[go: up one dir, main page]

WO2018122585A1 - Method for urban road traffic incident detecting based on floating-car data - Google Patents

Method for urban road traffic incident detecting based on floating-car data Download PDF

Info

Publication number
WO2018122585A1
WO2018122585A1 PCT/IB2016/058105 IB2016058105W WO2018122585A1 WO 2018122585 A1 WO2018122585 A1 WO 2018122585A1 IB 2016058105 W IB2016058105 W IB 2016058105W WO 2018122585 A1 WO2018122585 A1 WO 2018122585A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
time
traffic
historical
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/IB2016/058105
Other languages
French (fr)
Chinese (zh)
Inventor
杜豫川
邓富文
郑凌翰
蒋盛川
岳劲松
王晨薇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201680088595.8A priority Critical patent/CN109923595B/en
Priority to PCT/IB2016/058105 priority patent/WO2018122585A1/en
Priority to GBGB1711408.3A priority patent/GB201711408D0/en
Priority to PCT/IB2017/058535 priority patent/WO2018122805A1/en
Priority to CN201780050765.8A priority patent/CN109844832B/en
Priority to CN201780050754.XA priority patent/CN109997179A/en
Priority to PCT/IB2017/058531 priority patent/WO2018122801A1/en
Priority to GB1905907.0A priority patent/GB2569924B/en
Priority to CN201780050755.4A priority patent/CN109643485B/en
Priority to GB2009834.9A priority patent/GB2582532B/en
Priority to GBGB1909409.3A priority patent/GB201909409D0/en
Priority to GBGB1909406.9A priority patent/GB201909406D0/en
Priority to GB2100341.3A priority patent/GB2587588B/en
Priority to GBGB1909407.7A priority patent/GB201909407D0/en
Priority to PCT/IB2017/058536 priority patent/WO2018122806A1/en
Priority to CN201780050906.6A priority patent/CN109716414B/en
Priority to PCT/IB2017/058532 priority patent/WO2018122802A1/en
Priority to GB2100340.5A priority patent/GB2588556B/en
Priority to PCT/IB2017/058533 priority patent/WO2018122803A1/en
Priority to CN201780050907.0A priority patent/CN109791729B/en
Priority to CN201780050719.8A priority patent/CN110168520A/en
Priority to GBGB1909408.5A priority patent/GB201909408D0/en
Priority to GB2009833.1A priority patent/GB2582531B/en
Priority to GB1909405.1A priority patent/GB2572717B/en
Priority to PCT/IB2017/058534 priority patent/WO2018122804A1/en
Publication of WO2018122585A1 publication Critical patent/WO2018122585A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0129Traffic data processing for creating historical data or processing based on historical data
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0108Measuring and analyzing of parameters relative to traffic conditions based on the source of data
    • G08G1/0112Measuring and analyzing of parameters relative to traffic conditions based on the source of data from the vehicle, e.g. floating car data [FCD]
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0125Traffic data processing
    • G08G1/0133Traffic data processing for classifying traffic situation
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • G08G1/0137Measuring and analyzing of parameters relative to traffic conditions for specific applications
    • G08G1/0141Measuring and analyzing of parameters relative to traffic conditions for specific applications for traffic information dissemination

Definitions

  • the invention belongs to the technical field of traffic detection.
  • the present invention relates to a method for real-time detection of urban road traffic anomalies.
  • the spatial position information of different time points can be obtained.
  • map matching and data fusion After data preprocessing, map matching and data fusion, the travel speed probability distribution of the specific time and space range can be obtained; according to the change of the speed distribution, the position can be effectively identified.
  • Urban road traffic anomalies Background technique
  • Traffic anomaly detection is an important part of urban traffic management and one of the core functions of intelligent transportation systems. Traffic anomalies mainly include traffic accidents, vehicle breakdown, truck falling, damage or malfunction of road traffic facilities, and other special events that cause traffic flow disturbances. Such incidents are prone to traffic congestion, reduced road capacity, and severely affect the normal operation of the entire road traffic system. Through traffic anomaly detection, traffic managers can timely understand traffic anomaly information and take appropriate inducement and control measures to reduce the adverse effects of traffic anomalies.
  • Traffic anomaly detection can be divided into manual mode and automatic mode.
  • Manual methods include patrol cars, emergency telephone reporting and video surveillance. Due to the consumption of manpower and material resources and poor real-time performance, traffic management needs cannot be met.
  • the automatic method relies on the automatic event detection (AID, Automated Incidence Detection) algorithm.
  • AID Automated Incidence Detection
  • the basic principle is to identify traffic anomalies by detecting changes in road traffic at different locations.
  • AID algorithms include pattern recognition algorithms (such as California algorithm, Monica algorithm), statistical prediction algorithms (such as exponential smoothing, Kalman filtering), traffic flow model algorithms (such as McMaster algorithm), and intelligent recognition algorithms. (such as artificial neural networks, fuzzy logic algorithms).
  • the invention utilizes the trajectory data returned by the taxi and the bus GNSS positioning device, establishes a historical traffic state database and a real-time traffic state database, and identifies the traffic anomaly event by analyzing the difference of the traffic flow characteristics reflected by the two.
  • the method has the characteristics of good real-time performance, parallel processing, high recognition rate and low requirements for detection facilities. It is suitable for the detection of urban road traffic anomalies in data environment with real-time floating vehicle positioning data.
  • a US patent application, US 20160148512 discloses a composition principle and implementation method of a traffic anomaly detection and reporting system.
  • the system consists of a sensor, a communication module, a mobile processing module, and a user interaction module.
  • the sensor is used to collect relevant data around the vehicle;
  • the communication module is used for transmitting the vehicle data and receiving data of the surrounding vehicle;
  • the mobile processing module is for processing and analyzing the data of the relevant vehicle in a certain area and generating a traffic event report; user interaction
  • the module is able to provide traffic incident reports like a user.
  • the scheme is a traffic anomaly detection technology based on the vehicle and vehicle communication network, which can use various types of information collected by the sensor to identify abnormal events.
  • the sensor and the communication unit need to be separately installed and debugged, the implementation is difficult; the processing capacity of the mobile processing unit is limited; and the mobile and fixed message receiving end is required, and the system itself has a failure probability and the reliability is not good.
  • a Chinese patent application, CN 104809878 A discloses a method for detecting abnormal state of urban road traffic using bus GPS data.
  • the scheme obtains the link delay time index according to the GPS historical data, obtains the instantaneous speed, the cycle average speed, the weighted moving average speed and the multi-vehicle average speed according to the current GPS data, and uses the gauge variable analysis algorithm to detect the abnormality.
  • This program does not New testing facilities are needed and implementation is convenient.
  • the characterization of the traffic situation is too simplistic, and it is impossible to analyze the characteristics and causes of traffic anomalies. There is no basis for the division of traffic scenarios, and the influence of weather and other factors on traffic situation changes cannot be considered. Summary of the invention
  • Floating car Also known as the probe car. Refers to buses and taxis that have on-board positioning devices and are driving on city roads.
  • GNSS Global Navigation Satellite System
  • GPS Global Navigation Satellite System
  • Glonass Galileo
  • Beidou satellite navigation systems GPS, Glonass, Galileo and Beidou satellite navigation systems.
  • Space-time sub-zone A zone divided by two dimensions, time and space, reflected in a certain space within a certain period of time.
  • Historical trajectory data is trajectory data accumulated over a long period of time and stored in a database. Historical trajectory data is dynamic change data that needs to be updated in a timely manner and periodically reprocessed and analyzed to ensure the accuracy of historical traffic feature extraction. The data for each spatiotemporal sub-area can be processed in parallel to increase efficiency. In the present invention, it may be simply referred to as historical data.
  • Real-time trajectory data is a trajectory data set within a time zone that is closest to the current time. In the present invention, it may be simply referred to as real-time data.
  • Traffic situation A general term for the comprehensive situation of traffic operations within a certain period of time and within a certain space.
  • Traffic anomalies traffic turbulence caused by events such as traffic accidents, vehicle breakdown, truck falling, road traffic facilities damage or malfunctions.
  • Abnormal traffic severity The severity of traffic flow disorder is the difference in traffic flow characteristics after traffic flow and traffic anomalies in normal conditions.
  • Traffic Anomaly Index A measure of the severity of traffic. The range is 0 ⁇ 10. The larger the value, the more serious the traffic anomaly.
  • Traffic environment The sum of all external influences and forces acting on road traffic participants. This includes road conditions, transportation facilities, landforms, meteorological conditions, and transportation activities of other transportation participants.
  • Map Matching The process of associating geographic coordinates with a city road network.
  • Peak hourly traffic The maximum hourly traffic flow in a city's road section.
  • Finite Mixing Model A mathematical method of simulating complex density with simple density.
  • a finite mixed model with a set of variables y and a component number K can be expressed as:
  • Response variable A variable that changes according to an independent variable, also called a dependent variable.
  • Bayesian information criterion It is an evaluation index of the reliability of the result of correcting the probability of occurrence by using the Bayesian formula to estimate the probability of partial unknowns under incomplete intelligence. Its calculation method is:
  • a likelihood function is a function of the parameters of a statistical model. Given the output X, the likelihood function L(0 ⁇ x) on the parameter ⁇ (in numerical value) is equal to the probability of the variable after the given parameter: (
  • Kullback-Leibler divergence A measure of the difference between two probability distributions P and Q.
  • J-Shannon divergence is a symmetrized form of Kullback-Leibler divergence.
  • K-Medoids algorithm A clustering algorithm that selects such a point from the current category for each iteration to all other
  • the object of the present invention is to establish a scheme based on a floating vehicle trajectory recording system, using historical GNSS positioning data and real-time GNSS positioning data, combined with traffic environment information to identify road traffic anomalies.
  • the present invention provides the following technical solutions:
  • the implementation premise of the present invention is: a floating car (a taxi, a bus, etc.) equipped with a GNSS track recorder; a data center having a large-scale storage, calculation, and real-time task processing capability.
  • the scope of application of the present invention is: Urban roads (including ground roads and elevated roads) through which the above-mentioned floating vehicles pass.
  • the implementation steps of the present invention include:
  • the map matching algorithm is used to project the GNSS positioning points to the city map, and the matching relationship between the positioning points and the road segments is established, and the error caused by the positioning drift is corrected.
  • Historical trajectory data analysis and feature extraction Using the historical floating vehicle trajectory data, a traffic feature model is established. For each spatiotemporal sub-area, the traffic characteristics are described by the probability distribution of the travel speed, the traffic feature model is established and the parameters are estimated.
  • Real-time trajectory data analysis and feature extraction Use real-time floating car trajectory data to grasp the dynamics of traffic characteristics.
  • the current traffic characteristics are described by the travel speed probability distribution of the current space-time sub-region, and the model is established and parameter estimation is performed.
  • the Jensen-Shannon divergence is used to measure the difference between historical traffic characteristics and real-time traffic characteristics.
  • the step 1) may specifically adopt the following methods:
  • the segment size of the time dimension is determined.
  • the time segment span is a fixed value, usually 30 minutes as a time segment; the segment size of the spatial dimension is determined, and the spatial segment span is a fixed value, and a spatial grid of 200 m ⁇ 200 m is usually taken as a spatial segment.
  • Non-equidistant space-time division method For urban central areas where the road network density is greater than 2km/km 2 or the peak hour flow is greater than 1000 vehicles/hour, 30min time segments and 200mX 200m space segments are taken. For road network density less than 2km/km 2 or peak hour traffic is less than 1000. In the suburb of the city/hour, take a 30-minute time segment and a 400mX 400m space segment.
  • the step 3) specifically includes the following steps:
  • the matching scheme includes:
  • This program is suitable for high frequency floating car data.
  • the step 4) may specifically adopt the following methods:
  • the data of all driving speeds of each secondary floating car in a time and space sub-region constitutes the whole.
  • ⁇ ... ⁇ - is the first and second GNSS positioning in the space-time sub-region
  • the distance between points, ..., the distance between the n-1th and the nth GNSS anchor point, h-tange is the first in the space-time sub-region, ..., Timestamps of GNSS anchor points; data in each spatio-temporal sub-area is not filtered to form a set for subsequent processing.
  • Time-smooth sampling plan Specify the length of the time segment and the upper limit of the number of segments of the same time; search for the velocity data in each time segment in a time-space sub-region. If the number of velocity data in the time segment exceeds the upper limit, the data of the upper limit is randomly added to the data to be processed. sample.
  • the distance between the GNSS positioning points is the first time in the space-time sub-area, ..., the time stamp of the GNSS positioning point; the specified time segment length t P , the upper limit of the number of segments of the same time; 3 ⁇ 4. 1; Search for the speed data in the time and time segments of a time-space sub-region, if the number of speed data in the time segment exceeds the upper limit; 1 ⁇ 2 ⁇ , random take; 1 ⁇ 2 ⁇ data is added.
  • the step 5) may specifically adopt the following method:
  • This scheme uses a mixed Gaussian model with a fixed component quantity to describe the probability distribution of vehicle speed.
  • This program uses a model-based evaluation method to select the appropriate number of components, as follows:
  • t is the number of parameters in the model, "for the total amount of data.
  • the /C smallest hybrid model is selected, and its parameter vectors 1], ⁇ , and ⁇ are recorded as the feature records of the local space-time sub-region.
  • the density curve morphology of the hybrid model is shown in Figure 6.
  • This scheme uses the same model-based evaluation method as 512), but the distribution of the sub-components and the number of components are variable, as follows:
  • the probability distribution model is chosen as the distribution type of the sub-components, including but not limited to: normal distribution, gamma distribution, Weibull distribution.
  • normal distribution gamma distribution
  • Weibull distribution a normal distribution
  • the sub-distribution function takes:
  • Historical trajectory data classification method by context. Based on temperature, precipitation, visibility and traffic control measures, historical data under no traffic anomalies are divided into different categories, models are established and parameter estimates are made.
  • the implementation method is as follows:
  • the traffic environment is divided into 5 ⁇ 8 categories, and the historical data is classified into the above categories according to the different traffic environments corresponding to historical data.
  • the processing as described in 51) is performed separately, thereby establishing a mapping relationship 3 ⁇ 4 ⁇ 7, which is a traffic situation and a traffic situation.
  • Historical data clustering method For the historical data, the difference quantization between different spatiotemporal regions is obtained by comparison between the time and space sub-regions, and the quantized differences are used for clustering. Temperature, precipitation, visibility and traffic control measures are used as characteristic factors to perform multiple Logit regressions to establish a mapping relationship between traffic environment and categories. See Figure 4 for the implementation process. The implementation steps are as follows:
  • the probability density function P, (x) of the travel speed distribution corresponding to the spatiotemporal sub-region on different dates is written, and the parameters are mixed Gaussian model as an example:
  • the traffic environment data (including temperature, precipitation, visibility, etc.) is used as an independent variable. Perform multiple logit regression to obtain the mapping relationship between traffic environment E and traffic situation category T ⁇ 7).
  • the step 6) may specifically adopt the following methods:
  • the step 7) specifically includes the following steps:
  • step 62) the historical traffic characteristic data under the category is located according to the category of the current traffic situation;
  • the step 8) specifically includes the following steps:
  • the urban road traffic anomaly detection technology based on floating car data proposed by the present invention can realize the detection of abnormal events with high accuracy, the detection rate exceeds 90%, and the false alarm rate is lower than 20%. It has achieved good detection results and can be applied to intelligent management and service of urban traffic.
  • FIG. 1 shows a schematic diagram of the components and basic principles of the present invention
  • Figure 2 is a schematic view showing the overall flow of the present invention in the implementation process
  • FIG. 3 is a schematic diagram showing an implementation manner of a fast map matching algorithm of the present invention.
  • FIG. 4 is a schematic flow chart showing a historical traffic feature extraction scheme implemented by the present invention.
  • FIG. 5 is a schematic flow chart showing a real-time traffic feature extraction scheme implemented by the present invention.
  • Figure 6 shows a schematic diagram of the morphology of the Gaussian mixture model probability distribution
  • Figure 7 shows a measurement of the difference in the comparison between historical traffic characteristics and real-time traffic characteristics.
  • the overall system architecture of the present invention includes an onboard GNSS track recorder, a data center, a GNSS satellite, and a communication system carried by a floating vehicle.
  • the GNSS here includes GPS, GLONASS, GALILEO, Beidou, IRNSS, QZSS and any similar navigation satellite positioning system.
  • GNSS track recorders equipped with floating cars, buses, etc., with a certain sampling frequency / (general requirements; ).1 ⁇ ) record the position information of the vehicle at various points during driving, and through the GPRS mobile communication network (also The use of wireless network communication technologies such as WCDMA and TD-LTE, but the cost will be correspondingly improved), the location information is sent to the data center in real time.
  • the data center establishes a historical road traffic characteristic database through data preprocessing, data fusion, and through a specific algorithm; establishes a real-time traffic feature database for the recently received real-time data; and determines whether the current traffic feature is abnormal through the mapping relationship between the historical database and the real-time database And visualize the display through the processing terminal and generate a traffic anomaly event report.
  • the overall process of the scheme is shown in Figure 2, including the acquisition and storage of GNSS trajectory data, the establishment of spatiotemporal sub-areas, historical traffic feature extraction, real-time traffic feature extraction, and anomaly identification.
  • Collecting and storing GNSS trajectory data is the data foundation of the whole scheme. Due to the huge amount of data, a distributed storage scheme should be adopted.
  • the basic assumption of establishing a spatiotemporal sub-area is that it has the same traffic characteristics in a specific area and a specific time period. This assumption is generally applicable after long-term observation.
  • Historical traffic feature extraction the principle is to use the GNSS trajectory data to calculate the travel speed, use a large number of travel speed data in the same space-time sub-region, establish a probability distribution model of vehicle speed, and estimate the parameters, and characterize the traffic characteristics with a small number of parameters.
  • Real-time traffic feature extraction the principle is to process and analyze the speed data in the current time period, and also establish the current vehicle speed probability distribution model.
  • the anomaly identification is to use the difference measure to judge the degree of change of the real-time feature compared to the historical feature, and determine whether a traffic anomaly event occurs according to whether it reaches the threshold.
  • Embodiment 1 According to the combination of the embodiments of the invention, the implementation is given below. Embodiment 1
  • Step 11 Determine the segment size of the time dimension by using the equidistant space-time division method, and the time segment span is a fixed value, usually 30 minutes.
  • the spatial segment span is a fixed value, usually takes a spatial grid of 200mX200m as a spatial segment.
  • Step 12 Perform data preprocessing to perform data cleaning, data integration, data conversion, and data reduction on the GNSS positioning data to improve the structural degree of the data.
  • the anchor point is matched to the spatio-temporal sub-area in combination with the timestamp data of the coordinates of the positioning point.
  • the distance between the GNSS positioning points ..., the distance between the -1 and the nth GNSS positioning point, which is the first in the space-time sub-region, ..., the first Timestamp of the GNSS anchor point; the data in each spatio-temporal sub-area is not filtered to form a set for subsequent processing.
  • Step 15 the historical data under the condition of no traffic anomaly is used to establish a traffic feature model and estimate the parameters.
  • t is the number of parameters in the model, "for the total amount of data.
  • Step 16 Perform real-time traffic data model establishment and parameter estimation to obtain a characteristic function of the current traffic condition.
  • the method is the same as step 1-5, and the parameter vectors t] rt , ⁇ , a rt are recorded.
  • Step 18 normalize the speed of each space-time sub-region by ⁇ 1
  • Step 21 Using the equidistant space-time division method, determining the segment size of the time dimension, the time segment span is a fixed value, usually taking 30 minutes as a time segment; determining the segment size of the spatial dimension, the spatial segment span is a fixed value, usually taking 200m ⁇ 200m
  • the spatial grid acts as a spatial fragment.
  • Step 22 Perform data preprocessing to perform data cleaning, data integration, data conversion, and data reduction on the GNSS positioning data to improve the structural degree of the data.
  • the anchor point is matched to the spatio-temporal sub-area in combination with the timestamp data of the coordinates of the positioning point.
  • Step 24 Calculate the travel speed of each vehicle in the space-time sub-region: ⁇ .
  • ⁇ , 2... ⁇ -1 " is the distance between the first and second GNSS positioning points in the space-time sub-area, . ., the distance between the -1 and the GNSS anchor points, ⁇ is the first time in the space-time sub-area, ..., the time stamp of the GNSS anchor points ;
  • the upper limit of the number of segments of the data segment ⁇ Search for the time data in a space-time sub-region. The velocity data in each time segment. If the number of velocity data in the time segment exceeds the upper limit ⁇ , the random data is added to V.
  • Step 25 the historical data under the condition of no traffic anomaly is used to establish the traffic characteristic model and estimate the parameters.
  • t is the number of parameters in the model, "for the total amount of data.
  • the /C smallest hybrid model is selected, and its parameter vectors 1], ⁇ , and ⁇ are recorded as the feature records of the local space-time sub-region.
  • the probability density function p'Q) of the travel speed distribution corresponding to the spatio-temporal sub-region on different dates is written:
  • the distance matrix is used as the input of the K-Medoids algorithm to obtain clustering results and index the categories.
  • category index is used as the response variable, and multiple logit regressions are performed to obtain the mapping relationship R(E ⁇ T) between the traffic environment E and the traffic situation category T.
  • the same type of data is aggregated, and the hybrid model is re-established with the new data set after aggregation, and the parameter estimation is performed to obtain the final historical traffic characteristic data set.
  • Step 26 Obtain a characteristic function of the traffic condition, and obtain current information such as temperature, precipitation, visibility, traffic control measures, and the type of the current traffic condition.
  • Step 28 Denormalize the speed of each time and space sub-region
  • Step 31 Using a non-equidistant space-time division method, for a central area of the city where the road network density is greater than 2 km/km 2 or the peak hour flow is greater than 1000 vehicles/hour, take a 30 min time segment and a 200 mX 200 m spatial segment for the road network density. For suburban areas of less than 2km/km 2 or peak hour traffic of less than 1000 vehicles per hour, 30 min time segments and 400 mX 400 m space segments are taken.
  • Step 32 Perform data preprocessing, perform data cleaning, data integration, data conversion, and data reduction on the GNSS positioning data to improve the structural degree of the data.
  • is satisfied, complete the match; otherwise, search for other road segments Until the conditions are met.
  • the projection line equation is: yy A ⁇ ( ⁇ _ ) ky A - ky t + k 2 x t + x A
  • the anchor point is matched to the spatio-temporal sub-area in combination with the timestamp data of the coordinates of the positioning point.
  • Step 34 Calculate the travel speed of each vehicle in the space-time sub-region: , where ⁇ 3 ⁇ 4, 2... ⁇ -1," is the distance between the first and second GNSS positioning points in the space-time sub-region, . ., the distance between the -1 and the GNSS anchor points, ... is the first time in the space-time sub-region, ..., the time of the GNSS anchor point Poke; specify the time segment length at the same time segment number of data segments upper limit ⁇ search for a time-space sub-region time ⁇ speed data within each time segment, if the number of velocity data within the time segment exceeds the upper limit ⁇ random data is added to V .
  • Step 35 Perform historical traffic data without traffic abnormality as a whole, and establish traffic feature model and parameter estimation.
  • t is the number of parameters in the model, "for the total amount of data.
  • the /C smallest hybrid model is selected, and its parameter vectors 1], ⁇ , and ⁇ are recorded as the feature records of the local space-time sub-region.
  • the probability density function p'Q) of the travel speed distribution corresponding to the spatio-temporal sub-region on different dates is written:
  • the distance matrix is used as the input of the K-Medoids algorithm to obtain clustering results and index the categories.
  • the traffic environment data (including temperature, precipitation, visibility, etc.) is used as an independent variable to perform multiple logit regression to obtain the mapping relationship between the traffic environment E and the traffic situation category T R ⁇ E ⁇ T).
  • the same type of data is aggregated, and the hybrid model is re-established with the new data set after aggregation, and the parameter estimation is performed to obtain the final historical traffic characteristic data set.
  • Step 36 Obtain a characteristic function of the traffic condition, and obtain current information such as temperature, precipitation, visibility, traffic control measures, and the type of the current traffic condition.
  • Step 38 Denormalize the speed of each time and space sub-region

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Databases & Information Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Traffic Control Systems (AREA)

Abstract

A method for urban road traffic incident detecting based on floating-car data can use on-board GNSS positioning devices of floating cars to acquire the space position information of the floating cars at different time, and therefore, can achieve the intelligent detection of urban road traffic incidents by analyzing and mining the massive floating car track information. The urban road traffic incident detection technology uses the probability distribution of travel speed to characterize traffic conditions, uses the measurement index of difference in probability distribution to reflect the difference in traffic conditions, thereby having the advantages of clear principles, being easy to implement, and having a high detection rate.

