[go: up one dir, main page]

WO2019044067A1 - State prediction method for secondary battery, charge control method, and system - Google Patents

State prediction method for secondary battery, charge control method, and system Download PDF

Info

Publication number
WO2019044067A1
WO2019044067A1 PCT/JP2018/019812 JP2018019812W WO2019044067A1 WO 2019044067 A1 WO2019044067 A1 WO 2019044067A1 JP 2018019812 W JP2018019812 W JP 2018019812W WO 2019044067 A1 WO2019044067 A1 WO 2019044067A1
Authority
WO
WIPO (PCT)
Prior art keywords
characteristic data
point
charge
characteristic curve
inflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2018/019812
Other languages
French (fr)
Japanese (ja)
Inventor
南方 伸之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire Corp filed Critical Toyo Tire Corp
Publication of WO2019044067A1 publication Critical patent/WO2019044067A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method of predicting a state of a secondary battery, a charge control method, and a system.
  • secondary batteries represented by lithium ion secondary batteries are not only mobile devices such as mobile phones and laptop computers but also electric vehicles and hybrids. It is also used as a power source for electric vehicles such as cars.
  • the secondary battery is deteriorated by repeating charge and discharge cycles, and with the progress of the deterioration, it becomes difficult to accurately grasp the state of the remaining capacity, the deteriorated capacity of the battery and the like.
  • Patent Document 1 describes that the remaining capacity is estimated from the relationship between the pressure between the batteries and the SOC (State of Charge).
  • SOC State of Charge
  • Patent Document 2 describes measuring the thickness of the secondary battery and measuring the remaining capacity from the thickness. However, the change in remaining capacity due to deterioration is not taken into consideration.
  • the present invention has been made in view of such problems, and an object thereof is a method of predicting a state of a secondary battery usable in actual use where charging and discharging are performed randomly, a charging method, and a system. It is to provide.
  • the secondary battery state prediction method is Acquiring an actual measurement value corresponding to the charge / discharge capacity and deformation amount of the secondary battery; Extracting at least one inflection point in a characteristic curve indicating the relationship between the charge / discharge capacity of the secondary battery and the deformation amount from the time-series data of the measured value; Acquiring past characteristic data having at least a full charge time point, a remaining time zero time point, and a stage inflection point in a characteristic curve indicating a relation between charge and discharge capacity and deformation amount of the secondary battery; The characteristic curve indicated by the characteristic data in the past is fitted to the characteristic curve indicated by the time series data of the actual measurement value on the basis of the extracted inflection point, and a portion not included in the time series data of the actual measurement value is interpolated Generating predicted characteristic data indicating a different characteristic curve; including.
  • the inflection point in the characteristic curve is extracted from the time-series data of the measured values, and the past characteristic data and the measured value data are fitted with reference to the extracted inflection point. Even if there is no measurement data for a long time from full discharge to complete discharge, if there is measurement data of a short period, such as from full charge to the inflection point, from one inflection point to the other inflection point, Predicted characteristic data can be generated with a certain degree of accuracy secured. Therefore, in actual use where charging and discharging are performed randomly instead of a series of charging and discharging such as from full charge to complete discharge, predicted characteristic data securing a certain degree of accuracy can be generated, and the state of the secondary battery is predicted It becomes possible.
  • FIG. 1 is a block diagram showing an example of a system for executing a secondary battery state prediction method.
  • FIG. 2 is a perspective view schematically showing a sealed secondary battery. AA sectional drawing of FIG. 2A.
  • generates prediction characteristic data Explanatory drawing regarding the process which produces
  • FIG. 1 shows a system mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle.
  • This system includes a battery module 1 formed by housing a battery assembly formed of a plurality of sealed secondary batteries 2 in a housing.
  • four secondary batteries 2 are connected in two parallel two series, but the number of batteries and the connection form are not limited thereto.
  • FIG. 1 shows only one battery module 1 is shown in FIG. 1, it is actually equipped as a battery pack including a plurality of battery modules 1.
  • a plurality of battery modules 1 are connected in series, and they are housed in a housing together with various devices such as a controller.
  • the housing of the battery pack is formed in a shape suitable for being mounted on a vehicle, for example, in a shape conforming to the shape under the floor of a vehicle.
  • the secondary battery 2 shown in FIG. 2 is configured as a cell (unit cell) in which the electrode group 22 is accommodated inside the sealed exterior body 21.
  • the electrode group 22 has a structure in which a positive electrode 23 and a negative electrode 24 are stacked or wound between them via a separator 25.
  • the separator 25 holds an electrolytic solution.
  • the secondary battery 2 of the present embodiment is a laminate battery using a laminate film such as an aluminum laminate foil as the exterior body 21, and specifically, is a laminate type lithium ion secondary battery having a capacity of 1.44 Ah.
  • the secondary battery 2 is formed in a thin rectangular parallelepiped shape as a whole, and the X, Y, and Z directions correspond to the length direction, the width direction, and the thickness direction of the secondary battery 2, respectively.
  • the Z direction is also the thickness direction of the positive electrode 23 and the negative electrode 24.
  • the secondary battery 2 is attached with a detection sensor 5 for detecting deformation of the secondary battery 2.
  • the detection sensor 5 includes a polymer matrix layer 3 attached to the secondary battery 2 and a detection unit 4.
  • the polymer matrix layer 3 contains a filler that disperses the external field in response to the deformation of the polymer matrix layer 3.
  • the polymer matrix layer 3 of the present embodiment is formed in a sheet shape by a flexible deformable elastomer material.
  • the detection unit 4 detects a change in the external field. When the secondary battery 2 is expanded and deformed, the polymer matrix layer 3 is deformed accordingly, and the change in the external field caused by the deformation of the polymer matrix layer 3 is detected by the detection unit 4.
  • the deformation of the secondary battery 2 can be detected with high sensitivity.
  • the polymer matrix layer 3 since the polymer matrix layer 3 is attached to the outer package 21 of the secondary battery 2, the polymer matrix layer 3 may be deformed according to the deformation (mainly bulging) of the outer package 21. it can.
  • the polymer matrix layer 3 may be attached to the electrode group 22 of the secondary battery 2. According to such a configuration, the polymer matrix layer 3 is deformed according to the deformation (mainly swelling) of the electrode group 22. be able to.
  • the deformation of the secondary battery 2 to be detected may be any deformation of the exterior body 21 and the electrode group 22.
  • a signal detected by the detection sensor 5 is transmitted to the control device 6, whereby information on deformation of the secondary battery 2 is supplied to the control device 6.
  • the past characteristic data acquisition unit 60 in the state prediction system of the secondary battery, the past characteristic data acquisition unit 60, the actual value acquisition unit 61, the inflection point extraction unit 62, the prediction characteristic data generation unit 63, and the remaining capacity calculation.
  • a unit 64, an initial characteristic data acquisition unit 65, and a deterioration information generation unit 66 are included.
  • the units 60 to 66 are realized by the processor 6 B such as a CPU executing a program in the control device 6, but the present invention is not limited to this.
  • the present invention may be realized by an information processing apparatus located far away via a communication network.
  • the remaining capacity calculation unit 64, the initial characteristic data acquisition unit 65, and the deterioration information generation unit 66 can be omitted as needed.
  • the past characteristic data acquisition unit 60 acquires past characteristic data of the secondary battery 2.
  • the characteristic data in the past are at least the full charge time point Pf, the remaining time zero time point Pe, and the stage change in the characteristic curve L1 showing the relationship between the charge / discharge capacity Q of the secondary battery and the deformation amount T. It has curve points P1 and P2. This is because the characteristic curve L1 can be reproduced to some extent with these four points.
  • the state of the secondary battery 2 can be expressed by a characteristic curve L1.
  • the horizontal axis is the discharge capacity Q with the origin as the fully charged time point Pf
  • the vertical axis is the detected deformation amount T of the secondary battery 2.
  • the deformation amount T of the secondary battery 2 changes in the direction in which the thickness of the secondary battery 2 becomes smaller. This is because in the charged secondary battery 2, the electrode group 22 swells (hereinafter sometimes referred to as “electrode swelling”) due to the volume change of the negative electrode active material, and the electrode swelling is accompanied by the discharge. It is because it becomes small.
  • the shape includes two inflection points P1 and P2 (change in slope).
  • data is also included between the full charge time point Pf, the remaining amount time zero time point Pe, and the inflection points P1 and P2.
  • the characteristic data may be discrete data in which data of a plurality of points are provided between four points, or continuous data in which four points are connected by a curve.
  • the past characteristic data is not an initial characteristic set at the time of shipment of the secondary battery 2, but is past data from the start of use to the present time. If it is data of the latest charge cycle, it is more preferable because there is little difference between the present and past data.
  • the past characteristic data is stored in the memory 6A of the control device 6, and the past characteristic data acquisition unit 60 acquires data from the memory 6A.
  • the actual measurement value acquisition unit 61 acquires an actual measurement value corresponding to the charge / discharge capacity and deformation amount of the secondary battery 2.
  • the value corresponding to the deformation amount T of the secondary battery is a value detected by the detection sensor 5.
  • the voltage or magnetic flux density is expressed as a change amount or the like.
  • the present invention is not limited to this, and various changes can be made as long as the physical amount corresponds to the thickness or the deformation amount.
  • the charge / discharge capacity of the secondary battery 2 is a generic term for the discharge capacity and the charge capacity. In the present embodiment, although the discharge capacity, specifically, the discharge capacity from the full charge point is used, the present invention is not limited to this.
  • the value corresponding to the charge and discharge capacity can be represented by current, charge amount or discharge amount, and can be variously changed.
  • the measured values corresponding to the charge / discharge capacity and the deformation amount of the secondary battery 2 are repeatedly acquired and become time series data.
  • FIG. 4 shows the characteristic curve Ln represented by the time series data of the actual measurement values as a solid line.
  • the measurement is started from the full charge time point Pf, and the discharge is continued, and the example in which the inflection point P1 is not reached yet is shown.
  • a characteristic curve L1 indicated by a broken line in FIG. 4 is exaggerated and illustrated so that the characteristic curve L1 indicated by the past characteristic data shown in FIG. 3 is different for comparison.
  • the characteristic curve Ln is indicated by a solid line in FIG. 4, actually, the raw data which is an actual measurement value often includes large noise vibrating on the vertical axis, and data per unit discharge capacity is Exist in the form of vibrating up and down at multiple points.
  • filter processing such as moving average or median value is performed on the vertical axis so that data per unit discharge capacity becomes one plot. There is. Thereby, it becomes possible to calculate a differential value indicating the slope of the characteristic curve Ln.
  • the inflection point extraction unit 62 extracts at least one inflection point (P1 or P2) in the characteristic curve Ln indicating the relationship between the charge / discharge capacity of the secondary battery 2 and the deformation amount from the time-series data of the measured values. . Specifically, the inflection point is extracted based on the differential value ( ⁇ T / ⁇ Q) of the deformation amount T related to the charge / discharge capacity Q determined based on the actual value. This is because the differential value is the slope of the characteristic curve Ln, and the location where the change in the differential value is large is the inflection point. It is possible to extract an inflection point with an extraction condition that the amount of change of the differential value is larger than a certain value.
  • the extraction condition is set according to the charge / discharge capacity Q indicated by the acquired measured value, and the differential value of the deformation amount T related to the charge / discharge capacity Q determined based on the acquired measured value
  • ⁇ T / ⁇ Q the actual measurement value is extracted as an inflection point. Examples will be described next.
  • the charge-discharge capacity Q Pn showing actual measurement values acquired in a certain time Pn is the charge-discharge capacity Q P1 inflection point P1 (P2) in the past of the characteristic data
  • the threshold value Th P1 (Th P2 ) of the differential value is set based on the past characteristic data. For example, as shown in FIG. 4, when the charge / discharge capacity Q Pn indicated by the measured value data at a certain point Pn is near the inflection point P1, as shown in the lower graph of FIG. A threshold Th P1 is set.
  • the inflection point P1 is extracted when the differential value based on the actual measurement value passes the threshold value Th P1 .
  • the extraction condition for extracting the inflection point P1 during discharge is that the threshold Th P1 is passed downward, and the extraction for extracting the inflection point P1 during charging is performed.
  • the condition is that the threshold Th P1 is passed upward.
  • the extraction condition for extracting the inflection point P2 during discharge is that the threshold Th P2 is passed upward, and the extraction condition for extracting the inflection point P2 during charging is the threshold It is passing Th P2 downward.
  • the extraction condition is that at least three differential values continue to rise or fall continuously. In this case, a certain period during which the charge / discharge capacity changes is for three points, which is unit discharge capacity [ ⁇ mAh] ⁇ 3. This period can be changed as appropriate.
  • the prediction characteristic data generation unit 63 sets the characteristic curve L1 indicated by the characteristic data in the past to the characteristic curve Ln indicated by time series data of the actual measurement value with reference to the extracted inflection point. Fitting processing is performed to generate predicted characteristic data indicating a characteristic curve L2 in which a portion not included in the time-series data of the actual measurement value is interpolated.
  • the prediction characteristic data generation unit 63 stores the generated prediction characteristic data in the memory 6A. In the present embodiment, in order to improve the prediction accuracy of the characteristic curve, the method described below is adopted.
  • FIG. 6A shows an example in which two inflection points P1 and P2 are extracted.
  • the inflection point P2 is an inflection point extracted most recently.
  • the prediction characteristic data generation unit 63 generates two inflection points P1 and P2 in the past characteristic data as time-series data of measured values. The coefficients for making the corresponding two inflection points P1 and P2 at the same point coincide with each other by the expansion and contraction of the characteristic curve are calculated.
  • the entire characteristic curve L1 indicated by the past characteristic data is stretched and adjusted to generate a reduced-scale adjusted characteristic curve L1 ′.
  • the adjusted characteristic curve L1 ′ is moved, and the inflection point P2 most recently extracted in the characteristic curve Ln indicated by the time-series data of the measured values and the adjusted characteristic curve L1 ′ Are made to coincide with the corresponding inflection point P2 of to generate prediction characteristic data.
  • predicted characteristic data is generated which indicates a characteristic curve L2 in which a portion (indicated by a broken line in the figure) not included in the time series data of the actual measurement value is interpolated.
  • a characteristic curve L2 indicated by the prediction characteristic data includes a characteristic curve Ln and a characteristic curve L1 '.
  • FIG. 7A shows an example in which one inflection point P1 is extracted and an actual measurement value corresponding to any one of a full charge time point Pf or a remaining charge zero time point Pe is included in time series data of actual measurement values.
  • the prediction characteristic data generation unit 63 determines whether the inflection point is any one of the full charge time point Pf or the remaining charge time zero point Pe in the past characteristic data.
  • a coefficient for making two points at the point P1 coincide with corresponding two points in the time-series data of the measured values by the expansion and contraction of the characteristic curve is calculated.
  • FIG. 7A shows an example in which one inflection point P1 is extracted and an actual measurement value corresponding to any one of a full charge time point Pf or a remaining charge zero time point Pe is included in time series data of actual measurement values.
  • the coefficient for making the full charge time point Pf and the inflection point P1 coincide with each other in the vertical and horizontal directions is calculated.
  • the enlargement ratio of the horizontal axis Xr a '/ a
  • the enlargement ratio of the vertical axis Yr b' / b
  • the inclination can be mentioned.
  • FIG. 7B using the coefficients, the entire characteristic curve L1 indicated by the past characteristic data is stretched and adjusted to generate a reduced-scale adjusted characteristic curve L1 ′.
  • FIG. 7B using the coefficients, the entire characteristic curve L1 indicated by the past characteristic data is stretched and adjusted to generate a reduced-scale adjusted characteristic curve L1 ′.
  • the adjusted characteristic curve L1 ′ is moved, and the inflection point P1 most recently extracted in the characteristic curve Ln indicated by the time-series data of the measured values and the adjusted characteristic curve L1 ′ Are made to coincide with the corresponding inflection point P1 of to generate prediction characteristic data.
  • predicted characteristic data is generated which indicates a characteristic curve L2 in which a portion (indicated by a broken line in the figure) not included in the time series data of the actual measurement value is interpolated.
  • a characteristic curve L2 indicated by the prediction characteristic data includes a characteristic curve Ln and a characteristic curve L1 '.
  • FIG. 7D shows an example in which one inflection point P1 is extracted but the measured value corresponding to any one of the fully charged time point Pf or the remaining zero time point Pe is not included in the time series data of the measured value.
  • the prediction characteristic data generation unit 63 extracts the inflection point most recently extracted as a coefficient 1 (equal magnification) without enlarging or reducing the characteristic curve L1 indicated by the past characteristic data.
  • the characteristic curve L1 indicated by the past characteristic data is moved and interpolated such that P1 coincides with the inflection point P1 in the past characteristic data, thereby generating predicted characteristic data.
  • the predicted characteristic data includes a full charge time point Pf, a remaining amount time zero point Pe, and two inflection points P1 and P2.
  • 6A to 6C and FIGS. 7A to 7B show the way of thinking, and the procedure is not limited to this.
  • the reproduction accuracy of the characteristic curve of the secondary battery 2 may be inferior to the generation process 1 shown in FIGS. 6A to 6C and the generation process 2 shown in FIGS. 7A to 7C
  • the least squares method is used as the fitting process.
  • Other methods such as can be implemented.
  • commercially available software such as Solver (registered trademark) in Excel (registered trademark) manufactured by Microsoft Corporation is also possible.
  • remaining capacity calculation unit 64 indicates charge / discharge capacity Q Pn indicated by an actual measured value at the time of predicting remaining capacity, and charge / discharge capacity Q of remaining quantity zero point Pe in predicted characteristic data. The difference with Pe is calculated as the remaining capacity Qr.
  • the deterioration information includes the side reaction balance of the electrode, the change in the amount of active material contributing to charge and discharge, and the amount of thickness change up to lithium deposition.
  • the initial characteristic data acquisition unit 65 sets at least the full charge time point Pf and the remaining time point zero time Pe on the characteristic curve L0 indicating the relationship between the charge / discharge capacity Q of the secondary battery 2 and the deformation amount T as shown in FIG. And acquire initial characteristic data having stage inflection points P1 and P2.
  • the initial characteristic data acquisition unit 65 acquires data from the memory 6A.
  • the initial characteristic data is based on the non-degraded initial stage secondary battery 2 as a reference state, and is determined using, for example, the secondary battery 2 at the time of manufacture or before shipment, and information on the characteristic curve L0 is a control device 6 are stored in advance in a memory 6A included in the memory 6.
  • the secondary battery 2 before shipment was placed in a thermostatic chamber at 25 ° C., allowed to stand for 120 minutes, constant current charge to 4.32 V with a charge current of 0.144 A, 4 After reaching .32 V, constant-voltage charging was performed until the current value decreased to 0.07 A, and then the open circuit state was maintained for 10 minutes, and constant-current discharge was performed to 3.0 V with a current of 0.144 A.
  • the discharge capacity from the fully charged state to the completely discharged state at this time was 1.44 Ah.
  • the deterioration information generation unit 66 includes two inflection points P1 and P2 in the initial characteristic data (L0) and two corresponding inflection points P1 and P2 in the prediction characteristic data (L2).
  • the expansion ratio (a '/ a) of the charge / discharge capacity for making the characteristics coincide by the expansion and contraction of the characteristic curve is calculated as the degree of change of the active material mass contributing to the charge / discharge.
  • the enlargement factor of the horizontal axis the enlargement factor of charge / discharge capacity (a ′ / a).
  • the enlargement factor of the charge and discharge capacity may be calculated.
  • the deterioration information generation unit 66 sets a ratio (a '/ a) between two inflection points P1 and P2, a ratio (b' / b) between one inflection point P1 and a full charge time point Pf, and the other
  • the enlargement factor of the charge / discharge capacity is ⁇ b '/ b ⁇ 1 + a' / a ⁇ 8 + c '/ c ⁇ 1 ⁇ / ⁇ 1 + 8 + 1 ⁇ .
  • the deterioration information generation unit 66 includes two inflection points P1 and P2 in the initial characteristic data (L0) and two inflection points P1 and P2 in the prediction characteristic data (L2).
  • the deterioration information generation unit 66 combines two inflection points P1 and P2 in the prediction characteristic data (L2) and two inflection points P1 and P2 in the initial characteristic data (L0). , To calculate the coefficient to match the expansion and contraction of the characteristic curve. The calculation of the coefficients is the same as the method shown in FIGS. 6A-C.
  • the deterioration information generation unit 66 stretches and adjusts the entire characteristic curve (L0) indicated by the initial characteristic data using coefficients, and data indicating the adjusted characteristic curve (L0 ′) is obtained.
  • the deterioration information generation unit 66 generates the inflection point P2 most recently extracted in the prediction characteristic data (L2) and the initial characteristic data (L0 ′) after the expansion / contraction adjustment.
  • the characteristic curve (L2, L0 ′) of at least one of the prediction characteristic data and the initial characteristic data is moved so that the corresponding inflection point P2 coincides.
  • the deterioration information generation unit 66 charges the lateral displacement amount D1 of the charge / discharge capacity between full charge points Pf and the residual quantity zero time points Pe with reference to the adjusted initial characteristic curve.
  • the average value [(D1 + D2) / 2] of the lateral displacement amount D2 of the discharge capacity is calculated as the deterioration state of the battery.
  • the present invention is not limited thereto.
  • the predicted characteristic curve L2 may be moved, or both of the curves may be moved. Further, after moving both curves first to make the inflection point P2 detected most recently coincide with each other, the initial characteristic curve L0 may be expanded or adjusted, or the movement and expansion may be performed simultaneously.
  • the coefficients used when adjusting the expansion and contraction of the initial characteristic curve L0 in FIGS. 10A to 10C can be calculated by the same method as the method of calculating the enlargement factor of the charge and discharge capacity shown in FIG. 9B. That is, the deterioration information generation unit 66 determines the ratio between the two inflection points P1 and P2, the ratio between one inflection point P1 and the full charge time Pf, and the other inflection point P2 and the remaining time zero time Pe.
  • the weighting between the two inflection points P1 and P2 is set larger than the weighting of the other sections using the ratio between T.
  • coefficients on both the horizontal axis and the vertical axis are calculated.
  • the thickness maximum point PL is set in the initial characteristic data.
  • the thickness maximum point PL is a limit point at which lithium is deposited if charging is performed more than this.
  • the full charge time point Pf may be the thickness maximum point PL. In this case, the amount of change from the full charge point Pf to the remaining amount zero point Pe is T1 below, and the full charge point Pf in the predicted characteristic data can be made the thickness maximum point without using the initial characteristic data.
  • the degradation information generation unit 66 uses the method shown in FIGS. 9A and 9B to expand and contract the characteristic curve to fit the characteristic curve L0 indicated by the initial characteristic data to the characteristic curve L2 indicated by the predicted characteristic data. (Expansion rate of charge and discharge capacity, expansion rate of deformation amount) is calculated. In FIGS. 9A and 9B, only the enlargement factor of the horizontal axis (the enlargement factor of the charge / discharge capacity) is calculated, but the enlargement factor of the vertical axis (the enlargement factor of the deformation amount) is also calculated.
  • the deterioration information generation unit 66 specifies the thickness maximum point PL ′ in the prediction characteristic data from the thickness maximum point PL in the initial characteristic data, using the calculated coefficient.
  • the deterioration information generation unit 66 uses the deformation amount T1 from the thickness maximum point PL 'to the remaining amount zero point Pe in the prediction characteristic data (L2) as the starting point at the remaining amount zero point. The amount of change in thickness T1 until lithium deposition is calculated.
  • the control device 6 may be provided with a charge control unit 67 that controls charging of the secondary battery 2 using the thickness change amount T1 up to lithium deposition predicted by the deterioration information generation unit 66. That is, charge control portion 67 performs charging so that the deformation amount of secondary battery 2 detected during charging by detection sensor 5 does not exceed thickness change amount T1 up to lithium deposition starting from the remaining amount zero point. Control. For example, as shown in FIG. 12, a threshold T2 smaller than the thickness change amount T1 may be set, and the current may be controlled to maintain the threshold T2.
  • T1 may be set as the target value.
  • step S ⁇ b> 1 the actual measurement value acquiring unit 61 acquires an actual measurement value corresponding to the charge / discharge capacity Q and the deformation amount T of the secondary battery 2. Since this step is repeatedly executed, time-series data of measured values can be obtained.
  • step S2 it is determined whether or not there is predicted characteristic data. If it is determined that the predicted characteristic data does not exist (S2: NO), the process proceeds to step S6. If it is determined that the prediction characteristic data is present (S2: YES), the process proceeds to step S3. The process of step S3 will be described later.
  • step S6 at least one inflection point P1 in the characteristic curve Ln indicating the relationship between the charge / discharge capacity Q of the secondary battery 2 and the deformation amount T from the time-series data of the measured values by the inflection point extraction unit 62 Extract P2).
  • the inflection point extraction unit 62 sets the extraction condition according to the charge / discharge capacity Q Pn indicated by the acquired actual measurement value, and the differential value of the deformation amount related to the charge / discharge capacity determined based on the acquired actual measurement value When ⁇ mV / ⁇ mAh] satisfies the extraction condition, the actual measurement value is extracted as the inflection point.
  • the past characteristic data is based by setting a threshold Th P1 of the differential value is set as the extraction condition that the differential value passes the threshold Th P1. Further, in addition to the differential value passing through the threshold values Th P1 and Th P2 , it is set as the extraction condition that the differential value continues to continuously rise or falls for a certain period during which the charge / discharge capacity Q changes. doing.
  • the differential value is calculated for each unit discharge capacity, and the extraction condition is that at least three differential values continue to rise or fall continuously.
  • step S7 it is determined whether an inflection point has been extracted. If the inflection point can not be extracted (S7: NO), it is determined in step S13 whether the termination condition is satisfied, and the process returns to step S1 until the termination condition is satisfied.
  • step S7 If the inflection point can be extracted in step S7 (S7: YES), in the next step S8, the past characteristic data acquisition unit 60 indicates the relationship between the charge / discharge capacity of the secondary battery and the deformation amount.
  • the characteristic curves L1 past characteristic data having at least a full charge time Pf, a remaining time zero Pe, and stage inflection points P1 and P2 are acquired.
  • the prediction characteristic data generation unit 63 performs fitting processing of the characteristic curve L1 indicated by the characteristic data in the past to the characteristic curve Ln indicated by time series data of the actual measurement value.
  • the prediction characteristic data indicating a characteristic curve L2 in which a portion not included in the time-series data of the actual measurement value is interpolated is generated.
  • the prediction characteristic data generation unit 63 changes the point from any one of the full charge point Pf or the remaining amount zero point Pe in the past characteristic data.
  • a coefficient is calculated to make the two points of the inflection point P1 coincide with the corresponding two points in the time-series data of the actual measurement values by the expansion and contraction of the characteristic curve, and the entire characteristic curve is expanded and adjusted using the coefficients, and the inflection point P1 Match to generate predicted characteristic data.
  • the prediction characteristic data generation unit 63 determines two inflection points P1 and P2 in the past characteristic data in time series data of the actual measurement value. A coefficient for making the corresponding two inflection points coincide with the characteristic curve by expansion and contraction is calculated, the entire characteristic curve is expanded and adjusted using the coefficient, the inflection point P2 extracted most recently is made to coincide, and the prediction characteristic data is Generate
  • step S10 it is determined whether or not two different inflection points have been extracted from the time-series data of the measured values.
  • the determination as to the different inflection points can be made based on the SOC and the charge and discharge capacity.
  • step S12 in generating the deterioration information based on the prediction characteristic data, the prediction characteristic data generated based on two different inflection points is more accurate than the data generated at only one inflection point It is because it is considered to be high.
  • degradation information may be generated in a state where only one inflection point is extracted.
  • step S11 the initial characteristic data acquisition unit 65 determines the charge / discharge capacity and the deformation amount of the secondary battery.
  • Initial characteristic data having at least a thickness maximum point PL, a full charge time point Pf, a remaining charge zero time point Pe, and stage inflection points P1 and P2 among the characteristic curves L0 indicating the relationship of The thickness maximum point PL can be omitted.
  • the deterioration information generation unit 66 determines at least one of the deterioration capacity, the change degree of the active material mass contributing to charge and discharge, or the thickness change amount up to lithium deposition starting from the remaining time zero point. .
  • step S12 when the change degree of the active material mass contributing to charge and discharge is determined, the deterioration information generation unit 66 determines two inflection points P1 and P2 in the initial characteristic data and two corresponding inflections in the prediction characteristic data.
  • the enlargement factor of the charge and discharge capacity for making points P1 and P2 coincide with each other by the expansion and contraction of the characteristic curve is calculated.
