WO2018124726A1 - Method for diagnosing renal failure via bacterial metagenomic analysis - Google Patents
Method for diagnosing renal failure via bacterial metagenomic analysis Download PDFInfo
- Publication number
- WO2018124726A1 WO2018124726A1 PCT/KR2017/015537 KR2017015537W WO2018124726A1 WO 2018124726 A1 WO2018124726 A1 WO 2018124726A1 KR 2017015537 W KR2017015537 W KR 2017015537W WO 2018124726 A1 WO2018124726 A1 WO 2018124726A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- derived
- extracellular vesicles
- renal failure
- bacteria
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to a method for diagnosing renal failure through bacterial metagenome analysis, and more specifically, to diagnose kidney failure by performing bacterial metagenomic analysis using a sample derived from a subject, analyzing the increase or decrease in the content of specific bacterial-derived extracellular vesicles. It is about how to.
- Renal failure refers to the loss of kidney (renal) function and is classified into acute and chronic renal failure according to the time of occurrence.
- Acute renal failure occurs due to bacterial infections such as pyelonephritis and nephritis, ingestion of external drugs, kidney damage caused by poisons, and insufficient blood volume.
- Chronic renal failure is often caused by complications of chronic diseases such as hypertension and diabetes. Kidney function is often lost and progresses slowly over a period of 3-12 months.
- the urinary tract does not produce systemic symptoms, including memory and concentration problems, sleep disorders, headaches, consciousness disorders, loss of coordination, confusion, convulsions, coma, central nervous system symptoms, anxiety-leg syndrome, hiccups, tingling, Peripheral nervous system symptoms such as autologous abnormalities, dizziness, orthostatic hypotension, decreases in tom and saliva, autonomic nervous system symptoms such as abnormal thermoregulation, swelling, cokalemia, metabolic fluids and electrolyte abnormalities.
- Diagnosis of renal failure is done through a medical test, such as a blood test.
- a medical test such as a blood test.
- most cases of renal failure are difficult to treat when the disease is already advanced. Therefore, it is effective to provide a method for preventing the occurrence of renal failure in the high-risk group by predicting the occurrence and causes of renal failure in advance.
- Microbiota refers to a microbial community including bacteria, archaea and eukarya that exist in a given settlement.Intestinal microbiota is an important role in human physiology. It is known to have a great effect on human health and disease through interaction with human cells.
- the symbiotic bacteria secrete nanometer-sized vesicles to exchange information about genes and proteins in other cells.
- the mucous membrane forms a physical protective film that particles larger than 200 nanometers (nm) in size can't pass through, so that the symbiotic bacteria cannot pass through the mucosa, but bacterial-derived vesicles are usually less than 100 nanometers in size. It freely speaks to the mucous membrane and is absorbed by our body.
- Metagenomics also called environmental genomics, can be said to be an analysis of metagenomic data obtained from samples taken from the environment (Korean Patent Publication No. 2011-0073049). Recently, it has become possible to list the bacterial composition of the human microflora by a method based on 16s ribosomal RNA (16s rRNA) sequencing. Next generation sequencing of 16s rDNA sequencing gene of 16s ribosomal RNA is performed. , NGS) platform to analyze.
- NGS 16s ribosomal RNA
- the present inventors extracted the genes from the extracellular vesicles derived from bacteria present in the blood, which is a sample derived from the sample, and performed a metagenome analysis on them in order to diagnose the cause factors and risk of renal failure in advance. To identify a bacterial-derived extracellular vesicle that can act as a bar, the present invention was completed based on this.
- an object of the present invention is to provide a method for providing information for diagnosing renal failure through metagenome analysis of bacterial extracellular vesicles.
- the present invention provides a method for providing information for diagnosing kidney failure, comprising the following steps:
- the present invention also provides a renal failure diagnosis method comprising the following steps:
- the present invention also provides a method for predicting the risk of developing renal failure, comprising the following steps:
- step (c) Nitrospirae, Nitrospirae, Chlooflexi, Planctomycetes, Gemmatimonadetes, Acidobacteria, Acidobacteria, WPS-2 Diagnosing renal failure by comparing the increase in the amount of one or more phylum bacterial-derived extracellular vesicles selected from the group consisting of, AD3, Chlamydiae, Elusimicrobia, OD1, and TM6 It may be.
- deferribacteres In another embodiment, deferribacteres, Coriobacacteriia, Erysipelotrichi, Gamma proteobacteria, Clostridia in step (c) , Actinbacteria, Alphaproteobacteria, Betaproteobacteria, Cytophagia, Thermomephilia, Chloracidobacteria, Methylacididibacteria Methylacidiphilae, Sphingobacteriia, Saprospirae, Anaerolineae, Elin 6529, Planctomycetia, Epsilonproteobacteria, Spaniproproteobacteria Spartobacteria, Acidimicrobiia, Chlamydiia, Acidobacteria-6, Phycisphaerae, TM1, Gemmamati Gemmatimonadetes, DA052, Ktedonobacteria, Pedosphaerae, Acidobacteriia, Soli
- step (c) Coriobacteriales, Bifidobacteriales, Enterobacteriales, Pseudomonadales, Pseudomonadales, Rizobiales , Acidimicrobiales, Acantimicrobiales, Xanthomonadales, Myxococcales, Rhodocyclales, Solirubrobacterales, Pirellulales, Sphingobacteriales, Rhodospirillales, Thermogemmatisporales, Gemmatales, Saprospirales, Chthoniobacterales, Scintropore Syntrophobacterales, Acidobacteriales, Solibacterales, Pedosphaerales, Cytophag extracellular vesicles derived from one or more order bacteria selected from the group consisting of ales, Chlamydiales, Legionellales, Ktedonobacterales, and Chthonomonadales. It may be to diagnose renal failure by comparing the increase and decrease of the content in the group consisting of ales, Chla
- Turicibacteraceae Enteriticoccaceae
- Enterococcaceae Enterobacteriaceae
- Coriobacteriaceae Coriobacteriaceae
- Ruminococcaceae Ruminococcaceae
- Erysipelotrichaceae Pseudomonadaceae
- Lachnospiraceae Bifidobacteriaceae, Enterobacteriaceae Enterobacteriaceae, Clostridiaceae, Bacteroidaceae, Oxalobacteraceae, Moraxellaceae, Prevotellaceae
- Sphingo Monadasi Sphingomonadaceae, Caulobacteraceae, Bradyrhizobiaceae, Corynebacteriaceae, Intrasporangiaceae, Streptococcaceae, Zeptococcaceae Tomona Xanthomonadaceae, Chitinophagaceae,
- step (c) Morganella (Morganella), Adlercreutzia (Adlercreutzia), Turicibacter, Eubacterium (Eubacterium), Cardenibacterium (Catenibacterium) ), Collinsella, Enterococcus, Cupriavidus, Proteus, Escherichia, Osscillospira, Pseudomonas, Yacht Gallicocus () Jeotgalicoccus, Lactobacillus, Enhydrobacter, Luminococcus, Coprococcus, Bifidobacterium, Bacteroides, Acinetobacter ), Prevotella, Fusobacterium, Corynebacterium, Rothia, Gemmata, Pedomicrobium, Mycobacterium , Streptococcus, Opitutus, Kaistobacter, Shewanella, Candidatus Xiphinematobacter, Flavoacterium, Porphyromonas, Peptopteptococcus
- the blood may be whole blood, serum, plasma, or blood monocytes.
- Extracellular vesicles secreted by microorganisms, such as bacteria, archaea, etc. present in the environment can be absorbed directly into the body and directly affect cancer development, kidney failure is difficult to diagnose early, so the efficient treatment is difficult, so the present invention
- Meta-genomic analysis of bacterial-derived extracellular parcel vesicles using human-derived samples according to the pre-diagnosis of the risk of renal failure in advance by early diagnosis and prediction of the risk group of renal failure can be delayed or prevented by proper management.
- early diagnosis is possible even after the onset of the disease, thereby reducing the incidence of renal failure and increasing the therapeutic effect.
- metagenome analysis avoids causative agents in patients diagnosed with renal failure, thereby improving cancer progression and preventing recurrence.
- Figure 1a is a photograph of the distribution of bacteria and vesicles by time after the oral administration of enteric bacteria and bacterial derived vesicles (EV) to the mouse
- Figure 1b is 12 hours after oral administration, blood And several organs were extracted to evaluate the distribution of bacteria and vesicles in the body.
- FIG. 2 shows the distribution of bacterial derived vesicles (EVs) with significant diagnostic performance at the phylum level by separating bacteria-derived vesicles from renal inverters and normal blood.
- EVs bacterial derived vesicles
- FIG. 3 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at a class level by separating bacteria-derived vesicles from renal inverters and normal blood, and performing a metagenome analysis.
- EVs bacteria-derived vesicles
- FIG. 4 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the order level by separating the bacteria-derived vesicles from renal inverters and normal blood, and performing a metagenome analysis.
- EVs bacteria-derived vesicles
- FIG. 5 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the family level by separating bacteria-derived vesicles from the renal inverter and normal blood, and performing a metagenome analysis.
- EVs bacteria-derived vesicles
- FIG. 6 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at genus level after separation of bacterial-derived vesicles from renal inverters and normal blood.
- EVs bacteria-derived vesicles
- the present invention relates to a method for diagnosing renal failure through bacterial metagenome analysis.
- the present inventors extracted a gene from a bacterial-derived extracellular vesicle using a sample derived from a subject, and performed a metagenome analysis on it.
- Bacterial-derived extracellular vesicles that can act as
- the present invention comprises the steps of (a) extracting DNA from the extracellular vesicles isolated from the subject sample;
- (c) provides an information providing method for diagnosing renal failure, comprising comparing the increase and decrease of the content of bacteria and archaea-derived extracellular vesicles with normal-derived samples by sequencing the PCR product.
- the term "diagnosis of renal failure” refers to determining whether a kidney failure is likely to occur in a patient, whether the kidney failure is relatively high, or whether renal failure has already occurred.
- the method of the present invention can be used to prevent or delay the onset of the disease through special and appropriate management as a patient at high risk of developing renal failure for any particular patient.
- the methods of the present invention can be used clinically to determine treatment by early diagnosis of renal failure and by selecting the most appropriate treatment regimen.
- metagenome used in the present invention, also referred to as “metagenome”, refers to the total of the genome including all viruses, bacteria, fungi, etc. in an isolated area such as soil, animal intestine, It is mainly used as a concept of genome explaining the identification of many microorganisms at once using sequencer to analyze microorganisms which are not cultured.
- metagenome does not refer to one species of genome or genome, but refers to a kind of mixed dielectric as the genome of all species of one environmental unit. This is a term from the point of view of defining a species in the course of the evolution of biology in terms of functional species as well as various species that interact with each other to create a complete species.