Description

一种基于浮动车数据的城市道路交通异常检测方法 Urban road traffic anomaly detection method based on floating car data

A Method for Urban Traffic Incident Detecting based on Floating-Car Data 技术领域  A Method for Urban Traffic Incident Detecting based on Floating-Car Data

本发明属于交通检测技术领域。 特别地, 本发明涉及一种城市道路交通异常实时检测方法。 通 过浮动车的车载 GNSS定位装置, 可获取其不同时刻的空间位置信息, 经过数据预处理、 地图匹配 和数据融合, 获得特定时空范围的行程车速概率分布; 根据速度分布的变化情况, 可有效识别城市 道路交通异常事件。 背景技术  The invention belongs to the technical field of traffic detection. In particular, the present invention relates to a method for real-time detection of urban road traffic anomalies. Through the on-board GNSS positioning device of the floating car, the spatial position information of different time points can be obtained. After data preprocessing, map matching and data fusion, the travel speed probability distribution of the specific time and space range can be obtained; according to the change of the speed distribution, the position can be effectively identified. Urban road traffic anomalies. Background technique

交通异常事件检测是城市交通管理的重要组成部分, 也是智能交通系统的核心功能之一。 交通 异常事件主要包括交通事故、 车辆抛锚、 货车落物、 道路交通设施损坏或故障以及其他造成交通流 紊乱的特殊事件。 该类事件容易造成交通拥堵、 路段通行能力降低, 严重时影响整个道路交通系统 的正常运行。 通过交通异常事件检测, 可使交通管理者及时了解交通异常信息, 并采取适当的诱导 和控制措施, 降低交通异常事件的不良影响。  Traffic anomaly detection is an important part of urban traffic management and one of the core functions of intelligent transportation systems. Traffic anomalies mainly include traffic accidents, vehicle breakdown, truck falling, damage or malfunction of road traffic facilities, and other special events that cause traffic flow disturbances. Such incidents are prone to traffic congestion, reduced road capacity, and severely affect the normal operation of the entire road traffic system. Through traffic anomaly detection, traffic managers can timely understand traffic anomaly information and take appropriate inducement and control measures to reduce the adverse effects of traffic anomalies.

交通异常事件检测可分为人工方式和自动方式。 人工方式包括巡逻车、 紧急电话上报和视频监 控等,由于消耗人力物力且实时性差,无法满足交通管理的需要。自动方式依靠自动事件检测(AID, Automated Incidence Detection)算法实现, 基本原理是通过检测不同位置道路交通流的变化来识别交 通异常事件。 目前常用的 AID算法包括模式识别类算法 (如 California算法、 莫妮卡算法)、 统计预 测类算法 (如指数平滑法、 卡尔曼滤波算法)、 交通流模型算法 (如 McMaster算法) 以及智能识别 算法 (如人工神经网络、 模糊逻辑算法)。  Traffic anomaly detection can be divided into manual mode and automatic mode. Manual methods include patrol cars, emergency telephone reporting and video surveillance. Due to the consumption of manpower and material resources and poor real-time performance, traffic management needs cannot be met. The automatic method relies on the automatic event detection (AID, Automated Incidence Detection) algorithm. The basic principle is to identify traffic anomalies by detecting changes in road traffic at different locations. Currently used AID algorithms include pattern recognition algorithms (such as California algorithm, Monica algorithm), statistical prediction algorithms (such as exponential smoothing, Kalman filtering), traffic flow model algorithms (such as McMaster algorithm), and intelligent recognition algorithms. (such as artificial neural networks, fuzzy logic algorithms).

但是目前的检测方法存在对设施的要求高、 计算复杂度高、 无法对异常状况的态势做进一步判 断等缺点。 本发明利用出租车、 公交车车载 GNSS定位装置回传的轨迹数据, 建立历史交通状态数 据库和实时交通状态数据库, 通过分析两者反映的交通流特征差异, 识别交通异常事件。 该方法具 有实时性好、 可并行处理、 识别率高以及对检测设施要求低等特点, 适用于有实时浮动车定位数据 的数据环境下城市道路交通异常事件的检测。  However, the current detection methods have the disadvantages of high requirements on facilities, high computational complexity, and inability to make further judgments on the situation of abnormal conditions. The invention utilizes the trajectory data returned by the taxi and the bus GNSS positioning device, establishes a historical traffic state database and a real-time traffic state database, and identifies the traffic anomaly event by analyzing the difference of the traffic flow characteristics reflected by the two. The method has the characteristics of good real-time performance, parallel processing, high recognition rate and low requirements for detection facilities. It is suitable for the detection of urban road traffic anomalies in data environment with real-time floating vehicle positioning data.

目前, 针对交通异常事件监测, 有以下代表性技术:  At present, for the monitoring of traffic anomalies, the following representative technologies are available:

一件美国专利申请, US 20160148512, 披露了一种交通异常事件检测和上报系统的组成原理和 实施方法。 该系统由传感器、 通信模块、 移动处理模块和用户交互模块组成。 传感器用于采集车辆 周边的相关数据; 通信模块用于发送本车辆数据和接收周边车辆的数据; 移动处理模块用于处理和 分析相关车辆在某一区域内的数据并生成交通事件报告; 用户交互模块能够像用户提供交通事件报 告。 该方案是一种基于车车和车路通讯网络的交通异常事件检测技术, 能够利用传感器采集的各类 信息, 判别异常事件。 然而, 由于传感器、 通信单元需要单独安装调试, 实施难度较大; 移动处理 单元处理能力受限; 同时需要移动和固定的讯息接收端, 系统本身存在故障概率, 可靠性不佳。  A US patent application, US 20160148512, discloses a composition principle and implementation method of a traffic anomaly detection and reporting system. The system consists of a sensor, a communication module, a mobile processing module, and a user interaction module. The sensor is used to collect relevant data around the vehicle; the communication module is used for transmitting the vehicle data and receiving data of the surrounding vehicle; the mobile processing module is for processing and analyzing the data of the relevant vehicle in a certain area and generating a traffic event report; user interaction The module is able to provide traffic incident reports like a user. The scheme is a traffic anomaly detection technology based on the vehicle and vehicle communication network, which can use various types of information collected by the sensor to identify abnormal events. However, since the sensor and the communication unit need to be separately installed and debugged, the implementation is difficult; the processing capacity of the mobile processing unit is limited; and the mobile and fixed message receiving end is required, and the system itself has a failure probability and the reliability is not good.

一件中国专利申请, CN 104809878 A, 披露了一种利用公交车 GPS数据检测城市道路交通异常 状态的方法。 该方案根据 GPS历史数据获得路段延误时间指数, 根据 GPS当前数据获得瞬时速度、 周期平均速度、 加权滑动平均速度和多车平均速度, 利用规范变量分析算法检测异常。 这一方案不 需要新增检测设施, 实施便利。 但是对于交通态势的表征过于简化, 无法分析交通异常状况的特点 和成因; 对交通场景的划分缺乏依据, 未能考虑天气等因素对交通态势变化的影响。 发明内容 A Chinese patent application, CN 104809878 A, discloses a method for detecting abnormal state of urban road traffic using bus GPS data. The scheme obtains the link delay time index according to the GPS historical data, obtains the instantaneous speed, the cycle average speed, the weighted moving average speed and the multi-vehicle average speed according to the current GPS data, and uses the gauge variable analysis algorithm to detect the abnormality. This program does not New testing facilities are needed and implementation is convenient. However, the characterization of the traffic situation is too simplistic, and it is impossible to analyze the characteristics and causes of traffic anomalies. There is no basis for the division of traffic scenarios, and the influence of weather and other factors on traffic situation changes cannot be considered. Summary of the invention

为了更清晰地阐述本发明的内容, 首先将涉及到的专业术语解释如下:  In order to explain the contents of the present invention more clearly, the technical terms involved will first be explained as follows:

浮动车: 也称探测车。 指安装了车载定位装置并行驶在城市道路上的公交汽车和出租车。  Floating car: Also known as the probe car. Refers to buses and taxis that have on-board positioning devices and are driving on city roads.

GNSS: 全球导航卫星系统 (Global Navigation Satellite System)„ 包括 GPS、 Glonass, Galileo 以及北斗卫星导航系统等。  GNSS: Global Navigation Satellite System „ includes GPS, Glonass, Galileo and Beidou satellite navigation systems.

时空子区: 按照时间和空间两个维度划分的片区, 反映在一段时间内, 一定的空间范围内的情 况。  Space-time sub-zone: A zone divided by two dimensions, time and space, reflected in a certain space within a certain period of time.

历史轨迹数据: 历史轨迹数据是长时间积累并存储在数据库中的轨迹数据。 历史轨迹数据是动 态变化的数据, 需要及时进行更新,并定期做重新处理和分析, 以保证历史交通特征提取的准确性。 每个时空子区的数据可以并行处理以提高效率。 本发明中可简称为历史数据。  Historical trajectory data: Historical trajectory data is trajectory data accumulated over a long period of time and stored in a database. Historical trajectory data is dynamic change data that needs to be updated in a timely manner and periodically reprocessed and analyzed to ensure the accuracy of historical traffic feature extraction. The data for each spatiotemporal sub-area can be processed in parallel to increase efficiency. In the present invention, it may be simply referred to as historical data.

实时轨迹数据: 实时轨迹数据是距离当前时刻最近的一个时间区段内的轨迹数据集合。 本发明 中可简称为实时数据。  Real-time trajectory data: The real-time trajectory data is a trajectory data set within a time zone that is closest to the current time. In the present invention, it may be simply referred to as real-time data.

交通态势: 一定时间、 一定空间内交通运行的综合情况的总称。  Traffic situation: A general term for the comprehensive situation of traffic operations within a certain period of time and within a certain space.

交通异常: 交通事故、 车辆抛锚、 货车落物、 道路交通设施损坏或故障等事件引发的交通流紊 乱的情况。  Traffic anomalies: traffic turbulence caused by events such as traffic accidents, vehicle breakdown, truck falling, road traffic facilities damage or malfunctions.

交通异常严重性: 即交通流紊乱的严重性, 是正常状态下交通流与交通异常发生后交通流特征 的差异。  Abnormal traffic severity: The severity of traffic flow disorder is the difference in traffic flow characteristics after traffic flow and traffic anomalies in normal conditions.

交通异常指数: 交通异常严重性的量度。 范围为 0~10, 数值越大, 交通异常越严重。  Traffic Anomaly Index: A measure of the severity of traffic. The range is 0~10. The larger the value, the more serious the traffic anomaly.

交通环境: 作用于道路交通参与者的所有外界影响与力量的总和。 包括道路状况、 交通设施、 地物地貌、 气象条件, 以及其他交通参与者的交通活动。  Traffic environment: The sum of all external influences and forces acting on road traffic participants. This includes road conditions, transportation facilities, landforms, meteorological conditions, and transportation activities of other transportation participants.

地图匹配: 将地理坐标与城市路网关联的过程。  Map Matching: The process of associating geographic coordinates with a city road network.

髙峰小时流量: 某城市道路断面一日内小时交通流量的最大值。  Peak hourly traffic: The maximum hourly traffic flow in a city's road section.

有限混合模型: 一种用简单密度模拟复杂密度的数学方法。 变量集合为 y、 成分数量为 K的有 限混合模型可表示为:

Figure imgf000004_0001
Finite Mixing Model: A mathematical method of simulating complex density with simple density. A finite mixed model with a set of variables y and a component number K can be expressed as:
Figure imgf000004_0001

响应变量: 根据自变量发生改变的变量, 也称因变量。  Response variable: A variable that changes according to an independent variable, also called a dependent variable.

贝叶斯信息准则: 是在不完全情报下, 对部分未知的状态用主观概率估计, 然后用贝叶斯公式 对发生概率进行修正的结果可靠性的评价指标。 其计算方法为: Bayesian information criterion: It is an evaluation index of the reliability of the result of correcting the probability of occurrence by using the Bayesian formula to estimate the probability of partial unknowns under incomplete intelligence. Its calculation method is:

Figure imgf000004_0002
Figure imgf000004_0002

式中, 为似然函数的最大值, 为未知参数的个数, 《为样本量。  Where, is the maximum value of the likelihood function, which is the number of unknown parameters, "for the sample size.

似然函数: 似然函数是一种关于统计模型参数的函数。 给定输出 X时, 关于参数 Θ的似然函数 L(0\x) (在数值上) 等于给定参数 后变量 的概率: ( |χ)=Ρ( =χ| )。  Likelihood function: A likelihood function is a function of the parameters of a statistical model. Given the output X, the likelihood function L(0\x) on the parameter Θ (in numerical value) is equal to the probability of the variable after the given parameter: ( |χ)=Ρ( =χ| ).

Kullback-Leibler散度: 两个概率分布 P和 Q差异的一种量度。  Kullback-Leibler divergence: A measure of the difference between two probability distributions P and Q.

Jensen-Shannon散度: 是 Kullback-Leibler散度的一种对称化形式。 K-Medoids算法: 一种聚类算法, 每次迭代都从当前类别中选取这样一个点 它到其他所有Jensen-Shannon divergence: is a symmetrized form of Kullback-Leibler divergence. K-Medoids algorithm: A clustering algorithm that selects such a point from the current category for each iteration to all other

(当前类别中的) 点的距离之和最小 作为新的中心点。 本发明的目的是建立一套基于浮动车轨迹记录系统, 利用历史 GNSS定位数据和实时 GNSS定 位数据, 结合交通环境信息识别道路交通异常事件的方案。 为了达到上述目的, 本发明提供了如下 技术方案: The sum of the distances of points (in the current category) is the smallest as a new center point. The object of the present invention is to establish a scheme based on a floating vehicle trajectory recording system, using historical GNSS positioning data and real-time GNSS positioning data, combined with traffic environment information to identify road traffic anomalies. In order to achieve the above object, the present invention provides the following technical solutions:

本发明的实施前提是:搭载 GNSS轨迹记录仪的浮动车(出租车、公交车等);具有大规模存储、 计算、 实时任务处理能力的数据中心。  The implementation premise of the present invention is: a floating car (a taxi, a bus, etc.) equipped with a GNSS track recorder; a data center having a large-scale storage, calculation, and real-time task processing capability.

本发明的适用范围是: 有上述浮动车经过的城市道路 (包括地面道路和高架道路)。  The scope of application of the present invention is: Urban roads (including ground roads and elevated roads) through which the above-mentioned floating vehicles pass.

本发明的实施步骤包括:  The implementation steps of the present invention include:

1) 建立时空子区。 将一天划分为若干时间片段, 将城市道路交通异常检测的实施区域划分为若 干空间片段。  1) Establish a space-time sub-zone. The day is divided into time segments, and the implementation area of urban road traffic anomaly detection is divided into several spatial segments.

2) 数据预处理。 将 GNSS定位数据进行数据清洗、 数据集成、 数据转换、 数据归约, 提高数据 的结构化程度。  2) Data preprocessing. Data cleaning, data integration, data conversion, and data reduction of GNSS positioning data to improve the structure of data.

3) 快速地图匹配。 结合城市路网数据, 通过地图匹配算法, 将 GNSS 定位点投影到城市地图, 建立定位点与路段的匹配关系, 并修正定位漂移带来的误差。  3) Quick map matching. Combined with the urban road network data, the map matching algorithm is used to project the GNSS positioning points to the city map, and the matching relationship between the positioning points and the road segments is established, and the error caused by the positioning drift is corrected.

4) 数据抽样。 基于不同的计算能力和精度要求, 可采用不同的抽样方法。  4) Data sampling. Different sampling methods can be used based on different computing power and accuracy requirements.

5) 历史轨迹数据分析和特征提取。 利用历史浮动车轨迹数据, 建立交通特征模型。 对于每个时 空子区, 用行程速度的概率分布描述交通特征, 建立交通特征模型并进行参数估计。  5) Historical trajectory data analysis and feature extraction. Using the historical floating vehicle trajectory data, a traffic feature model is established. For each spatiotemporal sub-area, the traffic characteristics are described by the probability distribution of the travel speed, the traffic feature model is established and the parameters are estimated.

6) 实时轨迹数据分析和特征提取。 利用实时浮动车轨迹数据, 掌握交通特征的变化动态。 利用 当前时空子区的行程速度概率分布描述当前交通特征, 建立模型并进行参数估计。  6) Real-time trajectory data analysis and feature extraction. Use real-time floating car trajectory data to grasp the dynamics of traffic characteristics. The current traffic characteristics are described by the travel speed probability distribution of the current space-time sub-region, and the model is established and parameter estimation is performed.

7) 异常检测。 通过 Jensen-Shannon散度衡量历史交通特征与实时交通特征的差异。  7) Anomaly detection. The Jensen-Shannon divergence is used to measure the difference between historical traffic characteristics and real-time traffic characteristics.

8) 异常严重性量化表征。 计算和发布交通状况异常指数。 所述步骤 1)具体可以采用以下方法:  8) Quantitative characterization of abnormal severity. Calculate and publish an abnormality index for traffic conditions. The step 1) may specifically adopt the following methods:

11) 等距时空划分法。 确定时间维度的片段尺度, 时间片段跨度为固定值, 通常取 30min作为 一个时间片段; 确定空间维度的片段尺度, 空间片段跨度为固定值, 通常取 200mX200m的空间网 格作为一个空间片段。  11) Isometric space-time division method. The segment size of the time dimension is determined. The time segment span is a fixed value, usually 30 minutes as a time segment; the segment size of the spatial dimension is determined, and the spatial segment span is a fixed value, and a spatial grid of 200 m×200 m is usually taken as a spatial segment.

12) 非等距时空划分法。对于路网密度大于 2km/km2或高峰小时流量大于 1000辆 /小时的城市中 心区, 取 30min的时间片段和 200mX 200m的空间片段, 对于路网密度小于 2km/km2或高峰小时流 量小于 1000辆 /小时的城市郊区, 取 30min的时间片段和 400mX 400m的空间片段。 所述步骤 3)具体包含以下步骤: 12) Non-equidistant space-time division method. For urban central areas where the road network density is greater than 2km/km 2 or the peak hour flow is greater than 1000 vehicles/hour, 30min time segments and 200mX 200m space segments are taken. For road network density less than 2km/km 2 or peak hour traffic is less than 1000. In the suburb of the city/hour, take a 30-minute time segment and a 400mX 400m space segment. The step 3) specifically includes the following steps:

31) 将所需处理的空间区域划分为一定大小的格网, 每个格网区域的范围可表示为  31) Divide the space area to be processed into a grid of a certain size, and the range of each grid area can be expressed as

32) 判定定位点所在的格网区域, 并利用距离和方位角, 搜索定位点所在的路段, 匹配方案包 括: 32) Determine the grid area where the anchor point is located, and use the distance and azimuth to search for the road segment where the anchor point is located. The matching scheme includes:

321) 单点匹配方案: 搜索距离点 A最近的路段, 当满足点 A的行驶方向角与路段 ij的方向角的差值小于阈值时, 即 满足 | - .|< , 完成匹配; 若不满足 | - .|< , 在搜索空间中删除路段 zy, 并继续搜索其他 路段, 直至满足条件。 匹配方法如图 3所示。 321) Single point matching scheme: Searching for the nearest road segment from point A, when the difference between the traveling direction angle satisfying point A and the direction angle of the road segment ij is less than the threshold value, that is, |-.|< is satisfied, and the matching is completed; if not satisfied, - -.|< Delete the road segment zy in the search space and continue to search for other road segments until the conditions are met. The matching method is shown in Figure 3.

322) 点序列匹配方案:  322) Point sequence matching scheme:

本方案适用于高频浮动车数据。 将浮动车 GNSS数据采集频率表示为 /。=1/¾, 将时间上与 A相 邻的点 P( -t0), P(A+tQ)定义为 A的 1-邻近点, ■Pfe o), PtA+2k、定义为 A的 2-邻近点, 以此类推, 则尸04- ), ·Ρ(ί4+ )定义为 A的 邻近点。 在/。<1Ηζ时, 取 ^=1或 2。 取距离 A及 A的 邻近点 距离最小的路段 zy, 并计算 A及 A的 1-邻近点行驶方向角的均值^ 41, 若满足 | 一 |< , 完成 匹配; 否则, 搜索其他路段, 直至满足条件。 This program is suitable for high frequency floating car data. The floating vehicle GNSS data acquisition frequency is expressed as /. =1/3⁄4, the point P( -t 0 ), P( A +t Q ) adjacent to A in time is defined as 1-adjacent point of A, ■Pfe o), Pt A +2k, defined as A 2-adjacent points, and so on, then corpse 04-), ·Ρ(ί4+) is defined as the neighboring point of A. in/. When <1Ηζ, take ^=1 or 2. Take the road segment zy with the smallest distance from the neighboring points of A and A, and calculate the mean value of the driving direction angle of the 1-adjacent point of A and A^41. If it satisfies |1|<, complete the matching; otherwise, search for other road segments until it is satisfied. condition.