  • step S12 when obtaining the deterioration state, the deterioration information generation unit 66 determines two inflection points P1 and P2 in the initial characteristic data (L0) and two inflection points P1 and P2 in the predicted characteristic data (L2).
  • coefficients expansion ratio of charge and discharge capacity, expansion ratio of deformation amount
  • the average value [(D1 + D2) / 2] of the lateral displacement amount D2 of the charge and discharge capacity between the points Pe is calculated as the battery degradation state.
  • step S12 in the case of obtaining the thickness change amount up to lithium deposition starting from the remaining amount zero time point, the deterioration information generation unit 66 determines two inflection points P1 and P2 in the initial characteristic data and the predicted characteristic data. A coefficient for making the two inflection points P1 and P2 coincide with each other by expansion and contraction of the characteristic curve is calculated, and the thickness maximum point PL 'in the prediction characteristic data is specified from the thickness maximum point PL in the initial characteristic data using the coefficient The deformation amount T1 from the thickness maximum point PL ′ in the prediction characteristic data to the remaining amount zero point Pe is calculated.
  • Pf PL
  • the deterioration information generation unit 66 calculates a deformation amount T1 from the thickness maximum point PL (Pf) in the prediction characteristic data to the remaining amount zero point Pe.
  • step S12 When the process of step S12 is completed, the process proceeds to step S13.
  • step S3 the remaining capacity calculating unit 64 determines the difference between the charge / discharge capacity Q Pn indicated by the measured value at the time of predicting the remaining capacity and the charge / discharge capacity Q Pe at the remaining capacity zero point Pe in the predicted characteristic data. Calculated as Qr. That is, once the prediction characteristic data is generated, the remaining capacity is calculated each time the actual measurement value data is acquired.
  • Steps S4 to S5 are processes for reviewing the prediction characteristic data. Specifically, in step S4, in the case where two inflection points P1 and P2 are included in the time-series data of the actual measurement value and the prediction characteristic data has already been generated, is a predetermined regeneration condition satisfied? It is determined whether or not. In the present embodiment, as a predetermined regeneration condition, it is determined whether or not the difference between predicted characteristic data that has been generated once and an actual measurement value exceeds a threshold. If the difference exceeds the threshold, in step S5, the prediction characteristic data generation unit 63 regenerates prediction characteristic data. This is because although the prediction characteristic data was once generated based on the actual measurement value, it did not match the actual measurement value. Here, as the regeneration condition, attention is paid to the error.
  • the method of generating the prediction characteristic data calculates a coefficient for matching the characteristic curve of the prediction characteristic data with the characteristic curve of the time series data of the actual measurement value by stretching the characteristic curve. Is used to adjust the entire characteristic curve, the inflection points extracted most recently are made to coincide, and the prediction characteristic data is regenerated.
  • the coefficient uses at least the ratio between the two inflection points, the ratio between the latest measured value and the inflection point closer to the latest measured value, and the weighting between the two inflection points in the other interval It is preferable to calculate by aggregation by setting larger than the weighting of. In this way, not only one section between two inflection points but also the ratio of two sections is used to fit to the latest measured value so that the predicted characteristic data is immediately It becomes a form.
  • the time-series data of the measured value includes one of the fully charged time point Pf and the remaining zero time point Pe that is farther from the latest measured value, among the fully charged time point Pf and the remaining zero time point Pe
  • the ratio between the farthest measured value and one inflection point the ratio between two inflection points, and the ratio between the latest measured value and the other inflection point close to the latest measured value
  • the weighting between the two inflection points is set larger than the weighting of the other sections, and calculation is performed by aggregation. In this way, using the ratio of 3 compartments, fitting is performed so that any of the fully charged time point Pf and the remaining zero time point Pe is also matched with the latest measured value, so the predicted characteristic data conforms to the measured value become.
  • the detection unit 4 is disposed at a place where a change in the external field can be detected, and is preferably attached to a relatively rigid place which is not easily affected by the swelling of the secondary battery 2.
  • the detection unit 4 is attached to the inner surface of the housing 11 of the battery module facing the wall 28a.
  • the housing 11 of the battery module is formed of, for example, metal or plastic, and a laminate film may be used.
  • the detection unit 4 is disposed close to the polymer matrix layer 3 in the drawing, it may be disposed apart from the polymer matrix layer 3.
  • the polymer matrix layer 3 contains a magnetic filler as the filler, and the detection unit 4 detects a change in the magnetic field as the external field.
  • the polymer matrix layer 3 is preferably a magnetic elastomer layer in which a magnetic filler is dispersed in a matrix made of an elastomer component.
  • the magnetic filler examples include rare earths, irons, cobalts, nickels, oxides and the like, but rare earths capable of obtaining higher magnetic force are preferable.
  • the shape of the magnetic filler is not particularly limited, and may be spherical, flat, needle-like, columnar or indeterminate.
  • the average particle size of the magnetic filler is preferably 0.02 to 500 ⁇ m, more preferably 0.1 to 400 ⁇ m, and still more preferably 0.5 to 300 ⁇ m. When the average particle size is smaller than 0.02 ⁇ m, the magnetic properties of the magnetic filler tend to be deteriorated, and when the average particle size exceeds 500 ⁇ m, the mechanical properties of the magnetic elastomer layer tend to be reduced and become brittle.
  • the magnetic filler may be introduced into the elastomer after magnetization, but is preferably magnetized after introduction into the elastomer. By magnetizing after being introduced into the elastomer, control of the polarity of the magnet becomes easy, and detection of the magnetic field becomes easy.
  • thermoplastic elastomers examples include styrene thermoplastic elastomers, polyolefin thermoplastic elastomers, polyurethane thermoplastic elastomers, polyester thermoplastic elastomers, polyamide thermoplastic elastomers, polybutadiene thermoplastic elastomers, polyisoprene thermoplastic elastomers, A fluororubber type thermoplastic elastomer etc. can be mentioned.
  • thermosetting elastomer for example, polyisoprene rubber, polybutadiene rubber, styrene-butadiene rubber, polychloroprene rubber, nitrile rubber, diene-based synthetic rubber such as ethylene-propylene rubber, ethylene-propylene rubber, butyl rubber, acrylic rubber, Non-diene based synthetic rubbers such as polyurethane rubber, fluororubber, silicone rubber, epichlorohydrin rubber, and natural rubber can be mentioned.
  • a thermosetting elastomer is preferable, because it can suppress the stagnation of the magnetic elastomer due to heat generation or overload of the battery. More preferably, they are polyurethane rubber (also referred to as polyurethane elastomer) or silicone rubber (also referred to as silicone elastomer).
  • the polyurethane elastomer is obtained by reacting a polyol and a polyisocyanate.
  • an active hydrogen-containing compound and a magnetic filler are mixed, and an isocyanate component is mixed here to obtain a mixed liquid.
  • a mixed solution can also be obtained by mixing a magnetic filler with an isocyanate component and mixing an active hydrogen-containing compound.
  • the magnetic elastomer can be produced by casting the mixed solution in a mold subjected to a release treatment and then heating to a curing temperature to cure.
  • the magnetic elastomer can be produced by adding a magnetic filler to a silicone elastomer precursor, mixing it, placing it in a mold and then heating and curing it. In addition, you may add a solvent as needed.
  • isocyanate component that can be used for the polyurethane elastomer
  • compounds known in the field of polyurethane can be used.
  • Aliphatic diisocyanates such as ethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 1,6-hexamethylene diisocyanate 1,4-cyclohexane diisocyanate, 4,4'-dicyclohexyl methane diisocyanate, isophorone diisocyanate, nor It can be mentioned alicyclic diisocyanates such as Renan diisocyanate. These may be used alone or in combination of two or more.
  • the isocyanate component may be one modified by urethane modification, allophanate modification, biuret modification, isocyanurate modification, or the like.
  • Preferred isocyanate components are 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 4,4'-diphenylmethane diisocyanate, more preferably 2,4-toluene diisocyanate, BR> G, 2,6-toluene diisocyanate is there.
  • polyetherpolyol represented by polytetramethylene glycol, polypropylene glycol, polyethylene glycol, copolymer of propylene oxide and ethylene oxide, polybutylene adipate, polyethylene adipate, 3-methyl-1,5-pentane adipate
  • Polyester polycarbonate polyol exemplified by the reaction product of polyester glycol such as polycaprolactone polyol, polyester glycol such as polycaprolactone glycol and alkylene carbonate, ethylene carbonate is reacted with polyhydric alcohol, and then the reaction mixture obtained is Polyester polycarbonate polyol reacted with organic dicarboxylic acid, polyhydroxyl compound and aryl carbonate It can be mentioned a high molecular weight polyol and polycarbonate polyols obtained by ester exchange reaction. These may be used alone or in combination of two or more.
  • Preferred active hydrogen-containing compounds are polytetramethylene glycol, polypropylene glycol, copolymers of propylene oxide and ethylene oxide, 3-methyl-1,5-pentane adipate, more preferably polypropylene glycol, and copolymer of propylene oxide and ethylene oxide It is union.
  • Preferred combinations of the isocyanate component and the active hydrogen-containing compound include one or two or more of 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, and 4,4′-diphenylmethane diisocyanate as the isocyanate component, and active hydrogen.
  • the contained compounds are polytetramethylene glycol, polypropylene glycol, a copolymer of propylene oxide and ethylene oxide, and a combination of one or more of 3-methyl-1,5-pentane adipate.
  • the polymer matrix layer 3 may be a foam containing dispersed fillers and cells.
  • a general resin foam can be used as the foam, it is preferable to use a thermosetting resin foam in consideration of characteristics such as compression set.
  • a thermosetting resin foam a polyurethane resin foam, a silicone resin foam, etc. are mentioned, Among these, a polyurethane resin foam is suitable.
  • the above-mentioned isocyanate component and active hydrogen-containing compound can be used.
  • the amount of the magnetic filler in the magnetic elastomer is preferably 1 to 450 parts by weight, more preferably 2 to 400 parts by weight with respect to 100 parts by weight of the elastomer component. If this amount is less than 1 part by weight, it tends to be difficult to detect a change in the magnetic field, and if it exceeds 450 parts by weight, the magnetic elastomer itself may become brittle.
  • a sealing material for sealing the polymer matrix layer 3 may be provided to the extent that the flexibility of the polymer matrix layer 3 is not impaired for the purpose of preventing corrosion of the magnetic filler and the like.
  • a thermoplastic resin, a thermosetting resin, or a mixture thereof can be used for the sealing material.
  • thermoplastic resins include styrene thermoplastic elastomers, polyolefin thermoplastic elastomers, polyurethane thermoplastic elastomers, polyester thermoplastic elastomers, polyamide thermoplastic elastomers, polybutadiene thermoplastic elastomers, polyisoprene thermoplastic elastomers, Fluorine-based thermoplastic elastomer, ethylene / ethyl acrylate copolymer, ethylene / vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, fluorine resin, polyamide, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polystyrene, polybutadiene Etc.
  • the thermosetting resin may be, for example, polyisoprene rubber, polybutadiene rubber, styrene butadiene rubber, polychloroprene rubber, diene based synthetic rubber such as acrylonitrile butadiene rubber, ethylene propylene rubber, ethylene propylene diene rubber, butyl rubber, Non-diene rubbers such as acrylic rubber, polyurethane rubber, fluororubber, silicone rubber and epichlorohydrin rubber, natural rubber, polyurethane resin, silicone resin, epoxy resin and the like can be mentioned. These films may be laminated, or may be a metal foil such as an aluminum foil or a film including a metal vapor-deposited film in which a metal is vapor-deposited on the film.
  • the polymer matrix layer 3 may have a filler unevenly distributed in the thickness direction.
  • the polymer matrix layer 3 may have a two-layer structure of one region relatively rich in filler and the other region relatively less filler. In the region on one side containing a large amount of filler, the change of the external field to a small deformation of the polymer matrix layer 3 becomes large, so the sensor sensitivity to a low internal pressure can be enhanced. Further, the region on the other side with a relatively small amount of filler is relatively soft and easy to move, and by attaching this region, the polymer matrix layer 3 (particularly, the region on one side) is easily deformed.
  • the filler uneven distribution rate in the region on one side is preferably more than 50, more preferably 60 or more, and still more preferably 70 or more. In this case, the filler uneven distribution rate in the region on the other side is less than 50.
  • the filler uneven distribution rate in one area is at most 100, and the filler uneven distribution rate in the other area is at least 0. Therefore, a laminate structure of an elastomer layer containing a filler and an elastomer layer not containing a filler may be used.
  • the filler maldistribution rate can be adjusted.
  • the filler may be unevenly distributed using physical force such as centrifugal force or magnetic force.
  • the polymer matrix layer may be formed of a laminate of a plurality of layers having different filler contents.
  • the filler uneven distribution rate is measured by the following method. That is, the cross section of the polymer matrix layer is observed at 100 times using a scanning electron microscope-energy dispersive X-ray analyzer (SEM-EDS). Elemental analysis of the entire area in the thickness direction of the cross section and the two areas obtained by dividing the cross section in the thickness direction into metal elements (for example, Fe element in the case of the magnetic filler of the present embodiment) Find the abundance. With respect to this amount, the ratio of the area on one side to the area in the entire thickness direction is calculated, and this is taken as the filler uneven distribution rate in the area on one side. The filler uneven distribution rate in the other side area is also similar to this.
  • SEM-EDS scanning electron microscope-energy dispersive X-ray analyzer
  • the region on the other side with a relatively small amount of filler may be a structure formed of foam containing bubbles.
  • the polymer matrix layer 3 is more easily deformed, and the sensor sensitivity is enhanced.
  • region of one side may be formed with a foam with the area
  • the polymer matrix layer in which at least a part of the thickness direction is a foam is constituted by a laminate of a plurality of layers (for example, a non-foamed layer containing a filler and a foamed layer not containing a filler) It does not matter.
  • a reed switch a magnetoresistive element, a Hall element, a coil, an inductor, an MI element, a flux gate sensor, or the like can be used as the detection unit 4 that detects a change in the magnetic field.
  • the magnetoresistive element include semiconductor compound magnetoresistive elements, anisotropic magnetoresistive elements (AMR), giant magnetoresistive elements (GMR), and tunnel magnetoresistive elements (TMR).
  • Hall elements are preferable, because they have high sensitivity over a wide range and are useful as the detection unit 4.
  • EQ-430L manufactured by Asahi Kasei Electronics Co., Ltd. can be used as the hall element.
  • the control device 6 sends a signal to the switching circuit 7 Then, the current from the power generation device (or the charging device) 8 is shut off, and charging / discharging of the battery module 1 is shut off. This makes it possible to prevent in advance the trouble caused by the gas expansion.
  • the secondary battery to be used is not limited to a non-aqueous electrolytic solution secondary battery such as a lithium ion battery, and may be an aqueous electrolytic solution secondary battery such as a nickel hydrogen battery.
  • the above-mentioned embodiment showed an example which detects change of a magnetic field accompanying modification of a polymer matrix layer by a detection part, it may be the composition of detecting change of other external fields.
  • the polymer matrix layer contains a conductive filler such as metal particles, carbon black, carbon nanotubes, etc. as a filler, and the detection unit detects a change in electric field (change in resistance and dielectric constant) as an external field.
  • the method of predicting the state of the secondary battery of the present embodiment Step S1 of acquiring an actual measurement value corresponding to the charge / discharge capacity Q and the deformation amount T of the secondary battery 2; Step S6 of extracting at least one inflection point P1 (P2) in the characteristic curve Ln indicating the relationship between the charge / discharge capacity Q of the secondary battery and the deformation amount T from the time series data of the measured values; A step of acquiring past characteristic data having at least a full charge time point Pf, a remaining time zero time point Pe, and stage inflection points P1 and P2 out of a characteristic curve L1 indicating the relationship between the charge / discharge capacity of the secondary battery and the deformation amount S8, The characteristic curve L1 indicated by the past characteristic data is fitted to the characteristic curve Ln indicated by the time series data of the actual measurement value on the basis of the extracted inflection point, and a portion not included in the time series data of the actual value is interpolated. Generating predicted characteristic data indicating a characteristic curve L2; including.
  • the secondary battery state prediction system of the present embodiment is A measured value acquisition unit 61 that acquires measured values corresponding to the charge / discharge capacity Q and the deformation amount T of the secondary battery 2; An inflection point extraction unit 62 for extracting at least one inflection point P1 (P2) in a characteristic curve Ln indicating the relationship between the charge / discharge capacity Q of the secondary battery and the deformation amount T from time series data of measured values; Of the characteristic curve L1 indicating the relationship between the charge and discharge capacity of the secondary battery and the deformation amount, the past acquires characteristic data of at least the full charge time point Pf, the remaining time zero time point Pe and the stage inflection points P1 and P2.
  • Characteristic data acquisition unit 60 The characteristic curve L1 indicated by the past characteristic data is fitted to the characteristic curve Ln indicated by the time series data of the actual measurement value on the basis of the extracted inflection point, and a portion not included in the time series data of the actual value is interpolated.
  • a prediction characteristic data generation unit 63 that generates prediction characteristic data indicating a characteristic curve L2; Equipped with
  • the inflection point in the characteristic curve is extracted from the time-series data of the measured values, and the past characteristic data and the measured value data are fitted with reference to the extracted inflection point. Even if there is no measurement data for a long time from full discharge to complete discharge, if there is measurement data of a short period, such as from full charge to the inflection point, from one inflection point to the other inflection point, Predicted characteristic data can be generated with a certain degree of accuracy secured. Therefore, the predicted characteristic data can be detected and the state of the secondary battery can be predicted in actual use where charging and discharging are performed randomly, not a series of charging and discharging such as from full charge to complete discharge.
  • the inflection point extraction unit 62 sets extraction conditions according to the charge / discharge capacity indicated by the acquired actual measurement value, and the differential value of the deformation amount related to the charge / discharge capacity determined based on the acquired actual measurement value is the extraction condition If the above condition is satisfied, the actual measurement value is extracted as an inflection point (step S7).
  • the two inflection points P1 and P2 included in the characteristic curve can be identified by the charge and discharge capacity Q.
  • the inflection point extraction unit 62 sets the extraction condition according to the charge / discharge capacity Q indicated by the actual measurement value, the extraction accuracy is higher than in the case where the inflection point is extracted only by the change of the differential value. It is possible to improve the
  • the inflection point extraction unit 62 sets the threshold value Th P1, Th P2 of the differential value based on historical characteristic data set as an extraction condition that the differential value has passed the threshold value Th P1, Th P2 (step S7) .
  • the inflection point extraction unit 62 continuously increases the derivative value during a certain period in which the charge / discharge capacity changes in addition to the derivative value passing the threshold values Th P1 and Th P2. It sets that continuing or falling as an extraction condition (step S7).
  • the prediction characteristic data generation unit 63 When one inflection point P1 is extracted and the time-series data of actual values includes an actual measurement value corresponding to any one of the full charge time point Pf or the remaining zero time point Pe, in the past characteristic data Calculate a coefficient to make one of the fully charged time point Pf or the remaining zero time point Pe and two points at the inflection point P1 coincide with the corresponding two points in the time series data of the measured values by the expansion and contraction of the characteristic curve.
  • the past characteristic data indicates Move the characteristic curve L1 indicated by the past characteristic data so that the inflection point P1 extracted most recently matches the inflection point P1 in the past characteristic data without enlarging or reducing the characteristic curve L1.
  • step S9 Interpolate to generate prediction characteristic data (step S9), Or
  • the two inflection points P1 and P2 in the past characteristic data are expanded and contracted to the corresponding two inflection points in the time-series data of the measured value.
  • a coefficient for matching is calculated, and the entire characteristic curve is stretched and adjusted using the coefficient, and the inflection point P2 extracted most recently is matched to generate prediction characteristic data (step S9).
  • the shape of the characteristic curve with stage change is less likely to collapse compared to general fitting, and thus prediction It is possible to improve the accuracy.
  • step S4 when the predicted characteristic data generation unit 63 includes two inflection points in the time series data of the actual measurement value and the predicted characteristic data has already been generated, and a predetermined regeneration condition is satisfied (step S4: YES), calculate the coefficient for matching the characteristic curve L2 of the prediction characteristic data to the characteristic curve Ln of the time series data of the actual measurement value by the expansion and contraction of the characteristic curve, and adjust the expansion and contraction of the entire characteristic curve L2 using the coefficient Then, the inflection points extracted most recently are made to coincide, and prediction characteristic data is regenerated.
  • the coefficient uses at least the ratio between the two inflection points, the ratio between the latest measured value and the inflection point closer to the latest measured value, and the weighting between the two inflection points in the other interval Set larger than the weighting of, and calculate by aggregation.
  • the remaining capacity calculation unit 64 determines the difference between the charge / discharge capacity Q Pn indicated by the measured value at the time of predicting the remaining capacity and the charge / discharge capacity Q Pe at the remaining capacity zero point Pe in the predicted characteristic data. Calculated as the capacity Qr (step S3).
  • the prediction characteristic data includes data of the remaining amount zero point Pe, it becomes possible to calculate the remaining amount accurately.
  • an initial characteristic data acquisition unit 65 and a deterioration information generation unit 66 are provided.
  • Initial characteristic data acquisition portion 65 has at least a full charge time point Pf, a remaining amount time zero point Pe, and stage inflection points P1 and P2 in a characteristic curve L0 indicating the relationship between the charge and discharge capacity of the secondary battery and the deformation amount.
  • Initial characteristic data is acquired (step S11).
  • the deterioration information generation unit 66 has a charge / discharge capacity for causing the two inflection points P1 and P2 in the initial characteristic data and the corresponding two inflection points P1 and P2 in the predicted characteristic data to coincide with each other by the expansion and contraction of the characteristic curve.
  • the enlargement factor of is calculated as the degree of change of the amount of active material contributing to charge and discharge (step S12).
  • the degradation information generation unit 66 determines the ratio between two inflection points, the ratio between one inflection point and the full charge time point Pf, and the other inflection point with respect to the enlargement factor of the charge and discharge capacity.
  • the weighting between the two inflection points is set larger than the weightings of the other sections using the ratio between the remaining amount zero point Pe and the remaining points, and the calculation is made by aggregation (step S12).
  • Initial characteristic data acquisition portion 65 has at least a full charge time point Pf, a remaining amount time zero point Pe, and stage inflection points P1 and P2 in a characteristic curve L0 indicating the relationship between the charge and discharge capacity of the secondary battery and the deformation amount.
  • Initial characteristic data is acquired (step S11).
  • the deterioration information generation unit 66 calculates coefficients for making the two inflection points P1 and P2 in the initial characteristic data coincide with the two inflection points P1 and P2 in the prediction characteristic data by the expansion and contraction of the characteristic curve, While adjusting the entire characteristic curve L0 indicated by the initial characteristic data using coefficients, the two inflection points P1 and P2 in the characteristic curve L0 'after adjustment of the initial characteristic data and the characteristic curve L2 of the predicted characteristic data coincide with each other And calculate the average value [(D1 + D2) / 2] of the lateral displacement amount D1 of the charge and discharge capacity between the full charge time points Pf and the lateral displacement amount D2 of the charge and discharge capacity between the remaining time zero point Pe as the battery degradation state. (Step S12).
  • an initial characteristic data acquisition unit 65 and a deterioration information generation unit 66 are provided.
  • Initial characteristic data acquisition unit 65 sets at least a thickness maximum point PL, a full charge time point Pf, a remaining time zero time point Pe, and a stage inflection point in a characteristic curve L0 indicating the relationship between the charge and discharge capacity of the secondary battery and the deformation amount.
  • Initial characteristic data having P1 and P2 is acquired (step S11).
  • the deterioration information generation unit 66 calculates coefficients for making the two inflection points P1 and P2 in the initial characteristic data coincide with the two inflection points P1 and P2 in the prediction characteristic data by the expansion and contraction of the characteristic curve,
  • the thickness maximum point PL 'in the prediction characteristic data is specified from the thickness maximum point PL in the initial characteristic data using the coefficient, and the deformation amount T1 from the thickness maximum point PL' in the prediction characteristic data to the remaining amount zero point Pe is It is calculated as the amount of thickness change up to lithium deposition starting from the zero point.
  • This value is an indicator of charge control and is useful.
  • the deterioration information generation unit 66 determines, for the coefficients, a ratio between two inflection points, a ratio between one inflection point and a full charge time point Pf, and the other inflection point and the remaining time zero time point. Using the ratio between Pe, the weighting between the two inflection points is set to be larger than the weighting of the other sections, and calculation is performed by aggregation (step S12).
  • the fully charged time point Pf in the prediction characteristic data is the thickness maximum point PL
  • the deterioration information generation unit 66 determines the deformation T1 from the thickness maximum point PL (Pf) in the prediction characteristic data to the remaining zero time point Pe. Is calculated as the amount of thickness change up to lithium deposition starting from the remaining amount zero point.
  • This value is an indicator of charge control and is useful.
  • the deformation amount T of the secondary battery detected by the deterioration information generation unit 66 and the detection sensor 5 does not exceed the thickness change amount T1 generated by the deterioration information generation unit 66.
  • a charge control unit 67 that controls charging.
  • the polymer matrix layer 3 is attached directly or indirectly to the secondary battery 2, and the polymer matrix layer 3 is formed of a filler that changes the external field according to the deformation of the polymer matrix layer 3.
  • the deformation amount T of the secondary battery 2 is detected by detecting the change in the external field according to the deformation of the polymer matrix layer 3.
  • the secondary battery state prediction system is A processor 6B and a memory 6A for storing instructions executable by the processor 6B.
  • Processor 6B is Measured values corresponding to the charge / discharge capacity Q and deformation amount T of the secondary battery 2 are acquired (step S1), At least one inflection point P1 (P2) in the characteristic curve Ln indicating the relationship between the charge / discharge capacity Q of the secondary battery and the deformation amount T is extracted from the time-series data of the measured values (step S6), Of the characteristic curve L1 showing the relationship between the charge and discharge capacity of the secondary battery and the deformation amount, obtain the past characteristic data having at least the full charge time point Pf, the remaining time zero time point Pe and the stage inflection points P1 and P2 Step S8), The characteristic curve L1 indicated by the past characteristic data is fitted to the characteristic curve Ln indicated by the time series data of the actual measurement value on the basis of the extracted inflection point, and a portion not included in the time series data of the actual value is interpolated.
  • the processor 6B includes one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, It may be realized by a microcontroller, microprocessor or other electronic component.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • controllers It may be realized by a microcontroller, microprocessor or other electronic component.
  • the program according to the present embodiment is a program that causes a computer to execute the above method. By executing these programs, it is also possible to obtain the effects of the above method.
  • the program may be stored in a computer readable recording medium.
  • the prediction characteristic data is generated by extracting the inflection point from the time-series data of the actual measurement value and performing the fitting process on the past characteristic data.
  • generation processing 4 of prediction characteristic data can also be mentioned as follows. That is, in generation processing 4 of predicted characteristic data, the characteristic curve L1 indicated by the past characteristic data is fitted as it is without enlargement or reduction based on the charge / discharge capacity Q Pn indicated by the actual measurement value at the present time. According to this method, it is possible to generate predicted characteristic data although capacity deterioration and balance deviation are not taken into consideration. At least one of the generation processes 1 to 4 of the prediction characteristic data described above can be implemented. The combination of the generation processes 1 to 4 can be arbitrarily performed.
  • generation process 1 is the highest, and the generation process 4 is the lowest.
  • the time required to generate the prediction characteristic data is the shortest in the generation process 4 and the longest in the generation process 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The present invention provides a state prediction method for a secondary battery, which is available for practical use in which charge and discharge are performed randomly. This method comprises: a step S1 for acquiring an actual measured value corresponding to a charge/discharge capacity Q and a deformation amount T of a secondary battery 2; a step S6 for extracting, from time-series data of the actual measured value, at least one inflection point P1 (P2) of a characteristic curve Ln indicating the relationship between the charge/discharge capacity Q and the deformation amount T of the secondary battery; a step S8 for acquiring past characteristic data having at least a full charge time point Pf, a zero remaining amount time point Pe and stage inflection points P1, P2 out of a characteristic curve L1 indicating the relationship between the charge/discharge capacity and the deformation amount of the secondary battery; and a step S9 for generating predicted characteristic data indicating a characteristic curve L2 in which a portion lacking from the time-series data of the actual measured value is interpolated by performing processing to fit the characteristic curve L1 indicated by the past characteristic data to the characteristic curve Ln indicated by the time-series data of the actual measured value using the extracted inflection point as a reference.

