WO2018131219A1 - 異常検知装置、異常検知方法、および記憶媒体 - Google Patents
異常検知装置、異常検知方法、および記憶媒体 Download PDFInfo
- Publication number
- WO2018131219A1 WO2018131219A1 PCT/JP2017/034599 JP2017034599W WO2018131219A1 WO 2018131219 A1 WO2018131219 A1 WO 2018131219A1 JP 2017034599 W JP2017034599 W JP 2017034599W WO 2018131219 A1 WO2018131219 A1 WO 2018131219A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- data
- learning
- target data
- self
- encoder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/22—Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
- G06F11/2257—Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing using expert systems
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
- G06N3/0455—Auto-encoder networks; Encoder-decoder networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0499—Feedforward networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/0895—Weakly supervised learning, e.g. semi-supervised or self-supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/084—Backpropagation, e.g. using gradient descent
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M7/00—Conversion of a code where information is represented by a given sequence or number of digits to a code where the same, similar or subset of information is represented by a different sequence or number of digits
- H03M7/30—Compression; Expansion; Suppression of unnecessary data, e.g. redundancy reduction
- H03M7/60—General implementation details not specific to a particular type of compression
- H03M7/6041—Compression optimized for errors
Definitions
- Embodiments described herein relate generally to an abnormality detection device, an abnormality detection method, and a storage medium.
- the above anomaly detection method is an unsupervised learning, so it has the merit that it can be used without the trouble of labeling the data as abnormal or normal, and it can be used for fault detection of various devices, unauthorized access detection of networks, etc. Widely used.
- this learning data may include abnormal data in addition to normal data.
- the accuracy of abnormality detection may be reduced.
- the problem to be solved by the present invention is to provide an anomaly detection device, an anomaly detection method, and a storage medium that can detect anomalies in data with high accuracy.
- the abnormality detection device of the embodiment has a detection unit, a removal unit, and a learning unit.
- the detection unit inputs detection target data to be an abnormality detection target to the first self-encoder in which learning based on the first learning target data to be learned is performed.
- First abnormal data is detected.
- the removal unit inputs the first learning target data from the first learning target data by inputting the first learning target data to a second self-encoder that has been learned based on the first abnormal data detected by the detection unit.
- the data associated with the first abnormal data is removed to generate second learning target data.
- the learning unit learns the first self-encoder based on the second learning target data generated by the removal unit.
- the functional block diagram which shows an example of the abnormality detection apparatus of 1st Embodiment.
- the flowchart which shows an example of a process of the abnormality detection apparatus of 1st Embodiment.
- the flowchart which shows an example of the abnormal data removal process of the abnormality detection apparatus of 1st Embodiment.
- the figure which shows the abnormal data removal process of the abnormality detection apparatus of 1st Embodiment.
- the flowchart which shows an example of the learning process of the abnormality detection apparatus of 1st Embodiment.
- the flowchart which shows the other example of a process of the abnormality detection apparatus of 1st Embodiment.
- the functional block diagram which shows an example of the abnormality detection apparatus of 2nd Embodiment.
- the anomaly detection device of the present embodiment uses the anomaly data detected at the time of anomaly detection (operation) using a self-encoder, and is used as learning target data (hereinafter referred to as “learning”).
- learning used as learning target data
- the abnormal data included in the “target data”) is removed. Then, the performance of abnormality detection can be improved by learning the self-encoder using the learning target data from which the abnormal data is removed.
- FIG. 1 is a functional block diagram illustrating an example of the abnormality detection apparatus 1 according to the first embodiment.
- the abnormality detection device 1 performs abnormality detection of data that is a target of abnormality detection (hereinafter referred to as “detection target data”).
- Abnormality detection in the present embodiment means finding data (abnormal data) having a tendency different from the majority of data (normal data) existing in the detection target data.
- the abnormality detection device 1 performs a normal data compression and reconstruction process (decoding process) to grasp the relationship and pattern between data in the normal data, thereby reconstructing errors.
- the procedure for performing a small compression and decoding process is learned.
- the abnormality detection device 1 performs compression and reconstruction processing on learning target data prepared for learning, and generates a model (normal model) that matches the learning target data.
- the abnormality detection apparatus 1 performs compression and reconstruction processing with a small reconstruction error on normal data included in the detection target data. However, when the compression and reconstruction processing is performed on abnormal data, the reconstruction is performed. The error increases.
- the abnormality detection device 1 can detect abnormality data based on the size of the reconstruction error.
- the abnormality detection device 1 acquires detection target data from the external device A which is various sensors, for example.
- the detection target data includes arbitrary data such as sensor data measured by various sensors, operation log data of various devices, various numerical data, and the like.
- the abnormality detection device 1 includes, for example, a control unit 10, an acquisition unit 12, a detection unit 14, a removal unit 16, a learning unit 18, a reception unit 20, a display unit 22, and a storage unit 24.
- the storage unit 24 includes, for example, a detection target data storage unit D1, an abnormal data storage unit D2, a learning target data storage unit D3, and a model storage unit D4.
- the control unit 10 controls the operation of each unit of the abnormality detection device 1.
- the acquisition unit 12 acquires detection target data from the external device A and stores it in the detection target data storage unit D1. For example, the acquisition unit 12 continuously acquires detection target data from the external device A. Alternatively, the acquisition unit 12 may acquire the detection target data accumulated in the external device A at a predetermined cycle. When the reception unit 20 receives a data acquisition instruction from the user of the abnormality detection device 1, the acquisition unit 12 may acquire detection target data from the external device A.
- the detection unit 14 reads out detection target data from the detection target data storage unit D1 and performs abnormality detection.
- the detection unit 14 includes, for example, a first self-encoder 30 that performs learning using learning target data.
- the first self-encoder 30 compresses and reconstructs the detection target data using the normal model stored in the model storage unit D4, and generates reconstructed data.
- the normal model is a model that matches normal data calculated by learning using learning target data.
- the first self-encoder 30 performs compression and reconstruction processing with small reconstruction error when normal data is processed.
- the first self-encoder 30 performs compression and reconstruction processing with a large reconstruction error.
- the detection unit 14 detects data abnormality based on the magnitude of the reconstruction error.
- the detection unit 14 calculates a reconstruction error (first difference) of the detection target data, and determines that the calculated reconstruction error is abnormal data when the calculated reconstruction error is equal to or greater than a predetermined threshold. When it is less than the threshold value, it is determined as normal data.
- This threshold is defined in advance using a mean square error or the like. For example, this threshold value may be set to ⁇ times the normal data mean square error ( ⁇ is a positive number).
- the detection unit 14 stores the detected abnormal data in the abnormal data storage unit D2.
- the removal unit 16 reads the learning target data from the learning target data storage unit D3, and removes abnormal data included in the learning target data.
- the removal unit 16 includes, for example, a second self-encoder 32 that has performed learning using abnormal data.
- the second self-encoder 32 compresses and reconstructs the detection target data using the abnormal model stored in the model storage unit D4, and generates reconstructed data.
- An abnormal model is a model that matches abnormal data calculated by learning using abnormal data. That is, the removal unit 16 deletes the data associated with the abnormal data detected by the detection unit 14 from the learning target data.
- the removal unit 16 deletes the abnormal data having the same property (trend) as the abnormal data detected by the detection unit 14 from the learning target data.
- the removal unit 16 calculates a reconstruction error (second difference) of the learning target data, and determines that the calculated reconstruction error is abnormal data when the calculated reconstruction error is equal to or greater than a predetermined threshold. When it is less than the threshold value, it is determined as normal data.
- the data determined as abnormal data by the removing unit 16 is data to be determined as normal data in the abnormality detection performed by the detecting unit 14.
- the data determined as normal data by the removing unit 16 is data to be determined as abnormal data in the abnormality detection performed by the detection unit 14.
- the removal unit 16 removes the data determined by the removal unit 16 as normal data (data to be determined as abnormal data by the detection unit 14) from the learning target data, thereby reducing the ratio of abnormal data.
- New learning target data is generated. That is, the removal unit 16 extracts data determined by the removal unit 16 as abnormal data (data to be determined as normal data by the detection unit 14) from the learning target data.
- the removal unit 16 stores new learning target data in the learning target data storage unit D3.
- the learning unit 18 controls the learning process of the first self-encoder 30 and the second self-encoder 32. For example, the learning unit 18 causes the first self-encoder 30 to learn based on the learning target data. For example, the learning unit 18 causes the second self-encoder 32 to learn based on abnormal data obtained by inputting detection target data to the first self-encoder 30.
- the accepting unit 20 accepts an operation by the user of the abnormality detection device 1.
- the reception unit 20 is an input terminal such as a mouse, a keyboard, or a touch panel.
- the display unit 22 displays, for example, a result of abnormality detection by the detection unit 14.