- rapid sequencing is used to analyze all DNA and RNA, regardless of species, to identify all species in one environment, and to identify interactions and metabolism.
- metagenome analysis was preferably performed using bacterial-derived extracellular vesicles isolated from serum.
- the subject sample may be blood, and the blood may preferably be whole blood, serum, plasma, or blood monocytes, but is not limited thereto.
- the metagenome analysis of the extracellular vesicles derived from bacteria and archaea was performed, and at the level of phylum, class, order, family, and genus, Each analysis was performed to identify bacterial-derived vesicles that could actually cause kidney failure.
- Deferribacteres Coriobacteriia, Erysipelotrichi, Gammaproteobacteria, Clostridia, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Cytophagia Thermoleophilia, Chloracidobacteria, Methylacidiphilae, Sphingobacteriia, Saprospirae, Anaerolineae, Ellin6529, Planctomycetia, Epsilonproteobacteria, Spartobacteria, Acidimicrobiia, Chlamydiia, Acidobacteria-6, Phycisphaerae, TM1, Gemmatiactadetesono, DAbacteria Acid, Peaeroceobacerii, Peaerceoerta,
- bacterial metagenomes were analyzed at the neck level for vesicles present in a blood sample derived from a subject.
- Solirubrobacterales Pirellulales, Sphingobacteriales, Rhodospirillales, Thermogemmatisporales, Gemmatales, Saprospirales, Chthoniobacterales, Syntrophobacterales, Acidobacteriales, Solibacterales, Pedosphaerales, Cytophagales, Chlamydiales, Legionellales, and Ktedonobacomoales
- Example 4 There was a significant difference (see Example 4).
- Turicibacteraceae as a result of analyzing the bacterial metagenome at the excessive level for the vesicles present in the blood samples from the subject, Turicibacteraceae, Enterococcaceae, Coriobacteriaceae, Lactobacillaceae, Ruminococcaceae, Erysipelotrichaceae, Pseudomonadaceae, Lachnospiraceae, Bifidobacteriaceae, Enterobacteriaceae, Clostridiaceae, Bacteroidaceae, Oxalobacteraceae, Moraxellaceae, Prevotellaceae, Sphingomonadaceae, Caulobacteraceae, Bradyrhizobiaceae, Corynebacteriaceae, Intrasporangiaceae, Streptococcaceae, Xanthomonadaceae, Chitinophagaceae, Mycobacteriaceae, Microbacteriaceae
- the fluorescently labeled 50 ⁇ g of bacteria and bacteria-derived vesicles were administered in the same manner as above 12 hours.
- Blood, Heart, Lung, Liver, Kidney, Spleen, Adipose tissue, and Muscle were extracted from mice.
- the intestinal bacteria (Bacteria) were not absorbed into each organ, whereas the intestinal bacteria-derived extracellular vesicles (EV) were detected in the tissues, as shown in FIG. And distribution in liver, kidney, spleen, adipose tissue, and muscle.
- the blood was first placed in a 10 ml tube and centrifuged (3,500 ⁇ g, 10 min, 4 ° C.) to settle the suspended solids to recover only the supernatant and then transferred to a new 10 ml tube. After removing the bacteria and foreign substances from the recovered supernatant using a 0.22 ⁇ m filter, transfer to centripreigugal filters (50 kD) and centrifuged at 1500 xg, 4 °C for 15 minutes to discard the material smaller than 50 kD and 10 ml Concentrated until.
- centripreigugal filters 50 kD
- PCR was performed using the 16S rDNA primer shown in Table 1 to amplify the gene and perform sequencing (Illumina MiSeq sequencer). Output the result as a Standard Flowgram Format (SFF) file, convert the SFF file into a sequence file (.fasta) and a nucleotide quality score file using GS FLX software (v2.9), check the credit rating of the lead, and window (20 bps) The part with the average base call accuracy of less than 99% (Phred score ⁇ 20) was removed.
- SFF Standard Flowgram Format
- the Operational Taxonomy Unit performed UCLUST and USEARCH for clustering according to sequence similarity. Specifically, the clustering is based on 94% genus, 90% family, 85% order, 80% class, and 75% sequence similarity. OTU's door, river, neck, family and genus level classifications were performed, and bacteria with greater than 97% sequence similarity were analyzed using BLASTN and GreenGenes' 16S DNA sequence database (108,453 sequences) (QIIME).
- Example 3 the vesicles were isolated from the blood of 21 renal inverters and 19 healthy subjects matched with age and sex, and then metagenome sequencing was performed.
- the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.
- Bacterial-derived vesicles in the blood were analyzed at the genus level, Morganella, Adlercreutzia, Turicibacter, Eubacterium, Catenibacterium, Collinsella, Enterococcus, Cupriavidus, Proteus, Escherichia, Oscillospira, Pseudomonas, Jeotgalicoccus, Lactobacillus, Cocusoccoco, Bifidobacterium, Bacteroides, Acinetobacter, Prevotella, Fusobacterium, Corynebacterium, Rothia, Gemmata, Pedomicrobium, Mycobacterium, Streptococcus, Opitutus, Kaistobacter, Shewanella, Candidatus Xiphinematobacter, Flavobacterium, Porphyr opococtuscoccus When diagnostic models were developed with bacterial biomarkers of the genus Peptoniphilus, Salinispora, Anaerococcus, Candidatus
- the present invention relates to a method for diagnosing renal failure through analysis of bacterial metagenome, wherein the risk group of renal failure is predicted by predicting the risk of renal failure in advance through metagenomic analysis of bacterial extracellular vesicles using a human-derived sample according to the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
본 발명은 세균 메타게놈 분석을 통해 신부전을 진단하는 방법에 관한 것으로서, 보다 구체적으로는 피검체 유래 샘플을 이용해 세균 메타게놈 분석을 수행하여 특정 세균 유래 세포밖 소포의 함량 증감을 분석함으로써 신부전을 진단하는 방법에 관한 것이다.The present invention relates to a method for diagnosing renal failure through bacterial metagenome analysis, and more specifically, to diagnose kidney failure by performing bacterial metagenomic analysis using a sample derived from a subject, analyzing the increase or decrease in the content of specific bacterial-derived extracellular vesicles. It is about how to.
신부전은 신장 (콩팥) 기능이 상실되는 경우를 말하고, 발생 시점에 따라 급성 신부전과 만성 신부전으로 분류한다. 급성 신부전은 신우신염, 신장염 등 세균성 감염증이나, 외부 약품섭취, 독극물에 의한 신장피해, 혈액량 부족 등의 이유로 발생한다. 만성 신부전은 고혈압, 당뇨병 등의 만성질환의 합병증으로 신장 기능이 손실되는 경우가 흔하고, 3-12개월의 기간을 두고 서서히 진행된다. Renal failure refers to the loss of kidney (renal) function and is classified into acute and chronic renal failure according to the time of occurrence. Acute renal failure occurs due to bacterial infections such as pyelonephritis and nephritis, ingestion of external drugs, kidney damage caused by poisons, and insufficient blood volume. Chronic renal failure is often caused by complications of chronic diseases such as hypertension and diabetes. Kidney function is often lost and progresses slowly over a period of 3-12 months.
신부전인 경우 요독을 배출하지 못해 전신적인 병증이 나타나는데, 기억력과 집중력 저하, 수면장애, 두통, 의식장애, 지남력 상실, 착란, 경련, 혼수 등의 중추신경계 증상, 불안다리 증후군, 딸꾹질, 시지 저림, 자작 이상 등의 말초신경계 증상, 현기증, 기립성 저혈압, 탐과 타액의 감소, 체온조절 이상 등의 자율신경계 증상, 부종, 코칼률혈증, 대사성산증 등의 체액 및 전해질 이상 등이 발생한다.In the case of renal failure, the urinary tract does not produce systemic symptoms, including memory and concentration problems, sleep disorders, headaches, consciousness disorders, loss of coordination, confusion, convulsions, coma, central nervous system symptoms, anxiety-leg syndrome, hiccups, tingling, Peripheral nervous system symptoms such as autologous abnormalities, dizziness, orthostatic hypotension, decreases in tom and saliva, autonomic nervous system symptoms such as abnormal thermoregulation, swelling, cokalemia, metabolic fluids and electrolyte abnormalities.
신부전의 진단은 혈액검사와 같은 건강 상태 검사를 통해서 이루어진다. 그러나 대부분 신부전은 질환이 이미 진행된 경우에 치료가 상당히 어려운 바, 신부전의 발생 및 원인인자를 미리 예측하여, 고위험군에서 신부전 발생을 예방하는 방법을 제공하는 것이 효율적인 방법이다.Diagnosis of renal failure is done through a medical test, such as a blood test. However, most cases of renal failure are difficult to treat when the disease is already advanced. Therefore, it is effective to provide a method for preventing the occurrence of renal failure in the high-risk group by predicting the occurrence and causes of renal failure in advance.
한편, 인체에 공생하는 미생물은 100조에 이르러 인간 세포보다 10배 많으며, 미생물의 유전자수는 인간 유전자수의 100배가 넘는 것으로 알려지고 있다. 미생물총(microbiota 혹은 microbiome)은 주어진 거주지에 존재하는 세균(bacteria), 고세균(archaea), 진핵생물(eukarya)을 포함한 미생물 군집(microbial community)을 말하고, 장내 미생물총은 사람의 생리현상에 중요한 역할을 하며, 인체 세포와 상호작용을 통해 인간의 건강과 질병에 큰 영향을 미치는 것으로 알려져 있다. 우리 몸에 공생하는 세균은 다른 세포로의 유전자, 단백질 등의 정보를 교환하기 위하여 나노미터 크기의 소포(vesicle)를 분비한다. 점막은 200 나노미터(nm) 크기 이상의 입자는 통과할 수 없는 물리적인 방어막을 형성하여 점막에 공생하는 세균인 경우에는 점막을 통과하지 못하지만, 세균 유래 소포는 크기가 대개 100 나노미터 크기 이하라서 비교적 자유롭게 점막을 통화하여 우리 몸에 흡수된다.On the other hand, the symbiosis of the human body reaches 100 trillion times 10 times more than human cells, the number of genes of the microorganism is known to be more than 100 times the number of human genes. Microbiota (microbiota or microbiome) refers to a microbial community including bacteria, archaea and eukarya that exist in a given settlement.Intestinal microbiota is an important role in human physiology. It is known to have a great effect on human health and disease through interaction with human cells. The symbiotic bacteria secrete nanometer-sized vesicles to exchange information about genes and proteins in other cells. The mucous membrane forms a physical protective film that particles larger than 200 nanometers (nm) in size can't pass through, so that the symbiotic bacteria cannot pass through the mucosa, but bacterial-derived vesicles are usually less than 100 nanometers in size. It freely speaks to the mucous membrane and is absorbed by our body.