Description

二次電池の状態予測方法、充電制御方法、及びシステムState prediction method for secondary battery, charge control method, and system

 本発明は、二次電池の状態を予測する方法、充電制御方法、及びシステムに関する。 The present invention relates to a method of predicting a state of a secondary battery, a charge control method, and a system.

 近年、リチウムイオン二次電池に代表される密閉型二次電池(以下、単に「二次電池」と呼ぶことがある)は、携帯電話やノートパソコンなどのモバイル機器だけでなく、電気自動車やハイブリッド車といった電動車両用の電源としても利用されている。二次電池は、充放電サイクルを繰り返すことにより劣化するとともに、その劣化の進行に伴って残容量、電池の劣化容量などの状態の正確な把握が難しくなる。 In recent years, sealed secondary batteries (hereinafter sometimes simply referred to as "secondary batteries") represented by lithium ion secondary batteries are not only mobile devices such as mobile phones and laptop computers but also electric vehicles and hybrids. It is also used as a power source for electric vehicles such as cars. The secondary battery is deteriorated by repeating charge and discharge cycles, and with the progress of the deterioration, it becomes difficult to accurately grasp the state of the remaining capacity, the deteriorated capacity of the battery and the like.

 特許文献1には、電池間の圧力とSOC(State of charge)の関係から、残容量を推定することが記載されている。しかし、この方法では、満充電から完全放電に近いサイクルの充電挙動を得る必要があり、充電及び放電がランダムに行われる実使用では、推定が困難である。 Patent Document 1 describes that the remaining capacity is estimated from the relationship between the pressure between the batteries and the SOC (State of Charge). However, in this method, it is necessary to obtain charge behavior of a cycle from full charge to near complete discharge, and it is difficult to estimate in real use where charge and discharge are randomly performed.

 特許文献2には、二次電池の厚みを計測し、厚みから残容量を計測することが記載されている。しかし、劣化に伴う残容量の変化については考慮されていない。 Patent Document 2 describes measuring the thickness of the secondary battery and measuring the remaining capacity from the thickness. However, the change in remaining capacity due to deterioration is not taken into consideration.

特開2016-101048号公報JP, 2016-101048, A 特開2004-14462号公報JP 2004-14462 A

 本発明は、このような課題に着目してなされたものであり、その目的は、充電及び放電がランダムに行われる実使用で利用可能な二次電池の状態予測方法、充電方法、及びシステムを提供することにある。 The present invention has been made in view of such problems, and an object thereof is a method of predicting a state of a secondary battery usable in actual use where charging and discharging are performed randomly, a charging method, and a system. It is to provide.

 本発明に係る二次電池の状態予測方法は、
 二次電池の充放電容量と変形量とに対応する実測値を取得するステップと、
 前記実測値の時系列データから、前記二次電池の充放電容量と変形量との関係を示す特性曲線における少なくとも1つの変曲点を抽出するステップと、
 二次電池の充放電容量と変形量との関係を示す特性曲線のうち、少なくとも満充電時点、残量ゼロ時点及びステージ変曲点を有する過去の特性データを取得するステップと、
 抽出した変曲点を基準として、前記過去の特性データが示す特性曲線を、前記実測値の時系列データが示す特性曲線にフィッティング処理して、前記実測値の時系列データにない部分が補間された特性曲線を示す予測特性データを生成するステップと、
を含む。
The secondary battery state prediction method according to the present invention is
Acquiring an actual measurement value corresponding to the charge / discharge capacity and deformation amount of the secondary battery;
Extracting at least one inflection point in a characteristic curve indicating the relationship between the charge / discharge capacity of the secondary battery and the deformation amount from the time-series data of the measured value;
Acquiring past characteristic data having at least a full charge time point, a remaining time zero time point, and a stage inflection point in a characteristic curve indicating a relation between charge and discharge capacity and deformation amount of the secondary battery;
The characteristic curve indicated by the characteristic data in the past is fitted to the characteristic curve indicated by the time series data of the actual measurement value on the basis of the extracted inflection point, and a portion not included in the time series data of the actual measurement value is interpolated Generating predicted characteristic data indicating a different characteristic curve;
including.

 二次電池の充放電容量と変形量との関係を示す特性曲線には、ステージ変化に伴って特性曲線の傾きが大きく変化する変曲点が2つ存在する。この方法によれば、実測値の時系列データから、特性曲線における変曲点を抽出し、抽出した変曲点を基準として過去の特性データと実測値データとをフィッティングしているので、満充電から完全放電までの長期間の測定データがなくても、例えば満充電から変曲点まで、一方の変曲点から他方の変曲点までといったある程度の短い期間の実測データがあれば、或る程度の精度を確保した予測特性データが生成可能となる。
 したがって、満充電から完全放電までといった一連の充放電ではなく、充電及び放電がランダムに行われる実使用において、或る程度の精度を確保した予測特性データが生成でき、二次電池の状態が予測可能となる。
In the characteristic curve showing the relationship between the charge / discharge capacity of the secondary battery and the deformation amount, there are two inflection points at which the slope of the characteristic curve largely changes with the stage change. According to this method, the inflection point in the characteristic curve is extracted from the time-series data of the measured values, and the past characteristic data and the measured value data are fitted with reference to the extracted inflection point. Even if there is no measurement data for a long time from full discharge to complete discharge, if there is measurement data of a short period, such as from full charge to the inflection point, from one inflection point to the other inflection point, Predicted characteristic data can be generated with a certain degree of accuracy secured.
Therefore, in actual use where charging and discharging are performed randomly instead of a series of charging and discharging such as from full charge to complete discharge, predicted characteristic data securing a certain degree of accuracy can be generated, and the state of the secondary battery is predicted It becomes possible.

二次電池の状態予測方法を実行するためのシステムの一例を示すブロック図。FIG. 1 is a block diagram showing an example of a system for executing a secondary battery state prediction method. 密閉型二次電池を模式的に示す斜視図。FIG. 2 is a perspective view schematically showing a sealed secondary battery. 図2AのA-A断面図。AA sectional drawing of FIG. 2A. 過去の特性データが示す特性曲線を示すグラフ。The graph which shows the characteristic curve which past characteristic data show. 実測値の時系列データ及び過去の特性データが示す特性曲線を示すグラフ。The graph which shows the characteristic curve which the time series data of an actual value, and the past characteristic data show. 実測値の時系列データ及び実測値の微分値を示すグラフ。The graph which shows the time-series data of actual value, and the derivative value of actual value. 予測特性データを生成する処理に関する説明図。Explanatory drawing regarding the process which produces | generates prediction characteristic data. 予測特性データを生成する処理に関する説明図。Explanatory drawing regarding the process which produces | generates prediction characteristic data. 予測特性データを生成する処理に関する説明図。Explanatory drawing regarding the process which produces | generates prediction characteristic data. 予測特性データを生成する処理に関する説明図。Explanatory drawing regarding the process which produces | generates prediction characteristic data. 予測特性データを生成する処理に関する説明図。Explanatory drawing regarding the process which produces | generates prediction characteristic data. 予測特性データを生成する処理に関する説明図。Explanatory drawing regarding the process which produces | generates prediction characteristic data. 予測特性データを生成する処理に関する説明図。Explanatory drawing regarding the process which produces | generates prediction characteristic data. 予測特性データを生成する処理に関する説明図。Explanatory drawing regarding the process which produces | generates prediction characteristic data. 残容量の算出処理に関する説明図。Explanatory drawing regarding calculation processing of remaining capacity. 初期特性データ及び予測特性データのフィッティング処理に関する説明図。Explanatory drawing regarding the fitting process of initial stage characteristic data and prediction characteristic data. 初期特性データ及び予測特性データのフィッティング処理に関する説明図。Explanatory drawing regarding the fitting process of initial stage characteristic data and prediction characteristic data. 劣化状態の算出処理に関する説明図。Explanatory drawing regarding calculation processing of a degradation state. 劣化状態の算出処理に関する説明図。Explanatory drawing regarding calculation processing of a degradation state. 劣化状態の算出処理に関する説明図。Explanatory drawing regarding calculation processing of a degradation state. リチウム析出までの厚み変化量を算出する処理に関する説明図。Explanatory drawing regarding the process which calculates the thickness change amount to lithium precipitation. リチウム析出までの厚み変化量を算出する処理に関する説明図。Explanatory drawing regarding the process which calculates the thickness change amount to lithium precipitation. 充電制御に関する説明図。Explanatory drawing regarding charge control. システムで実行される状態予測処理ルーチンを示すフローチャート。The flowchart which shows the state prediction process routine performed by a system.

 以下、本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described.

 図1は、電気自動車やハイブリッド車といった電動車両に搭載されるシステムを示している。このシステムは、複数の密閉型二次電池2により構成された組電池を筐体内に収容してなる電池モジュール1を備える。本実施形態では、4つの二次電池2が2並列2直列に接続されているが、電池の数や接続形態はこれに限定されない。図1では電池モジュール1を1つだけ示しているが、実際には複数の電池モジュール1を含んだ電池パックとして装備される。電池パックでは、複数の電池モジュール1が直列に接続され、それらがコントローラなどの諸般の機器と一緒に筐体内に収容される。電池パックの筐体は、車載に適した形状に、例えば車両の床下形状に合わせた形状に形成される。 FIG. 1 shows a system mounted on an electric vehicle such as an electric vehicle or a hybrid vehicle. This system includes a battery module 1 formed by housing a battery assembly formed of a plurality of sealed secondary batteries 2 in a housing. In the present embodiment, four secondary batteries 2 are connected in two parallel two series, but the number of batteries and the connection form are not limited thereto. Although only one battery module 1 is shown in FIG. 1, it is actually equipped as a battery pack including a plurality of battery modules 1. In the battery pack, a plurality of battery modules 1 are connected in series, and they are housed in a housing together with various devices such as a controller. The housing of the battery pack is formed in a shape suitable for being mounted on a vehicle, for example, in a shape conforming to the shape under the floor of a vehicle.

 図2に示した二次電池2は、密閉された外装体21の内部に電極群22が収容されたセル(単電池)として構成されている。電極群22は、正極23と負極24がそれらの間にセパレータ25を介して積層または捲回された構造を有し、セパレータ25には電解液が保持されている。本実施形態の二次電池2は、外装体21としてアルミラミネート箔などのラミネートフィルムを用いたラミネート電池であり、具体的には容量1.44Ahのラミネート型リチウムイオン二次電池である。二次電池2は全体として薄型の直方体形状に形成され、X,Y及びZ方向は、それぞれ二次電池2の長さ方向,幅方向及び厚み方向に相当する。また、Z方向は、正極23と負極24の厚み方向でもある。 The secondary battery 2 shown in FIG. 2 is configured as a cell (unit cell) in which the electrode group 22 is accommodated inside the sealed exterior body 21. The electrode group 22 has a structure in which a positive electrode 23 and a negative electrode 24 are stacked or wound between them via a separator 25. The separator 25 holds an electrolytic solution. The secondary battery 2 of the present embodiment is a laminate battery using a laminate film such as an aluminum laminate foil as the exterior body 21, and specifically, is a laminate type lithium ion secondary battery having a capacity of 1.44 Ah. The secondary battery 2 is formed in a thin rectangular parallelepiped shape as a whole, and the X, Y, and Z directions correspond to the length direction, the width direction, and the thickness direction of the secondary battery 2, respectively. The Z direction is also the thickness direction of the positive electrode 23 and the negative electrode 24.

 二次電池2には、その二次電池2の変形を検出する検出センサ5が取り付けられている。検出センサ5は、二次電池2に貼り付けられる高分子マトリックス層3と、検出部4とを備える。高分子マトリックス層3は、その高分子マトリックス層3の変形に応じて外場に変化を与えるフィラーを分散させて含有している。本実施形態の高分子マトリックス層3は、柔軟な変形が可能なエラストマー素材によりシート状に形成されている。検出部4は、外場の変化を検出する。二次電池2が膨れて変形すると、それに応じて高分子マトリックス層3が変形し、その高分子マトリックス層3の変形に伴う外場の変化が検出部4により検出される。このようにして、二次電池2の変形を高感度に検出できる。 The secondary battery 2 is attached with a detection sensor 5 for detecting deformation of the secondary battery 2. The detection sensor 5 includes a polymer matrix layer 3 attached to the secondary battery 2 and a detection unit 4. The polymer matrix layer 3 contains a filler that disperses the external field in response to the deformation of the polymer matrix layer 3. The polymer matrix layer 3 of the present embodiment is formed in a sheet shape by a flexible deformable elastomer material. The detection unit 4 detects a change in the external field. When the secondary battery 2 is expanded and deformed, the polymer matrix layer 3 is deformed accordingly, and the change in the external field caused by the deformation of the polymer matrix layer 3 is detected by the detection unit 4. Thus, the deformation of the secondary battery 2 can be detected with high sensitivity.

 図2の例では、二次電池2の外装体21に高分子マトリックス層3を貼り付けているため、外装体21の変形(主に膨れ)に応じて高分子マトリックス層3を変形させることができる。一方、二次電池2の電極群22に高分子マトリックス層3を貼り付けてもよく、かかる構成によれば、電極群22の変形(主に膨れ)に応じて高分子マトリックス層3を変形させることができる。検出する二次電池2の変形は、外装体21及び電極群22の何れの変形であっても構わない。 In the example of FIG. 2, since the polymer matrix layer 3 is attached to the outer package 21 of the secondary battery 2, the polymer matrix layer 3 may be deformed according to the deformation (mainly bulging) of the outer package 21. it can. On the other hand, the polymer matrix layer 3 may be attached to the electrode group 22 of the secondary battery 2. According to such a configuration, the polymer matrix layer 3 is deformed according to the deformation (mainly swelling) of the electrode group 22. be able to. The deformation of the secondary battery 2 to be detected may be any deformation of the exterior body 21 and the electrode group 22.

 検出センサ5によって検出した信号は制御装置6に伝達され、これにより二次電池2の変形に関する情報が制御装置6に供給される。 A signal detected by the detection sensor 5 is transmitted to the control device 6, whereby information on deformation of the secondary battery 2 is supplied to the control device 6.

 <二次電池の状態予測システム>
 図1に示すように、二次電池の状態予測システムは、過去特性データ取得部60と、実測値取得部61と、変曲点抽出部62と、予測特性データ生成部63と、残容量算出部64と、初期特性データ取得部65と、劣化情報生成部66と、を有する。本実施形態において、各部60~66は、制御装置6においてCPU等のプロセッサ6Bがプログラムを実行することで実現されているが、これに限定されない。例えば、通信ネットワークを介して遠方にある情報処理装置で実現されてもよい。なお、残容量算出部64、初期特性データ取得部65及び劣化情報生成部66は、必要に応じて省略可能である。
<State prediction system for secondary battery>
As shown in FIG. 1, in the state prediction system of the secondary battery, the past characteristic data acquisition unit 60, the actual value acquisition unit 61, the inflection point extraction unit 62, the prediction characteristic data generation unit 63, and the remaining capacity calculation. A unit 64, an initial characteristic data acquisition unit 65, and a deterioration information generation unit 66 are included. In the present embodiment, the units 60 to 66 are realized by the processor 6 B such as a CPU executing a program in the control device 6, but the present invention is not limited to this. For example, the present invention may be realized by an information processing apparatus located far away via a communication network. The remaining capacity calculation unit 64, the initial characteristic data acquisition unit 65, and the deterioration information generation unit 66 can be omitted as needed.

 <過去特性データの取得>
 過去特性データ取得部60は、二次電池2の過去の特性データを取得する。図3に示すように、過去の特性データは、二次電池の充放電容量Qと変形量Tとの関係を示す特性曲線L1のうち、少なくとも満充電時点Pf、残量ゼロ時点Pe及びステージ変曲点P1、P2を有する。この4点あれば、特性曲線L1を或る程度再現できるからである。二次電池2の状態は、特性曲線L1で表現することができる。
<Acquisition of past characteristic data>
The past characteristic data acquisition unit 60 acquires past characteristic data of the secondary battery 2. As shown in FIG. 3, the characteristic data in the past are at least the full charge time point Pf, the remaining time zero time point Pe, and the stage change in the characteristic curve L1 showing the relationship between the charge / discharge capacity Q of the secondary battery and the deformation amount T. It has curve points P1 and P2. This is because the characteristic curve L1 can be reproduced to some extent with these four points. The state of the secondary battery 2 can be expressed by a characteristic curve L1.

 図3のグラフにおいて、横軸は、原点を満充電時点Pfとする放電容量Qであり、縦軸は、検出した二次電池2の変形量Tである。満充電時点Pfからの放電容量Qが増加するにつれて、二次電池2の変形量Tは二次電池2の厚みが小さくなる方向へ変化する。これは、充電された二次電池2では、負極活物質の体積変化による電極群22の膨れ(以下、「電極膨れ」と呼ぶことがある)が生じており、その電極膨れが放電に伴って小さくなるためである。電極のステージ変化に起因して、図3のように2つの変曲点P1、P2(勾配の変化)を含んだ形状となる。例えば負極にグラファイト(黒鉛)を用いたリチウムイオン二次電池の場合、そのグラファイトの結晶状態は、満充電時点Pfから放電するに伴って順次にステージ変化することが知られている。これは、リチウムイオンの挿入量に伴ってグラフェン層間の距離が段階的に拡大することで負極活物質が膨張するためである。要するに、ステージ変化によって活物質の体積は段階的に変化し、それが特性曲線L1に反映されている。放電容量Qが更に増加すると、残量ゼロ時点Peに至る。 In the graph of FIG. 3, the horizontal axis is the discharge capacity Q with the origin as the fully charged time point Pf, and the vertical axis is the detected deformation amount T of the secondary battery 2. As the discharge capacity Q from the full charge time point Pf increases, the deformation amount T of the secondary battery 2 changes in the direction in which the thickness of the secondary battery 2 becomes smaller. This is because in the charged secondary battery 2, the electrode group 22 swells (hereinafter sometimes referred to as “electrode swelling”) due to the volume change of the negative electrode active material, and the electrode swelling is accompanied by the discharge. It is because it becomes small. Due to the stage change of the electrode, as shown in FIG. 3, the shape includes two inflection points P1 and P2 (change in slope). For example, in the case of a lithium ion secondary battery using graphite (graphite) for the negative electrode, it is known that the crystalline state of the graphite changes in stages sequentially as it is discharged from the fully charged time point Pf. This is because the distance between the graphene layers increases stepwise in accordance with the insertion amount of lithium ions, so that the negative electrode active material expands. In short, as the stage changes, the volume of the active material changes stepwise, which is reflected in the characteristic curve L1. When the discharge capacity Q further increases, the remaining amount zero point Pe is reached.

 本実施形態では、満充電時点Pf、残量ゼロ時点Pe及び変曲点P1、P2の4点の間にもデータを有する。特性データは、4点間に複数点のデータを設けた離散データでもよいし、4点間を曲線で結んだ連続的なデータであってもよい。過去の特性データは、二次電池2の出荷時に設定される初期特性ではなく、使用を開始してから、現時点までの間の過去のデータでる。直近の充電サイクルのデータであれば、現時点と過去データの乖離が少ないため、より好ましい。過去の特性データは、制御装置6のメモリ6Aに記憶されており、過去特性データ取得部60は、メモリ6Aからデータを取得する。 In the present embodiment, data is also included between the full charge time point Pf, the remaining amount time zero time point Pe, and the inflection points P1 and P2. The characteristic data may be discrete data in which data of a plurality of points are provided between four points, or continuous data in which four points are connected by a curve. The past characteristic data is not an initial characteristic set at the time of shipment of the secondary battery 2, but is past data from the start of use to the present time. If it is data of the latest charge cycle, it is more preferable because there is little difference between the present and past data. The past characteristic data is stored in the memory 6A of the control device 6, and the past characteristic data acquisition unit 60 acquires data from the memory 6A.

 <実測値データの取得>
 実測値取得部61は、二次電池2の充放電容量と変形量とに対応する実測値を取得する。二次電池の変形量Tに対応する値は検出センサ5が検出した値である。本実施形態において、電圧又は磁束密度の変化量等で表現しているが、これに限定されず、厚み又は変形量に対応する物理量であれば、種々変更可能である。二次電池2の充放電容量は放電容量と充電容量との総称である。本実施形態では放電容量、具体的には満充電時点からの放電容量としているが、これに限定されない。充放電容量に対応する値は、電流、充電量又は放電量で表すことができ、種々変更可能である。二次電池2の充放電容量と変形量とに対応する実測値は、繰り返し取得され、時系列データとなる。図4は、実測値の時系列データが表す特性曲線Lnを実線で示している。図4の例では、満充電時点Pfから実測を開始して、放電を継続しており、変曲点P1には未だ到達してない例を示している。図4において破線で示す特性曲線L1は、図3で示した過去の特性データが示す特性曲線L1を対比のために両者が異なるように誇張して図示している。
<Acquisition of measured value data>
The actual measurement value acquisition unit 61 acquires an actual measurement value corresponding to the charge / discharge capacity and deformation amount of the secondary battery 2. The value corresponding to the deformation amount T of the secondary battery is a value detected by the detection sensor 5. In the present embodiment, the voltage or magnetic flux density is expressed as a change amount or the like. However, the present invention is not limited to this, and various changes can be made as long as the physical amount corresponds to the thickness or the deformation amount. The charge / discharge capacity of the secondary battery 2 is a generic term for the discharge capacity and the charge capacity. In the present embodiment, although the discharge capacity, specifically, the discharge capacity from the full charge point is used, the present invention is not limited to this. The value corresponding to the charge and discharge capacity can be represented by current, charge amount or discharge amount, and can be variously changed. The measured values corresponding to the charge / discharge capacity and the deformation amount of the secondary battery 2 are repeatedly acquired and become time series data. FIG. 4 shows the characteristic curve Ln represented by the time series data of the actual measurement values as a solid line. In the example of FIG. 4, the measurement is started from the full charge time point Pf, and the discharge is continued, and the example in which the inflection point P1 is not reached yet is shown. A characteristic curve L1 indicated by a broken line in FIG. 4 is exaggerated and illustrated so that the characteristic curve L1 indicated by the past characteristic data shown in FIG. 3 is different for comparison.

 なお、図4では、実線で特性曲線Lnを示しているが、現実には、実測値である生データには、縦軸に振動する大きなノイズが含まれることが多く、単位放電容量あたりのデータが複数点上下に振動する形で存在している。縦軸のノイズを除去してデータ処理を容易にするために、縦軸に対して移動平均又は中央値などのフィルタ処理を実行して、単位放電容量あたりのデータが1プロットになるようにしている。これにより、特性曲線Lnの傾きを示す微分値が算出可能になる。 Although the characteristic curve Ln is indicated by a solid line in FIG. 4, actually, the raw data which is an actual measurement value often includes large noise vibrating on the vertical axis, and data per unit discharge capacity is Exist in the form of vibrating up and down at multiple points. In order to remove noise on the vertical axis to facilitate data processing, filter processing such as moving average or median value is performed on the vertical axis so that data per unit discharge capacity becomes one plot. There is. Thereby, it becomes possible to calculate a differential value indicating the slope of the characteristic curve Ln.

 <変曲点の抽出>
 変曲点抽出部62は、実測値の時系列データから、二次電池2の充放電容量と変形量との関係を示す特性曲線Lnにおける少なくとも1つの変曲点(P1又はP2)を抽出する。具体的には、実績値に基づき定まる充放電容量Qに関する変形量Tの微分値(ΔT/ΔQ)に基づき変曲点を抽出する。微分値は特性曲線Lnの傾きであり、微分値の変化が大きい箇所が変曲点だからである。微分値の変化量が或る値よりも大きいことを抽出条件として変曲点を抽出することが可能である。
<Extraction of inflection point>
The inflection point extraction unit 62 extracts at least one inflection point (P1 or P2) in the characteristic curve Ln indicating the relationship between the charge / discharge capacity of the secondary battery 2 and the deformation amount from the time-series data of the measured values. . Specifically, the inflection point is extracted based on the differential value (ΔT / ΔQ) of the deformation amount T related to the charge / discharge capacity Q determined based on the actual value. This is because the differential value is the slope of the characteristic curve Ln, and the location where the change in the differential value is large is the inflection point. It is possible to extract an inflection point with an extraction condition that the amount of change of the differential value is larger than a certain value.

 本実施形態では、抽出精度を高めるために、取得した実測値が示す充放電容量Qに応じて抽出条件を設定し、取得した実測値に基づき定まる充放電容量Qに関する変形量Tの微分値(ΔT/ΔQ)が抽出条件を満たす場合に、実測値を変曲点として抽出する。実施例を次に説明する。 In the present embodiment, in order to enhance the extraction accuracy, the extraction condition is set according to the charge / discharge capacity Q indicated by the acquired measured value, and the differential value of the deformation amount T related to the charge / discharge capacity Q determined based on the acquired measured value When ΔT / ΔQ) satisfies the extraction condition, the actual measurement value is extracted as an inflection point. Examples will be described next.

 図5に示すように、実測値の取得を継続すれば、同図の上グラフに示すように、放電容量Qと変形量(ここではホール素子の電圧値)との関係を示す離散データが得られる。この離散データを微分処理すれば、同図の下グラフに示すように、放電容量に関する変形量の微分値[ΔmV/ΔmAh]が得られる。この微分値は、単位充放電容量(単位放電容量)毎に1つあり、同図の下グラフのように図示すれば、1つの点となる。 As shown in the upper graph of FIG. 5, as shown in the upper graph of FIG. 5, as shown in FIG. 5, discrete data indicating the relationship between the discharge capacity Q and the amount of deformation (here, the voltage value of the Hall element) is obtained. Be If this discrete data is differentiated, as shown in the lower graph of the figure, the differential value [ΔmV / ΔmAh] of the deformation amount with respect to the discharge capacity can be obtained. This differential value is one for each unit charge and discharge capacity (unit discharge capacity), and if it is illustrated as in the lower graph of the figure, it is one point.

 抽出条件の設定は、図4に示すように、或る時点Pnにて取得した実測値が示す充放電容量QPnが、過去の特性データにおける変曲点P1(P2)の充放電容量QP1(QP2)を中心とする所定範囲内に入る場合に、図5の下グラフに示すように、過去の特性データに基づき微分値の閾値ThP1(ThP2)を設定する。例えば、図4に示すように、或る時点Pnの実測値データが示す充放電容量QPnが変曲点P1の近くにある場合には、図5の下グラフに示すように、微分値の閾値ThP1が設定される。そして、実測値の取得(計測)が更に進み、図5に示すように、実測値に基づく微分値が閾値ThP1を通過したことによって変曲点P1が抽出される。図5の下グラフにおいて、放電中に変曲点P1を抽出するための抽出条件は、閾値ThP1を下に向かって通過したことであり、充電中に変曲点P1を抽出するための抽出条件は、閾値ThP1を上に向けて通過したことである。同様に、放電中に変曲点P2を抽出するための抽出条件は、閾値ThP2を上に向けて通過したことであり、充電中に変曲点P2を抽出するための抽出条件は、閾値ThP2を下に向けて通過したことである。 Setting the extraction conditions, as shown in FIG. 4, the charge-discharge capacity Q Pn showing actual measurement values acquired in a certain time Pn is the charge-discharge capacity Q P1 inflection point P1 (P2) in the past of the characteristic data When it falls within the predetermined range centered on (Q P2 ), as shown in the lower graph of FIG. 5, the threshold value Th P1 (Th P2 ) of the differential value is set based on the past characteristic data. For example, as shown in FIG. 4, when the charge / discharge capacity Q Pn indicated by the measured value data at a certain point Pn is near the inflection point P1, as shown in the lower graph of FIG. A threshold Th P1 is set. Then, acquisition (measurement) of the actual measurement value further progresses, and as shown in FIG. 5, the inflection point P1 is extracted when the differential value based on the actual measurement value passes the threshold value Th P1 . In the lower graph of FIG. 5, the extraction condition for extracting the inflection point P1 during discharge is that the threshold Th P1 is passed downward, and the extraction for extracting the inflection point P1 during charging is performed. The condition is that the threshold Th P1 is passed upward. Similarly, the extraction condition for extracting the inflection point P2 during discharge is that the threshold Th P2 is passed upward, and the extraction condition for extracting the inflection point P2 during charging is the threshold It is passing Th P2 downward.

 上記微分値の閾値ThP1、ThP2を用いる方法では、ノイズなどの影響により一次的に閾値ThP1、ThP2を通過した場合であっても変曲点が抽出されてしまうおそれがある。そこで、微分値が閾値ThP1、ThP2を通過することに加えて、充放電容量が変化する或る期間の間、微分値が連続して上がり続けること又は下がり続けることを抽出条件として設定している。本実施形態では、微分値を単位放電容量毎に算出しているので、少なくとも3つの微分値が連続して上がり続けること又は下がり続けることを抽出条件としている。この場合、充放電容量が変化する或る期間は、3点分であり、単位放電容量[ΔmAh]×3となる。この期間は適宜変更可能である。 In the method using the threshold values Th P1 and Th P2 of the differential value, there is a possibility that an inflection point may be extracted even if the threshold values Th P1 and Th P2 are passed primarily due to the influence of noise or the like. Therefore, in addition to the differential value passing through the threshold values Th P1 and Th P2 , it is set as the extraction condition that the differential value continues to continuously rise or falls for a certain period during which the charge / discharge capacity changes. ing. In the present embodiment, since the differential value is calculated for each unit discharge capacity, the extraction condition is that at least three differential values continue to rise or fall continuously. In this case, a certain period during which the charge / discharge capacity changes is for three points, which is unit discharge capacity [ΔmAh] × 3. This period can be changed as appropriate.