- the display unit 22 is a liquid crystal display or the like.
- the display unit 22 may include the function of the receiving unit 20 described above.
- Some or all of the functional units of the above-described abnormality detection device 1 may be realized by a processor executing a program (software).
- the abnormality detection apparatus 1 may be realized by installing the above program in the computer device in advance.
- the above program stored in a storage medium such as a CD-ROM or the above program distributed via a network may be appropriately installed in a computer device.
- Some or all of the functional units of the abnormality detection device 1 may be realized by hardware such as LSI (Large Scale Integration), ASIC (Application Specific Integrated Circuit), FPGA (Field-Programmable Gate Array). It may be realized by a combination of software and hardware.
- the storage unit 24 stores detection target data, various internal data processed in the abnormality detection device 1, various models, and the like.
- the storage unit 24 is realized by a ROM (Read Only Memory), a RAM (Random Access Memory), an HDD (Hard Disk Drive), a flash memory, or the like.
- the detection target data storage unit D1 stores the detection target data acquired from the external device A by the acquisition unit 12.
- the abnormal data storage unit D2 stores abnormal data determined to be abnormal by the detection unit 14.
- the learning target data storage unit D3 stores learning target data used for the learning process of the first self-encoder 30.
- the model storage unit D4 stores various models used in the abnormality detection process of the detection unit 14 and the removal process of the removal unit 16.
- FIG. 2 is a flowchart illustrating an example of processing of the abnormality detection device 1 of the present embodiment.
- the acquisition unit 12 acquires detection target data from the external device A under the control of the control unit 10, and stores the detection target data in the detection target data storage unit D1 (step S101). For example, the acquisition unit 12 continuously acquires detection target data from the external device A. Alternatively, the acquisition unit 12 may acquire the detection target data accumulated in the external device A at a predetermined cycle.
- the control unit 10 determines whether or not to execute an abnormality detection process on the detection target data acquired from the external device A (step S103). For example, the control unit 10 determines to execute the abnormality detection process when the reception unit 20 receives an instruction to execute the abnormality detection process by the user of the abnormality detection device 1. Alternatively, the control unit 10 may determine to execute the abnormality detection process when a predetermined time has elapsed. Whether or not to execute the abnormality detection process by the control unit 10 is not performed, and when the detection target data is acquired from the external device A, the abnormality detection process may be executed without fail.
- the detection unit 14 reads the detection target data from the detection target data storage unit D1, and learns based on the learning target data (first learning target data).
- the detection target data is compressed and reconstructed by using the first self-encoder 30, and a reconstruction error is calculated (step S105).
- the detection unit 14 determines whether or not the calculated reconstruction error is greater than or equal to a threshold value (step S107).
- This threshold is defined in advance using a mean square error of normal data.
- the detection unit 14 uses the detection target data as abnormal data as abnormal data. It memorize
- the detection unit 14 stores the detection target data as an abnormal data storage unit. Do not store in D2.
- the abnormality detection and storage processing based on the reconstruction error is performed on each of the detection target data.
- the control unit 10 may cause the display unit 22 to display information related to the abnormal data detected by the detection unit 14.
- the control unit 10 determines whether to execute the abnormal data removal process (step S111). For example, the control unit 10 determines to execute the abnormal data removal process when the reception unit 20 receives an execution instruction of the abnormal data removal process by the user of the abnormality detection device 1. Alternatively, the control unit 10 may determine to execute the abnormal data removal process when a predetermined time has elapsed. The control unit 10 may always execute the abnormal data removal process without determining whether or not to execute the abnormal data removal process.
- the removal unit 16 When it is determined that the control unit 10 performs the abnormal data removal process, the removal unit 16 performs the abnormal data removal process (S113). Details of the abnormal data removal processing will be described later.
- the control unit 10 determines whether to execute the learning process (step S115). For example, the control unit 10 determines to execute the learning process when the receiving unit 20 receives an instruction to execute the learning process from the user of the abnormality detection device 1. Alternatively, the control unit 10 may determine to execute the learning process when a predetermined time has elapsed. The learning process may be executed without fail, without determining whether or not the learning process is executed by the control unit 10. When the control unit 10 determines not to execute the learning process, the detection target data acquisition process is performed again.
- the learning unit 18 executes the learning process (S117). Details of the learning process will be described later. Thereafter, the detection target data acquisition process is performed again.
- FIG. 3 is a flowchart illustrating an example of abnormal data removal processing of the abnormality detection device 1 according to the present embodiment.
- FIG. 4 is a diagram illustrating the abnormal data removal process of the abnormality detection device 1 of the present embodiment.
- the learning unit 18 reads abnormal data from the abnormal data storage unit D2, and causes the second self-encoder 32 to learn based on the abnormal data (step S201).
- the removal unit 16 reads the first learning target data from the learning target data storage unit D3 and inputs the first learning target data to the second self-encoder 32 that has learned based on the abnormal data (step S203).
- the second self-encoder 32 compresses and reconstructs the first learning target data to generate reconstructed data.
- the removal unit 16 calculates a reconstruction error using the first learning target data and the reconstruction data (step S205). When a plurality of data exists in the first learning target data, a reconstruction error is calculated for each data.
- the removal unit 16 removes abnormal data from the first learning target data (step S207).
- the removal unit 16 generates learning target data (second learning target data) from which abnormal data has been removed, for example, by causing the learning target data storage unit D3 to store data whose reconstruction error is equal to or greater than a threshold value.
- the removal unit 16 deletes the data associated with the abnormal data detected by the detection unit 14 from the first learning target data.
- FIG. 5 is a flowchart illustrating an example of a learning process of the abnormality detection device 1 according to the present embodiment.
- the learning unit 18 reads the learning target data (second learning target data from which abnormal data has been removed by the abnormal data removal process) from the learning target data storage unit D3, and uses the second learning target data as the first self Input to the encoder 30 (step S301).
- the learning unit 18 learns the first self-encoder 30 and calculates a coupling coefficient between nodes that matches the second learning target data (step S303).
- This coupling coefficient is calculated using, for example, a back propagation method (error back propagation method) or the like.
- the learning unit 18 stores the calculated coupling coefficient in the model storage unit D4 as a normal model (step S305). Thus, the process of this flowchart is completed.
- an abnormality detection device an abnormality detection method, and a storage medium that can perform abnormality detection with high accuracy
- the first self-encoder 30 performs learning based on the learning target data from which the abnormal data is removed by the removing unit 16, so that the accuracy of abnormality detection by the detecting unit 14 can be improved.
- the abnormality detection device 1 according to the present embodiment can be used for failure or abnormality detection based on output data of various devices, inspection on a production line based on product images, network unauthorized access detection, and the like.
- step S117 learning processing (step S117)” is performed after “abnormal data removal processing (step S113)” has been described, but “learning processing (step S117)” is illustrated in FIG. ” May be followed by“ abnormal data removal processing (step S113) ”.
- Step S117 an example in which the learning process of the second self-encoder 32 is performed at the beginning of the “abnormal data removal process (step S113)” has been described. (Step S117) ”may be performed.
- the abnormality detection device in the present embodiment is different in that abnormal data removal processing is performed using a plurality of self-encoders.
- the same reference numerals are assigned to the same parts as those in the first embodiment, and the description thereof is omitted or simplified. Since the processing up to the second learning target data has been described in the first embodiment, a description thereof will be omitted.
- FIG. 7 is a functional block diagram showing an example of the abnormality detection device 2 of the present embodiment.
- the abnormality detection device 2 of the present embodiment includes a removal unit 17 that performs removal processing of abnormal data using a plurality of self-encoders.
- the removal unit 17 includes, for example, N ⁇ 1 self-encoders (second to Nth self-encoders).
- N is a natural number of 2 or more.
- FIG. 8 is a diagram illustrating an example of the relationship between the second to Nth self-encoders in the abnormality detection device 2 of the present embodiment.
- the second self-encoder 32 performs learning using the first abnormality data obtained by inputting the detection target data to the first self-encoder 30.
- the third self-encoder 34 performs learning using the second abnormal data obtained by inputting the first abnormal data to the second self-encoder 32.
- the fourth self-encoder 36 performs learning using the third abnormal data obtained by inputting the second abnormal data to the third self-encoder 34.
- the Nth self-encoder 38 performs learning using the N-1st abnormal data obtained by inputting the N-2st abnormal data to the N-1th self-encoder.
- the removal unit 17 inputs the nth learning target data to the (n + 1) th self-encoder on which learning based on the nth abnormal data is performed, whereby the nth learning target data is input. Then, the n-th abnormal data is removed to generate the (n + 1) -th learning target data.
- the nth abnormal data is obtained by compressing the (n ⁇ 1) th abnormal data in the (n ⁇ 1) th abnormal data and the n ⁇ 1th abnormal data by the nth self-encoder.