33) 利用路段的直线方程 (若为曲线路段则近似拆分为直线), 计算 GNSS定位点在路段上的投 影坐标, 减小因 GNSS定位漂移带来的误差。 具体方法采用 GNSS定位点直线投影法为:  33) Use the straight line equation of the road segment (if it is a curved road segment, it is roughly split into straight lines), calculate the projection coordinates of the GNSS positioning point on the road segment, and reduce the error caused by the GNSS positioning drift. The specific method uses the GNSS positioning point linear projection method as:

确定路段 zy的直线方程 (若路段为曲线, 则划分为若干直线路段): y-yi =k(x-xi) 其中斜率为: Determine the straight line equation of the road segment zy (if the road segment is a curve, divide it into several straight line segments): yy i =k(xx i ) where the slope is:

XJ - χ, J 投影直线方程为: y-yA = - (X-XA) kyA -ky. + k2x. + xA XJ - χ , J The projection line equation is: yy A = - ( X - X A) ky A -ky. + k 2 x. + x A

解出投影坐标 p为: Xp= t^r" ^ Solve the projected coordinate p as: Xp= t^r" ^

k2yA + y{ + hcA - hci 在地图匹配过程后, 结合定位点坐标的时间戳数据, 将定位点匹配到时空子区。 所述步骤 4)具体可以采用以下方法: k 2 y A + y { + hc A - hc i After the map matching process, combined with the timestamp data of the coordinates of the positioning point, the positioning point is matched to the space-time sub-region. The step 4) may specifically adopt the following methods:

41) 全样本方案。 由一个时空子区内各辆次浮动车的全部行车车速数据, 构成总体。 实施方法 是计算时空子区 内每辆车的行程车速: = 2 + 3二… ""-1'" , 其中 ^...Α- 为时空子区 内 的第 1个和第 2个 GNSS定位点间的距离, ......, 第 n-1个与第 n个 GNSS定位点间的距离, h— t„ 为时空子区 内第 1个, ......,第《个 GNSS定位点的时间戳; 将每个时空子区内的数据不做筛选, 构成一个集合 , 用于后续处理。 41) Full sample program. The data of all driving speeds of each secondary floating car in a time and space sub-region constitutes the whole. The implementation method is to calculate the travel speed of each vehicle in the space-time sub-region: = 2 + 3 two... ""- 1 '" , where ^...Α- is the first and second GNSS positioning in the space-time sub-region The distance between points, ..., the distance between the n-1th and the nth GNSS anchor point, h-t„ is the first in the space-time sub-region, ..., Timestamps of GNSS anchor points; data in each spatio-temporal sub-area is not filtered to form a set for subsequent processing.

42) 时间平滑的抽样方案。 指定时间片段长度, 同一时间片段数据条数上限; 搜索一个时空子 区内时间各时间片段内的速度数据, 若时间片段内速度数据条数超过上限, 随机取上限条数的数据 加入待处理数据样本。实施方法是计算时空子区 ζ内每辆车的行程车速: V- = 2 + 3 +... + - , 其中 Α,2...ί . 为时空子区 内的第 1个和第 2个 GNSS定位点间的距离, ......, 第《-1个与第《个42) Time-smooth sampling plan. Specify the length of the time segment and the upper limit of the number of segments of the same time; search for the velocity data in each time segment in a time-space sub-region. If the number of velocity data in the time segment exceeds the upper limit, the data of the upper limit is randomly added to the data to be processed. sample. The implementation method is to calculate the travel speed of each vehicle in the space-time sub-area: V- = 2 + 3 +... + - , Where Α, 2 ... ί . is the distance between the first and second GNSS anchor points in the space-time sub-region, ..., the first -1 and the first

GNSS定位点间的距离, 为时空子区 内第 1个, ......, 第《个GNSS定位点的时间戳; 指定 时间片段长度 tP, 同一时间片段数据条数上限 ;¾。1; 搜索一个时空子区内时间第 ζ·各时间片段内的速 度数据, 若时间片段内速度数据条数超过上限; ½, 随机取 ;½条数据加入 。 所述步骤 5)具体可以采用以下方法: The distance between the GNSS positioning points is the first time in the space-time sub-area, ..., the time stamp of the GNSS positioning point; the specified time segment length t P , the upper limit of the number of segments of the same time; 3⁄4. 1; Search for the speed data in the time and time segments of a time-space sub-region, if the number of speed data in the time segment exceeds the upper limit; 1⁄2 , random take; 1⁄2 data is added. The step 5) may specifically adopt the following method:

51) 简单历史轨迹数据融合法。 将无交通异常状况下的历史数据, 作为一个整体, 进行交通特 征模型建立和参数估计。 该方法利用有限混合模型, 建立交通特征模型, 并进行参数估计。 可采用 以下三种方案之一:  51) Simple historical trajectory data fusion method. The historical data under the condition of no traffic anomalies, as a whole, the traffic characteristic model establishment and parameter estimation. The method uses a finite mixing model to establish a traffic feature model and perform parameter estimation. One of the following three options can be used:

511) 固定成分的混合高斯模型  511) Mixed Gaussian model of fixed composition

本方案采用固定成分数量 ^的混合高斯模型描述车速的概率分布。 成分数量根据车速在典型情 况下的分布模式人工指定。 为了保证概率分布的可靠性, 成分数量 f不能过小。 一般可取 f=4~6。  This scheme uses a mixed Gaussian model with a fixed component quantity to describe the probability distribution of vehicle speed. The number of components is manually specified according to the distribution pattern of the vehicle speed under typical conditions. In order to ensure the reliability of the probability distribution, the number of components f cannot be too small. Generally, f=4~6 is available.

512)成分数量可变的混合高斯模型  512) Mixed Gaussian model with variable composition

本方案采用一种基于模型评价的方法来选择合适的成分数量, 方法如下:  This program uses a model-based evaluation method to select the appropriate number of components, as follows:

确定可能的最大成分数量 K,并分别对《=1,2,… 个成分的混合高斯模型进行参数估计;对于 Κ 个模型, 通过贝叶斯信息准则 (.BIC、)确定最佳模型。 最大成分的数量一般按精度需求选取, 但必须 注意成分数量越多, 期望最大化算法收敛越慢。 这里选择的最大成分数量为 ^=5, 即需要计算:  Determine the maximum number of possible components K, and estimate the parameters of the mixed Gaussian model of “=1, 2,... components separately; for each model, determine the best model by Bayesian information criterion (.BIC,). The maximum number of components is generally selected according to the accuracy requirement, but it must be noted that the more components, the slower the expectation maximization algorithm converges. The maximum number of components selected here is ^=5, which requires calculation:

/ ν ) = ί Λ(ν ) " ε {ΐ, 2".., 5} / ν ) = ί Λ( ν ) " ε {ΐ, 2".., 5}

/=1  /=1

共 5种混合模型。 同时, 计算 5种模型的 其定义为:  There are 5 mixed models in total. At the same time, the definition of the five models is defined as:

BIC = -2\n L + k - \n n  BIC = -2\n L + k - \n n

式中, 为最大似然函数值, t为模型中参数的个数, 《为数据总量。  Where, is the maximum likelihood function value, t is the number of parameters in the model, "for the total amount of data.

之后, 选取 /C最小的的混合模型, 记录其参数向量1]、 μ、 σ, 作为本时空子区的特征记录。 混合模型的密度曲线形态在图 6中示出。  After that, the /C smallest hybrid model is selected, and its parameter vectors 1], μ, and σ are recorded as the feature records of the local space-time sub-region. The density curve morphology of the hybrid model is shown in Figure 6.

513)成分数量、 分布类型均可变的有限混合模型  513) Finite mixed model with variable composition and distribution type

本方案采用与 512)相同的基于模型评价的方法, 但子成分的分布形态和成分的数量均可变, 方 法如下:  This scheme uses the same model-based evaluation method as 512), but the distribution of the sub-components and the number of components are variable, as follows:

选取 Μ种概率分布模型作为子成分的分布类型, 包括但不限于: 正态分布、 伽马分布、 威布尔 分布。 使用正态分布时, 子分布函数采用:  The probability distribution model is chosen as the distribution type of the sub-components, including but not limited to: normal distribution, gamma distribution, Weibull distribution. When using a normal distribution, the sub-distribution function takes:

、2、  ,2,

- y)  - y)

脚: -exp 使用伽马分布时, 子分布函数采用: =^ ^ a"—le ' 其中 Γ( ) = ^ 'dt Feet: -exp When using a gamma distribution, the sub-distribution function takes: =^ ^ a "- le ' where Γ( ) = ^ ' dt

使用威布尔分布时, 子分布函数采用:

Figure imgf000008_0001
When using a Weibull distribution, the sub-distribution function takes:
Figure imgf000008_0001

假定混合模型所有子成分的分布类型相同, 确定可能的最大成分数量 ^。 对于 M种子成分分布 类型、 f种成分数量的选择, 共形成 M 种组合, 分别计算 /C值, 并取 /C最小的模型为最佳模 型。  Assuming that the distribution types of all sub-components of the hybrid model are the same, determine the maximum number of possible components ^. For the selection of the M seed component distribution type and the number of f species, a total of M combinations are formed, and the /C value is calculated separately, and the model with the smallest /C is the best model.

52)分情境的历史轨迹数据分类法。 依据气温、 降水量、 能见度和交通管制措施, 将无交通异 常状况下的历史数据划分成不同的类别, 分别建立模型和进行参数估计。 实施方法如下:  52) Historical trajectory data classification method by context. Based on temperature, precipitation, visibility and traffic control measures, historical data under no traffic anomalies are divided into different categories, models are established and parameter estimates are made. The implementation method is as follows:

根据气温、 降水量、 能见度和交通管制措施的不同, 将交通环境分为 5~8个类别, 由历史数据 对应的交通环境的不同, 将历史数据归入以上各个类别中。对每个类别, 分别进行如同 51)所述的处 理, 从而建立了映射关系 ¾ →7, 为交通环境, Γ为交通态势。  According to the temperature, precipitation, visibility and traffic control measures, the traffic environment is divided into 5~8 categories, and the historical data is classified into the above categories according to the different traffic environments corresponding to historical data. For each category, the processing as described in 51) is performed separately, thereby establishing a mapping relationship 3⁄4 →7, which is a traffic situation and a traffic situation.

53)历史数据聚类法。 对于历史数据, 通过时空子区两两之间的比较, 获得不同时空区域的差 异量化表征, 并利用量化后的差异进行聚类。 将气温、 降水量、 能见度和交通管制措施作为特征因 子, 进行多项 Logit回归, 建立交通环境与类别的映射关系。 实施流程参见附图 4。 实施步骤如下: 53) Historical data clustering method. For the historical data, the difference quantization between different spatiotemporal regions is obtained by comparison between the time and space sub-regions, and the quantized differences are used for clustering. Temperature, precipitation, visibility and traffic control measures are used as characteristic factors to perform multiple Logit regressions to establish a mapping relationship between traffic environment and categories. See Figure 4 for the implementation process. The implementation steps are as follows:

531)根据 51)所述的方法, 建立交通特征模型, 并进行参数估计。 531) According to the method described in 51), a traffic characteristic model is established, and parameter estimation is performed.

532)根据之前的有限混合模型参数估计结果, 写出时空子区在不同日期对应的行程车速分布的 概率密度函数 P,(x), 其参数以混合高斯模型为例:  532) According to the previous finite mixed model parameter estimation result, the probability density function P, (x) of the travel speed distribution corresponding to the spatiotemporal sub-region on different dates is written, and the parameters are mixed Gaussian model as an example:

κ  κ

Pi ( ) =∑ j · ί] (νξ; Mj , ί ) Pi ( ) =∑ j · ί] (ν ξ ; Mj , ί )

533)计算各分布两两之间的 Jensen-Shannon散度 d,r. 533) Calculate the Jensen-Shannon divergence d, r between the two distributions.

1  1

d„ = JSD(P II Q) = -D(P \\ M) + -D(Q \\ M)  d„ = JSD(P II Q) = -D(P \\ M) + -D(Q \\ M)

2 2  twenty two

式中, ·Ρ、 δ为两个不同的概率分布, Μ =— ΟΡ + β) , 为 Kullback-Leibler散度:  Where Ρ, δ are two different probability distributions, Μ =— ΟΡ + β) , which is Kullback-Leibler divergence:

„ i ( )i。g 在采用有限混合模型的情况下, 其值无法显式表示, 但可采用蒙特卡罗抽样方法近似计算, 其 计算方法是:

Figure imgf000008_0002
„ i ( )i.g In the case of a finite mixing model, the value cannot be explicitly expressed, but Monte Carlo sampling method can be used to approximate the calculation. The calculation method is:
Figure imgf000008_0002

534)将分布两两间的散度写成距离矩阵:

Figure imgf000008_0003
534) Write the divergence between the two distributions as a distance matrix:
Figure imgf000008_0003

该矩阵满足 ;=4, /=0(;'= )。 The matrix satisfies; = 4, / =0 ( ; '= ).

535)将距离矩阵作为 K-Medoids算法的输入, 得到聚类结果, 并对类别建立索引。  535) Using the distance matrix as input to the K-Medoids algorithm, the clustering results are obtained, and the categories are indexed.

536) 以类别索引为响应变量, 将交通环境数据 (包括气温、 降水量、 能见度等) 作为自变量, 进行多项 Logit回归, 获取交通环境 E与交通态势类别 T的映射关系輝→7)。 536) Using the category index as a response variable, the traffic environment data (including temperature, precipitation, visibility, etc.) is used as an independent variable. Perform multiple logit regression to obtain the mapping relationship between traffic environment E and traffic situation category T→7).

537) 将相同类别的数据进行聚合, 并利用聚合后新的数据集重新建立混合模型, 并进行参数估 计, 得到最终的历史交通特征数据集。 所述步骤 6)具体可以采用以下方法:  537) Aggregate the same type of data, and re-establish the hybrid model with the new data set after aggregation, and perform parameter estimation to obtain the final historical traffic characteristic data set. The step 6) may specifically adopt the following methods:

61) 简单实时数据处理法。 该方法与 51)同时实施。 将实时交通数据进行模型建立和参数估计, 获取当前交通状况的特征函数。 该方法的实施步骤, 与 51)完全相同, 只是采用的数据是实时交通数 据。  61) Simple real-time data processing. This method is implemented simultaneously with 51). The real-time traffic data is modeled and parameter estimated to obtain the characteristic function of the current traffic condition. The implementation steps of the method are exactly the same as 51), except that the data used is real-time traffic data.

62) 分类处理法。 该方法与 52)或 53)同时实施。 获取交通状况的特征函数, 同时获取当前的气 温、 降水量、 能见度、 交通管制措施等信息, 并判断当前交通状况的类别。 实施流程参见附图 5。 实 施步骤如下:  62) Classification processing. This method is carried out simultaneously with 52) or 53). Obtain the characteristic function of the traffic condition, and obtain the current information such as temperature, precipitation, visibility, traffic control measures, etc., and judge the current traffic condition category. See Figure 5 for the implementation process. The implementation steps are as follows:

621) 计算时空子区内的行程车速, 构成实时行程车速总体 rt; 621) calculating the travel speed in the time-space sub-zone, forming the overall rt of the real-time travel speed ;

622) 建立行程车速概率分布模型 i^ (vf,rf ) = | - ί^, - μ^σ^, 并进行参数估计; 622) Establish a travel speed probability distribution model i^ (v f , rf ) = | - ί^, - μ^σ^, and perform parameter estimation;

623) 将当前交通环境数据(包括气温、降水量、能见度等)作为输入参数,利用映射关系 ?0E→7 获得当前交通态势的所述类别 τ。 所述步骤 7)具体包含以下步骤: 623) Using the current traffic environment data (including temperature, precipitation, visibility, etc.) as an input parameter, using the mapping relationship ?0E→7 to obtain the category τ of the current traffic situation. The step 7) specifically includes the following steps:

71) 当采用步骤 62)时, 根据当前交通态势所属类别 定位该类别下历史交通特征数据; 71) When step 62) is adopted, the historical traffic characteristic data under the category is located according to the category of the current traffic situation;

72) 根据当前交通特征的描述参数 ηΛ、 μΛ、 ^和历史交通特征的描述参数 η、 μ、 σ计算两个速 度分布间的差异: ^[(τ^ ,μ^ σ^ ^η,μ, σ)^ ·/^^^ 。 当历史交通特征与实时交通特征 (即 历史行程车速分布与实时行程车速分布) 相近时, 将得到较小的 Jensen-Shannon散度值, 即两者之 间的差异较小;当历史交通特征与实时交通特征差别较大时,将得到较大的 Jensen-Shannon散度值, 即两者之间的差异较大, 亦即存在异常的概率较大, 参见附图 7。 所述步骤 8)具体包含以下步骤: 72) Calculate the difference between the two velocity distributions according to the description parameters η Λ , μ Λ , ^ of the current traffic characteristics and the description parameters η, μ, σ of the historical traffic characteristics: ^[(τ^ , μ^ σ^ ^η, μ, σ)^ ·/^^^ . When the historical traffic characteristics and real-time traffic characteristics (ie, the historical travel speed distribution and the real-time travel speed distribution) are similar, a smaller Jensen-Shannon divergence value will be obtained, that is, the difference between the two is smaller; when the historical traffic characteristics and When the real-time traffic characteristics are different, a larger Jensen-Shannon divergence value will be obtained, that is, the difference between the two is large, that is, the probability of existence of an abnormality is large, see FIG. The step 8) specifically includes the following steps:

81) 将各个时空子区的速度分布差异标准化为 0~1的规范化数值  81) Normalize the difference in velocity distribution of each space-time sub-region to a normalized value of 0~1

diff^ - ra {diff)  Diff^ - ra {diff)

ξ' max diff、 - min [diff、  ξ' max diff, - min [diff,

82) 计算各个时空子区的交通异常指数^^ = >< 10。 本发明相较于同一领域的相似技术, 具有以下优点: 82) Calculate the traffic anomaly index ^^ = >< 10 for each time and space sub-region. The present invention has the following advantages over similar technologies in the same field:

(1) 充分利用现有的浮动车运营数据 (GNSS 轨迹数据), 通过历史交通特征提取和实时交通态 势分析, 检测交通状态发生的变化, 可以实现城市道路交通异常事件实时性、低成本、智能化检测; (1) Make full use of the existing floating vehicle operation data (GNSS trajectory data), detect historical traffic state changes through historical traffic feature extraction and real-time traffic situation analysis, and realize real-time, low-cost, intelligent urban road traffic anomaly events. Detection

(2) 将行程速度的概率分布作为交通特征的描述,反映的特征更加全面,避免了利用单一指数表 征交通特征的片面性、 不稳定性, 检测的可靠性更高; (2) Taking the probability distribution of the travel speed as the description of the traffic characteristics, the characteristics reflected are more comprehensive, avoiding the one-sidedness and instability of the traffic characteristics using a single index, and the reliability of detection is higher;

(3) 针对交通特征受到交通环境 (如天气状况) 影响的特点, 引入了聚类一多项 Logit回归联合 算法, 建立了交通环境特征与交通态势类别的映射关系; (3) Clustering a multi-logit regression combination for the characteristics of traffic characteristics affected by traffic environment (such as weather conditions) The algorithm establishes a mapping relationship between traffic environment characteristics and traffic situation categories;

(4) 经实际数据的检验, 本发明提出的基于浮动车数据的城市道路交通异常检测技术, 能够实现 准确度较高的异常事件检测, 检测率超过 90%, 误报率低于 20%, 取得了良好的检测效果, 可以应 用于城市交通智能化管理、 服务。 附图说明  (4) According to the test of actual data, the urban road traffic anomaly detection technology based on floating car data proposed by the present invention can realize the detection of abnormal events with high accuracy, the detection rate exceeds 90%, and the false alarm rate is lower than 20%. It has achieved good detection results and can be applied to intelligent management and service of urban traffic. DRAWINGS

本发明的具体内容及优点结合以下附图将变得明晰和易于理解, 其中:  The details and advantages of the present invention will become apparent and readily understood in conjunction with the following drawings in which:

图 1示出了本发明的组成要素和基本原理示意图;  Figure 1 shows a schematic diagram of the components and basic principles of the present invention;

图 2示出了本发明在实施过程中的总体流程示意图;  Figure 2 is a schematic view showing the overall flow of the present invention in the implementation process;

图 3示出了本发明快速地图匹配算法实施方式示意图;  3 is a schematic diagram showing an implementation manner of a fast map matching algorithm of the present invention;

图 4示出了本发明实施历史交通特征提取方案的流程示意图;  4 is a schematic flow chart showing a historical traffic feature extraction scheme implemented by the present invention;

图 5示出了本发明实施实时交通特征提取方案的流程示意图;  FIG. 5 is a schematic flow chart showing a real-time traffic feature extraction scheme implemented by the present invention; FIG.

图 6示出了高斯混合模型概率分布的形态示意图;  Figure 6 shows a schematic diagram of the morphology of the Gaussian mixture model probability distribution;

图 7示出了历史交通特征与实时交通特征比较过程中差异的衡量示意图。 具体实施方案  Figure 7 shows a measurement of the difference in the comparison between historical traffic characteristics and real-time traffic characteristics. Specific implementation

为了更加清晰明确地表述本发明的目的、 技术方案和优势, 下面对本发明的具体实施方案进行 详细描述。  In order to more clearly and clearly clarify the objects, technical solutions and advantages of the present invention, the specific embodiments of the present invention are described in detail below.

如附图 1所示,本发明的整体系统构架包括:浮动车搭载的车载 GNSS轨迹记录仪、数据中心、 GNSS卫星以及通信系统。 此处的 GNSS包括 GPS、 GLONASS、 GALILEO, 北斗、 IRNSS、 QZSS 等任何类似的导航卫星定位系统。 出租车、 公交车等浮动车搭载的 GNSS轨迹记录仪, 以一定的采 样频率 / (一般要求; ).1Ηζ)记录车辆在行驶中各时点的位置信息, 并通过 GPRS移动通信网络(亦 可采用 WCDMA、 TD-LTE等无线网络通信技术, 但成本将相应提高)将位置信息实时发送至数据中 心。 数据中心通过数据预处理、 数据融合, 并通过特定算法建立历史道路交通特征数据库; 对于最 近接收的实时数据, 建立实时交通特征数据库; 通过历史数据库和实时数据库的映射关系, 判别当 前交通特征是否异常, 并通过处理终端进行可视化展示并生成交通异常事件报告。  As shown in Fig. 1, the overall system architecture of the present invention includes an onboard GNSS track recorder, a data center, a GNSS satellite, and a communication system carried by a floating vehicle. The GNSS here includes GPS, GLONASS, GALILEO, Beidou, IRNSS, QZSS and any similar navigation satellite positioning system. GNSS track recorders equipped with floating cars, buses, etc., with a certain sampling frequency / (general requirements; ).1Ηζ) record the position information of the vehicle at various points during driving, and through the GPRS mobile communication network (also The use of wireless network communication technologies such as WCDMA and TD-LTE, but the cost will be correspondingly improved), the location information is sent to the data center in real time. The data center establishes a historical road traffic characteristic database through data preprocessing, data fusion, and through a specific algorithm; establishes a real-time traffic feature database for the recently received real-time data; and determines whether the current traffic feature is abnormal through the mapping relationship between the historical database and the real-time database And visualize the display through the processing terminal and generate a traffic anomaly event report.