 <予測特性データの生成>
 予測特性データ生成部63は、図6C及び図7Cに示すように、抽出した変曲点を基準として、過去の特性データが示す特性曲線L1を、実測値の時系列データが示す特性曲線Lnにフィッティング処理して、実測値の時系列データにない部分が補間された特性曲線L2を示す予測特性データを生成する。予測特性データ生成部63は、生成した予測特性データをメモリ6Aに保存する。本実施形態では、特性曲線の予測精度を向上させるために、次に説明する方法を採用している。
<Generation of prediction characteristic data>
As shown in FIG. 6C and FIG. 7C, the prediction characteristic data generation unit 63 sets the characteristic curve L1 indicated by the characteristic data in the past to the characteristic curve Ln indicated by time series data of the actual measurement value with reference to the extracted inflection point. Fitting processing is performed to generate predicted characteristic data indicating a characteristic curve L2 in which a portion not included in the time-series data of the actual measurement value is interpolated. The prediction characteristic data generation unit 63 stores the generated prediction characteristic data in the memory 6A. In the present embodiment, in order to improve the prediction accuracy of the characteristic curve, the method described below is adopted.

 <予測特性データの生成処理1>
 図6Aは、2つの変曲点P1、P2が抽出された例を示す。変曲点P2は、直近に抽出された変曲点である。変曲点抽出部62が2つの変曲点P1、P2を抽出した場合は、予測特性データ生成部63は、過去の特性データにおける2つの変曲点P1、P2を、実測値の時系列データにおける対応する2つの変曲点P1、P2に特性曲線の伸縮により一致させるための係数を算出する。係数の一例として、横軸の拡大率Xr=a’/a、 縦軸の拡大率Yr=b’/b、 傾きが挙げられる。
 次に、図6Bに示すように、係数を用いて、過去の特性データが示す特性曲線L1全体を伸縮調整して、縮尺調整後の特性曲線L1’を生成する。
 次に、図6Cに示すように、調整後の特性曲線L1’を移動させて、実測値の時系列データが示す特性曲線Lnにおける直近に抽出した変曲点P2と調整後の特性曲線L1’の対応する変曲点P2とを一致させ、予測特性データを生成する。そうすれば、同図に示すように、実測値の時系列データにない部分(図中にて破線で示す)が補間された特性曲線L2を示す予測特性データが生成される。予測特性データが示す特性曲線L2は、特性曲線Lnと特性曲線L1’とが含まれている。
<Generation Process 1 of Prediction Characteristic Data>
FIG. 6A shows an example in which two inflection points P1 and P2 are extracted. The inflection point P2 is an inflection point extracted most recently. When the inflection point extraction unit 62 extracts two inflection points P1 and P2, the prediction characteristic data generation unit 63 generates two inflection points P1 and P2 in the past characteristic data as time-series data of measured values. The coefficients for making the corresponding two inflection points P1 and P2 at the same point coincide with each other by the expansion and contraction of the characteristic curve are calculated. As an example of the coefficient, the enlargement ratio of the horizontal axis Xr = a '/ a, the enlargement ratio of the vertical axis Yr = b' / b, and the inclination can be mentioned.
Next, as shown in FIG. 6B, using the coefficients, the entire characteristic curve L1 indicated by the past characteristic data is stretched and adjusted to generate a reduced-scale adjusted characteristic curve L1 ′.
Next, as shown in FIG. 6C, the adjusted characteristic curve L1 ′ is moved, and the inflection point P2 most recently extracted in the characteristic curve Ln indicated by the time-series data of the measured values and the adjusted characteristic curve L1 ′ Are made to coincide with the corresponding inflection point P2 of to generate prediction characteristic data. Then, as shown in the figure, predicted characteristic data is generated which indicates a characteristic curve L2 in which a portion (indicated by a broken line in the figure) not included in the time series data of the actual measurement value is interpolated. A characteristic curve L2 indicated by the prediction characteristic data includes a characteristic curve Ln and a characteristic curve L1 '.

 <予測特性データの生成処理2>
 図7Aは、1つの変曲点P1が抽出され且つ実測値の時系列データに満充電時点Pf又は残量ゼロ時点Peのいずれか1点に対応する実測値が含まれている例を示す。変曲点抽出部62が1つの変曲点P1を抽出した場合は、予測特性データ生成部63は、過去の特性データにおける満充電時点Pf又は残量ゼロ時点Peのいずれか1点と変曲点P1の2点を、実測値の時系列データにおける対応する2点に特性曲線の伸縮により一致させるための係数を算出する。図7Aの例では、満充電時点Pfと変曲点P1とを縦横伸縮により一致させるための係数を算出している。係数の一例として、横軸の拡大率Xr=a’/a、 縦軸の拡大率Yr=b’/b、 傾きが挙げられる。
 次に、図7Bに示すように、係数を用いて、過去の特性データが示す特性曲線L1全体を伸縮調整して、縮尺調整後の特性曲線L1’を生成する。
 次に、図7Cに示すように、調整後の特性曲線L1’を移動させて、実測値の時系列データが示す特性曲線Lnにおける直近に抽出した変曲点P1と調整後の特性曲線L1’の対応する変曲点P1とを一致させ、予測特性データを生成する。そうすれば、同図に示すように、実測値の時系列データにない部分(図中にて破線で示す)が補間された特性曲線L2を示す予測特性データが生成される。予測特性データが示す特性曲線L2は、特性曲線Lnと特性曲線L1’とが含まれている。
<Generation Process 2 of Predicted Characteristic Data>
FIG. 7A shows an example in which one inflection point P1 is extracted and an actual measurement value corresponding to any one of a full charge time point Pf or a remaining charge zero time point Pe is included in time series data of actual measurement values. When the inflection point extraction unit 62 extracts one inflection point P1, the prediction characteristic data generation unit 63 determines whether the inflection point is any one of the full charge time point Pf or the remaining charge time zero point Pe in the past characteristic data. A coefficient for making two points at the point P1 coincide with corresponding two points in the time-series data of the measured values by the expansion and contraction of the characteristic curve is calculated. In the example of FIG. 7A, the coefficient for making the full charge time point Pf and the inflection point P1 coincide with each other in the vertical and horizontal directions is calculated. As an example of the coefficient, the enlargement ratio of the horizontal axis Xr = a '/ a, the enlargement ratio of the vertical axis Yr = b' / b, and the inclination can be mentioned.
Next, as shown in FIG. 7B, using the coefficients, the entire characteristic curve L1 indicated by the past characteristic data is stretched and adjusted to generate a reduced-scale adjusted characteristic curve L1 ′.
Next, as shown in FIG. 7C, the adjusted characteristic curve L1 ′ is moved, and the inflection point P1 most recently extracted in the characteristic curve Ln indicated by the time-series data of the measured values and the adjusted characteristic curve L1 ′ Are made to coincide with the corresponding inflection point P1 of to generate prediction characteristic data. Then, as shown in the figure, predicted characteristic data is generated which indicates a characteristic curve L2 in which a portion (indicated by a broken line in the figure) not included in the time series data of the actual measurement value is interpolated. A characteristic curve L2 indicated by the prediction characteristic data includes a characteristic curve Ln and a characteristic curve L1 '.

 <予測特性データの生成処理3>
 図7Dは、1つの変曲点P1が抽出されたものの、実測値の時系列データに満充電時点Pf又は残量ゼロ時点Peのいずれか1点に対応する実測値が含まれていない例を示す。図7D及び図7Eに示すように、予測特性データ生成部63は、過去の特性データが示す特性曲線L1を拡大及び縮小せずに係数1(等倍)として、直近に抽出された変曲点P1と、過去の特性データにおける変曲点P1とが一致するように、過去の特性データが示す特性曲線L1を移動させて補間し、予測特性データを生成する。
<Generation Process 3 of Predicted Characteristic Data>
FIG. 7D shows an example in which one inflection point P1 is extracted but the measured value corresponding to any one of the fully charged time point Pf or the remaining zero time point Pe is not included in the time series data of the measured value. Show. As shown in FIGS. 7D and 7E, the prediction characteristic data generation unit 63 extracts the inflection point most recently extracted as a coefficient 1 (equal magnification) without enlarging or reducing the characteristic curve L1 indicated by the past characteristic data. The characteristic curve L1 indicated by the past characteristic data is moved and interpolated such that P1 coincides with the inflection point P1 in the past characteristic data, thereby generating predicted characteristic data.

 予測特性データには、満充電時点Pf、残量ゼロ時点Pe及び2つの変曲点P1、P2が含まれている。なお、図6A~6C、図7A~7Bは、考え方を示したものであり、手順はこれに限定されない。 The predicted characteristic data includes a full charge time point Pf, a remaining amount time zero point Pe, and two inflection points P1 and P2. 6A to 6C and FIGS. 7A to 7B show the way of thinking, and the procedure is not limited to this.

 なお、図6A~6Cに示す生成処理1、および図7A~7Cに示す生成処理2に比べれば二次電池2の特性曲線の再現精度が劣る可能性があるが、フィッティング処理として、最小二乗法などの他の方法でも実行可能である。例えば、マイクロソフト社製のエクセル(登録商標)内のソルバー(登録商標)のような、市販のソフトでも可能である。 Although the reproduction accuracy of the characteristic curve of the secondary battery 2 may be inferior to the generation process 1 shown in FIGS. 6A to 6C and the generation process 2 shown in FIGS. 7A to 7C, the least squares method is used as the fitting process. Other methods such as can be implemented. For example, commercially available software such as Solver (registered trademark) in Excel (registered trademark) manufactured by Microsoft Corporation is also possible.

 <残容量の算出>
 残容量の算出は、予測特性データと、残容量を予測する時点の実測値とを用いる。具体的に、残容量算出部64は、図8に示すように、残容量を予測する時点の実測値が示す充放電容量QPnと、予測特性データにおける残量ゼロ時点Peの充放電容量QPeとの差を残容量Qrとして算出する。
<Calculation of remaining capacity>
The calculation of the remaining capacity uses predicted characteristic data and an actual measured value at the time of predicting the remaining capacity. Specifically, as shown in FIG. 8, remaining capacity calculation unit 64 indicates charge / discharge capacity Q Pn indicated by an actual measured value at the time of predicting remaining capacity, and charge / discharge capacity Q of remaining quantity zero point Pe in predicted characteristic data. The difference with Pe is calculated as the remaining capacity Qr.

 <劣化情報の生成>
 劣化情報を生成するためには、上記で求めた予測特性データと、初期の特性データとを用いる。場合によっては、予測特性データのみで劣化情報を生成することが可能であるが、これは後述する。劣化情報として、電極の副反応バランス、充放電に寄与する活物質量の変化度、リチウム析出までの厚み変化量が挙げられる。
<Generation of degradation information>
In order to generate the degradation information, the predicted characteristic data obtained above and the initial characteristic data are used. In some cases, it is possible to generate degradation information using only prediction characteristic data, which will be described later. The deterioration information includes the side reaction balance of the electrode, the change in the amount of active material contributing to charge and discharge, and the amount of thickness change up to lithium deposition.

 初期特性データ取得部65は、図9Aに示すように、二次電池2の充放電容量Qと変形量Tとの関係を示す特性曲線L0のうち、少なくとも満充電時点Pf、残量ゼロ時点Pe及びステージ変曲点P1、P2を有する初期の特性データを取得する。初期特性データ取得部65は、メモリ6Aからデータを取得する。初期の特性データは、劣化していない初期段階の二次電池2を基準状態としており、例えば製造時または出荷前の二次電池2を用いて求められ、その特性曲線L0に関する情報は、制御装置6が備えるメモリ6Aに予め記憶されている。特性曲線L0を求めた充放電工程では、出荷前の二次電池2を25℃の恒温槽に入れ、120分静置後、0.144Aの充電電流で4.32Vまで定電流充電し、4.32Vに到達後、0.07Aに電流値が減衰するまで定電圧充電を行い、その後10分間の開回路状態を保持し、0.144Aの電流で3.0Vまで定電流放電を行った。このときの満充電状態から完全放電状態までの放電容量は1.44Ahであった。 As shown in FIG. 9A, the initial characteristic data acquisition unit 65 sets at least the full charge time point Pf and the remaining time point zero time Pe on the characteristic curve L0 indicating the relationship between the charge / discharge capacity Q of the secondary battery 2 and the deformation amount T as shown in FIG. And acquire initial characteristic data having stage inflection points P1 and P2. The initial characteristic data acquisition unit 65 acquires data from the memory 6A. The initial characteristic data is based on the non-degraded initial stage secondary battery 2 as a reference state, and is determined using, for example, the secondary battery 2 at the time of manufacture or before shipment, and information on the characteristic curve L0 is a control device 6 are stored in advance in a memory 6A included in the memory 6. In the charge and discharge process for which the characteristic curve L0 was determined, the secondary battery 2 before shipment was placed in a thermostatic chamber at 25 ° C., allowed to stand for 120 minutes, constant current charge to 4.32 V with a charge current of 0.144 A, 4 After reaching .32 V, constant-voltage charging was performed until the current value decreased to 0.07 A, and then the open circuit state was maintained for 10 minutes, and constant-current discharge was performed to 3.0 V with a current of 0.144 A. The discharge capacity from the fully charged state to the completely discharged state at this time was 1.44 Ah.

 <充放電に寄与する活物質量の変化度>
 劣化情報生成部66は、図9Aに示すように、初期特性データ(L0)における2つの変曲点P1、P2と、予測特性データ(L2)における対応する2つの変曲点P1、P2とを、特性曲線の伸縮により一致させるための充放電容量の拡大率(a’/a)を、充放電に寄与する活物質量の変化度として算出する。図9Aでは、横軸の拡大率=充放電容量の拡大率(a’/a)である。
<Change degree of active material mass contributing to charge and discharge>
As illustrated in FIG. 9A, the deterioration information generation unit 66 includes two inflection points P1 and P2 in the initial characteristic data (L0) and two corresponding inflection points P1 and P2 in the prediction characteristic data (L2). The expansion ratio (a '/ a) of the charge / discharge capacity for making the characteristics coincide by the expansion and contraction of the characteristic curve is calculated as the degree of change of the active material mass contributing to the charge / discharge. In FIG. 9A, the enlargement factor of the horizontal axis = the enlargement factor of charge / discharge capacity (a ′ / a).

 また、図9Bに示すように、充放電容量の拡大率を算出してもよい。劣化情報生成部66は、2つの変曲点P1、P2の間の比率(a’/a)、一方の変曲点P1と満充電時点Pfの間の比率(b’/b)及び他方の変曲点P2と残量ゼロ時点Peの間の比率(c’/c)を用い、2つの変曲点P1、P2の間の重み付けを他の区間の重み付けよりも大きく設定して、集計により算出する。例えば、b:a:c=1:8:1の重み付けで集計する場合で説明する。この場合の、充放電容量の拡大率は、{b’/b×1+a’/a×8+c’/c×1}/{1+8+1}となる。このようにすれば、2つの変曲点間の比率だけに比べて、満充電時点Pf及び残量ゼロ時点Peもフィッティング結果として近くなるので、特性曲線全体での一致度があがり、算出精度が向上すると考える。 Further, as shown in FIG. 9B, the enlargement factor of the charge and discharge capacity may be calculated. The deterioration information generation unit 66 sets a ratio (a '/ a) between two inflection points P1 and P2, a ratio (b' / b) between one inflection point P1 and a full charge time point Pf, and the other By using the ratio (c '/ c) between the inflection point P2 and the remaining zero time Pe, the weighting between the two inflection points P1 and P2 is set larger than the weighting of the other sections, calculate. For example, the case of tabulating by weighting of b: a: c = 1: 8: 1 will be described. In this case, the enlargement factor of the charge / discharge capacity is {b '/ b × 1 + a' / a × 8 + c '/ c × 1} / {1 + 8 + 1}. In this way, compared to the ratio between the two inflection points alone, the fully charged time point Pf and the remaining zero time point Pe become closer as a fitting result, so the degree of agreement in the entire characteristic curve is improved, and the calculation accuracy is improved. I think it will improve.

 <劣化状態>
 劣化情報生成部66は、図10A~Cに示すように、初期特性データ(L0)における2つの変曲点P1、P2と、予測特性データ(L2)における2つの変曲点P1、P2とを、特性曲線の伸縮により一致させるための係数(充放電容量の拡大率、変形量の拡大率)を用いて初期特性データが示す特性曲線(L0)全体を伸縮調整し、初期特性データの調整後の特性曲線(L0’)及び予測特性データの特性曲線(L2)における2つの変曲点P1、P2同士を一致させ、満充電時点Pf同士の充放電容量の左右ずれ量D1および残量ゼロ時点Pe同士の充放電容量の左右ずれ量D2の平均値[(D1+D2)/2]を、電池の劣化状態として算出する。
 図9A及び図9Bでは、横軸の拡大率(充放電容量の拡大率)のみを算出したが、ここでは、縦軸の拡大率(変形量の拡大率)も算出する。
<Deterioration state>
As illustrated in FIGS. 10A to 10C, the deterioration information generation unit 66 includes two inflection points P1 and P2 in the initial characteristic data (L0) and two inflection points P1 and P2 in the prediction characteristic data (L2). Stretch and adjust the entire characteristic curve (L0) indicated by the initial characteristic data using coefficients (enlargement ratio of charge and discharge capacity, expansion ratio of deformation amount) for matching by expansion and contraction of characteristic curve, and after adjustment of initial characteristic data The two inflection points P1 and P2 in the characteristic curve (L0 ′) of the characteristic curve (L0 ′) of the prediction characteristic data and the characteristic curve (L2) are made to coincide with each other The average value [(D1 + D2) / 2] of the lateral displacement amount D2 of the charge and discharge capacity between Pe is calculated as the deterioration state of the battery.
In FIGS. 9A and 9B, only the enlargement factor of the horizontal axis (the enlargement factor of the charge / discharge capacity) is calculated, but here, the enlargement factor of the vertical axis (the enlargement factor of the deformation amount) is also calculated.

 具体的なステップは、次の通りである。
 まず、劣化情報生成部66は、図10Aに示すように、予測特性データ(L2)における2つの変曲点P1、P2と、初期特性データ(L0)における2つの変曲点P1、P2とを、特性曲線の伸縮に一致させるための係数を算出する。係数の算出は、図6A~Cに示す方法と同じである。
The specific steps are as follows.
First, as shown in FIG. 10A, the deterioration information generation unit 66 combines two inflection points P1 and P2 in the prediction characteristic data (L2) and two inflection points P1 and P2 in the initial characteristic data (L0). , To calculate the coefficient to match the expansion and contraction of the characteristic curve. The calculation of the coefficients is the same as the method shown in FIGS. 6A-C.

 次に、劣化情報生成部66は、図10Bに示すように、係数を用いて初期特性データが示す特性曲線(L0)全体を伸縮調整し、調整後の特性曲線(L0’)を示すデータを生成する。
 次に、劣化情報生成部66は、図10B及び図10Cに示すように、予測特性データ(L2)における直近に抽出された変曲点P2と、伸縮調整後の初期特性データ(L0’)における対応する変曲点P2とが一致するように、予測特性データ又は初期特性データの少なくとも一方の特性曲線(L2、L0’)を移動させる。
Next, as illustrated in FIG. 10B, the deterioration information generation unit 66 stretches and adjusts the entire characteristic curve (L0) indicated by the initial characteristic data using coefficients, and data indicating the adjusted characteristic curve (L0 ′) is obtained. Generate
Next, as shown in FIGS. 10B and 10C, the deterioration information generation unit 66 generates the inflection point P2 most recently extracted in the prediction characteristic data (L2) and the initial characteristic data (L0 ′) after the expansion / contraction adjustment. The characteristic curve (L2, L0 ′) of at least one of the prediction characteristic data and the initial characteristic data is moved so that the corresponding inflection point P2 coincides.

 次に、劣化情報生成部66は、図10Cに示すように、調整後の初期特性曲線を基準に、満充電時点Pf同士の充放電容量の左右ずれ量D1および残量ゼロ時点Pe同士の充放電容量の左右ずれ量D2の平均値[(D1+D2)/2]を、電池の劣化状態として算出する。 Next, as shown in FIG. 10C, the deterioration information generation unit 66 charges the lateral displacement amount D1 of the charge / discharge capacity between full charge points Pf and the residual quantity zero time points Pe with reference to the adjusted initial characteristic curve. The average value [(D1 + D2) / 2] of the lateral displacement amount D2 of the discharge capacity is calculated as the deterioration state of the battery.

 この平均値が大きければ、電池の使用により電池が劣化した際に、副反応量について正極と負極とで、いずれかに偏りが生じていることになり、左右どちらにずれているかによって、正極か負極かのどちらの副反応が多くなっているか判別できる。 If this average value is large, when the battery is deteriorated due to use of the battery, the side reaction amount between the positive electrode and the negative electrode is biased, and depending on which of the left and right is shifted, the positive electrode It can be determined which side reaction of the negative electrode is increasing.

 なお、図10A~Cにおいて、初期特性曲線L0の伸縮調整後に、調整後の初期特性曲線L0’を移動させているが、これに限定されない。例えば、調整後の初期特性曲線L0’ではなく、予測特性曲線L2を移動させてもよいし、両方の曲線を移動させてもよい。また、両曲線を先に移動させて直近に検出した変曲点P2を一致させた後に、初期特性曲線L0を伸縮調整してもよく、移動と伸縮調整を同時に実施してもよい。 Although the initial characteristic curve L0 'after adjustment is moved after the expansion and contraction adjustment of the initial characteristic curve L0 in FIGS. 10A to 10C, the present invention is not limited thereto. For example, instead of the adjusted initial characteristic curve L0 ', the predicted characteristic curve L2 may be moved, or both of the curves may be moved. Further, after moving both curves first to make the inflection point P2 detected most recently coincide with each other, the initial characteristic curve L0 may be expanded or adjusted, or the movement and expansion may be performed simultaneously.

 図10A~Cにおける初期特性曲線L0の伸縮調整する際に用いる係数は、図9Bに示す充放電容量の拡大率の算出方法と同じ方法で算出可能である。すなわち、劣化情報生成部66は、2つの変曲点P1、P2の間の比率、一方の変曲点P1と満充電時点Pfの間の比率及び他方の変曲点P2と残量ゼロ時点Peの間の比率を用い、2つの変曲点P1、P2の間の重み付けを他の区間の重み付けよりも大きく設定して、集計により算出する。ここでは、横軸及び縦軸の両方の係数を算出する。 The coefficients used when adjusting the expansion and contraction of the initial characteristic curve L0 in FIGS. 10A to 10C can be calculated by the same method as the method of calculating the enlargement factor of the charge and discharge capacity shown in FIG. 9B. That is, the deterioration information generation unit 66 determines the ratio between the two inflection points P1 and P2, the ratio between one inflection point P1 and the full charge time Pf, and the other inflection point P2 and the remaining time zero time Pe. The weighting between the two inflection points P1 and P2 is set larger than the weighting of the other sections using the ratio between T. Here, coefficients on both the horizontal axis and the vertical axis are calculated.

 <リチウム析出までの厚み変化量>
 リチウム析出までの厚み変化量を知ることができれば、リチウムが析出しないように充電制御することが可能となる。ここでは、図11Aに示すように、初期特性データには、厚み最大点PLが設定されている。厚み最大点PLは、これよりも充電すればリチウムが析出してしまう限界点である。
 また、十分な安全が確保できるのであれば、満充電時点Pf=厚み最大点PLとしてもよい。この場合、満充電時点Pfから残量ゼロ時点Peまでの変化量が下記T1となり、初期特性データを用いなくても、予測特性データにおける満充電時点Pfを厚み最大点とすることができる。
<Thickness change until lithium deposition>
If it is possible to know the amount of thickness change until lithium deposition, charge control can be performed so that lithium does not precipitate. Here, as shown in FIG. 11A, the thickness maximum point PL is set in the initial characteristic data. The thickness maximum point PL is a limit point at which lithium is deposited if charging is performed more than this.
Further, if sufficient safety can be ensured, the full charge time point Pf may be the thickness maximum point PL. In this case, the amount of change from the full charge point Pf to the remaining amount zero point Pe is T1 below, and the full charge point Pf in the predicted characteristic data can be made the thickness maximum point without using the initial characteristic data.

 劣化情報生成部66は、図9A及び図9Bに示す手法を用いて、特性曲線の伸縮により、初期特性データが示す特性曲線L0を、予測特性データが示す特性曲線L2にフィッティング処理するための係数(充放電容量の拡大率、変形量の拡大率)を算出する。図9A及び図9Bでは、横軸の拡大率(充放電容量の拡大率)のみを算出したが、縦軸の拡大率(変形量の拡大率)も算出する。 The degradation information generation unit 66 uses the method shown in FIGS. 9A and 9B to expand and contract the characteristic curve to fit the characteristic curve L0 indicated by the initial characteristic data to the characteristic curve L2 indicated by the predicted characteristic data. (Expansion rate of charge and discharge capacity, expansion rate of deformation amount) is calculated. In FIGS. 9A and 9B, only the enlargement factor of the horizontal axis (the enlargement factor of the charge / discharge capacity) is calculated, but the enlargement factor of the vertical axis (the enlargement factor of the deformation amount) is also calculated.

 次に、劣化情報生成部66は、図11Bに示すように、算出した係数を用いて初期特性データにおける厚み最大点PLから予測特性データにおける厚み最大点PL’を特定する。次に、劣化情報生成部66は、同図に示すように、予測特性データ(L2)における厚み最大点PL’から残量ゼロ時点Peまでの変形量T1を、残量ゼロ時点を基点としたリチウム析出までの厚み変化量T1として算出する。 Next, as illustrated in FIG. 11B, the deterioration information generation unit 66 specifies the thickness maximum point PL ′ in the prediction characteristic data from the thickness maximum point PL in the initial characteristic data, using the calculated coefficient. Next, as shown in the figure, the deterioration information generation unit 66 uses the deformation amount T1 from the thickness maximum point PL 'to the remaining amount zero point Pe in the prediction characteristic data (L2) as the starting point at the remaining amount zero point. The amount of change in thickness T1 until lithium deposition is calculated.

 上記の状態予測方法は、放電中を例示して説明しているが、充電中でも実現することができる。 Although the above-mentioned state prediction method is illustrated and illustrated during discharge, it can be realized even during charge.

 <充電制御>
 劣化情報生成部66が予測した、リチウム析出までの厚み変化量T1を用いて二次電池2への充電を制御する充電制御部67を制御装置6に設けてもよい。すなわち、充電制御部67は、検出センサ5により充電中に検出した二次電池2の変形量が、残量ゼロ時点を基点としたリチウム析出までの厚み変化量T1を超えないように、充電を制御する。例えば、図12に示すように、厚み変化量T1よりも少ない閾値T2を設定し、当該閾値T2を維持するように電流を制御するようにしてもよい。電流制御方法としては、T2を目標値とした、オンオフ制御、P制御、I制御、D制御、PD制御、PI制御、PID制御、パルス制御、PWM制御などを用いてもよい。また、T1を超えないように制御できるのであれば、T1を目標値としてもよい。
<Charge control>
The control device 6 may be provided with a charge control unit 67 that controls charging of the secondary battery 2 using the thickness change amount T1 up to lithium deposition predicted by the deterioration information generation unit 66. That is, charge control portion 67 performs charging so that the deformation amount of secondary battery 2 detected during charging by detection sensor 5 does not exceed thickness change amount T1 up to lithium deposition starting from the remaining amount zero point. Control. For example, as shown in FIG. 12, a threshold T2 smaller than the thickness change amount T1 may be set, and the current may be controlled to maintain the threshold T2. As a current control method, on / off control, P control, I control, D control, PD control, PI control, PID control, pulse control, PWM control or the like with T2 as a target value may be used. Further, if control can be performed so as not to exceed T1, T1 may be set as the target value.

 上記システムの動作について、図13を用いて説明する。 The operation of the above system will be described with reference to FIG.

 まず、ステップS1において、実測値取得部61は、二次電池2の充放電容量Qと変形量Tとに対応する実測値を取得する。このステップは繰り返し実行されるので、実測値の時系列データが得られる。 First, in step S <b> 1, the actual measurement value acquiring unit 61 acquires an actual measurement value corresponding to the charge / discharge capacity Q and the deformation amount T of the secondary battery 2. Since this step is repeatedly executed, time-series data of measured values can be obtained.

 次のステップS2において、予測特性データが存在するか否かを判定する。予測特性データが存在しないと判定した場合には(S2:NO)、ステップS6の処理へ移る。予測特性データが存在すると判定した場合には(S2:YES)、ステップS3の処理へ移る。ステップS3の処理は後述する。 In the next step S2, it is determined whether or not there is predicted characteristic data. If it is determined that the predicted characteristic data does not exist (S2: NO), the process proceeds to step S6. If it is determined that the prediction characteristic data is present (S2: YES), the process proceeds to step S3. The process of step S3 will be described later.