- the difference between the reconstructed data generated by the reconfiguration and the reconstructed data is data that is equal to or greater than the threshold value.
- the learning unit 18 causes the first self-encoder 30 to learn based on the (n + 1) th learning target data.
- n is a natural number of 2 or more.
- the model storage unit D4 stores the second to Nth abnormal models used by the second to Nth self-encoders.
- the second self-encoder 32 performs compression and reconstruction processing on the detection target data using the second abnormal model stored in the model storage unit D4.
- FIG. 9 is a flowchart illustrating an example of abnormal data removal processing of the abnormality detection device 2 of the present embodiment.
- control unit 10 determines whether or not to execute the removal process of the abnormal data included in the first abnormal data (step S401). For example, the control unit 10 determines to execute the abnormal data removal process when the reception unit 20 receives an execution instruction of the abnormal data removal process by the user of the abnormality detection device 2.
- the removal unit 16 uses a self-encoder other than the second self-encoder 32 (third to Nth self-encoding).
- the reconstruction error used is calculated (step S403).
- the removal unit 16 removes data in which the calculated reconstruction error is equal to or less than a threshold value (step S405).
- the removal unit 16 inputs the first abnormality data to the third self-encoder 34 that uses the third abnormality model, and calculates a reconstruction error. Next, the removal unit 16 removes data whose calculated reconstruction error is equal to or less than a threshold from the first abnormality data. Data whose reconstruction error is less than or equal to a threshold value, that is, data whose reconstruction error is small corresponds to abnormal data included in the first abnormal data.
- Similar abnormal data removal processing is performed using the fourth self-encoder 36 on the data on which abnormal data removal processing has been performed using the third self-encoder 34. Thereafter, similar abnormal data removal is repeated using the fifth to Nth self-encoders, whereby data with a high ratio of abnormal data to be learned by the second self-encoder 32 is obtained. It is not necessary to perform abnormal data removal processing in the order of the third, fourth,..., Nth self-encoder, and the third to Nth self-encoders perform abnormal data removal processing in any order. You can go.
- the abnormal data removal process is performed on the third to Nth self-encoders. Do. After the abnormal data removal process, the learning process of the second to Nth self-encoders may be performed based on the abnormal data on which the abnormal data removal process has been performed.
- control unit 10 determines whether or not to execute removal processing of abnormal data included in the learning target data (step S407). For example, the control unit 10 determines to execute the abnormal data removal process when the reception unit 20 receives an execution instruction of the abnormal data removal process by the user of the abnormality detection device 2.
- the removing unit 16 inputs the learning target data to the second self-encoder 32 that uses the second abnormal model.
- the reconstruction error is calculated (step S409).
- the removal unit 16 removes data in which the calculated reconstruction error is equal to or less than a threshold (step S411).
- the same data removal process is performed using the third self-encoder 34 on the data subjected to the data removal process using the second self-encoder 32.
- Target data (second learning target data) is obtained.
- the removal unit 16 stores the second learning target data in the learning target data storage unit D3. It is not necessary to perform data removal processing in the order of the second, third,..., Nth self-encoder, and the second to Nth self-encoders perform data removal processing in any order. You can go. Thus, the process of this flowchart is completed.
- FIG. 10 is a flowchart illustrating an example of a learning process of the abnormality detection device 2 according to the present embodiment.
- control unit 10 determines whether or not to perform normal model learning processing (step S501). For example, the control unit 10 determines to execute the learning process when the receiving unit 20 receives an instruction to execute the normal model learning process by the user of the abnormality detection device 2.
- the learning unit 18 learns the learning target data from the learning target data storage unit D3 (for example, the second learning target data subjected to the abnormal data removal process described above). And the second learning target data is input to the first self-encoder 30 (step S503).
- the learning unit 18 causes the first self-encoder 30 to learn the second learning target data and calculates a coupling coefficient that matches the second learning target data (step S505).
- the learning unit 18 stores the calculated coupling coefficient in the model storage unit D4 as a normal model (step S507).
- control unit 10 determines whether or not to execute the learning process for the second abnormality model (step S509). For example, the control unit 10 determines to execute the learning process when the receiving unit 20 receives an instruction to execute the learning process of the second abnormality model by the user of the abnormality detection device 2.
- the learning unit 18 reads the first abnormality data from the abnormality data storage unit D2, and inputs the first abnormality data to the second self-encoder 32. (Step S511).
- the learning unit 18 causes the second self-encoder 32 to learn the first abnormal data, and calculates a coupling coefficient that matches the first abnormal data (step S513).
- the learning unit 18 stores the calculated coupling coefficient in the model storage unit D4 as a first abnormality model (step S515). Thereafter, the same learning process is performed using the second to Nth self-encoders. It is not necessary to perform the learning process in the order of the second, third,..., Nth self-encoder, and the second to Nth self-encoders may perform the learning process in any order. Thus, the process of this flowchart is completed.
- an abnormality detection device an abnormality detection method, and a storage medium that can perform abnormality detection with high accuracy can be provided.
- abnormal data removal performance can be improved by using a plurality of self-encoders adapted to each of a plurality of types of abnormal data.
- FIG. 11 is a diagram showing a data set used in the evaluation test of this example.
- FIG. 12 is a diagram illustrating an evaluation procedure of the evaluation test of this example.
- Evaluation procedure Step 1 Learning the first self-encoder 30 based on the first learning target data
- Procedure 2 Input the detection target data to the first self-encoder 30, and the reconstruction error is the top 10,000. The data up to the first order is extracted as the first abnormal data.
- Procedure 3 The second self-encoder 32 is learned based on the first abnormal data.
- Procedure 4 The learning target data is input to the second self-encoder 32. Data whose reconstruction error is within the lower 6,000 is removed and stored as second learning target data.
- Procedure 5 Learning the first self-encoder 30 based on the second learning target data (the first self-code after learning) The encoder is referred to as a first self-encoder 30A)
- Procedure 6 Test data is input to each of the first self-encoder 30 and the first self-encoder 30A, and the detection performance of abnormal data is evaluated by an evaluation index AUC (Area under the curve).
- the AUC (Area under the curve) is the area under the ROC (Receiver Operating Characteristic) curve that is an evaluation index of the classifier, and takes a value from 0 to 1 and approaches 1 It shows that the accuracy of classification is high. When AUC is 1, it indicates that the object can be completely classified.
- step 6 the AUC when test data is input to the first self-encoder 30 is 0.76, and the AUC when test data is input to the first self-encoder 30A is 0. 0. 99.
- the accuracy of classification is improved by performing the removal processing of abnormal data using the second self-encoder 32.
- detection target data that is an abnormality detection target is input to a first self-encoder that has been trained based on first learning target data that is a learning target. Accordingly, the detection unit that detects the first abnormality data in the detection target data, and the second self in which the learning based on the first abnormality data detected by the detection unit is performed on the first learning target data.
- a removal unit that removes data associated with the first abnormal data from the first learning target data to generate second learning target data, and generated by the removal unit By including a learning unit that learns the first self-encoder based on the second learning target data, data abnormality detection can be performed with high accuracy.