方案的总体流程参见图 2, 包括采集和存储 GNSS轨迹数据, 建立时空子区, 历史交通特征提 取, 实时交通特征提取, 异常识别等步骤。 采集和存储 GNSS轨迹数据, 是整个方案的数据基础, 由于数据量级巨大, 应采用分布式存储方案, 对于分布式存储目前己有成熟的技术, 不是本发明的 内容。 建立时空子区, 其基本假设是在某一特定区域、 特定时段内, 有着相同的交通特征, 这一假 设, 经过长期观测, 是普遍适用的。 历史交通特征提取, 其原理是利用 GNSS轨迹数据, 计算得到 行程车速, 利用同一时空子区大量的行程车速数据, 建立车速的概率分布模型, 并进行参数估计, 用少量参数表征交通特征。实时交通特征提取,其原理是将当前时间段内的速度数据进行处理分析, 同样建立当前的车速概率分布模型。 异常识别是采用差异衡量指标, 判断实时特征相较于历史特征 的变化程度, 根据其是否达到阈值, 确定是否出现交通异常事件。  The overall process of the scheme is shown in Figure 2, including the acquisition and storage of GNSS trajectory data, the establishment of spatiotemporal sub-areas, historical traffic feature extraction, real-time traffic feature extraction, and anomaly identification. Collecting and storing GNSS trajectory data is the data foundation of the whole scheme. Due to the huge amount of data, a distributed storage scheme should be adopted. For distributed storage, there are mature technologies, which are not the contents of the present invention. The basic assumption of establishing a spatiotemporal sub-area is that it has the same traffic characteristics in a specific area and a specific time period. This assumption is generally applicable after long-term observation. Historical traffic feature extraction, the principle is to use the GNSS trajectory data to calculate the travel speed, use a large number of travel speed data in the same space-time sub-region, establish a probability distribution model of vehicle speed, and estimate the parameters, and characterize the traffic characteristics with a small number of parameters. Real-time traffic feature extraction, the principle is to process and analyze the speed data in the current time period, and also establish the current vehicle speed probability distribution model. The anomaly identification is to use the difference measure to judge the degree of change of the real-time feature compared to the historical feature, and determine whether a traffic anomaly event occurs according to whether it reaches the threshold.

根据发明内容所述实施方法的组合, 给出实施例如下。 实施例一  According to the combination of the embodiments of the invention, the implementation is given below. Embodiment 1

步骤 11、采用等距时空划分法,确定时间维度的片段尺度,时间片段跨度为固定值,通常取 30min 作为一个时间片段; 确定空间维度的片段尺度, 空间片段跨度为固定值, 通常取 200mX200m的空 间网格作为一个空间片段。 Step 11. Determine the segment size of the time dimension by using the equidistant space-time division method, and the time segment span is a fixed value, usually 30 minutes. As a time segment; determine the segment size of the spatial dimension, the spatial segment span is a fixed value, usually takes a spatial grid of 200mX200m as a spatial segment.

步骤 12、进行数据预处理,将 GNSS定位数据进行数据清洗、数据集成、数据转换、数据归约, 提高数据的结构化程度。  Step 12. Perform data preprocessing to perform data cleaning, data integration, data conversion, and data reduction on the GNSS positioning data to improve the structural degree of the data.

步骤 13、 将所需处理的空间区域划分为一定大小的格网, 每个格网区域的范围可表示为 = {(xs,ys) I xs e [xr,xr+l),ys≡ [yr,yr+l)}; 判定定位点所在的格网区域, 并利用距离和方位角, 搜 索定位点所在的路段; 搜索距离点 A最近的路段, 当满足点 A的行驶方向角与路段 ij的方向角的差 值小于阈值时, 即满足 | - .|< ,完成匹配;若不满足 | - .|< ,在搜索空间中删除路段 zy, 并继续搜索其他路段, 直至满足条件; 利用路段的直线方程 (若为曲线路段则近似拆分为直线), 计 算 GNSS定位点在路段上的投影坐标, 减小因 GNSS定位漂移带来的误差, 具体方法为: Step 13. Divide the spatial area to be processed into a grid of a certain size, and the range of each grid area can be expressed as = {(x s , y s ) I x s e [x r , x r+l ) , y s ≡ [y r , y r+l )}; determine the grid area where the anchor point is located, and use the distance and azimuth to search for the section where the anchor point is located; search for the section closest to point A, when the point A is satisfied If the difference between the driving direction angle and the direction angle of the road segment ij is less than the threshold value, that is, | - .|< is satisfied, the matching is completed; if the - -||< is not satisfied, the road segment zy is deleted in the search space, and the search for other road segments is continued. Until the condition is met; use the straight line equation of the road segment (if it is a curved road segment, it is roughly split into straight lines), calculate the projection coordinates of the GNSS positioning point on the road segment, and reduce the error caused by the GNSS positioning drift. The specific method is:

确定路段 zy的直线方程 (若路段为曲线, 则划分为若干直线路段): y-yi =k(x-xi) 其中斜率为: Determine the straight line equation of the road segment zy (if the road segment is a curve, divide it into several straight line segments): yy i =k(xx i ) where the slope is:

xj -x, ) 投影直线方程为: = _「(x_ ) kyA—kyj + k x. + xA Xj - x , ) The projection line equation is: = _"( x _ ) ky A — ky j + k x. + x A

解出投影坐标 P为:  Solve the projected coordinates P as:

k2yA + yt + hA - ht k 2 y A + y t + h A - h t

' k2 +\ ' k 2 +\

在地图匹配过程后, 结合定位点坐标的时间戳数据, 将定位点匹配到时空子区。  After the map matching process, the anchor point is matched to the spatio-temporal sub-area in combination with the timestamp data of the coordinates of the positioning point.

步骤 14、 由一个时空子区内各辆次浮动车的全部行车车速数据, 构成总体。 计算时空子区 内 每辆车的行程车速: = 2 + 3 +... + - , 其中 ^... 为时空子区 内的第 1个和第 2个 Step 14. The overall vehicle speed data of each of the secondary floating cars in a time and space sub-region constitutes an overall. Calculate the speed of each car in the time-space sub-zone: = 2 + 3 + ... + - , where ^... is the first and second of the time-space sub-zone

GNSS定位点间的距离, ......, 第《-1个与第 n个 GNSS定位点间的距离, 为时空子区 ξ内第 1 个, ......, 第《个 GNSS定位点的时间戳; 将每个时空子区内的数据不做筛选, 构成一个集合 , 用于后续处理。 The distance between the GNSS positioning points, ..., the distance between the -1 and the nth GNSS positioning point, which is the first in the space-time sub-region, ..., the first Timestamp of the GNSS anchor point; the data in each spatio-temporal sub-area is not filtered to form a set for subsequent processing.

步骤 15、将无交通异常状况下的历史数据,作为一个整体,进行交通特征模型建立和参数估计。 该方法利用有限混合模型, 建立交通特征模型, 并进行参数估计。 取最大成分数量 K=3, 并分别对 «=1,2,… 个成分的混合高斯模型进行参数估计; 对于 f个模型, 通过贝叶斯信息准则 (.BIO确定 最佳模型。 计算: f ) =∑½f, ) n {\,2,...,5} 共 5种混合模型。 同时, 计算 5种模型的 BIC = -2\nL + k-\nn Step 15. As a whole, the historical data under the condition of no traffic anomaly is used to establish a traffic feature model and estimate the parameters. The method uses a finite mixing model to establish a traffic feature model and perform parameter estimation. Take the maximum component quantity K=3, and estimate the parameters of the mixed Gaussian model of «=1,2,... components separately; for f models, determine the best model by Bayesian information criterion (.BIO. Calculation: f ) =∑1⁄2f, ) n {\,2,...,5} A total of 5 mixed models. At the same time, calculate the five models BIC = -2\nL + k-\nn

式中, 为最大似然函数值, t为模型中参数的个数, 《为数据总量。  Where, is the maximum likelihood function value, t is the number of parameters in the model, "for the total amount of data.

之后, 选取 /C最小的的混合模型, 记录其参数向量1]、 μ、 σ, 作为本时空子区的特征记录。 步骤 16、 将实时交通数据进行模型建立和参数估计, 获取当前交通状况的特征函数, 方法同步 骤一五, 记录参数向量 t]rt、 μ<·ί、 artAfter that, the /C smallest hybrid model is selected, and its parameter vectors 1], μ, and σ are recorded as the feature records of the present time-space sub-region. Step 16. Perform real-time traffic data model establishment and parameter estimation to obtain a characteristic function of the current traffic condition. The method is the same as step 1-5, and the parameter vectors t] rt , μ<·ί, a rt are recorded.

步骤 17、 根据当前交通特征的描述参数 ηΛ、 ^和历史交通特征的描述参数1]、 μ、 σ计算 两个速度分布间的差异: ί¾Γ[(η ,μΛ,σ ),(η,μ,σ)] = JSDGPrt ||P)。 Step 17. Calculate the difference between the two velocity distributions according to the description parameters η Λ , ^ of the current traffic characteristics and the description parameters 1], μ, σ of the historical traffic characteristics: ί3⁄4Γ[(η , μ Λ , σ ), (η, μ, σ)] = JSDGP rt ||P).

步骤 18、 将各个时空子区的速度分 ~1的规范化数值

Figure imgf000012_0001
Step 18: normalize the speed of each space-time sub-region by ~1
Figure imgf000012_0001

计算各个时空子区的交通异常指数^^ = x 10。 实施例二  Calculate the traffic anomaly index ^^ = x 10 for each time-space sub-region. Embodiment 2

步骤 21、采用等距时空划分法,确定时间维度的片段尺度,时间片段跨度为固定值,通常取 30min 作为一个时间片段; 确定空间维度的片段尺度, 空间片段跨度为固定值, 通常取 200mX200m的空 间网格作为一个空间片段。  Step 21: Using the equidistant space-time division method, determining the segment size of the time dimension, the time segment span is a fixed value, usually taking 30 minutes as a time segment; determining the segment size of the spatial dimension, the spatial segment span is a fixed value, usually taking 200m×200m The spatial grid acts as a spatial fragment.

步骤 22、进行数据预处理,将 GNSS定位数据进行数据清洗、数据集成、数据转换、数据归约, 提高数据的结构化程度。  Step 22. Perform data preprocessing to perform data cleaning, data integration, data conversion, and data reduction on the GNSS positioning data to improve the structural degree of the data.

步骤 23、 将所需处理的空间区域划分为一定大小的格网, 每个格网区域的范围可表示为 = {(xs,ys) I xs e [xr,xr+l),ys≡ [yr,yr+l)}; 判定定位点所在的格网区域, 并利用距离和方位角, 搜 索定位点所在的路段; 搜索距离点 A最近的路段, 当满足点 A的行驶方向角与路段 ij的方向角的差 值小于阈值时, 即满足 | - .|< ,完成匹配;若不满足 | - .|< ,在搜索空间中删除路段 zy, 并继续搜索其他路段, 直至满足条件; 利用路段的直线方程 (若为曲线路段则近似拆分为直线), 计 算 GNSS定位点在路段上的投影坐标, 减小因 GNSS定位漂移带来的误差, 具体方法为: Step 23: Divide the spatial area to be processed into a grid of a certain size, and the range of each grid area can be expressed as = {(x s , y s ) I x s e [x r , x r+l ) , y s ≡ [y r , y r+l )}; determine the grid area where the anchor point is located, and use the distance and azimuth to search for the section where the anchor point is located; search for the section closest to point A, when the point A is satisfied If the difference between the driving direction angle and the direction angle of the road segment ij is less than the threshold value, that is, | - .|< is satisfied, the matching is completed; if the - -||< is not satisfied, the road segment zy is deleted in the search space, and the search for other road segments is continued. Until the condition is met; use the straight line equation of the road segment (if it is a curved road segment, it is roughly split into straight lines), calculate the projection coordinates of the GNSS positioning point on the road segment, and reduce the error caused by the GNSS positioning drift. The specific method is:

确定路段 zy的直线方程 (若路段为曲线, 则划分为若干直线路段):  Determine the straight line equation of the road segment zy (if the road segment is a curve, divide it into several straight line segments):

y. =k(x-x.) 其中斜率为:

Figure imgf000012_0002
y. =k(xx.) where the slope is:
Figure imgf000012_0002

投影直线方程为: ^ =--τ(χ-¾) kyA― kyt + k2xt + xA The projection line equation is: ^ =--τ( χ -3⁄4) ky A ― ky t + k 2 x t + x A

解出投影坐标 ρ为  Solve the projected coordinates ρ

k2yA + yt + hA - ht 在地图匹配过程后, 结合定位点坐标的时间戳数据, 将定位点匹配到时空子区。 k 2 y A + y t + h A - h t After the map matching process, the anchor point is matched to the spatio-temporal sub-area in combination with the timestamp data of the coordinates of the positioning point.

d + d -d  d + d -d

步骤 24、 计算时空子区 内每辆车的行程车速: ― . 其中 Α,2...ί -1,"为 时空子区 内的第 1个和第 2个 GNSS定位点间的距离, ......, 第《-1个与第《个GNSS定位点间 的距离, ^^为时空子区^内第丄个, ......,第《个GNSS定位点的时间戳; 指定时间片段长度 同一时间片段数据条数上限 ρ 搜索一个时空子区内时间第 ζ·各时间片段内的速度数据, 若时间片 段内速度数据条数超过上限 ρ 随机取 条数据加入 V。。  Step 24: Calculate the travel speed of each vehicle in the space-time sub-region: ― . where Α, 2... ί -1, " is the distance between the first and second GNSS positioning points in the space-time sub-area, . ....., the distance between the -1 and the GNSS anchor points, ^^ is the first time in the space-time sub-area, ..., the time stamp of the GNSS anchor points ; Specify the length of the time segment at the same time. The upper limit of the number of segments of the data segment ρ Search for the time data in a space-time sub-region. The velocity data in each time segment. If the number of velocity data in the time segment exceeds the upper limit ρ, the random data is added to V.

步骤 25、将无交通异常状况下的历史数据,作为一个整体,进行交通特征模型建立和参数估计。 该方法利用有限混合模型, 建立交通特征模型, 并进行参数估计。 取最大成分数量 K=3 并分别对 «=1,2,… 个成分的混合高斯模型进行参数估计; 对于 f个模型, 通过贝叶斯信息准则 (.BIO 确定 最佳模型。 计算: f ) =∑½f, ) n {\,2,...,5} 共 5种混合模型。 同时, 计算 5种模型的 Step 25. As a whole, the historical data under the condition of no traffic anomaly is used to establish the traffic characteristic model and estimate the parameters. The method uses a finite mixing model to establish a traffic feature model and perform parameter estimation. Take the maximum component quantity K=3 and estimate the parameters of the mixed Gaussian model of «=1,2,... components separately; for f models, determine the best model by Bayesian information criterion (.BIO. Calculation: f ) =∑1⁄2f, ) n {\,2,...,5} A total of 5 mixed models. At the same time, calculate the five models

Figure imgf000013_0001
Figure imgf000013_0001

式中, 为最大似然函数值, t为模型中参数的个数, 《为数据总量。  Where, is the maximum likelihood function value, t is the number of parameters in the model, "for the total amount of data.

之后, 选取 /C最小的的混合模型, 记录其参数向量1]、 μ、 σ, 作为本时空子区的特征记录。 根据参数估计结果, 写出时空子区在不同日期对应的行程车速分布的概率密度函数 p'Q):  After that, the /C smallest hybrid model is selected, and its parameter vectors 1], μ, and σ are recorded as the feature records of the local space-time sub-region. According to the parameter estimation result, the probability density function p'Q) of the travel speed distribution corresponding to the spatio-temporal sub-region on different dates is written:

计算各分布两两之间的 Jensen-Shannon散度 ·: Calculate the Jensen-Shannon divergence between the two pairs of distributions:

1  1

4 = JSD(P II Q) = -D(P \\M) + -D(Q \\M)  4 = JSD(P II Q) = -D(P \\M) + -D(Q \\M)

2 2  twenty two

式中, ·Ρ、 δ为两个不同的概率分布, M = OP + (¾, 为 Kullback-Leibler散度:  Where Ρ, δ are two different probability distributions, M = OP + (3⁄4, for Kullback-Leibler divergence:

D{P\\Q) = ±P{xk)\og^{ 在采用有限混合模型的情况下, 采用蒙特卡罗抽样方法近似计算, 其计算方法是:

Figure imgf000013_0002
D{P\\Q) = ±P{x k )\o g ^{ In the case of a finite-mixing model, Monte Carlo sampling is used to approximate the calculation. The calculation method is:
Figure imgf000013_0002

将分布两两间的散度写成距离矩阵:  Write the divergence between the two distributions into a distance matrix:

d d.  d d.

D- d d 该矩阵满足 ί¾=φ, d,尸 Q =j、。  D- d d This matrix satisfies ί3⁄4=φ, d, corpse Q = j,.

将距离矩阵作为 K-Medoids算法的输入, 得到聚类结果, 并对类别建立索引。 以类别索引为响应变量, 将交通环境数据 (包括气温、 降水量、 能见度等) 作为自变量, 进行 多项 Logit回归, 获取交通环境 E与交通态势类别 T的映射关系 R{E→T)。 The distance matrix is used as the input of the K-Medoids algorithm to obtain clustering results and index the categories. Using the category index as the response variable, the traffic environment data (including temperature, precipitation, visibility, etc.) is used as an independent variable, and multiple logit regressions are performed to obtain the mapping relationship R(E→T) between the traffic environment E and the traffic situation category T.

将相同类别的数据进行聚合, 并利用聚合后新的数据集重新建立混合模型, 并进行参数估计, 得到最终的历史交通特征数据集。  The same type of data is aggregated, and the hybrid model is re-established with the new data set after aggregation, and the parameter estimation is performed to obtain the final historical traffic characteristic data set.

步骤 26、 获取交通状况的特征函数, 同时获取当前的气温、 降水量、 能见度、 交通管制措施等 信息, 并判断当前交通状况的类别。  Step 26: Obtain a characteristic function of the traffic condition, and obtain current information such as temperature, precipitation, visibility, traffic control measures, and the type of the current traffic condition.

计算时空子区内的行程车速, 构成实时行程车速总体 Virt; 建立行程车速概率分布模型 pJVi rt) = ^η . · f人 νξ ,μι ,σ , 并进行参数估计; 将当前交通环境数据 (包括气温、 降水量、 能见度等) 作为输入参数, 利用映射关系 R(E→T) 获得当前交通态势的所述类别 T。 Calculate the travel speed in the time-space sub-zone, constitute the real-time travel speed overall V irt; establish the travel speed probability distribution model pJ Vi rt ) = ^η . · f people ν ξ , μι , σ , and make parameter estimation; The data (including temperature, precipitation, visibility, etc.) is used as an input parameter to obtain the category T of the current traffic situation using the mapping relationship R(E→T).

步骤 27、 根据当前交通态势所属类别 Τ, 定位该类别下历史交通特征数据; 根据当前交通特征 的描述参数 ¾、 ^、 ^和历史交通特征的描述参数 η、 μ、 σ 计算两个速度分布间的差异: diff [(ηΛ , μΛ , ) , (η, μ, σ)] = JSD(Prt \\ Ρ)。 步骤 28、 将各个时空子区的速度分 范化数值

Figure imgf000014_0001
Step 27: Locating the historical traffic characteristic data of the category according to the current traffic situation category ;; calculating the two speed distributions according to the description parameters η, μ, σ of the current traffic characteristics description parameters 3⁄4, ^, ^ and historical traffic characteristics The difference: diff [(η Λ , μ Λ , ) , (η, μ, σ)] = JSD(P rt \\ Ρ). Step 28: Denormalize the speed of each time and space sub-region
Figure imgf000014_0001

计算各个时空子区的交通异常指数^^ = x 10。 实施例三  Calculate the traffic anomaly index ^^ = x 10 for each time-space sub-region. Embodiment 3

步骤 31、 采用非等距时空划分法, 对于路网密度大于 2km/km2或高峰小时流量大于 1000辆 /小 时的城市中心区, 取 30min的时间片段和 200mX 200m的空间片段, 对于路网密度小于 2km/km2或 高峰小时流量小于 1000辆 /小时的城市郊区, 取 30min的时间片段和 400mX 400m的空间片段。 Step 31: Using a non-equidistant space-time division method, for a central area of the city where the road network density is greater than 2 km/km 2 or the peak hour flow is greater than 1000 vehicles/hour, take a 30 min time segment and a 200 mX 200 m spatial segment for the road network density. For suburban areas of less than 2km/km 2 or peak hour traffic of less than 1000 vehicles per hour, 30 min time segments and 400 mX 400 m space segments are taken.

步骤 32、进行数据预处理,将 GNSS定位数据进行数据清洗、数据集成、数据转换、数据归约, 提高数据的结构化程度。  Step 32: Perform data preprocessing, perform data cleaning, data integration, data conversion, and data reduction on the GNSS positioning data to improve the structural degree of the data.

步骤 33、 将所需处理的空间区域划分为一定大小的格网, 每个格网区域的范围可表示为 = {< , ) I [x r^x r+1lys [n)}; Step 33: Divide the spatial area to be processed into a grid of a certain size, and the range of each grid area may be expressed as = {< , ) I [ x r ^ x r+1 ly s [n)};

将浮动车 GNSS数据采集频率表示为 f0=\lt0, 将时间上与 A相邻的点 Ρ(ί4-。), 。:)定义为 A 的 1-邻近点, ■P k o), /¾4+2¾)定义为 A的 2 -邻近点, 以此类推, 则尸((4- ), (4+¾))定义为 A的 邻近点。 在 /。<1Ηζ时, 取 Λ=1或 2。 取距离 Α及 Α的 邻近点距离最小的路段 ij, 并计算 A及 A 的 1-邻近点行驶方向角的均值^ 4, 若满足 |^4. - | < , 完成匹配; 否则, 搜索其他路段, 直至满 足条件。 The floating vehicle GNSS data acquisition frequency is expressed as f 0 =\lt 0 , and the point adjacent to A in time (ί4-.). :) is defined as 1-adjacent point of A, ■P ko), /3⁄44+23⁄4) is defined as 2 - neighboring point of A, and so on, then corpse ((4-), (4+3⁄4)) is defined as The neighboring point of A. in/. When <1Ηζ, take Λ=1 or 2. Take the road segment ij with the smallest distance from the neighboring point of the distance Α and Α, and calculate the mean value of the driving direction angle of the 1-adjacent point of A and A ^ 4, if |^4. - | < is satisfied, complete the match; otherwise, search for other road segments Until the conditions are met.

利用路段的直线方程(若为曲线路段则近似拆分为直线), 计算 GNSS定位点在路段上的投影坐 标, 减小因 GNSS定位漂移带来的误差。 具体方法为:  Use the straight line equation of the road segment (if it is a curved road segment, it is roughly split into straight lines), calculate the projection coordinates of the GNSS positioning point on the road segment, and reduce the error caused by the GNSS positioning drift. The specific method is:

确定路段 zy的直线方程 (若路段为曲线, 则划分为若干直线路段): y - y = k{x - x 其中斜率为:Determine the straight line equation of the road segment zy (if the road segment is a curve, divide it into several straight line segments): y - y = k{x - x The slope is:

Figure imgf000015_0001
投影直线方程为: y-yA τ(χ_ ) kyA - kyt + k2xt + xA
Figure imgf000015_0001
The projection line equation is: yy A τ( χ _ ) ky A - ky t + k 2 x t + x A

解出投影坐标 Ρ为:  Solve the projected coordinates Ρ:

k2yA + yt + hA - ht k 2 y A + y t + h A - h t

yP y P

+ i  + i

在地图匹配过程后, 结合定位点坐标的时间戳数据, 将定位点匹配到时空子区。  After the map matching process, the anchor point is matched to the spatio-temporal sub-area in combination with the timestamp data of the coordinates of the positioning point.

