[go: up one dir, main page]

WO2018107851A1 - 冗余机械臂的控制方法及装置 - Google Patents

冗余机械臂的控制方法及装置 Download PDF

Info

Publication number
WO2018107851A1
WO2018107851A1 PCT/CN2017/103286 CN2017103286W WO2018107851A1 WO 2018107851 A1 WO2018107851 A1 WO 2018107851A1 CN 2017103286 W CN2017103286 W CN 2017103286W WO 2018107851 A1 WO2018107851 A1 WO 2018107851A1
Authority
WO
WIPO (PCT)
Prior art keywords
redundant
trajectory
robot arm
mechanical arm
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/CN2017/103286
Other languages
English (en)
French (fr)
Inventor
阳方平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Shiyuan Electronics Thecnology Co Ltd
Original Assignee
Guangzhou Shiyuan Electronics Thecnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Shiyuan Electronics Thecnology Co Ltd filed Critical Guangzhou Shiyuan Electronics Thecnology Co Ltd
Publication of WO2018107851A1 publication Critical patent/WO2018107851A1/zh
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Definitions

  • the present invention relates to the field of robot technology, and in particular, to a control method and apparatus for a redundant mechanical arm.
  • the redundant manipulator When the redundant manipulator performs a Cartesian space-specific task, there is an infinite group solution in the joint space.
  • a set of optimal solutions can be selected according to the optimization index such as joint speed, joint torque or obstacle distance to determine the redundant machine. The movement of the arm.
  • the methods commonly used for multi-objective optimization can be classified into a weighted function method and a Pareto frontier method.
  • the weighting function method can use the weighting coefficient to weight the optimization target to transform the multi-objective optimization problem into a single-objective optimization problem, it is difficult to judge the influence of the weighting coefficient change on the optimization result.
  • an embodiment of the present invention provides a control method and apparatus for a redundant mechanical arm to solve
  • the multi-objective solving method in the prior art calculates a complicated technical problem with complicated steps.
  • an embodiment of the present invention provides a method for controlling a redundant mechanical arm, including:
  • the equation corresponding to the trajectory function is solved according to the target approaching method, and the position and velocity of each joint in the redundant mechanical arm corresponding to the motion trajectory are obtained.
  • an embodiment of the present invention further provides a control device for a redundant mechanical arm, including:
  • An information acquiring unit configured to acquire current point information and target point information where the redundant robot arm is located;
  • a trajectory unit configured to be connected to the information acquiring unit, configured to determine, according to the current point information and the target point information, a trajectory function corresponding to a motion trajectory of the redundant mechanical arm moving from a current point to a target point;
  • a redundancy processing unit connected to the trajectory unit, configured to establish an equation corresponding to the trajectory function by using a redundancy space vector as an independent variable; and solving an equation corresponding to the trajectory function according to a target approach method, to obtain the motion The position and velocity of each joint in the redundant robot arm corresponding to the trajectory.
  • the technical solution for controlling the redundant mechanical arm obtained by the embodiment of the present invention obtains current point information and target point information of the redundant mechanical arm, and determines that the redundant mechanical arm moves from the current point to the current point information and the target point information.
  • the trajectory function corresponding to the motion trajectory of the target point is constructed by using the redundancy space vector as the independent variable, and the equation is solved by the target approach method to obtain the position of each joint in the redundant mechanical arm corresponding to the motion trajectory. speed.
  • FIG. 1 is a schematic flow chart of a method for controlling a redundant mechanical arm according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic flow chart of a method for controlling a redundant mechanical arm according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic diagram of a coordinate system of a nine-degree-of-freedom redundant robot arm according to Embodiment 2 of the present invention.
  • FIG. 4 is a structural block diagram of a control device for a redundant mechanical arm according to Embodiment 3 of the present invention.
  • Embodiment 1 of the present invention provides a control method for a redundant mechanical arm.
  • the method can be performed by a control device of a redundant robot arm, wherein the device can be implemented by hardware and/or software, and can generally be integrated in a control module for controlling the robot.
  • 1 is a schematic flow chart of a method for controlling a redundant mechanical arm according to Embodiment 1 of the present invention. As shown in FIG. 1, the method includes:
  • the current point information and the target point information of the redundant robot arm may be redundant mechanical arm ends.
  • the current point information and the target point information of the terminal may also be the current point information and the target point information of the joints of the redundant robot arm, which are not limited herein.
  • the current point information of the redundant robot arm may include current point information of the end of the arm and current point information of each joint of the redundant manipulator, target point information Target point information at the end of the robot arm can be included.
  • the current point information (target point information) may include information such as position coordinates, angular coordinates, linear velocity, angular velocity, linear acceleration, and/or angular acceleration of the end of the arm or the joint of the robot arm at the current (target) position.
  • the current point information of the redundant manipulator can be obtained directly by the sensor or by using the calculation result of the last moment as the current point information of the redundant manipulator;
  • the target point information of the redundant manipulator can be calculated according to the current point information of the end of the redundant manipulator and the motion track information of the end of the redundant manipulator.
  • the current point information as the angular coordinate, angular velocity and angular acceleration as an example
  • the angular information and angular velocity information of a joint of the redundant mechanical arm at the current position can be obtained by an encoder installed at the joint position, and the angular acceleration information can be differentiated. The operation is obtained; or, the target point information of each joint of the robot arm calculated at the previous time can be directly used as the current point information of each joint of the robot arm at the current time.
  • the trajectory function corresponding to the motion trajectory of the redundant mechanical arm moving from the current point to the target point may include a trajectory corresponding to each joint motion trajectory of the redundant mechanical arm when the end of the redundant mechanical arm moves from the current point to the target point.
  • the trajectory function of each joint of the redundant manipulator can be one or more, that is, the trajectory function corresponding to each joint motion trajectory of the redundant manipulator can be described as a whole by a total trajectory function, or can be used for each joint
  • the motion trajectory is described in the form of one or several trajectory functions.
  • the trajectory function corresponding to the motion trajectory of each joint of the redundant manipulator may include an equation and/or an inequality.
  • the trajectory function of a joint of the redundant manipulator may include the position coordinates of the joint
  • the correspondence between speed and/or acceleration and other variables may also include coordinates of the joint position, moving speed, and/or moving angular velocity when the redundant manipulator moves normally.
  • the range of values, etc., is not limited here.
  • the trajectory function of the end of the redundant mechanical arm may be first determined according to the current point information and the target point information at the end of the redundant mechanical arm. Then, according to the connection relationship between the end of the redundant manipulator and each joint, the relationship between the motion path of each joint and the motion track of the end of the redundant manipulator is determined, and then the redundant robot arm is determined according to the trajectory function of the end of the redundant manipulator. Trajectory function.
  • the correspondence between the redundancy vector and the coordinates of each joint position, speed, or acceleration may be first determined, and then the position vector, speed, or position in the trajectory function corresponding to each joint is replaced by the redundancy space vector according to the correspondence. Acceleration and other independent variables, and then establish the equation corresponding to the trajectory function of each joint of the redundant manipulator with the redundancy space vector as the independent variable.
  • the redundancy space vector may be any vector of the redundancy vector space, and the redundancy vector space may be an existing vector space or a custom space, which is not limited herein.
  • the acceleration of each joint of the redundant mechanical arm can be further determined as needed.
  • all solutions of the equation can be obtained, and then a set of solutions of the equations can be obtained according to actual needs or according to the set selection rules.
  • the target position of the joint at the next moment At the same time, the moving speed and acceleration of the joint when moving from the current position to the target position are determined.