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Biophysics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Quality & Reliability (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Debugging And Monitoring (AREA)
Abstract
実施形態の異常検知装置は、検知部と、除去部と、学習部とを持つ。検知部は、異常検知の対象となる検知対象データを、学習の対象となる第1学習対象データに基づく学習が行われた第1自己符号化器に入力することにより、前記検知対象データ内の第1異常データを検知する。除去部は、前記第1学習対象データを、前記検知部によって検知された前記第1異常データに基づく学習が行われた第2自己符号化器に入力することにより、前記第1学習対象データから、前記第1異常データと関連付けされたデータを除去して第2学習対象データを生成する。学習部は、前記除去部により生成された前記第2学習対象データに基づいて前記第1自己符号化器を学習させる。
Description
本発明の実施形態は、異常検知装置、異常検知方法、および記憶媒体に関する。
近年、自己符号化器を用いたデータの異常検知方法が知られている。この異常検知方法では、正常データ間における関係性やパターンを利用して、データを可能な限り損失無く圧縮して再構成するモデルを用いて異常データの検知を行う。このモデルを用いて正常データを処理した場合、データ損失が少ない、即ち、圧縮前の元データと再構成後のデータとの差分(以下、「再構成誤差」と呼ぶ)が小さくなる。一方、異常データを処理した場合、データ損失が大きく、即ち、再構成誤差が大きくなる。この異常検知方法では、このような再構成誤差の大きさに基づいてデータの異常が検知される。
上記の異常検知方法は、教師なし学習であるため、データに対して異常または正常のラベル付をする手間なく利用可能であるというメリットがあり、各種機器の故障検知、ネットワークの不正アクセス検知などに幅広く利用されている。
上記の異常検知方法は、モデルを生成するために、予め、学習データを用いた学習処理を行う必要があるが、この学習データには、正常データ以外に異常データを含んでいる場合がある。このような異常データを含む学習データを用いて学習処理を行うと、異常検知の精度が低下する場合がある。
本発明が解決しようとする課題は、データの異常検知を高精度で行うことができる異常検知装置、異常検知方法、および記憶媒体を提供することである。
実施形態の異常検知装置は、検知部と、除去部と、学習部とを持つ。検知部は、異常検知の対象となる検知対象データを、学習の対象となる第1学習対象データに基づく学習が行われた第1自己符号化器に入力することにより、前記検知対象データ内の第1異常データを検知する。除去部は、前記第1学習対象データを、前記検知部によって検知された前記第1異常データに基づく学習が行われた第2自己符号化器に入力することにより、前記第1学習対象データから、前記第1異常データと関連付けされたデータを除去して第2学習対象データを生成する。学習部は、前記除去部により生成された前記第2学習対象データに基づいて前記第1自己符号化器を学習させる。
以下、実施形態の異常検知装置、異常検知方法、および記憶媒体を、図面を参照して説明する。
(第1の実施形態)
本実施形態の異常検知装置は、自己符号化器を用いて異常検知の実施時(運用時)に検知した異常データを使用して、学習時に使用する学習の対象となるデータ(以下、「学習対象データ」と呼ぶ)の中に含まれる異常データを除去する。そして、この異常データが除去された学習対象データを用いて自己符号化器を学習させることで、異常検知の性能を向上させることができる。
本実施形態の異常検知装置は、自己符号化器を用いて異常検知の実施時(運用時)に検知した異常データを使用して、学習時に使用する学習の対象となるデータ(以下、「学習対象データ」と呼ぶ)の中に含まれる異常データを除去する。そして、この異常データが除去された学習対象データを用いて自己符号化器を学習させることで、異常検知の性能を向上させることができる。
図1は、第1の実施形態の異常検知装置1の一例を示す機能ブロック図である。異常検知装置1は、異常検知の対象となるデータ(以下、「検知対象データ」と呼ぶ)の異常検知を行う。本実施形態における異常検知とは、検知対象データ内に存在する大多数のデータ(正常データ)と異なる傾向のデータ(異常データ)を発見することを示す。異常検知装置1は、異常検知を行うための前準備として、正常データの圧縮および再構成処理(復号処理)を行うことで、正常データにおけるデータ間の関係性やパターンを把握し、再構成誤差の小さな圧縮および復号処理を行うための手順を学習する。例えば、異常検知装置1は、学習のために準備された学習対象データの圧縮および再構成処理を行い、学習対象データに適合するモデル(正常モデル)を生成する。
異常検知装置1は、検知対象データに含まれる正常データに対しては再構成誤差の小さな圧縮および再構成処理を行うが、異常データに対して圧縮および再構成処理を行った場合、その再構成誤差が大きくなる。異常検知装置1は、この再構成誤差を大きさに基づいて、異常データを検知することができる。
異常検知装置1は、例えば各種センサである外部装置Aから検知対象データを取得する。検知対象データは、例えば、各種センサによって測定されたセンサデータ、各種装置の動作ログデータ、各種数値データなど、任意のデータを含む。
異常検知装置1は、例えば、制御部10と、取得部12と、検知部14と、除去部16と、学習部18と、受付部20と、表示部22と、記憶部24とを備える。記憶部24は、例えば、検知対象データ記憶部D1と、異常データ記憶部D2と、学習対象データ記憶部D3と、モデル記憶部D4とを備える。制御部10は、異常検知装置1の各部の動作の制御を行う。
取得部12は、外部装置Aから検知対象データを取得し、検知対象データ記憶部D1に記憶させる。取得部12は、例えば、外部装置Aから検知対象データを継続的に取得する。或いは、取得部12は、所定の周期で、外部装置Aに蓄積された検知対象データを取得してもよい。受付部20が異常検知装置1のユーザによるデータ取得指示を受け付けた場合に、取得部12が、外部装置Aから検知対象データを取得してもよい。
検知部14は、検知対象データ記憶部D1から検知対象データを読み出して異常検知を行う。検知部14は、例えば、学習対象データを用いた学習を行った第1自己符号化器30を含む。第1自己符号化器30は、モデル記憶部D4に記憶された正常モデルを用いて検知対象データの圧縮および再構成処理を行い、再構成データを生成する。正常モデルとは、学習対象データを用いた学習により算出された正常データに適合するモデルである。
第1自己符号化器30は、正常データを処理した場合、再構成誤差が小さな圧縮および再構成処理を行う。一方、第1自己符号化器30は、異常データを処理した場合、再構成誤差が大きな圧縮および再構成処理を行う。検知部14は、この再構成誤差の大きさに基づいてデータの異常検知を行う。
第1自己符号化器30は、正常データを処理した場合、再構成誤差が小さな圧縮および再構成処理を行う。一方、第1自己符号化器30は、異常データを処理した場合、再構成誤差が大きな圧縮および再構成処理を行う。検知部14は、この再構成誤差の大きさに基づいてデータの異常検知を行う。
検知部14は、例えば、検知対象データの再構成誤差(第1差異)を算出し、算出した再構成誤差が所定の閾値以上である場合には異常データと判定し、算出した再構成誤差が閾値未満である場合には正常データと判定する。この閾値は、平均二乗誤差などを用いて予め定義される。例えば、この閾値は、正常データの平均二乗誤差のα倍(αは正の数)などに設定されてよい。検知部14は、検知した異常データを異常データ記憶部D2に記憶させる。
除去部16は、学習対象データ記憶部D3から学習対象データを読み出し、この学習対象データの中に含まれる異常データを除去する。除去部16は、例えば、異常データを用いた学習を行った第2自己符号化器32を含む。第2自己符号化器32は、モデル記憶部D4に記憶された異常モデルを用いて検知対象データの圧縮および再構成処理を行い、再構成データを生成する。異常モデルとは、異常データを用いた学習により算出された異常データに適合するモデルである。即ち、除去部16は、学習対象データから、検知部14によって検知された異常データと関連付けされたデータを削除する。除去部16は、学習対象データから、検知部14によって検知された異常データと同じ性質(傾向)を持つ異常データを削除する。
除去部16は、例えば、学習対象データの再構成誤差(第2差異)を算出し、算出した再構成誤差が所定の閾値以上である場合には異常データと判定し、算出した再構成誤差が閾値未満である場合には正常データと判定する。この除去部16によって異常データと判定されたデータは、検知部14によって行われる異常検知においては、正常データと判定されるべきデータである。この除去部16によって正常データと判定されたデータは、検知部14によって行われる異常検知においては、異常データと判定されるべきデータである。
除去部16は、学習対象データの中から、除去部16が正常データと判定したデータ(検知部14によって異常データと判定されるべきデータ)を除去することで、異常データの割合が低減された新たな学習対象データを生成する。即ち、除去部16は、学習対象データの中から、除去部16が異常データと判定したデータ(検知部14によって正常データと判定されるべきデータ)を抽出する。除去部16は、新たな学習対象データを学習対象データ記憶部D3に記憶させる。
学習部18は、第1自己符号化器30および第2自己符号化器32の学習処理を制御する。学習部18は、例えば、学習対象データに基づいて第1自己符号化器30を学習させる。学習部18は、例えば、第1自己符号化器30に対して検知対象データを入力することにより得られる異常データに基づいて第2自己符号化器32を学習させる。
受付部20は、異常検知装置1のユーザによる操作を受け付ける。受付部20は、例えば、マウス、キーボード、タッチパネルなどの入力端末である。
表示部22は、例えば、検知部14による異常検知の結果などを表示する。例えば、表示部22は、液晶ディスプレイなどである。表示部22が、タッチパネル対応のディスプレイである場合、表示部22は、上記の受付部20の機能を備えてもよい。
