1 (en) * | 2016-03-03 | 2017-09-07 | The Johns Hopkins University | Novel device and method to measure ventricular arterial coupling and vascular performance |
Family Cites Families (10)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5868676A (en) * | 1996-10-25 | 1999-02-09 | Acuson Corporation | Interactive doppler processor and method |
| GB0603006D0 (en) * | 2006-02-15 | 2006-03-29 | Dialog Devices Ltd | Assessing blood supply to a peripheral portion of an animal |
| EP2441390B1 (en) * | 2009-06-09 | 2017-03-01 | National Institute of Advanced Industrial Science And Technology | Device for examining vascular function |
| US20140058267A1 (en) * | 2009-08-09 | 2014-02-27 | Brad Eliot Kessler | Non-invasive continuous doppler monitoring device for arterial blood flow to distal body parts |
| EP2509508A4 (en) * | 2009-12-08 | 2015-11-18 | Aum Cardiovascular Inc | Systems and methods for detecting cardiovascular disease |
| MX380885B (en) * | 2013-08-14 | 2025-03-12 | Pedra Tech Pte Ltd | SYSTEMS FOR REVASCULARIZATION EVALUATION. |
| US10413719B2 (en) * | 2016-04-15 | 2019-09-17 | Innovative Health Solutions, Inc. | Methods of treating disease using auricular peripheral nerve field stimulation |
| US9610016B2 (en) * | 2014-08-27 | 2017-04-04 | Vladimir Shusterman | Wireless health monitoring in the setting of X-ray, magnetic resonance imaging and other sources of electromagnetic interference |
| JP6783863B2 (en) * | 2015-12-22 | 2020-11-11 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Multi-site continuous ultrasonic flow measurement for blood circulation management |
| JP6707372B2 (en) * | 2016-03-16 | 2020-06-10 | フクダ電子株式会社 | Blood pressure pulse wave measuring device and program |
-
2018
- 2018-10-01 WO PCT/US2018/053700 patent/WO2019070560A1/en not_active Ceased
- 2018-10-01 CA CA3073090A patent/CA3073090A1/en active Pending
-
2020
- 2020-02-07 US US16/785,398 patent/US11903688B2/en active Active
-
2024
- 2024-02-16 US US18/444,096 patent/US20250248681A1/en active Pending
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4432374A (en) * | 1980-11-29 | 1984-02-21 | Hiroshi Osanai | Plethysmographic acceleration pulse wave meter |
| DE4214263A1 (en) * | 1992-05-03 | 1993-11-04 | Maximilian Dr Moser | Garment has sensors coming into contact with body parts - where values received by sensors are led to central collector |
| US20020091320A1 (en) * | 2000-09-29 | 2002-07-11 | Kevin Crutchfield | Systems and methods for investigating blood flow |
| US20140249431A1 (en) * | 2010-12-28 | 2014-09-04 | Matt Banet | Body-worn system for continuous, noninvasive measurement of cardiac output, stroke volume, cardiac power, and blood pressure |
| US20150359457A1 (en) * | 2012-12-17 | 2015-12-17 | Reflx Labs, Inc. | Foot-mounted sensor systems for tracking body movement |
| US20170251929A1 (en) * | 2016-03-03 | 2017-09-07 | The Johns Hopkins University | Novel device and method to measure ventricular arterial coupling and vascular performance |
Also Published As
| Publication number | Publication date |
|---|---|
| CA3073090A1 (en) | 2019-04-11 |
| US20250248681A1 (en) | 2025-08-07 |
| US20200288993A1 (en) | 2020-09-17 |
| US11903688B2 (en) | 2024-02-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11622696B2 (en) | Method for improving heart rate estimates by combining multiple measurement modalities | |
| Lamonaca et al. | An overview on Internet of medical things in blood pressure monitoring | |
| CN109288507B (en) | Device and method for measuring biometric information | |
| US8825428B2 (en) | Methods and systems for recalibrating a blood pressure monitor with memory | |
| CN112641501B (en) | Injection pump perfusion control method, device, system and computer readable storage medium | |
| Sideris et al. | Building continuous arterial blood pressure prediction models using recurrent networks | |
| US20180279965A1 (en) | Ambulatory Blood Pressure and Vital Sign Monitoring Apparatus, System and Method | |
| US20170071481A1 (en) | Wearable device for pulse reading | |
| KR102751479B1 (en) | Apparatus and method for measuring bio-information | |
| EP1970000A2 (en) | Method and apparatus for cufflessly and non-invasively measuring wrist blood pressure in association with communication device | |
| WO2018035827A1 (en) | Mobile terminal, accessory device, blood pressure measuring system and method | |
| CN110772252A (en) | Apparatus and method for measuring bio-signal | |
| EP4032468B1 (en) | Apparatus and method for estimating blood pressure | |
| EP4210559A1 (en) | Medical examination of human body using haptics | |
| CN114176546A (en) | Blood pressure measuring method and device and electronic equipment | |
| CN112040849A (en) | System and method for determining blood pressure of a subject | |
| US20250248681A1 (en) | Vascular flow diagnostic system | |
| Wang et al. | Accurate blood pressure measurement using smartphone's built-in accelerometer | |
| CN112218575A (en) | Device for determining stress and/or pain levels | |
| WO2024197040A1 (en) | Method of improved surgical care with real-time devices | |
| KR20200029906A (en) | Biological signal measurement apparatus and method | |
| Tjiharjadi et al. | Human Heart Rate Detection Application | |
| CN105662433A (en) | Blood sugar information acquiring and processing system convenient and rapid to use | |
| CN108124420B (en) | Blood pressure measuring equipment and method capable of carrying out calibration | |
| KR102170187B1 (en) | Apparatus and method for measuring pulse transit time |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18865153 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 3073090 Country of ref document: CA |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 18865153 Country of ref document: EP Kind code of ref document: A1 |