[go: up one dir, main page]

WO2018208822A1 - Formulation de gels nanostructurés pour une charge et une adhérence d'agent augmentées - Google Patents

Formulation de gels nanostructurés pour une charge et une adhérence d'agent augmentées Download PDF

Info

Publication number
WO2018208822A1
WO2018208822A1 PCT/US2018/031654 US2018031654W WO2018208822A1 WO 2018208822 A1 WO2018208822 A1 WO 2018208822A1 US 2018031654 W US2018031654 W US 2018031654W WO 2018208822 A1 WO2018208822 A1 WO 2018208822A1
Authority
WO
WIPO (PCT)
Prior art keywords
gel
gel composition
gelator
agents
ascorbyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2018/031654
Other languages
English (en)
Inventor
Derek G. VAN DER POLL
Dominick J. BLASIOLI
Gregory T. Zugates
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alivio Therapeutics Inc
Original Assignee
Alivio Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alivio Therapeutics Inc filed Critical Alivio Therapeutics Inc
Priority to JP2019562349A priority Critical patent/JP7211974B2/ja
Priority to EP18726703.4A priority patent/EP3621594A1/fr
Priority to CA3061480A priority patent/CA3061480A1/fr
Priority to AU2018266131A priority patent/AU2018266131B2/en
Publication of WO2018208822A1 publication Critical patent/WO2018208822A1/fr
Anticipated expiration legal-status Critical
Priority to AU2021240143A priority patent/AU2021240143B2/en
Priority to JP2022080798A priority patent/JP2022103299A/ja
Priority to JP2023014533A priority patent/JP2023041861A/ja
Priority to JP2023173522A priority patent/JP2023168587A/ja
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6903Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being semi-solid, e.g. an ointment, a gel, a hydrogel or a solidifying gel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/235Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group
    • A61K31/24Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids having an aromatic ring attached to a carboxyl group having an amino or nitro group
    • A61K31/245Amino benzoic acid types, e.g. procaine, novocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/14Esters of carboxylic acids, e.g. fatty acid monoglycerides, medium-chain triglycerides, parabens or PEG fatty acid esters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/20Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/22Heterocyclic compounds, e.g. ascorbic acid, tocopherol or pyrrolidones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00