上記の異常検知装置1の各機能部のうち一部または全部は、プロセッサがプログラム(ソフトウェア)を実行することにより実現されてよい。この場合、異常検知装置1は、上記のプログラムをコンピュータ装置に予めインストールすることで実現してもよい。或いは、CD-ROMなどの記憶媒体に記憶された上記のプログラム、又はネットワークを介して頒布される上記のプログラムを、コンピュータ装置に適宜インストールすることで実現してもよい。異常検知装置1の各機能部のうち一部または全部は、LSI(Large Scale Integration)やASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)などのハードウェアによって実現されてもよいし、ソフトウェアとハードウェアの組み合わせによって実現されてもよい。
記憶部24は、検知対象データ、異常検知装置1の内部で処理される各種内部データ、各種モデルなどを記憶する。記憶部24は、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disk Drive)、フラッシュメモリなどで実現される。検知対象データ記憶部D1は、取得部12によって外部装置Aから取得された検知対象データを記憶する。異常データ記憶部D2は、検知部14によって異常と判定された異常データを記憶する。学習対象データ記憶部D3は、第1自己符号化器30の学習処理に使用される学習対象データを記憶する。モデル記憶部D4は、検知部14の異常検知処理および除去部16の除去処理において使用される各種モデルを記憶する。
次に、本実施形態の異常検知装置1の動作について説明する。図2は、本実施形態の異常検知装置1の処理の一例を示すフローチャートである。
まず、取得部12は、制御部10の制御下において、外部装置Aから検知対象データを取得し、検知対象データ記憶部D1に記憶させる(ステップS101)。例えば、取得部12は、外部装置Aから検知対象データを継続的に取得する。或いは、取得部12は、所定の周期で、外部装置Aに蓄積された検知対象データを取得するようにしてもよい。
次に、制御部10は、外部装置Aから取得した検知対象データに対する異常検知処理を実行するか否かを判定する(ステップS103)。制御部10は、例えば、受付部20が異常検知装置1のユーザによる異常検知処理の実行指示を受け付けた場合に、異常検知処理を実行すると判定する。或いは、制御部10は、所定の時間が経過した場合に異常検知処理を実行すると判定してもよい。制御部10による異常検知処理を実行するか否かの判定は行わず、外部装置Aから検知対象データを取得した場合には必ず異常検知処理を実行してもよい。
制御部10が検知対象データに対する異常検知処理を実行すると判定した場合、検知部14は、検知対象データ記憶部D1から検知対象データを読み出し、学習対象データ(第1学習対象データ)に基づいて学習した第1自己符号化器30を用いて検知対象データを圧縮および再構成し、再構成誤差を算出する(ステップS105)。
次に、検知部14は、算出した再構成誤差が閾値以上であるか否かを判定する(ステップS107)。この閾値は、正常データの平均二乗誤差などを用いて予め定義される。
検知部14が算出した再構成誤差が閾値以上であると判定した場合、即ち、検知対象データが異常データであると判定した場合、検知部14は、この検知対象データを、異常データとして異常データ記憶部D2に記憶させる(ステップS109)。一方、検知部14が算出した再構成誤差が閾値未満であると判定した場合、即ち、検知対象データが正常データであると判定した場合、検知部14は、この検知対象データを異常データ記憶部D2に記憶させない。検知対象データが複数する場合には、検知対象データの各々に対して、上記の再構成誤差に基づく異常検知および記憶処理を行う。制御部10は、検知部14によって検知された異常データに関する情報を、表示部22に表示させてもよい。
次に(或いは、制御部10が検知対象データに対する異常検知を実行しないと判定した場合)、制御部10は、異常データ除去処理を実行するか否かを判定する(ステップS111)。例えば、制御部10は、受付部20が異常検知装置1のユーザによる異常データ除去処理の実行指示を受け付けた場合に、異常データ除去処理を実行すると判定する。或いは、制御部10は、所定の時間が経過した場合に異常データ除去処理を実行すると判定してもよい。制御部10による異常データ除去処理を実行するか否かの判定は行わず、必ず異常データ除去処理を実行してもよい。
制御部10が異常データ除去処理を実行すると判定した場合、除去部16は、異常データ除去処理を実行する(S113)。異常データ除去処理の詳細については後述する。
次に(或いは、制御部10が異常データ除去処理を実行しないと判定した場合)、制御部10は、学習処理を実行するか否かを判定する(ステップS115)。例えば、制御部10は、受付部20が異常検知装置1のユーザによる学習処理の実行指示を受け付けた場合に、学習処理を実行すると判定する。或いは、制御部10は、所定の時間が経過した場合に学習処理を実行すると判定してもよい。制御部10による学習処理を実行するか否かの判定は行わず、必ず学習処理を実行してもよい。制御部10が学習処理を実行しないと判定した場合、検知対象データの取得処理を再度行う。
制御部10が学習処理を実行すると判定した場合、学習部18は、学習処理を実行する(S117)。学習処理の詳細については後述する。以後、検知対象データの取得処理を再度行う。
次に、本実施形態の異常検知装置1の異常データ除去処理について説明する。図3は、本実施形態の異常検知装置1の異常データ除去処理の一例を示すフローチャートである。
図4は、本実施形態の異常検知装置1の異常データ除去処理を示す図である。
図4は、本実施形態の異常検知装置1の異常データ除去処理を示す図である。
まず、学習部18は、異常データ記憶部D2から異常データを読み出し、この異常データに基づいて第2自己符号化器32を学習させる(ステップS201)。
次に、除去部16は、学習対象データ記憶部D3から第1学習対象データを読み出し、異常データに基づいて学習した第2自己符号化器32に対して入力する(ステップS203)。第2自己符号化器32は、この第1学習対象データを圧縮して再構成して再構成データを生成する。
次に、除去部16は、第1学習対象データと、再構成データと用いて、再構成誤差を算出する(ステップS205)。第1学習対象データ内に複数のデータが存在する場合には、各データに対して、再構成誤差を算出する。
次に、除去部16は、第1学習対象データから異常データを除去する(ステップS207)。除去部16は、例えば、再構成誤差が閾値以上であるデータを、学習対象データ記憶部D3に記憶させることで、異常データが除去された学習対象データ(第2学習対象データ)を生成する。除去部16は、第1学習対象データから、検知部14によって検知された異常データと関連付けされたデータを削除する。以上により、本フローチャートの処理を終了する。
次に、本実施形態の異常検知装置1の学習処理について説明する。図5は、本実施形態の異常検知装置1の学習処理の一例を示すフローチャートである。
まず、学習部18は、学習対象データ記憶部D3から学習対象データ(上記の異常データ除去処理により異常データが除去された第2学習対象データ)を読み出し、この第2学習対象データを第1自己符号化器30に対して入力させる(ステップS301)。
次に、学習部18は、第1自己符号化器30を学習させ、第2学習対象データに適合するノード間の結合係数を算出させる(ステップS303)。この結合係数は、例えばバックプロパゲーション法(誤差逆伝播法)等を使用して算出させる。
次に、学習部18は、算出した結合係数を正常モデルとして、モデル記憶部D4に記憶させる(ステップS305)。以上により、本フローチャートの処理を終了する。
以上で説明した本実施形態によれば、異常検知を高精度で行うことができる異常検知装置、異常検知方法、および記憶媒体を提供することができる。本実施形態において、第1自己符号化器30が、除去部16によって異常データが除去された学習対象データに基づく学習を行うことで、検知部14による異常検知の精度を向上させることができる。本実施形態の異常検知装置1は、各種機器の出力データに基づく故障または異常検知、製品の画像に基づく製造ラインでの検品、ネットワークの不正アクセス検知などに利用することができる。
本実施形態では、「異常データ除去処理(ステップS113)」を行った後に、「学習処理(ステップS117)」を行う例について説明したが、図6に示すように、「学習処理(ステップS117)」を行った後に、「異常データ除去処理(ステップS113)」を行ってもよい。
本実施形態では、「異常データ除去処理(ステップS113)」の最初に第2自己符号化器32の学習処理を行う例について説明したが、第2自己符号化器32の学習は、「学習処理(ステップS117)」において行ってもよい。
(第2の実施形態)
次に、第2の実施形態について説明する。第1の実施形態と比較して、本実施形態における異常検知装置は、複数の自己符号化器を用いて、異常データの除去処理を行う点が異なる。このため、本実施形態の説明において、上記の第1の実施形態と同様の部分には同じ参照番号を付与し、その説明を省略あるいは簡略化する。第2学習対象データまでの処理については、第1の実施形態で説明しているので省略する。
次に、第2の実施形態について説明する。第1の実施形態と比較して、本実施形態における異常検知装置は、複数の自己符号化器を用いて、異常データの除去処理を行う点が異なる。このため、本実施形態の説明において、上記の第1の実施形態と同様の部分には同じ参照番号を付与し、その説明を省略あるいは簡略化する。第2学習対象データまでの処理については、第1の実施形態で説明しているので省略する。
学習対象データの中には、互いに性質の異なる複数の種類の異常データが存在する場合がある。これらの複数の種類の異常データの各々に適合した複数の自己符号化器を用いることで、異常データの除去性能を向上させることができる。
図7は、本実施形態の異常検知装置2の一例を示す機能ブロック図である。第1の実施形態と比較して、本実施形態の異常検知装置2は、複数の自己符号化器を用いて異常データの除去処理を行う除去部17を備える。
除去部17は、例えば、N-1個の自己符号化器(第2から第N自己符号化器)を備える。Nは2以上の自然数である。図8は、本実施形態の異常検知装置2における第2から第Nの自己符号化器の関係の一例を示す図である。第2自己符号化器32は、第1自己符号化器30に対して検知対象データを入力することにより得られた第1異常データを用いて学習を行う。第3自己符号化器34は、第2自己符号化器32に対して第1異常データを入力することにより得られた第2異常データを用いて学習を行う。第4自己符号化器36は、第3自己符号化器34に対して第2異常データを入力することにより得られた第3異常データを用いて学習を行う。第N自己符号化器38は、第N-1自己符号化器に対して第N-2異常データを入力することにより得られた第N-1異常データを用いて学習を行う。