 ステップS6において、変曲点抽出部62が、実測値の時系列データから、二次電池2の充放電容量Qと変形量Tとの関係を示す特性曲線Lnにおける少なくとも1つの変曲点P1(P2)を抽出する。本実施形態では、変曲点抽出部62は、取得した実測値が示す充放電容量QPnに応じて抽出条件を設定し、取得した実測値に基づき定まる充放電容量に関する変形量の微分値[ΔmV/ΔmAh]が抽出条件を満たす場合に、実測値を変曲点として抽出する。具体的には、取得した実測値が示す充放電容量QPnが、過去の特性データにおける変曲点P1の充放電容量QP1を中心とする所定範囲内に入る場合に、過去の特性データに基づき微分値の閾値ThP1を設定し、微分値が閾値ThP1を通過したことを抽出条件として設定する。さらに、微分値が閾値ThP1、ThP2を通過することに加えて、充放電容量Qが変化する或る期間の間、微分値が連続して上がり続けること又は下がり続けることを抽出条件として設定している。本実施形態では、微分値を単位放電容量毎に算出しており、少なくとも3つの微分値が連続して上がり続けること又は下がり続けることを抽出条件としている。 In step S6, at least one inflection point P1 in the characteristic curve Ln indicating the relationship between the charge / discharge capacity Q of the secondary battery 2 and the deformation amount T from the time-series data of the measured values by the inflection point extraction unit 62 Extract P2). In the present embodiment, the inflection point extraction unit 62 sets the extraction condition according to the charge / discharge capacity Q Pn indicated by the acquired actual measurement value, and the differential value of the deformation amount related to the charge / discharge capacity determined based on the acquired actual measurement value When ΔmV / ΔmAh] satisfies the extraction condition, the actual measurement value is extracted as the inflection point. Specifically, when the charge / discharge capacity Q Pn indicated by the acquired actual measurement value falls within a predetermined range centered on the charge / discharge capacity Q P1 at the inflection point P1 in the past characteristic data, the past characteristic data is based by setting a threshold Th P1 of the differential value is set as the extraction condition that the differential value passes the threshold Th P1. Further, in addition to the differential value passing through the threshold values Th P1 and Th P2 , it is set as the extraction condition that the differential value continues to continuously rise or falls for a certain period during which the charge / discharge capacity Q changes. doing. In the present embodiment, the differential value is calculated for each unit discharge capacity, and the extraction condition is that at least three differential values continue to rise or fall continuously.

 次にステップS7において、変曲点が抽出できたか否かを判定する。変曲点が抽出できなかった場合(S7:NO)には、ステップS13にて終了条件が成立しているかを判定し、終了条件が成立するまで、ステップS1の処理へ戻る。 Next, in step S7, it is determined whether an inflection point has been extracted. If the inflection point can not be extracted (S7: NO), it is determined in step S13 whether the termination condition is satisfied, and the process returns to step S1 until the termination condition is satisfied.

 ステップS7にて、変曲点が抽出できた場合には(S7:YES)、次のステップS8において、過去特性データ取得部60は、二次電池の充放電容量と変形量との関係を示す特性曲線L1のうち、少なくとも満充電時点Pf、残量ゼロ時点Pe及びステージ変曲点P1、P2を有する過去の特性データを取得する。 If the inflection point can be extracted in step S7 (S7: YES), in the next step S8, the past characteristic data acquisition unit 60 indicates the relationship between the charge / discharge capacity of the secondary battery and the deformation amount. Among the characteristic curves L1, past characteristic data having at least a full charge time Pf, a remaining time zero Pe, and stage inflection points P1 and P2 are acquired.

 次のステップS9において、予測特性データ生成部63は、抽出した変曲点を基準として、過去の特性データが示す特性曲線L1を、実測値の時系列データが示す特性曲線Lnにフィッティング処理して、実測値の時系列データにない部分が補間された特性曲線L2を示す予測特性データを生成する。 In the next step S9, with reference to the extracted inflection point, the prediction characteristic data generation unit 63 performs fitting processing of the characteristic curve L1 indicated by the characteristic data in the past to the characteristic curve Ln indicated by time series data of the actual measurement value. The prediction characteristic data indicating a characteristic curve L2 in which a portion not included in the time-series data of the actual measurement value is interpolated is generated.

 ステップS6において実測値取得部61が1つの変曲点を抽出した場合は、予測特性データ生成部63は、過去の特性データにおける満充電時点Pf又は残量ゼロ時点Peのいずれか1点と変曲点P1の2点を、実測値の時系列データにおける対応する2点に特性曲線の伸縮により一致させるための係数を算出し、係数を用いて特性曲線全体を伸縮調整し、変曲点P1を一致させ、予測特性データを生成する。 When the actual value acquisition unit 61 extracts one inflection point in step S6, the prediction characteristic data generation unit 63 changes the point from any one of the full charge point Pf or the remaining amount zero point Pe in the past characteristic data. A coefficient is calculated to make the two points of the inflection point P1 coincide with the corresponding two points in the time-series data of the actual measurement values by the expansion and contraction of the characteristic curve, and the entire characteristic curve is expanded and adjusted using the coefficients, and the inflection point P1 Match to generate predicted characteristic data.

 ステップS6において実測値取得部61が2つの変曲点を抽出した場合は、予測特性データ生成部63は、過去の特性データにおける2つの変曲点P1、P2を、実測値の時系列データにおける対応する2つの変曲点に特性曲線の伸縮により一致させるための係数を算出し、係数を用いて特性曲線全体を伸縮調整し、直近に抽出した変曲点P2を一致させ、予測特性データを生成する。 When the actual measurement value acquisition unit 61 extracts two inflection points in step S6, the prediction characteristic data generation unit 63 determines two inflection points P1 and P2 in the past characteristic data in time series data of the actual measurement value. A coefficient for making the corresponding two inflection points coincide with the characteristic curve by expansion and contraction is calculated, the entire characteristic curve is expanded and adjusted using the coefficient, the inflection point P2 extracted most recently is made to coincide, and the prediction characteristic data is Generate

 次のステップS10において、実測値の時系列データから2つの異なる変曲点が抽出されたか否かを判定する。異なる変曲点であるかの判断は、SOCや充放電容量によって判断可能である。ステップS12にて、予測特性データに基づき劣化情報を生成するにあたり、2つの異なる変曲点に基づき生成された予測特性データの方が、1つの変曲点のみで生成されたデータよりも精度が高いと考えられるためである。勿論、1つの変曲点のみが抽出された状態において劣化情報を生成するように構成してもよい。 In the next step S10, it is determined whether or not two different inflection points have been extracted from the time-series data of the measured values. The determination as to the different inflection points can be made based on the SOC and the charge and discharge capacity. In step S12, in generating the deterioration information based on the prediction characteristic data, the prediction characteristic data generated based on two different inflection points is more accurate than the data generated at only one inflection point It is because it is considered to be high. Of course, degradation information may be generated in a state where only one inflection point is extracted.

 ステップS10にて、2つの異なる変曲点が抽出された判定された場合(S10:YES)には、ステップS11において、初期特性データ取得部65は、二次電池の充放電容量と変形量との関係を示す特性曲線L0のうち、少なくとも厚み最大点PL、満充電時点Pf、残量ゼロ時点Pe及びステージ変曲点P1、P2を有する初期特性データを取得する。厚み最大点PLは、省略可能である。 If it is determined in step S10 that two different inflection points are extracted (S10: YES), in step S11, the initial characteristic data acquisition unit 65 determines the charge / discharge capacity and the deformation amount of the secondary battery. Initial characteristic data having at least a thickness maximum point PL, a full charge time point Pf, a remaining charge zero time point Pe, and stage inflection points P1 and P2 among the characteristic curves L0 indicating the relationship of The thickness maximum point PL can be omitted.

 次のステップS12において、劣化情報生成部66は、劣化容量、充放電に寄与する活物質量の変化度又は残量ゼロ時点を基点としたリチウム析出までの厚み変化量のうち少なくともいずれかを求める。 In the next step S12, the deterioration information generation unit 66 determines at least one of the deterioration capacity, the change degree of the active material mass contributing to charge and discharge, or the thickness change amount up to lithium deposition starting from the remaining time zero point. .

 ステップS12において、充放電に寄与する活物質量の変化度を求める場合、劣化情報生成部66は、初期特性データにおける2つの変曲点P1、P2と、予測特性データにおける対応する2つの変曲点P1、P2とを、特性曲線の伸縮により一致させるための充放電容量の拡大率を算出する。 In step S12, when the change degree of the active material mass contributing to charge and discharge is determined, the deterioration information generation unit 66 determines two inflection points P1 and P2 in the initial characteristic data and two corresponding inflections in the prediction characteristic data. The enlargement factor of the charge and discharge capacity for making points P1 and P2 coincide with each other by the expansion and contraction of the characteristic curve is calculated.

 ステップS12において、劣化状態を求める場合、劣化情報生成部66は、初期特性データ(L0)における2つの変曲点P1、P2と、予測特性データ(L2)における2つの変曲点P1、P2とを、特性曲線の伸縮により一致させるための係数(充放電容量の拡大率、変形量の拡大率)を用いて初期特性データが示す特性曲線(L0)全体を伸縮調整し、初期特性データの調整後の特性曲線(L0’)及び予測特性データの特性曲線(L2)における2つの変曲点P1、P2同士を一致させ、満充電時点Pf同士の充放電容量の左右ずれ量D1および残量ゼロ時点Pe同士の充放電容量の左右ずれ量D2の平均値[(D1+D2)/2]を、電池の劣化状態として算出する。 In step S12, when obtaining the deterioration state, the deterioration information generation unit 66 determines two inflection points P1 and P2 in the initial characteristic data (L0) and two inflection points P1 and P2 in the predicted characteristic data (L2). Adjustment of the initial characteristic data by adjusting the entire characteristic curve (L0) indicated by the initial characteristic data using coefficients (enlargement ratio of charge and discharge capacity, expansion ratio of deformation amount) for making the characteristic curves coincide with expansion and contraction of the characteristic curve Match the two inflection points P1 and P2 in the later characteristic curve (L0 ') and the characteristic curve (L2) of the prediction characteristic data, and make the left / right deviation amount D1 of the charge / discharge capacity between full charge points Pf and zero remaining amount The average value [(D1 + D2) / 2] of the lateral displacement amount D2 of the charge and discharge capacity between the points Pe is calculated as the battery degradation state.

 ステップS12において、残量ゼロ時点を基点としたリチウム析出までの厚み変化量を求める場合には、劣化情報生成部66は、初期特性データにおける2つの変曲点P1、P2と、予測特性データにおける2つの変曲点P1、P2とを、特性曲線の伸縮により一致させるための係数を算出し、係数を用いて初期特性データにおける厚み最大点PLから予測特性データにおける厚み最大点PL’を特定し、予測特性データにおける厚み最大点PL’から残量ゼロ時点Peまでの変形量T1を算出する。
 Pf=PLとして設定されている場合には、劣化情報生成部66は、予測特性データにおける厚み最大点PL(Pf)から残量ゼロ時点Peまでの変形量T1を算出する。
In step S12, in the case of obtaining the thickness change amount up to lithium deposition starting from the remaining amount zero time point, the deterioration information generation unit 66 determines two inflection points P1 and P2 in the initial characteristic data and the predicted characteristic data. A coefficient for making the two inflection points P1 and P2 coincide with each other by expansion and contraction of the characteristic curve is calculated, and the thickness maximum point PL 'in the prediction characteristic data is specified from the thickness maximum point PL in the initial characteristic data using the coefficient The deformation amount T1 from the thickness maximum point PL ′ in the prediction characteristic data to the remaining amount zero point Pe is calculated.
When Pf = PL, the deterioration information generation unit 66 calculates a deformation amount T1 from the thickness maximum point PL (Pf) in the prediction characteristic data to the remaining amount zero point Pe.

 ステップS12の処理が終わると、ステップS13の処理へ移る。 When the process of step S12 is completed, the process proceeds to step S13.

 ステップS3において、残容量算出部64は、残容量を予測する時点の実測値が示す充放電容量QPnと、予測特性データにおける残量ゼロ時点Peの充放電容量QPeとの差を残容量Qrとして算出する。すなわち、予測特性データが一度生成されると、実測値データを取得するたびに、残容量が算出される。 In step S3, the remaining capacity calculating unit 64 determines the difference between the charge / discharge capacity Q Pn indicated by the measured value at the time of predicting the remaining capacity and the charge / discharge capacity Q Pe at the remaining capacity zero point Pe in the predicted characteristic data. Calculated as Qr. That is, once the prediction characteristic data is generated, the remaining capacity is calculated each time the actual measurement value data is acquired.

 ステップS4~S5は、予測特性データの見直しを図るための処理である。具体的には、ステップS4において、実測値の時系列データに2つの変曲点P1、P2が含まれ且つ予測特性データが既に生成されている場合に、所定の再生成条件が成立しているか否かを判定する。本実施形態では、所定の再生成条件として、一旦生成された予測特性データと実測値の差が閾値を超えているか否かを判定する。差が閾値を超えている場合には、ステップS5において、予測特性データ生成部63は、予測特性データを生成し直す。実測値に基づき予測特性データを一旦生成したものの、実測値に合致しなくなったからである。ここでは、再生成条件として、誤差に着目しているが、例えば所定の充放電容量に到達したことや、予測特性データから所定時間経過したことなど種々挙げられ、適宜変更可能である。
 この予測特性データを生成方法は、図9Bに示す方法と同様に、予測特性データの特性曲線を実測値の時系列データの特性曲線に特性曲線の伸縮により一致させるための係数を算出し、係数を用いて特性曲線全体を伸縮調整し、直近に抽出した変曲点を一致させ、予測特性データを再生成する。係数は、2つの変曲点の間の比率、最新の実測値と最新実測値に近い側の変曲点との間の比率を少なくとも用い、2つの変曲点の間の重み付けを他の区間の重み付けよりも大きく設定して、集計により算出することが好ましい。このようにすれば、2つの変曲点間の1区間だけでなく、2つの区画の比率を用い、最新の実測値についても合致するようにフィッティングされるので、予測特性データが実測値に即した形となる。
 さらに、実測値の時系列データに、満充電時点Pf及び残量ゼロ時点Peのうち最新の実測値から遠い方が含まれている場合には、満充電時点Pf及び残量ゼロ時点Peのうち最新の実測値から遠い方と一方の変曲点との間の比率、2つの変曲点の間の比率、最新の実測値と最新実測値に近い他方の変曲点の間の比率を用い、2つの変曲点の間の重み付けを他の区間の重み付けよりも大きく設定して、集計により算出することが好ましい。このようにすれば、3区画の比率を用い、満充電時点Pf及び残量ゼロ時点Peのいずれかと最新実測値についても合致するようにフィッティングされるので、予測特性データが実測値に即した形になる。
Steps S4 to S5 are processes for reviewing the prediction characteristic data. Specifically, in step S4, in the case where two inflection points P1 and P2 are included in the time-series data of the actual measurement value and the prediction characteristic data has already been generated, is a predetermined regeneration condition satisfied? It is determined whether or not. In the present embodiment, as a predetermined regeneration condition, it is determined whether or not the difference between predicted characteristic data that has been generated once and an actual measurement value exceeds a threshold. If the difference exceeds the threshold, in step S5, the prediction characteristic data generation unit 63 regenerates prediction characteristic data. This is because although the prediction characteristic data was once generated based on the actual measurement value, it did not match the actual measurement value. Here, as the regeneration condition, attention is paid to the error. However, for example, various conditions such as reaching a predetermined charge / discharge capacity, or an elapse of a predetermined time from predicted characteristic data can be appropriately changed.
Similar to the method shown in FIG. 9B, the method of generating the prediction characteristic data calculates a coefficient for matching the characteristic curve of the prediction characteristic data with the characteristic curve of the time series data of the actual measurement value by stretching the characteristic curve. Is used to adjust the entire characteristic curve, the inflection points extracted most recently are made to coincide, and the prediction characteristic data is regenerated. The coefficient uses at least the ratio between the two inflection points, the ratio between the latest measured value and the inflection point closer to the latest measured value, and the weighting between the two inflection points in the other interval It is preferable to calculate by aggregation by setting larger than the weighting of. In this way, not only one section between two inflection points but also the ratio of two sections is used to fit to the latest measured value so that the predicted characteristic data is immediately It becomes a form.
Furthermore, when the time-series data of the measured value includes one of the fully charged time point Pf and the remaining zero time point Pe that is farther from the latest measured value, among the fully charged time point Pf and the remaining zero time point Pe Using the ratio between the farthest measured value and one inflection point, the ratio between two inflection points, and the ratio between the latest measured value and the other inflection point close to the latest measured value Preferably, the weighting between the two inflection points is set larger than the weighting of the other sections, and calculation is performed by aggregation. In this way, using the ratio of 3 compartments, fitting is performed so that any of the fully charged time point Pf and the remaining zero time point Pe is also matched with the latest measured value, so the predicted characteristic data conforms to the measured value become.

 検出部4は、外場の変化を検出可能な箇所に配置され、好ましくは二次電池2の膨れによる影響を受けにくい比較的堅固な箇所に貼り付けられる。本実施形態では、図2Bのように、壁部28aに対向する電池モジュールの筐体11の内面に検出部4を貼り付けている。電池モジュールの筐体11は、例えば金属またはプラスチックにより形成され、ラミネートフィルムが用いられる場合もある。図面上、検出部4は、高分子マトリックス層3と近接して配置されているが、高分子マトリックス層3から離して配置しても構わない。 The detection unit 4 is disposed at a place where a change in the external field can be detected, and is preferably attached to a relatively rigid place which is not easily affected by the swelling of the secondary battery 2. In the present embodiment, as illustrated in FIG. 2B, the detection unit 4 is attached to the inner surface of the housing 11 of the battery module facing the wall 28a. The housing 11 of the battery module is formed of, for example, metal or plastic, and a laminate film may be used. Although the detection unit 4 is disposed close to the polymer matrix layer 3 in the drawing, it may be disposed apart from the polymer matrix layer 3.

 本実施形態では、高分子マトリックス層3が上記フィラーとしての磁性フィラーを含有し、検出部4が上記外場としての磁場の変化を検出する例を示す。この場合、高分子マトリックス層3は、エラストマー成分からなるマトリックスに磁性フィラーが分散してなる磁性エラストマー層であることが好ましい。 In the present embodiment, an example is shown in which the polymer matrix layer 3 contains a magnetic filler as the filler, and the detection unit 4 detects a change in the magnetic field as the external field. In this case, the polymer matrix layer 3 is preferably a magnetic elastomer layer in which a magnetic filler is dispersed in a matrix made of an elastomer component.

 磁性フィラーとしては、希土類系、鉄系、コバルト系、ニッケル系、酸化物系などが挙げられるが、より高い磁力が得られる希土類系が好ましい。磁性フィラーの形状は、特に限定されるものではなく、球状、扁平状、針状、柱状および不定形のいずれであってよい。磁性フィラーの平均粒径は、好ましくは0.02~500μm、より好ましくは0.1~400μm、更に好ましくは0.5~300μmである。平均粒径が0.02μmより小さいと、磁性フィラーの磁気特性が低下する傾向にあり、平均粒径が500μmを超えると、磁性エラストマー層の機械的特性が低下して脆くなる傾向にある。 Examples of the magnetic filler include rare earths, irons, cobalts, nickels, oxides and the like, but rare earths capable of obtaining higher magnetic force are preferable. The shape of the magnetic filler is not particularly limited, and may be spherical, flat, needle-like, columnar or indeterminate. The average particle size of the magnetic filler is preferably 0.02 to 500 μm, more preferably 0.1 to 400 μm, and still more preferably 0.5 to 300 μm. When the average particle size is smaller than 0.02 μm, the magnetic properties of the magnetic filler tend to be deteriorated, and when the average particle size exceeds 500 μm, the mechanical properties of the magnetic elastomer layer tend to be reduced and become brittle.

 磁性フィラーは、着磁後にエラストマー中に導入しても構わないが、エラストマーに導入した後に着磁することが好ましい。エラストマーに導入した後に着磁することで磁石の極性の制御が容易となり、磁場の検出が容易になる。 The magnetic filler may be introduced into the elastomer after magnetization, but is preferably magnetized after introduction into the elastomer. By magnetizing after being introduced into the elastomer, control of the polarity of the magnet becomes easy, and detection of the magnetic field becomes easy.

 エラストマー成分には、熱可塑性エラストマー、熱硬化性エラストマーまたはそれらの混合物を用いることができる。熱可塑性エラストマーとしては、例えばスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリブタジエン系熱可塑性エラストマー、ポリイソプレン系熱可塑性エラストマー、フッ素ゴム系熱可塑性エラストマー等を挙げることができる。また、熱硬化性エラストマーとしては、例えばポリイソプレンゴム、ポリブタジエンゴム、スチレン-ブタジエンゴム、ポリクロロプレンゴム、ニトリルゴム、エチレン-プロピレンゴム等のジエン系合成ゴム、エチレン-プロピレンゴム、ブチルゴム、アクリルゴム、ポリウレタンゴム、フッ素ゴム、シリコーンゴム、エピクロルヒドリンゴム等の非ジエン系合成ゴム、および天然ゴム等を挙げることができる。このうち好ましいのは熱硬化性エラストマーであり、これは電池の発熱や過負荷に伴う磁性エラストマーのへたりを抑制できるためである。更に好ましくは、ポリウレタンゴム(ポリウレタンエラストマーともいう)またはシリコーンゴム(シリコーンエラストマーともいう)である。 For the elastomeric component, thermoplastic elastomers, thermosetting elastomers or mixtures thereof can be used. Examples of thermoplastic elastomers include styrene thermoplastic elastomers, polyolefin thermoplastic elastomers, polyurethane thermoplastic elastomers, polyester thermoplastic elastomers, polyamide thermoplastic elastomers, polybutadiene thermoplastic elastomers, polyisoprene thermoplastic elastomers, A fluororubber type thermoplastic elastomer etc. can be mentioned. Moreover, as a thermosetting elastomer, for example, polyisoprene rubber, polybutadiene rubber, styrene-butadiene rubber, polychloroprene rubber, nitrile rubber, diene-based synthetic rubber such as ethylene-propylene rubber, ethylene-propylene rubber, butyl rubber, acrylic rubber, Non-diene based synthetic rubbers such as polyurethane rubber, fluororubber, silicone rubber, epichlorohydrin rubber, and natural rubber can be mentioned. Among these, a thermosetting elastomer is preferable, because it can suppress the stagnation of the magnetic elastomer due to heat generation or overload of the battery. More preferably, they are polyurethane rubber (also referred to as polyurethane elastomer) or silicone rubber (also referred to as silicone elastomer).

 ポリウレタンエラストマーは、ポリオールとポリイソシアネートとを反応させることにより得られる。ポリウレタンエラストマーをエラストマー成分として用いる場合、活性水素含有化合物と磁性フィラーを混合し、ここにイソシアネート成分を混合させて混合液を得る。また、イソシアネート成分に磁性フィラーを混合し、活性水素含有化合物を混合させることで混合液を得ることも出来る。その混合液を離型処理したモールド内に注型し、その後硬化温度まで加熱して硬化することにより、磁性エラストマーを製造することができる。また、シリコーンエラストマーをエラストマー成分として用いる場合、シリコーンエラストマーの前駆体に磁性フィラーを入れて混合し、型内に入れ、その後加熱して硬化させることにより磁性エラストマーを製造することができる。尚、必要に応じて溶剤を添加してもよい。 The polyurethane elastomer is obtained by reacting a polyol and a polyisocyanate. When using a polyurethane elastomer as an elastomer component, an active hydrogen-containing compound and a magnetic filler are mixed, and an isocyanate component is mixed here to obtain a mixed liquid. A mixed solution can also be obtained by mixing a magnetic filler with an isocyanate component and mixing an active hydrogen-containing compound. The magnetic elastomer can be produced by casting the mixed solution in a mold subjected to a release treatment and then heating to a curing temperature to cure. When silicone elastomer is used as an elastomer component, the magnetic elastomer can be produced by adding a magnetic filler to a silicone elastomer precursor, mixing it, placing it in a mold and then heating and curing it. In addition, you may add a solvent as needed.

 ポリウレタンエラストマーに使用できるイソシアネート成分としては、ポリウレタンの分野において公知の化合物を使用できる。例えば、2,4-トルエンジイソシアネート、2,6-トルエンジイソシアネート、2,2’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート、p-フェニレンジイソシアネート、m-フェニレンジイソシアネート、p-キシリレンジイソシアネート、m-キシリレンジイソシアネート等の芳香族ジイソシアネート、エチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート、1,4-シクロヘキサンジイソシアネート、4,4’-ジシクロへキシルメタンジイソシアネート、イソホロンジイソシアネート、ノルボルナンジイソシアネート等の脂環式ジイソシアネートを挙げることができる。これらは1種で用いても、2種以上を混合して用いてもよい。また、イソシアネート成分は、ウレタン変性、アロファネート変性、ビウレット変性、及びイソシアヌレート変性等の変性化したものであってもよい。好ましいイソシアネート成分は、2,4-トルエンジイソシアネート、2,6-トルエンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、より好ましくは2,4-トルエンジイソシアネー・BR>G、2,6-トルエンジイソシアネートである。 As an isocyanate component that can be used for the polyurethane elastomer, compounds known in the field of polyurethane can be used. For example, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4,4'-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, p-phenylene Aromatic diisocyanates such as diisocyanate, m-phenylene diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate, etc. Aliphatic diisocyanates such as ethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, 1,6-hexamethylene diisocyanate 1,4-cyclohexane diisocyanate, 4,4'-dicyclohexyl methane diisocyanate, isophorone diisocyanate, nor It can be mentioned alicyclic diisocyanates such as Renan diisocyanate. These may be used alone or in combination of two or more. In addition, the isocyanate component may be one modified by urethane modification, allophanate modification, biuret modification, isocyanurate modification, or the like. Preferred isocyanate components are 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 4,4'-diphenylmethane diisocyanate, more preferably 2,4-toluene diisocyanate, BR> G, 2,6-toluene diisocyanate is there.

 活性水素含有化合物としては、ポリウレタンの技術分野において、通常用いられるものを用いることができる。例えば、ポリテトラメチレングリコール、ポリプロピレングリコール、ポリエチレングリコール、プロピレンオキサイドとエチレンオキサイドの共重合体等に代表されるポリエーテルポリオール、ポリブチレンアジペート、ポリエチレンアジペート、3-メチル-1,5-ペンタンアジペートに代表されるポリエステルポリオール、ポリカプロラクトンポリオール、ポリカプロラクトングリコールのようなポリエステルグリコールとアルキレンカーボネートとの反応物などで例示されるポリエステルポリカーボネートポリオール、エチレンカーボネートを多価アルコールと反応させ、次いで得られた反応混合物を有機ジカルボン酸と反応させたポリエステルポリカーボネートポリオール、ポリヒドロキシル化合物とアリールカーボネートとのエステル交換反応により得られるポリカーボネートポリオール等の高分子量ポリオールを挙げることができる。これらは単独で用いてもよく、2種以上を併用してもよい。 As the active hydrogen-containing compound, those commonly used in the technical field of polyurethane can be used. For example, polyetherpolyol represented by polytetramethylene glycol, polypropylene glycol, polyethylene glycol, copolymer of propylene oxide and ethylene oxide, polybutylene adipate, polyethylene adipate, 3-methyl-1,5-pentane adipate Polyester polycarbonate polyol exemplified by the reaction product of polyester glycol such as polycaprolactone polyol, polyester glycol such as polycaprolactone glycol and alkylene carbonate, ethylene carbonate is reacted with polyhydric alcohol, and then the reaction mixture obtained is Polyester polycarbonate polyol reacted with organic dicarboxylic acid, polyhydroxyl compound and aryl carbonate It can be mentioned a high molecular weight polyol and polycarbonate polyols obtained by ester exchange reaction. These may be used alone or in combination of two or more.