환경 유전체학이라고도 불리는 메타게놈학은 환경에서 채취한 샘플에서 얻은 메타게놈 자료에 대한 분석학이라고 할 수 있다(국내공개특허 제2011-0073049호). 최근 16s 리보솜 RNA(16s rRNA) 염기서열을 기반으로 한 방법으로 인간의 미생물총의 세균 구성을 목록화하는 것이 가능해졌으며, 16s 리보솜 RNA의 유전자인 16s rDNA 염기서열을 차세대 염기서열분석 (next generation sequencing, NGS) platform을 이용하여 분석한다. 그러나 신부전 발병에 있어서, 혈액, 대변 또는 소변 등의 인체 유래물에서 세균 유래 소포에 존재하는 메타게놈 분석을 통해 신부전의 원인인자를 동정하고 신부전을 진단하는 방법에 대해서는 보고된 바가 없다. Metagenomics, also called environmental genomics, can be said to be an analysis of metagenomic data obtained from samples taken from the environment (Korean Patent Publication No. 2011-0073049). Recently, it has become possible to list the bacterial composition of the human microflora by a method based on 16s ribosomal RNA (16s rRNA) sequencing. Next generation sequencing of 16s rDNA sequencing gene of 16s ribosomal RNA is performed. , NGS) platform to analyze. However, in the development of renal failure, there has been no report on a method for identifying the cause of renal failure and diagnosing renal failure through metagenomic analysis of bacteria-derived vesicles in human derivatives such as blood, feces or urine.
본 발명자들은 신부전의 원인인자 및 발병 위험도를 미리 진단하기 위하여, 피검체 유래 샘플인 혈액에 존재하는 세균 유래 세포밖 소포로부터 유전자를 추출하고 이에 대하여 메타게놈 분석을 수행하였으며, 그 결과 신부전의 원인인자로 작용할 수 있는 세균 유래 세포밖 소포를 동정하였는바, 이에 기초하여 본 발명을 완성하였다.The present inventors extracted the genes from the extracellular vesicles derived from bacteria present in the blood, which is a sample derived from the sample, and performed a metagenome analysis on them in order to diagnose the cause factors and risk of renal failure in advance. To identify a bacterial-derived extracellular vesicle that can act as a bar, the present invention was completed based on this.
이에, 본 발명은 세균 유래 세포밖 소포에 대한 메타게놈 분석을 통해 신부전을 진단하기 위한 정보제공방법을 제공하는 것을 목적으로 한다.Accordingly, an object of the present invention is to provide a method for providing information for diagnosing renal failure through metagenome analysis of bacterial extracellular vesicles.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the technical problem to be achieved by the present invention is not limited to the above-mentioned problem, another task that is not mentioned will be clearly understood by those skilled in the art from the following description.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 하기의 단계를 포함하는, 신부전 진단을 위한 정보제공방법을 제공한다:In order to achieve the object of the present invention as described above, the present invention provides a method for providing information for diagnosing kidney failure, comprising the following steps:
(a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;(a) extracting DNA from extracellular vesicles isolated from a subject sample;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및(b) performing PCR using the primer pairs of SEQ ID NO: 1 and SEQ ID NO: 2 on the extracted DNA; And
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 및/또는 고세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.(c) comparing the increase and decrease in the content of the normal-derived sample and the bacteria and / or archaea-derived extracellular vesicles by sequencing the PCR product.
또한, 본 발명은 하기의 단계를 포함하는, 신부전 진단방법을 제공한다:The present invention also provides a renal failure diagnosis method comprising the following steps:
(a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;(a) extracting DNA from extracellular vesicles isolated from a subject sample;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및(b) performing PCR using the primer pairs of SEQ ID NO: 1 and SEQ ID NO: 2 on the extracted DNA; And
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 및/또는 고세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.(c) comparing the increase and decrease in the content of the normal-derived sample and the bacteria and / or archaea-derived extracellular vesicles by sequencing the PCR product.
또한, 본 발명은 하기의 단계를 포함하는, 신부전 발병 위험도 예측방법을 제공한다:The present invention also provides a method for predicting the risk of developing renal failure, comprising the following steps:
(a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;(a) extracting DNA from extracellular vesicles isolated from a subject sample;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및(b) performing PCR using the primer pairs of SEQ ID NO: 1 and SEQ ID NO: 2 on the extracted DNA; And
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 및/또는 고세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.(c) comparing the increase and decrease in the content of the normal-derived sample and the bacteria and / or archaea-derived extracellular vesicles by sequencing the PCR product.
본 발명의 구현예로, 상기 (c) 단계에서 니트로스피라에(Nitrospirae), 클로로플렉시(Chloroflexi), 부유균문(Planctomycetes), 겜마티모나스균문(Gemmatimonadetes), 아시도박테리아(Acidobacteria), WPS-2, AD3, 클라미디아에(Chlamydiae), 엘루시미크로비아(Elusimicrobia), OD1, 및 TM6으로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포의 함량 증감을 혈액에서 비교하여 신부전을 진단하는 것일 수 있다.In an embodiment of the present invention, in the step (c) Nitrospirae, Nitrospirae, Chlooflexi, Planctomycetes, Gemmatimonadetes, Acidobacteria, Acidobacteria, WPS-2 Diagnosing renal failure by comparing the increase in the amount of one or more phylum bacterial-derived extracellular vesicles selected from the group consisting of, AD3, Chlamydiae, Elusimicrobia, OD1, and TM6 It may be.
본 발명의 다른 구현예로, 상기 (c) 단계에서 탈철간균(Deferribacteres), 코리오박테리아(Coriobacteriia), 에리시펠로트릭치(Erysipelotrichi), 감마프로테오박테리아(Gammaproteobacteria), 클로스트리디아(Clostridia), 방선균류(Actinobacteria), 알파프로테오박테리아(Alphaproteobacteria), 베타프로테오박테리아(Betaproteobacteria), 사이토파지아(Cytophagia), 써모레필리아(Thermoleophilia), 클로라시도박테리아(Chloracidobacteria), 메틸아시디필레(Methylacidiphilae), 스핑고박테리아(Sphingobacteriia), 사프로스피라에(Saprospirae), 아나이로릴네아(Anaerolineae), 엘린6529(Ellin6529), 플란토마이세티아(Planctomycetia), 입실론프로테오박테리아(Epsilonproteobacteria), 스파르토박테리아(Spartobacteria), 아시디마이트로비아(Acidimicrobiia), 클라미디아(Chlamydiia), 아시도박테리아-6(Acidobacteria-6), 피치스페레(Phycisphaerae), TM1, 겜마티모나스균강(Gemmatimonadetes), DA052, 크테도노박테리아(Ktedonobacteria), 페도스페라에(Pedosphaerae), 아시도박테리아(Acidobacteriia), 솔리박테레스(Solibacteres), ABS-6, 엘루시마이크로비아(Elusimicrobia), TK10, 크토노모나데테스(Chthonomonadetes), 및 TM7-1로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포의 함량 증감을 혈액에서 비교하여 신부전을 진단하는 것일 수 있다.In another embodiment, deferribacteres, Coriobacacteriia, Erysipelotrichi, Gamma proteobacteria, Clostridia in step (c) , Actinbacteria, Alphaproteobacteria, Betaproteobacteria, Cytophagia, Thermomephilia, Chloracidobacteria, Methylacididibacteria Methylacidiphilae, Sphingobacteriia, Saprospirae, Anaerolineae, Elin 6529, Planctomycetia, Epsilonproteobacteria, Spaniproproteobacteria Spartobacteria, Acidimicrobiia, Chlamydiia, Acidobacteria-6, Phycisphaerae, TM1, Gemmamati Gemmatimonadetes, DA052, Ktedonobacteria, Pedosphaerae, Acidobacteriia, Solibacteres, ABS-6, Elusimicrobia, TK10 It may be to diagnose renal failure by comparing the increase or decrease in the content of one or more class bacteria-derived extracellular vesicles selected from the group consisting of, Chthonomonadetes, and TM7-1.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 코리박테리아레스(Coriobacteriales), 비피도박테리아레스(Bifidobacteriales), 엔테로박테리아레스(Enterobacteriales), 슈도모나다레스(Pseudomonadales), 리조비아레스(Rhizobiales), 아시디마이크로비아레스(Acidimicrobiales), 잔토모나다레스(Xanthomonadales), 믹소코카레스(Myxococcales), 로도사이클러스(Rhodocyclales), 솔리루브로박테라레스(Solirubrobacterales), 피렐루라레스(Pirellulales), 스핑고박테리아레스(Sphingobacteriales), 로도스피릴라레스(Rhodospirillales), 써모겜마티스포라레스(Thermogemmatisporales), 겜마타레스(Gemmatales), 사프로스피라레스(Saprospirales), 크토니오박테라레스(Chthoniobacterales), 신트로포박테라레스(Syntrophobacterales), 아시도박테리아레스(Acidobacteriales), 솔리박테라레스(Solibacterales), 페도스페라레스(Pedosphaerales), 사이토파가레스(Cytophagales), 클라미디아레스(Chlamydiales), 레지오넬라레스(Legionellales), 크테도노박테라레스(Ktedonobacterales), 및 크토노모나다레스(Chthonomonadales)로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포의 함량 증감을 혈액에서 비교하여 신부전을 진단하는 것일 수 있다.In another embodiment of the present invention, in step (c), Coriobacteriales, Bifidobacteriales, Enterobacteriales, Pseudomonadales, Pseudomonadales, Rizobiales , Acidimicrobiales, Acantimicrobiales, Xanthomonadales, Myxococcales, Rhodocyclales, Solirubrobacterales, Pirellulales, Sphingobacteriales, Rhodospirillales, Thermogemmatisporales, Gemmatales, Saprospirales, Chthoniobacterales, Scintropore Syntrophobacterales, Acidobacteriales, Solibacterales, Pedosphaerales, Cytophag extracellular vesicles derived from one or more order bacteria selected from the group consisting of ales, Chlamydiales, Legionellales, Ktedonobacterales, and Chthonomonadales. It may be to diagnose renal failure by comparing the increase and decrease of the content in the blood.