すなわち、除去部17は、第n番目の学習対象データを、第n番目の異常データに基づく学習が行われた第n+1番目の自己符号化器に入力することにより、第n番目の学習対象データから、第n番目の異常データを除去して第n+1番目の学習対象データを生成する。第n番目の異常データは、第n-1番目の異常データ内における、第n-1番目の異常データと、第n番目の自己符号化器により第n-1番目の異常データを圧縮して再構成することにより生成された再構成データとの間の差異が閾値以上のデータである。学習部18は、第n+1番目の学習対象データに基づいて第1自己符号化器30を学習させる。nは、2以上の自然数である。
モデル記憶部D4は、第2から第N自己符号化器によって用いられる第2から第N異常モデルを記憶する。例えば、第2自己符号化器32は、モデル記憶部D4に記憶された第2異常モデルを用いて検知対象データの圧縮および再構成処理を行う。
次に、本実施形態の異常検知装置2の動作について説明する。異常検知装置2の全体の処理の流れは、異常データ除去処理および学習処理を除いて、図2に示す第1実施形態における異常検知装置1と同じである。以下、異常検知装置2の異常データ除去処理および学習処理についてのみ説明する。図9は、本実施形態の異常検知装置2の異常データ除去処理の一例を示すフローチャートである。
まず、制御部10は、第1異常データに含まれる異常データの除去処理を実行するか否かを判定する(ステップS401)。例えば、制御部10は、受付部20が異常検知装置2のユーザによる異常データ除去処理の実行指示を受け付けた場合に、異常データ除去処理を実行すると判定する。
制御部10が第1異常データに含まれる異常データの除去処理を実行すると判定した場合、除去部16は、第2自己符号化器32以外の自己符号化器(第3から第N自己符号化器)用いた再構成誤差を算出する(ステップS403)。次に、除去部16は、算出した再構成誤差が閾値以下であるデータを除去する(ステップS405)。
即ち、除去部16は、第3異常モデルを用いる第3自己符号化器34に対して第1異常データを入力して再構成誤差を算出する。次に、除去部16は、算出した再構成誤差が閾値以下であるデータを第1異常データから除去する。再構成誤差が閾値以下であるデータ、即ち、再構成誤差が小さいデータは、第1異常データに含まれる異常データに相当する。
次に、第3自己符号化器34を用いて異常データの除去処理が行われたデータに対して、第4自己符号化器36を用いて同様な異常データの除去処理を行う。以後、第5から第N自己符号化器を用いて同様な異常データの除去を繰り返し行うことで、第2自己符号化器32の学習対象とすべき異常データの割合が高いデータが得られる。第3、第4、・・・、第N自己符号化器の順で異常データの除去処理を行う必要はなく、第3から第N自己符号化器は任意の順で異常データの除去処理を行ってよい。
以後(或いは、制御部10が第1異常データに含まれる異常データの除去処理を実行しないと判定した場合)、第3から第N自己符号化器に対して、上記の異常データの除去処理を行う。上記の異常データ除去処理の後に、異常データ除去処理が行われた異常データに基づいて第2から第N自己符号化器の学習処理を行ってもよい。
次に、制御部10は、学習対象データに含まれる異常データの除去処理を実行するか否かを判定する(ステップS407)。例えば、制御部10は、受付部20が異常検知装置2のユーザによる異常データ除去処理の実行指示を受け付けた場合に、異常データ除去処理を実行すると判定する。
制御部10が学習対象データに含まれる異常データの除去処理を実行すると判定した場合、除去部16は、第2異常モデルを用いる第2自己符号化器32に対して、学習対象データを入力して再構成誤差を算出する(ステップS409)。次に、除去部16は、算出した再構成誤差が閾値以下であるデータを除去する(ステップS411)。次に、第2自己符号化器32を用いてデータの除去処理を行ったデータに対して、第3自己符号化器34を用いて同様なデータ除去処理を行う。以後、第4から第N自己符号化器を用いて同様なデータの除去処理を行うことで、異常データが少なく、第1自己符号化器30の学習対象とすべき正常データの割合が高い学習対象データ(第2学習対象データ)が得られる。
除去部16は、第2学習対象データを、学習対象データ記憶部D3に記憶させる。尚、第2、第3、・・・、第N自己符号化器の順でデータの除去処理を行う必要はなく、第2から第N自己符号化器は任意の順でデータの除去処理を行ってよい。以上により、本フローチャートの処理を終了する。
除去部16は、第2学習対象データを、学習対象データ記憶部D3に記憶させる。尚、第2、第3、・・・、第N自己符号化器の順でデータの除去処理を行う必要はなく、第2から第N自己符号化器は任意の順でデータの除去処理を行ってよい。以上により、本フローチャートの処理を終了する。
次に、本実施形態の異常検知装置2の学習処理について説明する。図10は、本実施形態の異常検知装置2の学習処理の一例を示すフローチャートである。
まず、制御部10は、正常モデルの学習処理を実行するか否かを判定する(ステップS501)。例えば、制御部10は、受付部20が異常検知装置2のユーザによる正常モデルの学習処理の実行指示を受け付けた場合に、学習処理を実行すると判定する。
制御部10が正常モデルの学習処理を実行すると判定した場合、学習部18は、学習対象データ記憶部D3から学習対象データ(例えば、上記の異常データ除去処理が行われた第2学習対象データ)を読み出し、この第2学習対象データを第1自己符号化器30に入力させる(ステップS503)。
次に、学習部18は、第1自己符号化器30に第2学習対象データを学習させ、第2学習対象データに適合する結合係数を算出させる(ステップS505)。
次に、学習部18は、算出した結合係数を正常モデルとして、モデル記憶部D4に記憶させる(ステップS507)。
次に、制御部10は、第2異常モデルの学習処理を実行するか否かを判定する(ステップS509)。例えば、制御部10は、受付部20が異常検知装置2のユーザによる第2異常モデルの学習処理の実行指示を受け付けた場合に、学習処理を実行すると判定する。
制御部10が第2異常モデルの学習を実行すると判定した場合、学習部18は、異常データ記憶部D2から第1異常データを読み出し、この第1異常データを第2自己符号化器32に入力させる(ステップS511)。
次に、学習部18は、第2自己符号化器32に第1異常データを学習させ、第1異常データに適合する結合係数を算出させる(ステップS513)。
次に、学習部18は、算出した結合係数を第1異常モデルとして、モデル記憶部D4に記憶させる(ステップS515)。以後、第2から第N自己符号化器を用いて同様な学習処理を行う。第2、第3、・・・第N自己符号化器の順で学習処理を行う必要はなく、第2から第N自己符号化器は任意の順で学習処理を行ってよい。以上により、本フローチャートの処理を終了する。
以上で説明した本実施形態によれば、異常検知を高精度で行うことができる異常検知装置、異常検知方法、および記憶媒体を提供することができる。本実施形態では、複数の種類の異常データの各々に適合した複数の自己符号化器を用いることで、異常データの除去性能を向上させることができる。
本実施形態では、学習処理において、正常モデル(第1自己符号化器30)の学習後に、異常モデル(第2から第N自己符号化器)の学習を行う例を説明したが、異常モデルの学習後に、正常モデル(第1自己符号化器30)の学習を行ってもよい。
(実施例)
上記の異常検知装置1および2の性能を評価するために、以下の手順の評価試験を行った。図11は、本実施例の評価試験において使用したデータセットを示す図である。図12は、本実施例の評価試験の評価手順を示す図である。
上記の異常検知装置1および2の性能を評価するために、以下の手順の評価試験を行った。図11は、本実施例の評価試験において使用したデータセットを示す図である。図12は、本実施例の評価試験の評価手順を示す図である。
評価手順
手順1:第1学習対象データに基づいて第1自己符号化器30を学習
手順2:第1自己符号化器30に対して検知対象データを入力し、再構成誤差が上位10,000位までのデータを第1異常データとして抽出
手順3:第1異常データに基づいて第2自己符号化器32を学習
手順4:第2自己符号化器32に対して学習対象データを入力し、再構成誤差が下位6,000以内のデータを除去し、第2学習対象データとして保存
手順5:第2学習対象データに基づいて第1自己符号化器30を学習(学習後の第1自己符号化器を第1自己符号化器30Aと呼ぶ)
手順6:第1自己符号化器30および第1自己符号化器30Aの各々に対してテストデータを入力し、異常データの検知性能を評価指標AUC(Area under the curve)にて評価
手順1:第1学習対象データに基づいて第1自己符号化器30を学習
手順2:第1自己符号化器30に対して検知対象データを入力し、再構成誤差が上位10,000位までのデータを第1異常データとして抽出
手順3:第1異常データに基づいて第2自己符号化器32を学習
手順4:第2自己符号化器32に対して学習対象データを入力し、再構成誤差が下位6,000以内のデータを除去し、第2学習対象データとして保存
手順5:第2学習対象データに基づいて第1自己符号化器30を学習(学習後の第1自己符号化器を第1自己符号化器30Aと呼ぶ)
手順6:第1自己符号化器30および第1自己符号化器30Aの各々に対してテストデータを入力し、異常データの検知性能を評価指標AUC(Area under the curve)にて評価
AUC(Area under the curve)とは、分類器の評価指標となるROC(Receiver Operating Characteristic‥受信者操作特性)曲線の下面積であって、0から1の値を取るものであり、1に近付く程、分類の精度が高いことを示す。AUCが1の場合に対象を完全に分類可能であることを示す。
手順6において、第1自己符号化器30に対してテストデータを入力した場合のAUCは0.76であり、第1自己符号化器30Aに対してテストデータを入力した場合のAUCは0.99となった。これにより、第2自己符号化器32を用いて異常データの除去処理を行うことで、分類の精度が向上することが分かった。
以上で説明した少なくとも一つの実施形態によれば、異常検知の対象となる検知対象データを、学習の対象となる第1学習対象データに基づく学習が行われた第1自己符号化器に入力することにより、前記検知対象データ内の第1異常データを検知する検知部と、前記第1学習対象データを、前記検知部によって検知された前記第1異常データに基づく学習が行われた第2自己符号化器に入力することにより、前記第1学習対象データから、前記第1異常データと関連付けされたデータを除去して第2学習対象データを生成する除去部と、前記除去部により生成された前記第2学習対象データに基づいて前記第1自己符号化器を学習させる学習部と、を備えることにより、データの異常検知を高精度で行うことができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