 活性水素含有化合物として上述した高分子量ポリオール成分の他に、エチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、1,4-ブタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、3-メチル-1,5-ペンタンジオール、ジエチレングリコール、トリエチレングリコール、1,4-ビス(2-ヒドロキシエトキシ)ベンゼン、トリメチロールプロパン、グリセリン、1,2,6-ヘキサントリオール、ペンタエリスリトール、テトラメチロールシクロヘキサン、メチルグルコシド、ソルビトール、マンニトール、ズルシトール、スクロース、2,2,6,6-テトラキス(ヒドロキシメチル)シクロヘキサノール、及びトリエタノールアミン等の低分子量ポリオール成分、エチレンジアミン、トリレンジアミン、ジフェニルメタンジアミン、ジエチレントリアミン等の低分子量ポリアミン成分を用いてもよい。これらは1種単独で用いてもよく、2種以上を併用してもよい。更に、4,4’-メチレンビス(o-クロロアニリン)(MOCA)、2,6-ジクロロ-p-フェニレンジアミン、4,4’-メチレンビス(2,3-ジクロロアニリン)、3,5-ビス(メチルチオ)-2,4-トルエンジアミン、3,5-ビス(メチルチオ)-2,6-トルエンジアミン、3,5-ジエチルトルエン-2,4-ジアミン、3,5-ジエチルトルエン-2,6-ジアミン、トリメチレングリコール-ジ-p-アミノベンゾエート、ポリテトラメチレンオキシド-ジ-p-アミノベンゾエート、1,2-ビス(2-アミノフェニルチオ)エタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、N,N’-ジ-sec-ブチル-4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’-ジイソプロピル-5,5’-ジメチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトラエチルジフェニルメタン、4,4’-ジアミノ-3,3’,5,5’-テトライソプロピルジフェニルメタン、m-キシリレンジアミン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、m-フェニレンジアミン、及びp-キシリレンジアミン等に例示されるポリアミン類を混合することもできる。好ましい活性水素含有化合物は、ポリテトラメチレングリコール、ポリプロピレングリコール、プロピレンオキサイドとエチレンオキサイドの共重合体、3-メチル-1,5-ペンタンアジペート、より好ましくはポリプロピレングリコール、プロピレンオキサイドとエチレンオキサイドの共重合体である。 Ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, in addition to the high molecular weight polyol component described above as the active hydrogen-containing compound 1,4-cyclohexanedimethanol, 3-methyl-1,5-pentanediol, diethylene glycol, triethylene glycol, 1,4-bis (2-hydroxyethoxy) benzene, trimethylolpropane, glycerin, 1,2,6- Hexanetriol, pentaerythritol, tetramethylol cyclohexane, methyl glucoside, sorbitol, mannitol, dulcitol, sucrose, 2,2,6,6-tetrakis (hydroxymethyl) cyclohexanol, and triethanol amine Low molecular weight polyol component of such emissions, ethylenediamine, tolylenediamine, diphenylmethane diamine, may be used low molecular weight polyamine component of diethylenetriamine. These may be used singly or in combination of two or more. Furthermore, 4,4′-methylenebis (o-chloroaniline) (MOCA), 2,6-dichloro-p-phenylenediamine, 4,4′-methylenebis (2,3-dichloroaniline), 3,5-bis ( Methylthio) -2,4-toluenediamine, 3,5-bis (methylthio) -2,6-toluenediamine, 3,5-diethyltoluene-2,4-diamine, 3,5-diethyltoluene-2,6- Diamine, trimethylene glycol-di-p-aminobenzoate, polytetramethylene oxide-di-p-aminobenzoate, 1,2-bis (2-aminophenylthio) ethane, 4,4'-diamino-3,3 ' -Diethyl-5,5'-dimethyldiphenylmethane, N, N'-di-sec-butyl-4,4'-diaminodiphenylmethane, 4,4'-diamide -3,3'-Diethyldiphenylmethane, 4,4'-diamino-3,3'-diethyl-5,5'-dimethyldiphenylmethane, 4,4'-diamino-3,3'-diisopropyl-5,5'- Dimethyldiphenylmethane, 4,4'-diamino-3,3 ', 5,5'-tetraethyldiphenylmethane, 4,4'-diamino-3,3', 5,5'-tetraisopropyldiphenylmethane, m-xylylenediamine, Polyamines exemplified by N, N'-di-sec-butyl-p-phenylenediamine, m-phenylenediamine, and p-xylylenediamine can also be mixed. Preferred active hydrogen-containing compounds are polytetramethylene glycol, polypropylene glycol, copolymers of propylene oxide and ethylene oxide, 3-methyl-1,5-pentane adipate, more preferably polypropylene glycol, and copolymer of propylene oxide and ethylene oxide It is union.

 イソシアネート成分と活性水素含有化合物の好ましい組み合わせとしては、イソシアネート成分として、2,4-トルエンジイソシアネート、2,6-トルエンジイソシアネート、および4,4’-ジフェニルメタンジイソシアネートの1種または2種以上と、活性水素含有化合物として、ポリテトラメチレングリコール、ポリプロピレングリコール、プロピレンオキサイドとエチレンオキサイドの共重合体、および3-メチル-1,5-ペンタンアジペートの1種または2種以上との組み合わせである。より好ましくは、イソシアネート成分として、2,4-トルエンジイソシアネートおよび/または2,6-トルエンジイソシアネートと、活性水素含有化合物として、ポリプロピレングリコール、および/またはプロピレンオキサイドとエチレンオキサイドの共重合体との組み合わせである。 Preferred combinations of the isocyanate component and the active hydrogen-containing compound include one or two or more of 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, and 4,4′-diphenylmethane diisocyanate as the isocyanate component, and active hydrogen. The contained compounds are polytetramethylene glycol, polypropylene glycol, a copolymer of propylene oxide and ethylene oxide, and a combination of one or more of 3-methyl-1,5-pentane adipate. More preferably, it is a combination of 2,4-toluene diisocyanate and / or 2,6-toluene diisocyanate as an isocyanate component, and polypropylene glycol and / or a copolymer of propylene oxide and ethylene oxide as an active hydrogen-containing compound. is there.

 高分子マトリックス層3は、分散したフィラーと気泡を含有する発泡体でもよい。発泡体としては、一般の樹脂フォームを用いることができるが、圧縮永久歪などの特性を考慮すると熱硬化性樹脂フォームを用いることが好ましい。熱硬化性樹脂フォームとしては、ポリウレタン樹脂フォーム、シリコーン樹脂フォームなどが挙げられ、このうちポリウレタン樹脂フォームが好適である。ポリウレタン樹脂フォームには、上掲したイソシアネート成分や活性水素含有化合物を使用できる。 The polymer matrix layer 3 may be a foam containing dispersed fillers and cells. Although a general resin foam can be used as the foam, it is preferable to use a thermosetting resin foam in consideration of characteristics such as compression set. As a thermosetting resin foam, a polyurethane resin foam, a silicone resin foam, etc. are mentioned, Among these, a polyurethane resin foam is suitable. For the polyurethane resin foam, the above-mentioned isocyanate component and active hydrogen-containing compound can be used.

 磁性エラストマー中の磁性フィラーの量は、エラストマー成分100重量部に対して、好ましくは1~450重量部、より好ましくは2~400重量部である。これが1重量部より少ないと、磁場の変化を検出することが難しくなる傾向にあり、450重量部を超えると、磁性エラストマー自体が脆くなる場合がある。 The amount of the magnetic filler in the magnetic elastomer is preferably 1 to 450 parts by weight, more preferably 2 to 400 parts by weight with respect to 100 parts by weight of the elastomer component. If this amount is less than 1 part by weight, it tends to be difficult to detect a change in the magnetic field, and if it exceeds 450 parts by weight, the magnetic elastomer itself may become brittle.

 磁性フィラーの防錆などを目的として、高分子マトリックス層3の柔軟性を損なわない程度に、高分子マトリックス層3を封止する封止材を設けてもよい。封止材には、熱可塑性樹脂、熱硬化性樹脂またはそれらの混合物を用いることができる。熱可塑性樹脂としては、例えばスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリブタジエン系熱可塑性エラストマー、ポリイソプレン系熱可塑性エラストマー、フッ素系熱可塑性エラストマー、エチレン・アクリル酸エチルコポリマー、エチレン・酢酸ビニルコポリマー、ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、フッ素樹脂、ポリアミド、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリスチレン、ポリブタジエン等を挙げることができる。また、熱硬化性樹脂としては、例えばポリイソプレンゴム、ポリブタジエンゴム、スチレン・ブタジエンゴム、ポリクロロプレンゴム、アクリロニトリル・ブタジエンゴム等のジエン系合成ゴム、エチレン・プロピレンゴム、エチレン・プロピレン・ジエンゴム、ブチルゴム、アクリルゴム、ポリウレタンゴム、フッ素ゴム、シリコーンゴム、エピクロルヒドリンゴム等の非ジエン系ゴム、天然ゴム、ポリウレタン樹脂、シリコーン樹脂、エポキシ樹脂等を挙げることができる。これらのフィルムは積層されていてもよく、また、アルミ箔などの金属箔や上記フィルム上に金属が蒸着された金属蒸着膜を含むフィルムであってもよい。 A sealing material for sealing the polymer matrix layer 3 may be provided to the extent that the flexibility of the polymer matrix layer 3 is not impaired for the purpose of preventing corrosion of the magnetic filler and the like. For the sealing material, a thermoplastic resin, a thermosetting resin, or a mixture thereof can be used. Examples of thermoplastic resins include styrene thermoplastic elastomers, polyolefin thermoplastic elastomers, polyurethane thermoplastic elastomers, polyester thermoplastic elastomers, polyamide thermoplastic elastomers, polybutadiene thermoplastic elastomers, polyisoprene thermoplastic elastomers, Fluorine-based thermoplastic elastomer, ethylene / ethyl acrylate copolymer, ethylene / vinyl acetate copolymer, polyvinyl chloride, polyvinylidene chloride, chlorinated polyethylene, fluorine resin, polyamide, polyethylene, polypropylene, polyethylene terephthalate, polybutylene terephthalate, polystyrene, polybutadiene Etc. can be mentioned. The thermosetting resin may be, for example, polyisoprene rubber, polybutadiene rubber, styrene butadiene rubber, polychloroprene rubber, diene based synthetic rubber such as acrylonitrile butadiene rubber, ethylene propylene rubber, ethylene propylene diene rubber, butyl rubber, Non-diene rubbers such as acrylic rubber, polyurethane rubber, fluororubber, silicone rubber and epichlorohydrin rubber, natural rubber, polyurethane resin, silicone resin, epoxy resin and the like can be mentioned. These films may be laminated, or may be a metal foil such as an aluminum foil or a film including a metal vapor-deposited film in which a metal is vapor-deposited on the film.

 高分子マトリックス層3は、その厚み方向にフィラーが偏在しているものでも構わない。例えば、高分子マトリックス層3が、フィラーが相対的に多い一方側の領域と、フィラーが相対的に少ない他方側の領域との二層からなる構造でもよい。フィラーを多く含有する一方側の領域では、高分子マトリックス層3の小さな変形に対する外場の変化が大きくなるため、低い内圧に対するセンサ感度を高められる。また、フィラーが相対的に少ない他方側の領域は比較的柔軟で動きやすく、この領域を貼り付けることにより、高分子マトリックス層3(特に一方側の領域)が変形しやすくなる。 The polymer matrix layer 3 may have a filler unevenly distributed in the thickness direction. For example, the polymer matrix layer 3 may have a two-layer structure of one region relatively rich in filler and the other region relatively less filler. In the region on one side containing a large amount of filler, the change of the external field to a small deformation of the polymer matrix layer 3 becomes large, so the sensor sensitivity to a low internal pressure can be enhanced. Further, the region on the other side with a relatively small amount of filler is relatively soft and easy to move, and by attaching this region, the polymer matrix layer 3 (particularly, the region on one side) is easily deformed.

 一方側の領域でのフィラー偏在率は、好ましくは50を超え、より好ましくは60以上であり、更に好ましくは70以上である。この場合、他方側の領域でのフィラー偏在率は50未満となる。一方側の領域でのフィラー偏在率は最大で100であり、他方側の領域でのフィラー偏在率は最小で0である。したがって、フィラーを含むエラストマー層と、フィラーを含まないエラストマー層との積層体構造でも構わない。フィラーの偏在には、エラストマー成分にフィラーを導入した後、室温あるいは所定の温度で静置し、そのフィラーの重さにより自然沈降させる方法を使用でき、静置する温度や時間を変化させることでフィラー偏在率を調整できる。遠心力や磁力のような物理的な力を用いて、フィラーを偏在させてもよい。或いは、フィラーの含有量が異なる複数の層からなる積層体により高分子マトリックス層を構成しても構わない。 The filler uneven distribution rate in the region on one side is preferably more than 50, more preferably 60 or more, and still more preferably 70 or more. In this case, the filler uneven distribution rate in the region on the other side is less than 50. The filler uneven distribution rate in one area is at most 100, and the filler uneven distribution rate in the other area is at least 0. Therefore, a laminate structure of an elastomer layer containing a filler and an elastomer layer not containing a filler may be used. For uneven distribution of the filler, after introducing the filler into the elastomer component, it is possible to use a method of leaving at room temperature or at a predetermined temperature and letting the natural sedimentation by the weight of the filler. The filler maldistribution rate can be adjusted. The filler may be unevenly distributed using physical force such as centrifugal force or magnetic force. Alternatively, the polymer matrix layer may be formed of a laminate of a plurality of layers having different filler contents.

 フィラー偏在率は、以下の方法により測定される。即ち、走査型電子顕微鏡-エネルギー分散型X線分析装置(SEM-EDS)を用いて、高分子マトリックス層の断面を100倍で観察する。その断面の厚み方向全体の領域と、その断面を厚み方向に二等分した2つの領域に対し、それぞれ元素分析によりフィラー固有の金属元素(本実施形態の磁性フィラーであれば例えばFe元素)の存在量を求める。この存在量について、厚み方向全体の領域に対する一方側の領域の比率を算出し、それを一方側の領域でのフィラー偏在率とする。他方側の領域でのフィラー偏在率も、これと同様である。 The filler uneven distribution rate is measured by the following method. That is, the cross section of the polymer matrix layer is observed at 100 times using a scanning electron microscope-energy dispersive X-ray analyzer (SEM-EDS). Elemental analysis of the entire area in the thickness direction of the cross section and the two areas obtained by dividing the cross section in the thickness direction into metal elements (for example, Fe element in the case of the magnetic filler of the present embodiment) Find the abundance. With respect to this amount, the ratio of the area on one side to the area in the entire thickness direction is calculated, and this is taken as the filler uneven distribution rate in the area on one side. The filler uneven distribution rate in the other side area is also similar to this.

 フィラーが相対的に少ない他方側の領域は、気泡を含有する発泡体で形成されている構造でも構わない。これにより、高分子マトリックス層3が更に変形しやすくなってセンサ感度が高められる。また、他方側の領域とともに一方側の領域が発泡体で形成されていてもよく、その場合の高分子マトリックス層3は全体が発泡体となる。このような厚み方向の少なくとも一部が発泡体である高分子マトリックス層は、複数の層(例えば、フィラーを含有する無発泡層と、フィラーを含有しない発泡層)からなる積層体により構成されていても構わない。 The region on the other side with a relatively small amount of filler may be a structure formed of foam containing bubbles. As a result, the polymer matrix layer 3 is more easily deformed, and the sensor sensitivity is enhanced. Moreover, the area | region of one side may be formed with a foam with the area | region of the other side, and the polymer matrix layer 3 in that case becomes a foam as a whole. The polymer matrix layer in which at least a part of the thickness direction is a foam is constituted by a laminate of a plurality of layers (for example, a non-foamed layer containing a filler and a foamed layer not containing a filler) It does not matter.

 磁場の変化を検出する検出部4には、例えば、リードスイッチ、磁気抵抗素子、ホール素子、コイル、インダクタ、MI素子、フラックスゲートセンサなどを用いることができる。磁気抵抗素子としては、半導体化合物磁気抵抗素子、異方性磁気抵抗素子(AMR)、巨大磁気抵抗素子(GMR)、トンネル磁気抵抗素子(TMR)が挙げられる。このうち好ましいのはホール素子であり、これは広範囲にわたって高い感度を有し、検出部4として有用なためである。ホール素子には、例えば旭化成エレクトロニクス株式会社製EQ-430Lが使用できる。 For example, a reed switch, a magnetoresistive element, a Hall element, a coil, an inductor, an MI element, a flux gate sensor, or the like can be used as the detection unit 4 that detects a change in the magnetic field. Examples of the magnetoresistive element include semiconductor compound magnetoresistive elements, anisotropic magnetoresistive elements (AMR), giant magnetoresistive elements (GMR), and tunnel magnetoresistive elements (TMR). Among these, Hall elements are preferable, because they have high sensitivity over a wide range and are useful as the detection unit 4. For example, EQ-430L manufactured by Asahi Kasei Electronics Co., Ltd. can be used as the hall element.

 ガス膨れが進行した二次電池2は発火や破裂などのトラブルに至ることがあるため、本実施形態では、二次電池2が変形したときの膨張量が所定以上である場合に、充放電が遮断されるように構成されている。具体的には、検出センサ5によって検出した信号が制御装置6に伝達され、設定値以上の外場の変化が検出センサ5により検出された場合に、制御装置6がスイッチング回路7へ信号を発信して発電装置(または充電装置)8からの電流を遮断し、電池モジュール1への充放電が遮断される状態にする。これにより、ガス膨れに起因するトラブルを未然に防止することができる。 Since the secondary battery 2 in which gas expansion has progressed may lead to problems such as ignition and rupture, in the present embodiment, when the amount of expansion when the secondary battery 2 is deformed is a predetermined amount or more, charge and discharge It is configured to be shut off. Specifically, when the signal detected by the detection sensor 5 is transmitted to the control device 6 and the change of the external field above the set value is detected by the detection sensor 5, the control device 6 sends a signal to the switching circuit 7 Then, the current from the power generation device (or the charging device) 8 is shut off, and charging / discharging of the battery module 1 is shut off. This makes it possible to prevent in advance the trouble caused by the gas expansion.

 前述の実施形態では、二次電池がリチウムイオン二次電池である例を示したが、これに限られない。使用される二次電池は、リチウムイオン電池などの非水系電解液二次電池に限られず、ニッケル水素電池などの水系電解液二次電池であっても構わない。 Although the above-mentioned embodiment showed the example which is a lithium ion rechargeable battery, the rechargeable battery is not restricted to this. The secondary battery to be used is not limited to a non-aqueous electrolytic solution secondary battery such as a lithium ion battery, and may be an aqueous electrolytic solution secondary battery such as a nickel hydrogen battery.

 前述の実施形態では、高分子マトリックス層の変形に伴う磁場の変化を検出部により検出する例を示したが、他の外場の変化を検出する構成でもよい。例えば、高分子マトリックス層がフィラーとして金属粒子、カーボンブラック、カーボンナノチューブなどの導電性フィラーを含有し、検出部が外場としての電場の変化(抵抗および誘電率の変化)を検出する構成が考えられる。 Although the above-mentioned embodiment showed an example which detects change of a magnetic field accompanying modification of a polymer matrix layer by a detection part, it may be the composition of detecting change of other external fields. For example, it is considered that the polymer matrix layer contains a conductive filler such as metal particles, carbon black, carbon nanotubes, etc. as a filler, and the detection unit detects a change in electric field (change in resistance and dielectric constant) as an external field. Be

 以上のように、本実施形態の二次電池の状態予測方法は、
 二次電池2の充放電容量Qと変形量Tとに対応する実測値を取得するステップS1と、
 実測値の時系列データから、二次電池の充放電容量Qと変形量Tとの関係を示す特性曲線Lnにおける少なくとも1つの変曲点P1(P2)を抽出するステップS6と、
 二次電池の充放電容量と変形量との関係を示す特性曲線L1のうち、少なくとも満充電時点Pf、残量ゼロ時点Pe及びステージ変曲点P1、P2を有する過去の特性データを取得するステップS8と、
 抽出した変曲点を基準として、過去の特性データが示す特性曲線L1を、実測値の時系列データが示す特性曲線Lnにフィッティング処理して、実測値の時系列データにない部分が補間された特性曲線L2を示す予測特性データを生成するステップS9と、
を含む。
As described above, the method of predicting the state of the secondary battery of the present embodiment
Step S1 of acquiring an actual measurement value corresponding to the charge / discharge capacity Q and the deformation amount T of the secondary battery 2;
Step S6 of extracting at least one inflection point P1 (P2) in the characteristic curve Ln indicating the relationship between the charge / discharge capacity Q of the secondary battery and the deformation amount T from the time series data of the measured values;
A step of acquiring past characteristic data having at least a full charge time point Pf, a remaining time zero time point Pe, and stage inflection points P1 and P2 out of a characteristic curve L1 indicating the relationship between the charge / discharge capacity of the secondary battery and the deformation amount S8,
The characteristic curve L1 indicated by the past characteristic data is fitted to the characteristic curve Ln indicated by the time series data of the actual measurement value on the basis of the extracted inflection point, and a portion not included in the time series data of the actual value is interpolated. Generating predicted characteristic data indicating a characteristic curve L2;
including.

 本実施形態の二次電池の状態予測システムは、
 二次電池2の充放電容量Qと変形量Tとに対応する実測値を取得する実測値取得部61と、
 実測値の時系列データから、二次電池の充放電容量Qと変形量Tとの関係を示す特性曲線Lnにおける少なくとも1つの変曲点P1(P2)を抽出する変曲点抽出部62と、
 二次電池の充放電容量と変形量との関係を示す特性曲線L1のうち、少なくとも満充電時点Pf、残量ゼロ時点Pe及びステージ変曲点P1、P2を有する過去の特性データを取得する過去特性データ取得部60と、
 抽出した変曲点を基準として、過去の特性データが示す特性曲線L1を、実測値の時系列データが示す特性曲線Lnにフィッティング処理して、実測値の時系列データにない部分が補間された特性曲線L2を示す予測特性データを生成する予測特性データ生成部63と、
を備える。
The secondary battery state prediction system of the present embodiment is
A measured value acquisition unit 61 that acquires measured values corresponding to the charge / discharge capacity Q and the deformation amount T of the secondary battery 2;
An inflection point extraction unit 62 for extracting at least one inflection point P1 (P2) in a characteristic curve Ln indicating the relationship between the charge / discharge capacity Q of the secondary battery and the deformation amount T from time series data of measured values;
Of the characteristic curve L1 indicating the relationship between the charge and discharge capacity of the secondary battery and the deformation amount, the past acquires characteristic data of at least the full charge time point Pf, the remaining time zero time point Pe and the stage inflection points P1 and P2. Characteristic data acquisition unit 60,
The characteristic curve L1 indicated by the past characteristic data is fitted to the characteristic curve Ln indicated by the time series data of the actual measurement value on the basis of the extracted inflection point, and a portion not included in the time series data of the actual value is interpolated. A prediction characteristic data generation unit 63 that generates prediction characteristic data indicating a characteristic curve L2;
Equipped with

 二次電池の充放電容量と変形量との関係を示す特性曲線には、ステージ変化に伴って特性曲線の傾きが大きく変化する変曲点P1、P2が2つ存在する。この方法によれば、実測値の時系列データから、特性曲線における変曲点を抽出し、抽出した変曲点を基準として過去の特性データと実測値データとをフィッティングしているので、満充電から完全放電までの長期間の測定データがなくても、例えば満充電から変曲点まで、一方の変曲点から他方の変曲点までといったある程度の短い期間の実測データがあれば、或る程度の精度を確保した予測特性データが生成可能となる。
 したがって、満充電から完全放電までといった一連の充放電ではなく、充電及び放電がランダムに行われる実使用において、予測特性データが検出でき、二次電池の状態が予測可能となる。
There are two inflection points P1 and P2 at which the slope of the characteristic curve largely changes with the stage change in the characteristic curve showing the relationship between the charge and discharge capacity and the deformation amount of the secondary battery. According to this method, the inflection point in the characteristic curve is extracted from the time-series data of the measured values, and the past characteristic data and the measured value data are fitted with reference to the extracted inflection point. Even if there is no measurement data for a long time from full discharge to complete discharge, if there is measurement data of a short period, such as from full charge to the inflection point, from one inflection point to the other inflection point, Predicted characteristic data can be generated with a certain degree of accuracy secured.
Therefore, the predicted characteristic data can be detected and the state of the secondary battery can be predicted in actual use where charging and discharging are performed randomly, not a series of charging and discharging such as from full charge to complete discharge.

 本実施形態において、変曲点抽出部62は、取得した実測値が示す充放電容量に応じて抽出条件を設定し、取得した実測値に基づき定まる充放電容量に関する変形量の微分値が抽出条件を満たす場合に、実測値を変曲点として抽出する(ステップS7)。 In the present embodiment, the inflection point extraction unit 62 sets extraction conditions according to the charge / discharge capacity indicated by the acquired actual measurement value, and the differential value of the deformation amount related to the charge / discharge capacity determined based on the acquired actual measurement value is the extraction condition If the above condition is satisfied, the actual measurement value is extracted as an inflection point (step S7).

 特性曲線に含まれる2つの変曲点P1、P2は、充放電容量Qによって識別可能である。本実施形態では、変曲点抽出部62が、実測値が示す充放電容量Qに応じて抽出条件を設定するので、微分値の変化のみで変曲点を抽出する場合に比べて、抽出精度を向上させることが可能となる。 The two inflection points P1 and P2 included in the characteristic curve can be identified by the charge and discharge capacity Q. In this embodiment, since the inflection point extraction unit 62 sets the extraction condition according to the charge / discharge capacity Q indicated by the actual measurement value, the extraction accuracy is higher than in the case where the inflection point is extracted only by the change of the differential value. It is possible to improve the

 本実施形態において、変曲点抽出部62は、取得した実測値が示す充放電容量QPnが、過去の特性データにおける変曲点P1、P2の充放電容量QP1、QP2を中心とする所定範囲内に入る場合に、過去の特性データに基づき微分値の閾値ThP1、ThP2を設定し、微分値が閾値ThP1、ThP2を通過したことを抽出条件として設定する(ステップS7)。 In the present embodiment, the inflection point extraction unit 62, the charge-discharge capacity Q Pn showing actual measurement value acquired is centered on the charge and discharge capacity Q P1, Q P2 past the inflection point in the characteristic data P1, P2 If falling within the predetermined range, sets the threshold value Th P1, Th P2 of the differential value based on historical characteristic data set as an extraction condition that the differential value has passed the threshold value Th P1, Th P2 (step S7) .

 このようにすれば、変曲点P1、P2の抽出処理を簡素な計算で実現することが可能となる。 This makes it possible to realize the extraction process of the inflection points P1 and P2 by a simple calculation.

 本実施形態において、変曲点抽出部62は、微分値が閾値ThP1、ThP2を通過することに加えて、充放電容量が変化する或る期間の間、微分値が連続して上がり続けること又は下がり続けることを抽出条件として設定する(ステップS7)。 In the present embodiment, the inflection point extraction unit 62 continuously increases the derivative value during a certain period in which the charge / discharge capacity changes in addition to the derivative value passing the threshold values Th P1 and Th P2. It sets that continuing or falling as an extraction condition (step S7).

 このような抽出条件であれば、微分値が一時的に閾値ThP1、ThP2を通過したとしても抽出条件を満たさないので、より抽出精度を向上させることが可能となる。 With such an extraction condition, even if the differential value temporarily passes through the threshold values Th P1 and Th P2 , the extraction condition is not satisfied, so that the extraction accuracy can be further improved.

 本実施形態において、予測特性データ生成部63は、
 1つの変曲点P1が抽出され且つ実測値の時系列データに満充電時点Pf又は残量ゼロ時点Peのいずれか1点に対応する実測値が含まれている場合は、過去の特性データにおける満充電時点Pf又は残量ゼロ時点Peのいずれか1点と変曲点P1の2点を、実測値の時系列データにおける対応する2点に特性曲線の伸縮により一致させるための係数を算出し、係数を用いて特性曲線全体を伸縮調整し、変曲点P1を一致させ、予測特性データを生成し(ステップS9)、
 又は、
 1つの変曲点が抽出され且つ実測値の時系列データに満充電時点Pf又は残量ゼロ時点Peのいずれか1点に対応する実測値が含まれていない場合は、過去の特性データが示す特性曲線L1を拡大及び縮小せずに、直近に抽出された変曲点P1と、過去の特性データにおける変曲点P1とが一致するように、過去の特性データが示す特性曲線L1を移動させて補間し、予測特性データを生成し(ステップS9)、
 又は、
 2つの変曲点P1、P2が抽出された場合は、過去の特性データにおける2つの変曲点P1、P2を、実測値の時系列データにおける対応する2つの変曲点に特性曲線の伸縮により一致させるための係数を算出し、係数を用いて特性曲線全体を伸縮調整し、直近に抽出した変曲点P2を一致させ、予測特性データを生成する(ステップS9)。
In the present embodiment, the prediction characteristic data generation unit 63
When one inflection point P1 is extracted and the time-series data of actual values includes an actual measurement value corresponding to any one of the full charge time point Pf or the remaining zero time point Pe, in the past characteristic data Calculate a coefficient to make one of the fully charged time point Pf or the remaining zero time point Pe and two points at the inflection point P1 coincide with the corresponding two points in the time series data of the measured values by the expansion and contraction of the characteristic curve. , Adjust the entire characteristic curve using coefficients, make the inflection point P1 coincide, and generate prediction characteristic data (step S9),
Or
If one inflection point is extracted and the time-series data of the measured values does not include the measured value corresponding to any one of the fully charged time point Pf or the remaining zero time point Pe, the past characteristic data indicates Move the characteristic curve L1 indicated by the past characteristic data so that the inflection point P1 extracted most recently matches the inflection point P1 in the past characteristic data without enlarging or reducing the characteristic curve L1. Interpolate to generate prediction characteristic data (step S9),
Or
When two inflection points P1 and P2 are extracted, the two inflection points P1 and P2 in the past characteristic data are expanded and contracted to the corresponding two inflection points in the time-series data of the measured value. A coefficient for matching is calculated, and the entire characteristic curve is stretched and adjusted using the coefficient, and the inflection point P2 extracted most recently is matched to generate prediction characteristic data (step S9).

