[go: up one dir, main page]

WO2018111076A1 - Probabilistic bayesian algorithms for identifying product demand in a small business - Google Patents

Probabilistic bayesian algorithms for identifying product demand in a small business Download PDF

Info

Publication number
WO2018111076A1
WO2018111076A1 PCT/MX2016/000158 MX2016000158W WO2018111076A1 WO 2018111076 A1 WO2018111076 A1 WO 2018111076A1 MX 2016000158 W MX2016000158 W MX 2016000158W WO 2018111076 A1 WO2018111076 A1 WO 2018111076A1
Authority
WO
WIPO (PCT)
Prior art keywords
classification
class
bayesian
probability
variables
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/MX2016/000158
Other languages
Spanish (es)
French (fr)
Inventor
Mario Manuel VELEZ VILLA
Fernando SOTO CAMACHO
Dino Alejandro PARDO GUZMÁN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to PCT/MX2016/000158 priority Critical patent/WO2018111076A1/en
Publication of WO2018111076A1 publication Critical patent/WO2018111076A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce

Definitions

  • the present invention has its preponderant field of application in the commercial field, more specifically in predicting seasonal demand for a small business in order to offer services comparable to those provided by large commercial chains, without losing sight of the warmth and attention that a small business gives its customers.
  • Classification is an activity that consists of assigning an object to a class or category, the human being performs that task in a natural way to abstract information, leading to a more appropriate representation for decision making.
  • the invention US20120303411 presents a system, a method and a computer program for modeling and predicting demand in retail categories.
  • the method uses time series data comprising unit prices and unit sales for a given set of products, with time series data obtained in a given sequence of sales reporting periods and on a collection of stores in a geography of market.
  • Other relevant data sets of participating retail entities that include additional product attribute data, such as market and consumption factors that affect retail demand, are used.
  • a demand model to improve accuracy is achieved through individual steps of the under-modeling method when estimating a model for movements and price dynamics from the time series data of unit prices.
  • the invention US20090254475 describes a method and an apparatus for making predictions for a market, which includes unconventional forecasting options with market participants to determine a prediction framework in which conditional scenarios are found.
  • the method and apparatus contemplates calculating probabilities of realization for each of the conditional scenarios using an approximation calculation technique through an interface, receiving a plurality of predictions associated with selected conditional scenarios, each prediction having an associated value and constructing The market based on predictions.
  • the method and the apparatus comprise updating the probabilities of realization for each of the conditional scenarios in the prediction framework using the approximation calculation technique and establishing the predictions based at least on the updated realization probabilities.
  • US20090083128 systems, methods and computer readable media are shown that help assess the probability of success of a new commercial location.
  • Information about existing business locations including information on a predicted variable, can be provided.
  • Data can be collected from third-party providers, publicly available information or the user who will represent the evaluation variables.
  • a formula is generated that includes evaluation variables and associated coefficients. The coefficients are determined based on a correlation between the evaluation variables and the predicted variable.
  • the data is collected for a new location or business region to determine the value of the evaluation variables of the new location or business region. Applying the coefficients to the values of the evaluation variable for the new location or business region, an output value of the predicted variable is provided. The output value of the predicted variable can be used to assess the probability of success of the new location or business region.
  • the invention JP2015032034 provide a demand prediction device, a control method and a program capable of efficiently performing demand prediction of products that have a record.
  • the record related to a similar product of a predicted product (new product) is collected and demand prediction can be done so that the predicted product is before sale, is in an initial state of sale , or has already been sold and a predetermined period has passed since the beginning of the sale according to each period of sale time.
  • US20070244589 a demand prediction apparatus connected to a record storage unit is presented.
  • the demand prediction apparatus obtains a demand prediction function that conforms to the order reception register, using the acquired order reception register.
  • the demand prediction apparatus calculates a predicted demand value for the product for which the demand prediction is performed, using the derived demand prediction function and issues it.
  • US20040260600 a system and method for determining and identifying the demand for articles based on the behavior of trend observation within a member population, such as an online community, is shown. Trends are determined by studying the historical adoption behavior of a group within the member population.
  • the invention US20050197954 provides a system and method for predicting the behavior of small businesses by analyzing data from consumer payment card transactions. The analysis of the speed of transactions and the amount of industry categories and / or profiling based on real-time transactions is used to identify those consumer payment card accounts that are being used improperly to make purchases of small businesses.
  • a small business behavior prediction model is used to record transaction data and update cardholder profiles according to the probability that the transaction data represents the activity of the small business.
  • Figure 1 shows the graph of the client profiling system
  • Figure 2 shows the scheme of the Bayesian network referring to the geographical area of the tooth
  • Figure 3 shows the scheme of the Bayesian network referring to the preference of products and / or services
  • Figure 4 shows the scheme of the Bayesian network regarding the classification of products and / or services
  • Figure 1 shows the elements considered in the client's profiling.
  • the information is obtained by the store clerk directly from the customer and through three agents identifies and classifies geography, preferences and products. This Information is received by the store manager to feed the profiling system.
  • Figure 2 shows the variables to consider in the geographical area of the client: proximity, type of purchase, economy and selected products.
  • Figure 3 shows the variables to consider in the estimation of the preference of products and / or services: quality, price, offers, convenience and intention.
  • the variables to analyze and classify the product and / or service purchased are shown in Figure 4, basically they are main variables (tangibility, customer age, consumption and purchase effort) that are subdivided into factors specific to each variable.