ά,ΊΊ ά, ΊΊ

步骤 34、 计算时空子区 内每辆车的行程车速: , 其中 <¾,2...ί -1,"为 时空子区 内的第 1个和第 2个 GNSS定位点间的距离, ......, 第《-1个与第《个GNSS定位点间 的距离, ...„为时空子区 内第1个, ......,第《个GNSS定位点的时间戳;指定时间片段长度 同一时间片段数据条数上限 ρ 搜索一个时空子区内时间第 ζ·各时间片段内的速度数据, 若时间片 段内速度数据条数超过上限 ρ 随机取 ^条数据加入 V 。  Step 34: Calculate the travel speed of each vehicle in the space-time sub-region: , where <3⁄4, 2...ί -1," is the distance between the first and second GNSS positioning points in the space-time sub-region, . ....., the distance between the -1 and the GNSS anchor points, ... is the first time in the space-time sub-region, ..., the time of the GNSS anchor point Poke; specify the time segment length at the same time segment number of data segments upper limit ρ search for a time-space sub-region time ζ·speed data within each time segment, if the number of velocity data within the time segment exceeds the upper limit ρ random data is added to V .

步骤 35、将无交通异常状况下的历史数据,作为一个整体,进行交通特征模型建立和参数估计。 该方法利用有限混合模型, 建立交通特征模型, 并进行参数估计。 取最 ?1大成分数量 K=3 并分别对 «=1,2,… 个成分的混合高斯模型进行参数估计; 对于 f个模型, 通过贝叶斯信息准则 (.BIO确定 最佳模型。 计算:  Step 35: Perform historical traffic data without traffic abnormality as a whole, and establish traffic feature model and parameter estimation. The method uses a finite mixing model to establish a traffic feature model and perform parameter estimation. Take the largest number of components K = 3 and estimate the parameters of the mixed Gaussian model of «=1, 2, ... components separately; for f models, determine the best model by Bayesian information criterion (.BIO). :

/ ν ) = ί /=1 Λ(ν ) "ε{ΐ,2"..,5} 共 5种混合模型。 同时, 计算 5种模型的 / ν ) = ί /=1 Λ( ν ) "ε{ΐ,2"..,5} A total of 5 mixed models. At the same time, calculate the five models

BIC = -2\nL + k-\nn  BIC = -2\nL + k-\nn

式中, 为最大似然函数值, t为模型中参数的个数, 《为数据总量。  Where, is the maximum likelihood function value, t is the number of parameters in the model, "for the total amount of data.

之后, 选取 /C最小的的混合模型, 记录其参数向量1]、 μ、 σ, 作为本时空子区的特征记录。 根据参数估计结果, 写出时空子区在不同日期对应的行程车速分布的概率密度函数 p'Q):  After that, the /C smallest hybrid model is selected, and its parameter vectors 1], μ, and σ are recorded as the feature records of the local space-time sub-region. According to the parameter estimation result, the probability density function p'Q) of the travel speed distribution corresponding to the spatio-temporal sub-region on different dates is written:

A ( ) =∑ Λ ( ) 计算各分布两两之间的 Jensen-Shannon散度 d,r. A ( ) = ∑ Λ ( ) Calculate the Jensen-Shannon divergence d, r between the two distributions.

du = JSD(P II Q) = -D(P \\M) + -D(Q \\M) d u = JSD(P II Q) = -D(P \\M) + -D(Q \\M)

2 2  twenty two

式中, ·Ρ、 δ为两个不同的概率分布, Μ =— OP + ρ) , 为 Kullback-Leibler散度:

Figure imgf000015_0002
Where Ρ, δ are two different probability distributions, Μ = - OP + ρ) , which is Kullback-Leibler divergence:
Figure imgf000015_0002

在采用有限混合模型的情况下, 采用蒙特卡罗抽样方法近似计算, 其计算方法是: ¾c ( ll g) = -∑i g 将分布两两间的散度写成距离矩阵:

Figure imgf000016_0001
In the case of a finite mixing model, Monte Carlo sampling is used to approximate the calculation. The calculation method is: 3⁄4 c ( ll g) = -∑ig Writes the divergence between the two pairs as a distance matrix:
Figure imgf000016_0001

该矩阵满足 ί¾=φ, d,尸 Q =j、。  The matrix satisfies ί3⁄4=φ, d, corpus Q = j,.

将距离矩阵作为 K-Medoids算法的输入, 得到聚类结果, 并对类别建立索引。  The distance matrix is used as the input of the K-Medoids algorithm to obtain clustering results and index the categories.

以类别索引为响应变量, 将交通环境数据 (包括气温、 降水量、 能见度等) 作为自变量, 进行 多项 Logit回归, 获取交通环境 E与交通态势类别 T的映射关系 R{E→T)。  Using the category index as the response variable, the traffic environment data (including temperature, precipitation, visibility, etc.) is used as an independent variable to perform multiple logit regression to obtain the mapping relationship between the traffic environment E and the traffic situation category T R{E→T).

将相同类别的数据进行聚合, 并利用聚合后新的数据集重新建立混合模型, 并进行参数估计, 得到最终的历史交通特征数据集。  The same type of data is aggregated, and the hybrid model is re-established with the new data set after aggregation, and the parameter estimation is performed to obtain the final historical traffic characteristic data set.

步骤 36、 获取交通状况的特征函数, 同时获取当前的气温、 降水量、 能见度、 交通管制措施等 信息, 并判断当前交通状况的类别。  Step 36: Obtain a characteristic function of the traffic condition, and obtain current information such as temperature, precipitation, visibility, traffic control measures, and the type of the current traffic condition.

计算时空子区内的行程车速, 构成实时行程车速总体 Virt; 建立行程车速概率分布模型 Prt(V rt) = ^η . · f人 νξ ,μι ,σ , 并进行参数估计; 将当前交通环境数据 (包括气温、 降水量、 能见度等) 作为输入参数, 利用映射关系 R(E→T) 获得当前交通态势的所述类别 T。 Calculate the travel speed in the time-space sub-zone, which constitutes the real-time travel speed overall V irt; establish the travel speed probability distribution model Prt ( V rt ) = ^η . · f people ν ξ , μι , σ , and make parameter estimation; The environmental data (including temperature, precipitation, visibility, etc.) is used as an input parameter to obtain the category T of the current traffic situation using the mapping relationship R(E→T).

步骤 37、 根据当前交通态势所属类别 Τ, 定位该类别下历史交通特征数据; 根据当前交通特征 的描述参数 ¾、 ^、 ^和历史交通特征的描述参数 η、 μ、 σ 计算两个速度分布间的差异: diff [(ηΛ , μΛ , ) , (η, μ, σ)] = JSD(Prt \\ Ρ)。 步骤 38、 将各个时空子区的速度分 范化数值

Figure imgf000016_0002
Step 37: Locating the historical traffic characteristic data of the category according to the current traffic situation category ;; calculating the two speed distributions according to the description parameters of the current traffic characteristics 3⁄4, ^, ^ and the description parameters η, μ, σ of the historical traffic characteristics The difference: diff [(η Λ , μ Λ , ) , (η, μ, σ)] = JSD(P rt \\ Ρ). Step 38: Denormalize the speed of each time and space sub-region
Figure imgf000016_0002

计算各个时空子区的交通异常指数^^ = x 10。  Calculate the traffic anomaly index ^^ = x 10 for each time-space sub-region.

Claims

权利要求书 Claim 1. 一种基于浮动车数据的城市道路交通异常检测方法, 包括如下步骤:  1. An urban road traffic anomaly detection method based on floating car data, comprising the following steps: 1) 建立时空子区: 将一天划分为若干时间片段, 将城市道路交通异常检测的实施区域 划分为若干空间片段;  1) Establish a spatio-temporal sub-area: divide the day into a number of time segments, and divide the implementation area of urban road traffic anomaly detection into several spatial segments; 2) 历史轨迹数据的预处理:将浮动车 GNSS定位历史数据处理为历史轨迹的抽样车速 数据;  2) Preprocessing of historical trajectory data: processing the floating vehicle GNSS positioning history data into the sampled vehicle speed data of the historical trajectory; 实时轨迹数据的预处理:将浮动车 GNSS定位实时数据处理为实时轨迹的抽样车速 数据;  Preprocessing of real-time trajectory data: processing floating vehicle GNSS positioning real-time data into sampled vehicle speed data of real-time trajectory; 3) 历史轨迹数据分析和特征提取: 利用所述历史轨迹的抽样车速数据, 建立历史行程 速度概率分布, 得到历史交通特征模型;  3) Historical trajectory data analysis and feature extraction: Using the sampled vehicle speed data of the historical trajectory, establishing a historical travel speed probability distribution, and obtaining a historical traffic characteristic model; 实时轨迹数据分析和特征提取: 利用所述实时轨迹的抽样车速数据, 建立实时行程 速度概率分布, 得到实时交通特征模型;  Real-time trajectory data analysis and feature extraction: using the sampled vehicle speed data of the real-time trajectory, establishing a real-time travel speed probability distribution, and obtaining a real-time traffic feature model; 4) 异常检测: 通过 Jensen-Shannon散度衡量所述历史交通特征模型与所述实时交通 特征的差异, 得到历史与实时交通特征差异值;  4) Anomaly detection: The difference between the historical traffic characteristic model and the real-time traffic characteristics is measured by Jensen-Shannon divergence, and the difference between historical and real-time traffic characteristics is obtained; 5) 异常严重性量化表征: 利用所述历史与实时交通特征差异值, 计算交通状况异常指 数。  5) Quantitative characterization of abnormal severity: Using the historical and real-time traffic feature differences, the traffic condition anomaly index is calculated. 2. 如权利要求 1所述的基于浮动车数据的城市道路交通异常检测方法, 其特征在于, 步骤2. The method for detecting urban road traffic anomaly based on floating car data according to claim 1, wherein the step 1)采用下述方法之一: 1) Use one of the following methods: la) 等距时空划分法:确定时间维度的片段尺度,时间片段跨度为固定值,通常取 30mm 作为一个时间片段; 确定空间维度的片段尺度, 空间片段跨度为固定值, 通常取 200m X 200m的空间网格作为一个空间片段;  La) Isometric space-time division method: Determine the segment scale of the time dimension, the time segment span is a fixed value, usually take 30mm as a time segment; determine the segment scale of the spatial dimension, the spatial segment span is a fixed value, usually takes 200m X 200m The spatial grid acts as a spatial segment; lb) 非等距时空划分法: 对于路网密度大于 2km/km2或高峰小时流量大于 1000辆 /小时 的城市中心区, 取 30mm的时间片段和 200m X200m的空间片段, 对于路网密度 小于 2km/km2或高峰小时流量小于 1000辆 /小时的城市郊区,取 30mm的时间片段 和 400m X 400m的空间片段。 Lb) Non-equidistant space-time division method: For urban central areas with road network density greater than 2km/km 2 or peak hour flow greater than 1000 vehicles/hour, take 30mm time segments and 200m X200m space segments for road network density less than 2km /km 2 or a suburb of a city with a peak hour flow of less than 1000 vehicles per hour, taking a 30mm time segment and a 400m X 400m space segment. 3. 如权利要求 1所述的基于浮动车数据的城市道路交通异常检测方法, 其特征在于, 步骤3. The method for detecting urban road traffic anomaly based on floating car data according to claim 1, wherein the step 2)所述的历史轨迹数据的预处理包括: 2) The preprocessing of the historical trajectory data includes: 2a) 数据结构化:将浮动车的 GNSS定位历史数据进行数据清洗、数据集成、数据转换、 数据归约, 得到结构化的 GNSS定位历史数据;  2a) Data structuring: data cleaning, data integration, data conversion, and data reduction of the GNSS positioning history data of the floating vehicle to obtain structured GNSS positioning history data; 2b) 快速地图匹配: 结合城市路网数据, 通过地图匹配算法, 将结构化的 GNSS定位历 史数据投影到城市路网, 建立所述结构化 GNSS 定位历史数据中的定位点与路段 的匹配关系, 得到所述结构化 GNSS 定位历史数据中的定位点与所述路段的匹配 关系表, 并修正定位漂移带来的误差;  2b) Fast map matching: Combine the urban road network data, map the structured GNSS positioning historical data to the urban road network through the map matching algorithm, and establish the matching relationship between the positioning points and the road segments in the structured GNSS positioning historical data. Obtaining a matching relationship table between the positioning point and the road segment in the structured GNSS positioning history data, and correcting an error caused by the positioning drift; 2c) 车速计算和抽样: 根据所述结构化的 GNSS定位历史数据计算车速, 得到历史车速 数据, 并对所述历史车速数据进行数据抽样, 得到抽样历史车速数据。  2c) Vehicle speed calculation and sampling: Calculate the vehicle speed based on the structured GNSS positioning history data, obtain historical vehicle speed data, and perform data sampling on the historical vehicle speed data to obtain sampled historical vehicle speed data. 替换页 (细则第 26条) Replacement page (Article 26) 4. 如权利要求 1所述的基于浮动车数据的城市道路交通异常检测方法, 其特征在于, 步骤 2)所述的实时轨迹数据的预处理包括: The method for detecting an urban road traffic anomaly based on floating car data according to claim 1, wherein the preprocessing of the real-time trajectory data in step 2) comprises: 2d) 数据结构化:将浮动车的 GNSS定位实时数据进行数据清洗、数据集成、数据转换、 数据归约, 得到结构化的 GNSS定位实时数据;  2d) Data structuring: Data processing, data integration, data conversion, and data reduction of GNSS positioning real-time data of floating vehicles are obtained, and structured GNSS positioning real-time data is obtained; 2e) 快速地图匹配: 结合城市路网数据, 通过地图匹配算法, 将结构化的 GNSS定位实 时数据投影到城市路网, 建立所述结构化 GNSS 定位实时数据中的定位点与路段 的匹配关系, 得到所述结构化 GNSS 定位实时数据中的定位点与所述路段的匹配 关系表, 并修正定位漂移带来的误差;  2e) Fast map matching: Combine the urban road network data, map the structured GNSS positioning real-time data to the urban road network through the map matching algorithm, and establish the matching relationship between the positioning points and the road segments in the structured GNSS positioning real-time data. Obtaining a matching relationship table between the positioning point and the road segment in the structured GNSS positioning real-time data, and correcting an error caused by the positioning drift; 2f) 车速计算和抽样: 根据所述结构化的 GNSS定位实时数据计算车速, 得到实时车速 数据, 并对所述实时车速数据进行数据抽样, 得到抽样实时车速数据。  2f) Vehicle speed calculation and sampling: Calculate the vehicle speed based on the structured GNSS positioning real-time data, obtain real-time vehicle speed data, and perform data sampling on the real-time vehicle speed data to obtain sampled real-time vehicle speed data. 5. 如权利要求 3所述的基于浮动车数据的城市道路交通异常检测方法, 其特征在于, 步骤 2b)所述的快速地图匹配包括: The method for detecting an urban road traffic anomaly based on floating car data according to claim 3, wherein the fast map matching in step 2b) comprises: 2b 1) 将所需处理的空间区域划分为一定大小的格网, 每个格网区域的范围可表示为  2b 1) Divide the space area to be processed into a grid of a certain size, and the range of each grid area can be expressed as 2b2) 判定定位点所在的格网区域, 并利用距离和方位角, 搜索定位点所在的路段; 2b3) 利用 GNSS定位点直线投影法, 计算 GNSS定位点在路段上的投影坐标。 2b2) Determine the grid area where the anchor point is located, and use the distance and azimuth to search for the road segment where the anchor point is located; 2b3) Calculate the projection coordinates of the GNSS anchor point on the road segment by using the GNSS anchor point linear projection method. 6. 如权利要求 4所述的基于浮动车数据的城市道路交通异常检测方法, 其特征在于, 步骤 2e)所述的快速地图匹配包括: The method for detecting an urban road traffic anomaly based on floating car data according to claim 4, wherein the fast map matching in step 2e) comprises: 2e l) 将所需处理的空间区域划分为一定大小的格网, 每个格网区域的范围可表示为  2e l) Divide the space area to be processed into a grid of a certain size, and the range of each grid area can be expressed as 4 = {(x^ I [x +i), y, [υ+1)} 4 = {( x ^ I [x + i), y, [υ +1 ]} 2e2) 判定定位点所在的格网区域, 并利用距离和方位角, 搜索定位点所在的路段; 2e3) 利用 GNSS定位点直线投影法, 计算 GNSS定位点在路段上的投影坐标。  2e2) Determine the grid area where the anchor point is located, and use the distance and azimuth to search for the road segment where the anchor point is located; 2e3) Calculate the projection coordinates of the GNSS anchor point on the road segment by using the GNSS anchor point linear projection method. 7. 如权利要求 5所述的基于浮动车数据的城市道路交通异常检测方法, 其特征在于, 步骤 2b2)采用下述方法之一: 7. The method for detecting urban road traffic anomaly based on floating car data according to claim 5, wherein step 2b2) adopts one of the following methods: 2b21) 单点匹配方法: 搜索距离点 A最近的路段, 当满足点 A的行驶方向角与路段 ij 的方向角的差值小于阈值时,即满足 | - | < ,完成匹配;若不满足 | - | < , 在搜索空间中删除路段 并继续搜索其他路段, 直至满足条件。  2b21) Single point matching method: Search for the nearest road segment from point A. When the difference between the traveling direction angle satisfying point A and the direction angle of the road segment ij is less than the threshold value, then | - | < is satisfied, and the matching is completed; if not satisfied | - | < , delete the road segment in the search space and continue to search for other road segments until the conditions are met. 2b22) 点序列匹配方法: 本方案适用于高频浮动车数据。将浮动车 GNSS数据采集频率 表示为 /ϋ=1 >, 将时间上与 Α相邻的点 PO^o) , Pfe+ o)定义为 Α的 1-邻近点, P(tA-2h), Ρθ4+2。)定义为 A的 2-邻近点, 以此类推, 则 Pfe-feo), Pi +kto)定义为 A的/ 1-邻近点; 在/。<1Ηζ时, 取/ fe=l或 2 ; 取距离 A及 A的/ 1-邻近点距离最小的 路段 ij, 并计算 A及 A的 ^邻近点行驶方向角的均值 ', 若满足 - θυ \ < δθ , 完成匹配; 否则, 搜索其他路段, 直至满足条件。 2b22) Point sequence matching method: This scheme is applicable to high frequency floating car data. The floating vehicle GNSS data acquisition frequency is expressed as /ϋ=1>, and the point PO^o), Pfe+ o) adjacent to the time is defined as the 1-adjacent point of the ,, P(t A -2h), Ρθ4 +2. ) is defined as the 2-adjacent point of A, and so on, then Pfe-feo), Pi + kto) is defined as the / 1-adjacent point of A; <When 1Ηζ, fetch / fe = l or 2; / 1 adjacent the point of minimum distance from the segment A and A ij is taken, and calculates the average of A ^ and A in the direction of travel adjacent the corner points', if yes - θ υ \ < δ θ , complete the match; otherwise, search for other segments until the condition is met. 替换页 (细则第 26条) Replacement page (Article 26) 8. 如权利要求 3所述的基于浮动车数据的城市道路交通异常检测方法, 其特征在于, 步骤 2c)所述的历史轨迹数据的预处理采用下述方法之一: The method for detecting urban road traffic anomaly based on floating car data according to claim 3, wherein the preprocessing of the historical trajectory data in step 2c) adopts one of the following methods: 2cl) 全样本方法: 由一个时空子区内各辆次浮动车的全部行车车速数据, 构成总体, 实施方法是计算时空子区 内每辆车的行程车速: = w + . + ''", 其中 ,2. . . ^^为时空子区 内的第 1个和第 2个 GNSS定位点间的距离, ... ..., 第《- 1 个与第《个GNSS定位点间的距离, ... „为时空子区 内第 1个, ... ..., 第《个 2cl) Full sample method: The overall speed data of each sub-floating vehicle in a time-space sub-region constitutes the total. The implementation method is to calculate the travel speed of each vehicle in the space-time sub-zone: = w + . + ''", Where 2. . . ^^ is the distance between the 1st and 2nd GNSS anchor points in the space-time sub-region, ..., the distance between the -1 and the GNSS anchor points , ... „ is the first in the time and space sub-area, ..., the first GNSS定位点的时间戳; 将每个时空子区内的数据不做筛选, 构成一个集合 , 用 于后续处理; Timestamp of the GNSS anchor point; the data in each spatio-temporal sub-area is not filtered to form a set for subsequent processing; 2c2) 时间平滑的抽样方法: 指定时间片段长度, 同一时间片段数据条数上限; 搜索一 个时空子区内时间各时间片段内的速度数据,若时间片段内速度数据条数超过上限, 随机取上限条数的数据加入待处理数据样本,实施方法是计算时空子区 内每辆车 的行程车速: = W -""-1'", 其中 2...^,„为时空子区 内的第 1个和 第 2个 GNSS定位点间的距离, ... ..., 第 n-1个与第 n个 GNSS定位点间的距离, ... 为时空子区 内第 1个, ... ..., 第《个 GNSS定位点的时间戳; 指定时间片 段长度 同一时间片段数据条数上限 搜索一个时空子区内时间第 各时间 片段内的速度数据, 若时间片段内速度数据条数超过上限; ½, 随机取 条数据 加入!^。 2c2) Time-smooth sampling method: Specify the length of the time segment and the upper limit of the number of segments of the same time; Search for the velocity data in each time segment in a time-space sub-region. If the number of velocity data in the time segment exceeds the upper limit, the upper limit is randomly selected. The data of the number of bars is added to the data sample to be processed. The implementation method is to calculate the travel speed of each vehicle in the space-time sub-zone: = W -""- 1 '", where 2 ...^, „ is the time zone The distance between the 1st and the 2nd GNSS positioning point, ..., the distance between the n-1th and the nth GNSS positioning point, ... is the first in the space-time sub-area, .. ..., the "timestamp of the GNSS anchor point; the specified time segment length at the same time segment data strip number upper limit search for speed data in the time segment of a time-space sub-region, if the speed data within the time segment Exceeding the upper limit; 1⁄2 , random data is added! ^. 9. 如权利要求 4所述的基于浮动车数据的城市道路交通异常检测方法, 其特征在于, 步骤 2f)所述的历史轨迹数据的预处理采用下述方法之一: The method for detecting an urban road traffic anomaly based on floating car data according to claim 4, wherein the preprocessing of the historical trajectory data in step 2f) adopts one of the following methods: 2fl) 全样本方法: 由一个时空子区内各辆次浮动车的全部行车车速数据, 构成总体, 实施方法是计算时空子区 内每辆车的行程车速: = W ..""-1'" , 其中 2fl) Full sample method: The total vehicle speed data of each sub-floating vehicle in a time-space sub-region constitutes the whole. The implementation method is to calculate the travel speed of each vehicle in the space-time sub-zone: = W ..""- 1 '" , among them 4,2. 为时空子区 内的第 1个和第 2个 GNSS定位点间的距离, ... ..., 第《- 1 个与第《个 GNSS定位点间的距离, ... „为时空子区 内第 1个, ... ..., 第《个4, 2 . The distance between the 1st and 2nd GNSS positioning points in the space-time sub-region, ..., the distance between the -1 and the GNSS positioning points, ... „The first in the time and space sub-area, ..., the first GNSS定位点的时间戳; 将每个时空子区内的数据不做筛选, 构成一个集合 , 用 于后续处理; Timestamp of the GNSS anchor point; the data in each spatio-temporal sub-area is not filtered to form a set for subsequent processing; 2f2) 时间平滑的抽样方法: 指定时间片段长度, 同一时间片段数据条数上限; 搜索一 个时空子区内时间各时间片段内的速度数据,若时间片段内速度数据条数超过上限, 随机取上限条数的数据加入待处理数据样本,实施方法是计算时空子区 内每辆车 的行程车速: V^ W -""-1'", 其中 2...^,„为时空子区 内的第 1个和 第 2个 GNSS定位点间的距离, 第《-1个与第 n个 GNSS定位点间的距离, 2f2) Time-smooth sampling method: Specify the length of the time segment and the upper limit of the number of segments of the same time; Search for the velocity data in each time segment in a time-space sub-region. If the number of velocity data in the time segment exceeds the upper limit, the upper limit is randomly selected. The data of the number of bars is added to the data sample to be processed. The implementation method is to calculate the travel speed of each vehicle in the space-time sub-region: V^ W -""- 1 '", where 2...^, „ is the time-space sub-region The distance between the first and second GNSS anchor points, the distance between the -1 and the nth GNSS anchor points, 替换页 (细则第 26条) Replacement page (Article 26) ... 为时空子区 内第 1个, ... ..., 第《个GNSS定位点的时间戳; 指定时间片 段长度 同一时间片段数据条数上限;½; 搜索一个时空子区内时间第 各时间 片段内的速度数据, 若时间片段内速度数据条数超过上限; ½, 随机取 条数据 加入 ^。 ... is the first time in the time-space sub-area, ..., the time stamp of the GNSS anchor point; the upper limit of the number of segments of the specified time segment length at the same time; 1⁄2 ; searching for a space-time sub-region The speed data in the time segment of the time, if the number of speed data in the time segment exceeds the upper limit; 1⁄2 , the random data is added to ^. 10. 如权利要求 1所述的基于浮动车数据的城市道路交通异常检测方法, 其特征在于, 步骤 3)所述的历史轨迹数据分析和特征提取采用下述方法之一: 10. The method for detecting urban road traffic anomaly based on floating car data according to claim 1, wherein the historical trajectory data analysis and feature extraction in step 3) adopt one of the following methods: 3a) 简单历史轨迹数据融合法: 将无交通异常状况下的历史数据, 作为一个整体, 进行 交通特征模型建立和参数估计, 该方法利用有限混合模型, 建立交通特征模型, 并 进行参数估计; 3a) Simple historical trajectory data fusion method: The historical data under the condition of no traffic anomaly, as a whole, the traffic feature model establishment and parameter estimation, the method uses the finite hybrid model to establish the traffic feature model and perform parameter estimation; 3b) 分情境的历史轨迹数据分类法: 依据气温、 降水量、 能见度和交通管制措施, 将无 交通异常状况下的历史数据划分成不同的类别, 分别建立模型和进行参数估计; 3b) Historical trajectory data classification method: According to temperature, precipitation, visibility and traffic control measures, the historical data under the condition of no traffic anomalies is divided into different categories, and models and parameter estimation are respectively established; 3c) 历史数据聚类法: 对于历史数据, 通过时空子区两两之间的比较, 获得不同时空区 域的差异量化表征, 并利用量化后的差异进行聚类; 将气温、 降水量、 能见度和交 通管制措施作为特征因子,进行多项 Loglt回归,建立交通环境与类别的映射关系。 3c) Historical data clustering method: For historical data, through the comparison between time and space sub-regions, obtain the quantitative quantitative representation of different time and space regions, and use the quantized differences for clustering; temperature, precipitation, visibility and As a characteristic factor, traffic control measures carry out multiple Lo gl regressions to establish a mapping relationship between traffic environment and categories. 11. 如权利要求 10所述的基于浮动车数据的城市道路交通异常检测方法, 其特征在于, 步 骤 3a)采用下述方法之一: 11. The method according to claim 10, wherein the step 3a) adopts one of the following methods: 3al) 固定成分混合高斯模型法: 采用固定成分数量 的混合高斯模型描述车速的概率 分布,成分数量根据车速在典型情况下的分布模式人工指定,为了保证概率分布的 可靠性, 成分数量 不能过小, 一般可取 =4~6;  3al) Fixed-component mixed Gaussian model method: The mixed Gaussian model with a fixed number of components is used to describe the probability distribution of the vehicle speed. The number of components is manually specified according to the distribution pattern of the vehicle speed under typical conditions. In order to ensure the reliability of the probability distribution, the number of components cannot be too small. , generally available = 4~6; 3a2) 成分数量可变的混合高斯模型法: 采用基于模型评价的方法来选择合适的成分数 量, 方法如下: 确定可能的最大成分数量 , 并分别对《=1,2,…^个成分的混合高 斯模型进行参数估计;对于 个模型,通过贝叶斯信息准则 确定最佳模型; 3a2) Mixed Gaussian model method with variable number of components: The method based on model evaluation is used to select the appropriate number of components as follows: Determine the maximum number of possible components, and separately mix the components of “=1, 2,...^ The Gaussian model performs parameter estimation; for each model, the best model is determined by Bayesian information criteria; 3a3) 成分数量、 分布类型均可变的有限混合模型法: 子成分的分布形态和成分的数量 均可变。 3a3) Finite mixed model method in which the number of components and the type of distribution are variable: the distribution pattern of the subcomponents and the number of components are variable. 12. 如权利要求 10所述的基于浮动车数据的城市道路交通异常检测方法, 其特征在于, 步 骤 3c)所述的历史数据聚类法, 包括: The method for detecting an urban road traffic anomaly based on floating car data according to claim 10, wherein the historical data clustering method according to step 3c) comprises: 3d) 进行历史交通特征模型的参数估计;  3d) performing parameter estimation of the historical traffic characteristic model; 3c2) 根据所述参数估计结果, 写出时空子区在不同日期对应的行程车速分布的概率密 度函数 p,(x);  3c2) according to the parameter estimation result, write a probability density function p, (x) of the travel speed distribution corresponding to the spatio-temporal sub-region on different dates; 3c3) 计算各分布两两之间的 Jensen-Shannon散度 φμ 3c3) Calculate the Jensen-Shannon divergence φ μ between the two distributions = SD{P II Q) = ^D(P II M) + ^ D(Q \\ M) 式中, \ β为两个不同的概率分布, Μ = 1(Ρ + 0, 为 Kullback-Leibler散度:  = SD{P II Q) = ^D(P II M) + ^ D(Q \\ M) where \ β is two different probability distributions, Μ = 1(Ρ + 0, for Kullback-Leibler Degree: 替换页 (细则第 26条) „ i ( )i。g 在采用有限混合模型的情况下, 其值无法显式表示, 但可采用蒙特卡罗抽样方法近 似计算, 其计算方法是: Replacement page (Article 26) „ i ( )i.g In the case of a finite mixing model, the value cannot be explicitly expressed, but Monte Carlo sampling method can be used to approximate the calculation. The calculation method is: DMC (f II g) = -∑log ( i) ― D(f \\ g) D MC (f II g) = -∑log ( i) ― D(f \\ g) n g  n g 3c4) 将分布两两间的散度写成距离矩阵:
Figure imgf000021_0001
3c4) Write the divergence between the two distributions as a distance matrix:
Figure imgf000021_0001
该矩阵满足 4= , =0(/=/);  The matrix satisfies 4= , =0 (/=/); 3c5) 将距离矩阵作为 K-Medoids算法的输入, 得到聚类结果, 并对类别建立索引; 3c6) 以类别索引为响应变量, 将交通环境数据 (包括气温、 降水量、 能见度等) 作为 自变量,进行多项 Loglt回归,获取交通环境 E与交通态势类别 T的映射关系 R(E→T); 3c7) 将相同类别的数据进行聚合, 并利用聚合后新的数据集重新建立混合模型, 并进 行参数估计, 得到最终的历史交通特征数据集。 3c5) Using the distance matrix as input to the K-Medoids algorithm, obtaining clustering results, and indexing the categories; 3c6) Using the category index as the response variable, using traffic environment data (including temperature, precipitation, visibility, etc.) as independent variables , perform multiple Lo gl t regression, obtain the mapping relationship between traffic environment E and traffic situation category T (E→T) ; 3c7) aggregate data of the same category, and re-establish the hybrid model by using the new data set after aggregation And perform parameter estimation to obtain the final historical traffic characteristic data set.
13. 如权利要求 10所述的基于浮动车数据的城市道路交通异常检测方法, 其特征在于, 步 骤 3)所述的实时轨迹数据分析和特征提取采用下述方法之一: The method for detecting urban road traffic anomaly based on floating car data according to claim 10, wherein the real-time trajectory data analysis and feature extraction in step 3) adopt one of the following methods: 3d) 简单实时数据处理法: 该方法与 3a)所述的简单历史轨迹数据融合法同时实施, 将 实时交通数据进行模型建立和参数估计, 获取当前交通状况的特征函数;  3d) Simple real-time data processing method: This method is implemented simultaneously with the simple historical trajectory data fusion method described in 3a), and the real-time traffic data is modeled and parameter estimated to obtain the characteristic function of the current traffic condition; 3e) 分类处理法:该方法与 3b)所述的分情境的历史轨迹数据分类法或 3c)所述的历史数 据聚类法同时实施, 获取交通状况的特征函数, 同时获取当前的气温、 降水量、 能 见度、 交通管制措施等信息, 并判断当前交通状况的类别。  3e) Classification processing: This method is implemented simultaneously with the historical trajectory data classification method described in 3b) or the historical data clustering method described in 3c), obtaining the characteristic function of the traffic condition, and simultaneously obtaining the current temperature and precipitation. Information such as quantity, visibility, traffic control measures, and the type of current traffic conditions. 14. 如权利要求 13所述的基于浮动车数据的城市道路交通异常检测方法, 其特征在于, 步 骤 3e)所述的分类处理法包括: The method for detecting an urban road traffic anomaly based on floating car data according to claim 13, wherein the classification processing method according to step 3e) comprises: 3el) 计算时空子区内的行程车速, 构成实时行程车速总体 rt; 3el) Calculate the travel speed in the time-space sub-zone, which constitutes the overall rt of the real-time travel speed ; 3e2) 建立行程车速概率分布模型 prtξ Γ, ) = | · f ( r,; μ , ), 并进行参数估计; 3e2) Establish a travel speed probability distribution model p rtξ Γ , ) = | · f ( r ,; μ , ), and perform parameter estimation; 3e3) 将当前交通环境数据 (包括气温、 降水量、 能见度等) 作为输入参数, 利用映射 关系 ?(£→7)获得当前交通态势的所述类别 T 3e3) Using the current traffic environment data (including temperature, precipitation, visibility, etc.) as input parameters, use the mapping relationship ?(£→7) to obtain the category of the current traffic situation. 15. 如权利要求 1所述的基于浮动车数据的城市道路交通异常检测方法, 其特征在于, 步骤 4)异常检测包括: The method for detecting an urban road traffic anomaly based on floating car data according to claim 1, wherein: step 4) the abnormality detecting comprises: 4a) 根据当前交通态势所属类别 T, 定位该类别下历史交通特征数据, 如无类别划分,  4a) According to the category T of the current traffic situation, locate the historical traffic characteristic data under the category, if there is no category, 替换页 (细则第 26条) 则不必区分类别; Replacement page (Article 26) It is not necessary to distinguish categories; 4b) 根据当前交通特征的描述参数 τ^、 μ„、 ort和历史交通特征的描述参数 η、 μ、 σ计 算两个速度分布间的差异: ί¾Γ[(η ,μ ,σ ),(η,μ,σ)] = \\Ρ)。 4b) Calculate the difference between the two velocity distributions according to the description parameters τ^, μ„, o rt of the current traffic characteristics and the description parameters η, μ, σ of the historical traffic characteristics: ί3⁄4Γ[(η , μ , σ ), (η ,μ, σ )] = \\Ρ). 16. 如权利要求 1所述的基于浮动车数据的城市道路交通异常检测方法, 其特征在于, 步骤 5)异常严重性量化表征包括: 16. The method for detecting urban road traffic anomaly based on floating car data according to claim 1, wherein: step 5) quantitative characterization of abnormal severity includes: 5a) 将各个时空子区的速度分布差异标准化为 0~1的规范化数值 :  5a) Normalize the difference in velocity distribution for each spatiotemporal sub-region to a normalized value of 0~1: diff^ -ram{diff)  Diff^ -ram{diff) max {diff、 - min {diff、  Max {diff, - min {diff, 5b) 计算各个时空子区的交通异常指数 = > 10。  5b) Calculate the traffic anomaly index for each time-space subzone = > 10. 替换页 (细则第 26条) Replacement page (Article 26)
PCT/IB2016/058105 2016-12-30 2016-12-30 Method for urban road traffic incident detecting based on floating-car data Ceased WO2018122585A1 (en)

