WO2018111076A1 - Probabilistic bayesian algorithms for identifying product demand in a small business - Google Patents
Probabilistic bayesian algorithms for identifying product demand in a small business Download PDFInfo
- Publication number
- WO2018111076A1 WO2018111076A1 PCT/MX2016/000158 MX2016000158W WO2018111076A1 WO 2018111076 A1 WO2018111076 A1 WO 2018111076A1 MX 2016000158 W MX2016000158 W MX 2016000158W WO 2018111076 A1 WO2018111076 A1 WO 2018111076A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- classification
- class
- bayesian
- probability
- variables
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce
Definitions
- the present invention has its preponderant field of application in the commercial field, more specifically in predicting seasonal demand for a small business in order to offer services comparable to those provided by large commercial chains, without losing sight of the warmth and attention that a small business gives its customers.
- Classification is an activity that consists of assigning an object to a class or category, the human being performs that task in a natural way to abstract information, leading to a more appropriate representation for decision making.
- the invention US20120303411 presents a system, a method and a computer program for modeling and predicting demand in retail categories.
- the method uses time series data comprising unit prices and unit sales for a given set of products, with time series data obtained in a given sequence of sales reporting periods and on a collection of stores in a geography of market.
- Other relevant data sets of participating retail entities that include additional product attribute data, such as market and consumption factors that affect retail demand, are used.
- a demand model to improve accuracy is achieved through individual steps of the under-modeling method when estimating a model for movements and price dynamics from the time series data of unit prices.
- the invention US20090254475 describes a method and an apparatus for making predictions for a market, which includes unconventional forecasting options with market participants to determine a prediction framework in which conditional scenarios are found.
- the method and apparatus contemplates calculating probabilities of realization for each of the conditional scenarios using an approximation calculation technique through an interface, receiving a plurality of predictions associated with selected conditional scenarios, each prediction having an associated value and constructing The market based on predictions.
- the method and the apparatus comprise updating the probabilities of realization for each of the conditional scenarios in the prediction framework using the approximation calculation technique and establishing the predictions based at least on the updated realization probabilities.
- US20090083128 systems, methods and computer readable media are shown that help assess the probability of success of a new commercial location.
- Information about existing business locations including information on a predicted variable, can be provided.
- Data can be collected from third-party providers, publicly available information or the user who will represent the evaluation variables.
- a formula is generated that includes evaluation variables and associated coefficients. The coefficients are determined based on a correlation between the evaluation variables and the predicted variable.
- the data is collected for a new location or business region to determine the value of the evaluation variables of the new location or business region. Applying the coefficients to the values of the evaluation variable for the new location or business region, an output value of the predicted variable is provided. The output value of the predicted variable can be used to assess the probability of success of the new location or business region.
- the invention JP2015032034 provide a demand prediction device, a control method and a program capable of efficiently performing demand prediction of products that have a record.
- the record related to a similar product of a predicted product (new product) is collected and demand prediction can be done so that the predicted product is before sale, is in an initial state of sale , or has already been sold and a predetermined period has passed since the beginning of the sale according to each period of sale time.
- US20070244589 a demand prediction apparatus connected to a record storage unit is presented.
- the demand prediction apparatus obtains a demand prediction function that conforms to the order reception register, using the acquired order reception register.
- the demand prediction apparatus calculates a predicted demand value for the product for which the demand prediction is performed, using the derived demand prediction function and issues it.
- US20040260600 a system and method for determining and identifying the demand for articles based on the behavior of trend observation within a member population, such as an online community, is shown. Trends are determined by studying the historical adoption behavior of a group within the member population.
- the invention US20050197954 provides a system and method for predicting the behavior of small businesses by analyzing data from consumer payment card transactions. The analysis of the speed of transactions and the amount of industry categories and / or profiling based on real-time transactions is used to identify those consumer payment card accounts that are being used improperly to make purchases of small businesses.
- a small business behavior prediction model is used to record transaction data and update cardholder profiles according to the probability that the transaction data represents the activity of the small business.
- Figure 1 shows the graph of the client profiling system
- Figure 2 shows the scheme of the Bayesian network referring to the geographical area of the tooth
- Figure 3 shows the scheme of the Bayesian network referring to the preference of products and / or services
- Figure 4 shows the scheme of the Bayesian network regarding the classification of products and / or services
- Figure 1 shows the elements considered in the client's profiling.
- the information is obtained by the store clerk directly from the customer and through three agents identifies and classifies geography, preferences and products. This Information is received by the store manager to feed the profiling system.