Definitions

  • One of the proposed means for providing a high local drug concentration while minimizing systemic toxicity is to formulate drug in a depot, such as a gel which provides controlled or sustained release of the drug.
  • a depot such as a gel which provides controlled or sustained release of the drug.
  • Factors such as the hydrophilicity/hydrophobicity of an agent and its non-covalent interactions with the gel matrix strongly influence
  • Co-solvent systems have been utilized including both aqueous and organic solvents (e.g., water and dimethyl sulfoxide, or water and alcohol) to prepare drug-loaded gel matrices, especially those formed from assembly between gelators and drug agents. See, for example, (U.S. Patent Application Publication Nos.
  • hydrophilic molecules may not be effectively encapsulated in these co-solvent systems.
  • Molecules containing charges e.g., tertiary amine in local anesthetics, impact the pH and charge-charge interactions in the gel matrix formulation.
  • hydrogel or organogel drug depots often have limited affinity for the inflamed tissue sites unless modified with the addition of targeting or adhesion ligands.
  • a gel formulation has been developed which provides high loading, e.g., between about 5% and about 30% wt/wt agent/total gel weight, of a wide range of amine-containing compounds such as local anesthetic agents that are known to be difficult to encapsulate in hydrogel formulations, and which adhere to charged surfaces.
  • Amine-containing compounds may have primary, secondary, tertiary, and/or quaternary amines. Examples of pharmaceutically important amines include anesthetics and anti-infectives.
  • the agent is a local anesthetic such as lidocaine, procaine, tetracaine, dibucaine, benzocaine, bupivacaine, or salt thereof such as lidocaine hydrochloride, procaine hydrochloride, tetracaine hydrochloride, dibucaine hydrochloride, benzocaine hydrochloride, or bupivacaine hydrochloride.
  • the gel is formed from the self-assembly and/or non-covalent interactions of a generally recognized as safe (GRAS) amphiphilic gelator and one or more therapeutic, prophylactic, or diagnostic agents encapsulated in the gel.
  • GRAS generally recognized as safe
  • the gelator has a molecular weight of 2,500 or less, and is an ascorbyl alkanoate, a sorbitan alkanoate, a triglycerol
  • Self-assembled gel is formed in a liquid medium such as distilled water, de-ionized water, pure or ultrapure water, saline, or other physiologically acceptable aqueous solutions containing salts (e.g., at, between or greater than 0 and 0.15 M NaCl; or between 10 mM and 500 mM), or a two-solvent system including an organic solvent and water (or an aqueous salt solution).
  • a liquid medium such as distilled water, de-ionized water, pure or ultrapure water, saline, or other physiologically acceptable aqueous solutions containing salts (e.g., at, between or greater than 0 and 0.15 M NaCl; or between 10 mM and 500 mM), or a two-solvent system including an organic solvent and water (or an aqueous salt solution).
  • organic solvents are dimethyl sulfoxide (DMSO), methanol, acetone, ethanol, dioxane, acetonitrile, toluene, tetrahydrofuran, isobutyl alcohol, polyethylene glycol at a low molecular weight (e.g., 1 kDa) which is liquid at 37 °C, propylene glycol, and dipropylene glycol.
  • DMSO dimethyl sulfoxide
  • methanol methanol
  • acetone ethanol
  • dioxane acetonitrile
  • toluene tetrahydrofuran
  • isobutyl alcohol polyethylene glycol at a low molecular weight (e.g., 1 kDa) which is liquid at 37 °C
  • propylene glycol and dipropylene glycol.
  • an organic solvent is mixed with and at least partially dissolves one or more gelators.
  • the amine-containing compounds may be dissolved in the co- solvent mixture or the aqueous solution which is then added to the gelator in the organic solvent.
  • the agent is added to gelator dissolved in a co-solvent medium including both water (or an aqueous buffer or salt solution) and a water-miscible organic solvent with mixing and optionally heating to insure complete dissolution.
  • the gelators are dissolved initially in an organic solvent to form a solution with the gelators as the solutes (termed "gelator solution").
  • the agent for example, free base lidocaine, is then dissolved in the gelator solution.
  • An aqueous solution such as pure water or an aqueous buffer or salt solution is then mixed with the drug-gelator solution to form a liquid gel solution.
  • the amount of the organic solvent in the total amount of liquid (organic + water/aqueous solution) is generally no more than 50%. If needed, the liquid gel solution is heated to insure complete dissolution, then cooled to form a gel stable to inversion at room temperature (25°C) or body temperature (37°C). Agent is added to form a final concentration in the gel of between about 4 and 25 wt/%.
  • the amount of the organic solvent is generally between about 5% to about 50% by volume in the combined amount of the organic solvent and water (or an aqueous solution). Even if a higher % amount of the organic solvent is present in the gelator solution, most of the organic solvent in a self- assembled gel can be removed and replaced with media in purification techniques such as dialysis, centrifugation, and filtration.
  • Salt or buffer aqueous solutions may increase agent (i.e., drug) loading.
  • agent i.e., drug
  • dissolving amphiphilic gelators in DMSO, then adding phosphate buffered saline (PBS) at a physiological ionic strength increases loading of amine-containing compounds in the resulting self- assembled gel, compared to water.
  • PBS phosphate buffered saline
  • inclusion of PBS increased loading of the amine-containing agent such as lidocaine or lidocaine hydrochloride to at least 4%, 6%, 8%, 10%, 15%, or 18% by weight, or greater in a gel formed in a DMSO-PBS system, whereas ultrapure water or water with essentially no salt formed a gel in a DMSO- water system encapsulating less than 0.5%, 1%, 2%, or 3% by weight of lidocaine or salts thereof.
  • the amine-containing agent such as lidocaine or lidocaine hydrochloride
  • the inclusion of salt(s) during formation of gel can be used to tune the rheological properties of the gel, such as to impart thixotropy.
  • dissolving amphiphilic gelators in an organic solvent, such as DMSO and adding phosphate buffered saline (PBS) containing one or more salts imparts thixotropic properties to the self-assembled gel, as compared to using water or a buffer solution without additional salt(s).
  • PBS phosphate buffered saline
  • Exemplary salts which can be added to tune the rheological properties of the gels include, but are not limited to sodium chloride, potassium chloride, calcium chloride, magnesium chloride, zinc chloride, or combinations thereof.
  • any suitable salt can be used that can provide sodium, potassium, calcium, magnesium, or zinc ions.
  • the salt(s) are added during gel formation.
  • the salt(s) are added post- gel formation, such as during a postprocessing step.
  • Exemplary organic solvents which can be used, either alone or in combination with the salt(s) already discussed, to tune the rheological properties of the gels include, but are not limited to dimethylsulfoxide (DMSO), alcohols (such as methanol, ethanol, isopropanol, i-butanol).
  • DMSO dimethylsulfoxide
  • alcohols such as methanol, ethanol, isopropanol, i-butanol
  • the organic solvent(s) described here are added as part of gel formation or can be added to buffer(s), such as a phosphate buffer, in which a prepared gel may be resuspended to provide gels having organic solvent(s) present therein.
  • a combination of both salt(s) and organic solvent(s) can be used to tune the rheological properties of the gel, such as to impart thixotropy.
  • the inclusion of salt(s) and/or solvent(s) demonstrates that the rheological properties can be controlled or tuned without altering the concentration of gelator (such as ascorbyl palmitate) or agent (such as lidocaine) in the gel formulation. Control over rheological properties is an important invention because the viscosity and rheology of a locally administered therapeutic can affect its disposition to the tissue in question.
  • the gels can be formed without any additional salts and/or organic solvents or their rheological properties can be tuned by addition of salts and/or organic solvent(s) (either during gel formation or post- gel formation).
  • the gels described can have or can be tuned to have a storage modulus (G') of from about 0.1, from about 0.2, from about 0.3, from about 0.4, from about 0.5, from about 0.6, from about 0.7, from about 0.8, from about 0.9, from about 1, from about 2, from about 3, from about 4, or from about 5 Pascals up to about 50, about 75, about 100, about 150, about 200, about 250, or about 300, or any combination of upper and lower end points disclosed herein.
  • G' storage modulus
  • the gels can be formed without any additional salts and/or organic solvents or their rheological properties can be tuned by addition of salts and/or organic solvent(s) (either during gel formation or post- gel formation).
  • the gels described can have or can be tuned to have a loss modulus (G") of from about 0.1, from about 0.2, from about 0.3, from about 0.4, from about 0.5, from about 0.6, from about 0.7, from about 0.8, from about 0.9, from about 1, from about 2, from about 3, from about 4, or from about 5 Pascals up to about 10, about 15, about 20, about 25, about 30, about 35, about 40, or about 300 Pascals, or any combination of upper and lower end points disclosed herein.
  • G loss modulus
  • the gels formed with or without addition of salts and/or organic solvent(s) have can have viscosities in a range from between about 0.1, from about 0.2, from about 0.3, from about 0.4, from about 0.5, from about 0.6, from about 0.7, from about 0.8, from about 0.9, from about 1, from about 2, from about 3, from about 4, or from about 5 centipoise (cP) up to about 10, about 100, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1,000, about 1,100, about 1,200, about 1,300, about 1,400, about 1,500, about 1,600, about 1,700, about 1,800, about 1,900, about 2,000, about 2,500, or about 3000 cP, or any combination of upper and lower end points disclosed herein.
  • the gels formed addition of salts and/or organic solvent(s) exhibit thixo
  • a two-solvent system e.g., in a DMSO-PBS system
  • increasing the proportion of the organic solvent relative to the aqueous salt solution results in an increase in the loading and encapsulation efficiency of amine-containing agents.
  • Increasing the volume ratio of an organic solvent (e.g., DMSO) to an aqueous salt solution (e.g., phosphate-buffered saline) from 1:4 to 1:1 resulted in an increase of agent loading such as lidocaine loading in the self-assembled gel.
  • an organic solvent e.g., DMSO
  • an aqueous salt solution e.g., phosphate-buffered saline
  • amphiphilic gelators are first dissolved in an organic solvent such as methanol, increasing the amount of salt in an aqueous phase to add to the methanol solution for gelation upon heating and cooling results in a decrease in the agent loading and encapsulation percentages.
  • the gel formulation can be further processed to remove solvent, solvent impurities, excess agent (i.e., drug or free drug), for example, using dialysis, centrifugation, and/or filtration (e.g., tangential flow filtration (TFF)).
  • solvent residue is removed to less than 1%, 3%, 5%, or 10% of the starting levels, or to less than the acceptance criteria of residual solvents by U.S. Pharmacopeia Convention, International Conference on Harmonization guidance, or by U.S. Food and Drug
  • dialysis or TFF in an aqueous medium with zero to less than 0.15 M salt effectively retains a greater amount of agent (i.e, drug) and maintains the high agent loading in a hydrogel as compared to dialysis in an aqueous medium with 0.15 M or a greater amount of salt.
  • the gel may be suspended or purified in a pharmaceutically acceptable carrier to generate a desired volume for administration.
  • a pharmaceutically acceptable carrier e.g., Water or an aqueous medium with a low concentration of salt (e.g., less than 0.15 M) as the medium for suspension of the drug-loaded gel maintains the high loading content of the agent to at least 80%, 85%, 90%, 95%, or about 100% compared to the hydrogel composition before suspension; whereas phosphate buffered saline or aqueous medium containing about 0.15 M salt maintains about 65%, 70%, 75%, or 80% of the encapsulated agent content compared to before suspension.
  • salt e.g., less than 0.15 M
  • Suspension of a gel composition can provide a desired final volume of the formulation for ease of administration (e.g., for ease of administration to a patient in need thereof by drinking or injection) and/or a desired agent concentration to control toxicity.
  • the gel can also be dried or lyophilized to remove all solvent, administered in dried form, or rehydrated for administration.
  • the self-assembled gel is stable to inversion, i.e., it does not flow when inverted at ambient temperature (e.g., below the Krafft point of gelator) and pressure, the suspended gel in a pharmaceutically acceptable carrier may flow due to gravity.
  • the gel is suspended in a pharmaceutically acceptable carrier and then the gel dispersed or broken to form fibers or particles. Dispersion techniques include agitation, vortexing, pipetting, and homogenizing.
  • the gel formulation with a high loading content of amine-containing compounds adheres to a charged surface, such as those with amine functional groups on the surface.
  • a lower or no ionic strength suspension medium e.g., zero to less than 0.15 M salt in an aqueous medium
  • improves the adhesion of the gel formulation compared to that in a high ionic strength medium e.g., aqueous solution with 0.15 M salt or greater.
  • a gel formulation in water adheres to a charged surface at a density of at least about 10, 13, 15, 17, 20, or 25 ⁇ g of gel/cm 2 of the surface, or greater, after extensive washing of the surface, whereas a gel formulation with a similar amount of gelator concentration but in phosphate buffered saline or solution with a higher salt concentration only adheres to a charged surface at less than about 5, 4, 3, 2, or 1 ⁇ g of gel/cm 2 of the surface, after extensive washing of the surface.
  • the gel composition with a high loading of amine-containing compounds e.g., anesthetic agents and optionally anti-infectives and/or antiinflammatories
  • amine-containing compounds e.g., anesthetic agents and optionally anti-infectives and/or antiinflammatories
  • a formulation for adhesion to charged surfaces can be administered in a patient locally or systemically, where the gel formulation adheres to an inflamed tissue or a pathological environment with a high amount of enzyme activity to provide release of the agents to alleviate or treat one or more symptoms of an disorder or disease.
  • Figure 1 is a line graph showing the loading percentage (mg lidocaine/mg total of solids [lidocaine and ascorbyl palmitate]) in the left Y- axis and the lidocaine encapsulation percentage in the right Y-axis over the number of washes in a centrifugation and resuspension process.
  • Figures 2A-2E are graphs showing the storage modulus G', loss modulus G", and phase angle data of hydrogels 1-5, respectively, as prepared in Example 6.
  • DL drug loading
  • EE encapsulation efficiency
  • gelators refer to molecules that can self-assemble through non-covalent interactions, such as hydrogen-bonding, van der Waals interactions, hydrophobic interactions, ionic interactions, pi-pi stacking, or combinations thereof, in one or more solvents.
  • Gelators can include hydrogelators (e.g., gelators that form hydrogels) and organo-gelators (e.g., gelators that form organo-gels).
  • hydrogelators e.g., gelators that form hydrogels
  • organo-gelators e.g., gelators that form organo-gels
  • gelators can form either hydrogels or organo-gels.
  • gelators are amphiphilic.
  • self-assembling refers to the capability of molecules to spontaneous assemble, or organize, to form a high ordered structure such as hydrogel or organo-gel in a suitable environment.
  • hydrogel refers to three-dimensional (3-D) networks of molecules covalently (e.g., polymeric hydrogels) or non-covalently (e.g., self-assembled hydrogels) held together where water is the major component. Gels can be formed via self-assembly of gelators or via chemical crosslinking of gelators. Water-based gelators can be used to form hydrogels. Organo-gelators are gelators that form gels (organogels) in solvents where organic solvents are the major component.
  • organo-gel refers to 3-D networks of molecules covalently (e.g., polymeric hydrogels) or non-covalently (e.g., self- assembled hydrogels) held together where an organic solvent is the major component. Gels can be formed via self-assembly of gelators or via chemical crosslinking of gelators.
  • therapeutic agent refers to an agent that can be administered to prevent or treat one or more symptoms of a disease or disorder or dysfunction.
  • diagnosis agent generally refers to an agent that can be administered for purposes of identification or imaging.
  • prophylactic agent generally refers to an agent that can be administered to prevent disease or to prevent certain conditions like pregnancy.
  • prodrug refers to a drug, drug precursor of modified drug that is not fully active or available until converted in vivo or in situ to its therapeutically active or available form.
  • a mild wash solution generally does not remove the adhered gel composition from the surface.
  • This mild wash solution includes the solvent or medium in which the gel composition is formed.
  • a strong wash solution may remove the adhered gel composition from the surface, and the amount of adhered gel composition may be quantified therefrom.
  • a strong wash solution to remove gel from an adherent surface includes an organic solvent, e.g., ethanol.
  • organic solvent refers to any carbon-containing substance that, in its liquid phase, is capable of dissolving a solid substance.
  • exemplary organic solvents commonly used in organic chemistry include toluene, tetrahydrofuran, acetone, dichloromethane, and hexane.