Priority Applications (25)

Application Number Priority Date Filing Date Title
CN201680088595.8A CN109923595B (en) 2016-12-30 2016-12-30 An urban road traffic anomaly detection method based on floating car data
PCT/IB2016/058105 WO2018122585A1 (en) 2016-12-30 2016-12-30 Method for urban road traffic incident detecting based on floating-car data
GBGB1711408.3A GB201711408D0 (en) 2016-12-30 2016-12-30 Early entry
PCT/IB2017/058535 WO2018122805A1 (en) 2016-12-30 2017-12-30 Traffic anomaly detection method based on time distribution of travels
CN201780050765.8A CN109844832B (en) 2016-12-30 2017-12-30 Multi-mode traffic anomaly detection method based on travel time distribution
CN201780050754.XA CN109997179A (en) 2016-12-30 2017-12-30 A kind of road traffic method for detecting abnormality that non-equidistant space-time divides
PCT/IB2017/058531 WO2018122801A1 (en) 2016-12-30 2017-12-30 Method for detecting traffic anomaly of urban road
GB1905907.0A GB2569924B (en) 2016-12-30 2017-12-30 Travel time distribution-based multimodal traffic anomaly detection method
CN201780050755.4A CN109643485B (en) 2016-12-30 2017-12-30 Urban road traffic abnormity detection method
GB2009834.9A GB2582532B (en) 2016-12-30 2017-12-30 Method for detecting traffic anomaly of urban road based on peak hour traffic flow rate
GBGB1909409.3A GB201909409D0 (en) 2016-12-30 2017-12-30 Traffic anomaly detection method based on time distribution of travels
GBGB1909406.9A GB201909406D0 (en) 2016-12-30 2017-12-30 Multimodal road traffic anomaly detection method
GB2100341.3A GB2587588B (en) 2016-12-30 2017-12-30 A method for detecting traffic anomaly with non-equidistant spatial-temporal division based on peak hour traffic flow rate
GBGB1909407.7A GB201909407D0 (en) 2016-12-30 2017-12-30 Multimodal road traffic anomaly detection method
PCT/IB2017/058536 WO2018122806A1 (en) 2016-12-30 2017-12-30 Travel time distribtuion-based multimodal traffic anomaly detection method
CN201780050906.6A CN109716414B (en) 2016-12-30 2017-12-30 A multimodal road traffic anomaly detection method
PCT/IB2017/058532 WO2018122802A1 (en) 2016-12-30 2017-12-30 Multimodal road traffic anomaly detection method
GB2100340.5A GB2588556B (en) 2016-12-30 2017-12-30 A method for detecting traffic anomaly based on travel time distribution with equidistant spatial-temporal division
PCT/IB2017/058533 WO2018122803A1 (en) 2016-12-30 2017-12-30 Smart road traffic anomaly detection method
CN201780050907.0A CN109791729B (en) 2016-12-30 2017-12-30 A traffic anomaly detection method based on travel time distribution
CN201780050719.8A CN110168520A (en) 2016-12-30 2017-12-30 An Intelligent Road Traffic Anomaly Detection Method
GBGB1909408.5A GB201909408D0 (en) 2016-12-30 2017-12-30 Road traffic anomaly detection method using non-isometric time/space divison
GB2009833.1A GB2582531B (en) 2016-12-30 2017-12-30 Method for detecting traffic anomally of urban road with equidistant spatial-temporal division
GB1909405.1A GB2572717B (en) 2016-12-30 2017-12-30 A Method for Urban Traffic Incident Detecting
PCT/IB2017/058534 WO2018122804A1 (en) 2016-12-30 2017-12-30 Road traffic anomaly detection method using non-isometric time/space division

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2016/058105 WO2018122585A1 (en) 2016-12-30 2016-12-30 Method for urban road traffic incident detecting based on floating-car data

Publications (1)

Publication Number Publication Date
WO2018122585A1 true WO2018122585A1 (en) 2018-07-05

Family

ID=59713568

Family Applications (7)

Application Number Title Priority Date Filing Date
PCT/IB2016/058105 Ceased WO2018122585A1 (en) 2016-12-30 2016-12-30 Method for urban road traffic incident detecting based on floating-car data
PCT/IB2017/058532 Ceased WO2018122802A1 (en) 2016-12-30 2017-12-30 Multimodal road traffic anomaly detection method
PCT/IB2017/058533 Ceased WO2018122803A1 (en) 2016-12-30 2017-12-30 Smart road traffic anomaly detection method
PCT/IB2017/058534 Ceased WO2018122804A1 (en) 2016-12-30 2017-12-30 Road traffic anomaly detection method using non-isometric time/space division
PCT/IB2017/058531 Ceased WO2018122801A1 (en) 2016-12-30 2017-12-30 Method for detecting traffic anomaly of urban road
PCT/IB2017/058535 Ceased WO2018122805A1 (en) 2016-12-30 2017-12-30 Traffic anomaly detection method based on time distribution of travels
PCT/IB2017/058536 Ceased WO2018122806A1 (en) 2016-12-30 2017-12-30 Travel time distribtuion-based multimodal traffic anomaly detection method

Family Applications After (6)

Application Number Title Priority Date Filing Date
PCT/IB2017/058532 Ceased WO2018122802A1 (en) 2016-12-30 2017-12-30 Multimodal road traffic anomaly detection method
PCT/IB2017/058533 Ceased WO2018122803A1 (en) 2016-12-30 2017-12-30 Smart road traffic anomaly detection method
PCT/IB2017/058534 Ceased WO2018122804A1 (en) 2016-12-30 2017-12-30 Road traffic anomaly detection method using non-isometric time/space division
PCT/IB2017/058531 Ceased WO2018122801A1 (en) 2016-12-30 2017-12-30 Method for detecting traffic anomaly of urban road
PCT/IB2017/058535 Ceased WO2018122805A1 (en) 2016-12-30 2017-12-30 Traffic anomaly detection method based on time distribution of travels
PCT/IB2017/058536 Ceased WO2018122806A1 (en) 2016-12-30 2017-12-30 Travel time distribtuion-based multimodal traffic anomaly detection method

Country Status (3)