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Finance (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

The invention relates to the use of algorithms for prediction using probabilistic Bayesian networks in order to predict the market demand and the preferences of customers. With the obtained information, the aim is to standardise the small businesses, including financial services which facilitate the consumer to carry out different transactions normally done in supermarkets or chains of convenience stores, without losing sight of the quality of service and attention of any small business.

Description

ALGORITMOS BAYESIANOS PROBABILÍSTICOS PARA LA IDENTIFICACIÓN DE LA DEMANDA DE PRODUCTOS EN UN PEQUEÑO COMERCIO.  PROBABILISTIC BAYESIAN ALGORITHMS FOR THE IDENTIFICATION OF THE DEMAND FOR PRODUCTS IN A SMALL TRADE.

CAMPO TÉCNICO DE LA INVENCIÓN TECHNICAL FIELD OF THE INVENTION

La presente invención tiene su campo de aplicación preponderante en el ámbito comercial, más específicamente en la predicción de la demanda por temporadas de un pequeño comercio con el fin de ofrecer servicios equiparables a los proporcionados por las grandes cadenas comerciales, sin perder de vista la calidez y atención que un pequeño comercio le brinda a sus clientes. The present invention has its preponderant field of application in the commercial field, more specifically in predicting seasonal demand for a small business in order to offer services comparable to those provided by large commercial chains, without losing sight of the warmth and attention that a small business gives its customers.

ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION

La Clasificación es una actividad que consiste en asignar un objeto a una clase o categoría, el ser humano realiza esa tarea de manera natural para abstraer información, llevándola a una representación más adecuada para la toma de decisiones. En el caso de los comercios es importante contar con información relacionada a los clientes y los productos que consumen, asi como factores extra como la ubicación geográfica y las preferencias. A continuación se presentan invenciones que presentan métodos, procesos o sistemas relacionados a esta actividad y enfocadas en ambientes comerciales: Classification is an activity that consists of assigning an object to a class or category, the human being performs that task in a natural way to abstract information, leading to a more appropriate representation for decision making. In the case of businesses it is important to have information related to customers and the products they consume, as well as extra factors such as geographical location and preferences. Below are inventions that present methods, processes or systems related to this activity and focused on commercial environments:

La invención US20120303411 presenta un sistema, un método y un programa informático para el modelado y la predicción de la demanda en las categorías minoristas. El método utiliza datos de seríes de tiempo que comprenden precios unitarios y ventas unitarias para un conjunto de productos determinado, con los datos de series de tiempo obtenidos en una secuencia dada de períodos de informes de ventas y sobre una colección de tiendas en una geografía de mercado. Se utilizan otros conjuntos de datos relevantes de entidades minoristas participantes que incluyen datos adicionales de atributo de producto, tales como factores de mercado y de consumo que afectan la demanda minorista. Un modelo de demanda para mejorar la precisión se logra mediante pasos individuales del método de sub-modelización al estimar un modelo para movimientos y dinámica de precios a partir de ios datos de series temporales de precios unitarios. En la invención US20140289011 se presentan los métodos y aparatos implementados por computadora para generar mercados de predicción, se describe la forma de calibrar las incertidumbres comerciales que rodean un proyecto con un calendario incierto y / o un resultado incierto. Estos mercados de predicción pueden utilizarse en cualquier segmento de la industria y en todas las funciones de negocio, incluyendo investigación y desarrollo (I + D), marketing, funciones ejecutivas y otros. Los mercados de predicción tradicionales, como los mercados de renta variable, requieren liquidez para el éxito. Al introducir una plataforma de entrada de predicción pari-mutuel, la presente invención describe un mercado de predicción modificado que provoca predicciones más exactas que rodean las decisiones comerciales. The invention US20120303411 presents a system, a method and a computer program for modeling and predicting demand in retail categories. The method uses time series data comprising unit prices and unit sales for a given set of products, with time series data obtained in a given sequence of sales reporting periods and on a collection of stores in a geography of market. Other relevant data sets of participating retail entities that include additional product attribute data, such as market and consumption factors that affect retail demand, are used. A demand model to improve accuracy is achieved through individual steps of the under-modeling method when estimating a model for movements and price dynamics from the time series data of unit prices. In the invention US20140289011 the methods and apparatus implemented by computer for generating prediction markets are presented, the way of calibrating the commercial uncertainties surrounding a project with an uncertain calendar and / or an uncertain result is described. These prediction markets can be used in any segment of the industry and in all business functions, including research and development (R&D), marketing, executive functions and others. Traditional prediction markets, such as equity markets, require liquidity for success. By introducing a pari-mutuel prediction input platform, the present invention describes a modified prediction market that causes more accurate predictions surrounding business decisions.

La invención US20090254475 describe un método y un aparato para hacer predicciones para un mercado, el cual incluye opciones de pronóstico no convencionales con participantes del mercado para determinar un marco de predicción en el cual se encuentres escenarios condicionales. El método y el aparato contempla el calcular probabilidades de realización para cada uno de los escenarios condicionales usando una técnica de cálculo de aproximación a través de una interfaz, recibiendo una pluralidad de predicciones asociadas con escenarios condicionales seleccionados, teniendo cada predicción un valor asociado y construyendo el mercado basado en las predicciones. El método y el aparato comprenden la actualización de las probabilidades de realización para cada uno de los escenarios condicionales en el marco de predicción usando la técnica de cálculo de aproximación y el establecimiento de las predicciones basadas al menos en las probabilidades de realización actualizadas.  The invention US20090254475 describes a method and an apparatus for making predictions for a market, which includes unconventional forecasting options with market participants to determine a prediction framework in which conditional scenarios are found. The method and apparatus contemplates calculating probabilities of realization for each of the conditional scenarios using an approximation calculation technique through an interface, receiving a plurality of predictions associated with selected conditional scenarios, each prediction having an associated value and constructing The market based on predictions. The method and the apparatus comprise updating the probabilities of realization for each of the conditional scenarios in the prediction framework using the approximation calculation technique and establishing the predictions based at least on the updated realization probabilities.