- Figure 2 shows the variables to consider in the geographical area of the client: proximity, type of purchase, economy and selected products.
- Figure 3 shows the variables to consider in the estimation of the preference of products and / or services: quality, price, offers, convenience and intention.
- the variables to analyze and classify the product and / or service purchased are shown in Figure 4, basically they are main variables (tangibility, customer age, consumption and purchase effort) that are subdivided into factors specific to each variable.
Landscapes
- Business, Economics & Management (AREA)
- Accounting & Taxation (AREA)
- Development Economics (AREA)
- Economics (AREA)
- Finance (AREA)
- Marketing (AREA)
- Strategic Management (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
ALGORITMOS BAYESIANOS PROBABILÍSTICOS PARA LA IDENTIFICACIÓN DE LA DEMANDA DE PRODUCTOS EN UN PEQUEÑO COMERCIO. PROBABILISTIC BAYESIAN ALGORITHMS FOR THE IDENTIFICATION OF THE DEMAND FOR PRODUCTS IN A SMALL TRADE.
CAMPO TÉCNICO DE LA INVENCIÓN TECHNICAL FIELD OF THE INVENTION
La presente invención tiene su campo de aplicación preponderante en el ámbito comercial, más específicamente en la predicción de la demanda por temporadas de un pequeño comercio con el fin de ofrecer servicios equiparables a los proporcionados por las grandes cadenas comerciales, sin perder de vista la calidez y atención que un pequeño comercio le brinda a sus clientes. The present invention has its preponderant field of application in the commercial field, more specifically in predicting seasonal demand for a small business in order to offer services comparable to those provided by large commercial chains, without losing sight of the warmth and attention that a small business gives its customers.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
La Clasificación es una actividad que consiste en asignar un objeto a una clase o categoría, el ser humano realiza esa tarea de manera natural para abstraer información, llevándola a una representación más adecuada para la toma de decisiones. En el caso de los comercios es importante contar con información relacionada a los clientes y los productos que consumen, asi como factores extra como la ubicación geográfica y las preferencias. A continuación se presentan invenciones que presentan métodos, procesos o sistemas relacionados a esta actividad y enfocadas en ambientes comerciales: Classification is an activity that consists of assigning an object to a class or category, the human being performs that task in a natural way to abstract information, leading to a more appropriate representation for decision making. In the case of businesses it is important to have information related to customers and the products they consume, as well as extra factors such as geographical location and preferences. Below are inventions that present methods, processes or systems related to this activity and focused on commercial environments:
La invención US20120303411 presenta un sistema, un método y un programa informático para el modelado y la predicción de la demanda en las categorías minoristas. El método utiliza datos de seríes de tiempo que comprenden precios unitarios y ventas unitarias para un conjunto de productos determinado, con los datos de series de tiempo obtenidos en una secuencia dada de períodos de informes de ventas y sobre una colección de tiendas en una geografía de mercado. Se utilizan otros conjuntos de datos relevantes de entidades minoristas participantes que incluyen datos adicionales de atributo de producto, tales como factores de mercado y de consumo que afectan la demanda minorista. Un modelo de demanda para mejorar la precisión se logra mediante pasos individuales del método de sub-modelización al estimar un modelo para movimientos y dinámica de precios a partir de ios datos de series temporales de precios unitarios. En la invención US20140289011 se presentan los métodos y aparatos implementados por computadora para generar mercados de predicción, se describe la forma de calibrar las incertidumbres comerciales que rodean un proyecto con un calendario incierto y / o un resultado incierto. Estos mercados de predicción pueden utilizarse en cualquier segmento de la industria y en todas las funciones de negocio, incluyendo investigación y desarrollo (I + D), marketing, funciones ejecutivas y otros. Los mercados de predicción tradicionales, como los mercados de renta variable, requieren liquidez para el éxito. Al introducir una plataforma de entrada de predicción pari-mutuel, la presente invención describe un mercado de predicción modificado que provoca predicciones más exactas que rodean las decisiones comerciales. The invention US20120303411 presents a system, a method and a computer program for modeling and predicting demand in retail categories. The method uses time series data comprising unit prices and unit sales for a given set of products, with time series data obtained in a given sequence of sales reporting periods and on a collection of stores in a geography of market. Other relevant data sets of participating retail entities that include additional product attribute data, such as market and consumption factors that affect retail demand, are used. A demand model to improve accuracy is achieved through individual steps of the under-modeling method when estimating a model for movements and price dynamics from the time series data of unit prices. In the invention US20140289011 the methods and apparatus implemented by computer for generating prediction markets are presented, the way of calibrating the commercial uncertainties surrounding a project with an uncertain calendar and / or an uncertain result is described. These prediction markets can be used in any segment of the industry and in all business functions, including research and development (R&D), marketing, executive functions and others. Traditional prediction markets, such as equity markets, require liquidity for success. By introducing a pari-mutuel prediction input platform, the present invention describes a modified prediction market that causes more accurate predictions surrounding business decisions.