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 투리시박테라시에(Turicibacteraceae), 엔테로코카시에(Enterococcaceae), 코리오박테라시에(Coriobacteriaceae), 락토바실라시에(Lactobacillaceae), 루미노코카시에(Ruminococcaceae), 에리시펠로트차시에(Erysipelotrichaceae), 슈도모나다시에(Pseudomonadaceae), 라크노스피라시에(Lachnospiraceae), 비피도박테리아시에(Bifidobacteriaceae), 엔테로박테리아시에(Enterobacteriaceae), 클로스트리이아시에(Clostridiaceae), 박테로이다시에(Bacteroidaceae), 옥살로박테라시에(Oxalobacteraceae), 모락셀라시에(Moraxellaceae), 프레보텔라시에(Prevotellaceae), 스핑고모나다시에(Sphingomonadaceae), 카울로박테라시에(Caulobacteraceae), 브라디리조바시에(Bradyrhizobiaceae), 코리네박테리아시에(Corynebacteriaceae), 인트라스포란지아시에(Intrasporangiaceae), 스트렙토코카시에(Streptococcaceae), 잔토모나아시에(Xanthomonadaceae), 키티노파가시에(Chitinophagaceae), 미토박테리아시에(Mycobacteriaceae), 마이크로박테리아시에(Microbacteriaceae), 필로박테리아시에(Phyllobacteriaceae), 사이토파가시에(Cytophagaceae), 파이렐루라시에(Pirellulaceae), 아세토박데라시에(Acetobacteraceae), 코마모나다시에(Comamonadaceae), 크토니오박테라시에(Chthoniobacteraceae), 이소스페라시에(Isosphaeraceae), 세와넬라시에(Shewanellaceae), 젬마타시에(Gemmataceae), 시노박테라시에(Sinobacteraceae), 캄필로박테라시에(Campylobacteraceae), 히포마이크로비아시에(Hyphomicrobiaceae), 크테도노박테라시에(Ktedonobacteraceae), 파스테우렐라시에(Pasteurellaceae), 로도스피릴라시에(Rhodospirillaceae), 믹소코카시에(Myxococcaceae), 써모겜마티스포라시에(Thermogemmatisporaceae), 아시도박데리아시에(Acidobacteriaceae), 신트로포박테라시에(Syntrophobacteraceae), 가이엘라시에(Gaiellaceae), 코넥시박테라시에(Conexibacteraceae), 파라믈라미디아시에(Parachlamydiaceae), 코리박데라시에(Koribacteraceae), 티시에렐라시에(Tissierellaceae), 베이제린키아시에(Beijerinckiaceae), 버크홀데리아시에(Burkholderiaceae), 페니바실라시에(Paenibacillaceae), 페도스페라시에(Pedosphaeraceae), 솔리박테라시에(Solibacteraceae), 콕시엘라시에(Coxiellaceae), 고르도니아시에(Gordoniaceae), 메틸로시스타시에(Methylocystaceae), 마이크로모노스포라시에(Micromonosporaceae), 브델로비브리오나시에(Bdellovibrionaceae), 할리안지아시에(Haliangiaceae), 크토노모나다시에(Chthonomonadaceae), 및 야니엘라시에(Yaniellaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포의 함량 증감을 혈액에서 비교하여 신부전을 진단하는 것일 수 있다.In another embodiment of the present invention, in the step (c) Turicibacteraceae (Enteriticoccaceae), Enterococcaceae (Coriobacteriaceae), Coriobacteriaceae (Lactobacillaceae), Ruminococcaceae, Erysipelotrichaceae, Pseudomonadaceae, Lachnospiraceae, Bifidobacteriaceae, Enterobacteriaceae Enterobacteriaceae, Clostridiaceae, Bacteroidaceae, Oxalobacteraceae, Moraxellaceae, Prevotellaceae, Sphingo Monadasi ( Sphingomonadaceae, Caulobacteraceae, Bradyrhizobiaceae, Corynebacteriaceae, Intrasporangiaceae, Streptococcaceae, Zeptococcaceae Tomona Xanthomonadaceae, Chitinophagaceae, Mycobacteriaceae, Microbacteriaceae, Phyllobacteriaceae, Cytophagaceae, Pyrrheulasi (Pirellulaceae), Acetobacteraceae, Comamonadaceae, Chthoniobacteraceae, Isosphaeraceae, Shewanellaceae, Gemmatasi Gemmataceae, Sinobacteraceae, Campylobacteraceae, Hyphomicrobiaceae, Ktedonobacteraceae, Pasteurellaaceae ), Rhodospirillaceae, Myxococcaceae, Thermogemmatisporaceae, Acidobacteriaceae, Syntrophobacteraceae, Gaila Gaieellaceae, Conexibacteraceae, Paramlamydiaceae, Koribacteraceae, Tissierellaceae, Bayericinia Beijerinckiaceae, Burkholderiaceae, Penibacillaceae, Pedosphaeraceae, Solicbacteraceae, Coxiellaceae, Gordonia Gordoniaceae, Methylocystaceae, Micromonosporaceae, Bdellovibrionaceae, Haliangiaceae, Chthonomonadaceae, and Yanni Renal failure may be diagnosed by comparing the increase or decrease in the content of one or more family bacteria-derived extracellular vesicles selected from the group consisting of Elaniellaceae.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 모르가넬라(Morganella), 아들러크레우치아(Adlercreutzia), 투리시박터(Turicibacter), 유박테리움(Eubacterium), 카데니박테리움(Catenibacterium), 콜린셀라(Collinsella), 엔테로코커스(Enterococcus), 쿠프리아비두스(Cupriavidus), 프로테우스(Proteus), 에세리키아(Escherichia), 오스실로스피라(Oscillospira), 슈도모나스(Pseudomonas), 요트갈리코커스(Jeotgalicoccus), 락토바실러스(Lactobacillus), 엔하이드로박터(Enhydrobacter), 루미노코커스(Ruminococcus), 코프로코커스(Coprococcus), 비피도박테리움(Bifidobacterium), 박테로이데스(Bacteroides), 아시네토박터(Acinetobacter), 프레보텔라(Prevotella), 푸소박테리움(Fusobacterium), 코리네박테리움(Corynebacterium), 로티아(Rothia), 겜마타(Gemmata), 페도마이크로비움(Pedomicrobium), 미코박테리움(Mycobacterium), 스트렙토코커스(Streptococcus), 오피투투스(Opitutus), 카이스토박터(Kaistobacter), 스와넬라(Shewanella), 칸디다투스 시피네마토박터(Candidatus Xiphinematobacter), 플라보막테리움(Flavobacterium), 프로피로모나스(Porphyromonas), 펩토스트렙토코커스(Peptostreptococcus), 랄스토니아(Ralstonia), 로도프라네스(Rhodoplanes), 알로이오코커스(Alloiococcus), 헤모필루스(Haemophilus), 칸디다투스 코리박터(Candidatus Koribacter), 페니바실러스(Paenibacillus), 펩토니필러스(Peptoniphilus), 살리니스포라(Salinispora), 아나에로코커스(Anaerococcus), 칸디다투스 솔리박터(Candidatus Solibacter), 부르크홀데리아(Burkholderia), 캄필로박터(Campylobacter), 클렙시엘라(Klebsiella), 고르도니아(Gordonia), 팔비모나스(Parvimonas), 스테노트로포모나스(Stenotrophomonas), 아크로모박터(Achromobacter), 페도스페라(Pedosphaera), 및 브델로비브리오(Bdellovibrio)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 혈액에서 비교하여 신부전을 진단하는 것일 수 있다.In another embodiment of the present invention, in the step (c) Morganella (Morganella), Adlercreutzia (Adlercreutzia), Turicibacter, Eubacterium (Eubacterium), Cardenibacterium (Catenibacterium) ), Collinsella, Enterococcus, Cupriavidus, Proteus, Escherichia, Osscillospira, Pseudomonas, Yacht Gallicocus () Jeotgalicoccus, Lactobacillus, Enhydrobacter, Luminococcus, Coprococcus, Bifidobacterium, Bacteroides, Acinetobacter ), Prevotella, Fusobacterium, Corynebacterium, Rothia, Gemmata, Pedomicrobium, Mycobacterium , Streptococcus, Opitutus, Kaistobacter, Shewanella, Candidatus Xiphinematobacter, Flavoacterium, Porphyromonas, Peptopteptococcus ), Ralstonia, Rhodoplanes, Alloiococcus, Haemophilus, Candidatus Koribacter, Paenibacillus, Peptoniphilus , Salinispora, Anaerooccus, Candidatus Solibacter, Burgholderia, Campylobacter, Klebsiella, Gordonia ), Palvimonas, Stenotrophomonas, Achromobacter, Pedosphaera, and Bdellovibrio It may be to the diagnosis of renal failure by comparing the amount of increase or decrease in at least one outside (genus) derived from bacterial cell vesicles in the blood.
본 발명의 또 다른 구현예로, 상기 혈액은 전혈, 혈청, 혈장, 또는 혈액 단핵구일 수 있다. In another embodiment of the invention, the blood may be whole blood, serum, plasma, or blood monocytes.
환경에 존재하는 세균, 고세균 등의 미생물에서 분비되는 세포밖 소포는 체내에 흡수되어 암 발생에 직접적인 영향을 미칠 수 있으며, 신부전은 증상이 나타나기 전 조기진단이 어려워 효율적인 치료가 어려운 실정이므로, 본 발명에 따른 인체 유래 샘플을 이용한 세균 유래 세포밖 소포의 메타게놈 분석을 통해 신부전 발병의 위험도를 미리 진단함으로써 신부전의 위험군을 조기에 진단 및 예측하여 적절한 관리를 통해 발병 시기를 늦추거나 발병을 예방할 수 있으며, 발병 후에도 조기진단 할 수 있어 신부전의 발병률을 낮추고 치료효과를 높일 수 있다. 또한, 신부전으로 진단받은 환자에서 메타게놈 분석을 통해 원인인자 노출을 피함으로써 암의 경과를 좋게 하거나, 재발을 막을 수 있다.Extracellular vesicles secreted by microorganisms, such as bacteria, archaea, etc. present in the environment can be absorbed directly into the body and directly affect cancer development, kidney failure is difficult to diagnose early, so the efficient treatment is difficult, so the present invention Meta-genomic analysis of bacterial-derived extracellular parcel vesicles using human-derived samples according to the pre-diagnosis of the risk of renal failure in advance by early diagnosis and prediction of the risk group of renal failure can be delayed or prevented by proper management. In addition, early diagnosis is possible even after the onset of the disease, thereby reducing the incidence of renal failure and increasing the therapeutic effect. In addition, metagenome analysis avoids causative agents in patients diagnosed with renal failure, thereby improving cancer progression and preventing recurrence.
도 1a은, 마우스에 장내 세균과 세균유래 소포 (EV)를 구강으로 투여한 후, 시간별로 세균과 소포의 분포양상을 촬영한 사진이고, 도 1b는 구강으로 투여한 후 12시간째에, 혈액 및 여러 장기를 적출하여, 세균과 소포의 체내 분포양상을 평가한 그림이다.Figure 1a is a photograph of the distribution of bacteria and vesicles by time after the oral administration of enteric bacteria and bacterial derived vesicles (EV) to the mouse, Figure 1b is 12 hours after oral administration, blood And several organs were extracted to evaluate the distribution of bacteria and vesicles in the body.
도 2는 신부전환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 문(phylum) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.FIG. 2 shows the distribution of bacterial derived vesicles (EVs) with significant diagnostic performance at the phylum level by separating bacteria-derived vesicles from renal inverters and normal blood.