En la invención US20090083128 se muestran sistemas, métodos y medios legibles por computadora que ayudan a evaluar la probabilidad de éxito de una nueva ubicación comercial. Se puede proporcionar información sobre ubicaciones de negocios existentes, incluyendo información sobre una variable predicha. Los datos pueden ser recolectados de proveedores terceros, información públicamente disponible o el usuario que representará las variables de evaluación. Se genera una fórmula que comprende variables de evaluación y coeficientes asociados. Los coeficientes se determinan en base a una correlación entre las variables de evaluación y la variable predicha. Los datos se recopilan para una nueva ubicación o región de negocio para determinar el valor de las variables de evaluación de la nueva ubicación o región empresarial. Aplicando los coeficientes a los valores de la variable de evaluación para la nueva ubicación o región de negocio, se proporciona un valor de salida de la variable predicha. El valor de salida de la variable predicha puede usarse para evaluar la probabilidad de éxito de la nueva ubicación o región de negocio. In the invention US20090083128 systems, methods and computer readable media are shown that help assess the probability of success of a new commercial location. Information about existing business locations, including information on a predicted variable, can be provided. Data can be collected from third-party providers, publicly available information or the user who will represent the evaluation variables. A formula is generated that includes evaluation variables and associated coefficients. The coefficients are determined based on a correlation between the evaluation variables and the predicted variable. The data is collected for a new location or business region to determine the value of the evaluation variables of the new location or business region. Applying the coefficients to the values of the evaluation variable for the new location or business region, an output value of the predicted variable is provided. The output value of the predicted variable can be used to assess the probability of success of the new location or business region.

La invención JP2015032034 proporcionar un dispositivo de predicción de la demanda, un método de control y un programa capaz de realizar eficientemente la predicción de la demanda de productos que tienen un registro. Se recoge el registro relacionado con un producto similar de un producto objeto de predicción (producto nuevo) y la predicción de la demanda puede realizarse de manera que el producto objeto de la predicción esté antes de la venta, se encuentre en un estado inicial de venta, o ya ha sido vendido y un período predeterminado ha pasado desde el inicio de la venta de acuerdo a cada periodo de tiempo de venta. En la invención US20070244589 se presenta un aparato de predicción de demanda conectado a una unidad de almacenamiento de registro. El aparato de predicción de demanda obtiene una función de predicción de la demanda que se ajusta al registro de recepción de órdenes, utilizando el registro de recepción de órdenes adquiridas. A continuación, el aparato de predicción de demanda calcula un valor predicho de demanda para el producto para el que se realiza la predicción de demanda, utilizando la función de predicción de demanda derivada y la emite.  The invention JP2015032034 provide a demand prediction device, a control method and a program capable of efficiently performing demand prediction of products that have a record. The record related to a similar product of a predicted product (new product) is collected and demand prediction can be done so that the predicted product is before sale, is in an initial state of sale , or has already been sold and a predetermined period has passed since the beginning of the sale according to each period of sale time. In the invention US20070244589 a demand prediction apparatus connected to a record storage unit is presented. The demand prediction apparatus obtains a demand prediction function that conforms to the order reception register, using the acquired order reception register. Next, the demand prediction apparatus calculates a predicted demand value for the product for which the demand prediction is performed, using the derived demand prediction function and issues it.

En la invención US20040260600 se muestra un sistema y un método para determinar e identificar la demanda de artículos basados en el comportamiento de observación de tendencias dentro de una población miembro, tal como una comunidad en linea. Las tendencias se determinan estudiando el comportamiento histórico de adopción de un grupo dentro de la población miembro. La invención US20050197954 proporciona un sistema y un método para predecir el comportamiento de las pequeñas empresas mediante el análisis de datos de transacciones de tarjetas de pago de consumidores. El análisis de la velocidad de las transacciones y la cantidad de las categorías de la industria y / o el perfilado basado en transacciones en tiempo real se utiliza para identificar aquellas cuentas de tarjetas de pago de consumo que se están utilizando de manera inapropiada para realizar compras de pequeñas empresas. Un modelo de predicción de comportamientos de pequeñas empresas se utiliza para anotar datos de transacciones y actualizar perfiles de tarjetahabientes de acuerdo con la probabilidad de que los datos de transacción representen la actividad de la pequeña empresa. In the invention US20040260600 a system and method for determining and identifying the demand for articles based on the behavior of trend observation within a member population, such as an online community, is shown. Trends are determined by studying the historical adoption behavior of a group within the member population. The invention US20050197954 provides a system and method for predicting the behavior of small businesses by analyzing data from consumer payment card transactions. The analysis of the speed of transactions and the amount of industry categories and / or profiling based on real-time transactions is used to identify those consumer payment card accounts that are being used improperly to make purchases of small businesses. A small business behavior prediction model is used to record transaction data and update cardholder profiles according to the probability that the transaction data represents the activity of the small business.

DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION

Los detalles característicos de la presente invención se muestran claramente en la siguiente descripción y en las figuras que se acompañan, las cuales se mencionan a manera de ejemplo, por lo que no deben considerarse como una limitante para dicha invención. The characteristic details of the present invention are clearly shown in the following description and in the accompanying figures, which are mentioned by way of example, and therefore should not be considered as a limitation on said invention.

Breve descripción de las figuras: Brief description of the figures:

La figura 1 muestra el grafo del sistema de perfilación de clientes; Figure 1 shows the graph of the client profiling system;

La figura 2 muestra el esquema de la red bayesiana referente a la zona geográfica del diente;  Figure 2 shows the scheme of the Bayesian network referring to the geographical area of the tooth;

La Figura 3 muestra el esquema de la red bayesiana referente a la preferencia de productos y/o servicios;  Figure 3 shows the scheme of the Bayesian network referring to the preference of products and / or services;

La Figura 4 muestra el esquema de la red bayesiana referente a la clasificación de productos y/o servicios; Figure 4 shows the scheme of the Bayesian network regarding the classification of products and / or services;

Con respecto a las figuras antes enlistadas, la figura 1 muestra los elementos considerados en la perfilación del cliente. La información la obtiene el dependiente de la tienda directamente del cliente y mediante tres agentes identifica y clasifica la geografía, las preferencias y los productos. Esta información la recibe el gerente de la tienda para alimentar el sistema de perfilación. En la figura 2 se muestran las variables a considerar en la zona geográfica del cliente: cercanía, tipo de compra, economía y productos seleccionados. La figura 3 muestra las variables a considerar en la estimación de la preferencia de productos y/o servicios: calidad, precio, ofertas, conveniencia e intención. Las variables para analizar y clasificar el producto y/o servicio adquirido se muestra en la figura 4, básicamente son variables principales (tangibilidad, edad del cliente, consumo y esfuerzo de compra) que se subdividen en factores propios de cada variable. With respect to the figures listed above, Figure 1 shows the elements considered in the client's profiling. The information is obtained by the store clerk directly from the customer and through three agents identifies and classifies geography, preferences and products. This Information is received by the store manager to feed the profiling system. Figure 2 shows the variables to consider in the geographical area of the client: proximity, type of purchase, economy and selected products. Figure 3 shows the variables to consider in the estimation of the preference of products and / or services: quality, price, offers, convenience and intention. The variables to analyze and classify the product and / or service purchased are shown in Figure 4, basically they are main variables (tangibility, customer age, consumption and purchase effort) that are subdivided into factors specific to each variable.