Country Link
CN (7) CN109923595B (en)
GB (11) GB201711408D0 (en)
WO (7) WO2018122585A1 (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109871876A (en) * 2019-01-22 2019-06-11 东南大学 A method of highway road condition recognition and prediction based on floating car data
CN109918368A (en) * 2019-03-27 2019-06-21 成都市公安科学技术研究所 A kind of system and method that vehicle driver is identified by Track association degree
CN109948701A (en) * 2019-03-19 2019-06-28 太原科技大学 A data clustering method based on spatiotemporal correlation between trajectories
CN110197293A (en) * 2019-04-15 2019-09-03 同济大学 Timesharing rent-a-car Travel Demand Forecasting method and system based on floating car data
CN110322054A (en) * 2019-06-14 2019-10-11 中交第一公路勘察设计研究院有限公司 A kind of optimization distribution method of highway section Traffic monitoring device
CN110766936A (en) * 2018-07-25 2020-02-07 高德软件有限公司 Traffic running state sensing method and system based on multi-source data fusion
CN111310833A (en) * 2020-02-19 2020-06-19 清华大学 A travel mode identification method based on Bayesian neural network
CN111353828A (en) * 2020-03-30 2020-06-30 中国工商银行股份有限公司 Method and device for predicting number of people arriving at store from network
CN111613047A (en) * 2019-02-26 2020-09-01 阿里巴巴集团控股有限公司 Information processing method and device
CN111667015A (en) * 2020-06-11 2020-09-15 王跃 Internet of things equipment state detection method and device and detection equipment
CN111722252A (en) * 2020-05-14 2020-09-29 江苏北斗卫星应用产业研究院有限公司 High-precision operation surface identification method based on track data
CN111723997A (en) * 2020-06-23 2020-09-29 上海电科智能系统股份有限公司 Automatic generation method of urban major traffic accident data sample based on GAN
CN111932873A (en) * 2020-07-21 2020-11-13 重庆交通大学 Real-time traffic early warning management and control method and system for mountain city hot spot area
CN112000653A (en) * 2020-08-21 2020-11-27 睿驰达新能源汽车科技(北京)有限公司 Spatial and temporal based regional gridding driving behavior data preprocessing method
CN112085949A (en) * 2020-08-13 2020-12-15 浙江工业大学 Road network vulnerability identification, analysis and coping method based on traffic operation condition abnormity
CN112100243A (en) * 2020-09-15 2020-12-18 山东理工大学 An abnormal cluster detection method based on massive spatiotemporal data analysis
CN112215261A (en) * 2020-09-18 2021-01-12 武汉理工大学 Vehicle OD point clustering method, system, device and storage medium based on meta-learning
CN113221677A (en) * 2021-04-26 2021-08-06 阿波罗智联(北京)科技有限公司 Track abnormity detection method and device, road side equipment and cloud control platform
CN113240265A (en) * 2021-05-11 2021-08-10 西北工业大学 Urban space division method based on multi-mode traffic data
CN113312722A (en) * 2021-05-28 2021-08-27 广西大学 Reliability prediction optimization method for key components of urban rail train
CN113378301A (en) * 2021-06-22 2021-09-10 北京航空航天大学 Importance sampling-based key test case generation method for unmanned vehicle overtaking scene
CN113470347A (en) * 2021-05-20 2021-10-01 上海天壤智能科技有限公司 Congestion identification method and system combining bayonet vehicle passing record and floating vehicle GPS data
CN113920739A (en) * 2021-10-29 2022-01-11 复旦大学 Traffic data driving framework based on information physical fusion system and construction method
CN114093164A (en) * 2021-11-15 2022-02-25 上海市城乡建设和交通发展研究院 Dynamic traffic flow identification and correction method, device and equipment based on vehicle track
CN114170580A (en) * 2021-12-01 2022-03-11 连云港杰瑞电子有限公司 Highway-oriented abnormal event detection method
EP3912150A4 (en) * 2019-01-15 2022-03-16 Waycare Technologies Ltd. SYSTEM AND METHOD FOR DETECTING AND QUANTIFYING ROAD ROAD CONGESTION IRREGULARLY
CN114217333A (en) * 2022-02-21 2022-03-22 北京交研智慧科技有限公司 Road network topological abnormal position positioning method and device and related equipment
CN114492955A (en) * 2022-01-07 2022-05-13 重庆市地矿测绘院有限公司 Digital twin space-time big data platform based on three-dimensional live-action modeling and CIM
CN114492544A (en) * 2022-04-15 2022-05-13 腾讯科技(深圳)有限公司 Model training method and device and traffic incident occurrence probability evaluation method and device
CN114495498A (en) * 2022-01-20 2022-05-13 青岛海信网络科技股份有限公司 Traffic data distribution effectiveness judging method and device
CN114519122A (en) * 2020-11-19 2022-05-20 上海汽车集团股份有限公司 Music recommendation method based on vehicle driving scene
CN114626682A (en) * 2022-02-17 2022-06-14 华录智达科技股份有限公司 An urban bus network planning method considering agglomeration areas
CN114822066A (en) * 2022-04-14 2022-07-29 北京百度网讯科技有限公司 Vehicle positioning method and device, electronic equipment and storage medium
CN114863685A (en) * 2022-07-06 2022-08-05 北京理工大学 A method and system for predicting the trajectory of traffic participants based on risk acceptance
CN114866986A (en) * 2022-05-20 2022-08-05 深圳市威宇智通科技有限公司 A road traffic data acquisition system based on the Internet of Vehicles
CN114996251A (en) * 2022-06-07 2022-09-02 武汉众智数字技术有限公司 A security service management method and system based on radio GPS trajectory data
CN115019507A (en) * 2022-06-06 2022-09-06 上海旷途科技有限公司 Real-time estimation method for urban road network travel time reliability
CN115311846A (en) * 2022-06-24 2022-11-08 华东师范大学 A method and prediction system of road congestion in factory area combined with the task state of trucks
CN115691111A (en) * 2022-09-22 2023-02-03 连云港杰瑞电子有限公司 Internet vehicle minimum permeability calculation method suitable for traffic flow data acquisition
CN115798198A (en) * 2022-11-03 2023-03-14 公安部交通管理科学研究所 A method for estimating travel time distribution of urban road network based on data fusion
CN116071917A (en) * 2022-10-27 2023-05-05 广州市交通规划研究院有限公司 Travel characteristic analysis method based on provincial domain multi-source space data
CN116245282A (en) * 2023-02-21 2023-06-09 华南理工大学 Road network non-uniform discrete method for single-center traffic isochrone generation
CN116245362A (en) * 2023-03-07 2023-06-09 北京磁浮有限公司 Urban rail contact network risk assessment method and related device
CN116504052A (en) * 2022-12-30 2023-07-28 华设设计集团股份有限公司 Perception data complement method based on shock wave traffic flow model
CN116541745A (en) * 2023-04-21 2023-08-04 浙江工业大学 Traffic pattern recognition method and system based on graph convolution network feature fusion
CN117517596A (en) * 2024-01-08 2024-02-06 辽宁中消安全设备有限公司 Method and system for monitoring combustible and toxic harmful gases in real time based on Internet of things
CN117572470A (en) * 2024-01-15 2024-02-20 广东邦盛北斗科技股份公司 Beidou system positioning updating method and system applied to artificial intelligence
CN117575546A (en) * 2024-01-17 2024-02-20 北京白龙马云行科技有限公司 Background management system for network vehicle-restraining platform
CN117894181A (en) * 2024-03-14 2024-04-16 北京动视元科技有限公司 Global traffic abnormal condition integrated monitoring method and system
CN118025266A (en) * 2024-03-29 2024-05-14 扬州斯托派智能科技有限公司 One-rail multi-vehicle control system based on scheduling coordination optimization
CN118278841A (en) * 2024-05-31 2024-07-02 湖南省交通科学研究院有限公司 Large-piece transportation supervision and early warning method, system and device based on driving track
CN118351717A (en) * 2024-04-12 2024-07-16 中汽研汽车试验场股份有限公司 Self-adaptive pruning intelligent network-connected vehicle track control method and system
CN118445335A (en) * 2024-07-08 2024-08-06 山东惠通科技有限公司 A data management method and system for intelligent Internet of Things platform
CN118522140A (en) * 2024-02-02 2024-08-20 淮阴工学院 Safety monitoring system based on intelligent traffic
CN118587894A (en) * 2024-08-05 2024-09-03 浙江数智交院科技股份有限公司 A method for predicting vehicle exit from an emergency parking zone and providing an early warning
CN118628943A (en) * 2024-08-09 2024-09-10 广东森沛建设工程有限公司 UAV inspection data collection method and system for road construction sites
CN118967555A (en) * 2024-07-09 2024-11-15 盐城工学院 Metal surface defect detection method and system based on segmentation model with noise labels
CN119296045A (en) * 2024-12-11 2025-01-10 浙江安防职业技术学院 Security monitoring methods and equipment
CN120452596A (en) * 2025-07-07 2025-08-08 中科干细胞再生医学(辽宁)有限公司 Quality monitoring and analyzing method for traditional Chinese medicine raw materials

Families Citing this family (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108388540B (en) * 2018-03-01 2022-09-23 兰州交通大学 Road network selection method based on fuzzy comprehensive evaluation
WO2020078899A1 (en) * 2018-10-15 2020-04-23 Starship Technologies Oü Method and system for operating a mobile robot
WO2020078900A1 (en) 2018-10-15 2020-04-23 Starship Technologies Oü Method and system for operating a robot
DE102018130457B4 (en) * 2018-11-30 2021-03-25 Bayerische Motoren Werke Aktiengesellschaft System and process for map matching
CN110298500B (en) * 2019-06-19 2022-11-08 大连理工大学 Urban traffic track data set generation method based on taxi data and urban road network
CN112135239B (en) * 2019-06-25 2023-03-17 杭州萤石软件有限公司 Position monitoring method and device
US11587448B2 (en) 2019-07-26 2023-02-21 General Electric Company Systems and methods for manifolds learning of airline network data
CN110634288B (en) * 2019-08-30 2022-06-21 上海电科智能系统股份有限公司 Multi-dimensional urban traffic abnormal event recognition method based on ternary Gaussian mixture model
CN110533249B (en) * 2019-09-02 2021-09-14 合肥工业大学 Metallurgical enterprise energy consumption prediction method based on integrated long-term and short-term memory network
CN110716925B (en) * 2019-09-05 2023-08-04 中电科大数据研究院有限公司 A method for identifying cross-border behavior based on trajectory analysis
CN110674858B (en) * 2019-09-16 2023-06-09 长沙理工大学 A traffic public opinion detection method based on spatio-temporal correlation and big data mining
CN110795467B (en) * 2019-09-26 2024-02-27 腾讯大地通途(北京)科技有限公司 Traffic rule data processing method, device, storage medium and computer equipment
CN110895598B (en) * 2019-10-23 2021-09-14 山东九州信泰信息科技股份有限公司 Real-time anomaly detection parallelization method based on multi-source prediction
US11587433B2 (en) 2019-10-31 2023-02-21 Here Global B.V. Method, apparatus, and system for probe anomaly detection
JP7226248B2 (en) * 2019-10-31 2023-02-21 トヨタ自動車株式会社 Communication device and abnormality determination device
CN110956803A (en) * 2019-11-14 2020-04-03 深圳尚桥信息技术有限公司 Multi-mode-based vehicle detection method and system
CN110941278B (en) * 2019-12-20 2023-05-23 交控科技股份有限公司 Dynamic safety analysis method in station
CN111192454B (en) * 2020-01-07 2021-06-01 中山大学 Traffic abnormity identification method and system based on travel time evolution and storage medium
CN111192456A (en) * 2020-01-14 2020-05-22 泉州市益典信息科技有限公司 Road traffic operation situation multi-time scale prediction method
CN111311910B (en) * 2020-02-19 2020-12-22 中南大学 An abnormal trajectory detection method for multi-level road-level floating vehicles
CN112164223B (en) * 2020-02-27 2022-04-29 浙江恒隆智慧科技集团有限公司 Intelligent traffic information processing method and device based on cloud platform
CN111540194B (en) * 2020-03-23 2021-08-10 深圳奇迹智慧网络有限公司 Vehicle monitoring data processing method and device, computer equipment and storage medium
CN111475774B (en) * 2020-03-31 2022-03-18 清华大学 Method and device for detecting abnormal state of photovoltaic power station equipment
CN111583642B (en) * 2020-05-06 2021-03-23 北京航空航天大学 Real-time processing method of traffic trajectory streaming big data
US12183067B2 (en) * 2020-05-07 2024-12-31 Hypergiant Industries, Inc. Volumetric baseline image generation and object identification
CN111580500B (en) * 2020-05-11 2022-04-12 吉林大学 Evaluation method for safety of automatic driving automobile
CN111739289B (en) * 2020-06-02 2024-02-20 腾讯科技(深圳)有限公司 Method and device for processing vehicle early warning information
CN111709378B (en) * 2020-06-18 2022-07-12 湖南大学 A new method of road condition assessment based on JS divergence and fuzzy evidence theory
US11225259B1 (en) * 2020-07-28 2022-01-18 International Business Machines Corporation Fair anomaly detection and localization
CN111986487B (en) * 2020-09-11 2022-02-25 腾讯科技(深圳)有限公司 Road condition information management method and related device
CN112053561B (en) * 2020-09-11 2021-11-23 深兰人工智能芯片研究院(江苏)有限公司 Method, system and device for judging and positioning traffic accident on non-monitored road section
CN112308116B (en) * 2020-09-28 2023-04-07 济南大学 Self-optimization multi-channel fusion method and system for old-person-assistant accompanying robot
CN116368544A (en) 2020-10-16 2023-06-30 格步计程车控股私人有限公司 Method, electronic device and system for detecting overspeed
CN114882696B (en) * 2020-10-28 2023-11-03 华为技术有限公司 Road capacity determination method, device and storage medium
CN112419722B (en) * 2020-11-18 2022-08-30 百度(中国)有限公司 Traffic abnormal event detection method, traffic control method, device and medium
WO2022104790A1 (en) * 2020-11-23 2022-05-27 深圳元戎启行科技有限公司 Travel trajectory determining method and apparatus, computer device, and storage medium
CN112652170B (en) * 2020-12-24 2022-04-08 航天科工智能运筹与信息安全研究院(武汉)有限公司 Method and device for positioning traffic jam hot spot
CN112927497B (en) * 2021-01-14 2023-01-17 阿里巴巴集团控股有限公司 Floating car identification method, related method and device
CN112863185A (en) * 2021-01-15 2021-05-28 林安齐 Intelligent management system and method for road traffic equipment
CN112907949B (en) * 2021-01-20 2022-11-22 北京百度网讯科技有限公司 Traffic anomaly detection method, model training method and device
CN112784963B (en) * 2021-01-22 2022-07-01 重庆邮电大学 Indoor and outdoor seamless positioning method based on simulated annealing optimization BP neural network
GB202106070D0 (en) * 2021-04-28 2021-06-09 Tomtom Navigation Bv Methods and systems for determining estimated travel times through a navigable network
CN113380028B (en) * 2021-06-01 2022-09-06 公安部交通管理科学研究所 Intelligent travel traffic data fusion method and device
CN113313317B (en) * 2021-06-11 2024-04-12 哈尔滨工业大学 INLA algorithm-based shared bicycle use demand prediction method and prediction system
CN113535510B (en) * 2021-06-24 2024-01-26 北京理工大学 Self-adaptive sampling model optimization method for data acquisition of large-scale data center
CN113436433B (en) * 2021-06-24 2022-06-21 福建师范大学 An efficient urban traffic outlier detection method
CN113343905B (en) * 2021-06-28 2022-06-14 山东理工大学 Method and system for training road abnormity intelligent recognition model and recognizing road abnormity
CN113554869B (en) * 2021-07-01 2022-04-05 华东师范大学 Road closure detection method based on multi-feature fusion
CN113569759B (en) * 2021-07-29 2022-06-10 沭阳新辰公路仪器有限公司 Road falling object identification method and system based on artificial intelligence
US11828860B2 (en) 2021-08-27 2023-11-28 International Business Machines Corporation Low-sampling rate GPS trajectory learning
CN113779169B (en) * 2021-08-31 2023-09-05 西南电子技术研究所(中国电子科技集团公司第十研究所) Space-time data stream model self-enhancement method
CN113963399B (en) * 2021-09-09 2025-06-27 武汉众智数字技术有限公司 Personnel trajectory retrieval method and device based on multi-algorithm fusion application
CN113920728B (en) * 2021-10-11 2022-08-12 南京微达电子科技有限公司 Detection and early warning method and system for obstacles thrown on highway
CN114239929B (en) * 2021-11-30 2024-06-14 东南大学 A taxi traffic demand characteristics prediction method based on random forest
CN114372503A (en) * 2021-12-03 2022-04-19 同济大学 Cluster vehicle motion trail prediction method
CN113888877B (en) * 2021-12-08 2022-03-08 南方科技大学 Traffic state detection method, device, equipment and storage medium
CN114923512A (en) * 2021-12-22 2022-08-19 安徽理工大学 Urban pollutant monitoring optimization method based on shared bicycle and taxi movement tracks
CN114445577B (en) * 2021-12-29 2025-04-29 武汉中海庭数据技术有限公司 A method and system for calculating estimated arrival time based on graph network
CN115086910B (en) * 2022-04-27 2024-05-31 同济大学 Real-time road section dividing method based on dynamic and static characteristics in V2X environment
CN115171372B (en) * 2022-06-20 2023-10-24 青岛海信网络科技股份有限公司 Traffic abnormality detection method, equipment and device
CN115185780B (en) * 2022-07-21 2023-10-24 北京国联视讯信息技术股份有限公司 Data acquisition method and system based on industrial Internet
CN115440044B (en) * 2022-07-29 2023-10-13 深圳高速公路集团股份有限公司 Highway multisource event data fusion method, device, storage medium and terminal
CN115661672B (en) * 2022-10-24 2023-03-14 中国人民解放军海军工程大学 PolSAR image CFAR detection method and system based on GMM
CN115985088B (en) * 2022-11-30 2024-01-26 东南大学 Traffic flow stability improvement method based on vehicle collision time feedback
CN115938116B (en) * 2022-12-06 2025-07-29 广西新发展交通集团有限公司 Special road section abnormal state multiple point position identification method based on space autocorrelation
CN115979669A (en) * 2022-12-30 2023-04-18 长安大学 Unmanned vehicle fault detection method and system
CN116029736B (en) * 2023-01-05 2023-09-29 浙江警察学院 Real-time detection and safety early warning method and system for abnormal track of network vehicle
CN116165274B (en) * 2023-02-17 2023-11-14 哈尔滨工业大学 Urban orbit damage identification method based on Bayesian global sparse probability principal component analysis
CN115984077B (en) * 2023-02-24 2023-06-13 南方科技大学 Traffic abnormal flow causal detection method and equipment
CN117115759B (en) * 2023-04-12 2024-04-09 盐城工学院 Road side traffic target detection system and method based on category guidance
CN116703004B (en) * 2023-07-19 2023-09-29 共享数据(福建)科技有限公司 Water system river basin intelligent patrol method and device based on pre-training model
CN116955453B (en) * 2023-07-19 2025-07-15 重庆大学 A method for distinguishing key monitored vehicles based on travel time characteristics
CN116777120B (en) * 2023-08-16 2023-10-27 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) Urban road mobile source carbon emission calculation method based on road network OD pairs
CN116820014B (en) * 2023-08-24 2023-11-14 山西交通科学研究院集团有限公司 Intelligent monitoring and early warning method and system for traffic electromechanical equipment
CN116860840B (en) * 2023-09-05 2023-11-07 陕西交通电子工程科技有限公司 Rapid retrieval method for highway pavement information
CN117252008B (en) * 2023-09-19 2024-08-16 中国城市规划设计研究院 National urban road network reliability monitoring platform and method based on multi-dimensional indicators
CN117419732B (en) * 2023-10-10 2024-06-21 中国船舶集团有限公司第七〇九研究所 Road network-based perception target positioning deviation rectifying method, equipment and storage medium
CN118115427B (en) * 2023-11-15 2024-10-18 北京科技大学 A road surface status detection method and system based on multi-source data
CN117372969B (en) * 2023-12-08 2024-05-10 暗物智能科技(广州)有限公司 Monitoring scene-oriented abnormal event detection method
CN117456482B (en) * 2023-12-25 2024-05-10 暗物智能科技(广州)有限公司 Abnormal event identification method and system for traffic monitoring scene
CN117706478B (en) * 2024-02-02 2024-05-03 腾讯科技(深圳)有限公司 Positioning drift identification method, device, equipment and storage medium
CN117688505B (en) * 2024-02-04 2024-04-19 河海大学 A prediction method and system for large-scale regionalized negative anomalies of vegetation
CN118070683B (en) * 2024-04-22 2024-07-23 山东师范大学 Logistics and transportation big data collection method and system based on digital twin
CN118397843B (en) * 2024-06-24 2024-09-20 中交第一公路勘察设计研究院有限公司 Grading and predicting method and system for road traffic blocking state
CN118468205B (en) * 2024-07-12 2024-10-15 青岛有屋科技有限公司 Centralized household equipment state fault detection method based on artificial intelligence
CN118800073B (en) * 2024-09-13 2024-12-24 湖南高速信息科技有限公司 Traffic abnormal section identification method based on traffic flow
CN119516765B (en) * 2024-09-29 2025-07-22 中国铁塔股份有限公司揭阳市分公司 Road state monitoring system based on video image analysis
CN119152697B (en) * 2024-11-18 2025-02-11 成都赛力斯科技有限公司 Data processing method and system, cloud server and vehicle
CN119167315B (en) * 2024-11-21 2025-03-07 江苏开博科技有限公司 Multi-source data integration method for IT operation and maintenance big data
CN119370002B (en) * 2024-12-27 2025-03-28 长春光华学院 A method and system for adjusting and controlling the massage function of a car seat

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101286269A (en) * 2008-05-26 2008-10-15 北京捷讯畅达科技发展有限公司 Traffic flow forecasting system combining dynamic real time traffic data
US7460948B2 (en) * 2006-03-10 2008-12-02 Gm Global Technology Operations, Inc. Traffic notification system for reporting traffic anomalies based on historical probe vehicle data
CN103065466A (en) * 2012-11-19 2013-04-24 北京世纪高通科技有限公司 Detection method of and detection device for abnormal traffic conditions
CN103632546A (en) * 2013-11-27 2014-03-12 中国航天系统工程有限公司 Floating car data-based urban road traffic accident influence prediction method
CN103903433A (en) * 2012-12-27 2014-07-02 中兴通讯股份有限公司 Real-time dynamic judgment method and device for road traffic state