  • a set of solutions of the equation can be arbitrarily obtained and the target position of the joint at the next moment is obtained by the set of solutions and moved from the current position to The moving speed and acceleration of the target position; first, the constraint condition of the equation solution can be set first, then the solution of the equation that satisfies the constraint condition is obtained, and the movement process of the joint from the current time to the next moment is guided by the set of solutions, There are no restrictions.
  • the control method of the redundant mechanical arm acquires current point information and target point information of the redundant mechanical arm, and determines that the redundant mechanical arm moves from the current point to the current point information and the target point information.
  • the trajectory function corresponding to the motion trajectory of the target point is constructed by using the redundancy space vector as the independent variable, and the equation is solved by the target approach method to obtain the position of each joint in the redundant mechanical arm corresponding to the motion trajectory. speed.
  • the present embodiment can reduce the search space of the multi-objective optimization problem of the redundant manipulator under the premise of satisfying the global optimal solution of the design target, and avoid the occurrence of the dimensional explosion problem in the multi-objective solution process, simplifying The amount of calculation required during the redundant manipulator control process increases the reaction speed of the redundant manipulator.
  • the acquiring the current point information and the target point information where the redundant mechanical arm is located includes: acquiring the speed of the end of the redundant mechanical arm at the target point; According to the speed of the end of the redundant manipulator at the target current point, the joint of the redundant manipulator The angular, joint angular velocity and joint angular acceleration are mapped to the redundancy space.
  • the determining, according to the current point information and the target point information, a trajectory function corresponding to a motion trajectory of the redundant robot arm moving from a current point to a target point comprises: determining the redundancy according to an inverse kinematics equation The optimization objective function and constraints corresponding to the motion trajectory of the remaining manipulator moving from the current point to the target point.
  • the solving the equation corresponding to the trajectory function according to the target approaching method, and obtaining the position and velocity of each joint in the redundant mechanical arm corresponding to the motion trajectory includes: in the redundancy space, according to the optimization target a function, a minimum target value corresponding to the optimization target, a corresponding constraint condition, and a preset weighting coefficient, and an equation corresponding to the trajectory function is solved by an auxiliary vector and a single target optimization algorithm to obtain the redundancy corresponding to the motion trajectory The position and speed of the joints in the robot arm.
  • control method of the redundant mechanical arm includes:
  • the obtaining the speed of the end of the redundant mechanical arm at the current point comprises: according to the posture of the redundant mechanical arm end at the current point and the movement of the redundant mechanical arm end
  • the pose of the next sample point in the trajectory determines the velocity of the end of the redundant robot arm at the next sample point.
  • the position of the end of the redundant manipulator refers to the position and posture of the redundant manipulator.
  • the position can be represented by position coordinates, and the posture can be expressed by angle.
  • information such as the angular velocity and/or angular acceleration of the redundant manipulator at the current point can be obtained from an encoder installed at the end of the redundant manipulator, or directly based on the calculation result of the redundant manipulator at the previous moment.
  • the relationship between the end speed of the redundant manipulator and the joint angular velocity of the redundant manipulator ie, the trajectory function of each joint of the redundant manipulator with angular velocity as an independent variable
  • N the degree of freedom of the redundant manipulator
  • N 6+r, r>1
  • J ⁇ R 6 ⁇ N is the Jacobian matrix.
  • equation (1) can be rewritten as:
  • Redundant manipulator joint angular acceleration The expression for the redundancy space vector k is:
  • ⁇ 0 is the joint angle of the previous moment
  • ⁇ t is the sampling step size
  • the optimization objective function and the constraint condition corresponding to the motion trajectory of the redundant mechanical arm moving from the current point to the target point can be flexibly set according to requirements, for example, the range of the redundant mechanical arm movement can be restricted to avoid Obstacle, or limit the bending angle of the redundant manipulator to avoid the joints reaching their motion limits.
  • the optimization objective function includes a minimum joint motion amplitude of the redundant mechanical arm or the redundant mechanical arm is minimally affected by a corresponding gear gap;
  • the constraint condition includes : constraining the joint speed of the redundant mechanical arm within a preset speed range or constraining the joint angle of the redundant mechanical arm within a preset angular range.
  • the optimal objective function for the minimum joint motion of the redundant manipulator can be:
  • the optimal objective function for the redundant manipulator to be minimally affected by the corresponding gear clearance can be:
  • the constraint that constrains the joint speed of the redundant manipulator to a preset speed range may be:
  • the constraint that constrains the joint angle of the redundant manipulator within a predetermined range of angles may be: ⁇ min ⁇ ⁇ ⁇ ⁇ max .
  • the optimization objective function and the constraint equation of the redundant robot arm trajectory can be established based on the redundancy space, and the optimization objective function and the constraint equation of the redundant mechanical arm can be expressed as joint angle, joint angular velocity and/or
  • the joint angular acceleration is an expression of the independent variable. Therefore, by substituting the above equations (7), (8), and (9) into the expression, the optimal objective function and the constraint equation with the redundant space vector k as the independent variable can be obtained.
  • an optimization objective function with minimal joint motion amplitude can be further expressed as an equation for the redundancy space vector k:
  • the optimization objective function with respect to the minimum influence of the mechanical arm on the corresponding gear gap can be further expressed as the equation of the redundancy space vector k:
  • the constraint on the joint angular velocity limit can be further expressed as an equation with the redundant space vector k as an independent variable:
  • the constraint on the joint angle limit can be further expressed as an equation with the redundancy space vector k as an independent variable:
  • the single-objective optimization algorithm for solving the equation corresponding to the trajectory function can be flexibly determined according to needs, and is not limited herein.
  • the single target optimization algorithm comprises: a Newton-Eulerian algorithm, a Nelder-Mead simplex algorithm, an interior point algorithm, a genetic algorithm and/or a Pattern Search algorithm.
  • the Pareto frontier is a solution set for multi-objective optimization problems, which is defined as follows: On the multi-objective feasible domain ⁇ , there is a point x * ⁇ ⁇ , if there is no point x ⁇ ⁇ , so that f(x) ⁇ f(x * ) is established, and there is at least a point x' ⁇ ⁇ such that the strict inequality f(x') > f(x * ) holds, then x * is a Pareto optimal solution.
  • the equation corresponding to the trajectory function is as follows:
  • A is a matrix constraint condition
  • b is a vector constraint condition
  • is a weighting coefficient vector
  • is an auxiliary vector.
  • the weighting coefficient vector ⁇ can be set by the user or the developer as needed, and the auxiliary vector ⁇ is used to convert the original multi-objective optimization into a single-objective optimization problem.
  • the inner point method can be used to solve the equation (12) to obtain the optimal solution of the equation, and then the joints of the redundant mechanical arm and the optimal solution are obtained by the equations (7), (8) and (9). Corresponding angles, angular velocities, and angular angular velocities, resulting in the position and velocity of the joints of the redundant manipulator at the next moment.
  • the wrist coordinate system can be defined according to the structural characteristics of the redundant mechanical arm.
  • the specific coordinates and direction of the wrist coordinate system can be flexibly set according to requirements, which is not limited herein.
  • the wrist coordinate system can be defined as a coordinate system parallel to the coordinate end system of the redundant manipulator and the origin coincides with the origin of the coordinate system of the connecting rod 8.
  • 3 ⁇ w is the angular velocity in the wrist coordinate system with reference to the coordinate system of the connecting rod 3;
  • 3 ⁇ h is the angular velocity in the coordinate system of the redundant manipulator referenced by the coordinate system of the connecting rod 3;
  • 3 v w The linear velocity in the wrist coordinate system with reference to the coordinate system of the connecting rod 3;
  • 3 v h is the linear velocity in the coordinate system of the redundant manipulator referenced by the coordinate system of the connecting rod 3;
  • 3 x h is the connection
  • the rod 3 coordinate system is the value of the unit vector of the Z direction in the redundant robot arm end coordinate system of the reference:
  • c i represents cos( ⁇ i )
  • s i represents sin( ⁇ i )
  • c ij represents cos( ⁇ i + ⁇ j )
  • s ij represents sin( ⁇ i + ⁇ j ).