도 3은 신부전환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 강(class) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.3 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at a class level by separating bacteria-derived vesicles from renal inverters and normal blood, and performing a metagenome analysis.
도 4는 신부전환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.4 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the order level by separating the bacteria-derived vesicles from renal inverters and normal blood, and performing a metagenome analysis.
도 5는 신부전환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 과(family) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.5 is a result showing the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at the family level by separating bacteria-derived vesicles from the renal inverter and normal blood, and performing a metagenome analysis.
도 6은 신부전환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.FIG. 6 shows the distribution of bacteria-derived vesicles (EVs) with significant diagnostic performance at genus level after separation of bacterial-derived vesicles from renal inverters and normal blood.
본 발명은 세균 메타게놈 분석을 통해 신부전을 진단하는 방법에 관한 것으로서, 본 발명자들은 피검체 유래 샘플을 이용해 세균 유래 세포밖 소포로부터 유전자를 추출하고 이에 대하여 메타게놈 분석을 수행하였으며, 신부전의 원인인자로 작용할 수 있는 세균 유래 세포밖 소포를 동정하였다. The present invention relates to a method for diagnosing renal failure through bacterial metagenome analysis. The present inventors extracted a gene from a bacterial-derived extracellular vesicle using a sample derived from a subject, and performed a metagenome analysis on it. Bacterial-derived extracellular vesicles that can act as
이에, 본 발명은 (a) 피검체 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;Thus, the present invention comprises the steps of (a) extracting DNA from the extracellular vesicles isolated from the subject sample;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및(b) performing PCR using the primer pairs of SEQ ID NO: 1 and SEQ ID NO: 2 on the extracted DNA; And
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 및 고세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 포함하는 신부전을 진단하기 위한 정보제공방법을 제공한다.(c) provides an information providing method for diagnosing renal failure, comprising comparing the increase and decrease of the content of bacteria and archaea-derived extracellular vesicles with normal-derived samples by sequencing the PCR product.
본 발명에서 사용되는 용어, "신부전 진단" 이란 환자에 대하여 신부전이 발병할 가능성이 있는지, 신부전이 발병할 가능성이 상대적으로 높은지, 또는 신부전이 이미 발병하였는지 여부를 판별하는 것을 의미한다. 본 발명의 방법은 임의의 특정 환자에 대한 신부전 발병 위험도가 높은 환자로써 특별하고 적절한 관리를 통하여 발병 시기를 늦추거나 발병하지 않도록 하는데 사용할 수 있다. 또한, 본 발명의 방법은 신부전을 조기에 진단하여 가장 적절한 치료방식을 선택함으로써 치료를 결정하기 위해 임상적으로 사용될 수 있다.As used herein, the term "diagnosis of renal failure" refers to determining whether a kidney failure is likely to occur in a patient, whether the kidney failure is relatively high, or whether renal failure has already occurred. The method of the present invention can be used to prevent or delay the onset of the disease through special and appropriate management as a patient at high risk of developing renal failure for any particular patient. In addition, the methods of the present invention can be used clinically to determine treatment by early diagnosis of renal failure and by selecting the most appropriate treatment regimen.
본 발명에서 사용되는 용어, "메타게놈(metagenome)"이란 "군유전체"라고도 하며, 흙, 동물의 장 등 고립된 지역 내의 모든 바이러스, 세균, 곰팡이 등을 포함하는 유전체의 총합을 의미하는 것으로, 주로 배양이 되지 않는 미생물을 분석하기 위해서 서열분석기를 사용하여 한꺼번에 많은 미생물을 동정하는 것을 설명하는 유전체의 개념으로 쓰인다. 특히, 메타게놈은 한 종의 게놈 또는 유전체를 말하는 것이 아니라, 한 환경단위의 모든 종의 유전체로서 일종의 혼합유전체를 말한다. 이는 오믹스적으로 생물학이 발전하는 과정에서 한 종을 정의할 때 기능적으로 기존의 한 종뿐만 아니라, 다양한 종이 서로 상호작용하여 완전한 종을 만든다는 관점에서 나온 용어이다. 기술적으로는 빠른 서열분석법을 이용해서, 종에 관계없이 모든 DNA, RNA를 분석하여, 한 환경 내에서의 모든 종을 동정하고, 상호작용, 대사작용을 규명하는 기법의 대상이다. 본 발명에서는 바람직하게 혈청에서 분리한 세균 유래 세포밖 소포를 이용하여 메타게놈 분석을 실시하였다.The term "metagenome" used in the present invention, also referred to as "metagenome", refers to the total of the genome including all viruses, bacteria, fungi, etc. in an isolated area such as soil, animal intestine, It is mainly used as a concept of genome explaining the identification of many microorganisms at once using sequencer to analyze microorganisms which are not cultured. In particular, metagenome does not refer to one species of genome or genome, but refers to a kind of mixed dielectric as the genome of all species of one environmental unit. This is a term from the point of view of defining a species in the course of the evolution of biology in terms of functional species as well as various species that interact with each other to create a complete species. Technically, rapid sequencing is used to analyze all DNA and RNA, regardless of species, to identify all species in one environment, and to identify interactions and metabolism. In the present invention, metagenome analysis was preferably performed using bacterial-derived extracellular vesicles isolated from serum.
본 발명에 있어서, 상기 피검체 샘플은 혈액일 수 있고, 상기 혈액은 바람직하게 전혈, 혈청, 혈장, 또는 혈액 단핵구일 수 있으나, 이것으로 제한되는 것은 아니다. In the present invention, the subject sample may be blood, and the blood may preferably be whole blood, serum, plasma, or blood monocytes, but is not limited thereto.
본 발명의 실시예에서는 상기 세균 및 고세균 유래 세포밖 소포에 대한 메타게놈 분석을 실시하였으며, 문(phylum), 강(class), 목(order), 과(family), 및 속(genus) 수준에서 각각 분석하여 실제로 신부전 발생의 원인으로 작용할 수 있는 세균 유래 소포를 동정하였다.In an embodiment of the present invention, the metagenome analysis of the extracellular vesicles derived from bacteria and archaea was performed, and at the level of phylum, class, order, family, and genus, Each analysis was performed to identify bacterial-derived vesicles that could actually cause kidney failure.
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 문 수준에서 분석한 결과, Nitrospirae, Chloroflexi, Planctomycetes, Gemmatimonadetes, Acidobacteria, WPS-2, AD3, Chlamydiae, Elusimicrobia, OD1, 및 TM6 문 세균 유래 세포밖 소포의 함량이 신부전환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조). More specifically, in one embodiment of the present invention, as a result of analyzing the bacterial metagenome at the gate level for the vesicles present in the blood samples from the subject, Nitrospirae, Chloroflexi, Planctomycetes, Gemmatimonadetes, Acidobacteria, WPS-2, AD3, Chlamydiae, There was a significant difference in the content of Elusimicrobia, OD1, and TM6 door bacteria-derived extracellular vesicles between renal switchers and normal individuals (see Example 4).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 강 수준에서 분석한 결과, Deferribacteres, Coriobacteriia, Erysipelotrichi, Gammaproteobacteria, Clostridia, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Cytophagia, Thermoleophilia, Chloracidobacteria, Methylacidiphilae, Sphingobacteriia, Saprospirae, Anaerolineae, Ellin6529, Planctomycetia, Epsilonproteobacteria, Spartobacteria, Acidimicrobiia, Chlamydiia, Acidobacteria-6, Phycisphaerae, TM1, Gemmatimonadetes, DA052, Ktedonobacteria, Pedosphaerae, Acidobacteriia, Solibacteres, ABS-6, Elusimicrobia, TK10, Chthonomonadetes, 및 TM7-1 강 세균 유래 세포밖 소포의 함량이 신부전환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조). More specifically, in one embodiment of the present invention, as a result of analyzing the bacterial metagenome at the level of the vesicles present in the blood samples from the subject, Deferribacteres, Coriobacteriia, Erysipelotrichi, Gammaproteobacteria, Clostridia, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Cytophagia Thermoleophilia, Chloracidobacteria, Methylacidiphilae, Sphingobacteriia, Saprospirae, Anaerolineae, Ellin6529, Planctomycetia, Epsilonproteobacteria, Spartobacteria, Acidimicrobiia, Chlamydiia, Acidobacteria-6, Phycisphaerae, TM1, Gemmatiactadetesono, DAbacteria Acid, Peaeroceobacerii, Peaerceoerta, Ph. There was a significant difference in the content of extracellular vesicles derived from TK10, Chthonomonadetes, and TM7-1 strong bacteria between renal switchers and normal individuals (see Example 4).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 목 수준에서 분석한 결과, Coriobacteriales, Bifidobacteriales, Enterobacteriales, Pseudomonadales, Rhizobiales, Acidimicrobiales, Xanthomonadales, Myxococcales, Rhodocyclales, Solirubrobacterales, Pirellulales, Sphingobacteriales, Rhodospirillales, Thermogemmatisporales, Gemmatales, Saprospirales, Chthoniobacterales, Syntrophobacterales, Acidobacteriales, Solibacterales, Pedosphaerales, Cytophagales, Chlamydiales, Legionellales, Ktedonobacterales, 및 Chthonomonadales 목 세균 유래 세포밖 소포의 함량이 신부전환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조). More specifically, in an embodiment of the present invention, bacterial metagenomes were analyzed at the neck level for vesicles present in a blood sample derived from a subject. Coriobacteriales, Bifidobacteriales, Enterobacteriales, Pseudomonadales, Rhizobiales, Acidimicrobiales, Xanthomonadales, Myxococcales, Rhodocyclales Solirubrobacterales, Pirellulales, Sphingobacteriales, Rhodospirillales, Thermogemmatisporales, Gemmatales, Saprospirales, Chthoniobacterales, Syntrophobacterales, Acidobacteriales, Solibacterales, Pedosphaerales, Cytophagales, Chlamydiales, Legionellales, and Ktedonobacomoales There was a significant difference (see Example 4).