La invención US20090254475 describe un método y un aparato para hacer predicciones para un mercado, el cual incluye opciones de pronóstico no convencionales con participantes del mercado para determinar un marco de predicción en el cual se encuentres escenarios condicionales. El método y el aparato contempla el calcular probabilidades de realización para cada uno de los escenarios condicionales usando una técnica de cálculo de aproximación a través de una interfaz, recibiendo una pluralidad de predicciones asociadas con escenarios condicionales seleccionados, teniendo cada predicción un valor asociado y construyendo el mercado basado en las predicciones. El método y el aparato comprenden la actualización de las probabilidades de realización para cada uno de los escenarios condicionales en el marco de predicción usando la técnica de cálculo de aproximación y el establecimiento de las predicciones basadas al menos en las probabilidades de realización actualizadas. The invention US20090254475 describes a method and an apparatus for making predictions for a market, which includes unconventional forecasting options with market participants to determine a prediction framework in which conditional scenarios are found. The method and apparatus contemplates calculating probabilities of realization for each of the conditional scenarios using an approximation calculation technique through an interface, receiving a plurality of predictions associated with selected conditional scenarios, each prediction having an associated value and constructing The market based on predictions. The method and the apparatus comprise updating the probabilities of realization for each of the conditional scenarios in the prediction framework using the approximation calculation technique and establishing the predictions based at least on the updated realization probabilities.
En la invención US20090083128 se muestran sistemas, métodos y medios legibles por computadora que ayudan a evaluar la probabilidad de éxito de una nueva ubicación comercial. Se puede proporcionar información sobre ubicaciones de negocios existentes, incluyendo información sobre una variable predicha. Los datos pueden ser recolectados de proveedores terceros, información públicamente disponible o el usuario que representará las variables de evaluación. Se genera una fórmula que comprende variables de evaluación y coeficientes asociados. Los coeficientes se determinan en base a una correlación entre las variables de evaluación y la variable predicha. Los datos se recopilan para una nueva ubicación o región de negocio para determinar el valor de las variables de evaluación de la nueva ubicación o región empresarial. Aplicando los coeficientes a los valores de la variable de evaluación para la nueva ubicación o región de negocio, se proporciona un valor de salida de la variable predicha. El valor de salida de la variable predicha puede usarse para evaluar la probabilidad de éxito de la nueva ubicación o región de negocio. In the invention US20090083128 systems, methods and computer readable media are shown that help assess the probability of success of a new commercial location. Information about existing business locations, including information on a predicted variable, can be provided. Data can be collected from third-party providers, publicly available information or the user who will represent the evaluation variables. A formula is generated that includes evaluation variables and associated coefficients. The coefficients are determined based on a correlation between the evaluation variables and the predicted variable. The data is collected for a new location or business region to determine the value of the evaluation variables of the new location or business region. Applying the coefficients to the values of the evaluation variable for the new location or business region, an output value of the predicted variable is provided. The output value of the predicted variable can be used to assess the probability of success of the new location or business region.
La invención JP2015032034 proporcionar un dispositivo de predicción de la demanda, un método de control y un programa capaz de realizar eficientemente la predicción de la demanda de productos que tienen un registro. Se recoge el registro relacionado con un producto similar de un producto objeto de predicción (producto nuevo) y la predicción de la demanda puede realizarse de manera que el producto objeto de la predicción esté antes de la venta, se encuentre en un estado inicial de venta, o ya ha sido vendido y un período predeterminado ha pasado desde el inicio de la venta de acuerdo a cada periodo de tiempo de venta. En la invención US20070244589 se presenta un aparato de predicción de demanda conectado a una unidad de almacenamiento de registro. El aparato de predicción de demanda obtiene una función de predicción de la demanda que se ajusta al registro de recepción de órdenes, utilizando el registro de recepción de órdenes adquiridas. A continuación, el aparato de predicción de demanda calcula un valor predicho de demanda para el producto para el que se realiza la predicción de demanda, utilizando la función de predicción de demanda derivada y la emite. The invention JP2015032034 provide a demand prediction device, a control method and a program capable of efficiently performing demand prediction of products that have a record. The record related to a similar product of a predicted product (new product) is collected and demand prediction can be done so that the predicted product is before sale, is in an initial state of sale , or has already been sold and a predetermined period has passed since the beginning of the sale according to each period of sale time. In the invention US20070244589 a demand prediction apparatus connected to a record storage unit is presented. The demand prediction apparatus obtains a demand prediction function that conforms to the order reception register, using the acquired order reception register. Next, the demand prediction apparatus calculates a predicted demand value for the product for which the demand prediction is performed, using the derived demand prediction function and issues it.