  • J w is the joint angular velocity Speed with wrist
  • the Jacques matrix has:
  • the Jacobian matrix can be found by the vector product method as follows:
  • any three columns in the equation (19) may be taken as ⁇ , and J * is the remaining columns other than the three columns constituting ⁇ .
  • J 5 , J 6 and J 7 are taken as ⁇ , and the remaining columns (J 1 , J 2 , J 3 , J 4 , J 8 and J 9 ) constitute J * , and can be obtained by the formula (5):
  • J 21 a 2 s 3 - d 6 c 5 - d 4 - a 5 s 5 - d 7 c 5 c 7 + d 7 s 5 c 6 s 7 ,
  • J 23 a 2 c 3 + a 4 c 4 + a 5 c 4 c 5 - d 6 c 4 s 5 - d 7 c 4 s 5 c 7 + d 7 s 4 s 6 s 7 -d 7 c 4 c 5 c 6 s 7 ,
  • J 31 -d 4 -d 7 (c 5 c 7 -s 5 c 6 s 7 )-d 6 c 5 -a 5 s 5 ,
  • J 33 a 4 c 4 + d 7 (s 7 (s 4 s 6 -c 4 c 5 c 6 )-c 4 s 5 c 7 )+a 5 c 4 c 5 -d 6 c 4 s 3 ,
  • J 41 d 7 (s 7 (c 4 s 6 +s 4 c 5 c 6 )+s 4 s 5 c 7 )-a 4 s 4 -a 5 s 4 c 5 +d 6 s 4 s 5 ,
  • J 42 d 7 (s 7 (s 4 s 6 -c 4 c 5 c 6 )-c 4 s 5 c 7 )+a 4 c 4 +a 5 c 4 c 5 -d 6 c 4 s 5 ,
  • J 84 s 7 (s 4 s 6 -c 4 c 5 c 6) -c 4 s 5 c 7,
  • J 85 -s 7 (c 4 s 6 + s 4 c 5 c 6) -s 4 s 5 c 7,
  • J 94 c 8 (s 4 c 6 +c 4 c 5 s 6 )-s 8 (c 7 (s 4 s 6 -c 4 c 5 c 6 ))+c 4 s 5 s 7 ,
  • J 95 s 8 (c 7 (s 4 s 6 +s 4 c 5 c 6 ))-s 4 s 5 s 7 -c 8 (c 4 c 6 -s 4 c 5 s 6 ),
  • J 96 s 8 (c 5 s 7 - s 5 c 6 c 7 ) + c 8 s 5 s 6 .
  • Matrix The ith element.
  • the joint angle ⁇ can be obtained as a function of the redundancy vector (k 5 , k 6 , k 7 ) as an independent variable:
  • ⁇ 0 is the current joint angle and ⁇ t is the sampling step size.
  • H i ( ⁇ (k 5 , k 6 , k 7 )) is the element corresponding to the second row and the fourth column of the link transformation matrix 0 T i ( ⁇ (k 5 , k 6 , k 7 )):
  • d i , ⁇ i and a i are Denavit-Hartenberg parameters, and specific values thereof are shown in Table 1.
  • the control method of the redundant mechanical arm obtaineds the speed of the end of the redundant mechanical arm at the target point, and the joint angle, the joint angular velocity of the redundant mechanical arm and the speed of the end of the redundant mechanical arm at the target point
  • the joint angular acceleration is mapped to the redundancy space.
  • the optimal objective function and constraints corresponding to the motion trajectory of the redundant manipulator moving from the current point to the target point are determined, and the redundant space vector is used as the independent variable to establish the motion.
  • the equation corresponding to the trajectory is solved by the auxiliary vector and the single-objective optimization algorithm to solve the equation corresponding to the trajectory function, and the position and velocity of each joint in the redundant mechanical arm corresponding to the motion trajectory are obtained.
  • a mathematical module for multi-objective constrained optimization problem is established, which can provide a theoretical basis for solving a multi-objective optimization problem, and reduce redundant manipulators under the premise of satisfying the global optimal solution of the design target.
  • the search space of the target optimization problem avoids the occurrence of dimensional explosion problems in the multi-objective solution process, simplifies the calculation amount required in the redundant robot arm control process, and improves the reaction speed of the redundant mechanical arm.
  • Embodiment 3 of the present invention provides a control device for a redundant mechanical arm.
  • the device can be implemented by hardware and/or software, generally integrated in a control module for controlling the robot, and the control of the redundant manipulator can be realized by performing a control method of the redundant manipulator.
  • 4 is a structural block diagram of a control device for a redundant mechanical arm according to the embodiment. As shown in FIG. 4, the device includes:
  • the information acquiring unit 410 is configured to acquire current point information and target point information where the redundant robot arm is located;
  • the trajectory unit 420 is connected to the information acquiring unit, and configured to determine, according to the current point information and the target point information, a trajectory function corresponding to a motion trajectory of the redundant mechanical arm moving from a current point to a target point;
  • the redundancy processing unit 430 is connected to the trajectory unit, and is configured to establish an equation corresponding to the trajectory function by using a redundancy space vector as an independent variable; and solving an equation corresponding to the trajectory function according to a target proximity method, to obtain the The position and velocity of each joint in the redundant robot arm corresponding to the motion trajectory.
  • the control device of the redundant mechanical arm obtained by the third embodiment of the present invention obtains the current point information and the target point information of the redundant mechanical arm through the information acquiring unit, and determines the redundancy according to the acquired current point information and the target point information by the trajectory unit.
  • the trajectory function corresponding to the motion trajectory of the robot arm moving from the current point to the target point is established by the redundancy processing unit with the redundancy space vector as the independent variable, and the equation is solved by the target approach method to obtain the motion.
  • the position and velocity of each joint in the redundant robot arm corresponding to the trajectory.
  • the embodiment of the present invention can reduce the search space of the multi-objective optimization problem of the redundant manipulator under the premise of obtaining the global optimal solution satisfying the design goal, and avoid the occurrence of the dimensional explosion problem in the multi-objective solution process. Simplify the amount of calculations required during redundant manipulator control and increase the response speed of redundant manipulators.
  • the information acquiring unit 410 is specifically configured to: acquire a speed of the end of the redundant mechanical arm at the target point; and the redundant machine according to a speed of the redundant mechanical arm end at the target point
  • the joint angle of the arm, the joint angular velocity, and the joint angular acceleration are mapped to the redundancy space.
  • the acquiring the speed of the end of the redundant mechanical arm at the current point comprises: according to the posture of the redundant mechanical arm end at the current point and the end of the redundant mechanical arm The pose of the next sample point in the trajectory determines the velocity of the end of the redundant robot arm at the next sample point.
  • trajectory unit 420 is specifically configured to determine an optimization objective function and a constraint condition corresponding to a motion trajectory of the redundant mechanical arm moving from a current point to a target point according to an inverse kinematics equation.
  • the optimization objective function includes a minimum joint motion amplitude of the redundant mechanical arm or the redundant mechanical arm is minimally affected by a corresponding gear gap;
  • the constraint condition includes: a joint of the redundant mechanical arm The speed constraint is within a preset speed range or the joint angle of the redundant robot arm is constrained within a preset angle range.