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 과 수준에서 분석한 결과, Turicibacteraceae, Enterococcaceae, Coriobacteriaceae, Lactobacillaceae, Ruminococcaceae, Erysipelotrichaceae, Pseudomonadaceae, Lachnospiraceae, Bifidobacteriaceae, Enterobacteriaceae, Clostridiaceae, Bacteroidaceae, Oxalobacteraceae, Moraxellaceae, Prevotellaceae, Sphingomonadaceae, Caulobacteraceae, Bradyrhizobiaceae, Corynebacteriaceae, Intrasporangiaceae, Streptococcaceae, Xanthomonadaceae, Chitinophagaceae, Mycobacteriaceae, Microbacteriaceae, Phyllobacteriaceae, Cytophagaceae, Pirellulaceae, Acetobacteraceae, Comamonadaceae, Chthoniobacteraceae, Isosphaeraceae, Shewanellaceae, Gemmataceae, Sinobacteraceae, Campylobacteraceae, Hyphomicrobiaceae, Ktedonobacteraceae, Pasteurellaceae, Rhodospirillaceae, Myxococcaceae, Thermogemmatisporaceae, Acidobacteriaceae, Syntrophobacteraceae, Gaiellaceae, Conexibacteraceae, Parachlamydiaceae, Koribacteraceae, Tissierellaceae, Beijerinckiaceae, Burkholderiaceae, Paenibacillaceae, Pedosphaeraceae, Solibacteraceae, Coxiellaceae, Gordoniaceae, Methylocystaceae, Micromonosporaceae, Bdellovibrionaceae, Haliangiaceae, Chthonomonadaceae, 및 Yaniellaceae 과 세균 유래 세포밖 소포의 함량이 신부전환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조). More specifically, in one embodiment of the present invention, as a result of analyzing the bacterial metagenome at the excessive level for the vesicles present in the blood samples from the subject, Turicibacteraceae, Enterococcaceae, Coriobacteriaceae, Lactobacillaceae, Ruminococcaceae, Erysipelotrichaceae, Pseudomonadaceae, Lachnospiraceae, Bifidobacteriaceae, Enterobacteriaceae, Clostridiaceae, Bacteroidaceae, Oxalobacteraceae, Moraxellaceae, Prevotellaceae, Sphingomonadaceae, Caulobacteraceae, Bradyrhizobiaceae, Corynebacteriaceae, Intrasporangiaceae, Streptococcaceae, Xanthomonadaceae, Chitinophagaceae, Mycobacteriaceae, Microbacteriaceae, Phyllobacteriaceae, Cytophagaceae, Pirellulaceae, Acetobacteraceae, Comamonadaceae, Chthoniobacteraceae, Isosphaeraceae, Shewanellaceae, Gemmataceae, Sinobacteraceae, Campylobacteraceae, Hyphomicrobiaceae, Ktedonobacteraceae, Pasteurellaceae, Rhodospirillaceae, Myxococcaceae, Thermogemmatisporaceae, Acidobacteriaceae, Syntrophobacteraceae, Gaiellaceae, Conexi The content of the bacterium, Parachlamydiaceae, Koribacteraceae, Tissierellaceae, Beijerinckiaceae, Burkholderiaceae, Paenibacillaceae, Pedosphaeraceae, Solibacteraceae, Coxiellaceae, Gordoniaceae, Methylocystaceae, Micromonosporaceae, Bdellovibrionaceae, Haliangiaceae, Chthonomopoaceae, and the bacteria of the cell family. There was a significant difference (see Example 4).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 속 수준에서 분석한 결과, Morganella, Adlercreutzia, Turicibacter, Eubacterium, Catenibacterium, Collinsella, Enterococcus, Cupriavidus, Proteus, Escherichia, Oscillospira, Pseudomonas, Jeotgalicoccus, Lactobacillus, Enhydrobacter, Ruminococcus, Coprococcus, Bifidobacterium, Bacteroides, Acinetobacter, Prevotella, Fusobacterium, Corynebacterium, Rothia, Gemmata, Pedomicrobium, Mycobacterium, Streptococcus, Opitutus, Kaistobacter, Shewanella, Candidatus Xiphinematobacter, Flavobacterium, Porphyromonas, Peptostreptococcus, Ralstonia, Rhodoplanes, Alloiococcus, Haemophilus, Candidatus Koribacter, Paenibacillus, Peptoniphilus, Salinispora, Anaerococcus, Candidatus Solibacter, Burkholderia, Campylobacter, Klebsiella, Gordonia, Parvimonas, Stenotrophomonas, Achromobacter, Pedosphaera, 및 Bdellovibrio 속 세균 유래 세포밖 소포의 함량이 신부전환자와 정상인에 사이에 유의한 차이가 있었다(실시예 4 참조). More specifically, in one embodiment of the present invention, as a result of analyzing the bacterial metagenome at the genus level for the vesicles present in the blood samples from the subject, Morganella, Adlercreutzia, Turicibacter, Eubacterium, Catenibacterium, Collinsella, Enterococcus, Cupriavidus, Proteus, Escherichia, Oscillospira, Pseudomonas, Jeotgalicoccus, Lactobacillus, Enhydrobacter, Ruminococcus, Coprococcus, Bifidobacterium, Bacteroides, Acinetobacter, Prevotella, Fusobacterium, Corynebacterium, Rothia, Gemmata, Pedoterus, Streptococcus, Streptococcus , Peptostreptococcus, Ralstonia, Rhodoplanes, Alloiococcus, Haemophilus, Candidatus Koribacter, Paenibacillus, Peptoniphilus, Salinispora, Anaerococcus, Candidatus Solibacter, Burkholderia, Campylobacter, Klebsiella, Gordonia, B. There was a significant difference between the renal inverters and normal subjects (see Example 4).
상기 실시예 결과를 통해 상기 동정된 세균 및 고세균 유래 세포밖 소포의 분포 변수가 신부전 발생 예측에 유용하게 이용될 수 있음을 확인하였다. Through the results of the above example, it was confirmed that the distribution variables of the identified bacteria and archaea-derived extracellular vesicles could be usefully used for predicting renal failure occurrence.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are provided to aid in understanding the present invention. However, the following examples are merely provided to more easily understand the present invention, and the contents of the present invention are not limited by the following examples.
[실시예]EXAMPLE
실시예 1. 장내 세균 및 세균 유래 소포의 체내 흡수, 분포, 및 배설 양상 분석Example 1 Analysis of Uptake, Distribution, and Excretion of Intestinal Bacteria and Bacterial-Derived Vesicles
장내 세균과 세균 유래 소포가 위장관을 통해 전신적으로 흡수되는 지를 평가하기 위하여 다음과 같은 방법으로 실험을 수행하였다. 마우스의 위장에 형광으로 표지한 장내세균과 장내 세균 유래 소포를 각각 50 μg의 용량으로 위장관으로 투여하고 0분, 5분, 3시간, 6시간, 12시간 후에 형광을 측정하였다. 마우스 전체 이미지를 관찰한 결과, 도 1a에 나타낸 바와 같이, 상기 세균(Bacteria)인 경우에는 전신적으로 흡수되지 않았지만, 세균 유래 소포(EV)인 경우에는, 투여 후 5분에 전신적으로 흡수되었고, 투여 3시간 후에는 방광에 형광이 진하게 관찰되어, 소포가 비뇨기계로 배설됨을 알 수 있었다. 또한, 소포는 투여 12시간까지 체내에 존재함을 알 수 있었다. In order to evaluate whether the intestinal bacteria and bacteria-derived vesicles are absorbed systemically through the gastrointestinal tract, experiments were performed as follows. Fluorescently labeled enterobacteriaceae and enteric bacteria-derived vesicles were administered to the gastrointestinal tract at doses of 50 μg, respectively, and the fluorescence was measured after 0, 5, 3, 6 and 12 hours. As a result of observing the entire image of the mouse, as shown in FIG. 1A, the bacteria (Bacteria) were not absorbed systemically, but in the case of bacteria-derived vesicles (EV), they were absorbed systemically 5 minutes after administration and administered. After 3 hours, the bladder was strongly observed, indicating that the vesicles were excreted by the urinary system. In addition, the vesicles were found to exist in the body until 12 hours of administration.
장내세균과 장내 세균유래 소포가 전신적으로 흡수된 후, 여러 장기로 침윤된 양상을 평가하기 위하여, 형광으로 표지한 50 μg의 세균과 세균유래 소포를 상기의 방법과 같이 투여한 다음 12시간째에 마우스로부터 혈액(Blood), 심장(Heart), 폐(Lung), 간(Liver), 신장(Kidney), 비장(Spleen), 지방조직(Adipose tissue), 및 근육(Muscle)을 적출하였다. 상기 적출한 조직들에서 형광을 관찰한 결과, 도1b에 나타낸 바와 같이, 상기 장내 세균(Bacteria)은 각 장기에 흡수되지 않은 반면, 상기 장내 세균 유래 세포밖 소포(EV)는 혈액, 심장, 폐, 간, 신장, 비장, 지방조직, 및 근육에 분포하는 것을 확인하였다.After the systemic absorption of enterobacteriaceae and enteric bacteria-derived vesicles systemically, in order to assess the invasion of various organs, the fluorescently labeled 50 μg of bacteria and bacteria-derived vesicles were administered in the same manner as above 12 hours. Blood, Heart, Lung, Liver, Kidney, Spleen, Adipose tissue, and Muscle were extracted from mice. As shown in FIG. 1B, the intestinal bacteria (Bacteria) were not absorbed into each organ, whereas the intestinal bacteria-derived extracellular vesicles (EV) were detected in the tissues, as shown in FIG. And distribution in liver, kidney, spleen, adipose tissue, and muscle.
실시예 2. 혈액으로부터 소포 분리 및 DNA 추출Example 2. Vesicle Separation and DNA Extraction from Blood
혈액으로부터 소포를 분리하고 DNA를 추출하기 위해, 먼저 10 ㎖ 튜브에 혈액을 넣고 원심분리(3,500 x g, 10min, 4℃)를 실시하여 부유물을 가라앉혀 상등액만을 회수한 후 새로운 10 ㎖ 튜브에 옮겼다. 0.22 ㎛ 필터를 사용하여 상기 회수한 상등액으로부터 세균 및 이물질을 제거한 후, 센트리프랩튜브(centripreigugal filters 50 kD)에 옮기고 1500 x g, 4℃에서 15분간 원심분리하여 50 kD 보다 작은 물질은 버리고 10 ㎖까지 농축 시켰다. 다시 한 번 0.22 ㎛ 필터를 사용하여 박테리아 및 이물질을 제거한 후, Type 90ti 로터로 150,000 x g, 4℃에서 3시간 동안 초고속원심분리방법을 사용하여 상등액을 버리고 덩어리진 pellet을 생리식염수(PBS)로 녹여 소포를 수득하였다. To separate the vesicles from the blood and extract the DNA, the blood was first placed in a 10 ml tube and centrifuged (3,500 × g, 10 min, 4 ° C.) to settle the suspended solids to recover only the supernatant and then transferred to a new 10 ml tube. After removing the bacteria and foreign substances from the recovered supernatant using a 0.22 ㎛ filter, transfer to centripreigugal filters (50 kD) and centrifuged at 1500 xg, 4 ℃ for 15 minutes to discard the material smaller than 50 kD and 10 ml Concentrated until. Once again, remove the bacteria and foreign substances using a 0.22 ㎛ filter, discard the supernatant using ultra-fast centrifugation for 3 hours at 150,000 xg, 4 ℃ with a Type 90ti rotor and dissolve the agglomerated pellet in physiological saline (PBS) Vesicles were obtained.