 この方法によれば、変曲点同士、あるいは、変曲点と特性曲線末端とが優先して一致するので、一般的なフィッティングに比べて、ステージ変化を伴う特性曲線の形状が崩れにくく、予測精度を向上させることが可能となる。 According to this method, since the inflection points or the inflection points and the end of the characteristic curve coincide with each other with priority, the shape of the characteristic curve with stage change is less likely to collapse compared to general fitting, and thus prediction It is possible to improve the accuracy.

 本実施形態において、予測特性データ生成部63は、実測値の時系列データに2つの変曲点が含まれ且つ予測特性データが既に生成されており、所定の再生成条件が成立する場合(ステップS4:YES)に、予測特性データの特性曲線L2を実測値の時系列データの特性曲線Lnに特性曲線の伸縮により一致させるための係数を算出し、係数を用いて特性曲線L2全体を伸縮調整し、直近に抽出した変曲点を一致させ、予測特性データを再生成する。係数は、2つの変曲点の間の比率、最新の実測値と最新実測値に近い側の変曲点との間の比率を少なくとも用い、2つの変曲点の間の重み付けを他の区間の重み付けよりも大きく設定して、集計により算出する。 In the present embodiment, when the predicted characteristic data generation unit 63 includes two inflection points in the time series data of the actual measurement value and the predicted characteristic data has already been generated, and a predetermined regeneration condition is satisfied (step S4: YES), calculate the coefficient for matching the characteristic curve L2 of the prediction characteristic data to the characteristic curve Ln of the time series data of the actual measurement value by the expansion and contraction of the characteristic curve, and adjust the expansion and contraction of the entire characteristic curve L2 using the coefficient Then, the inflection points extracted most recently are made to coincide, and prediction characteristic data is regenerated. The coefficient uses at least the ratio between the two inflection points, the ratio between the latest measured value and the inflection point closer to the latest measured value, and the weighting between the two inflection points in the other interval Set larger than the weighting of, and calculate by aggregation.

 このようにすれば、2つの変曲点間の1区間だけでなく、2つの区画の比率を用い、最新の実測値についても合致するようにフィッティングされるので、予測特性データが実測値に即した形となる。 In this way, not only one section between two inflection points but also the ratio of two sections is used to fit to the latest measured value so that the predicted characteristic data is immediately It becomes a form.

 本実施形態において、残容量算出部64は、残容量を予測する時点の実測値が示す充放電容量QPnと、予測特性データにおける残量ゼロ時点Peの充放電容量QPeとの差を残容量Qrとして算出する(ステップS3)。 In the present embodiment, the remaining capacity calculation unit 64 determines the difference between the charge / discharge capacity Q Pn indicated by the measured value at the time of predicting the remaining capacity and the charge / discharge capacity Q Pe at the remaining capacity zero point Pe in the predicted characteristic data. Calculated as the capacity Qr (step S3).

 このように、予測特性データには、残量ゼロ時点Peのデータを含むため、精度よく残量量を算出可能になる。 As described above, since the prediction characteristic data includes data of the remaining amount zero point Pe, it becomes possible to calculate the remaining amount accurately.

 本実施形態において、初期特性データ取得部65および劣化情報生成部66を有する。初期特性データ取得部65は、二次電池の充放電容量と変形量との関係を示す特性曲線L0のうち、少なくとも満充電時点Pf、残量ゼロ時点Pe及びステージ変曲点P1、P2を有する初期特性データを取得する(ステップS11)。劣化情報生成部66は、初期特性データにおける2つの変曲点P1、P2と、予測特性データにおける対応する2つの変曲点P1、P2とを、特性曲線の伸縮により一致させるための充放電容量の拡大率を、充放電に寄与する活物質量の変化度として算出する(ステップS12)。 In the present embodiment, an initial characteristic data acquisition unit 65 and a deterioration information generation unit 66 are provided. Initial characteristic data acquisition portion 65 has at least a full charge time point Pf, a remaining amount time zero point Pe, and stage inflection points P1 and P2 in a characteristic curve L0 indicating the relationship between the charge and discharge capacity of the secondary battery and the deformation amount. Initial characteristic data is acquired (step S11). The deterioration information generation unit 66 has a charge / discharge capacity for causing the two inflection points P1 and P2 in the initial characteristic data and the corresponding two inflection points P1 and P2 in the predicted characteristic data to coincide with each other by the expansion and contraction of the characteristic curve. The enlargement factor of is calculated as the degree of change of the amount of active material contributing to charge and discharge (step S12).

 このようにすれば、充放電に寄与する活物質量の変化度を知ることが可能となる。 In this way, it is possible to know the degree of change of the amount of active material contributing to charge and discharge.

 本実施形態において、劣化情報生成部66は、充放電容量の拡大率について、2つの変曲点の間の比率、一方の変曲点と満充電時点Pfの間の比率及び他方の変曲点と残量ゼロ時点Peの間の比率を用い、2つの変曲点の間の重み付けを他の区間の重み付けよりも大きく設定して、集計により算出する(ステップS12)。 In the present embodiment, the degradation information generation unit 66 determines the ratio between two inflection points, the ratio between one inflection point and the full charge time point Pf, and the other inflection point with respect to the enlargement factor of the charge and discharge capacity. The weighting between the two inflection points is set larger than the weightings of the other sections using the ratio between the remaining amount zero point Pe and the remaining points, and the calculation is made by aggregation (step S12).

 このようにすれば、2つの変曲点間の比率だけに比べて、満充電時点Pf及び残量ゼロ時点Peもフィッティング結果として近くなるので、特性曲線全体での一致度があがり、算出精度が向上すると考える。 In this way, compared to the ratio between the two inflection points alone, the fully charged time point Pf and the remaining zero time point Pe become closer as a fitting result, so the degree of agreement in the entire characteristic curve is improved, and the calculation accuracy is improved. I think it will improve.

 本実施形態において、初期特性データ取得部65および劣化情報生成部66を有する。初期特性データ取得部65は、二次電池の充放電容量と変形量との関係を示す特性曲線L0のうち、少なくとも満充電時点Pf、残量ゼロ時点Pe及びステージ変曲点P1、P2を有する初期特性データを取得する(ステップS11)。劣化情報生成部66は、初期特性データにおける2つの変曲点P1、P2と、予測特性データにおける2つの変曲点P1、P2とを、特性曲線の伸縮により一致させるための係数を算出し、係数を用いて初期特性データが示す特性曲線L0全体を伸縮調整すると共に、初期特性データの調整後の特性曲線L0’及び予測特性データの特性曲線L2における2つの変曲点P1、P2同士を一致させ、満充電時点Pf同士の充放電容量の左右ずれ量D1および残量ゼロ時点Pe同士の充放電容量の左右ずれ量D2の平均値[(D1+D2)/2]を、電池の劣化状態として算出する(ステップS12)。 In the present embodiment, an initial characteristic data acquisition unit 65 and a deterioration information generation unit 66 are provided. Initial characteristic data acquisition portion 65 has at least a full charge time point Pf, a remaining amount time zero point Pe, and stage inflection points P1 and P2 in a characteristic curve L0 indicating the relationship between the charge and discharge capacity of the secondary battery and the deformation amount. Initial characteristic data is acquired (step S11). The deterioration information generation unit 66 calculates coefficients for making the two inflection points P1 and P2 in the initial characteristic data coincide with the two inflection points P1 and P2 in the prediction characteristic data by the expansion and contraction of the characteristic curve, While adjusting the entire characteristic curve L0 indicated by the initial characteristic data using coefficients, the two inflection points P1 and P2 in the characteristic curve L0 'after adjustment of the initial characteristic data and the characteristic curve L2 of the predicted characteristic data coincide with each other And calculate the average value [(D1 + D2) / 2] of the lateral displacement amount D1 of the charge and discharge capacity between the full charge time points Pf and the lateral displacement amount D2 of the charge and discharge capacity between the remaining time zero point Pe as the battery degradation state. (Step S12).

 このようにすれば、正極か負極の一方の副反応が、他方の副反応に対して、どれだけ多いか、という電池の劣化状態を算出することが可能となる。 In this way, it is possible to calculate the deterioration state of the battery as to how much the side reaction of one of the positive electrode and the negative electrode is greater than the other side reaction.

 本実施形態において、初期特性データ取得部65および劣化情報生成部66を有する。初期特性データ取得部65は、二次電池の充放電容量と変形量との関係を示す特性曲線L0のうち、少なくとも厚み最大点PL、満充電時点Pf、残量ゼロ時点Pe及びステージ変曲点P1、P2を有する初期特性データを取得する(ステップS11)。劣化情報生成部66は、初期特性データにおける2つの変曲点P1、P2と、予測特性データにおける2つの変曲点P1、P2とを、特性曲線の伸縮により一致させるための係数を算出し、係数を用いて初期特性データにおける厚み最大点PLから予測特性データにおける厚み最大点PL’を特定し、予測特性データにおける厚み最大点PL’から残量ゼロ時点Peまでの変形量T1を、残量ゼロ時点を基点としたリチウム析出までの厚み変化量として算出する。 In the present embodiment, an initial characteristic data acquisition unit 65 and a deterioration information generation unit 66 are provided. Initial characteristic data acquisition unit 65 sets at least a thickness maximum point PL, a full charge time point Pf, a remaining time zero time point Pe, and a stage inflection point in a characteristic curve L0 indicating the relationship between the charge and discharge capacity of the secondary battery and the deformation amount. Initial characteristic data having P1 and P2 is acquired (step S11). The deterioration information generation unit 66 calculates coefficients for making the two inflection points P1 and P2 in the initial characteristic data coincide with the two inflection points P1 and P2 in the prediction characteristic data by the expansion and contraction of the characteristic curve, The thickness maximum point PL 'in the prediction characteristic data is specified from the thickness maximum point PL in the initial characteristic data using the coefficient, and the deformation amount T1 from the thickness maximum point PL' in the prediction characteristic data to the remaining amount zero point Pe is It is calculated as the amount of thickness change up to lithium deposition starting from the zero point.

 このようにすれば、残量ゼロ時点を基点としたリチウム析出までの厚み変化量が算出可能となる。この値は、充電制御の指標となり、有用である。 In this way, it is possible to calculate the amount of thickness change up to lithium deposition starting from the remaining amount zero point. This value is an indicator of charge control and is useful.

 本実施形態において、劣化情報生成部66は、係数について、2つの変曲点の間の比率、一方の変曲点と満充電時点Pfの間の比率及び他方の変曲点と残量ゼロ時点Peの間の比率を用い、2つの変曲点の間の重み付けを他の区間の重み付けよりも大きく設定して、集計により算出する(ステップS12)。 In the present embodiment, the deterioration information generation unit 66 determines, for the coefficients, a ratio between two inflection points, a ratio between one inflection point and a full charge time point Pf, and the other inflection point and the remaining time zero time point. Using the ratio between Pe, the weighting between the two inflection points is set to be larger than the weighting of the other sections, and calculation is performed by aggregation (step S12).

 このようにすれば、2つの変曲点間の比率だけに比べて、満充電時点Pf及び残量ゼロ時点Peもフィッティング結果として近くなるので、特性曲線全体での一致度があがり、算出精度が向上すると考える。 In this way, compared to the ratio between the two inflection points alone, the fully charged time point Pf and the remaining zero time point Pe become closer as a fitting result, so the degree of agreement in the entire characteristic curve is improved, and the calculation accuracy is improved. I think it will improve.

 本実施形態において、予測特性データにおける満充電時点Pfが厚み最大点PLであり、劣化情報生成部66は、予測特性データにおける厚み最大点PL(Pf)から残量ゼロ時点Peまでの変形量T1を、残量ゼロ時点を基点としたリチウム析出までの厚み変化量として算出する。 In the present embodiment, the fully charged time point Pf in the prediction characteristic data is the thickness maximum point PL, and the deterioration information generation unit 66 determines the deformation T1 from the thickness maximum point PL (Pf) in the prediction characteristic data to the remaining zero time point Pe. Is calculated as the amount of thickness change up to lithium deposition starting from the remaining amount zero point.

 このようにすれば、残量ゼロ時点を基点としたリチウム析出までの厚み変化量が算出可能となる。この値は、充電制御の指標となり、有用である。 In this way, it is possible to calculate the amount of thickness change up to lithium deposition starting from the remaining amount zero point. This value is an indicator of charge control and is useful.

 本実施形態の充電制御システムは、上記劣化情報生成部66と、検出センサ5により検出した二次電池の変形量Tが、劣化情報生成部66が生成した厚み変化量T1を超えないように、充電を制御する充電制御部67と、を有する。 In the charge control system of the present embodiment, the deformation amount T of the secondary battery detected by the deterioration information generation unit 66 and the detection sensor 5 does not exceed the thickness change amount T1 generated by the deterioration information generation unit 66. And a charge control unit 67 that controls charging.

 この構成によれば、リチウムが析出しないように充電制御するので、リチウム析出による劣化を招来せずに急速に充電することができる場合がある。 According to this configuration, since charge control is performed so that lithium does not precipitate, in some cases, it may be possible to charge rapidly without causing deterioration due to lithium precipitation.

 本実施形態では、二次電池2に直接又は間接的に高分子マトリックス層3が貼り付けられ、高分子マトリックス層3は、高分子マトリックス層3の変形に応じて外場に変化を与えるフィラーを含有し、高分子マトリックス層3の変形に応じた外場の変化を検出することにより、二次電池2の変形量Tを検出する。 In the present embodiment, the polymer matrix layer 3 is attached directly or indirectly to the secondary battery 2, and the polymer matrix layer 3 is formed of a filler that changes the external field according to the deformation of the polymer matrix layer 3. The deformation amount T of the secondary battery 2 is detected by detecting the change in the external field according to the deformation of the polymer matrix layer 3.

 このようにすれば、二次電池2の変形量に対応する実測値を適切に検出することができる。 In this way, an actual measurement value corresponding to the amount of deformation of the secondary battery 2 can be appropriately detected.

 本実施形態に係る二次電池の状態予測システムは、
 プロセッサ6Bと、プロセッサ6Bが実行可能な指令を記憶するためのメモリ6Aと、を備える。
 プロセッサ6Bは、
 二次電池2の充放電容量Qと変形量Tとに対応する実測値を取得し(ステップS1)、
 実測値の時系列データから、二次電池の充放電容量Qと変形量Tとの関係を示す特性曲線Lnにおける少なくとも1つの変曲点P1(P2)を抽出し(ステップS6)、
 二次電池の充放電容量と変形量との関係を示す特性曲線L1のうち、少なくとも満充電時点Pf、残量ゼロ時点Pe及びステージ変曲点P1、P2を有する過去の特性データを取得し(ステップS8)、
 抽出した変曲点を基準として、過去の特性データが示す特性曲線L1を、実測値の時系列データが示す特性曲線Lnにフィッティング処理して、実測値の時系列データにない部分が補間された特性曲線L2を示す予測特性データを生成する(ステップS9)ように構成されている。
The secondary battery state prediction system according to the present embodiment is
A processor 6B and a memory 6A for storing instructions executable by the processor 6B.
Processor 6B is
Measured values corresponding to the charge / discharge capacity Q and deformation amount T of the secondary battery 2 are acquired (step S1),
At least one inflection point P1 (P2) in the characteristic curve Ln indicating the relationship between the charge / discharge capacity Q of the secondary battery and the deformation amount T is extracted from the time-series data of the measured values (step S6),
Of the characteristic curve L1 showing the relationship between the charge and discharge capacity of the secondary battery and the deformation amount, obtain the past characteristic data having at least the full charge time point Pf, the remaining time zero time point Pe and the stage inflection points P1 and P2 Step S8),
The characteristic curve L1 indicated by the past characteristic data is fitted to the characteristic curve Ln indicated by the time series data of the actual measurement value on the basis of the extracted inflection point, and a portion not included in the time series data of the actual value is interpolated. The prediction characteristic data indicating the characteristic curve L2 is generated (step S9).

 プロセッサ6Bは、1つ又は複数の特定用途向け集積回路(ASIC)、デジタル信号プロセッサ(DSP)、デジタル信号処理デバイス(DSPD)、プログラマブルロジックデバイス(PLD)、フィールドプログラマブルゲートアレイ(FPGA)、コントローラ、マイクロコントローラ、マイクロプロセッサまたは他の電子部品によって実現されてもよい。 The processor 6B includes one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable gate arrays (FPGAs), controllers, It may be realized by a microcontroller, microprocessor or other electronic component.

 本実施形態に係るプログラムは、上記方法をコンピュータに実行させるプログラムである。
 これらプログラムを実行することによっても、上記方法の奏する作用効果を得ることが可能となる。また、プログラムが記憶された、コンピュータが読み取り可能な記録媒体でもよい。
The program according to the present embodiment is a program that causes a computer to execute the above method.
By executing these programs, it is also possible to obtain the effects of the above method. In addition, the program may be stored in a computer readable recording medium.

 本発明は上述した実施形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改良変更が可能である。例えば、特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現できる。特許請求の範囲、明細書、および図面中のフローに関して、便宜上「まず」、「次に」等を用いて説明したとしても、この順で実行することが必須であることを意味するものではない。 The present invention is not limited to the embodiment described above, and various improvements and modifications can be made without departing from the spirit of the present invention. For example, the order of execution of each process such as operations, procedures, steps, and steps in the apparatuses, systems, programs, and methods shown in the claims, the specification, and the drawings is the output order of the previous process. It can be realized in any order as long as it is not used in processing. Even if the flow in the claims, the description and the drawings is described using “first”, “next” and the like for convenience, it does not mean that execution in this order is essential. .

 上記実施形態では、実測値の時系列データから変曲点を抽出し、過去の特性データをフィッティング処理することで、予測特性データを生成している。しかし、精度を考えなければ、次のように予測特性データの生成処理4も挙げられる。すなわち、予測特性データの生成処理4は、現時点での実測値が示す充放電容量QPnを基点に、過去の特性データが示す特性曲線L1を拡大及び縮小せずにそのままフィッティングする。この方法によれば、容量劣化、バランスズレを考慮しないものの、予測特性データを生成可能である。
 上記の予測特性データの生成処理1~4のうち少なくとも1つの生成処理を実装することが可能である。生成処理1~4の組み合わせは、任意に行うことができる。但し、精度が高い処理から精度が低い順にならべると、生成処理1、生成処理2、生成処理3、生成処理4である。生成処理1が最も高く、生成処理4が最も精度が低い。その反面、予測特性データを生成するまでに要する時間は、生成処理4が最も短く、生成処理1が最も長くなる。
In the above embodiment, the prediction characteristic data is generated by extracting the inflection point from the time-series data of the actual measurement value and performing the fitting process on the past characteristic data. However, if accuracy is not considered, generation processing 4 of prediction characteristic data can also be mentioned as follows. That is, in generation processing 4 of predicted characteristic data, the characteristic curve L1 indicated by the past characteristic data is fitted as it is without enlargement or reduction based on the charge / discharge capacity Q Pn indicated by the actual measurement value at the present time. According to this method, it is possible to generate predicted characteristic data although capacity deterioration and balance deviation are not taken into consideration.
At least one of the generation processes 1 to 4 of the prediction characteristic data described above can be implemented. The combination of the generation processes 1 to 4 can be arbitrarily performed. However, in order from the process with high accuracy to the order with low accuracy, it is generation process 1, generation process 2, generation process 3, and generation process 4. The generation process 1 is the highest, and the generation process 4 is the lowest. On the other hand, the time required to generate the prediction characteristic data is the shortest in the generation process 4 and the longest in the generation process 1.

 L0…初期特性データが示す特性曲線
 Ln…実測値が示す特性曲線
 L1…過去の特性データが示す特性曲線
 L2…予測特性データが示す特性曲線
 P1、P2…変曲点
 Pf…満充電時点
 Pe…残量ゼロ時点
 PL…厚み最大点
 ThP1、ThP2…閾値
 Qr…残容量
 6A…メモリ
 6B…プロセッサ 
L0 Characteristic curve indicated by initial characteristic data Ln Characteristic curve indicated by actual value L1 Characteristic curve indicated by past characteristic data L2 Characteristic curve indicated by predicted characteristic data P1, P2 Inflection point Pf Full charge point Pe Remaining zero time point PL ... thickness maximum point Th P1 , Th P2 ... threshold Qr ... remaining capacity 6A ... memory 6B ... processor

Claims (33)