Claims (9)
- 異常検知の対象となる検知対象データを、学習の対象となる第1学習対象データに基づく学習が行われた第1自己符号化器に入力することにより、前記検知対象データ内の第1異常データを検知する検知部と、
前記第1学習対象データを、前記検知部によって検知された前記第1異常データに基づく学習が行われた第2自己符号化器に入力することにより、前記第1学習対象データから、前記第1異常データと関連付けされたデータを除去して第2学習対象データを生成する除去部と、
前記除去部により生成された前記第2学習対象データに基づいて前記第1自己符号化器を学習させる学習部と、
を備える異常検知装置。 - 前記検知部は、前記検知対象データと、前記第1自己符号化器により前記検知対象データを圧縮して再構成することにより生成された再構成データとの間の第1差異を算出し、前記第1差異に基づいて、前記第1異常データを検知する、
請求項1に記載の異常検知装置。 - 前記除去部は、前記第1学習対象データと、前記第2自己符号化器により前記第1学習対象データを圧縮して再構成することにより生成された再構成データとの間の第2差異を算出し、前記第2差異に基づいて、前記第1学習対象データから、前記第1異常データと関連付けされたデータを除去して前記第2学習対象データを生成する、
請求項1または2に記載の異常検知装置。 - 前記除去部は、前記第2学習対象データを、第2異常データに基づく学習が行われた第3自己符号化器に入力することにより、前記第2学習対象データから、前記第2異常データを除去して第3学習対象データを生成し、前記第2異常データは、前記第1異常データ内における、前記第1異常データと、前記第2自己符号化器により前記第1異常データを圧縮して再構成することにより生成された再構成データとの間の差異が閾値以上のデータであり、
前記学習部は、前記第3学習対象データに基づいて前記第1自己符号化器を学習させる、
請求項1または2に記載の異常検知装置。 - 前記除去部は、第n番目の学習対象データを、第n番目の異常データに基づく学習が行われた第n+1番目の自己符号化器に入力することにより、前記第n番目の学習対象データから、前記第n番目の異常データを除去して第n+1番目の学習対象データを生成し、前記第n番目の異常データは、第n-1番目の異常データ内における、第n-1番目の異常データと、第n番目の自己符号化器により前記第n-1番目の異常データを圧縮して再構成することにより生成された再構成データとの間の差異が閾値以上のデータであり、
前記学習部は、前記第n+1番目の学習対象データに基づいて前記第1自己符号化器を学習させ、
前記nは、2以上の自然数である、
請求項1または2に記載の異常検知装置。 - 異常検知の対象となる検知対象データを、学習の対象となる第1学習対象データに基づく学習が行われた第1自己符号化器に入力することにより、前記検知対象データ内の第1異常データを検知し、
前記第1学習対象データを、検知された前記第1異常データに基づく学習が行われた第2自己符号化器に入力することにより、前記第1学習対象データから、前記第1異常データと関連付けされたデータを除去して第2学習対象データを生成し、
生成された前記第2学習対象データに基づいて前記第1自己符号化器を学習させる、
異常検知方法。 - 前記第2学習対象データを、第2異常データに基づく学習が行われた第3自己符号化器に入力することにより、前記第2学習対象データから、前記第2異常データを除去して第3学習対象データを生成し、前記第2異常データは、前記第1異常データ内における、前記第1異常データと、前記第2自己符号化器により前記第1異常データを圧縮して再構成することにより生成された再構成データとの間の差異が閾値以上のデータであり、
前記第3学習対象データに基づいて前記第1自己符号化器を学習させる、
請求項6に記載の異常検知方法。 - コンピュータに、
異常検知の対象となる検知対象データを、学習の対象となる第1学習対象データに基づく学習が行われた第1自己符号化器に入力することにより、前記検知対象データ内の第1異常データを検知させ、
前記第1学習対象データを、検知された前記第1異常データに基づく学習が行われた第2自己符号化器に入力することにより、前記第1学習対象データから、前記第1異常データと関連付けされたデータを除去して第2学習対象データを生成させ、
生成された前記第2学習対象データに基づいて前記第1自己符号化器を学習させる、
異常検知プログラムを記憶した記憶媒体。 - 前記第2学習対象データを、第2異常データに基づく学習が行われた第3自己符号化器に入力することにより、前記第2学習対象データから、前記第2異常データを除去して第3学習対象データを生成させ、前記第2異常データは、前記第1異常データ内における、前記第1異常データと、前記第2自己符号化器により前記第1異常データを圧縮して再構成することにより生成された再構成データとの間の差異が閾値以上のデータであり、
前記第3学習対象データに基づいて前記第1自己符号化器を学習させる、
請求項8に記載の記憶媒体。
Priority Applications (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201780081392.0A CN110121724B (zh) | 2017-01-11 | 2017-09-25 | 异常检测装置、异常检测方法及存储介质 |
| US16/476,449 US11501163B2 (en) | 2017-01-11 | 2017-09-25 | Abnormality detection device, abnormality detection method, and storage medium |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2017002521A JP6545728B2 (ja) | 2017-01-11 | 2017-01-11 | 異常検知装置、異常検知方法、および異常検知プログラム |
| JP2017-002521 | 2017-01-11 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018131219A1 true WO2018131219A1 (ja) | 2018-07-19 |
Family
ID=62839409
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2017/034599 Ceased WO2018131219A1 (ja) | 2017-01-11 | 2017-09-25 | 異常検知装置、異常検知方法、および記憶媒体 |
Country Status (4)
| Country | Link |
|---|---|
| US (1) | US11501163B2 (ja) |
| JP (1) | JP6545728B2 (ja) |
| CN (1) | CN110121724B (ja) |
| WO (1) | WO2018131219A1 (ja) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020042024A1 (zh) * | 2018-08-29 | 2020-03-05 | 区链通网络有限公司 | 一种基于图算法的节点异常检测方法、装置及存储装置 |
| JPWO2020250730A1 (ja) * | 2019-06-11 | 2020-12-17 |
Families Citing this family (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3616198B1 (en) | 2017-04-24 | 2024-10-16 | Virginia Tech Intellectual Properties, Inc. | Radio signal identification, identification system learning, and identifier deployment |
| JP6874708B2 (ja) * | 2018-02-13 | 2021-05-19 | 日本電信電話株式会社 | モデル学習装置、モデル学習方法、プログラム |
| JPWO2019240164A1 (ja) | 2018-06-13 | 2021-06-24 | 第一三共株式会社 | 心筋障害治療薬 |
| KR102601135B1 (ko) * | 2019-01-15 | 2023-11-13 | 삼성전자주식회사 | 전자 장치 및 이의 제어 방법 |
| US11133204B2 (en) * | 2019-01-29 | 2021-09-28 | Applied Materials, Inc. | Chamber matching with neural networks in semiconductor equipment tools |
| JP7103274B2 (ja) * | 2019-02-28 | 2022-07-20 | 日本電信電話株式会社 | 検知装置及び検知プログラム |
| US20220206888A1 (en) * | 2019-08-28 | 2022-06-30 | Mitsubishi Electric Corporation | Abnormal portion detecting device, method of detecting abnormal portion, and recording medium |
| US11251896B2 (en) * | 2020-03-03 | 2022-02-15 | Mitsubishi Electric Research Laboratories, Inc. | Generative model for inverse design of materials, devices, and structures |
| JP7414629B2 (ja) * | 2020-04-23 | 2024-01-16 | 株式会社Screenホールディングス | 学習用データ処理装置、学習装置、学習用データ処理方法、およびプログラム |
| EP3919996A1 (en) * | 2020-06-02 | 2021-12-08 | Siemens Aktiengesellschaft | Method and apparatus for monitoring of industrial devices |