상기 방법에 따라 혈액으로부터 분리한 소포 100 ㎕를 100℃에서 끓여서 내부의 DNA를 지질 밖으로 나오게 한 후 얼음에 5분 동안 식혔다. 다음으로 남은 부유물을 제거하기 위하여 10,000 x g, 4℃에서 30분간 원심분리하고 상등액 만을 모은 후 Nanodrop을 이용하여 DNA 양을 정량하였다. 이후 상기 추출된 DNA에 세균 유래 DNA가 존재하는지 확인하기 위하여 하기 표 1에 나타낸 16s rDNA primer로 PCR을 수행하여 상기 추출된 유전자에 세균 유래 유전자가 존재하는 것을 확인하였다.According to the above method, 100 μl of the vesicles isolated from blood were boiled at 100 ° C. to let the DNA inside the lipid out and then cooled on ice for 5 minutes. Next, in order to remove the remaining suspended matter, centrifugation at 10,000 x g, 4 ℃ for 30 minutes, and collected only the supernatant and quantified the DNA amount using Nanodrop. Thereafter, PCR was performed with the 16s rDNA primer shown in Table 1 to confirm whether the bacteria-derived DNA exists in the extracted DNA, and it was confirmed that the bacteria-derived gene exists in the extracted gene.
실시예 3. 혈액에서 추출한 DNA를 이용한 메타게놈 분석Example 3 Metagenomic Analysis Using DNA Extracted from Blood
상기 실시예 2의 방법으로 유전자를 추출한 후, 상기 표1에 나타낸 16S rDNA 프라이머를 사용하여 PCR을 실시하여 유전자를 증폭시키고 시퀀싱(Illumina MiSeq sequencer)을 수행하였다. 결과를 Standard Flowgram Format(SFF) 파일로 출력하고 GS FLX software(v2.9)를 이용하여 SFF 파일을 sequence 파일(.fasta)과 nucleotide quality score 파일로 변환한 다음 리드의 신용도 평가를 확인하고, window(20 bps) 평균 base call accuracy가 99% 미만(Phred score <20)인 부분을 제거하였다. 질이 낮은 부분을 제거한 후, 리드의 길이가 300 bps 이상인 것만 이용하였으며(Sickle version 1.33), 결과 분석을 위해 Operational Taxonomy Unit(OTU)은 UCLUST와 USEARCH를 이용하여 시퀀스 유사도에 따라 클러스터링을 수행하였다. 구체적으로 속(genus)은 94%, 과(family)는 90%, 목(order)은 85%, 강(class)은 80%, 문(phylum)은 75% 시퀀스 유사도를 기준으로 클러스터링을 하고 각 OTU의 문, 강, 목, 과, 속 레벨의 분류를 수행하고, BLASTN와 GreenGenes의 16S DNA 시퀀스 데이터베이스(108,453 시퀀스)를 이용하여 97% 이상의 시퀀스 유사도 갖는 박테리아를 분석하였다(QIIME).After the gene was extracted by the method of Example 2, PCR was performed using the 16S rDNA primer shown in Table 1 to amplify the gene and perform sequencing (Illumina MiSeq sequencer). Output the result as a Standard Flowgram Format (SFF) file, convert the SFF file into a sequence file (.fasta) and a nucleotide quality score file using GS FLX software (v2.9), check the credit rating of the lead, and window (20 bps) The part with the average base call accuracy of less than 99% (Phred score <20) was removed. After removing the low quality part, only the lead length was 300 bps or more (Sickle version 1.33), and the Operational Taxonomy Unit (OTU) performed UCLUST and USEARCH for clustering according to sequence similarity. Specifically, the clustering is based on 94% genus, 90% family, 85% order, 80% class, and 75% sequence similarity. OTU's door, river, neck, family and genus level classifications were performed, and bacteria with greater than 97% sequence similarity were analyzed using BLASTN and GreenGenes' 16S DNA sequence database (108,453 sequences) (QIIME).
실시예 4. 혈액에서 분리한 세균유래 소포 메타게놈 분석 기반 신부전 진단모형Example 4 Renal Failure Diagnosis Model Based on Bacterial-Derived Vesicle Metagenome Analysis
상기 실시예 3의 방법으로, 신부전환자 21명과 나이와 성별을 매칭한 정상인 19명의 혈액에서 소포를 분리한 후 메타게놈 시퀀싱을 수행하였다. 진단모형 개발은 먼저 t-test에서 두 군 사이의 p값이 0.05 이하이고, 두 군 사이에 2배 이상 차이가 나는 균주를 선정하고 난 후, logistic regression analysis 방법으로 진단적 성능 지표인 AUC(area under curve), 민감도, 및 특이도를 산출하였다.In the method of Example 3, the vesicles were isolated from the blood of 21 renal inverters and 19 healthy subjects matched with age and sex, and then metagenome sequencing was performed. In the development of the diagnostic model, the strains whose p-value between the two groups is 0.05 or less and more than two times different between the two groups are selected in the t-test. under curve), sensitivity, and specificity.
혈액 내 세균유래 소포를 문(phylum) 수준에서 분석한 결과, Nitrospirae, Chloroflexi, Planctomycetes, Gemmatimonadetes, Acidobacteria, WPS-2, AD3, Chlamydiae, Elusimicrobia, OD1, 및 TM6 문 세균 바이오마커로 진단모형을 개발하였을 때, 신부전에 대한 진단적 성능이 유의하게 나타났다 (표 2 및 도 2 참조).Analysis of bacteria-derived vesicles in the blood at the phylum level revealed that diagnostic models were developed with Nitrospirae, Chloroflexi, Planctomycetes, Gemmatimonadetes, Acidobacteria, WPS-2, AD3, Chlamydiae, Elusimicrobia, OD1, and TM6 door bacterial biomarkers At that time, the diagnostic performance for renal failure was significant (see Table 2 and FIG. 2).
혈액 내 세균유래 소포를 강(class) 수준에서 분석한 결과, Deferribacteres, Coriobacteriia, Erysipelotrichi, Gammaproteobacteria, Clostridia, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Cytophagia, Thermoleophilia, Chloracidobacteria, Methylacidiphilae, Sphingobacteriia, Saprospirae, Anaerolineae, Ellin6529, Planctomycetia, Epsilonproteobacteria, Spartobacteria, Acidimicrobiia, Chlamydiia, Acidobacteria-6, Phycisphaerae, TM1, Gemmatimonadetes, DA052, Ktedonobacteria, Pedosphaerae, Acidobacteriia, Solibacteres, ABS-6, Elusimicrobia, TK10, Chthonomonadetes, 및 TM7-1 강 세균 바이오마커로 진단모형을 개발하였을 때, 신부전에 대한 진단적 성능이 유의하게 나타났다 (표 3 및 도 3 참조).Analysis of bacteria-derived vesicles in the blood at the class level showed that Deferribacteres, Coriobacteriia, Erysipelotrichi, Gammaproteobacteria, Clostridia, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Cytophagia, Thermoleophilia, Chloracidobacteria, Methylacidiphilae, Sphingobacteriia, Saline Diagnosing Epsilonproteobacteria, Spartobacteria, Acidimicrobiia, Chlamydiia, Acidobacteria-6, Phycisphaerae, TM1, Gemmatimonadetes, DA052, Ktedonobacteria, Pedosphaerae, Acidobacteriia, Solibacteres, ABS-6, Elusimicrobia, TK10, Chthonomonadetes, and TM7-1 When developed, the diagnostic performance for renal failure was significant (see Table 3 and FIG. 3).
혈액 내 세균유래 소포를 목(order) 수준에서 분석한 결과, Coriobacteriales, Bifidobacteriales, Enterobacteriales, Pseudomonadales, Rhizobiales, Acidimicrobiales, Xanthomonadales, Myxococcales, Rhodocyclales, Solirubrobacterales, Pirellulales, Sphingobacteriales, Rhodospirillales, Thermogemmatisporales, Gemmatales, Saprospirales, Chthoniobacterales, Syntrophobacterales, Acidobacteriales, Solibacterales, Pedosphaerales, Cytophagales, Chlamydiales, Legionellales, Ktedonobacterales, 및 Chthonomonadales 목 세균 바이오마커로 진단모형을 개발하였을 때, 신부전에 대한 진단적 성능이 유의하게 나타났다 (표 4 및 도 4 참조).Analysis of Bacterial-derived vesicles in the blood at the order level showed that Coriobacteriales, Bifidobacteriales, Enterobacteriales, Pseudomonadales, Rhizobiales, Acidimicrobiales, Xanthomonadales, Myxococcales, Rhodocyclales, Solirubrobacterales, Pirellulales, Sphingobacteriales, Rhodomatispirs porspores, When diagnostic models were developed with Syntrophobacterales, Acidobacteriales, Solibacterales, Pedosphaerales, Cytophagales, Chlamydiales, Legionellales, Ktedonobacterales, and Chthonomonadales neck bacterial biomarkers, diagnostic performance for renal failure was significant (see Table 4 and Figure 4).