Claims

REIVINDICACIONES 1. Un procedimiento constituido por algoritmos de predicción que, mediante redes bayesianas probabilísticas, realizan predicciones relacionadas a la demanda del mercado por temporadas, asf como también las preferencias de los clientes con el fin de estandarizar a los comercios pequeños, caracterizado por: 1. A procedure consisting of prediction algorithms that, through probabilistic Bayesian networks, make predictions related to market demand by seasons, as well as customer preferences in order to standardize small businesses, characterized by: • Agentes inteligentes para clasificación de información provenientes del pequeño comercio relacionada con la demanda de artículos en relación a la temporada del año;  • Smart agents for classification of information from small businesses related to the demand for items in relation to the season of the year; • Modelo funcional bayesiano simple para clasificación mediante la maximización del argumento de la función que describe la probabilidad de pertenecer a una clase, bajo el supuesto de independencia condicional entre las características de las mismas;  • Simple Bayesian functional model for classification by maximizing the argument of the function that describes the probability of belonging to a class, under the assumption of conditional independence between their characteristics; • Representación simbólica mediante grafos acíclicos de redes bayesianas de independencia condicional; • Symbolic representation by acyclic graphs of Bayesian networks of conditional independence; 2. El sistema de conformidad con la reivindicación No. 1 , donde la clasificación consiste en asignar un objeto a una clase o categoría con el fin de extraer información para representarla de ia manera más adecuada para la toma de decisiones; 2. The system according to claim No. 1, wherein the classification consists in assigning an object to a class or category in order to extract information to represent it in the most appropriate way for decision making; 3. El sistema de conformidad con la reivindicación No. 2, donde el proceso de clasificación consiste en asignar una clase, c, de un conjunto de clases, C, a cierto objeto o instancia, representada por un vector de variables o atributos,
Figure imgf000007_0002
Figure imgf000007_0001
3. The system according to claim No. 2, wherein the classification process consists in assigning a class, c, of a set of classes, C, to a certain object or instance, represented by a vector of variables or attributes,
Figure imgf000007_0002
Figure imgf000007_0001
4. El sistema de conformidad con la reivindicación No. 3, donde existen dos tipos básicos de clasificadores: No supervisado o agolpamiento (en esta clasificación, las clases son desconocidas, y el problema consiste en dividir un conjunto de n objetos en /celases, de tal manera que, a objetos similares, se les asigna la misma clase) y Supervisado (en esta clasificación, las clases se conocen a priorí, y el problema consiste en encontrar una función que asigne a cada objeto su clase correspondiente); 4. The system according to claim No. 3, wherein there are two basic types of classifiers: Unsupervised or crushing (in this classification, the classes are unknown, and the problem is to divide a set of n objects into / celases, in such a way that similar objects are assigned the same class) and Supervised (in this classification, the classes are known a priori, and the problem is to find a function that assigns each object its corresponding class); 5. El sistema de conformidad con la reivindicación No. 4, donde para el caso de pequeños comercios con giro comercial de tienda de abarrotes el clasificador más adecuado es el supervisado, ya que se conoce cuáles son las clases a las cuales pertenece cada producto o servido; 5. The system according to claim No. 4, wherein in the case of small businesses with a commercial turn of the grocery store the classifier the most appropriate is the supervised, since it is known what are the classes to which each product or service belongs; 6. El sistema de conformidad con la reivindicación No. 1 , donde el modelo funcional representativo utiliza una función matemática para realizar un mapeo de los atributos del objeto a su clase correspondiente:
Figure imgf000008_0002
6. The system according to claim No. 1, wherein the representative functional model uses a mathematical function to map the attributes of the object to its corresponding class:
Figure imgf000008_0002
7. El sistema de conformidad con la reivindicación No. 6, donde el mapeo obtenido del modelo constituye un conjunto de datos D de n elementos, cada uno a su vez compuesto de un vector de variables y la clase correspondiente:
Figure imgf000008_0001
7. The system according to claim No. 6, wherein the mapping obtained from the model constitutes a set of data D of n elements, each in turn composed of a vector of variables and the corresponding class:
Figure imgf000008_0001
8. El sistema de conformidad con la reivindicación No. 7, donde los criterios para evaluar un clasificador son: exactitud (proporción de clasificaciones correctas), rapidez (tiempo que toma realizar la clasificación), claridad (qué tan comprensible resulta para los humanos) y tiempo de aprendizaje (tiempo para entrenar o ajusfar el clasificador a partir de datos); 8. The system according to claim No. 7, wherein the criteria for evaluating a classifier are: accuracy (proportion of correct classifications), speed (time it takes to perform the classification), clarity (how understandable it is to humans) and learning time (time to train or adjust the classifier from data); El sistema de conformidad con la reivindicación No. 8, donde el enfoque probabilfstico bayesiano proporciona un marco formal para construir clasificadores óptimos bajo ciertos criterios, como el de minimizar el error de clasificación o el costo de una mala clasificación;  The system according to claim No. 8, wherein the Bayesian probabilistic approach provides a formal framework for constructing optimal classifiers under certain criteria, such as minimizing the classification error or the cost of a poor classification; 10. El sistema de conformidad con la reivindicación No. 9, donde el enfoque bayesiano para el problema de clasificación supervisada consiste en asignar a un objeto descrito por un conjunto de características, una de