  • the solving the equation corresponding to the trajectory function according to the target approaching method, and obtaining the position and velocity of each joint in the redundant mechanical arm corresponding to the motion trajectory includes: in the redundancy space, according to the optimization target a function, a minimum target value corresponding to the optimization target, a corresponding constraint condition, and a preset weighting coefficient, and an equation corresponding to the trajectory function is solved by an auxiliary vector and a single target optimization algorithm to obtain the redundancy corresponding to the motion trajectory The position and speed of the joints in the robot arm.
  • the single target optimization algorithm includes: a Newton-Eulerian algorithm, a Nelder-Mead simplex algorithm, an interior point algorithm, a genetic algorithm, and/or a Pattern Search algorithm.
  • the control device of the redundant mechanical arm provided by this embodiment can execute the control method of the redundant mechanical arm provided by any embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the control method for executing the redundant mechanical arm.
  • control method of the redundant robot arm provided by any embodiment of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

一种冗余机械臂的控制方法及装置,所述方法包括:获取冗余机械臂所在的当前点信息和目标点信息;根据所述当前点信息和所述目标点信息确定所述冗余机械臂从当前点移动到目标点的运动轨迹对应的轨迹函数;以冗余度空间向量为自变量建立所述轨迹函数对应的方程;根据目标接近法求解所述轨迹函数对应的方程,得到所述运动轨迹对应的所述冗余机械臂中各关节的位置和速度。通过采用上述技术方案,可以在得到满足设计目标的全局最优解的前提下,减少冗余机械臂多目标优化问题的搜索空间,避免多目标求解过程中维度爆炸问题的发生,简化冗余机械臂控制过程中所需的计算量,提高冗余机械臂的反应速度。

Description

冗余机械臂的控制方法及装置 技术领域
本发明涉及机器人技术领域,尤其涉及一种冗余机械臂的控制方法及装置。
背景技术
近年来,随着人工智能技术和机械控制技术的提高以及机器人所执行任务复杂程度的提高,冗余机械臂(关节数大于6个的机械臂)越来越多的被应用到了机器人中来完成各种较为复杂任务。
冗余机械臂执行笛卡尔空间特定任务时在关节空间有无穷组解,在具体应用时,一般可以根据关节速度、关节力矩或障碍物距离等优化指标选择一组最优解来确定冗余机械臂的移动过程。在机器人执行较复杂的任务时,通常需要同时对冗余机械臂的多个目标进行优化,目前,常用来进行多目标优化的方法可归类为加权函数法和帕累托前沿法。但是,加权函数法虽然可以利用加权系数对优化目标进行加权从而将多目标优化问题转化为单目标优化问题,但是,此类方法难以判断加权系数变化对优化结果造成的影响,每次只能获得一个解,需不断改变加权系数的值,计算步骤繁琐且存在一定的局限性;帕累托前沿类方法的计算复杂程度随机械臂自由度的增加而急剧增加,当冗余机械臂关节数较多时,该类方法也存在计算复杂、步骤繁琐的问题。
发明内容
有鉴于此,本发明实施例提供一种冗余机械臂的控制方法及装置,以解决 现有技术中多目标求解方法计算复杂、步骤繁琐的技术问题。
第一方面,本发明实施例提供了一种冗余机械臂的控制方法,包括:
获取冗余机械臂所在的当前点信息和目标点信息;
根据所述当前点信息和所述目标点信息确定所述冗余机械臂从当前点移动到目标点的运动轨迹对应的轨迹函数;
以冗余度空间向量为自变量建立所述轨迹函数对应的方程;
根据目标接近法求解所述轨迹函数对应的方程,得到所述运动轨迹对应的所述冗余机械臂中各关节的位置和速度。
第二方面,本发明实施例还提供了一种冗余机械臂的控制装置,包括:
信息获取单元,用于获取冗余机械臂所在的当前点信息和目标点信息;
轨迹单元,与所述信息获取单元相连,用于根据所述当前点信息和所述目标点信息确定所述冗余机械臂从当前点移动到目标点的运动轨迹对应的轨迹函数;
冗余度处理单元,与所述轨迹单元相连,用于以冗余度空间向量为自变量建立所述轨迹函数对应的方程;根据目标接近法求解所述轨迹函数对应的方程,得到所述运动轨迹对应的所述冗余机械臂中各关节的位置和速度。
本发明实施例提供的控制冗余机械臂的技术方案,获取冗余机械臂的当前点信息和目标点信息,根据所获取的当前点信息和目标点信息确定冗余机械臂从当前点移动到目标点的运动轨迹对应的轨迹函数,以冗余度空间向量为自变量建立该轨迹函数对应的方程,通过目标接近法求解该方程以得到运动轨迹对应的冗余机械臂中各关节的位置和速度。本发明实施例通过采用上述技术方案,可以在得到满足设计目标的全局最优解的前提下,减少冗余机械臂多目标优化问题的搜索空间,避免多目标求解过程中维度爆炸问题的发生,简化冗余机械 臂控制过程中所需的计算量,提高冗余机械臂的反应速度。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为本发明实施例一提供的一种冗余机械臂的控制方法的流程示意图;
图2为本发明实施例二提供的一种冗余机械臂的控制方法的流程示意图;
图3为本发明实施例二提供的一种九自由度冗余机械臂的坐标系示意图
图4为本发明实施例三提供的一种冗余机械臂的控制装置的结构框图。
具体实施方式
下面结合附图和实施例对本发明作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释本发明,而非对本发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与本发明相关的部分而非全部内容。
实施例一
本发明实施例一提供一种冗余机械臂的控制方法。该方法可由冗余机械臂的控制装置执行,其中,该装置可通过硬件和/或软件实现,一般可集成在用于控制机器人的控制模块中。图1是本发明实施例一提供的冗余机械臂的控制方法的流程示意图,如图1所示,该方法包括:
S110、获取冗余机械臂所在的当前点信息和目标点信息。
本实施例中,冗余机械臂的当前点信息和目标点信息可以是冗余机械臂末 端的当前点信息和目标点信息,也可以是冗余机械臂各关节的当前点信息和目标点信息,此处不作限制。考虑到当前点信息和目标点信息的实用性,可选的,冗余机械臂所在的当前点信息可以包括机械臂末端的当前点信息和冗余机械臂各关节的当前点信息,目标点信息可以包括机械臂末端的目标点信息。其中,当前点信息(目标点信息)可以包括机械臂末端或机械臂各关节在当前(目标)位置的位置坐标、角度坐标、线速度、角速度、线加速度和/或角加速度等信息等。