En la invención US20040260600 se muestra un sistema y un método para determinar e identificar la demanda de artículos basados en el comportamiento de observación de tendencias dentro de una población miembro, tal como una comunidad en linea. Las tendencias se determinan estudiando el comportamiento histórico de adopción de un grupo dentro de la población miembro. La invención US20050197954 proporciona un sistema y un método para predecir el comportamiento de las pequeñas empresas mediante el análisis de datos de transacciones de tarjetas de pago de consumidores. El análisis de la velocidad de las transacciones y la cantidad de las categorías de la industria y / o el perfilado basado en transacciones en tiempo real se utiliza para identificar aquellas cuentas de tarjetas de pago de consumo que se están utilizando de manera inapropiada para realizar compras de pequeñas empresas. Un modelo de predicción de comportamientos de pequeñas empresas se utiliza para anotar datos de transacciones y actualizar perfiles de tarjetahabientes de acuerdo con la probabilidad de que los datos de transacción representen la actividad de la pequeña empresa. In the invention US20040260600 a system and method for determining and identifying the demand for articles based on the behavior of trend observation within a member population, such as an online community, is shown. Trends are determined by studying the historical adoption behavior of a group within the member population. The invention US20050197954 provides a system and method for predicting the behavior of small businesses by analyzing data from consumer payment card transactions. The analysis of the speed of transactions and the amount of industry categories and / or profiling based on real-time transactions is used to identify those consumer payment card accounts that are being used improperly to make purchases of small businesses. A small business behavior prediction model is used to record transaction data and update cardholder profiles according to the probability that the transaction data represents the activity of the small business.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Los detalles característicos de la presente invención se muestran claramente en la siguiente descripción y en las figuras que se acompañan, las cuales se mencionan a manera de ejemplo, por lo que no deben considerarse como una limitante para dicha invención. The characteristic details of the present invention are clearly shown in the following description and in the accompanying figures, which are mentioned by way of example, and therefore should not be considered as a limitation on said invention.
Breve descripción de las figuras: Brief description of the figures:
La figura 1 muestra el grafo del sistema de perfilación de clientes; Figure 1 shows the graph of the client profiling system;
La figura 2 muestra el esquema de la red bayesiana referente a la zona geográfica del diente; Figure 2 shows the scheme of the Bayesian network referring to the geographical area of the tooth;
La Figura 3 muestra el esquema de la red bayesiana referente a la preferencia de productos y/o servicios; Figure 3 shows the scheme of the Bayesian network referring to the preference of products and / or services;
La Figura 4 muestra el esquema de la red bayesiana referente a la clasificación de productos y/o servicios; Figure 4 shows the scheme of the Bayesian network regarding the classification of products and / or services;
Con respecto a las figuras antes enlistadas, la figura 1 muestra los elementos considerados en la perfilación del cliente. La información la obtiene el dependiente de la tienda directamente del cliente y mediante tres agentes identifica y clasifica la geografía, las preferencias y los productos. Esta información la recibe el gerente de la tienda para alimentar el sistema de perfilación. En la figura 2 se muestran las variables a considerar en la zona geográfica del cliente: cercanía, tipo de compra, economía y productos seleccionados. La figura 3 muestra las variables a considerar en la estimación de la preferencia de productos y/o servicios: calidad, precio, ofertas, conveniencia e intención. Las variables para analizar y clasificar el producto y/o servicio adquirido se muestra en la figura 4, básicamente son variables principales (tangibilidad, edad del cliente, consumo y esfuerzo de compra) que se subdividen en factores propios de cada variable. With respect to the figures listed above, Figure 1 shows the elements considered in the client's profiling. The information is obtained by the store clerk directly from the customer and through three agents identifies and classifies geography, preferences and products. This Information is received by the store manager to feed the profiling system. Figure 2 shows the variables to consider in the geographical area of the client: proximity, type of purchase, economy and selected products. Figure 3 shows the variables to consider in the estimation of the preference of products and / or services: quality, price, offers, convenience and intention. The variables to analyze and classify the product and / or service purchased are shown in Figure 4, basically they are main variables (tangibility, customer age, consumption and purchase effort) that are subdivided into factors specific to each variable.