Figure imgf000008_0003
10. The system according to claim No. 9, wherein the Bayesian approach to the supervised classification problem consists in assigning an object described by a set of characteristics, one of
Figure imgf000008_0003
las m clases posibles:
Figure imgf000008_0005
tal que la probabilidad de la clase se obtiene al maximizar la función
Figure imgf000008_0004
the m possible classes:
Figure imgf000008_0005
such that the probability of the class is obtained by maximizing the function
Figure imgf000008_0004
11. El sistema de conformidad con la reivindicación No. 10, donde la formulación del clasificador bayesiano se basa en utilizar la regla de Bayes para calcular la probabilidad posterior de la clase, cuya expresión matemática está dada por:
Figure imgf000008_0006
por lo tanto, el problema de clasificación se expresa como sigue: se
Figure imgf000008_0007
11. The system according to claim No. 10, wherein the formulation of the Bayesian classifier is based on using the Bayes rule to calculate the subsequent probability of the class, whose mathematical expression is given by:
Figure imgf000008_0006
therefore, the classification problem is expressed as follows:
Figure imgf000008_0007
considera una constante y la expresión a maximizar para la probabilidad de la clase es: Consider a constant and the expression to maximize for the probability of the class is:
Figure imgf000008_0008
Figure imgf000008_0008
12. El sistema de conformidad con la reivindicación No. 11, donde la solución del problema de clasificación con el enfoque bayesiano requiere de una probabilidad a priori para cada clase P(C), así como también de las características de la clase P(X\C) conocida como verosimilitud y obtener la probabilidad posterior
Figure imgf000009_0003
12. The system according to claim No. 11, wherein the solution of the classification problem with the Bayesian approach requires an a priori probability for each class P (C), as well as the characteristics of the class P (X \ C) known as plausibility and obtain the subsequent probability
Figure imgf000009_0003
13. El sistema de conformidad con la reivindicación No. 12, donde cada característica es condicionalmente independiente de las demás características dada una clase, es decir
Figure imgf000009_0001
por lo que se tiene la siguiente ecuación:
Figure imgf000009_0002
13. The system according to claim No. 12, wherein each characteristic is conditionally independent of the other characteristics given a class, ie
Figure imgf000009_0001
So you have the following equation:
Figure imgf000009_0002
se considera una constante de normalización; it is considered a normalization constant;
14. El sistema de conformidad con la reivindicación No. 1, donde las redes bayesianas se basan en una semántica de independencia condicional entre tripletas de variables mediante una factorizadón de la función de probabilidad conjunta definida sobre la variable aleatoria n dimensional; 14. The system according to claim No. 1, wherein the Bayesian networks are based on a semantics of conditional independence between triples of variables by means of a factorization of the joint probability function defined on the n-dimensional random variable; 15. El sistema de conformidad con la reivindicación No. 14, donde el modelo bayesiano o modelo probabilístico en un gráfico acíclico dirigido es un modelo gráfico probabilístico que representa un conjunto de variables aleatorias y sus dependencias condicionales;  15. The system according to claim No. 14, wherein the Bayesian model or probabilistic model in a directed acyclic graph is a probabilistic graphic model that represents a set of random variables and their conditional dependencies; 16. El sistema de conformidad con la reivindicación No. 15, donde las redes bayesianas se utilizan para representar la perfilación de clientes, la zona geográfica del cliente, la preferencia y clasificación de productos y/o servicios; 16. The system according to claim No. 15, wherein Bayesian networks are used to represent the profiling of customers, the geographical area of the customer, the preference and classification of products and / or services; 17. El sistema de conformidad con la reivindicación No. 16, donde el conocimiento de las relaciones entre las diferentes variables y su representación condicional gráfica permite realizar una estimación de la demanda de productos en un pequeño comercio. 17. The system according to claim No. 16, wherein the knowledge of the relationships between the different variables and their conditional graphic representation allows an estimation of the demand for products in a small business.
PCT/MX2016/000158 2016-12-16 2016-12-16 Probabilistic bayesian algorithms for identifying product demand in a small business Ceased WO2018111076A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/MX2016/000158 WO2018111076A1 (en) 2016-12-16 2016-12-16 Probabilistic bayesian algorithms for identifying product demand in a small business