示例性的,在获取冗余机械臂的当前点信息时,可以直接通过传感器获取冗余机械臂的当前点信息或者通过采用上一时刻的计算结果作为冗余机械臂的当前点信息;在获取冗余机械臂的目标点信息时,可以根据冗余机械臂末端的当前点信息和冗余机械臂末端的运动轨迹信息计算得到冗余机械臂末端需要移动到的目标点信息。以当前点信息为角度坐标、角速度和角加速度为例,冗余机械臂某一关节在当前位置处的角度信息和角速度信息可以通过安装在该关节位置的编码器获得,其角加速度信息可以通过差分运算获得;或者,也可以直接调用上一时刻计算得到的机械臂各关节的目标点信息作为机械臂各关节在当前时刻的当前点信息。
S120、根据所述当前点信息和所述目标点信息确定所述冗余机械臂从当前点移动到目标点的运动轨迹对应的轨迹函数。
本实施例中,冗余机械臂从当前点移动到目标点的运动轨迹对应的轨迹函数可以包含在冗余机械臂末端从当前点移动到目标点时冗余机械臂各关节运动轨迹对应的轨迹函数,冗余机械臂各关节的轨迹函数可以是一个或多个,即,冗余机械臂各关节运动轨迹对应的轨迹函数可以以一个总的轨迹函数进行整体描述,也可以以每个关节的运动轨迹对应一个或几个轨迹函数的形式进行描述。 在此,需要指出的是,冗余机械臂各关节的运动轨迹对应的轨迹函数可以包含等式和/或不等式,例如,冗余机械臂某一关节的轨迹函数可以包含该关节的位置坐标、速度和/或加速度与其它变量(如机械臂末端的位置坐标、速度和/或加速度)的对应关系,还可以包含冗余机械臂正常移动时该关节位置坐标、移动速度和/或移动角速度的取值范围等,此处不作限制。
具体的,在确定冗余机械臂从当前点移动到目标点的运动轨迹对应的轨迹函数时,可以首先根据冗余机械臂末端的当前点信息和目标点信息确定冗余机械臂末端的轨迹函数,然后根据冗余机械臂末端与各关节的连接关系确定各关节运动轨迹与冗余机械臂末端运动轨迹之间的关系,进而根据冗余机械臂末端的轨迹函数确定冗余机械臂各关机的轨迹函数。
S130、以冗余度空间向量为自变量建立所述轨迹函数对应的方程。
具体的,可以首先确定冗余度向量与各关节位置坐标、速度或加速度等变量的对应关系,然后根据该对应关系采用冗余度空间向量替换各关节对应的轨迹函数中的位置坐标、速度或加速度等自变量,进而建立冗余机械臂各关节以冗余度空间向量为自变量的轨迹函数对应的方程。其中,冗余度空间向量可以是冗余度向量空间的任一向量,冗余度向量空间可以是已有的向量空间,也可以是自定义的空间,此处不作限制。
S140、根据目标接近法求解所述轨迹函数对应的方程,得到所述运动轨迹对应的所述冗余机械臂中各关节的位置和速度。
本实施例中,在得到冗余机械臂各关节的位置和速度后,可以根据需要进一步求得冗余机械臂各关节的加速度。示例性的,当冗余机械臂某一关节的轨迹函数对应的方程存在有限组解时,可以求得方程的所有解,然后根据实际需要或根据设定的选取规则选取方程的一组解得到该关节在下一时刻的目标位置 并同时确定该关节从当前位置移动到目标位置时的移动速度和加速度。当冗余机械臂某一关节的轨迹函数对应的方程存在无穷组解时,可以任意求得该方程的一组解并通过该组解得到该关节在下一时刻的目标位置以及从当前位置移动到目标位置的移动速度和加速度;也可以首先设定方程解的约束条件,然后求符合该约束条件的方程的解,并以该组解指导该关节从当前时刻到下一时刻的移动过程,此处不作限制。为保证冗余机械臂各关节都可以高效地移动,减少各关节的输出力矩和运动、规避奇异与避免关节运动的极限,优选的,可以根据符合约束条件的方程的解得到运动轨迹对应的冗余机械臂中各关节的位置、速度和加速度。
本发明实施例一提供的冗余机械臂的控制方法,获取冗余机械臂的当前点信息和目标点信息,根据所获取的当前点信息和目标点信息确定冗余机械臂从当前点移动到目标点的运动轨迹对应的轨迹函数,以冗余度空间向量为自变量建立该轨迹函数对应的方程,通过目标接近法求解该方程以得到运动轨迹对应的冗余机械臂中各关节的位置和速度。本实施例通过采用上述技术方案,可以在得到满足设计目标的全局最优解的前提下,减少冗余机械臂多目标优化问题的搜索空间,避免多目标求解过程中维度爆炸问题的发生,简化冗余机械臂控制过程中所需的计算量,提高冗余机械臂的反应速度。
实施例二
图2为本发明实施例二提供的一种冗余机械臂的控制方法的流程示意图。本实施例在上述实施例的基础上进行优化,进一步地,所述获取冗余机械臂所在的当前点信息和目标点信息包括:获取所述冗余机械臂末端在所述目标点的速度;根据所述冗余机械臂末端在目标当前点的速度将所述冗余机械臂的关节 角、关节角速度和关节角加速度映射到冗余度空间。
进一步地,所述根据所述当前点信息和所述目标点信息确定所述冗余机械臂从当前点移动到目标点的运动轨迹对应的轨迹函数包括:根据逆运动学方程,确定所述冗余机械臂从当前点移动到目标点的运动轨迹对应的优化目标函数和约束条件。
进一步地,所述根据目标接近法求解所述轨迹函数对应的方程,得到所述运动轨迹对应的所述冗余机械臂中各关节的位置和速度包括:在冗余度空间中,根据优化目标函数、与优化目标对应的最小目标值、对应的约束条件和预设的加权系数,通过辅助向量和单目标优化算法求解所述轨迹函数对应的方程,得到所述运动轨迹对应的所述冗余机械臂中各关节的位置和速度。
相应的,如图2所示,本实施例提供的冗余机械臂的控制方法包括:
S210、获取所述冗余机械臂末端在所述目标点的速度。
优选的,所述获取所述冗余机械臂末端在所述当前点的速度包括:根据所述冗余机械臂末端在所述当前点的位姿和所述冗余机械臂末端在所述运动轨迹中的下一采样点的位姿确定所述冗余机械臂末端在所述下一采样点的速度。其中,冗余机械臂末端的位姿指的是冗余机械臂的位置和姿态,位置可以用位置坐标来表示,姿态可以用角度来表示。示例性的,可以根据安装在冗余机械臂末端的编码器获取冗余机械臂在当前点的角速度和/或角加速度等信息,或者直接根据冗余机械臂在上一时刻的计算结果得到冗余机械臂末端在当前点的角速度和/或角加速度等信息,然后根据冗余机械臂在当前点的角度和下一采样的角度得到冗余机械臂在下一采样点的角速度,进而得到冗余机械臂在下一采样点的速度。
S220、根据所述冗余机械臂末端在所述目标点的速度将所述冗余机械臂的 关节角、关节角速度和关节角加速度映射到冗余度空间。
示例性的,冗余机械臂末端速度与冗余机械臂的关节角速度的关系(即冗余机械臂各关节以角速度为自变量的轨迹函数)可以表示为:
Figure PCTCN2017103286-appb-000001
其中,
Figure PCTCN2017103286-appb-000002
为机械臂末端的速度,
Figure PCTCN2017103286-appb-000003
vi(i=x,y,z)表示线速度,ωi(i=θ,Ψ,Φ)表示角速度;
Figure PCTCN2017103286-appb-000004
为机械臂的关节角速度,
Figure PCTCN2017103286-appb-000005
N为冗余机械臂的自由度,N=6+r,r>1;J∈R6×N为雅克比矩阵。
假设α是雅可比矩阵J中的任意r(r=n-6>1)列,使得剩下的6列构成非奇异矩阵J*,则式(1)可以改写为:
Figure PCTCN2017103286-appb-000006
从而,任何满足式(2)的关节角速度
Figure PCTCN2017103286-appb-000007
可以进一步改写为:
Figure PCTCN2017103286-appb-000008
其中,
Figure PCTCN2017103286-appb-000009
是满足式(3)的一个特解,
Figure PCTCN2017103286-appb-000010
是式(3)的齐次解,且
Figure PCTCN2017103286-appb-000011
Figure PCTCN2017103286-appb-000012
其中,i=1,2,...,r,αj是矩阵α的第j列;
Figure PCTCN2017103286-appb-000013
为列矩阵,且其前r(r=N-6)行为0;