혈액 내 세균유래 소포를 과(family) 수준에서 분석한 결과, Turicibacteraceae, Enterococcaceae, Coriobacteriaceae, Lactobacillaceae, Ruminococcaceae, Erysipelotrichaceae, Pseudomonadaceae, Lachnospiraceae, Bifidobacteriaceae, Enterobacteriaceae, Clostridiaceae, Bacteroidaceae, Oxalobacteraceae, Moraxellaceae, Prevotellaceae, Sphingomonadaceae, Caulobacteraceae, Bradyrhizobiaceae, Corynebacteriaceae, Intrasporangiaceae, Streptococcaceae, Xanthomonadaceae, Chitinophagaceae, Mycobacteriaceae, Microbacteriaceae, Phyllobacteriaceae, Cytophagaceae, Pirellulaceae, Acetobacteraceae, Comamonadaceae, Chthoniobacteraceae, Isosphaeraceae, Shewanellaceae, Gemmataceae, Sinobacteraceae, Campylobacteraceae, Hyphomicrobiaceae, Ktedonobacteraceae, Pasteurellaceae, Rhodospirillaceae, Myxococcaceae, Thermogemmatisporaceae, Acidobacteriaceae, Syntrophobacteraceae, Gaiellaceae, Conexibacteraceae, Parachlamydiaceae, Koribacteraceae, Tissierellaceae, Beijerinckiaceae, Burkholderiaceae, Paenibacillaceae, Pedosphaeraceae, Solibacteraceae, Coxiellaceae, Gordoniaceae, Methylocystaceae, Micromonosporaceae, Bdellovibrionaceae, Haliangiaceae, Chthonomonadaceae, 및 Yaniellaceae 과 세균 바이오마커로 진단모형을 개발하였을 때, 신부전에 대한 진단적 성능이 유의하게 나타났다 (표 5 및 도 5 참조).Analysis of bacteria-derived vesicles in the blood at the family level revealed that Turicibacteraceae, Enterococcaceae, Coriobacteriaceae, Lactobacillaceae, Ruminococcaceae, Erysipelotrichaceae, Pseudomonadaceae, Lachnospiraceae, Bifidobacteriaceae, Enterobacteriaceae, Clostridiaceae, Bacteroidaceae, Moraxaceae bacteraceae, Bradyrhizobiaceae, Corynebacteriaceae, Intrasporangiaceae, Streptococcaceae, Xanthomonadaceae, Chitinophagaceae, Mycobacteriaceae, Microbacteriaceae, Phyllobacteriaceae, Cytophagaceae, Pirellulaceae, Acetobacteraceae, Comamonadaceae, Chthoniobacteraceae, Isosphaeraceae, Shewanellaceae, Gemmataceae, Sinobacteraceae, Campylobacteraceae, Hyphomicrobiaceae, Ktedonobacteraceae, Pasteurellaceae, Rhodospirillaceae, Myxococcaceae, Thermogemmatisporaceae, Acidobacteriaceae, Syntrophobacteraceae, Gaiellaceae, Conexibacteraceae, Parachlamydiaceae, Koribacteraceae, Tissierellaceae, Beijerinckiaceae, Burkholderiaceae, Paenib When diagnostic models were developed with acillaceae, Pedosphaeraceae, Solibacteraceae, Coxiellaceae, Gordoniaceae, Methylocystaceae, Micromonosporaceae, Bdellovibrionaceae, Haliangiaceae, Chthonomonadaceae, and Yaniellaceae and bacterial biomarkers, diagnostic performance for renal failure was significant (Table 5 and Figure 5). Reference).
혈액 내 세균유래 소포를 속(genus) 수준에서 분석한 결과, Morganella, Adlercreutzia, Turicibacter, Eubacterium, Catenibacterium, Collinsella, Enterococcus, Cupriavidus, Proteus, Escherichia, Oscillospira, Pseudomonas, Jeotgalicoccus, Lactobacillus, Enhydrobacter, Ruminococcus, Coprococcus, Bifidobacterium, Bacteroides, Acinetobacter, Prevotella, Fusobacterium, Corynebacterium, Rothia, Gemmata, Pedomicrobium, Mycobacterium, Streptococcus, Opitutus, Kaistobacter, Shewanella, Candidatus Xiphinematobacter, Flavobacterium, Porphyromonas, Peptostreptococcus, Ralstonia, Rhodoplanes, Alloiococcus, Haemophilus, Candidatus Koribacter, Paenibacillus, Peptoniphilus, Salinispora, Anaerococcus, Candidatus Solibacter, Burkholderia, Campylobacter, Klebsiella, Gordonia, Parvimonas, Stenotrophomonas, Achromobacter, Pedosphaera, 및 Bdellovibrio 속 세균 바이오마커로 진단모형을 개발하였을 때, 신부전에 대한 진단적 성능이 유의하게 나타났다 (표 6 및 도 6 참조).Bacterial-derived vesicles in the blood were analyzed at the genus level, Morganella, Adlercreutzia, Turicibacter, Eubacterium, Catenibacterium, Collinsella, Enterococcus, Cupriavidus, Proteus, Escherichia, Oscillospira, Pseudomonas, Jeotgalicoccus, Lactobacillus, Cocusoccoco, Bifidobacterium, Bacteroides, Acinetobacter, Prevotella, Fusobacterium, Corynebacterium, Rothia, Gemmata, Pedomicrobium, Mycobacterium, Streptococcus, Opitutus, Kaistobacter, Shewanella, Candidatus Xiphinematobacter, Flavobacterium, Porphyr opococtuscoccus When diagnostic models were developed with bacterial biomarkers of the genus Peptoniphilus, Salinispora, Anaerococcus, Candidatus Solibacter, Burkholderia, Campylobacter, Klebsiella, Gordonia, Parvimonas, Stenotrophomonas, Achromobacter, Pedosphaera, Table 6 and 6).
상기 진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.The description of the present invention set forth above is for illustrative purposes, and one of ordinary skill in the art may understand that the present invention may be easily modified into other specific forms without changing the technical spirit or essential features of the present invention. There will be. Therefore, it should be understood that the embodiments described above are exemplary in all respects and not restrictive.
본 발명은 세균 메타게놈 분석을 통해 신부전을 진단하는 방법에 관한 것으로서, 본 발명에 따른 인체 유래 샘플을 이용한 세균 유래 세포밖 소포의 메타게놈 분석을 통해 신부전 발병의 위험도를 미리 예측함으로써 신부전의 위험군을 조기에 진단 및 예측하여 적절한 관리를 통해 발병 시기를 늦추거나 발병을 예방할 수 있으며, 발병 후에도 조기진단 할 수 있어 신부전의 발병률을 낮추고 치료효과를 높일 수 있다. The present invention relates to a method for diagnosing renal failure through analysis of bacterial metagenome, wherein the risk group of renal failure is predicted by predicting the risk of renal failure in advance through metagenomic analysis of bacterial extracellular vesicles using a human-derived sample according to the present invention. By early diagnosis and prediction, proper management can delay the onset or prevent the onset, and early diagnosis after the onset can reduce the incidence of renal failure and increase the therapeutic effect.
Claims (16)
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR20160181572 | 2016-12-28 | ||
| KR10-2016-0181572 | 2016-12-28 | ||
| KR1020170180003A KR101940424B1 (en) | 2016-12-28 | 2017-12-26 | Method for diagnosis of renal failure using analysis of bacteria metagenome |
| KR10-2017-0180003 | 2017-12-26 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018124726A1 true WO2018124726A1 (en) | 2018-07-05 |
Family
ID=62709663
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/KR2017/015537 Ceased WO2018124726A1 (en) | 2016-12-28 | 2017-12-27 | Method for diagnosing renal failure via bacterial metagenomic analysis |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2018124726A1 (en) |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20060019700A (en) * | 2004-08-28 | 2006-03-06 | 김철민 | Bacterial specific, genus specific and species specific oligonucleotides for the discrimination of all bacteria, diagnostic kits comprising the same, and detection methods using the same |
| KR20110025603A (en) * | 2009-09-04 | 2011-03-10 | 주식회사이언메딕스 | Gram-positive bacteria-derived extracellular vesicles and uses thereof |
| KR20160073157A (en) * | 2014-12-16 | 2016-06-24 | 이화여자대학교 산학협력단 | Method for identification of causative bacteria of bacterial infectious diseases using bacteria-derived nanovesicles |
-
2017
- 2017-12-27 WO PCT/KR2017/015537 patent/WO2018124726A1/en not_active Ceased
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR20060019700A (en) * | 2004-08-28 | 2006-03-06 | 김철민 | Bacterial specific, genus specific and species specific oligonucleotides for the discrimination of all bacteria, diagnostic kits comprising the same, and detection methods using the same |
| KR20110025603A (en) * | 2009-09-04 | 2011-03-10 | 주식회사이언메딕스 | Gram-positive bacteria-derived extracellular vesicles and uses thereof |
| KR20160073157A (en) * | 2014-12-16 | 2016-06-24 | 이화여자대학교 산학협력단 | Method for identification of causative bacteria of bacterial infectious diseases using bacteria-derived nanovesicles |
Non-Patent Citations (2)
| Title |
|---|
| ERDBRUGGER, UTA: "Extracellular vesicles in renal diseases: more than novel biomarkers?", JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, vol. 27, no. 1, 6 August 2015 (2015-08-06), pages 12 - 26, XP055607375 * |
| VAZIRI, NOSRATOLA D.: "Altered intestinal microbial flora and impaired epithelial barrier structure and function in CKD: the nature , mechanisms, consequences and potential treatment", NEPHROLOGY DIALYSIS TRANSPLANTATION, vol. 31, no. 5, 16 April 2015 (2015-04-16), pages 737 - 746, XP055607374 * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| KR101940445B1 (en) | Method for diagnosis of diabetes using analysis of bacteria metagenome | |
| WO2018155961A1 (en) | Method for diagnosing parkinson's disease through bacterial metagenome analysis | |
| WO2018124606A1 (en) | Method for diagnosing breast cancer via microbial metagenomic analysis | |
| KR101940426B1 (en) | Method for diagnosis of colon tumor using analysis of bacteria metagenome | |
| WO2018124617A1 (en) | Method for diagnosing lung cancer via bacterial metagenomic analysis | |
| KR101944665B1 (en) | Method for diagnosis of chronic obstructive airway disease using analysis of bacteria metagenome | |
| WO2018111040A1 (en) | Diagnosis method of stomach cancer through bacterial metagenome analysis | |
| KR102019646B1 (en) | Method for diagnosis of atopic dermatitis using analysis of microbial metagenome | |
| WO2018155950A1 (en) | Method for diagnosing diabetes through bacterial metagenome analysis | |
| KR101940423B1 (en) | Method for diagnosis of heart disease using analysis of bacteria metagenome | |
| KR102130485B1 (en) | Method for diagnosis of Alzheimer's dementia using analysis of bacteria metagenome | |
| WO2018155960A1 (en) | Method for diagnosing ovarian cancer through microbial metagenome analysis | |
| WO2019160284A1 (en) | Method for diagnosis of stroke through bacterial metagenome analysis | |
| US12084721B2 (en) | Inflammatory bowel disease diagnostic method by means of bacterial metagenomic analysis | |
| WO2019146966A1 (en) | Method for diagnosing cholangiocarcinoma via bacterial metagenomic analysis | |
| KR102008451B1 (en) | Method for diagnosis of Autism using analysis of bacteria metagenome | |
| KR101940446B1 (en) | Method for diagnosis of ovary cancer using analysis of microbial metagenome | |
| KR102019648B1 (en) | Method for diagnosis of lung cancer in asthma patients using analysis of bacteria metagenome | |
| EP3748018A1 (en) | Method for diagnosing depression via bacterial metagenomic analysis | |
| KR101940424B1 (en) | Method for diagnosis of renal failure using analysis of bacteria metagenome | |
| WO2019156325A1 (en) | Method for diagnosing irritable bowel syndrome via bacterial metagenomic analysis | |
| WO2018124619A1 (en) | Method for diagnosing bladder cancer via microbial metagenomic analysis | |
| WO2018124618A1 (en) | Method for diagnosing pancreatic cancer via bacterial metagenomic analysis | |
| KR102007786B1 (en) | Method for diagnosis of head and neck cancer using analysis of bacteria metagenome | |
| KR101936006B1 (en) | Method for diagnosis of bladder cancer using analysis of microbial metagenome |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17887818 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17887818 Country of ref document: EP Kind code of ref document: A1 |