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MX2016/000158 WO2018111076A1 (en) 2016-12-16 2016-12-16 Probabilistic bayesian algorithms for identifying product demand in a small business

Publications (1)

Publication Number Publication Date
WO2018111076A1 true WO2018111076A1 (en) 2018-06-21

Family

ID=62559498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MX2016/000158 Ceased WO2018111076A1 (en) 2016-12-16 2016-12-16 Probabilistic bayesian algorithms for identifying product demand in a small business

Country Status (1)

Country Link
WO (1) WO2018111076A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080154761A1 (en) * 2006-12-20 2008-06-26 Microsoft Corporation Commoditization of products and product market
US20140081753A1 (en) * 1999-05-12 2014-03-20 Ewinwin, Inc. Promoting offers through social network influencers
US20140279208A1 (en) * 2013-03-14 2014-09-18 Rosie Electronic shopping system and service
WO2016053183A1 (en) * 2014-09-30 2016-04-07 Mentorica Technology Pte Ltd Systems and methods for automated data analysis and customer relationship management

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140081753A1 (en) * 1999-05-12 2014-03-20 Ewinwin, Inc. Promoting offers through social network influencers
US20080154761A1 (en) * 2006-12-20 2008-06-26 Microsoft Corporation Commoditization of products and product market
US20140279208A1 (en) * 2013-03-14 2014-09-18 Rosie Electronic shopping system and service
WO2016053183A1 (en) * 2014-09-30 2016-04-07 Mentorica Technology Pte Ltd Systems and methods for automated data analysis and customer relationship management

Similar Documents

Publication Publication Date Title
Rahim et al. RFM-based repurchase behavior for customer classification and segmentation
US10949825B1 (en) Adaptive merchant classification
Singh et al. E-commerce system for sale prediction using machine learning technique
CN115053240A (en) System and method for measuring and predicting availability of products and optimizing matches using inventory data
GB2547395A (en) User maintenance system and method
Rohella et al. Generative AI in FinTech: Generating images based on predefined lists of Stock Keeping Units using product descriptions
JP2021515284A (en) Methods, systems, and computer program products for estimating latency using predictive modeling
Claro et al. Identifying sales performance gaps with internal benchmarking
US20170169447A1 (en) System and method for segmenting customers with mixed attribute types using a targeted clustering approach
Hariharan et al. Aggregate impact of different brand development strategies
CN117495492A (en) Method for carrying out information reinforcement learning recommendation based on consumption upgrading recommendation model
Gangurde et al. Building prediction model using market basket analysis
US20230245152A1 (en) Local trend and influencer identification using machine learning predictive models
CN110827093A (en) Method and device for accurate marketing
Al-Basha Forecasting Retail Sales Using Google Trends and Machine Learning
WO2018111076A1 (en) Probabilistic bayesian algorithms for identifying product demand in a small business
Ansari et al. Using decision trees to analyse the customers' shopping location preferences
Lee et al. A hybrid machine learning approach for customer loyalty prediction
Singvejsakul et al. Frontier of error minimization from copula model application: Evidence from dependence structure of BRICS’s stock markets
Huang Using RFM model to construct customer value by making segment in different service industries:.
Konishi et al. Digital intelligence banking of adaptive digital marketing with life needs control
US20210256509A1 (en) Planning currency exchange transactions based on international travel budgeting information
Gil Cordero et al. Influence of macroeconomic indices on European private labels
Feng et al. Sparse regularization in marketing and economics
MACHALICKÝ et al. FINDING CORRELATION BETWEEN CUSTOMER TYPOLOGY AND SALES RESULTS IN ASSISTED RETAIL USING COMPUTER VISION.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16923946

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16923946

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC , EPO FORM 1205A DATED 20.01.2020.

122 Ep: pct application non-entry in european phase

Ref document number: 16923946

Country of ref document: EP

Kind code of ref document: A1