Figure PCTCN2017103286-appb-000014
为列矩阵,且其第i行为1,前r行中除第i行外的其他行为0。定义冗余度空间向量k=(k1,…,kr)T为冗余度向量空间的任一向量,则有:
Figure PCTCN2017103286-appb-000015
假设角速度
Figure PCTCN2017103286-appb-000016
以S(k)进行表示,角度θ以P(k)进行表示,角加速度
Figure PCTCN2017103286-appb-000017
以A(k)进行表示,则冗余机械臂关节角速度
Figure PCTCN2017103286-appb-000018
可表示为冗余度空间向量k的函数:
Figure PCTCN2017103286-appb-000019
冗余机械臂关节角度θ关于冗余度空间向量k的表达式为:
Figure PCTCN2017103286-appb-000020
冗余机械臂关节角加速度关于冗余度空间向量k的表达式为:
Figure PCTCN2017103286-appb-000022
其中,θ0为上一时刻的关节角度,
Figure PCTCN2017103286-appb-000023
为上一时刻的关节角速度,Δt为采样步长。
S230、根据逆运动学方程,确定所述冗余机械臂从当前点移动到目标点的运动轨迹对应的优化目标函数和约束条件。
本实施例中,冗余机械臂从当前点移动到目标点的运动轨迹对应的优化目标函数和约束条件可以根据需要灵活进行设定,例如,可以对冗余机械臂移动的范围进行限制以躲避障碍物,或者,对冗余机械臂的弯曲角度进行限制以避免各关节达到其运动极限等。考虑到各约束条件的实用性,可选的,所述优化目标函数包括所述冗余机械臂的关节运动幅度最小或者所述冗余机械臂受对应的齿轮间隙影响最小;所述约束条件包括:将所述冗余机械臂的关节速度约束在预设的速度范围内或者将所述冗余机械臂的关节角度约束在预设的角度范围内。示例性的,冗余机械臂关节运动幅度最小的优化目标函数可以为:
Figure PCTCN2017103286-appb-000024
冗余机械臂受对应的齿轮间隙影响最小的优化目标函数可以为:
Figure PCTCN2017103286-appb-000025
将冗余机械臂的关节速度约束在预设的速度范围内的约束条件可以为:
Figure PCTCN2017103286-appb-000026
将冗余机械臂的关节角度约束在预设的角度范围内 的约束条件可以为:θmin≤θ≤θmax
S240、以冗余度空间向量为自变量建立所述轨迹函数对应的方程。
本实施例中,可以基于冗余度空间建立冗余机械臂轨迹的优化目标函数和约束方程,由于冗余机械臂的优化目标函数和约束方程都可以表示为以关节角度、关节角速度和/或关节角加速度为自变量的表达式,因此,将上式(7)、(8)、(9)代入表达式中即可得到以冗余度空间向量k为自变量的优化目标函数和约束方程。例如,关于关节运动幅度最小的优化目标函数可以进一步表示为冗余度空间向量k的方程:
Figure PCTCN2017103286-appb-000027
关于机械臂受对应的齿轮间隙影响最小的优化目标函数可以进一步表示为冗余度空间向量k的方程:
Figure PCTCN2017103286-appb-000028
关于关节角速度限制的约束条件可以进一步表示为以冗余度空间向量k为自变量的方程:
Figure PCTCN2017103286-appb-000029
关于关节角度限制的约束条件可以进一步表示为以冗余度空间向量k为自变量的方程:
Figure PCTCN2017103286-appb-000030
S250、在冗余度空间中,根据优化目标函数、与优化目标对应的最小目标值、对应的约束条件和预设的加权系数,通过辅助向量和单目标优化算法求解所述轨迹函数对应的方程,得到所述运动轨迹对应的所述冗余机械臂中各关节 的位置和速度。
示例性的,求解轨迹函数对应的方程的单目标优化算法可以根据需要灵活确定,此处不作限制。优选的,所述单目标优化算法包括:牛顿-欧拉算法、Nelder-Mead单纯形算法、内点算法、基因算法和/或Pattern Search算法。
帕累托前沿是多目标优化问题的解集,其定义如下:在多目标可行域Ω上,存在一点x*∈Ω,若不存在点x∈Ω,使得f(x)≤f(x*)成立,且至少存在一点x′∈Ω使严格不等式f(x′)>f(x*)成立,则x*为一个帕累托最优解。以双目标优化问题为例,其轨迹函数对应的方程如下:
Figure PCTCN2017103286-appb-000031
上式中,F(x)={f1(x) f2(x)}为优化目标函数,
Figure PCTCN2017103286-appb-000032
为与优化目标函数对应的最小目标值,A为矩阵约束条件,b为向量约束条件,ω为加权系数向量,γ为辅助向量。其中,加权系数向量ω可由用户或开发商根据需要进行设置,辅助向量γ用于将原来的多目标优化为题转换为单目标优化问题。
本实施例中,可试用内点法求解式(12)得到方程的最优解,进而通过式(7)、式(8)和式(9)得到冗余机械臂各关节与该最优解对应的角度、角速度和角角速度,从而得到冗余机械臂各关节在下一时刻的位置和速度。
以九自由度的冗余机械臂为例(假设该九自由度冗余机械臂的D-H坐标如图3所示,该九自由度冗余机械臂连杆D-H参数表如表1所示),求解冗余机械臂各关节位置和速度的过程可以为:
表1
θi di(mm) αi ai(mm) 范围
0 d1 90° 0 1550≤d1≤8276
θ2 0 0 a2=2200 -90≤θ2≤90
θ3 0 -90° 0 -90≤θ3≤90
θ4 d4=2800 90° α4=-375 -180≤θ4≤180
θ5 0 -90° α5=-a4=375 -180≤θ5≤180
θ6 d4=2800 90° 0 -180≤θ6≤180
θ7 0 -90° 0 -90≤θ7≤90
θ8 d8=1650 90° 0 -90≤θ8≤90
θ9 0 0 ah=350 -90≤θ9≤90
首先,把冗余机械臂末端的速度转换为以连杆3的坐标系为参考:
Figure PCTCN2017103286-appb-000033
Figure PCTCN2017103286-appb-000034
然后,定义腕部坐标系。考虑到计算的简便性,可以根据冗余机械臂的结构特点定义腕部坐标系,其中,腕部坐标系的具体坐标与方向可以根据需要灵活设置,此处不作限定。示例性的,可以定义腕部坐标系为与冗余机械臂末端坐标系平行、原点与连杆8坐标系原点重合的坐标系,此时,当腕部和冗余机械臂末端的速度以连杆3坐标系为参考时,二者的角速度和线速度存在如下关系:
3ωw3ωn    (15)
3vw3vh-3Rw(wωh×wPh)=3vh-3ωh×3Ph3vh-3ωh×a h 3xh    (16)
其中,3ωw是以连杆3坐标系为参考的腕部坐标系中的角速度;3ωh是以连杆3坐标系为参考的冗余机械臂末端坐标系中的角速度;3vw是以连杆3坐标系为参考的腕部坐标系中的线速度;3vh是以连杆3坐标系为参考的冗余机械臂末端坐标系中的线速度;3xh是以连杆3坐标系为参考的冗余机械臂末端坐标系中Z方向的单位矢量的值:
Figure PCTCN2017103286-appb-000035
上式中,ci表示cos(θi),si表示sin(θi),cij表示cos(θij),sij表示sin(θij)。
定义3Jw为联系关节角速度
Figure PCTCN2017103286-appb-000036
与腕部速度
Figure PCTCN2017103286-appb-000037
的雅克比矩阵,则有:
Figure PCTCN2017103286-appb-000038
用矢量积法可求出该雅克比矩阵如下:
3Jw=[J1 J2 J3 J4 J5 J6 J7 J8 J9]    (19)
其中,
Figure PCTCN2017103286-appb-000039
Figure PCTCN2017103286-appb-000040
Figure PCTCN2017103286-appb-000041
Figure PCTCN2017103286-appb-000042