  • water-miscible refers to a solvent that mixes with water, in all proportions, to form a single homogenous liquid phase. This includes solvents like dimethyl sulfoxide (DMSO), tetrahydrofuran, acetone, ethanol, methanol, and dioxane, but generally excludes solvents such as hexane, oils, and ether. It also excludes solvents that have some, very limited miscibility or solubility in water such as ethyl acetate and dichloromethane, which are practically considered immiscible. Generally between about 20% and 50% by volume of a water-miscible organic solvent is used to make the hydrogels, with the balance being water or a buffer.
  • DMSO dimethyl sulfoxide
  • tetrahydrofuran acetone
  • ethanol ethanol
  • methanol methanol
  • dioxane dioxane
  • solvents such as hexane, oils, and ether. It also
  • salt generally refers to an ionic compound formed by the reaction or neutralization of an acid with a base.
  • exemplary salts include pharmaceutically acceptable small molecules such as sodium chloride, potassium chloride, disodium phosphate, and monopotassium phosphate.
  • This definition also includes a buffer salt as well (e.g., monosodium phosphate, disodium phosphate).
  • amine refers to compounds and functional groups that contain a basic nitrogen atom with a lone pair of electrons. This includes
  • amines are usually quaternary ammonium cations ( ).
  • rheological property refers to the properties related to deformation and flow of matter, such as a gel or fluid.
  • Thixotropic refers to a property of gels and/or fluids which show a time dependent response to shear. When subjected to a fixed shear rate, they will decrease in viscosity over time. Often this is observed as a large initial viscosity loss, followed by gradual further loss. Once shear is removed, thixotropic gels and/or fluids recover viscosity. These gels and/or fluids can also be considered pseudoplastic but only in that they demonstrate decreasing viscosity in response to increasing shear rate. Pseudoplasticity is commonly considered simply shear-thinning. More specifically, decreasing viscosity in response to increasing shear rate. Moreover, they immediately recover their non-sheared viscosity once shear is removed.
  • Numerical ranges include, but are not limited to, ranges of temperatures, ranges of concentrations (such as by weight, by volume, etc.), ranges of molecular weights, ranges of integers, and ranges of times, etc.
  • the ranges include sub-ranges and combinations of sub-ranges encompassed therein.
  • Use of the term “about” is intended to describe values either above or below the stated value, which the term “about” modifies, in a range of approx. +/- 10%; in other instances the values may range in value either above or below the stated value in a range of approx. +/- 5%.
  • Gelators are amphiphilic molecules which self-assemble to form gel compositions with nanofibrous structures.
  • these are GRAS materials less than 2,500 Da in molecular weights.
  • Exemplary GRAS gelators include ascorbyl alkanoate, sorbitan alkanoate, triglycerol monoalkanoate, sucrose alkanoate, glycocholic acid, or any combination thereof.
  • the alkanoate can include a hydrophobic C1-C22 alkyl (e.g., acetyl, ethyl, propyl, butyl, pentyl, caprylyl, capryl, lauryl, myristyl, palmityl, stearyl, arachidyl, or behenyl) bonded via a labile linkage (e.g., an ester, a carbamate, a thioester and an amide linkage) to an ascorbyl, sorbitan, triglycerol, or sucrose molecule.
  • a labile linkage e.g., an ester, a carbamate, a thioester and an amide linkage
  • the ascorbyl alkanoate can include ascorbyl palmitate, ascorbyl decanoate, ascorbyl laurate, ascorbyl caprylate, ascorbyl myristate, ascorbyl oleate, or any combination thereof.
  • the sorbitan alkanoate can include sorbitan monostearate, sorbitan decanoate, sorbitan laurate, sorbitan caprylate, sorbitan myristate, sorbitan oleate, or any combination thereof.
  • the triglycerol monoalkanoate can include triglycerol monopalmitate, triglycerol monodecanoate, triglycerol monolaurate, triglycerol monocaprylate, triglycerol monomyristate, triglycerol monostearate, triglycerol monooleate, or any combination thereof.
  • the sucrose alkanoate can include sucrose palmitate, sucrose decanoate, sucrose laurate, sucrose caprylate, sucrose myristate, sucrose oleate, or any combination thereof. In some
  • the GRAS gelators include ascorbyl palmitate, sorbitan monostearate, triglycerol monopalmitate, sucrose palmitate, or glycocholic acid.
  • Representative low molecular weight GRAS gelators include vitamin precursors such as ascorbyl palmitate (vitamin C precursor), retinyl acetate (vitamin A precursor), and alpha- tocopherol acetate (vitamin E precursor).
  • vitamin precursors such as ascorbyl palmitate (vitamin C precursor), retinyl acetate (vitamin A precursor), and alpha- tocopherol acetate (vitamin E precursor).
  • the self- assembled gel compositions are formed of amphiphilic 3- aminobenzamide derivatives having a molecular weight of 2,500 or less.
  • the gelator can also be or include a prodrug that can tranform to the active form of the drug in physiological conditions.
  • one or more saturated or unsaturated hydrocarbon chains having Ci to C30 groups are synthetically modified onto a low molecular weight, generally hydrophilic compound, through esterification or a carbamate, anhydride, and/or amide linkage.
  • the range Ci to C30 includes Ci, C 2 , C3, C 4 , C5, C 6 , C 7 , C 8 , C9, C10, Cn, C12, C13, Ci 4 , C15, Ci6, Cn, Ci8, C19 etc. up to C30 as wells as ranges falling within Ci to C30, for example, Ci to C29, C2 to C30, C3 to C28, etc.
  • alpha tocopherol acetate, retinyl acetate, retinyl palmitate, or a combination thereof can co-assemble with the gelators.
  • the gelators may release a therapeutic agent in response to a stimulus.
  • exemplary stimuli include ultrasound, temperature, pH, metal ions, light, electrical stimuli, electromagnetic stimuli, and combinations thereof. Stimuli evoking release can be present due to the characteristics at the site of administration or where release is desired, for example, tumors or areas of infection, commonly associated with low pH. These may be conditions present in the blood or serum, or conditions present inside or outside the cells, tissue or organ.
  • the gel compositions may be designed to disassemble only under conditions present in a disease state of a cell, tissue or organ, e.g., inflammation, thus allowing for release of an agent at targeted tissue and/or organ.
  • the gel compositions include degradable linkages that are cleavable upon contact with an enzyme and/or through hydrolysis, such as ester, amide, anhydride, a thioester, and carbamate linkages. Typically, linkage are between hydrophilic and hydrophobic parts of the amphiphile molecule.
  • phosphate-based linkages can be cleaved by phosphatases.
  • labile linkages are redox cleavable and are cleaved upon reduction or oxidation (e.g., -S-S-).
  • degradable linkages are susceptible to temperature, for example cleavable at high temperature, e.g., cleavable in the temperature range of 37-100 °C,40-100 °C,45-100 °C,50-100 °C, 60-100 °C, 70-100°C.
  • degradable linkages can be cleaved at physiological temperatures (e.g., from 36 to 40 °C, about 36 °C, about 37 °C, about 38 °C, about 39 °C, about 40 °C).
  • linkages can be cleaved by an increase in temperature.
  • the gel is formed from the self-assembly and/or non-covalent interactions of a generally recognized as safe (GRAS) amphiphilic gelator and one or more therapeutic, prophylactic, or diagnostic agents encapsulated in the gel.
  • GRAS generally recognized as safe
  • the gelator has a molecular weight of 2,500 or less, and is an ascorbyl alkanoate, a sorbitan alkanoate, a triglycerol monoalkanoate, or a sucrose alkanoate.
  • Self-assembled gel is formed in a liquid medium such as distilled water, de-ionized water, pure or ultrapure water, saline, or other physiologically acceptable aqueous solutions containing salts (e.g., at between greater than 0 and 0.15 M NaCl; or between 10 mM and 500 mM), or a two-solvent system including an organic solvent and water (or an aqueous salt solution).
  • a liquid medium such as distilled water, de-ionized water, pure or ultrapure water, saline, or other physiologically acceptable aqueous solutions containing salts (e.g., at between greater than 0 and 0.15 M NaCl; or between 10 mM and 500 mM), or a two-solvent system including an organic solvent and water (or an aqueous salt solution).
  • Exemplary organic solvents include dimethyl sulfoxide (DMSO), methanol, acetone, ethanol, dioxane, acetonitrile, toluene, tetrahydrofuran, isobutyl alcohol, polyethylene glycol at a low molecular weight (e.g., 1 kDa) which is liquid at 37 °C, propylene glycol, and dipropylene glycol.
  • DMSO dimethyl sulfoxide
  • methanol methanol
  • acetone ethanol
  • dioxane acetonitrile
  • toluene tetrahydrofuran
  • isobutyl alcohol polyethylene glycol at a low molecular weight (e.g., 1 kDa) which is liquid at 37 °C
  • propylene glycol and dipropylene glycol.
  • an organic solvent is mixed with and at least partially dissolves one or more gelators.
  • the amine-containing compounds may be dissolved in the co- solvent mixture or the aqueous solution which is then added to the gelator in the organic solvent.
  • the agent is added to gelator dissolved in a co-solvent medium including both water (or an aqueous buffer or salt solution) and a water-miscible organic solvent with mixing and optionally heating to insure complete dissolution.
  • the gelators are dissolved initially in an organic solvent to form a solution with the gelators as the solutes (termed "gelator solution").
  • the agent for example, free base lidocaine, is then dissolved in the gelator solution.
  • An aqueous solution such as pure water or an aqueous buffer or salt solution is then mixed with the drug-gelator solution to form a liquid gel solution.
  • the amount of the organic solvent in the total amount of liquid (organic + water/aqueous solution) is generally no more than 50%. If needed, the liquid gel solution is heated to insure complete dissolution, then cooled to form a gel stable to inversion at room temperature (25°C) or body temperature (37°C). Agent is added to form a final concentration in the gel of between about 4 and 25 wt/%.
  • the amount of the organic solvent is generally between about 5% to about 50% by volume in the combined amount of the organic solvent and water (or an aqueous solution). Even if a higher % amount of the organic solvent is present in the gelator solution, most of the organic solvent in a self- assembled gel can be removed and replaced with media in purification techniques such as dialysis, centrifugation, and filtration.
  • Salt or buffer aqueous solutions may increase agent loading.
  • dissolving amphiphilic gelators in DMSO, then adding phosphate buffered saline (PBS) at a physiological ionic strength increases loading of amine-containing compounds in the resulting self- assembled gel, compared to water.
  • PBS phosphate buffered saline
  • inclusion of PBS increased loading of the amine-containing agent such as lidocaine or lidocaine hydrochloride to at least 4%, 6%, 8%, 10%, 15%, or 18% by weight, or greater in a gel formed in a DMSO-PBS system, whereas ultrapure water or water with essentially no salt formed a gel in a DMSO-water system encapsulating less than 0.5%, 1%, 2%, or 3% by weight of lidocaine or salts thereof.
  • the amine-containing agent such as lidocaine or lidocaine hydrochloride
  • the inclusion of salt(s) during formation of gel can be used to tune the rheological properties of the gel, such as to impart thixotropy.
  • dissolving amphiphilic gelators in an organic solvent, such as DMSO and adding phosphate buffered saline (PBS) containing one or more salts imparts thixotropic properties to the self-assembled gel, as compared to using water or a buffer solution without additional salt(s).
  • PBS phosphate buffered saline
  • Exemplary salts which can be added to tune the rheological properties of the gels include, but are not limited to sodium chloride, potassium chloride, calcium chloride, magnesium chloride, zinc chloride, or combinations thereof.
  • any suitable salt can be used that can provide sodium, potassium, calcium, magnesium, or zinc ions.
  • the salt(s) are added during gel formation.
  • the salt(s) are added post- gel formation, such as during a postprocessing step.
  • the concentration of salt used (added during gel formation or in post-processing) to tune the rheological properties can be in the range of between about 0.1 to about 300 mM, about 0.1 to about 300 mM, about 0.1 to about 250 mM, about 0.1 to about 200 mM, about 0.1 to about 150 mM, about 0.1 to about 100 mM, about 0.1 to about 50 mM, or about 0.1 to about 25 niM.
  • the salts described here are added to buffer(s), such as a phosphate buffer, used to prepare the gels or in which a prepared gel may be resuspended in at concentrations ranging from between about 1 to 250 mM, about 1 to 200 mM, about 1 to 150 mM, about 1 to 100 mM, about 1 to 75 mM, about 1 to 50 mM, or about 1 to 25 mM.
  • buffer(s) such as a phosphate buffer
  • concentrations ranging from between about 1 to 250 mM, about 1 to 200 mM, about 1 to 150 mM, about 1 to 100 mM, about 1 to 75 mM, about 1 to 50 mM, or about 1 to 25 mM.
  • the salt(s) described here are added to buffer(s), such as a phosphate buffer, used to prepare the gels or in which a prepared gel may be resuspended in at concentrations of about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150 mM, or higher.
  • buffer(s) such as a phosphate buffer
  • the concentration of the one or more salts in the final gels after all processing steps may be at concentrations of about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150 mM, or higher.
  • organic solvent(s) during formation of gel or added post-gel formation, such as during a postprocessing step cam be used to tune the rheological properties of the gel, such as to impart thixotropy.
  • exemplary organic solvents which can be used, either alone or in combination with the salt(s) already discussed, to tune the rheological properties of the gels include, but are not limited to
  • the organic solvent(s) described here are added as part of gel formation or can be added to buffer(s), such as a phosphate buffer, in which a prepared gel may be resuspended to provide gels with concentrations of organic solvent(s) of about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 % (volume/volume of total gel).
  • buffer(s) such as a phosphate buffer, in which a prepared gel may be resuspended to provide gels with concentrations of organic solvent(s) of about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 % (volume/volume of total gel).
  • a combination of salt(s) and organic solvent(s) as described immediately above can be used to tune the rheological properties of the gel, such as to impart thixotropy.
  • a two-solvent system e.g., in a DMSO-PBS system
  • increasing the proportion of the organic solvent relative to the aqueous salt solution results in an increase in the loading and encapsulation efficiency of amine-containing agents.
  • Increasing the volume ratio of an organic solvent (e.g., DMSO) to an aqueous salt solution (e.g., phosphate-buffered saline) from 1:4 to 1:1 resulted in an increase of agent loading such as lidocaine loading in the self-assembled gel.
  • an organic solvent e.g., DMSO
  • an aqueous salt solution e.g., phosphate-buffered saline
  • amphiphilic gelators are first dissolved in an organic solvent, such as an alcohol (i.e., methanol), increasing the amount of salt in an aqueous phase to add to the alcohol-containing solution for gelation upon heating and cooling results in a decrease in the agent loading and encapsulation percentages.
  • an organic solvent such as an alcohol (i.e., methanol)
  • the gel formulation can be further process to remove solvent, solvent impurities, excess agent (i.e., drug or free drug), for example, using dialysis, centrifugation, and/or filtration (e.g., tangential flow filtration (TFF)).
  • solvent residue is removed to less than 1%, 3%, 5%, or 10% of the starting levels, or to less than the acceptance criteria of residual solvents of an organic solvent by U.S. Pharmacopeia Convention, International Conference on Harmonization guidance, or by U.S. Food and Drug Administration).
  • the residual amount of solvent, solvent impurities, and/or excess drug or free drug which is not otherwise encapsulated or entrapped can be reduced to less than about 1,000 ppm, less than about 900 ppm, less than about 800 ppm, less than about 700 ppm, less than about 600 ppm, less than about 500 ppm, less than about 400 ppm, less than about 300 ppm, less than about 200 ppm, less than about 100 ppm less than about 50 ppm, or less.
  • dialysis or TFF in an aqueous medium with zero to less than 0.15 M salt effectively retains a greater amount of agent and maintains the high agent loading in a hydrogel as compared to dialysis in an aqueous medium with 0.15 M or a greater amount of salt.
  • the gel may be suspended or purified in a pharmaceutically acceptable carrier to generate a desired volume for administration.
  • a pharmaceutically acceptable carrier e.g., Water or an aqueous medium with a low concentration of salt (e.g., less than 0.15 M) as the medium for suspension of the drug-loaded gel maintains the high loading content of the agent to at least 80%, 85%, 90%, 95%, or about 100% compared to the hydrogel composition before suspension; whereas phosphate buffered saline or aqueous medium containing about 0.15 M salt maintains about 65%, 70%, 75%, or 80% of the encapsulated agent content compared to before suspension.
  • salt e.g., less than 0.15 M
  • Suspension of a gel composition can provide a desired final volume of the formulation for ease of administration (e.g., for ease of administration to a patient in need thereof by drinking or injection) and/or a desired agent concentration to control toxicity.
  • the gel can also be dried or lyophilized to remove all solvent, administered in dried form, or rehydrated for administration.
  • the self-assembled gel is stable to inversion, i.e., it does not flow when inverted at ambient temperature (e.g., below the Krafft point of gelator) and pressure, the suspended gel in a pharmaceutically acceptable carrier may flow due to gravity.
  • the gel is suspended in a pharmaceutically acceptable carrier and then the gel dispersed or broken to form fibers or particles.
  • Dispersion techniques include agitation, vortexing, pipetting, and homogenizing.
  • the gel formulation with a high loading content of amine-containing compounds adheres to a charged surface, such as those with amine functional groups on the surface.