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05250598A (en) * 1992-03-06 1993-09-28 Matsushita Electric Ind Co Ltd Traffic information providing device
JPH07220193A (en) * 1994-01-28 1995-08-18 Nagoya Denki Kogyo Kk Traffic situation determination device
JP4200747B2 (en) * 2001-11-27 2008-12-24 富士ゼロックス株式会社 Movement information classification device, movement information classification method, and movement information classification program
US7187800B2 (en) * 2002-08-02 2007-03-06 Computerized Medical Systems, Inc. Method and apparatus for image segmentation using Jensen-Shannon divergence and Jensen-Renyi divergence
DE102005002760B4 (en) * 2004-01-20 2018-05-24 Volkswagen Ag Device and method for accident prevention in motor vehicles
US7522995B2 (en) * 2004-02-05 2009-04-21 Nortrup Edward H Method and system for providing travel time information
CN102289936B (en) * 2006-03-03 2014-08-06 因瑞克斯有限公司 Assessing road traffic conditions using data from mobile data sources
JP4591395B2 (en) * 2006-03-31 2010-12-01 アイシン・エィ・ダブリュ株式会社 Navigation system
CN100492434C (en) * 2006-11-30 2009-05-27 上海交通大学 A method for obtaining the sampling amount of the probe car required for traffic flow state analysis
JP4539666B2 (en) * 2007-03-19 2010-09-08 アイシン・エィ・ダブリュ株式会社 Traffic condition calculation system
CN101373559B (en) * 2007-08-24 2010-08-18 同济大学 Method for evaluating city road net traffic state based on floating vehicle data
DE102007050154A1 (en) * 2007-10-19 2009-04-23 Siemens Ag Prediction system for predicting driving time, vehicle-based route planning system, traffic information system and method
CN101620781B (en) * 2008-06-30 2012-08-29 株式会社查纳位资讯情报 System for Predicting Passenger Information, System and Method for Searching Passenger Information
CN201262784Y (en) * 2008-09-28 2009-06-24 华南理工大学 Traffic status detection and evaluation system at urban signal control intersections based on data features
CN101727747A (en) * 2009-12-16 2010-06-09 南京信息工程大学 Abnormal road jam alarming method based on flow detection
CN101794510A (en) * 2009-12-30 2010-08-04 北京世纪高通科技有限公司 Data processing method and device of floating cars
CN101950477B (en) * 2010-08-23 2012-05-23 北京世纪高通科技有限公司 A traffic information processing method and device
CN101976505A (en) * 2010-10-25 2011-02-16 中国科学院深圳先进技术研究院 Traffic evaluation method and system
CN201946111U (en) * 2011-01-13 2011-08-24 西安邮电学院 Data acquisition and releasing node for early warning system of traffic abnormal events in express way
CN201927174U (en) * 2011-01-13 2011-08-10 西安邮电学院 Early warning system for traffic abnormal events of expressway
WO2012144429A1 (en) * 2011-04-20 2012-10-26 日本電気株式会社 Traffic situation monitoring system, method, and storage medium
CN202075864U (en) * 2011-04-28 2011-12-14 北京市劳动保护科学研究所 Abnormal traffic state automatic detection system
CN102231235B (en) * 2011-04-29 2016-02-24 陈伟 A kind of traffic flow outlier detection localization method
US8775059B2 (en) * 2011-10-26 2014-07-08 Right There Ware LLC Method and system for fleet navigation, dispatching and multi-vehicle, multi-destination routing
US20130166188A1 (en) * 2011-12-21 2013-06-27 Microsoft Corporation Determine Spatiotemporal Causal Interactions In Data
CN102637357B (en) * 2012-03-27 2013-11-06 山东大学 Regional traffic state assessment method
US9141874B2 (en) * 2012-07-19 2015-09-22 Qualcomm Incorporated Feature extraction and use with a probability density function (PDF) divergence metric
CN102855638B (en) * 2012-08-13 2015-02-11 苏州大学 Detection method for abnormal behavior of vehicle based on spectrum clustering
CN103050005B (en) * 2012-11-16 2015-06-03 北京交通大学 Method and system for space and time analysis of urban road traffic states
CN103065468A (en) * 2012-12-14 2013-04-24 中国航天系统工程有限公司 Assessment method of traffic information and device
CN103903436A (en) * 2012-12-28 2014-07-02 上海优途信息科技有限公司 Expressway traffic jam detecting method and system based on floating car
CN103258427B (en) * 2013-04-24 2015-03-11 北京工业大学 Urban expressway traffic real-time monitoring system and method based on information physical network
CN103247177B (en) * 2013-05-21 2016-01-20 清华大学 Large-scale road network traffic flow real-time dynamic prediction system
CN103309964A (en) * 2013-06-03 2013-09-18 广州市香港科大霍英东研究院 High-efficiency visible monitoring analysis system for large-scale traffic data
CN103354030B (en) * 2013-07-29 2015-06-24 吉林大学 Method for determining road traffic situation by utilizing floating bus CAN bus information
CN103514743B (en) * 2013-09-28 2016-01-06 上海电科智能系统股份有限公司 A kind of abnormal traffic state characteristic recognition method of real-time index-matched memory range
US9582999B2 (en) * 2013-10-31 2017-02-28 Here Global B.V. Traffic volume estimation
US9240123B2 (en) * 2013-12-13 2016-01-19 Here Global B.V. Systems and methods for detecting road congestion and incidents in real time
CN103971521B (en) * 2014-05-19 2016-06-29 清华大学 Road traffic anomalous event real-time detection method and device
KR101598343B1 (en) * 2014-09-23 2016-02-29 목원대학교 산학협력단 System for automatically Identifying spatio-temporal congestion patterns and method thereof
CN104282151A (en) * 2014-09-30 2015-01-14 北京交通发展研究中心 Real-time floating vehicle path matching method based on high-frequency satellite positioning data
CN104408958B (en) * 2014-11-11 2016-09-28 河海大学 A kind of city dynamic route Travel Time Estimation Method
US9349285B1 (en) * 2014-12-01 2016-05-24 Here Global B.V. Traffic classification based on spatial neighbor model
CN104408924B (en) * 2014-12-04 2016-06-01 深圳北航新兴产业技术研究院 A kind of urban road abnormal traffic stream detection method based on coupled hidden markov model
CN104537833B (en) * 2014-12-19 2017-03-29 深圳大学 A kind of accident detection method and system
CN104504901B (en) * 2014-12-29 2016-06-08 浙江银江研究院有限公司 A kind of traffic abnormity point detecting method based on multidimensional data
CN104778834B (en) * 2015-01-23 2017-02-22 哈尔滨工业大学 Urban road traffic jam judging method based on vehicle GPS data
CN104657746B (en) * 2015-01-29 2017-09-12 电子科技大学 A kind of method for detecting abnormality based on track of vehicle similitude
CN104573116B (en) * 2015-02-05 2017-11-03 哈尔滨工业大学 Traffic abnormity identification method based on taxi GPS data mining
KR101728219B1 (en) * 2015-02-23 2017-04-19 전북대학교산학협력단 Traffic Dispersion Method and System with Space Time Control based on Duplex Communication
US11482100B2 (en) * 2015-03-28 2022-10-25 Intel Corporation Technologies for detection of anomalies in vehicle traffic patterns
CN104778837B (en) * 2015-04-14 2017-12-05 吉林大学 Road traffic operation situation multi-time scale prediction method
CN104809787B (en) * 2015-04-23 2017-11-17 中电科安(北京)科技股份有限公司 A kind of intelligent passenger volume statistic device based on camera
US9576481B2 (en) * 2015-04-30 2017-02-21 Here Global B.V. Method and system for intelligent traffic jam detection
CN104809878B (en) * 2015-05-14 2017-03-22 重庆大学 Method for detecting abnormal condition of urban road traffic by utilizing GPS (Global Positioning System) data of public buses
CN105005760B (en) * 2015-06-11 2018-04-24 华中科技大学 A kind of recognition methods again of the pedestrian based on Finite mixture model
CN105261212B (en) * 2015-09-06 2018-06-19 中山大学 A kind of trip space-time analysis method based on GPS data from taxi map match
CN105404890B (en) * 2015-10-13 2018-10-16 广西师范学院 A kind of criminal gang's method of discrimination for taking track space and time order into account
CN105513350A (en) * 2015-11-30 2016-04-20 华南理工大学 Time-phased multi-parameter short-term traffic flow prediction method based on time-space characteristics
CN105489008B (en) * 2015-12-28 2018-10-19 北京握奇智能科技有限公司 Urban road congestion computational methods and system based on Floating Car satellite location data
CN105608895B (en) * 2016-03-04 2017-11-10 大连理工大学 A kind of urban traffic blocking section detecting method based on local outlier factor
CN105761488B (en) * 2016-03-30 2018-11-23 湖南大学 Real-time extreme learning machine Short-time Traffic Flow Forecasting Methods based on fusion
CN106067248B (en) * 2016-05-30 2018-08-24 重庆大学 A kind of traffic status of express way method of estimation considering speed dispersion characteristic
CN106023592A (en) * 2016-07-11 2016-10-12 南京邮电大学 Traffic jam detection method based on GPS data
CN106228808B (en) * 2016-08-05 2019-04-30 北京航空航天大学 Travel time prediction method of urban expressway based on spatiotemporal grid data of floating car
CN106781468B (en) * 2016-12-09 2018-06-15 大连理工大学 Link Travel Time Estimation method based on built environment and low frequency floating car data

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7460948B2 (en) * 2006-03-10 2008-12-02 Gm Global Technology Operations, Inc. Traffic notification system for reporting traffic anomalies based on historical probe vehicle data
CN101286269A (en) * 2008-05-26 2008-10-15 北京捷讯畅达科技发展有限公司 Traffic flow forecasting system combining dynamic real time traffic data
CN103065466A (en) * 2012-11-19 2013-04-24 北京世纪高通科技有限公司 Detection method of and detection device for abnormal traffic conditions
CN103903433A (en) * 2012-12-27 2014-07-02 中兴通讯股份有限公司 Real-time dynamic judgment method and device for road traffic state
CN103632546A (en) * 2013-11-27 2014-03-12 中国航天系统工程有限公司 Floating car data-based urban road traffic accident influence prediction method

Cited By (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110766936A (en) * 2018-07-25 2020-02-07 高德软件有限公司 Traffic running state sensing method and system based on multi-source data fusion
EP3912150A4 (en) * 2019-01-15 2022-03-16 Waycare Technologies Ltd. SYSTEM AND METHOD FOR DETECTING AND QUANTIFYING ROAD ROAD CONGESTION IRREGULARLY
US12008896B2 (en) 2019-01-15 2024-06-11 Waycare Technologies Ltd. System and method for detection and quantification of irregular traffic congestion
EP4550219A3 (en) * 2019-01-15 2025-07-09 Waycare Technologies Ltd. System and method for detection and quantification of irregular traffic congestion
CN109871876A (en) * 2019-01-22 2019-06-11 东南大学 A method of highway road condition recognition and prediction based on floating car data
CN109871876B (en) * 2019-01-22 2023-08-08 东南大学 Expressway road condition identification and prediction method based on floating car data
CN111613047A (en) * 2019-02-26 2020-09-01 阿里巴巴集团控股有限公司 Information processing method and device
CN111613047B (en) * 2019-02-26 2022-07-08 阿里巴巴集团控股有限公司 Information processing method and device
CN109948701A (en) * 2019-03-19 2019-06-28 太原科技大学 A data clustering method based on spatiotemporal correlation between trajectories
CN109918368A (en) * 2019-03-27 2019-06-21 成都市公安科学技术研究所 A kind of system and method that vehicle driver is identified by Track association degree
CN110197293A (en) * 2019-04-15 2019-09-03 同济大学 Timesharing rent-a-car Travel Demand Forecasting method and system based on floating car data
CN110322054A (en) * 2019-06-14 2019-10-11 中交第一公路勘察设计研究院有限公司 A kind of optimization distribution method of highway section Traffic monitoring device
CN111310833B (en) * 2020-02-19 2022-11-15 清华大学 A Method of Travel Mode Recognition Based on Bayesian Neural Network
CN111310833A (en) * 2020-02-19 2020-06-19 清华大学 A travel mode identification method based on Bayesian neural network
CN111353828B (en) * 2020-03-30 2023-09-12 中国工商银行股份有限公司 Method and device for predicting number of people coming to store at website
CN111353828A (en) * 2020-03-30 2020-06-30 中国工商银行股份有限公司 Method and device for predicting number of people arriving at store from network
CN111722252A (en) * 2020-05-14 2020-09-29 江苏北斗卫星应用产业研究院有限公司 High-precision operation surface identification method based on track data
CN111667015B (en) * 2020-06-11 2023-06-27 深圳市兴海物联科技有限公司 Method and device for detecting state of equipment of Internet of things and detection equipment
CN111667015A (en) * 2020-06-11 2020-09-15 王跃 Internet of things equipment state detection method and device and detection equipment
CN111723997A (en) * 2020-06-23 2020-09-29 上海电科智能系统股份有限公司 Automatic generation method of urban major traffic accident data sample based on GAN
CN111932873A (en) * 2020-07-21 2020-11-13 重庆交通大学 Real-time traffic early warning management and control method and system for mountain city hot spot area
CN112085949A (en) * 2020-08-13 2020-12-15 浙江工业大学 Road network vulnerability identification, analysis and coping method based on traffic operation condition abnormity
CN112000653B (en) * 2020-08-21 2024-03-29 睿驰达新能源汽车科技(北京)有限公司 Space and time-based regional gridding driving behavior data preprocessing method
CN112000653A (en) * 2020-08-21 2020-11-27 睿驰达新能源汽车科技(北京)有限公司 Spatial and temporal based regional gridding driving behavior data preprocessing method
CN112100243B (en) * 2020-09-15 2024-02-20 山东理工大学 Abnormal aggregation detection method based on massive space-time data analysis
CN112100243A (en) * 2020-09-15 2020-12-18 山东理工大学 An abnormal cluster detection method based on massive spatiotemporal data analysis
CN112215261A (en) * 2020-09-18 2021-01-12 武汉理工大学 Vehicle OD point clustering method, system, device and storage medium based on meta-learning
CN114519122A (en) * 2020-11-19 2022-05-20 上海汽车集团股份有限公司 Music recommendation method based on vehicle driving scene
CN113221677A (en) * 2021-04-26 2021-08-06 阿波罗智联(北京)科技有限公司 Track abnormity detection method and device, road side equipment and cloud control platform
CN113221677B (en) * 2021-04-26 2024-04-16 阿波罗智联(北京)科技有限公司 Track abnormality detection method and device, road side equipment and cloud control platform
CN113240265B (en) * 2021-05-11 2023-10-27 西北工业大学 Urban space division method based on multi-mode traffic data
CN113240265A (en) * 2021-05-11 2021-08-10 西北工业大学 Urban space division method based on multi-mode traffic data
CN113470347B (en) * 2021-05-20 2022-07-26 上海天壤智能科技有限公司 Congestion identification method and system combining bayonet vehicle passing record and floating vehicle GPS data
CN113470347A (en) * 2021-05-20 2021-10-01 上海天壤智能科技有限公司 Congestion identification method and system combining bayonet vehicle passing record and floating vehicle GPS data
CN113312722A (en) * 2021-05-28 2021-08-27 广西大学 Reliability prediction optimization method for key components of urban rail train
CN113312722B (en) * 2021-05-28 2023-05-05 广西大学 Reliability prediction optimization method for key parts of urban rail train
CN113378301A (en) * 2021-06-22 2021-09-10 北京航空航天大学 Importance sampling-based key test case generation method for unmanned vehicle overtaking scene
CN113378301B (en) * 2021-06-22 2022-05-24 北京航空航天大学 Importance sampling-based key test case generation method for unmanned vehicle overtaking scene
CN113920739A (en) * 2021-10-29 2022-01-11 复旦大学 Traffic data driving framework based on information physical fusion system and construction method
CN114093164B (en) * 2021-11-15 2022-08-19 上海市城乡建设和交通发展研究院 Dynamic traffic flow identification and correction method, device and equipment based on vehicle track
CN114093164A (en) * 2021-11-15 2022-02-25 上海市城乡建设和交通发展研究院 Dynamic traffic flow identification and correction method, device and equipment based on vehicle track
CN114170580A (en) * 2021-12-01 2022-03-11 连云港杰瑞电子有限公司 Highway-oriented abnormal event detection method
CN114492955A (en) * 2022-01-07 2022-05-13 重庆市地矿测绘院有限公司 Digital twin space-time big data platform based on three-dimensional live-action modeling and CIM
CN114495498B (en) * 2022-01-20 2023-01-10 青岛海信网络科技股份有限公司 Traffic data distribution effectiveness judging method and device
CN114495498A (en) * 2022-01-20 2022-05-13 青岛海信网络科技股份有限公司 Traffic data distribution effectiveness judging method and device
CN114626682A (en) * 2022-02-17 2022-06-14 华录智达科技股份有限公司 An urban bus network planning method considering agglomeration areas
CN114217333A (en) * 2022-02-21 2022-03-22 北京交研智慧科技有限公司 Road network topological abnormal position positioning method and device and related equipment
CN114822066A (en) * 2022-04-14 2022-07-29 北京百度网讯科技有限公司 Vehicle positioning method and device, electronic equipment and storage medium
CN114492544B (en) * 2022-04-15 2022-07-26 腾讯科技(深圳)有限公司 Model training method and device and traffic incident occurrence probability evaluation method and device
CN114492544A (en) * 2022-04-15 2022-05-13 腾讯科技(深圳)有限公司 Model training method and device and traffic incident occurrence probability evaluation method and device
CN114866986A (en) * 2022-05-20 2022-08-05 深圳市威宇智通科技有限公司 A road traffic data acquisition system based on the Internet of Vehicles
CN115019507A (en) * 2022-06-06 2022-09-06 上海旷途科技有限公司 Real-time estimation method for urban road network travel time reliability
CN115019507B (en) * 2022-06-06 2023-12-01 上海旷途科技有限公司 Urban road network travel time reliability real-time estimation method
CN114996251A (en) * 2022-06-07 2022-09-02 武汉众智数字技术有限公司 A security service management method and system based on radio GPS trajectory data
CN115311846A (en) * 2022-06-24 2022-11-08 华东师范大学 A method and prediction system of road congestion in factory area combined with the task state of trucks
CN115311846B (en) * 2022-06-24 2023-08-11 华东师范大学 Factory road congestion prediction method and prediction system combining truck task states
CN114863685B (en) * 2022-07-06 2022-09-27 北京理工大学 Traffic participant trajectory prediction method and system based on risk acceptance degree
CN114863685A (en) * 2022-07-06 2022-08-05 北京理工大学 A method and system for predicting the trajectory of traffic participants based on risk acceptance
CN115691111B (en) * 2022-09-22 2024-01-23 连云港杰瑞电子有限公司 Network-connected vehicle minimum permeability calculation method suitable for traffic flow data acquisition
CN115691111A (en) * 2022-09-22 2023-02-03 连云港杰瑞电子有限公司 Internet vehicle minimum permeability calculation method suitable for traffic flow data acquisition
CN116071917B (en) * 2022-10-27 2025-04-29 广州市交通规划研究院有限公司 A travel characteristics analysis method based on provincial multi-source spatial data
CN116071917A (en) * 2022-10-27 2023-05-05 广州市交通规划研究院有限公司 Travel characteristic analysis method based on provincial domain multi-source space data
CN115798198A (en) * 2022-11-03 2023-03-14 公安部交通管理科学研究所 A method for estimating travel time distribution of urban road network based on data fusion
CN115798198B (en) * 2022-11-03 2024-04-05 公安部交通管理科学研究所 A method for estimating travel time distribution in urban road networks based on data fusion
CN116504052A (en) * 2022-12-30 2023-07-28 华设设计集团股份有限公司 Perception data complement method based on shock wave traffic flow model
CN116245282A (en) * 2023-02-21 2023-06-09 华南理工大学 Road network non-uniform discrete method for single-center traffic isochrone generation
CN116245362B (en) * 2023-03-07 2023-12-12 北京磁浮有限公司 Urban rail catenary risk assessment methods and related devices
CN116245362A (en) * 2023-03-07 2023-06-09 北京磁浮有限公司 Urban rail contact network risk assessment method and related device
CN116541745A (en) * 2023-04-21 2023-08-04 浙江工业大学 Traffic pattern recognition method and system based on graph convolution network feature fusion
CN117517596B (en) * 2024-01-08 2024-03-15 辽宁中消安全设备有限公司 Method and system for monitoring combustible and toxic harmful gases in real time based on Internet of things
CN117517596A (en) * 2024-01-08 2024-02-06 辽宁中消安全设备有限公司 Method and system for monitoring combustible and toxic harmful gases in real time based on Internet of things
CN117572470A (en) * 2024-01-15 2024-02-20 广东邦盛北斗科技股份公司 Beidou system positioning updating method and system applied to artificial intelligence
CN117572470B (en) * 2024-01-15 2024-04-19 广东邦盛北斗科技股份公司 Beidou system positioning updating method and system applied to artificial intelligence
CN117575546A (en) * 2024-01-17 2024-02-20 北京白龙马云行科技有限公司 Background management system for network vehicle-restraining platform
CN117575546B (en) * 2024-01-17 2024-04-05 北京白龙马云行科技有限公司 Background management system for network vehicle-restraining platform
CN118522140A (en) * 2024-02-02 2024-08-20 淮阴工学院 Safety monitoring system based on intelligent traffic
CN117894181B (en) * 2024-03-14 2024-05-07 北京动视元科技有限公司 Global traffic abnormal condition integrated monitoring method and system
CN117894181A (en) * 2024-03-14 2024-04-16 北京动视元科技有限公司 Global traffic abnormal condition integrated monitoring method and system
CN118025266A (en) * 2024-03-29 2024-05-14 扬州斯托派智能科技有限公司 One-rail multi-vehicle control system based on scheduling coordination optimization
CN118351717A (en) * 2024-04-12 2024-07-16 中汽研汽车试验场股份有限公司 Self-adaptive pruning intelligent network-connected vehicle track control method and system
CN118278841A (en) * 2024-05-31 2024-07-02 湖南省交通科学研究院有限公司 Large-piece transportation supervision and early warning method, system and device based on driving track
CN118445335A (en) * 2024-07-08 2024-08-06 山东惠通科技有限公司 A data management method and system for intelligent Internet of Things platform
CN118967555A (en) * 2024-07-09 2024-11-15 盐城工学院 Metal surface defect detection method and system based on segmentation model with noise labels
CN118587894A (en) * 2024-08-05 2024-09-03 浙江数智交院科技股份有限公司 A method for predicting vehicle exit from an emergency parking zone and providing an early warning
CN118628943A (en) * 2024-08-09 2024-09-10 广东森沛建设工程有限公司 UAV inspection data collection method and system for road construction sites
CN119296045A (en) * 2024-12-11 2025-01-10 浙江安防职业技术学院 Security monitoring methods and equipment
CN120452596A (en) * 2025-07-07 2025-08-08 中科干细胞再生医学(辽宁)有限公司 Quality monitoring and analyzing method for traditional Chinese medicine raw materials

Also Published As

Publication number Publication date
CN109643485A (en) 2019-04-16
CN109791729B (en) 2021-10-15
CN109844832A (en) 2019-06-04
GB202100340D0 (en) 2021-02-24
CN109716414B (en) 2021-10-15
WO2018122806A1 (en) 2018-07-05
GB201905907D0 (en) 2019-06-12
WO2018122801A1 (en) 2018-07-05
CN109791729A (en) 2019-05-21
CN109923595A (en) 2019-06-21
GB201909407D0 (en) 2019-08-14
GB2588556A (en) 2021-04-28
GB2582531B (en) 2021-02-24
GB2569924A (en) 2019-07-03
GB2582532B (en) 2021-02-24
GB2582531A (en) 2020-09-23
GB2569924A8 (en) 2021-01-27
CN109716414A (en) 2019-05-03
GB202009833D0 (en) 2020-08-12
GB2569924B (en) 2021-02-24
CN109844832B (en) 2021-06-15
CN109923595B (en) 2021-07-13
GB201909409D0 (en) 2019-08-14
WO2018122804A1 (en) 2018-07-05
WO2018122802A1 (en) 2018-07-05
GB2588556B (en) 2021-10-27
CN110168520A (en) 2019-08-23
GB2582532A (en) 2020-09-23
GB201909408D0 (en) 2019-08-14
WO2018122803A1 (en) 2018-07-05
GB201909405D0 (en) 2019-08-14
CN109643485B (en) 2021-04-30
WO2018122805A1 (en) 2018-07-05
GB2572717B (en) 2020-08-05
GB202009834D0 (en) 2020-08-12
GB202100341D0 (en) 2021-02-24
GB201711408D0 (en) 2017-08-30
GB2587588B (en) 2021-10-27
GB2587588A (en) 2021-03-31
GB2572717A (en) 2019-10-09
GB201909406D0 (en) 2019-08-14
CN109997179A (en) 2019-07-09

Similar Documents

Publication Publication Date Title
WO2018122585A1 (en) Method for urban road traffic incident detecting based on floating-car data
Liu et al. A participatory urban traffic monitoring system: The power of bus riders
CN115436972A (en) Method, system and medium for identifying stop point based on heavy-duty truck GPS track
Yao et al. Sampled trajectory data-driven method of cycle-based volume estimation for signalized intersections by hybridizing shockwave theory and probability distribution
Liu et al. Intersection delay estimation from floating car data via principal curves: a case study on Beijing’s road network
CN106530704A (en) Floating car aggregation detection method based on multivariate data fusion
Qin et al. Spatiotemporal K-nearest neighbors algorithm and bayesian approach for estimating urban link travel time distribution from sparse GPS trajectories
CN116701551A (en) Abnormality prediction method, device, equipment and storage medium
Grau et al. Multisource data framework for road traffic state estimation
Shao et al. Estimation of urban travel time with sparse traffic surveillance data
CN119068659A (en) A vehicle abnormal behavior detection method based on Beidou positioning
Zarindast A data driven method for congestion mining using big data analytic
Gao et al. iTA: inferring traffic accident hotspots with vehicle trajectories and road environment data
Xing Estimating traffic volumes in an urban network based on taxi GPS and limited LPR data using machine learning techniques
Wu et al. Excavation of Attractive Areas for Car-Share Travel and Prediction of Car-Share Usage
Shen et al. Traffic velocity prediction using GPS data: IEEE ICDM contest task 3 report
Xiang et al. Network-wide performance assessment of urban traffic based on probe vehicle data
CN116578664B (en) Construction method, travel prediction method and system of vehicle travel directional loop diagram
Chen et al. Estimation of Vessel Link-Level Sailing Time Distribution under a Connected Network
Chiou et al. Travel pattern analytics driven by cellular signaling data
Jielun Analysis of Large Scale Urban Transportation Network Using Urban Traffic Data
Oh A comprehensive analysis framework for addressing non-recurrent traffic congestion: Focusing on incident-induced delays employing connected vehicle data in transportation systems management and operations
Sakib Graduate, Department of Civil Engineering, Ahsanullah University of Science and Technology, Bangladesh, e-mail: nazmussakib. austce@ gmail. com, ORCiD: 0000-0002-0525-6342* Corresponding Author
CN119469245A (en) Real-time environmental monitoring system and method based on shared vehicles
PUGLIESE et al. USING GPS DATA FROM A SAMPLE OF PRIVATE CARS FOR MODELLING THE URBAN TRAFFIC

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1711408.3

Country of ref document: GB

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16925696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16925696

Country of ref document: EP

Kind code of ref document: A1