Figure PCTCN2017103286-appb-000043
Figure PCTCN2017103286-appb-000044
本实施例中,可在式(19)中取任意三列作为α,J*为除组成α的三列之外的其余列。示例性的,取J5、J6和J7作为α,其余列(J1、J2、J3、J4、J8和J9)组成J*,通过式(5)可以得到:
Figure PCTCN2017103286-appb-000045
其中,
J21=a2s3-d6c5-d4-a5s5-d7c5c7+d7s5c6s7
J23=a2c3+a4c4+a5c4c5-d6c4s5-d7c4s5c7+d7s4s6s7-d7c4c5c6s7
J31=-d4-d7(c5c7-s5c6s7)-d6c5-a5s5
J33=a4c4+d7(s7(s4s6-c4c5c6)-c4s5c7)+a5c4c5-d6c4s3
J41=d7(s7(c4s6+s4c5c6)+s4s5c7)-a4s4-a5s4c5+d6s4s5
J42=d7(s7(s4s6-c4c5c6)-c4s5c7)+a4c4+a5c4c5-d6c4s5
J84=s7(s4s6-c4c5c6)-c4s5c7
J85=-s7(c4s6+s4c5c6)-s4s5c7
J86=c5c7-s5c6s7
J94=c8(s4c6+c4c5s6)-s8(c7(s4s6-c4c5c6))+c4s5s7
J95=s8(c7(s4s6+s4c5c6))-s4s5s7-c8(c4c6-s4c5s6),
J96=s8(c5s7-s5c6c7)+c8s5s6
Figure PCTCN2017103286-appb-000046
Figure PCTCN2017103286-appb-000047
由式(20)可得:
Figure PCTCN2017103286-appb-000048
Figure PCTCN2017103286-appb-000049
Figure PCTCN2017103286-appb-000050
Figure PCTCN2017103286-appb-000051
Figure PCTCN2017103286-appb-000052
Figure PCTCN2017103286-appb-000053
其中,
Figure PCTCN2017103286-appb-000054
为矩阵
Figure PCTCN2017103286-appb-000055
的第i个元素。
由式(6)可得:
Figure PCTCN2017103286-appb-000056
其中,α=(J5 J6 J7)。
因此,将式(21)至(26)中的
Figure PCTCN2017103286-appb-000057
(j=1,2,3,4,8和9)用
Figure PCTCN2017103286-appb-000058
(i=5,6和7,j=1,2,3,4,8和9)代替,将式(21)至(26)中的
Figure PCTCN2017103286-appb-000059
(k=1,2,3,4,5和6)用-Jik(i=5,6和7,k=1,2,3,4,5和6)代替即可得到
Figure PCTCN2017103286-appb-000060
Figure PCTCN2017103286-appb-000061
的值。以
Figure PCTCN2017103286-appb-000062
为例,将式(21)至(26)中的
Figure PCTCN2017103286-appb-000063
(j=1,2,3,4,8和9)用
Figure PCTCN2017103286-appb-000064
(j=1,2,3,4,8和9)代替,可以得到:
Figure PCTCN2017103286-appb-000065
将式(21)至(26)中的
Figure PCTCN2017103286-appb-000066
(k=1,2,3,4,5和6)用-J5k(k=1,2,3,4,5和6)代替,可得到:
Figure PCTCN2017103286-appb-000067
由式(19)可知
Figure PCTCN2017103286-appb-000068
因此可得:
Figure PCTCN2017103286-appb-000069
Figure PCTCN2017103286-appb-000070
Figure PCTCN2017103286-appb-000071
Figure PCTCN2017103286-appb-000072
Figure PCTCN2017103286-appb-000073
Figure PCTCN2017103286-appb-000074
其中,
Figure PCTCN2017103286-appb-000075
为矩阵
Figure PCTCN2017103286-appb-000076
的第i个元素。同理可以得出:
Figure PCTCN2017103286-appb-000077
Figure PCTCN2017103286-appb-000078
Figure PCTCN2017103286-appb-000079
Figure PCTCN2017103286-appb-000080
Figure PCTCN2017103286-appb-000081
Figure PCTCN2017103286-appb-000082
Figure PCTCN2017103286-appb-000083
Figure PCTCN2017103286-appb-000084
Figure PCTCN2017103286-appb-000085
Figure PCTCN2017103286-appb-000086
Figure PCTCN2017103286-appb-000087
Figure PCTCN2017103286-appb-000088
其中,
Figure PCTCN2017103286-appb-000089
Figure PCTCN2017103286-appb-000090
Figure PCTCN2017103286-appb-000091
将关节角速度
Figure PCTCN2017103286-appb-000092
表示为冗余度向量(k5,k6,k7)的函数:
Figure PCTCN2017103286-appb-000093
将式(28)代入式(8)中,可以得到关节角度θ以冗余度向量(k5,k6,k7)为自变量的函数:
Figure PCTCN2017103286-appb-000094
其中,θ0是当前关节角度,Δt是采样步长。
将式(28)代入式(10-1)、将式(29)代入式(10-2)可以得到关节运动幅度最小以及机械臂受对应的齿轮间隙影响最小的方程分别为:
Figure PCTCN2017103286-appb-000095
Figure PCTCN2017103286-appb-000096
其中,Hi(θ(k5,k6,k7))是连杆变换矩阵0Ti(θ(k5,k6,k7))中第二行第四列对应的元素:
0Ti(θ(k5,k6,k7))=0T1(d11T22)…i-1Tii),(i=1,…,9)    (32)
其中,i-1Tii)是Denavit-Hartenberg矩阵:
Figure PCTCN2017103286-appb-000097
其中,di、αi和ai是Denavit-Hartenberg参数,其具体数值如表1所示。
将式(28)代入式(11-1)、将式(29)代入式(11-2)可以得到关节角速度限制以及关节角度限制的约束条件为:
Figure PCTCN2017103286-appb-000098
由式(33)可得:
Figure PCTCN2017103286-appb-000099
由式(34)可以进一步得到式(12)中的矩阵A和向量b如下:
Figure PCTCN2017103286-appb-000100
Figure PCTCN2017103286-appb-000101
从而,多目标优化问题可以转化为:
Figure PCTCN2017103286-appb-000102