  • a lower or no ionic strength e.g., zero to less than 0.15 M salt in an aqueous medium
  • improves the adhesion of the gel formulation compared to that in a high ionic strength environment e.g., aqueous solution with 0.15 M salt or greater.
  • a gel formulation in water adheres to a charged surface at a density of at least about 10, 13, 15, 17, 20, or 25 ⁇ g of gel/cm 2 of the surface, or greater, after extensive washing of the surface, whereas a gel formulation with a similar amount of gelator concentration but in phosphate buffered saline or solution with a higher salt concentration only adheres to a charged surface at less than about 5, 4, 3, 2, or 1 ⁇ g of gel/cm 2 of the surface, after extensive washing of the surface.
  • an organic solvent dissolves one or more gelators with or without heating.
  • the amine-containing compounds may be dissolved in the gelator solution in the organic solvent, or be dissolved with water or in an aqueuous buffer solution which is added to the gelator solution in the organic solvent.
  • the amount of the organic solvent is generally between about 5% to about 50% by volume in the combined amount of the organic solvent and water (or an aqueous solution).
  • the organic solvent is used to pre-dissolve gelator, and the pre-dissolved gelator solution is used to dissolve amine-containing agents such as free base lidocaine or other amine-containing anesthetics in their free base form.
  • amine-containing agents such as free base lidocaine or other amine-containing anesthetics in their free base form.
  • Increasing the volume percentage of the organic solvent in the total gelation medium generally improves the loading of the amine- containing compounds, as well as the consistency/homogeneity of assembled gels (e.g., unlike flowable gels when inverted; also unlike gel-liquid mixtures where a top-layer liquid is present with the gel).
  • Suitable organic solvents include water-miscible solvent, or solvent that has an appreciable water solubility (e.g., greater than 5 g/lOOg water), e.g., DMSO, acetone, dimethylformamide (DMF),tetrahydrofuran, dioxane, acetonitrile, and alcohol such as ethanol, methanol or isopropyl alcohol, and other water-miscible organic solvents, as well as low molecular weight polyethylene glycol (e.g., 1 kD PEG which melts at 37 °C).
  • water-miscible solvent or solvent that has an appreciable water solubility (e.g., greater than 5 g/lOOg water)
  • DMSO e.g., DMSO, acetone, dimethylformamide (DMF),tetrahydrofuran, dioxane, acetonitrile
  • alcohol such as ethanol, methanol or isopropyl alcohol, and
  • the organic solution containing gelators and amine-containing compounds is further added to an amount of aqueous medium (e.g., saline) to undergo heat treatment to yield a self-assembled hydrogel that is stable to inversion (e.g., would not flow when contained in an inverted vial; aqueous component at least 50% in the medium to form a hydrogel) at room temperature.
  • aqueous medium e.g., saline
  • the amount of an organic solvent, if needed, to initially dissolve the gelator and/or agents is no more than equal volume or 1 ⁇ 2, 1/3,1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, or less in volume compared to the volume of an aqueous medium to mix with the dissolved gelator and/or agents and to heat for hydrogel assembly.
  • the volume amount of an organic solvent in the total amount of liquid as used in forming a homogenous gel with high agent loading is generally no more than about 50%, 33%, 25%, 20%, 17%, 14%, 12.5%, 11%, 10%, or 9%.
  • a water-miscible organic solvent is used to make the hydrogels, with the balance being water or a buffer; and a higher volume % of water-miscible organic solvent generally improves agent loading and gel consistency (e.g., lower % solvent can sometimes form flowable gels that would fail an inversion test).
  • the amount of the organic solvent in the self-assembled hydrogel can be substantially removed via dialysis, centrifugation, and/or filtration to yield suitable gel formulation still with high agent loading for administration.
  • the residual amount of organic solvent can be reduced to less than about 1,000 ppm, less than about 900 ppm, less than about 800 ppm, less than about 700 ppm, less than about 600 ppm, less than about 500 ppm, less than about 400 ppm, less than about 300 ppm, less than about 200 ppm, less than about 100 ppm less than about 50 ppm, or less. Any residual amount of the organic solvent is generally within the stated limit of pharmaceutical products by the U.S.
  • aqueous solutions containing salts improves the loading amount of an agent in the gelator by dissolving both materials at once in the hydrogel assembly process. This is demonstrated in Example 1 where DMSO dissolves a gelator prior to the addition of phosphate buffered saline to form a homogeneous mixture which forms gel following heating and cooling.
  • Salts include pharmaceutically acceptable small molecules such as sodium chloride, potassium chloride, disodium phosphate, and
  • the assembled gel compositions can be used to deliver one or more amine-containing agents to an individual or subject in need thereof, especially amine-containing anesthetic compounds.
  • lidocaine or other "-caine” anesthetic agents and/or other aliphatic amine containing agents, that encapsulation can be challenging because self-assembled gels, such as those described herein, rely on hydrophobic moieties on the agents (i.e., drugs) to be
  • (post)processing can also affect the interaction between the gelator(s), such as ascorbyl palmitate, and the amine-containing agent, such as lidocaine.
  • the type of salt and the salt concentration can be used to tune the encapsulation efficiency and correspondingly the extent of drug loading in the gel.
  • a loading between about 5% and about 50% of amine-containing agent is significantly maintained even during a burst phase, e.g., no more than 25%, 30%, 40%, or 50% of the loaded agent is released at a burst phase, or virtually no burst release for concentrated systems at room temperature. This is unlike unpurified self-assembled materials by others which have very high burst release or even full release in a matter of minutes or hours.
  • gelators may be prodrugs that hydroly tic ally or enzymatically degrade and release active agents.
  • the amine-containing agent may be physically entrapped, encapsulated, or non-covalently associated with the nanofibrous structures of the gel composition.
  • the agents may be covalently modified with one or more gelators, one or more stabilizers, or be used as a gelator. Alternatively, they are incorporated into the assembled ordered lamellar, vesicular, and/or nanofibrous structures of the gel composition or positioned on the surface of the assembled structures.
  • the self-assembled gels demonstrate loading efficiencies of the amine-containing agents (or other agents listed below) of up to about 90 wt/wt%, about 80 wt/wt%, about 70 wt/wt%, about 60 wt/wt%, about 50 wt/wt%, about 45 wt/wt%, about 40 wt/wt%, about 35 wt/wt%, about 30 wt/wt%, about 25 wt/wt%, about 20 wt/wt%, about 15 wt/wt%, about 10 wt/wt%, or about 5 wt/wt%.
  • the self-assembled gels demonstrate entrapment or encapsulation efficiencies of the amine-containing agents (or other agents listed below) of up to about 100 wt/wt%, 99 wt/wt%, 98 wt/wt%, 97 wt/wt%, 96 wt/wt%, 95 wt/wt%, 94 wt/wt%, 93 wt/wt%, 92 wt/wt%, 91 wt/wt%, 90 wt/wt%, about 80 wt/wt%, about 70 wt/wt%, about 60 wt/wt%, about 50 wt/wt%, about 45 wt/wt%, about 40 wt/wt%, about 35 wt/wt%, about 30 wt/wt%, about 25 wt/wt%, about 20 wt/wt%, about 15 wt/wt%, about
  • the self-assembled gels are prepared with the inclusion of salt(s) and/or organic solvent(s) during formation of gel or added post-gel formation, such as during a post-processing step, in order to tune the rheological properties of the gel.
  • the amounts of salt(s) and/or organic solvent(s) used in preparing the gel is controlled to preferably obtain encapsulation efficiencies of at least about 50 wt/wt%, about 45 wt/wt%, about 40 wt/wt%, about 35 wt/wt%, about 30 wt/wt%, about 25 wt/wt%, about 20 wt/wt%, about 15 wt/wt%, about 10 wt/wt%, or about 5 wt/wt% in the gel.
  • the amine-containing agents are anesthetic agents which are entrapped, encapsulated, embedded, electrostatically bound, or otherwise delivered in the gel matrix at a loading content of at least 4%, 5%, 6%, 7%, 8%, 9%, 10%, or greater; and these formulations maintain the high loading content of anesthetics even during post-formation processes such as suspension and purification.
  • anesthetics are loaded at between about 5% and about 25% by weight in the gel matrix.
  • Most of the common local anesthetics e.g., lidocaine, procaine, dibucaine, tetracaine, benzocaine, bupivacaine
  • ionizable tertiary amines which can exist in two forms, i.e., an uncharged free base form (B) and a cationic form (BH + ), depending on the pK a value of the compound and the pH of the medium according to the Henderson-Has selbach equation
  • pKa pH + logio ([BH + ]/[B]) where [BH + ] and [B] represent the concentrations of the charged and uncharged forms, respectively.
  • the form of the tertiary amine-containing anesthetics e.g., lidocaine
  • the uncharged free base form generally penetrates cell membranes and tissue much more easily than the charged form (Henry R, et al., / Urol, Jun;165(6 Pt 1): 1900-1903 (2001)). If the site of action is located on the internal surface of the nerve membrane, local anesthetic molecules need to pass through both the nerve sheath and the nerve membrane before exerting the blocking action.
  • the charged form competes with sodium for the negative carrier sites in the sodium channel.
  • the free base form of amine-containing agents are used in preparing the gel formulation and the gel can include both the free base and conjugate acid of the free base in equilibrium.
  • lidocaine has a loading content of at least 4% in the assembled gel matrix, e.g., between about 4% and about 18%.
  • the loading content of the anesthetic remains at least 90%, 80%, or 70% compared to the loaded amount of anesthetic after gel assembly is complete.
  • lidocaine, procaine, tetracaine, dibucaine, benzocaine, bupivacaine, or salts thereof is included in the assembled gel formulation.
  • hydrochloride, and/or bupivacaine may be used.
  • Freebase lidocaine, procaine, tetracaine, benzocaine, bupivacaine, or dibucaine may also be mixed with gelator material and encapsulated in the assembled hydrogel in the presence of appropriate solvents.
  • the gel formulation is also suitable for delivery of amine-containing agents, such as anesthetics and additional agents, such as antibiotics, anti-inflammatories, antimicrobials, or combinations thereof.
  • amine-containing agents such as anesthetics
  • additional agents such as antibiotics, anti-inflammatories, antimicrobials, or combinations thereof.
  • antibiotic/antimicrobial agent compounds for high loading in the gel formulation include tetracyclines, doxycycline, minocycline, metacycline, demeclocycline, rolitetracycline, lymecycline, meclocycline, miocamycin, aminoglycosides, ansaycins, carbapenems, cephalosporins, glycopeptides, lincosamides, lipopeptides, macrolides, monobactams, nitrofurans, oxazolidinones, penicillins, polypeptides, quinolones/fluoroquinolone, sulfonamides, clofazimine, dapsone, capreomycin, cycloserine, ethambutol, ethionamide, isoniazid, pyrazinamide, rif
  • the gel formulation and self-assembly process for high agent loading is also suitable for delivering anti-inflammatories such as steroids like cortisone and prednisone and/or non-steroidal anti-inflammatories, such as naproxen.
  • anti-inflammatories such as steroids like cortisone and prednisone and/or non-steroidal anti-inflammatories, such as naproxen.
  • agents enhancing blood stability and/or reducing the rate of disassembly of nanostructures after administration are included in the composition.
  • Blood proteins including albumin can interact with irregularities in the assembled lamellar, micellar, vesicular, and/or fibrous structures, such as those that exist at the phase boundaries, resulting in a higher rate of disassembly of particles or the higher structured nanoparticles or bulk hydrogel.
  • Stabilizing agents typically impart rigidity, increase the packing density, and/or enhance the strength of assembled structures, thus altering the phase transition process and transitioning temperature, and/or modulating the surface properties of assembled particles to reduce or prevent protein adhesion or accumulation.
  • the stabilizing agents diminish the rate of reduction in the size of the assembled particles or nanoparticles when placed in a serum solution, whereas compositions without stabilizing agents substantially decrease the hydrodynamic size in serum solutions in about 30 minutes.
  • Stabilizing agents allow for more than 50%, 60%, 70%, 80%, 90%, 95%, 99% of the assembled nanostructures to have less than 1%, 5%, 10%, 15%, 20%, or 30% reduction in the hydrodynamic sizes in at least one, two, three, four, 12, 24, or 48 hours in incubation with serum at 37 °C.
  • the molecules that can rigidity the self-assembled lamellae will usually be hydrophobic molecules, molecules that can change surface properties, like small chain hydrophilic polymers, and/or molecules that can modify the surface charge (charged molecules).
  • the stabilizing agents are co-assembled with gelators in the formation of assembled gel compositions.
  • These stabilizing agents are generally incorporated into the lamellar, micellar, vesicular, and/or fibrous structures by encapsulation, integrated, entrapment, insertion or intercalation.
  • inclusion of 10-30 mole% of co-assembly type, stabilizing agents allows for the assembled nanoparticles to maintain about 80% or more of the original size when incubated over a period of two to four hours in serum solutions.
  • Exemplary stabilizing agents include sterols, phospholipids, and low molecular weight therapeutic compounds that are typically hydrophobic.
  • Suitable sterols include cholesterol, corticosteriods such as
  • stabilizing agents include, but are not limited to, lysophospholipids (including lyso PC, 2-hexadecoxy-oxido-phosphoryl)oxyethyl-trimethyl- azanium), gangliosides, including GM1 and GTlb, sulfatide,
  • sphingophospholipids synthetic glycopholipids such as sialo-lactosyl, phospholipids, including DOPE, DOPS, POPE, DPPE, DSPE, lipophilic drugs such as cytosine arabinoside diphosphate diacyglycerol, proteins such as cytochrome b5, human high density lipoprotein (HDL), human glycophorin A, short chain hydrophilic polymers, including polyethylene glycol (PEG) and their derivatives with lipids, bile acids include taurocholic acid, desoxycholic acid, and geicocholic acid, l,l'-dioctadecyl 3, 3,3', 3'- tetramethyl-indocarbocyanine percholorate (Dil), DiR, DiD, fluorescein isothiocynate, tetramethylrhodamine isothiocyanate, rhodamine B octadecyl ester perchlorate and N'-O
  • Suitable phospholipids include dipalmitoyl phosphatidyl choline and distearoyl phosphatidyl choline.
  • the phospholipids typically co-assemble with one or more gelators in forming the ordered lamellar and/or fibrous structures.
  • the stabilizing agents are an agent encapsulated in the assembled composition, typically throughout the gel composition, rather than insertion or intercalation into the lamellar, micellar, vesicular, and/or fibrous structures.
  • inclusion of between 5 and 15 mole% stabilizing agents allows for the assembled nanostructures to maintain about 80% or more of the original size when incubated over a period of two to four hours in serum solutions.
  • the agents may diminish reduction in the size of the assembled nanostructures when placed in a blood or serum solution, where more than 50%, 60%, 70%, 80%, 90%, 95%, 99% of the
  • nanostructures in incubation with serum at 37 °C have less than 1%, 5%, 10%, 15%, 20%, or 30% reduction in the hydrodynamic sizes in at least one, two, three, four, 12, 24, or 48 hours, compared to gel composition without the active agents.
  • a hydrophobic agent may stabilize the nanostructures formed from gelators when encapsulated at a molar percentage of 2%, 4%, 6%, 8%, and 10%, and all values in the range, between the active agent and the gelators.
  • Suitable low molecular weight therapeutic, prophylactic and/or diagnostic agents used as stabilizing agents for the gel compositions are generally hydrophobic, of a low molecular weight (e.g., less than 2,500 Da), such as docetaxel and steroids and other hydrophobic agents such as dexamethasone, or a combination of agents. 6.
  • the gel composition is formed generally by heating and mixing the gelator and the agent(s) in a medium to completely or near completely dissolve the gelator, followed by cooling to below the Krafft point to allow the assembly of the gelators around and/or having on the surface the agents.
  • an organic solvent e.g., in a small amount generally less than about 1/10 compared to the amount of the aqueous medium
  • a formed gel is generally stable to inversion, e.g., resist gravitational flow from a vial when the vial containing the gel is inverted to an upright or tilted position.
  • a formed gel may also retain its structural presence and stay as applied without being washed away at 37 °C or in vivo.
  • a formed gel may include nanostructures from the gelator or the gelator and the agents, where the nanostructures include lamellar structures, fibers, sheet-like structures, tape-like structures, nanoparticles, or combinations thereof.
  • the gel is formed from the self-assembly and/or non-covalent interactions of a generally recognized as safe (GRAS) amphiphilic gelator and one or more therapeutic, prophylactic, or diagnostic agents encapsulated in the gel.
  • GRAS generally recognized as safe
  • the gelator has a molecular weight of 2,500 or less, and is an ascorbyl alkanoate, a sorbitan alkanoate, a triglycerol
  • Self-assembled gel is formed in a liquid medium such as distilled water, de-ionized water, pure or ultrapure water, saline, or other physiologically acceptable aqueous solutions containing salts (e.g., at between greater than 0 and 0.15 M NaCl; or between 10 mM and 500 mM), or a two-solvent system including an organic solvent and water (or an aqueous salt solution).
  • a liquid medium such as distilled water, de-ionized water, pure or ultrapure water, saline, or other physiologically acceptable aqueous solutions containing salts (e.g., at between greater than 0 and 0.15 M NaCl; or between 10 mM and 500 mM), or a two-solvent system including an organic solvent and water (or an aqueous salt solution).