| CN111737431B (zh) * | 2020-06-19 | 2024-03-22 | 海尔优家智能科技(北京)有限公司 | 设备异常的处理方法及装置、存储介质、电子装置 |
| JP7504772B2 (ja) * | 2020-11-05 | 2024-06-24 | 株式会社東芝 | 異常判定装置、学習装置及び異常判定方法 |
| JP6998099B1 (ja) | 2021-08-03 | 2022-01-18 | サイバーマトリックス株式会社 | アクセスリクエストの不正を検知する方法 |
| JP2023123182A (ja) * | 2022-02-24 | 2023-09-05 | 株式会社日立パワーソリューションズ | データ処理システム及びデータ処理方法 |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2015114967A (ja) * | 2013-12-13 | 2015-06-22 | 株式会社日立ハイテクノロジーズ | 異常検知方法およびその装置 |
| JP2016085704A (ja) * | 2014-10-29 | 2016-05-19 | 株式会社リコー | 情報処理システム、情報処理装置、情報処理方法、及びプログラム |
| JP2017097718A (ja) * | 2015-11-26 | 2017-06-01 | 株式会社リコー | 識別処理装置、識別システム、識別処理方法、およびプログラム |
Family Cites Families (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP5301310B2 (ja) * | 2009-02-17 | 2013-09-25 | 株式会社日立製作所 | 異常検知方法及び異常検知システム |
| JP5538597B2 (ja) * | 2013-06-19 | 2014-07-02 | 株式会社日立製作所 | 異常検知方法及び異常検知システム |
| JP5993897B2 (ja) | 2014-06-19 | 2016-09-14 | ヤフー株式会社 | 特定装置、特定方法及び特定プログラム |
| WO2016132468A1 (ja) * | 2015-02-18 | 2016-08-25 | 株式会社日立製作所 | データ評価方法および装置、故障診断方法および装置 |
| JP5845374B1 (ja) * | 2015-08-05 | 2016-01-20 | 株式会社日立パワーソリューションズ | 異常予兆診断システム及び異常予兆診断方法 |
| JP7393947B2 (ja) * | 2017-05-22 | 2023-12-07 | ジェネテシス エルエルシー | 生体電磁界における異常の機械識別 |
| JP6965798B2 (ja) * | 2018-03-12 | 2021-11-10 | オムロン株式会社 | 制御システムおよび制御方法 |
| US10602940B1 (en) * | 2018-11-20 | 2020-03-31 | Genetesis, Inc. | Systems, devices, software, and methods for diagnosis of cardiac ischemia and coronary artery disease |
-
2017
- 2017-01-11 JP JP2017002521A patent/JP6545728B2/ja active Active
- 2017-09-25 WO PCT/JP2017/034599 patent/WO2018131219A1/ja not_active Ceased
- 2017-09-25 CN CN201780081392.0A patent/CN110121724B/zh active Active
- 2017-09-25 US US16/476,449 patent/US11501163B2/en active Active
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2015114967A (ja) * | 2013-12-13 | 2015-06-22 | 株式会社日立ハイテクノロジーズ | 異常検知方法およびその装置 |
| JP2016085704A (ja) * | 2014-10-29 | 2016-05-19 | 株式会社リコー | 情報処理システム、情報処理装置、情報処理方法、及びプログラム |
| JP2017097718A (ja) * | 2015-11-26 | 2017-06-01 | 株式会社リコー | 識別処理装置、識別システム、識別処理方法、およびプログラム |
Non-Patent Citations (1)
| Title |
|---|
| ITABASHI, HIROKAZU ET AL.: "A study of detecting mislabeled data on semi-supervised learning", PROCEEDINGS OF THE 72ND IPSJ ANNUAL CONVENTION (2), vol. 2, 8 March 2010 (2010-03-08), pages 2 - 463 -2-464 * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2020042024A1 (zh) * | 2018-08-29 | 2020-03-05 | 区链通网络有限公司 | 一种基于图算法的节点异常检测方法、装置及存储装置 |
| JPWO2020250730A1 (ja) * | 2019-06-11 | 2020-12-17 | ||
| WO2020250730A1 (ja) * | 2019-06-11 | 2020-12-17 | 日本電気株式会社 | 不正検知装置、不正検知方法および不正検知プログラム |
| JP7173332B2 (ja) | 2019-06-11 | 2022-11-16 | 日本電気株式会社 | 不正検知装置、不正検知方法および不正検知プログラム |
Also Published As
| Publication number | Publication date |
|---|---|
| JP6545728B2 (ja) | 2019-07-17 |
| US11501163B2 (en) | 2022-11-15 |
| JP2018112863A (ja) | 2018-07-19 |
| US20200057939A1 (en) | 2020-02-20 |
| CN110121724B (zh) | 2023-08-08 |
| CN110121724A (zh) | 2019-08-13 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2018131219A1 (ja) | 異常検知装置、異常検知方法、および記憶媒体 | |
| JP6811276B2 (ja) | 多次元時系列におけるスパース・ニューラル・ネットワーク・ベース異常検出 | |
| JP7340265B2 (ja) | 異常検出装置、異常検出方法、およびプログラム | |
| US11657121B2 (en) | Abnormality detection device, abnormality detection method and computer readable medium | |
| CN102265227B (zh) | 用于在机器状况监视中创建状态估计模型的方法和设备 | |
| CN110032490A (zh) | 用于检测系统异常的方法及其装置 | |
| CN107111311A (zh) | 利用稀疏编码方法的燃气涡轮机传感器故障检测 | |
| Yu | A nonlinear probabilistic method and contribution analysis for machine condition monitoring | |
| CN112182056A (zh) | 一种数据检测方法、装置、设备及存储介质 | |
| CN112905371B (zh) | 基于异构多源数据异常检测的软件变更检查方法和装置 | |
| KR102079359B1 (ko) | 개선된 sax 기법 및 rtc 기법을 이용한 공정 모니터링 장치 및 방법 | |
| WO2020148904A1 (ja) | 異常検知装置、異常検知システム及び学習装置、並びに、これらの方法及びプログラムが格納された非一時的なコンピュータ可読媒体 | |
| JP2019113914A (ja) | データ識別装置およびデータ識別方法 | |
| JP2022082277A (ja) | 検知プログラム、検知装置、および検知方法 | |
| US20230084342A1 (en) | Monitoring apparatus, method, and program | |
| TWI824681B (zh) | 裝置管理系統、裝置的障礙原因推測方法以及非暫時性地記憶程式的記憶媒體 | |
| Agrawal et al. | Increasing reliability of fault detection systems for industrial applications | |
| CN107958089A (zh) | 构建模型的方法和装置以及异常数据的检测方法和装置 | |
| JP7127477B2 (ja) | 学習方法、装置及びプログラム、並びに設備の異常診断方法 | |
| JP7268509B2 (ja) | 異常度算出方法、及び、異常度算出用コンピュータプログラム | |
| CN120296643B (zh) | 一种硅单晶生长多工艺阶段非线性动态数据异常检测方法 | |
| KR102828697B1 (ko) | 기계 건강 지표 구축 방법 및 장치 | |
| Dubuisson et al. | Surveillance of a nuclear reactor by use of a pattern recognition methodology | |
| JP7259497B2 (ja) | 情報処理装置、情報処理方法、プログラム | |
| JP7658466B2 (ja) | 情報処理装置、情報処理システム、顧客装置及び情報処理プログラム |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17892006 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17892006 Country of ref document: EP Kind code of ref document: A1 |