Claims
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/MX2016/000158 WO2018111076A1 (en) | 2016-12-16 | 2016-12-16 | Probabilistic bayesian algorithms for identifying product demand in a small business |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/MX2016/000158 WO2018111076A1 (en) | 2016-12-16 | 2016-12-16 | Probabilistic bayesian algorithms for identifying product demand in a small business |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018111076A1 true WO2018111076A1 (en) | 2018-06-21 |
Family
ID=62559498
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/MX2016/000158 Ceased WO2018111076A1 (en) | 2016-12-16 | 2016-12-16 | Probabilistic bayesian algorithms for identifying product demand in a small business |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2018111076A1 (en) |
Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20080154761A1 (en) * | 2006-12-20 | 2008-06-26 | Microsoft Corporation | Commoditization of products and product market |
| US20140081753A1 (en) * | 1999-05-12 | 2014-03-20 | Ewinwin, Inc. | Promoting offers through social network influencers |
| US20140279208A1 (en) * | 2013-03-14 | 2014-09-18 | Rosie | Electronic shopping system and service |
| WO2016053183A1 (en) * | 2014-09-30 | 2016-04-07 | Mentorica Technology Pte Ltd | Systems and methods for automated data analysis and customer relationship management |
-
2016
- 2016-12-16 WO PCT/MX2016/000158 patent/WO2018111076A1/en not_active Ceased
Patent Citations (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140081753A1 (en) * | 1999-05-12 | 2014-03-20 | Ewinwin, Inc. | Promoting offers through social network influencers |
| US20080154761A1 (en) * | 2006-12-20 | 2008-06-26 | Microsoft Corporation | Commoditization of products and product market |
| US20140279208A1 (en) * | 2013-03-14 | 2014-09-18 | Rosie | Electronic shopping system and service |
| WO2016053183A1 (en) * | 2014-09-30 | 2016-04-07 | Mentorica Technology Pte Ltd | Systems and methods for automated data analysis and customer relationship management |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Rahim et al. | RFM-based repurchase behavior for customer classification and segmentation | |
| US10949825B1 (en) | Adaptive merchant classification | |
| Singh et al. | E-commerce system for sale prediction using machine learning technique | |
| CN115053240A (en) | System and method for measuring and predicting availability of products and optimizing matches using inventory data | |
| GB2547395A (en) | User maintenance system and method | |
| Rohella et al. | Generative AI in FinTech: Generating images based on predefined lists of Stock Keeping Units using product descriptions | |
| JP2021515284A (en) | Methods, systems, and computer program products for estimating latency using predictive modeling | |
| Claro et al. | Identifying sales performance gaps with internal benchmarking | |
| US20170169447A1 (en) | System and method for segmenting customers with mixed attribute types using a targeted clustering approach | |
| Hariharan et al. | Aggregate impact of different brand development strategies | |
| CN117495492A (en) | Method for carrying out information reinforcement learning recommendation based on consumption upgrading recommendation model | |
| Gangurde et al. | Building prediction model using market basket analysis | |
| US20230245152A1 (en) | Local trend and influencer identification using machine learning predictive models | |
| CN110827093A (en) | Method and device for accurate marketing | |
| Al-Basha | Forecasting Retail Sales Using Google Trends and Machine Learning | |
| WO2018111076A1 (en) | Probabilistic bayesian algorithms for identifying product demand in a small business | |
| Ansari et al. | Using decision trees to analyse the customers' shopping location preferences | |
| Lee et al. | A hybrid machine learning approach for customer loyalty prediction | |
| Singvejsakul et al. | Frontier of error minimization from copula model application: Evidence from dependence structure of BRICS’s stock markets | |
| Huang | Using RFM model to construct customer value by making segment in different service industries:. | |
| Konishi et al. | Digital intelligence banking of adaptive digital marketing with life needs control | |
| US20210256509A1 (en) | Planning currency exchange transactions based on international travel budgeting information | |
| Gil Cordero et al. | Influence of macroeconomic indices on European private labels | |
| Feng et al. | Sparse regularization in marketing and economics | |
| MACHALICKÝ et al. | FINDING CORRELATION BETWEEN CUSTOMER TYPOLOGY AND SALES RESULTS IN ASSISTED RETAIL USING COMPUTER VISION. |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16923946 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 16923946 Country of ref document: EP Kind code of ref document: A1 |
|
| 32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 20.01.2020. |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 16923946 Country of ref document: EP Kind code of ref document: A1 |