  • organic solvents are dimethyl sulfoxide (DMSO), methanol, acetone, ethanol, dioxane, acetonitrile, toluene, tetrahydrofuran, isobutyl alcohol, polyethylene glycol at a low molecular weight (e.g.,1 kDa) which is liquid at 37 °C, propylene glycol, dipropylene glycol, or combinations thereof.
  • DMSO dimethyl sulfoxide
  • methanol methanol
  • acetone ethanol
  • dioxane acetonitrile
  • toluene tetrahydrofuran
  • isobutyl alcohol polyethylene glycol at a low molecular weight (e.g.,1 kDa) which is liquid at 37 °C
  • propylene glycol dipropylene glycol, or combinations thereof.
  • an organic solvent is mixed with and at least partially dissolves one or more gelators.
  • the amine-containing compounds may be
  • the agent is added to gelator dissolved in a co-solvent medium including both water (or an aqueous buffer or salt solution) and a water-miscible organic solvent with mixing and optionally heating to insure complete dissolution.
  • a co-solvent medium including both water (or an aqueous buffer or salt solution) and a water-miscible organic solvent with mixing and optionally heating to insure complete dissolution.
  • the gelators are dissolved initially in an organic solvent to form a solution with the gelators as the solutes (termed "gelator solution”).
  • the agent for example, free base lidocaine, is then dissolved in the gelator solution.
  • An aqueous solution such as pure water or an aqueous buffer or salt solution is then mixed with the drug-gelator solution to form a liquid gel solution.
  • the amount of the organic solvent in the total amount of liquid is generally no more than 50%. If needed, the liquid gel solution is heated to insure complete dissolution, then cooled to form a gel stable to inversion at room temperature (25°C) or body temperature (37°C). Agent is added to form a final concentration in the gel of between about 4 and 25 wt/%.
  • the amount of the organic solvent is generally between about 5% to about 50% by volume in the combined amount of the organic solvent and water (or an aqueous solution). Even if a higher % amount of the organic solvent is present in the gelator solution, most of the organic solvent in a self- assembled gel can be removed and replaced with media in purification techniques such as dialysis, centrifugation, and filtration.
  • Salt or buffer aqueous solutions may increase agent loading.
  • dissolving amphiphilic gelators in DMSO, then adding phosphate buffered saline (PBS) at a physiological ionic strength increases loading of amine-containing compounds in the resulting self- assembled gel, compared to water.
  • PBS phosphate buffered saline
  • inclusion of PBS increased loading of the amine-containing agent such as lidocaine or lidocaine hydrochloride to at least 4%, 6%, 8%, 10%, 15%, or 18% by weight, or greater in a gel formed in a DMSO-PBS system, whereas ultrapure water or water with essentially no salt formed a gel in a DMSO-water system encapsulating less than 0.5%, 1%, 2%, or 3% by weight of lidocaine or salts thereof.
  • the amine-containing agent such as lidocaine or lidocaine hydrochloride
  • the inclusion of salt(s) during formation of gel can be used to tune the rheological properties of the gel, such as to impart thixotropy.
  • dissolving amphiphilic gelators in an organic solvent, such as DMSO and adding phosphate buffered saline (PBS) containing one or more salts imparts thixotropic properties to the self-assembled gel, as compared to using water or a buffer solution without additional salt(s).
  • PBS phosphate buffered saline
  • Exemplary salts which can be added to tune the rheological properties of the gels include, but are not limited to sodium chloride, potassium chloride, calcium chloride, magnesium chloride, zinc chloride, or combinations thereof.
  • any suitable salt can be used that can provide sodium, potassium, calcium, magnesium, or zinc ions.
  • the salt(s) are added during gel formation.
  • the salt(s) are added post- gel formation, such as during a postprocessing step.
  • the concentration of salt used (added during gel formation or in post-processing) to tune the rheological properties can be in the range of between about 0.1 to about 300 niM, about 0.1 to about 300 mM, about 0.1 to about 250 mM, about 0.1 to about 200 mM, about 0.1 to about 150 mM, about 0.1 to about 100 mM, about 0.1 to about 50 mM, or about 0.1 to about 25 mM.
  • the salts described here are added to buffer(s), such as a phosphate buffer, used to prepare the gels or in which a prepared gel may be resuspended in at concentrations ranging from between about 1 to 250 mM, about 1 to 200 mM, about 1 to 150 mM, about 1 to 100 mM, about 1 to 75 mM, about 1 to 50 mM, or about 1 to 25 mM.
  • buffer(s) such as a phosphate buffer
  • concentrations ranging from between about 1 to 250 mM, about 1 to 200 mM, about 1 to 150 mM, about 1 to 100 mM, about 1 to 75 mM, about 1 to 50 mM, or about 1 to 25 mM.
  • the salt(s) described here are added to buffer(s), such as a phosphate buffer, used to prepare the gels or in which a prepared gel may be resuspended in at concentrations of about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150 mM, or higher.
  • buffer(s) such as a phosphate buffer
  • the concentration of the one or more salts in the final gels after all processing steps may be at concentrations of about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150 mM, or higher.
  • organic solvent(s) during formation of gel or added post-gel formation, such as during a postprocessing step to tune the rheological properties of the gel, such as to impart thixotropy.
  • organic solvents which can be used, either alone or in combination with the salt(s) already discussed, to tune the rheological properties of the gels include, but are not limited to dimethylsulfoxide (DMSO), alcohols (such as methanol, ethanol, isopropanol, i-butanol).
  • the organic solvent(s) described here are added as part of gel formation or can be added to buffer(s), such as a phosphate buffer, in which a prepared gel may be resuspended to provide gels with concentrations of organic solvent(s) of about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 % (volume/volume of total gel).
  • buffer(s) such as a phosphate buffer
  • concentrations of organic solvent(s) of about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 % (volume/volume of total gel).
  • a combination of salt(s) and organic solvent(s) as described immediately above can be used to tune the rheological properties of the gel, such as to impart thixotropy.
  • Example 6 As shown in Example 6, at fixed gelator (such as ascorbyl palmitate) to agent (such as lidocaine) concentrations, the rheological properties can be notably altered by the inclusion of salt(s) and organic solvent(s) and their respective concentrations. It has been shown that self- assembled ascorbyl palmitate hydrogels have recoverable rheological properties, i.e. shear thinning (US2013/0280334 Al, US2017/0319500 Al). The inclusion of salt(s) and/or solvent(s) demonstrates that the rheological properties can be controlled or tuned without altering the concentration of gelator (such as ascorbyl palmitate) or agent (such as lidocaine) in the gel formulation.
  • solvent such as lidocaine
  • Control over rheological properties is an important invention because the viscosity and rheology of a locally administered therapeutic can affect its disposition to the tissue in question.
  • the gels can be formed without any additional salts and/or organic solvents or their rheological properties can be tuned by addition of salts and/or organic solvent(s) (either during gel formation or post- gel formation).
  • the gels described can have or can be tuned to have a storage modulus (G') of from about 0.1, from about 0.2, from about 0.3, from about 0.4, from about 0.5, from about 0.6, from about 0.7, from about 0.8, from about 0.9, from about 1, from about 2, from about 3, from about 4, or from about 5 Pascals up to about 50, about 75, about 100, about 150, about 200, about 250, or about 300, or any combination of upper and lower end points disclosed herein.
  • G' storage modulus
  • the gels can be formed without any additional salts and/or organic solvents or their rheological properties can be tuned by addition of salts and/or organic solvent(s) (either during gel formation or post- gel formation).
  • the gels described can have or can be tuned to have a loss modulus (G") of from about 0.1, from about 0.2, from about 0.3, from about 0.4, from about 0.5, from about 0.6, from about 0.7, from about 0.8, from about 0.9, from about 1, from about 2, from about 3, from about 4, or from about 5 Pascals up to about 10, about 15, about 20, about 25, about 30, about 35, about 40, or about 300 Pascals, or any combination of upper and lower end points disclosed herein.
  • G loss modulus
  • the gels formed with or without addition of salts and/or organic solvent(s) have can have viscosities in a range from between about 0.1, from about 0.2, from about 0.3, from about 0.4, from about 0.5, from about 0.6, from about 0.7, from about 0.8, from about 0.9, from about 1, from about 2, from about 3, from about 4, or from about 5 centipoise (cP) up to about 10, about 100, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1,000, about 1,100, about 1,200, about 1,300, about 1,400, about 1,500, about 1,600, about 1,700, about 1,800, about 1,900, about 2,000, about 2,500, or about 3000 cP, or any combination of upper and lower end points disclosed herein.
  • the gels formed addition of salts and/or organic solvent(s) exhibit thixo
  • a two-solvent system e.g., in a DMSO-PBS system
  • increasing the proportion of the organic solvent relative to the aqueous salt solution results in an increase in the loading and encapsulation efficiency of amine-containing agents.
  • Increasing the volume ratio of an organic solvent (e.g., DMSO) to an aqueous salt solution (e.g., phosphate-buffered saline) from 1:5 to 1:1 resulted in an increase of agent loading such as lidocaine loading in the self-assembled gel.
  • an organic solvent e.g., DMSO
  • an aqueous salt solution e.g., phosphate-buffered saline
  • amphiphilic gelators are first dissolved in an organic solvent such as methanol, increasing the amount of salt in an aqueous phase to add to the methanol solution for gelation upon heating and cooling results in a decrease in the agent loading and encapsulation percentages.
  • the gel formulation can be further processed to remove solvent, solvent impurities, excess agent (i.e., drug or free drug), for example, using dialysis, centrifugation, and/or filtration (e.g., tangential flow filtration (TFF)).
  • solvent residue is removed to less than 1%, 3%, 5%, or 10% of the starting levels, or to less than the acceptance criteria of residual solvents of an organic solvent by U.S. Pharmacopeia Convention or by U.S. Food and Drug Administration).
  • the residual amount of solvent, solvent impurities, excess drug or free drug not otherwise encapsulated or entrapped by the gel can be reduced to less than about 1,000 ppm, less than about 900 ppm, less than about 800 ppm, less than about 700 ppm, less than about 600 ppm, less than about 500 ppm, less than about 400 ppm, less than about 300 ppm, less than about 200 ppm, less than about 100 ppm less than about 50 ppm, or less.
  • dialysis or TFF in an aqueous medium with zero to less than 0.15 M salt effectively retains a greater amount of agent and maintains the high agent loading in a hydrogel as compared to dialysis in an aqueous medium with 0.15 M or a greater amount of salt.
  • a self-supporting gel that is consistent, homogeneous, and stable to inversion (typically at room temperature) meaning no gravitational flow is observed in the gel upon inversion of the container holding the gel for at least 5, 10, or 15 seconds, and in some cases, for about 1, 5, 10, 30, or 60 minutes, 1 day, 2 days, 3 days, 1 week, 2 weeks, or longer.
  • the gels preferably demonstrate stabilities of inversion of at least 60 minutes or longer.
  • the gel may be suspended or purified in a
  • Water or an aqueous medium with a low concentration of salt (e.g., less than 0.15 M) as the medium for suspension of the drug-loaded gel maintains the high loading content of the agent to at least 80%, 85%, 90%, 95%, or about 100% compared to the hydrogel composition before suspension; whereas phosphate buffered saline or aqueous medium containing about 0.15 M salt maintains about 65%, 70%, 75%, or 80% of the encapsulated agent content compared to before suspension.
  • salt e.g. 0.15 M
  • Suspension of a gel composition can provide a desired final volume of the formulation for ease of administration (e.g., for ease of administration to a patient in need thereof by drinking or injection) and/or a desired agent concentration to control toxicity.
  • the gel can also be dried or lyophilized to remove all solvent, administered in dried form, or rehydrated for administration.
  • the self-assembled gel is stable to inversion, i.e., it does not flow when inverted at ambient temperature (e.g., below the Krafft point of gelator) and pressure. Stability to inversion is typically determined at room temperature and is characterized by a resistance of the gel to gravitational flow for a period of time of at least 60 minutes or longer).
  • the suspended gel in a pharmaceutically acceptable carrier may flow due to gravity.
  • the gel is suspended in a pharmaceutically acceptable carrier and then the gel dispersed or broken to form fibers or particles.
  • Dispersion techniques include agitation, vortexing, pipetting, and homogenizing.
  • the gel formulation with a high loading content of amine-containing compounds adheres to a charged surface, such as those with amine functional groups on the surface.
  • a lower or no ionic strength e.g., zero to less than 0.15 M salt in an aqueous medium
  • improves the adhesion of the gel formulation compared to that in a high ionic strength environment e.g., aqueous solution with 0.15 M salt or greater.
  • a gel formulation in water adheres to a charged surface at a density of at least about 10, 13, 15, 17, 20, or 25 ⁇ g of gel/cm 2 of the surface, or greater, whereas a gel formulation with a similar amount of gelator concentration but in phosphate buffered saline or solution with a higher salt concentration only adheres to a charged surface at less than about 5, 4, 3, 2, or 1 ⁇ g of gel/cm 2 of the surface.
  • Liquid Formulations to suspend agent-loaded gel contain self-assembled dispersed gel, nanostructures or combinations thereof suspended in a liquid pharmaceutical carrier.
  • self-assembled gel is suspended or resuspended in aqueous media for ease of administration and/or reaching a desired concentration for minimizing toxicity.
  • a salt buffered substantially aqueous medium is preferred in forming self-assembled hydrogel with high agent loading content, water is preferred over salt solutions in gel suspension and purification steps for maintaining the high agent content.
  • Suitable liquid carriers include, but are not limited to, distilled water, de-ionized water, pure or ultrapure water, saline, and other physiologically acceptable aqueous solutions containing salts and/or buffers, such as phosphate buffered saline (PBS), Ringer's solution, and isotonic sodium chloride, or any other aqueous solution acceptable for administration to an animal or human.
  • PBS phosphate buffered saline
  • Ringer's solution Ringer's solution
  • isotonic sodium chloride or any other aqueous solution acceptable for administration to an animal or human.
  • concentration of salts therein is in a physiological range.
  • distilled water, de-ionized water, pure or ultrapure water as a suspension medium and as a purification medium yields a higher loading amount of agents in the assembled hydrogel than PBS does or other salt solutions.
  • the liquid formulations are isotonic relative to physiological fluids and of approximately the same pH, ranging from about pH 4.0 to about pH 8.0, more preferably from about pH 6.0 to pH 7.0.
  • the pH is selected such that agent to be loaded, e.g., lidocaine, does not precipitate, as well as close to physiological conditions.
  • the liquid pharmaceutical carrier can include one or more physiologically compatible buffers, such as a phosphate or bicarbonate buffers.
  • physiologically compatible buffers such as a phosphate or bicarbonate buffers.
  • Liquid formulations may include one or more suspending agents, such as cellulose derivatives, sodium alginate, polyvinylpyrrolidone, gum tragacanth, or lecithin.
  • Liquid formulations may also include one or more preservatives, such as ethyl or n-propyl p-hydroxybenzoate.
  • Formulations may be prepared using one or more pharmaceutically acceptable excipients, including diluents, preservatives, binders, lubricants, disintegrators, swelling agents, fillers, stabilizers, and combinations thereof.
  • Liquid formulations may also contain minor amounts of polymers, surfactants, or other excipients well known to those of the art.
  • minor amounts means no excipients are present that might adversely affect the delivery of assembled gel compositions to targeted tissues, e.g. through circulation.
  • These pharmaceutically acceptable excipients may also be included in a lyophilyzed form of the purified, self-assembled hydrogel with high agent loading content.
  • the hydrogel prepared, suspended, and diluted in water or an aqueous solution with a low ionic strength has a stronger adhesion capacity to charged surfaces than a hydrogel prepared, suspended, and diluted in phosphate buffered saline or an aqueous solution with a high ionic strength.
  • the gelators loaded with one or more therapeutic, prophylactic, and diagnostic agents can be formulated in dry powder forms as finely divided solid formulations.
  • the dry powder components can be stored in separate containers, or mixed at specific ratios and stored.
  • suitable aqueous and organic solvents are included in additional containers.
  • dry powder components, one or more solvents, and instructions on procedures to mix and prepare assembled nanostructures are included in a kit.
  • stabilized, assembled particles, nanoparticles or bulk gel thereof are dried via vacuum-drying or freeze-drying, and suitable pharmaceutical liquid carrier can be added to rehydrate and suspend the assembled nanostructures or gel compositions upon use.
  • Dry powder formulations are typically prepared by blending one or more gelators, stabilizing agents, or active agents with one or more pharmaceutically acceptable carriers.