 二次電池の充放電容量と変形量とに対応する実測値を取得するステップと、
 前記実測値の時系列データから、前記二次電池の充放電容量と変形量との関係を示す特性曲線における少なくとも1つの変曲点を抽出するステップと、
 二次電池の充放電容量と変形量との関係を示す特性曲線のうち、少なくとも満充電時点、残量ゼロ時点及びステージ変曲点を有する過去の特性データを取得するステップと、
 抽出した変曲点を基準として、前記過去の特性データが示す特性曲線を、前記実測値の時系列データが示す特性曲線にフィッティング処理して、前記実測値の時系列データにない部分が補間された特性曲線を示す予測特性データを生成するステップと、
を含む、二次電池の状態予測方法。
Acquiring an actual measurement value corresponding to the charge / discharge capacity and deformation amount of the secondary battery;
Extracting at least one inflection point in a characteristic curve indicating the relationship between the charge / discharge capacity of the secondary battery and the deformation amount from the time-series data of the measured value;
Acquiring past characteristic data having at least a full charge time point, a remaining time zero time point, and a stage inflection point in a characteristic curve indicating a relation between charge and discharge capacity and deformation amount of the secondary battery;
The characteristic curve indicated by the characteristic data in the past is fitted to the characteristic curve indicated by the time series data of the actual measurement value on the basis of the extracted inflection point, and a portion not included in the time series data of the actual measurement value is interpolated Generating predicted characteristic data indicating a different characteristic curve;
A method of predicting the state of a secondary battery, including:
 取得した実測値が示す充放電容量に応じて抽出条件を設定し、
 取得した実測値に基づき定まる前記充放電容量に関する変形量の微分値が前記抽出条件を満たす場合に、前記実測値を変曲点として抽出する、請求項1に記載の方法。
Set extraction conditions according to the charge / discharge capacity indicated by the acquired actual measurement value,
The method according to claim 1, wherein the measured value is extracted as an inflection point when the differential value of the deformation amount related to the charge / discharge capacity determined based on the acquired measured value satisfies the extraction condition.
 取得した実測値が示す充放電容量が、過去の特性データにおける変曲点の充放電容量を中心とする所定範囲内に入る場合に、過去の特性データに基づき前記微分値の閾値を設定し、前記微分値が前記閾値を通過したことを抽出条件として設定する、請求項2に記載の方法。 When the charge / discharge capacity indicated by the obtained measured value falls within a predetermined range centered on the charge / discharge capacity at the inflection point in the past characteristic data, the threshold value of the differential value is set based on the past characteristic data, The method according to claim 2, wherein an extraction condition is set that the differential value has passed the threshold value.  前記微分値が前記閾値を通過することに加えて、前記充放電容量が変化する或る期間の間、前記微分値が連続して上がり続けること又は下がり続けることを抽出条件として設定する、請求項3に記載の方法。 In addition to the differential value passing the threshold value, it is set as an extraction condition that the differential value continues to rise or fall continuously during a certain period in which the charge / discharge capacity changes. The method described in 3.  1つの変曲点が抽出され且つ前記実測値の時系列データに前記満充電時点又は前記残量ゼロ時点のいずれか1点に対応する実測値が含まれている場合は、前記過去の特性データにおける前記満充電時点又は前記残量ゼロ時点のいずれか1点と前記変曲点の2点を、前記実測値の時系列データにおける対応する2点に特性曲線の伸縮により一致させるための係数を算出し、前記係数を用いて特性曲線全体を伸縮調整し、前記変曲点を一致させ、前記予測特性データを生成し、
 又は、
 1つの変曲点が抽出され且つ前記実測値の時系列データに前記満充電時点又は前記残量ゼロ時点のいずれか1点に対応する実測値が含まれていない場合は、前記過去の特性データが示す特性曲線を拡大及び縮小せずに、直近に抽出された変曲点と、前記過去の特性データにおける変曲点とが一致するように、前記過去の特性データが示す特性曲線を移動させて補間し、前記予測特性データを生成し、
 又は、
 2つの変曲点が抽出された場合は、前記過去の特性データにおける2つの変曲点を、前記実測値の時系列データにおける対応する2つの変曲点に特性曲線の伸縮により一致させるための係数を算出し、前記係数を用いて特性曲線全体を伸縮調整し、直近に抽出した変曲点を一致させ、前記予測特性データを生成する、請求項1~4のいずれかに記載の方法。
In the case where one inflection point is extracted and the time-series data of the actual measurement value includes an actual measurement value corresponding to any one of the full charge time or the remaining time zero, the characteristic data of the past The factor for making the characteristic curve match the two points at any one of the fully charged time point or the remaining zero time point and the inflection point at corresponding two points in the time series data of the actually measured value Calculating and scaling the entire characteristic curve using the coefficients, matching the inflection points, and generating the predicted characteristic data;
Or
In the case where one inflection point is extracted and the time-series data of the actual measurement value does not include the actual measurement value corresponding to any one point of the full charge time or the remaining zero time, the characteristic data of the past The characteristic curve indicated by the past characteristic data is moved so that the inflection point extracted most recently matches the inflection point in the past characteristic data without enlarging or reducing the characteristic curve indicated by Interpolate to generate the prediction characteristic data,
Or
When two inflection points are extracted, the two inflection points in the past characteristic data are made to coincide with the corresponding two inflection points in the time-series data of the actual measurement value by the expansion and contraction of the characteristic curve. The method according to any one of claims 1 to 4, wherein a coefficient is calculated, the entire characteristic curve is scaled by using the coefficient, the inflection points extracted most recently are matched, and the prediction characteristic data is generated.
 前記実測値の時系列データに2つの変曲点が含まれ且つ前記予測特性データが既に生成されており、所定の再生成条件が成立する場合に、前記予測特性データの特性曲線を前記実測値の時系列データの特性曲線に特性曲線の伸縮により一致させるための係数を算出し、前記係数を用いて特性曲線全体を伸縮調整し、直近に抽出した変曲点を一致させ、前記予測特性データを再生成するステップを含み、
 前記係数は、前記2つの変曲点の間の比率、最新の実測値と最新実測値に近い側の変曲点との間の比率を少なくとも用い、2つの変曲点の間の重み付けを他の区間の重み付けよりも大きく設定して、集計により算出する、請求項1~5のいずれかに記載の方法。
In the case where two inflection points are included in the time series data of the actual measurement value, the prediction characteristic data is already generated, and a predetermined regeneration condition is satisfied, the characteristic curve of the prediction characteristic data is the actual measurement value A coefficient for matching the characteristic curve of the time series data by expansion and contraction of the characteristic curve is calculated, the whole characteristic curve is expanded and adjusted using the coefficient, the inflection points extracted most recently are made to coincide, and the predicted characteristic data Including the step of regenerating
The coefficient uses at least the ratio between the two inflection points, the ratio between the latest actual value and the inflection point closer to the latest actual value, and the weighting between the two inflection points The method according to any one of claims 1 to 5, wherein the value is set larger than the weighting of the section of and calculated by aggregation.
 残容量を予測する時点の実測値が示す充放電容量と、前記予測特性データにおける残量ゼロ時点の充放電容量との差を残容量として算出する、請求項1~6のいずれかに記載の方法。 The difference between the charge / discharge capacity indicated by the actual value at the time of predicting the remaining capacity and the charge / discharge capacity at the remaining time zero in the predicted characteristic data is calculated as the remaining capacity. Method.  二次電池の充放電容量と変形量との関係を示す特性曲線のうち、少なくとも満充電時点、残量ゼロ時点及びステージ変曲点を有する初期特性データを取得するステップと、
 前記初期特性データにおける2つの変曲点と、前記予測特性データにおける対応する2つの変曲点とを、特性曲線の伸縮により一致させるための充放電容量の拡大率を、充放電に寄与する活物質量の変化度として算出するステップと、を含む、請求項1~7のいずれかに記載の方法。
Acquiring initial characteristic data having at least a full charge time point, a remaining time zero time point, and a stage inflection point in a characteristic curve indicating a relation between charge and discharge capacity of secondary battery and deformation amount;
An activity that contributes to charge and discharge, an enlargement ratio of charge and discharge capacity for matching the two inflection points in the initial characteristic data and the corresponding two inflection points in the predicted characteristic data by the expansion and contraction of the characteristic curve The method according to any one of claims 1 to 7, further comprising the step of: calculating as the degree of change of the amount of substance.
 前記充放電容量の拡大率は、前記2つの変曲点の間の比率、一方の変曲点と満充電時点の間の比率及び他方の変曲点と残量ゼロ時点の間の比率を用い、前記2つの変曲点の間の重み付けを他の区間の重み付けよりも大きく設定して、集計により算出する、請求項8に記載の方法。 The enlargement ratio of the charge and discharge capacity is determined using the ratio between the two inflection points, the ratio between one inflection point and the full charge time, and the ratio between the other inflection point and the remaining time zero. The method according to claim 8, wherein the weight between the two inflection points is set larger than the weight of the other sections and calculated by aggregation.  二次電池の充放電容量と変形量との関係を示す特性曲線のうち、少なくとも満充電時点、残量ゼロ時点及びステージ変曲点を有する初期特性データを取得するステップと、
 前記初期特性データにおける2つの変曲点と、前記予測特性データにおける2つの変曲点とを、特性曲線の伸縮により一致させるための係数を算出し、前記係数を用いて前記初期特性データが示す特性曲線全体を伸縮調整すると共に、前記初期特性データの調整後の特性曲線及び前記予測特性データの特性曲線における2つの変曲点同士を一致させ、前記満充電時点同士の充放電容量のずれ量および前記残量ゼロ時点同士の充放電容量のずれ量の平均値を、電池の劣化状態として算出するステップと、を含む、請求項1~7のいずれかに記載の方法。
Acquiring initial characteristic data having at least a full charge time point, a remaining time zero time point, and a stage inflection point in a characteristic curve indicating a relation between charge and discharge capacity of secondary battery and deformation amount;
A coefficient for making two inflection points in the initial characteristic data coincide with two inflection points in the prediction characteristic data by expansion and contraction of the characteristic curve is calculated, and the initial characteristic data is indicated using the coefficients The expansion and contraction adjustment of the entire characteristic curve is performed, and the two inflection points in the characteristic curve after adjustment of the initial characteristic data and the characteristic curve of the predicted characteristic data are made to coincide with each other. And calculating the average value of the amount of deviation of the charge / discharge capacity between the remaining amount zero point in time as the deterioration state of the battery, the method according to any one of claims 1 to 7.
 前記係数は、前記2つの変曲点の間の比率、一方の変曲点と満充電時点の間の比率及び他方の変曲点と残量ゼロ時点の間の比率を用い、前記2つの変曲点の間の重み付けを他の区間の重み付けよりも大きく設定して、集計により算出する、請求項10に記載の方法。 The coefficients are calculated using the ratio between the two inflection points, the ratio between one inflection point and the full charge time, and the ratio between the other inflection point and the remaining time zero, The method according to claim 10, wherein the weight between the inflection points is set larger than the weight of the other sections and calculated by aggregation.  二次電池の充放電容量と変形量との関係を示す特性曲線のうち、少なくとも厚み最大点、満充電時点、残量ゼロ時点及びステージ変曲点を有する初期特性データを取得するステップと、
 前記初期特性データにおける2つの変曲点と、前記予測特性データにおける2つの変曲点とを、特性曲線の伸縮により一致させるための係数を算出し、前記係数を用いて前記初期特性データにおける前記厚み最大点から前記予測特性データにおける前記厚み最大点を特定し、前記予測特性データにおける前記厚み最大点から前記残量ゼロ時点までの変形量を、残量ゼロ時点を基点としたリチウム析出までの厚み変化量として算出するステップと、を含む、請求項1~7のいずれかに記載の方法。
Acquiring initial characteristic data having at least a thickness maximum point, a full charge time, a remaining time zero, and a stage inflection point among characteristic curves showing a relation between charge and discharge capacity and deformation amount of the secondary battery;
A coefficient for causing the two inflection points in the initial characteristic data and the two inflection points in the prediction characteristic data to coincide with each other by expansion and contraction of the characteristic curve is calculated, and using the coefficients, the in the initial characteristic data is calculated The thickness maximum point in the prediction characteristic data is specified from the thickness maximum point, and the amount of deformation from the thickness maximum point in the prediction characteristic data to the remaining amount zero point is determined until lithium deposition starting from the remaining point zero point The method according to any one of claims 1 to 7, comprising the step of calculating as a thickness change amount.
 前記係数は、前記2つの変曲点の間の比率、一方の変曲点と満充電時点の間の比率及び他方の変曲点と残量ゼロ時点の間の比率を用い、前記2つの変曲点の間の重み付けを他の区間の重み付けよりも大きく設定して、集計により算出する、請求項12に記載の方法。 The coefficients are calculated using the ratio between the two inflection points, the ratio between one inflection point and the full charge time, and the ratio between the other inflection point and the remaining time zero, The method according to claim 12, wherein the weight between the inflection points is set larger than the weight of the other sections and calculated by aggregation.  前記予測特性データにおける満充電時点が厚み最大点であり、
 前記予測特性データにおける前記厚み最大点から前記残量ゼロ時点までの変形量を、残量ゼロ時点を基点としたリチウム析出までの厚み変化量として算出するステップを含む、請求項1~7のいずれかに記載の方法。
The point of full charge in the predicted characteristic data is the maximum thickness point,
The method according to any one of claims 1 to 7, further comprising the step of calculating the amount of deformation from the thickness maximum point to the point of remaining amount zero in the predicted characteristic data as the amount of thickness change until lithium deposition starting from the point of remaining amount zero. How to describe.
 請求項12~14のいずれかに記載の方法を実行して前記残量ゼロ時点を基点としたリチウム析出までの厚み変化量を予め算出しておき、
 検出センサにより検出した二次電池の変形量が、前記厚み変化量を超えないように、充電を制御する、充電制御方法。
A thickness change amount until lithium deposition starting from the remaining amount zero point is calculated in advance by executing the method according to any one of claims 12 to 14,
A charge control method, comprising: controlling charging such that a deformation amount of a secondary battery detected by a detection sensor does not exceed the thickness change amount.
 前記二次電池に直接又は間接的に高分子マトリックス層が貼り付けられ、前記高分子マトリックス層は、前記高分子マトリックス層の変形に応じて外場に変化を与えるフィラーを含有し、前記高分子マトリックス層の変形に応じた前記外場の変化を検出することにより、前記二次電池の変形量を検出する、請求項1~15のいずれかに記載の方法。 A polymer matrix layer is directly or indirectly attached to the secondary battery, and the polymer matrix layer contains a filler that changes the external field according to the deformation of the polymer matrix layer, and the polymer The method according to any one of claims 1 to 15, wherein the amount of deformation of the secondary battery is detected by detecting a change in the external field in response to a deformation of a matrix layer.  二次電池の充放電容量と変形量とに対応する実測値を取得する実測値取得部と、
 前記実測値の時系列データから、前記二次電池の充放電容量と変形量との関係を示す特性曲線における少なくとも1つの変曲点を抽出する変曲点抽出部と、
 二次電池の充放電容量と変形量との関係を示す特性曲線のうち、少なくとも満充電時点、残量ゼロ時点及びステージ変曲点を有する過去の特性データを取得する過去特性データ取得部と、
 抽出した変曲点を基準として、前記過去の特性データが示す特性曲線を、前記実測値の時系列データが示す特性曲線にフィッティング処理して、前記実測値の時系列データにない部分が補間された特性曲線を示す予測特性データを生成する予測特性データ生成部と、
を備える、二次電池の状態予測システム。
A measured value acquisition unit that acquires measured values corresponding to the charge / discharge capacity and deformation amount of the secondary battery;
An inflection point extraction unit for extracting at least one inflection point in a characteristic curve indicating a relationship between a charge / discharge capacity of the secondary battery and a deformation amount from time series data of the measured value;
A past characteristic data acquisition unit for acquiring past characteristic data having at least a full charge point, a residual amount zero point, and a stage inflection point in a characteristic curve indicating a relationship between charge and discharge capacity and deformation amount of a secondary battery;
The characteristic curve indicated by the characteristic data in the past is fitted to the characteristic curve indicated by the time series data of the actual measurement value on the basis of the extracted inflection point, and a portion not included in the time series data of the actual measurement value is interpolated A predicted characteristic data generation unit that generates predicted characteristic data indicating a different characteristic curve;
A secondary battery state prediction system comprising:
 前記変曲点抽出部は、
 取得した実測値が示す充放電容量に応じて抽出条件を設定し、
 取得した実測値に基づき定まる前記充放電容量に関する変形量の微分値が前記抽出条件を満たす場合に、前記実測値を変曲点として抽出する、請求項17に記載のシステム。
The inflection point extraction unit
Set extraction conditions according to the charge / discharge capacity indicated by the acquired actual measurement value,
The system according to claim 17, wherein the measured value is extracted as an inflection point when the differential value of the deformation amount related to the charge and discharge capacity determined based on the acquired measured value satisfies the extraction condition.
 前記変曲点抽出部は、取得した実測値が示す充放電容量が、過去の特性データにおける変曲点の充放電容量を中心とする所定範囲内に入る場合に、過去の特性データに基づき前記微分値の閾値を設定し、前記微分値が前記閾値を通過したことを抽出条件として設定する、請求項18に記載のシステム。 The inflection point extraction unit is configured based on the past characteristic data when the charge / discharge capacity indicated by the acquired actual measurement value falls within a predetermined range centered on the charge / discharge capacity of the inflection point in the past characteristic data. The system according to claim 18, wherein a threshold value of a derivative value is set, and that the derivative value passes the threshold value is set as an extraction condition.  前記変曲点抽出部は、前記微分値が前記閾値を通過することに加えて、前記充放電容量が変化する或る期間の間、前記微分値が連続して上がり続けること又は下がり続けることを抽出条件として設定する、請求項19に記載のシステム。 In addition to the differential value passing through the threshold value, the inflection point extraction unit may keep the differential value continuously rising or falling for a certain period during which the charge / discharge capacity changes. The system according to claim 19, wherein the system is set as an extraction condition.  前記予測特性データ生成部は、
 1つの変曲点が抽出され且つ前記実測値の時系列データに前記満充電時点又は前記残量ゼロ時点のいずれか1点に対応する実測値が含まれている場合は、前記過去の特性データにおける前記満充電時点又は前記残量ゼロ時点のいずれか1点と前記変曲点の2点を、前記実測値の時系列データにおける対応する2点に特性曲線の伸縮により一致させるための係数を算出し、前記係数を用いて特性曲線全体を伸縮調整し、前記変曲点を一致させ、前記予測特性データを生成し、
 又は、
 1つの変曲点が抽出され且つ前記実測値の時系列データに前記満充電時点又は前記残量ゼロ時点のいずれか1点に対応する実測値が含まれていない場合は、前記過去の特性データが示す特性曲線を拡大及び縮小せずに、直近に抽出された変曲点と、前記過去の特性データにおける変曲点とが一致するように、前記過去の特性データが示す特性曲線を移動させて補間し、前記予測特性データを生成し、
 又は、
 2つの変曲点が抽出された場合は、前記過去の特性データにおける2つの変曲点を、前記実測値の時系列データにおける対応する2つの変曲点に特性曲線の伸縮により一致させるための係数を算出し、前記係数を用いて特性曲線全体を伸縮調整し、直近に抽出した変曲点を一致させ、前記予測特性データを生成する、請求項17~20のいずれかに記載のシステム。
The predicted characteristic data generation unit
In the case where one inflection point is extracted and the time-series data of the actual measurement value includes an actual measurement value corresponding to any one of the full charge time or the remaining time zero, the characteristic data of the past The factor for making the characteristic curve match the two points at any one of the fully charged time point or the remaining zero time point and the inflection point at corresponding two points in the time series data of the actually measured value Calculating and scaling the entire characteristic curve using the coefficients, matching the inflection points, and generating the predicted characteristic data;
Or
In the case where one inflection point is extracted and the time-series data of the actual measurement value does not include the actual measurement value corresponding to any one point of the full charge time or the remaining zero time, the characteristic data of the past The characteristic curve indicated by the past characteristic data is moved so that the inflection point extracted most recently matches the inflection point in the past characteristic data without enlarging or reducing the characteristic curve indicated by Interpolate to generate the prediction characteristic data,
Or
When two inflection points are extracted, the two inflection points in the past characteristic data are made to coincide with the corresponding two inflection points in the time-series data of the actual measurement value by the expansion and contraction of the characteristic curve. The system according to any one of claims 17 to 20, wherein a coefficient is calculated, and the coefficient is used to stretch and adjust the entire characteristic curve, and the inflection point extracted most recently is matched to generate the predicted characteristic data.
 前記予測特性データ生成部は、
 前記実測値の時系列データに2つの変曲点が含まれ且つ前記予測特性データが既に生成されており、所定の再生成条件が成立する場合に、前記予測特性データの特性曲線を前記実測値の時系列データの特性曲線に特性曲線の伸縮により一致させるための係数を算出し、前記係数を用いて特性曲線全体を伸縮調整し、直近に抽出した変曲点を一致させ、前記予測特性データを再生成するように構成されており、
 前記係数は、前記2つの変曲点の間の比率、最新の実測値と最新実測値に近い側の変曲点との間の比率を少なくとも用い、2つの変曲点の間の重み付けを他の区間の重み付けよりも大きく設定して、集計により算出する、請求項17~21のいずれかに記載のシステム。
The predicted characteristic data generation unit
In the case where two inflection points are included in the time series data of the actual measurement value, the prediction characteristic data is already generated, and a predetermined regeneration condition is satisfied, the characteristic curve of the prediction characteristic data is the actual measurement value A coefficient for matching the characteristic curve of the time series data by expansion and contraction of the characteristic curve is calculated, the whole characteristic curve is expanded and adjusted using the coefficient, the inflection points extracted most recently are made to coincide, and the predicted characteristic data Is configured to regenerate the
The coefficient uses at least the ratio between the two inflection points, the ratio between the latest actual value and the inflection point closer to the latest actual value, and the weighting between the two inflection points The system according to any one of claims 17 to 21, wherein the system is set larger than the weighting of the section of and calculated by aggregation.
 残容量を予測する時点の実測値が示す充放電容量と、前記予測特性データにおける残量ゼロ時点の充放電容量との差を残容量として算出する残容量算出部を備える、請求項17~22のいずれかに記載のシステム。 The remaining capacity calculator configured to calculate, as the remaining capacity, the difference between the charge / discharge capacity indicated by the actual value at the time of predicting the remaining capacity and the charge / discharge capacity at the remaining time zero in the predicted characteristic data. The system described in any of the.  二次電池の充放電容量と変形量との関係を示す特性曲線のうち、少なくとも満充電時点、残量ゼロ時点及びステージ変曲点を有する初期特性データを取得する初期特性データ取得部と、
 前記初期特性データにおける2つの変曲点と、前記予測特性データにおける対応する2つの変曲点とを、特性曲線の伸縮により一致させるための充放電容量の拡大率を、充放電に寄与する活物質量の変化度として算出する劣化情報生成部と、
を有する、請求項17~23のいずれかに記載のシステム。
An initial characteristic data acquisition unit for acquiring initial characteristic data having at least a full charge point, a remaining amount zero point, and a stage inflection point in a characteristic curve indicating a relation between charge and discharge capacity of secondary battery and deformation amount;
An activity that contributes to charge and discharge, an enlargement ratio of charge and discharge capacity for matching the two inflection points in the initial characteristic data and the corresponding two inflection points in the predicted characteristic data by the expansion and contraction of the characteristic curve A deterioration information generation unit that calculates the degree of change of the object mass;
A system according to any of claims 17-23, comprising
 前記充放電容量の拡大率は、前記2つの変曲点の間の比率、一方の変曲点と満充電時点の間の比率及び他方の変曲点と残量ゼロ時点の間の比率を用い、前記2つの変曲点の間の重み付けを他の区間の重み付けよりも大きく設定して、集計により算出する、請求項24に記載のシステム。 The enlargement ratio of the charge and discharge capacity is determined using the ratio between the two inflection points, the ratio between one inflection point and the full charge time, and the ratio between the other inflection point and the remaining time zero. The system according to claim 24, wherein the weight between the two inflection points is set larger than the weight of the other sections and calculated by aggregation.  二次電池の充放電容量と変形量との関係を示す特性曲線のうち、少なくとも満充電時点、残量ゼロ時点及びステージ変曲点を有する初期特性データを取得する初期特性データ取得部と、
 前記初期特性データにおける2つの変曲点と、前記予測特性データにおける2つの変曲点とを、特性曲線の伸縮により一致させるための係数を算出し、前記係数を用いて前記初期特性データが示す特性曲線全体を伸縮調整すると共に、前記初期特性データの調整後の特性曲線及び前記予測特性データの特性曲線における2つの変曲点同士を一致させ、前記満充電時点同士の充放電容量のずれ量および前記残量ゼロ時点同士の充放電容量のずれ量の平均値を、電池の劣化状態として算出する劣化情報生成部と、
を有する、請求項17~23のいずれかに記載のシステム。
An initial characteristic data acquisition unit for acquiring initial characteristic data having at least a full charge point, a remaining amount zero point, and a stage inflection point in a characteristic curve indicating a relation between charge and discharge capacity of secondary battery and deformation amount;
A coefficient for making two inflection points in the initial characteristic data coincide with two inflection points in the prediction characteristic data by expansion and contraction of the characteristic curve is calculated, and the initial characteristic data is indicated using the coefficients The expansion and contraction adjustment of the entire characteristic curve is performed, and the two inflection points in the characteristic curve after adjustment of the initial characteristic data and the characteristic curve of the predicted characteristic data are made to coincide with each other. And a deterioration information generation unit that calculates an average value of the amount of deviation of charge and discharge capacity between the remaining amount zero time points as a deterioration state of the battery;
A system according to any of claims 17-23, comprising
 前記係数は、前記2つの変曲点の間の比率、一方の変曲点と満充電時点の間の比率及び他方の変曲点と残量ゼロ時点の間の比率を用い、前記2つの変曲点の間の重み付けを他の区間の重み付けよりも大きく設定して、集計により算出する、請求項26に記載のシステム。 The coefficients are calculated using the ratio between the two inflection points, the ratio between one inflection point and the full charge time, and the ratio between the other inflection point and the remaining time zero, 27. The system according to claim 26, wherein the weight between the inflection points is set larger than the weight of the other sections and calculated by aggregation.  二次電池の充放電容量と変形量との関係を示す特性曲線のうち、少なくとも厚み最大点、満充電時点、残量ゼロ時点及びステージ変曲点を有する初期特性データを取得する初期特性データ取得部と、
 前記初期特性データにおける2つの変曲点と、前記予測特性データにおける2つの変曲点とを、特性曲線の伸縮により一致させるための係数を算出し、前記係数を用いて前記初期特性データにおける前記厚み最大点から前記予測特性データにおける前記厚み最大点を特定し、前記予測特性データにおける前記厚み最大点から前記残量ゼロ時点までの変形量を、残量ゼロ時点を基点としたリチウム析出までの厚み変化量として算出する劣化情報生成部と、
を有する、請求項17~23のいずれかに記載のシステム。
Initial characteristic data acquisition for acquiring initial characteristic data having at least a thickness maximum point, a full charge time, a remaining time zero, and a stage inflection point among characteristic curves showing a relation between charge and discharge capacity and deformation amount of a secondary battery Department,
A coefficient for causing the two inflection points in the initial characteristic data and the two inflection points in the prediction characteristic data to coincide with each other by expansion and contraction of the characteristic curve is calculated, and using the coefficients, the in the initial characteristic data is calculated The thickness maximum point in the prediction characteristic data is specified from the thickness maximum point, and the amount of deformation from the thickness maximum point in the prediction characteristic data to the remaining amount zero point is determined until lithium deposition starting from the remaining point zero point A deterioration information generation unit that calculates a thickness change amount,
A system according to any of claims 17-23, comprising
 前記係数は、前記2つの変曲点の間の比率、一方の変曲点と満充電時点の間の比率及び他方の変曲点と残量ゼロ時点の間の比率を用い、前記2つの変曲点の間の重み付けを他の区間の重み付けよりも大きく設定して、集計により算出する、請求項28に記載のシステム。 The coefficients are calculated using the ratio between the two inflection points, the ratio between one inflection point and the full charge time, and the ratio between the other inflection point and the remaining time zero, The system according to claim 28, wherein the weight between the inflection points is set larger than the weight of the other sections and calculated by aggregation.  前記予測特性データにおける満充電時点が厚み最大点であり、
 前記予測特性データにおける前記厚み最大点から前記残量ゼロ時点までの変形量を、残量ゼロ時点を基点としたリチウム析出までの厚み変化量として算出する劣化情報生成部を有する、請求項17~23のいずれかに記載のシステム。
The point of full charge in the predicted characteristic data is the maximum thickness point,
18. The apparatus according to claim 17, further comprising: a deterioration information generation unit that calculates a deformation amount from the thickness maximum point to the zero residual point in the predicted characteristic data as a thickness change amount until lithium deposition starting from the residual zero point. The system according to any one of 23.
 請求項28~30のいずれかに記載の劣化情報生成部と、
 検出センサにより検出した二次電池の変形量が、前記劣化情報生成部が生成した厚み変化量を超えないように、充電を制御する充電制御部と、を有する、充電制御システム。
A degradation information generation unit according to any of claims 28 to 30,
A charge control system, comprising: a charge control unit that controls charging so that a deformation amount of a secondary battery detected by a detection sensor does not exceed a thickness change amount generated by the deterioration information generation unit.
 前記二次電池に直接又は間接的に高分子マトリックス層が貼り付けられ、前記高分子マトリックス層は、前記高分子マトリックス層の変形に応じて外場に変化を与えるフィラーを含有し、前記高分子マトリックス層の変形に応じた前記外場の変化を検出することにより、前記二次電池の変形量を検出する、請求項17~31のいずれかに記載のシステム。 A polymer matrix layer is directly or indirectly attached to the secondary battery, and the polymer matrix layer contains a filler that changes the external field according to the deformation of the polymer matrix layer, and the polymer The system according to any one of claims 17 to 31, wherein the amount of deformation of the secondary battery is detected by detecting a change in the external field in response to a deformation of a matrix layer.  プロセッサと、
 前記プロセッサが実行可能な指令を記憶するためのメモリと、を備え、
 前記プロセッサは、
 二次電池の充放電容量と変形量とに対応する実測値を取得し、
 前記実測値の時系列データから、前記二次電池の充放電容量と変形量との関係を示す特性曲線における少なくとも1つの変曲点を抽出し、
 二次電池の充放電容量と変形量との関係を示す特性曲線のうち、少なくとも満充電時点、残量ゼロ時点及びステージ変曲点を有する過去の特性データを取得し、
 抽出した変曲点を基準として、前記過去の特性データが示す特性曲線を、前記実測値の時系列データが示す特性曲線にフィッティング処理して、前記実測値の時系列データにない部分が補間された特性曲線を示す予測特性データを生成するように構成されている、二次電池の状態予測システム。 
A processor,
A memory for storing instructions executable by the processor;
The processor is
Obtain measured values corresponding to the charge and discharge capacity and deformation of the secondary battery,
Extracting at least one inflection point in a characteristic curve indicating a relationship between a charge / discharge capacity of the secondary battery and a deformation amount from time series data of the measured value;
In the characteristic curve showing the relationship between the charge and discharge capacity of the secondary battery and the deformation amount, obtain the past characteristic data having at least the full charge time, the remaining time zero, and the stage inflection point,
The characteristic curve indicated by the characteristic data in the past is fitted to the characteristic curve indicated by the time series data of the actual measurement value on the basis of the extracted inflection point, and a portion not included in the time series data of the actual measurement value is interpolated A secondary battery state prediction system configured to generate predicted characteristic data indicating a characteristic curve.
PCT/JP2018/019812 2017-08-29 2018-05-23 State prediction method for secondary battery, charge control method, and system Ceased WO2019044067A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-164388 2017-08-29
JP2017164388A JP2019040845A (en) 2017-08-29 2017-08-29 State prediction method of secondary battery, charge control method, system and program

Publications (1)

Publication Number Publication Date
WO2019044067A1 true WO2019044067A1 (en) 2019-03-07

Family

ID=65525218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019812 Ceased WO2019044067A1 (en) 2017-08-29 2018-05-23 State prediction method for secondary battery, charge control method, and system

Country Status (3)

Country Link
JP (1) JP2019040845A (en)
TW (1) TW201913428A (en)
WO (1) WO2019044067A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113761799A (en) * 2021-08-31 2021-12-07 东风商用车有限公司 Vehicle performance curve trend fitting method, device, equipment and storage medium
CN115034146A (en) * 2022-08-12 2022-09-09 欣旺达电子股份有限公司 Battery bulging rate model establishing method, monitoring method, device and storage medium
CN115152077A (en) * 2020-03-11 2022-10-04 株式会社Lg新能源 Secondary battery and lithium precipitation detection method for the same
US12000904B2 (en) 2019-09-30 2024-06-04 Gs Yuasa International Ltd. Estimation device, estimation method, and computer program
CN119199561A (en) * 2024-11-11 2024-12-27 杭州科工电子科技股份有限公司 A method, device, equipment and medium for predicting battery health status

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019177147A1 (en) 2018-03-16 2019-09-19 三菱マテリアル株式会社 Thermoelectric conversion element
CN113866649A (en) * 2020-06-30 2021-12-31 比亚迪股份有限公司 Calculation method and calculation device of battery state, and storage medium
HUE068600T2 (en) * 2020-12-29 2025-01-28 Lg Energy Solution Ltd Battery diagnosis device, battery diagnosis method, battery pack, and electric vehicle
TWI786770B (en) * 2021-08-16 2022-12-11 加百裕工業股份有限公司 Battery health management method and battery health management device
TWI786769B (en) * 2021-08-16 2022-12-11 加百裕工業股份有限公司 Battery health management method
CN117872182B (en) * 2023-12-29 2024-11-12 武汉亿纬储能有限公司 Method, device, electronic device and storage medium for predicting maximum expansion force of battery

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016006359A1 (en) * 2014-07-10 2016-01-14 東洋ゴム工業株式会社 Sealed secondary battery deterioration diagnosis method and deterioration diagnosis system
JP2016508215A (en) * 2012-12-04 2016-03-17 エルジー・ケム・リミテッド Apparatus and method for estimating depth of discharge of secondary battery
WO2016135992A1 (en) * 2015-02-26 2016-09-01 東洋ゴム工業株式会社 Deterioration assessment method and deterioration assessment system for sealed-type secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016508215A (en) * 2012-12-04 2016-03-17 エルジー・ケム・リミテッド Apparatus and method for estimating depth of discharge of secondary battery
WO2016006359A1 (en) * 2014-07-10 2016-01-14 東洋ゴム工業株式会社 Sealed secondary battery deterioration diagnosis method and deterioration diagnosis system
WO2016135992A1 (en) * 2015-02-26 2016-09-01 東洋ゴム工業株式会社 Deterioration assessment method and deterioration assessment system for sealed-type secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12000904B2 (en) 2019-09-30 2024-06-04 Gs Yuasa International Ltd. Estimation device, estimation method, and computer program
CN115152077A (en) * 2020-03-11 2022-10-04 株式会社Lg新能源 Secondary battery and lithium precipitation detection method for the same
CN115152077B (en) * 2020-03-11 2025-08-15 株式会社Lg新能源 Secondary battery and lithium deposition detection method for the same
CN113761799A (en) * 2021-08-31 2021-12-07 东风商用车有限公司 Vehicle performance curve trend fitting method, device, equipment and storage medium
CN113761799B (en) * 2021-08-31 2024-03-26 东风商用车有限公司 Vehicle performance curve trend fitting method, device, equipment and storage medium
CN115034146A (en) * 2022-08-12 2022-09-09 欣旺达电子股份有限公司 Battery bulging rate model establishing method, monitoring method, device and storage medium
CN119199561A (en) * 2024-11-11 2024-12-27 杭州科工电子科技股份有限公司 A method, device, equipment and medium for predicting battery health status

Also Published As

Publication number Publication date
TW201913428A (en) 2019-04-01
JP2019040845A (en) 2019-03-14

Similar Documents

Publication Publication Date Title
WO2019044067A1 (en) State prediction method for secondary battery, charge control method, and system
JP6186385B2 (en) Degradation diagnosis method and degradation diagnosis system for sealed secondary battery
JP6209173B2 (en) Degradation diagnosis method and degradation diagnosis system for sealed secondary battery
TWI631356B (en) Residual capacity prediction method for sealed secondary battery, residual capacity prediction system, method for obtaining internal battery information, and battery control method
JP6176632B2 (en) Abnormality determination method for assembled battery and abnormality determination device for assembled battery
JP6200880B2 (en) Method for detecting deformation of sealed secondary battery and sealed secondary battery
EP3503246A1 (en) Assembled battery manufacturing method using used batteries, and assembled battery
WO2016006359A1 (en) Sealed secondary battery deterioration diagnosis method and deterioration diagnosis system
WO2018173360A1 (en) Method for charging non-aqueous secondary cell
WO2017158923A1 (en) Sealed-type secondary battery remaining capacity prediction method, remaining capacity prediction system, battery internal information acquisition method, and battery control method
JP2019220348A (en) Secondary battery deformation detection system, method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851408

Country of ref document: EP

Kind code of ref document: A1