  • Pharmaceutical carrier may include one or more dispersing agents.
  • the pharmaceutical carrier may also include one or more pH adjusters or buffers. Suitable buffers include organic salts prepared from organic acids and bases, such as sodium citrate or sodium ascorbate.
  • the pharmaceutical carrier may also include one or more salts, such as sodium chloride or potassium chloride.
  • the final carrier buffer is the same as the buffer for gel preparation and/or purification. In other forms, the final carrier buffer is not the same as the buffer for gel preparation and/or purification.
  • the dry powder formulations can be suspended in the liquid formulations to form suspensions of assembled particles or nanoparticles thereof, and administered systemically or regionally using methods known in the art for the delivery of liquid formulations.
  • the agent -loaded assembled particles are formulated for parenteral delivery, such as injection of a suspension or topical application to a mucosal surface.
  • the formulation can be
  • parenteral administration may include administration to a patient intravenously, intradermally, intraperitoneally, intravesically, intrathecally, intrapleurally, intratracheally, intramuscularly, intravaginally, subcutaneously, or subjunctivally.
  • Parenteral formulations can be prepared as aqueous compositions using techniques is known in the art. Typically, such compositions can be prepared as injectable formulations, for example, solutions or suspensions; solid forms suitable for using to prepare solutions or suspensions upon the addition of a reconstitution medium prior to injection.
  • the carrier can be a solvent or dispersion medium containing, for example, water, buffer, ethanol, one or more polyols (e.g., glycerol, propylene glycol, and liquid polyethylene glycol), oils, such as vegetable oils (e.g., peanut oil, corn oil, sesame oil, etc.), polymers (e.g.,
  • the formulation is typically buffered to a pH of 4-8 for parenteral administration upon reconstitution.
  • Suitable buffers include, but are not limited to, phosphate buffers, acetate buffers, bicarbonate, and citrate buffers.
  • Water soluble polymers are often used in formulations for parenteral administration. Suitable water-soluble polymers include, but are not limited to, polyvinylpyrrolidone, dextran, carboxymethylcellulose, and polyethylene glycol.
  • Sterile injectable solutions can be prepared.
  • a sterile formulation can be prepared by first performing sterile filtration of the process solutions (e.g., agent and gelator solutions), followed by gel preparation, suspension, purification and lyophilization under aseptic procession conditions.
  • process solutions e.g., agent and gelator solutions
  • all processing steps can be performed under non-sterile conditions, and then terminal sterilization (e.g., gamma or E-beam irradiation) can be applied to the lyophilized hydrogel product.
  • terminal sterilization e.g., gamma or E-beam irradiation
  • Sterile solution for resuspension can also be prepared using similar methods. Preservatives can be used to prevent the growth of fungi and microorganisms.
  • Suitable antifungal and antimicrobial agents include, but are not limited to, benzoic acid, butylparaben, ethyl paraben, methyl paraben, propylparaben, sodium benzoate, sodium propionate, benzalkonium chloride, benzyl peroxide, benzethonium chloride, benzyl alcohol, cetylpyridinium chloride, chlorobutanol, phenol, phenylethyl alcohol, and thimerosal.
  • Suitable oral dosage forms include tablets, capsules, solutions, suspensions, syrups, and lozenges. Tablets can be made using compression or molding techniques well known in the art. Gelatin or non-gelatin capsules can prepared as hard or soft capsule shells, which can encapsulate liquid, solid, and semi-solid fill materials, using techniques well known in the art. These preferably are enteric coated to avoid disassembly when passing through the stomach
  • Excipients including plasticizers, pigments, colorants, stabilizing agents, and glidants, may also be used to form coated compositions for enteral administration.
  • Formulations may be prepared as described in standard references such as "Pharmaceutical dosage form tablets", eds.
  • Assembled bulk gels generally contain fibrous structures from the assembly of amphiphilic gelators and drug agents.
  • the self-assembly in the bulk gel or particles can have a variety of shapes, including micelles, vesicles, lamellae or fibers, sheets, tapes, etc.
  • a polar organic solvent such as DMSO, methanol, or isopropanol is used to dissolve and mix gelators and drug agents.
  • An aqueous medium e.g., water, hypotonic solution, isotonic solution, or hypertonic solution is added to form a self-assembled hydrogel composition with a high agent loading.
  • the mixture can be heated and/or sonicated and/or placed in a bath to completely dissolve the gelator, agent and any other solid ingredients to form a homogeneous solution.
  • the solution is then cooled under controlled conditions (e.g., temperature controlled vessel or water bath) and/or rested in an undisturbed location.
  • the solution can transition into a viscous gel after a given time period.
  • Gelation is deemed complete when no gravitational flow is observed upon inversion of the container at room temperature for at least 10 seconds, and in some cases, for at least 5, 10, or 15 seconds, and in some cases, for about 1, 5, 10, 30, or 60 minutes, 1 day, 2 days, 3 days, 1 week, 2 weeks, or longer.
  • the gels preferably demonstrate stabilities of inversion of at least 60 minutes or longer.
  • a self-assembled gel is homogeneous and stable to inversion, unlike heterogeneous materials that are a mix of gelled regions (non-flowable) and non-gelled, liquid regions (flowable).
  • the self-assembled gels prepared as described herein demonstrate loading efficiencies of the amine-containing agents (or other agents listed above) of up to about 90 wt/wt%, about 80 wt/wt%, about 70 wt/wt%, about 60 wt/wt%, about 50 wt/wt%, about 45 wt/wt%, about 40 wt/wt%, about 35 wt/wt%, about 30 wt/wt%, about 25 wt/wt%, about 20 wt/wt%, about 15 wt/wt%, about 10 wt/wt%, or about 5 wt/wt%.
  • the self-assembled gels prepared as described herein demonstrate demonstrate entrapment or encapsulation efficiencies of the amine- containing agents (or other agents listed above) of up to about 100 wt/wt%, 99 wt/wt%, 98 wt/wt%, 97 wt/wt%, 96 wt/wt%, 95 wt/wt%, 94 wt/wt%, 93 wt/wt%, 92 wt/wt%, 91 wt/wt%, 90 wt/wt%, about 80 wt/wt%, about 70 wt/wt%, about 60 wt/wt%, about 50 wt/wt%, about 45 wt/wt%, about 40 wt/wt%, about 35 wt/wt%, about 30 wt/wt%, about 25 wt/wt%, about 20 wt/wt%, about 15 w
  • the gels are made with the inclusion of one or more additional salts during formation of gel, such as by adding salt(s) to an aqueous medium, such as a buffer, to tune the rheological properties of the gel, such as to impart thixotropy.
  • additional salts such as by adding salt(s) to an aqueous medium, such as a buffer
  • aqueous medium such as a buffer
  • PBS phosphate buffered saline
  • Exemplary salts which can be added to tune the rheological properties of the gels include, but are not limited to sodium chloride, potassium chloride, calcium chloride, magnesium chloride, zinc chloride, or combinations thereof. Any suitable salt can be used that can provide sodium, potassium, calcium, magnesium, or zinc ions.
  • the salt(s) are added during gel formation.
  • the salt(s) are added post-gel formation, such as during a post-processing step by resuspending a formed gel in an aqueous medium containing the salt(s).
  • the concentration of salt(s) which can be used (added during gel formation or in post-processing) to tune the rheological properties can be in the range of between about 0.1 to about 300 mM, about 0.1 to about 300 mM, about 0.1 to about 250 mM, about 0.1 to about 200 mM, about 0.1 to about 150 mM, about 0.1 to about 100 mM, about 0.1 to about 50 mM, or about 0.1 to about 25 mM, as present in an aqueous medium (used in preparation of the gel or to resuspend a formed gel) or present as the concentration in the final gel including the salt(s).
  • the salt(s) described here are added to buffer(s), such as a phosphate buffer, used to prepare the gels or in which a prepared gel may be resuspended in at concentrations ranging from between about 1 to 250 mM, about 1 to 200 mM, about 1 to 150 mM, about 1 to 100 mM, about 1 to 75 mM, about 1 to 50 mM, or about 1 to 25 mM.
  • buffer(s) such as a phosphate buffer
  • concentrations ranging from between about 1 to 250 mM, about 1 to 200 mM, about 1 to 150 mM, about 1 to 100 mM, about 1 to 75 mM, about 1 to 50 mM, or about 1 to 25 mM.
  • the salt(s) described here are added to buffer(s), such as a phosphate buffer, used to prepare the gels or in which a prepared gel may be resuspended in at concentrations of about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150 mM, or higher.
  • buffer(s) such as a phosphate buffer
  • the concentration of the one or more salts in the final gels after all processing steps may be at concentrations of about 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135, 140, 145, 150 mM, or higher.
  • the gels are made with the inclusion of one or more organic solvents either during formation of gel or added post-gel formation, such as during a post-processing step in order to tune the rheological properties of the gel, such as to impart thixotropy.
  • organic solvents which can be used, either alone or in combination with the salt(s) already discussed, to tune the rheological properties of the gels include, but are not limited to dimethylsulfoxide (DMSO), alcohols (such as methanol, ethanol, isopropanol, i-butanol).
  • the organic solvent(s) described here are added as part of gel formation or can be added to buffer(s), such as a phosphate buffer, in which a prepared gel may be resuspended to provide gels with concentrations of organic solvent(s) of about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 % (volume/volume of total gel).
  • buffer(s) such as a phosphate buffer
  • concentrations of organic solvent(s) of about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 % (volume/volume of total gel).
  • the gels are made to include the addition of a combination of salt(s) and organic solvent(s), as described immediately above, in order to tune the rheological properties of the gel, such as to impart thixotropy.
  • the amounts of salt(s) and/or organic solvent(s) used in preparing the gel can be selected or controlled to preferably obtain encapsulation efficiencies of the amine-containing agent (or other agents above) to be at least about 50 wt/wt%, about 45 wt/wt%, about 40 wt/wt%, about 35 wt/wt%, about 30 wt/wt%, about 25 wt/wt%, about 20 wt/wt%, about 15 wt/wt%, about 10 wt/wt%, or about 5 wt/wt% in the gel.
  • the gels can be formed without any additional salts and/or organic solvents or their rheological properties can be tuned by addition of salts and/or organic solvent(s) (either during gel formation or post- gel formation).
  • the gels described can have or can be tuned to have a storage modulus (G') of from about 0.1, from about 0.2, from about 0.3, from about 0.4, from about 0.5, from about 0.6, from about 0.7, from about 0.8, from about 0.9, from about 1, from about 2, from about 3, from about 4, or from about 5 Pascals up to about 50, about 75, about 100, about 150, about 200, about 250, or about 300, or any combination of upper and lower end points disclosed herein.
  • G' storage modulus
  • the gels described can have or can be tuned to have a loss modulus (G") of from about 0.1, from about 0.2, from about 0.3, from about 0.4, from about 0.5, from about 0.6, from about 0.7, from about 0.8, from about 0.9, from about 1, from about 2, from about 3, from about 4, or from about 5 Pascals up to about 10, about 15, about 20, about 25, about 30, about 35, about 40, or about 300 Pascals, or any combination of upper and lower end points disclosed herein.
  • G loss modulus
  • the gels are made with or without addition of salts and/or organic solvent(s) (either during gel formation or post-gel formation) and have viscosities in a range from between about 0.1, from about 0.2, from about 0.3, from about 0.4, from about 0.5, from about 0.6, from about 0.7, from about 0.8, from about 0.9, from about 1, from about 2, from about 3, from about 4, or from about 5 centipoise (cP) up to about 10, about 100, about 200, about 300, about 400, about 500, about 600, about 700, about 800, about 900, about 1,000, about 1,100, about 1,200, about 1,300, about 1,400, about 1,500, about 1,600, about 1,700, about 1,800, about 1,900, about 2,000, about 2,500, or about 3000 cP, or any combination of upper and lower end points disclosed herein.
  • cP centipoise
  • the gels formed addition of salts and/or organic solvent(s) exhibit thixotropic properties such that the viscosity of the gel changes (i.e., decreases) upon exposure to shear, for example, but returns to its original viscosity or returns substantially back to its original viscosity .
  • Distillation, filtration, dialysis and centrifugation techniques may be used to remove unencapsulated excess agent and undesired solvent from the gels.
  • purification using pure water or low ionic strength solutions are preferred over high ionic strength solutions to improve retention of loaded agent.
  • water or other aqueous medium with a low ionic strength represented by a salt concentration below 0.15 M as the dialysis medium maintains a higher level of agent loading in hydrogel compared to saline solution with 0.15 M salt or higher.
  • a gelator can be combined with a liquid amphiphile such as a vitamin-derived liquid amphiphile to form a mixture entrapping drug agents.
  • the mixture can include one or more gelators, one or more stabilizing agents, and one or more liquid amphiphiles. The mixture is then
  • the resulting solution is then allowed to cool and/or rest in an undisturbed location.
  • the solution can transition into a viscous gel after a given time period.
  • one or more gelators and optionally an agent to be encapsulated can be combined in the absence of a solvent to form a mixture.
  • the mixture is then heated/sonicated/placed in a bath to form a homogenous solution.
  • the resulting solution is then allowed to cool and/or rest in an undisturbed location.
  • the solution can transition into a viscous gel after a given time period.
  • a melted gel including one or more gelator and one or more solvents can be added to a solid agent, to an agent dissolved in the same one or more solvents, or to an agent dissolved or suspended in a gel-compatible solvent, in order to encapsulate the agent.
  • the gel is heated to temperatures between 40 to 110°C, depending on the temperature sensitivity of the gelators, stabilizing agents, solvent/buffer content, and/or active agents. These mixtures can be heated and/or sonicated and/or placed in a bath for a duration of from one to 30 minutes or longer until all material is dissolved. The solutions are cooled to a temperature of from -20 to 37°C and/or rested for a duration of from 15 minutes, 30 minutes, 45 minutes to an hour, hours, one, two or three days.
  • Nanostructures are formed in the solidified gels.
  • the nanostructures can be fibers, sheets or particles with a length and/or width of one micron, two microns, three microns, four microns, five microns, ten microns, twenty microns, or twenty five microns.
  • the nanostructures can aggregate into networks, and/or be in the form of a liquid crystal, emulsion, fibrillar structure, or tape-like morphologies.
  • the fibers can have a diameter of about 2 nm or more, and can have lengths of hundreds of nanometers or more.
  • the fibers can have lengths of one micron, two microns, three microns, four microns, five microns, ten microns, twenty microns, or twenty five microns or more.
  • hydrophobic and hydrophilic portions of the gelator molecules can interact to form lamellae of gelator molecules.
  • the hydrophobic portions of gelators are located in the inner regions of a given lamella, and hydrophilic portions are located at the outer surfaces of the lamella.
  • the hydrophobic portions of gelators are located in the outer regions of a given lamella, and hydrophilic portions are located at the inner surfaces of the lamella.
  • the lamella can have a width of from about three to about five nanometers and a length of several microns. Several tens or hundreds of such lamellae can bundle together to form nanostructures, such as fibers of nano-sized width (e.g. 100-900 nm with lengths of several microns or longer) and sheet-like structures.
  • the gelators can be at least 10 mole%, 20 mole%, 30 mole%, 40 mole%, 50 mole%, 60 mole%, 70 mole%, 80 mole%, or 90 mole% of the total amount of hydrogel composition excluding solvent (e.g., gelators, therapeutically active agents, and optional stabilizing agent).
  • solvent e.g., gelators, therapeutically active agents, and optional stabilizing agent.
  • the gelators are dissolved in the solvent to between 0.01 and 50 wt% (e.g., up to 500 mg/mL).
  • the self-assembled gel is suspended in a low ionic strength aqueous solution (e.g., by homogenization) and is isolated through repeated cycles of centrifugation (e.g., 2,000-25,000 rpm for 2-15 minutes) and resuspension/washing to provide water dispersible self- assembled nanostructures from pelleted gel.
  • the bulk gel is suspended in water and/or phosphate buffered saline ("PBS") and homogenized or sonicated to break up the bulk gel into particles which retain the fibrous nanostructures formed in the bulk gel.
  • PBS phosphate buffered saline
  • the self-assembled gel is suspended in a low ionic strength aqueous solution (e.g., by homogenization) and is isolated through dialysis or tangential flow filtration to provide water dispersible self- assembled nanostructures from pelleted gel.
  • the nanostructures can have a minimum dimension (e.g., a thickness, a width, or a diameter) of 2 nm or more up to 500 nm when measured in a dry environment such as the vacuum dried sample in scanning electron microscopy; or a minimum dimension of 10 nm, 50 nm, 100 nm, 200 nm, 300 nm, 400 nm, 500 nm or more when measured for hydrodynamic sizes via dynamic light scattering.
  • the nanoparticles can have a hydrodynamic diameter between 100 nm and 990 nm, preferably between 500 nm and 900 nm, and the nanoparticles maintain at least 50, 60, 70 or 80% of the size in serum over a period of at least two hours.
  • the formulation can be administered via a variety of routes such as injection directly to the organ or tissue to be treated, placement at the time of surgery, topical application to a wound, or placement on a mucosal surface in the nasal cavities, eye, oral or buccal surfaces, vaginally or rectally.
  • parenteral administration may include administration
  • the agent -loaded gel compositions can be administered through various known regional delivery techniques, including injection, instillation using catheters, implantation, inhalation using aerosols, and topical application to the mucosa, such as the oral or buccal surfaces, nasal or pulmonary tracts, intestinal tracts (orally or rectally), vagina, or skin.
  • In situ self-assembly of stabilized nanostructures allows for regional delivery of the compositions and stimuli-responsive delivery of active agents.
  • esterases are present or inflamed tissues release enzymes, the enzyme disassembles gel compositions, which releases amine-containing agents such as lidocaine or other such compounds, and any other agents, such as described herein. After the agent(s) is released, the enzyme concentration decreases.
  • compositions that are not cleaved remain stable, until another inflammatory stimulus for "on-demand release", where the pathological environment regulates the amount and timing of an agent release.
  • the compositions can be used to release therapeutic agents that correlate with different stages of tissue regeneration.
  • the gel may be administered in hydrated form or dried.
  • It may be provided in a kit in a sterile lyophilized package, optionally with rehydration media. It may be attached to an adhesive bandage, such as a bandaid in place of the standard absorbent pad.
  • It may be resuspended at the time of use, or provided in solid form which is cut into a size to deliver a desired dose, then administered dried or rehydrated.
  • the agents are local anesthetics, antiinfectives such as antibiotics, antimicrobials, and/or anti-inflammatories.
  • the formulation is applied to the site where pain relief, treatment of infection, or killing of cells is desired, or to a site adjacent thereto.
  • the gel compositions can be controllably disassembled, for example, upon exposure to hydrolytic or enzymatic degradation, or by exposure to an external stimulus.
  • labile linkages are also described, for example, in PCT publication WO2010/033726.
  • encapsulated agents is controllably released from the gel compositions upon gel disassembly.
  • encapsulated agents can be gradually released over a period of time (e.g., a day, a week, a month, six months, or a year).
  • release can be delayed or extended from minutes to days to months, for example, when gel compositions are administered under physiological conditions (a pH of about 7.4 and a temperature of about 37°C).
  • sustained release can be controlled by the concentration of an enzyme and/or a temperature. Release can be accelerated using a high enzyme
  • the sustained release occurs without a burst release, or with only a minimal burst release.
  • the agent -loaded assembled gel compositions or nanofibrous particles are used to deliver one or more local anesthetics into inflamed tissue to treat one or more symptoms of inflammation.
  • the agent -loaded assembled gel compositions or nanofibrous particles are used to deliver one or more active agents into the tumor tissues for sustained delivery of the agents and even uptake by tumor cells which produce esterases, and inflamed tissues release enzymes, both of which provide pathology- specific degradation of pro-drug gelators and release of active agents.
  • the agent -loaded assembled compositions partition in inflamed and/or tumor tissues, i.e., accumulate in inflamed and/or tumor tissues more than in non- inflamed or non-tumor tissues.
  • the gelators with drug agents can be applied to a biological system and self-assembly can occur in situ.
  • the gel compositions described herein may be applied to the surface of bone and the gel can be assembled within the pores of the bone.
  • heated gel compositions can be injected in solution form to a bone site, which can then cool to physiological temperatures to assemble into gel forms.
  • the agent -loaded gel compositions or nanofibrous particles can be useful for improving targeting efficiency, efficacy, safety, and compliance benefiting from single dose, prolonged action or tissue-specific formulations, compared to delivery of active agents in its free form or delivery from a co- solvent assisted gel composition.
  • Exemplary diseases or disorders to be treated with the agent -loaded gel composition include, but are not limited to, allergy (e.g. contact dermatitis), arthritis, asthma, cancer, cardiovascular disease, diabetic ulcers, eczema, infections, inflammation, mucositis, periodontal disease, psoriasis, respiratory pathway diseases (e.g., tuberculosis), vascular occlusion, pain, graft versus host diseases, canker sores, interstitial cystitis, Hunner' s lesions, post-operative pain, peripheral neuropathy, bacterial conditions, viral conditions.
  • Example 1 Use of aqueous salt solutions as the medium for gel formation increases loading of lidocaine; Use of water as the suspension medium maintains high loading of lidocaine.
  • a stock solution (20.4 wt/wt%) of ascorbyl palmitate (AP) in DMSO was prepared by dissolving 3.95 grams of ascorbyl palmitate in 15.23 grams of DMSO.
  • the stock solution (2.0 g) was dispensed into two 20 mL scintillation vials containing lidocaine free base as a white solid.
  • the first vial contained 120 mg lidocaine and the second contained 60 mg lidocaine.
  • Pure HPLC grade water (5.6 mL) was added to each vial and the resulting suspensions were heated in a hot water bath at 80 °C for 6 minutes with stirring.
  • the vials were removed from the hot water bath and cooled in a room temperature water bath for 30 minutes (theoretical lidocaine loading of 13% and 23%, for the 120 mg and 60 mg preparations, respectively). The vials were then removed from the water bath and left undisturbed at room temperature for an additional 2 hours. The resulting hydrogels were suspended in water (8 mL) to achieve a final volume of 15 mL.
  • a stock solution (20.4 wt/wt%) of ascorbyl palmitate in DMSO was prepared by dissolving 3.95 grams of ascorbyl palmitate in 15.23 grams of DMSO.
  • the stock solution (2.0 g) was dispensed into a first 20 mL scintillation vial containing lidocaine free base (120 mg) as a white solid.
  • ascorbyl palmitate (200 mg) and lidocaine free base (30 mg) were dissolved in DMSO (0.7 mL).
  • Phosphate buffered saline was added to the vials (5.6 mL to the first vial, and 2.8 mL to the second vial) and the resulting suspensions were heated in a hot water bath at 80 °C for 6 minutes with stirring. The vials were removed from the hot water bath and cooled in a room temperature water bath for 30 minutes. The vials were then removed from the water bath and left undisturbed at room temperature for an additional 2 hours.
  • the resulting hydrogels were suspended in water (8 mL) to achieve a final volume of 15 mL.
  • aqueous salt solution here phosphate buffered saline (PBS)
  • PBS phosphate buffered saline
  • Hydrophilic small molecule, lidocaine is generally not efficiently encapsulated in an ascorbyl palmitate hydrogel formed in a co-solvent system of pure water and DMSO.
  • the necessity of using salt in the gel preparation step can be due to a number of factors, which may be related to electrostatic interactions, gel swelling/collapsing, or other mechanisms, alone or in combination, which associate or entrap lidocaine in the gel.
  • PBS was preferred over water in permitting a high loading of lidocaine in the gels as shown in Table 1, water as the suspension medium was superior to PBS in maintaining the higher loading (Table 2).
  • Example 2 Purification in a salt-free medium greatly reduces leakage of lidocaine from hydrogels compared to salt-containing solutions.
  • Dialysis was performed using an 8 - 10 kDa molecular weight cutoff dialysis bag, water or PBS as the external phase in an -1000 fold volume excess relative to the sample volume, and performing 3 - 5 water or PBS changes over the course of 2 days.
  • FIG. 1 shows centrifugation cycles in PBS rapidly decreased the loading of lidocaine from an ascorbyl palmitate hydrogel prepared by first dissolution in PBS and containing 13% lidocaine (denoted AP:lidocaine-PBS 13%). High loading levels could be preserved when using pure water as the
  • the hydrogel fibers were effectively retained inside of the dialysis tubing because their dimensions were much larger than the pore openings of the tubing.
  • the % free drug was significantly reduced using dialysis with water as the external phase, with only a small decrease in the gel loading.
  • Example 3 Preparation, suspension, and dilution in water improves the adhesion level of ascorbyl palmitate hydrogel to charged surfaces compared with preparation, suspension, and dilution in PBS.
  • Ascorbyl palmitate (AP, 20 - 25 mg) was added to a glass vial and then dissolved in DMSO (3.5 ⁇ , per mg AP). Water or PBS was then added (4 mL per mL DMSO) and the mixture was heated using a heat gun for 50 seconds. Vials were then placed undisturbed on the benchtop for 30 minutes. At this point, 1 mL of water or PBS was added to the water or PBS gels, respectively, and the gels were suspended by vigorous agitation. Gels were then diluted into 9 mL of water or PBS, respectively. Each solution (1 mL) was added to one well of a 24-well amine-coated polystyrene plate and left undisturbed for 30 minutes.
  • the gels suspensions were removed with a pipette and the wells were washed with water or PBS, respectively (1 mL per wash with brief agitation, six times in total).
  • the wells were then imaged using an iRiS Digital Imaging System (Logos Biosystems) at lOx magnification. After imaging, 0.5 mL ethanol was added to each well for 2 minutes to dissolve the AP gel particles that adhered to the surface. Two hundred microliters of each solution was then transferred to a UV-transparent 96-well plate and the absorbance was measured at 254 nm.
  • the AP content of the solution was quantified using a calibration curve of AP prepared in ethanol. The mass of AP measured in each sample was then normalized by the well area of the polystyrene plate.
  • Digital imaging confirmed more attachment of AP gel on amine- coated polystyrene plates when the gel was prepared, suspended, and diluted in water than the gel prepared, suspended, and diluted in PBS.
  • the adhesion level was 17 ⁇ g/cm 2 .
  • the AP gel prepared, suspended and diluted in PBS had an adhesion level of 2 ⁇ g/cm 2 . This result demonstrates that lower ionic strength (water rather than PBS) lead to significant increases in AP gel adhesion to positively charged surfaces by over 8-fold.
  • Example 4 Preparation of gels using different solvents and reduced aqueous content improves lidocaine loading and percent encapsulated.
  • Hydrogels were prepared as described for the first vial in example 1, Preparation ofhydrogel in DMSO-PBS system.
  • Example 5 The use of salt to control formulation loading
  • a stock solution (20.4 wt/wt%) of ascorbyl palmitate (AP) in methanol was prepared by dissolving 3.95 grams of ascorbyl palmitate in 15.43 grams of methanol.
  • the stock solution (2.0 g) was dispensed into five 20 mL scintillation vials, each containing 120 mg lidocaine free base as a white solid.
  • Phosphate buffer (PB) pH 7.4 containing 0, 50, 100, 150 or 300 mM NaCl was added to each vial at 2.8 mL and the resulting suspensions were heated in a hot water bath at 80 °C for 6 minutes with stirring.
  • the vials were removed from the hot water bath and cooled in a room temperature water bath for 30 minutes (theoretical lidocaine loading of 23%). The vials were then removed from the water bath and left undisturbed at room temperature overnight. The resulting hydrogels were suspended in water (8 mL) to achieve a final volume of 15 mL.
  • a stock solution (20.4 wt/wt%) of ascorbyl palmitate (AP) in methanol was prepared by dissolving 3.95 grams of ascorbyl palmitate in 15.43 grams of methanol.
  • the stock solution (2.0 g) was dispensed into five 20 mL scintillation vials, each containing 120 mg lidocaine free base as a white solid.
  • Phosphate buffer (PB) pH 7.4 was added to each vial at 2.8 mL and the resulting suspensions were heated in a hot water bath at 80 °C for 6 minutes with stirring.
  • the vials were removed from the hot water bath and cooled in a room temperature water bath for 30 minutes (theoretical lidocaine loading of 23%).
  • the vials were then removed from the water bath and left undisturbed at room temperature overnight.
  • the resulting hydrogels were suspended in water (8 mL) to achieve a final volume of 15 mL.
  • a stock solution of (20.4 wt/wt%) ascorbyl palmitate in methanol was prepared by weighing 4.3955 grams of ascorbyl palmitate in 16.9227 grams of DMSO.
  • the stock solution (2.0 g) was dispensed into ten 20 mL scintillation vials, each containing 120 mg lidocaine free base as a white solid.
  • Phosphate buffer (10 mM, pH 7.4) containing NaCl, KCl, CaCh, MgCh, or ZnCl was prepared at two concentrations (50 or 150 mM).
  • the PB buffers containing the aforementioned salts were added to the scintillation vials and the resulting suspensions were heated at 80 °C for 6 minutes with stirring.
  • the vials were removed from the hot water bath and left undisturbed at room temperature overnight.
  • the resulting hydrogels were suspended in water (8 mL) to achieve a final volume of 15 mL.
  • Hydrogel loading and percent encapsulated results are presented in Table 6 below for methanol-phosphate buffer pH 7.4 with NaCl, KCl, CaCh, MgC , or ZnCl added during gel preparation.
  • Increasing salt concentration in the PB formulation buffer decreases lidocaine loading for NaCl, KCl, CaCk, MgCk, and ZnCl.
  • the relative changes in loading and encapsulation were comparable across all tested chloride salts, however differences were observed in the resulting gel's bulk properties. These differences may be caused by the counter cations (Na + , K + , Ca 2+ , Mg 2+ , Zn + ) affecting the higher-order self-assembly of ascorbyl palmitate hydrogels.
  • Example 6 Effects of NaCl and DMSO on hydrogel rheological properties.
  • the residual solid sample was resuspended in water (3.2 mL) and a lidocaine stock solution (6.8 mL) containing lidocaine HCI H2O (157 mM), and sodium bicarbonate (32 mM).
  • the supernatant was decanted and the residual solid was resuspended to 35 mL in water, centrifuged again. This process was repeated for 3 total centrifuge cycles. After the third centrifugation cycle, the residual solid was resuspended in water (1 mL) and a pH 6.59 stock solution (6.4 mL) containing NaCl (300 mM) and sodium phosphate (10 mM).
  • Hydrogel was prepared through the centrifugation process as Hydrogel 3 in Example 6. After the third centrifuge cycle, the residual solid samples were resuspended in water (1.5 mL) and a pH 6.98 stock solution (6.75 mL) containing NaCl (130 mM), sodium phosphate (8.1 mM) and DMSO (18.7%; vol/vol).
  • Hydrogel 5 Hydrogel was prepared through the centrifugation process as Hydrogel 3 in Example 6. After the third centrifugation, the residual solvent was resuspended in a stock solution (6.4 mL) containing NaCl (50 mM).
  • Hydrogel formulation characteristics are listed in Table 7.
  • the pH and final concentrations of ascorbyl palmitate and lidocaine are intended to be identical or similar for each formulation.
  • the amount of NaCl and DMSO is varied to demonstrate their effect on hydrogel rheology.
  • hydrogel 1 results in the strongest gel (highest G', G"), with highest yield stress and equilibrium viscosity.
  • Hydrogel 2 with no salt or DMSO, is the weakest gel with very low viscosity.
  • Hydrogel 3 with salt and no DMSO, is weaker and less viscous than hydrogel 1.
  • Hydrogel 4 contains DMSO and NaCl that are added post processing which results in decreased G' and G" as well as lower viscosity compared to hydrogel 1. Finally, hydrogel 5, with low levels of salt and no DMSO is stronger than hydrogel 2 but weaker than hydrogels 1, 3 and 4.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Materials For Medical Uses (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Selon la présente invention, une formulation de gel a été développée, qui fournit une charge élevée, par exemple, entre environ 5 % et environ 50 % en poids/poids d'agent/poids de gel total, d'une large gamme d'agents, en particulier de composés contenant des amines tels que des agents anesthésiques locaux qui sont connus pour être difficiles à encapsuler, et qui adhèrent à des surfaces chargées. Des exemples d'amines pharmaceutiquement importantes comprennent des anesthésiques, tels que la lidocaïne. L'ajustement de la force ionique d'un milieu aqueux pendant la préparation, la suspension et la purification par dialyse de la composition d'hydrogel permet la rétention et/ou le contrôle de contenu de chargement d'agent, ainsi qu'une capacité élevée d'adhérence à des surfaces chargées imitant un tissu enflammé. Dans certains cas, les propriétés rhéologiques du gel peuvent être ajustées de façon à conférer des propriétés thixotropes aux gels formés.
PCT/US2018/031654 2017-05-08 2018-05-08 Formulation de gels nanostructurés pour une charge et une adhérence d'agent augmentées Ceased WO2018208822A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2019562349A JP7211974B2 (ja) 2017-05-08 2018-05-08 増大した薬剤負荷および接着のためのナノ構造化ゲルの製剤
EP18726703.4A EP3621594A1 (fr) 2017-05-08 2018-05-08 Formulation de gels nanostructurés pour une charge et une adhérence d'agent augmentées
CA3061480A CA3061480A1 (fr) 2017-05-08 2018-05-08 Formulation de gels nanostructures pour une charge et une adherence d'agent augmentees
AU2018266131A AU2018266131B2 (en) 2017-05-08 2018-05-08 Formulation of nanostructured gels for increased agent loading and adhesion
AU2021240143A AU2021240143B2 (en) 2017-05-08 2021-09-28 Formulation of nanostructured gels for increased agent loading and adhesion
JP2022080798A JP2022103299A (ja) 2017-05-08 2022-05-17 増大した薬剤負荷および接着のためのナノ構造化ゲルの製剤
JP2023014533A JP2023041861A (ja) 2017-05-08 2023-02-02 増大した薬剤負荷および接着のためのナノ構造化ゲルの製剤
JP2023173522A JP2023168587A (ja) 2017-05-08 2023-10-05 増大した薬剤負荷および接着のためのナノ構造化ゲルの製剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762502872P 2017-05-08 2017-05-08
US62/502,872 2017-05-08

Publications (1)

Publication Number Publication Date
WO2018208822A1 true WO2018208822A1 (fr) 2018-11-15

Family

ID=62223333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/031654 Ceased WO2018208822A1 (fr) 2017-05-08 2018-05-08 Formulation de gels nanostructurés pour une charge et une adhérence d'agent augmentées

Country Status (6)

Country Link
US (2) US10881745B2 (fr)
EP (1) EP3621594A1 (fr)
JP (4) JP7211974B2 (fr)
AU (2) AU2018266131B2 (fr)
CA (1) CA3061480A1 (fr)
WO (1) WO2018208822A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022526185A (ja) * 2019-04-11 2022-05-23 コンバテック・テクノロジーズ・インコーポレイテッド 超多孔質ヒドロゲル、その製造方法、及びそれを含む物品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111781128B (zh) * 2020-06-15 2023-07-07 迪瑞医疗科技股份有限公司 一种尿分析仪用鞘液及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080021068A1 (en) * 2006-07-24 2008-01-24 Akorn, Inc. Aqueous gel formulation and method for inducing topical anesthesia
US20090048296A1 (en) * 2007-08-17 2009-02-19 Arcion Therapeutics, Inc. High concentration local anesthetic formulations
WO2010033726A2 (fr) 2008-09-17 2010-03-25 The Brigham And Women's Hospital, Inc. Composition pour la délivrance de médicament(s) comprenant un gélateur s'auto-assemblant
US20130079371A1 (en) * 2010-04-01 2013-03-28 Pharmanest Ab Bioadhesive Compositions of Local Anaesthetics
US20130280334A1 (en) 2010-09-24 2013-10-24 Massachusetts Institute Of Technology Nanostructured Gels Capable of Controlled Release of Encapsulated Agents
AU2015200633A1 (en) * 2009-05-04 2015-02-26 Zars Pharma, Inc. Methods for treating pains associated with neuroma, nerve entrapment, and other conditions
US20150125403A1 (en) * 2006-02-10 2015-05-07 Dupont Tate & Lyle Bio Products Company, Llc Personal care and cosmetic compositions comprising renewably-based, biodegradable 1,3-propanediol
US9452178B1 (en) * 2014-10-22 2016-09-27 SatisPharma, LLC Acne formulations, treatments, and pressure sensitive patches for delivery of acne formulations
US20170100342A1 (en) * 2015-10-08 2017-04-13 The Brigham And Women's Hospital, Inc. Stabilized assembled nanostructures for delivery of encapsulated agents
US20170319500A1 (en) 2016-05-06 2017-11-09 The Brigham And Women's Hospital, Inc. Self-assembled gels for controlled delivery of biologics and labile agents
WO2017193139A1 (fr) * 2016-05-06 2017-11-09 The Brigham And Women's Hospital, Inc. Gels auto-assemblés binaires pour l'administration contrôlée d'agents encapsulés dans un cartilage

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2417494A1 (fr) 1978-02-16 1979-09-14 Bottu Nouvelles compositions analgesiques et antipyretiques contenant un derive de paracetamol
CA2070061C (fr) 1991-06-07 2004-02-10 Shigeyuki Takama Composition pharmaceutique renfermant des polypeptides physiologiquement actives
GB9403857D0 (en) 1994-03-01 1994-04-20 Scotia Holdings Plc Fatty acid derivatives
AU722250B2 (en) * 1995-11-15 2000-07-27 Seikagaku Corporation Photocured crosslinked-hyaluronic acid gel and method of preparation thereof
CA2212300A1 (fr) 1997-08-04 1999-02-04 Abdellatif Chenite Gelification in vitro ou in vivo du chitosane et utilisations therapeutiques du chitosane
BE1011899A6 (fr) 1998-04-30 2000-02-01 Ucb Sa Compositions pharmaceutiques gelifiables utilisables.
FR2794998B1 (fr) 1999-06-21 2001-07-27 Oreal Organogels et leurs utilisations notamment cosmetiques
WO2003006043A1 (fr) 2001-07-10 2003-01-23 Massachusetts Institute Of Technology Nanostructures peptidiques surfactantes et leur utilisation
US20050084470A1 (en) 2003-10-15 2005-04-21 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Skin care and cleansing compositions containing oil seed product
JP4741505B2 (ja) 2003-11-12 2011-08-03 アプライド ナノ システムズ ベー.フェー. 非対称ゲル化剤
WO2005056039A1 (fr) 2003-12-05 2005-06-23 Northwestern University Amphiphiles peptidiques a assemblage automatique et procedes associes d'administration de facteur de croissance
WO2005097828A2 (fr) * 2004-04-01 2005-10-20 Board Of Regents, The University Of Texas System Peptides de cav2.2 inhibant la douleur
US7749485B2 (en) 2004-06-03 2010-07-06 Bracco Research S.A. Liposomal assembly for therapeutic and/or diagnostic use
FR2871701B1 (fr) 2004-06-21 2006-09-22 Centre Nat Rech Scient Cnrse Biomateriaux bioactifs pour le relarguage controle de principes actifs
US7854943B2 (en) * 2004-06-24 2010-12-21 Idexx Laboratories Phospholipid gel compositions for drug delivery and methods of treating conditions using same
US20080038316A1 (en) 2004-10-01 2008-02-14 Wong Vernon G Conveniently implantable sustained release drug compositions
EP1800694A1 (fr) 2005-12-23 2007-06-27 Applied NanoSystems B.V. Gels à libération contrôlée
JP2009525760A (ja) * 2006-02-10 2009-07-16 デユポン・テイト・アンド・ライル・バイオ・プロダクツ・カンパニー・エルエルシー 再生ベースの生分解性1,3−プロパンジオールを含む生分解性組成物
US8968784B2 (en) 2006-05-22 2015-03-03 Research Foundation Of The City University Of New York Method for preparing hydro/organo gelators from disaccharide sugars by biocatalysis and their use in enzyme-triggered drug delivery
US8329220B2 (en) 2007-08-24 2012-12-11 Aegis Therapeutics, Llc Controlled release formulations
US20090263489A1 (en) * 2008-04-18 2009-10-22 Warsaw Orthopedic, Inc. Analgesic and anti-inflammatory compositions and methods for reducing, preventing or treating pain and inflammation
JP5724108B2 (ja) * 2009-04-22 2015-05-27 メドスキン ソリューションズ ドクター ズベラック アーゲーMedSkin Solutions Dr.Suwelack AG 凍結乾燥組成物
CN102575229A (zh) * 2009-08-11 2012-07-11 约翰霍普金斯大学 用于植入经加工的脂肪组织和经加工的脂肪组织产品的组合物和方法
EP2523660A4 (fr) * 2010-01-14 2013-07-10 Nuvo Res Inc Formulations pour anesthésie locale se solidifiant pour la gestion de la douleur
EP2361640A1 (fr) 2010-02-25 2011-08-31 Université de Liège Culture cellulaire dans les billes d'hydrogel à base d'alginate chitosan
GB201020193D0 (en) 2010-11-29 2011-01-12 Biotec Pharmacon Asa Glucan compositions
ES2390428B1 (es) * 2011-04-15 2013-10-01 Universidad De Almería Preparado de bacterias probióticas para su administración oral a peces cultivados basado en la encapsulación en hidrogeles de alginato.
WO2014003015A1 (fr) 2012-06-25 2014-01-03 日産化学工業株式会社 Liquide de dispersion et procédé de formation d'un hydrogel
BR112015005633A2 (pt) 2012-09-14 2017-07-04 Cipla Ltd composição farmacêutica tópica, processo para preparar uma composição farmacêutica tópica, método para prover ou facilitar a contracepção e método para tratar infecções retrovirais ou infecções bacterianas
EP2928513B1 (fr) 2012-12-07 2018-06-06 Kansas State University Research Foundation Propriétés d'hydrogel peptide-albumine et ses applications
HK1220401A1 (zh) 2013-03-14 2017-05-05 Massachusetts Institute Of Technology 用於长时间持续释放人类抗体的多层可注射自组装肽脚手架水凝胶
US9789073B2 (en) * 2013-03-14 2017-10-17 Pathak Holdings, Llc Compositions, methods and devices for local drug delivery
US20150297731A1 (en) * 2014-04-21 2015-10-22 National Yang-Ming University Thermosensitive injectable glaucoma drug carrier gel and the fabricating method thereof
WO2016098057A1 (fr) * 2014-12-17 2016-06-23 Socovar, L.P. Hydrogel à base de chitosane et ses utilisations
JP2018515529A (ja) * 2015-05-12 2018-06-14 インセプト・リミテッド・ライアビリティ・カンパニーIncept,Llc ハイドロゲルからの薬物送達
US20180050055A1 (en) * 2016-08-16 2018-02-22 Hafiz Ahmed Exploiting nutrient deprivation for modulation of glycosylation - research diagnostic, therapeutic, and biotechnology applications
DK3335695T3 (da) * 2016-12-15 2020-04-20 Upm Kymmene Corp Fremgangsmåde til frysetørring af hydrogel omfattende nanofibrillær cellulose, frysetørret medicinsk hydrogel omfattende nanofibrillær cellulose og hydrogel omfattende nanofibrillær cellulose

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150125403A1 (en) * 2006-02-10 2015-05-07 Dupont Tate & Lyle Bio Products Company, Llc Personal care and cosmetic compositions comprising renewably-based, biodegradable 1,3-propanediol
US20080021068A1 (en) * 2006-07-24 2008-01-24 Akorn, Inc. Aqueous gel formulation and method for inducing topical anesthesia
US20090048296A1 (en) * 2007-08-17 2009-02-19 Arcion Therapeutics, Inc. High concentration local anesthetic formulations
WO2010033726A2 (fr) 2008-09-17 2010-03-25 The Brigham And Women's Hospital, Inc. Composition pour la délivrance de médicament(s) comprenant un gélateur s'auto-assemblant
US20110229565A1 (en) 2008-09-17 2011-09-22 Karp Jeffrey M Drug Delivery Composition Comprising a Self-Assembled Gelator
AU2015200633A1 (en) * 2009-05-04 2015-02-26 Zars Pharma, Inc. Methods for treating pains associated with neuroma, nerve entrapment, and other conditions
US20130079371A1 (en) * 2010-04-01 2013-03-28 Pharmanest Ab Bioadhesive Compositions of Local Anaesthetics
US20130280334A1 (en) 2010-09-24 2013-10-24 Massachusetts Institute Of Technology Nanostructured Gels Capable of Controlled Release of Encapsulated Agents
US9452178B1 (en) * 2014-10-22 2016-09-27 SatisPharma, LLC Acne formulations, treatments, and pressure sensitive patches for delivery of acne formulations
US20170100342A1 (en) * 2015-10-08 2017-04-13 The Brigham And Women's Hospital, Inc. Stabilized assembled nanostructures for delivery of encapsulated agents
US20170319500A1 (en) 2016-05-06 2017-11-09 The Brigham And Women's Hospital, Inc. Self-assembled gels for controlled delivery of biologics and labile agents
WO2017193138A1 (fr) * 2016-05-06 2017-11-09 The Brigham And Women's Hospital, Inc. Gel auto-assemblé destiné à l'administration sous contrôle d'agents thermolabiles
WO2017193139A1 (fr) * 2016-05-06 2017-11-09 The Brigham And Women's Hospital, Inc. Gels auto-assemblés binaires pour l'administration contrôlée d'agents encapsulés dans un cartilage

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
"Pharmaceutical dosage form tablets", 1989, MARCEL DEKKER, INC.
"Remington - The science and practice of pharmacy", 2000, LIPPINCOTT WILLIAMS & WILKINS
ANSEL ET AL.: "Pharmaceutical dosage forms and drug delivery systems", 1995, WILLIAMS AND WILKINS
BARNET ET AL., ANESTH ANALG, vol. 101, no. 6, 2005, pages 1838 - 1843
HENRY R ET AL., J UROL, vol. 165, no. 6, June 2001 (2001-06-01), pages 1900 - 1903
KARP, SCIENCE TRANSLATIONAL MEDICINE, vol. 7, no. 300, 2015, pages 300ra128
KOHANE ET AL., ANESTHESIOLOGY, vol. 89, no. 1, 1998, pages 119 - 131
PADERA ET AL., ANESTHESIOLOGY, vol. 108, no. 5, 2008, pages 921 - 928
PERE ET AL., REG ANESTH, vol. 18, no. 5, 1993, pages 304 - 307
YAMASHITA ET AL., ANESTH ANALG, vol. 97, no. 2, 2003, pages 512 - 519
ZIMMER ET AL., ANAESTHESIST, vol. 56, no. 5, 2007, pages 449 - 453

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022526185A (ja) * 2019-04-11 2022-05-23 コンバテック・テクノロジーズ・インコーポレイテッド 超多孔質ヒドロゲル、その製造方法、及びそれを含む物品

Also Published As

Publication number Publication date
EP3621594A1 (fr) 2020-03-18
AU2021240143B2 (en) 2023-10-19
AU2018266131A1 (en) 2020-01-02
CA3061480A1 (fr) 2018-11-15
JP2023041861A (ja) 2023-03-24
JP2022103299A (ja) 2022-07-07
AU2021240143A1 (en) 2021-10-28
US10881745B2 (en) 2021-01-05
US20210196836A1 (en) 2021-07-01
US20180318442A1 (en) 2018-11-08
AU2018266131B2 (en) 2021-07-29
JP2023168587A (ja) 2023-11-24
JP7211974B2 (ja) 2023-01-24
JP2020519635A (ja) 2020-07-02

Similar Documents

Publication Publication Date Title
AU2016335846B2 (en) Stabilized assembled nanostructures for delivery of encapsulated agents
CA3062885C (fr) Gel auto-assemble destine a l'administration controlee d'agents biologiques et labiles
US20230364014A1 (en) Self-assembled gels for controlled delivery of biologics and methods of making thereof
JP2023168587A (ja) 増大した薬剤負荷および接着のためのナノ構造化ゲルの製剤
JPH0768130B2 (ja) 微粒子化薬剤
WO2020123551A1 (fr) Formulations stables d'anesthésiques et formes galéniques associées
CN102227210B (zh) 亲脂性物质溶液,特别是药物溶液
HK1159493B (en) Solution of lipophilic substances, especially medicinal solutions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18726703

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3061480

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2019562349

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018726703

Country of ref document: EP

Effective date: 20191209

ENP Entry into the national phase

Ref document number: 2018266131

Country of ref document: AU

Date of ref document: 20180508

Kind code of ref document: A

WWW Wipo information: withdrawn in national office

Ref document number: 2018726703

Country of ref document: EP