由式(30)、(31)和(35)可以求得冗余度向量(k5,k6,k7)的最优值,将冗余度向量(k5,k6,k7)的最优值代入式(28)和式(29)即可得到冗余机械臂各关节在下一采样点的角速度和角度,从而得到冗余机械臂各关节的位置和速度。
本发明实施例二提供的冗余机械臂的控制方法,获取冗余机械臂末端在目标点的速度,根据冗余机械臂末端在目标点的速度将冗余机械臂的关节角、关节角速度和关节角加速度映射到冗余度空间,根据逆运动学方程确定冗余机械臂从当前点移动到目标点的运动轨迹对应的优化目标函数和约束条件,以冗余度空间向量为自变量建立运动轨迹对应的方程,通过辅助向量和单目标优化算法求解轨迹函数对应的方程,得到运动轨迹对应的冗余机械臂中各关节的位置和速度。本实施例通过采用上述技术方案,建立多目标约束优化问题的数学模块,可以为求解多目标优化问题提供理论基础,在得到满足设计目标的全局最优解的前提下,减少冗余机械臂多目标优化问题的搜索空间,避免多目标求解过程中维度爆炸问题的发生,简化冗余机械臂控制过程中所需的计算量,提高冗余机械臂的反应速度。
实施例三
本发明实施例三提供一种冗余机械臂的控制装置。该装置可由硬件和/或软件实现,一般集成在用于控制机器人的控制模块中,可通过执行冗余机械臂的控制方法实现对冗余机械臂的控制。图4所示为本实施例提供的冗余机械臂的控制装置的结构框图,如图4所示,该装置包括:
信息获取单元410,用于获取冗余机械臂所在的当前点信息和目标点信息;
轨迹单元420,与所述信息获取单元相连,用于根据所述当前点信息和所述目标点信息确定所述冗余机械臂从当前点移动到目标点的运动轨迹对应的轨迹函数;
冗余度处理单元430,与所述轨迹单元相连,用于以冗余度空间向量为自变量建立所述轨迹函数对应的方程;根据目标接近法求解所述轨迹函数对应的方程,得到所述运动轨迹对应的所述冗余机械臂中各关节的位置和速度。
本发明实施例三提供的冗余机械臂的控制装置,通过信息获取单元获取冗余机械臂的当前点信息和目标点信息,通过轨迹单元根据所获取的当前点信息和目标点信息确定冗余机械臂从当前点移动到目标点的运动轨迹对应的轨迹函数,通过冗余度处理单元以冗余度空间向量为自变量建立该轨迹函数对应的方程,通过目标接近法求解该方程以得到运动轨迹对应的冗余机械臂中各关节的位置和速度。本发明实施例通过采用上述技术方案,可以在得到满足设计目标的全局最优解的前提下,减少冗余机械臂多目标优化问题的搜索空间,避免多目标求解过程中维度爆炸问题的发生,简化冗余机械臂控制过程中所需的计算量,提高冗余机械臂的反应速度。
进一步地,所述信息获取单元410具体用于:获取所述冗余机械臂末端在所述目标点的速度;根据所述冗余机械臂末端在所述目标点的速度将所述冗余机械臂的关节角、关节角速度和关节角加速度映射到冗余度空间。
进一步地,所述获取所述冗余机械臂末端在所述当前点的速度包括:根据所述冗余机械臂末端在所述当前点的位姿和所述冗余机械臂末端在所述运动轨迹中的下一采样点的位姿确定所述冗余机械臂末端在所述下一采样点的速度。
进一步地,所述轨迹单元420具体用于根据逆运动学方程,确定所述冗余机械臂从当前点移动到目标点的运动轨迹对应的优化目标函数和约束条件。
进一步地,所述优化目标函数包括所述冗余机械臂的关节运动幅度最小或者所述冗余机械臂受对应的齿轮间隙影响最小;所述约束条件包括:将所述冗余机械臂的关节速度约束在预设的速度范围内或者将所述冗余机械臂的关节角度约束在预设的角度范围内。
进一步地,所述根据目标接近法求解所述轨迹函数对应的方程,得到所述运动轨迹对应的所述冗余机械臂中各关节的位置和速度包括:在冗余度空间中,根据优化目标函数、与优化目标对应的最小目标值、对应的约束条件和预设的加权系数,通过辅助向量和单目标优化算法求解所述轨迹函数对应的方程,得到所述运动轨迹对应的所述冗余机械臂中各关节的位置和速度。
进一步地,所述单目标优化算法包括:牛顿-欧拉算法、Nelder-Mead单纯形算法、内点算法、基因算法和/或Pattern Search算法。
本实施例提供的冗余机械臂的控制装置可执行本发明任意实施例提供的冗余机械臂的控制方法,具备执行冗余机械臂的控制方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明任意实施例所提供的冗余机械臂的控制方法。
注意,上述仅为本发明的较佳实施例及所运用技术原理。本领域技术人员会理解,本发明不限于这里所述的特定实施例,对本领域技术人员来说能够进 行各种明显的变化、重新调整和替代而不会脱离本发明的保护范围。因此,虽然通过以上实施例对本发明进行了较为详细的说明,但是本发明不仅仅限于以上实施例,在不脱离本发明构思的情况下,还可以包括更多其他等效实施例,而本发明的范围由所附的权利要求范围决定。

Claims (10)

  1. 一种冗余机械臂的控制方法,其特征在于,包括:
    获取冗余机械臂所在的当前点信息和目标点信息;
    根据所述当前点信息和所述目标点信息确定所述冗余机械臂从当前点移动到目标点的运动轨迹对应的轨迹函数;
    以冗余度空间向量为自变量建立所述轨迹函数对应的方程;
    根据目标接近法求解所述轨迹函数对应的方程,得到所述运动轨迹对应的所述冗余机械臂中各关节的位置和速度。
  2. 根据权利要求1所述的冗余机械臂的控制方法,其特征在于,所述获取冗余机械臂所在的当前点信息和目标点信息包括:
    获取所述冗余机械臂末端在所述目标点的速度;
    根据所述冗余机械臂末端在所述目标点的速度将所述冗余机械臂的关节角、关节角速度和关节角加速度映射到冗余度空间。
  3. 根据权利要求2所述的冗余机械臂的控制方法,其特征在于,所述获取所述冗余机械臂末端在所述当前点的速度包括:
    根据所述冗余机械臂末端在所述当前点的位姿和所述冗余机械臂末端在所述运动轨迹中的下一采样点的位姿确定所述冗余机械臂末端在所述下一采样点的速度。
  4. 根据权利要求1或2所述的冗余机械臂的控制方法,其特征在于,所述根据所述当前点信息和所述目标点信息确定所述冗余机械臂从当前点移动到目标点的运动轨迹对应的轨迹函数包括:
    根据逆运动学方程,确定所述冗余机械臂从当前点移动到目标点的运动轨迹对应的优化目标函数和约束条件。
  5. 根据权利要求4所述的冗余机械臂的控制方法,其特征在于,所述优化 目标函数包括所述冗余机械臂的关节运动幅度最小或者所述冗余机械臂受对应的齿轮间隙影响最小;所述约束条件包括:将所述冗余机械臂的关节速度约束在预设的速度范围内或者将所述冗余机械臂的关节角度约束在预设的角度范围内。
  6. 根据权利要求5所述的冗余机械臂的控制方法,其特征在于,所述根据目标接近法求解所述轨迹函数对应的方程,得到所述运动轨迹对应的所述冗余机械臂中各关节的位置和速度包括:
    在冗余度空间中,根据优化目标函数、与优化目标对应的最小目标值、对应的约束条件和预设的加权系数,通过辅助向量和单目标优化算法求解所述轨迹函数对应的方程,得到所述运动轨迹对应的所述冗余机械臂中各关节的位置和速度。
  7. 根据权利要求6所述的冗余机械臂的控制方法,其特征在于,所述单目标优化算法包括:牛顿-欧拉算法、Nelder-Mead单纯形算法、内点算法、基因算法和/或Pattern Search算法。
  8. 一种冗余机械臂的控制装置,其特征在于,包括:
    信息获取单元,用于获取冗余机械臂所在的当前点信息和目标点信息;
    轨迹单元,与所述信息获取单元相连,用于根据所述当前点信息和所述目标点信息确定所述冗余机械臂从当前点移动到目标点的运动轨迹对应的轨迹函数;
    冗余度处理单元,与所述轨迹单元相连,用于以冗余度空间向量为自变量建立所述轨迹函数对应的方程;根据目标接近法求解所述轨迹函数对应的方程,得到所述运动轨迹对应的所述冗余机械臂中各关节的位置和速度。
  9. 根据权利要求8所述的冗余机械臂的控制装置,其特征在于,所述信息 获取单元具体用于:获取所述冗余机械臂末端在所述当前点的速度;根据所述冗余机械臂末端在所述当前点的速度将所述冗余机械臂的关节角、关节角速度和关节角加速度映射到冗余度空间。
  10. 根据权利要求8或9所述的冗余机械臂的控制装置,其特征在于,所述轨迹单元具体用于根据逆运动学方程,确定所述冗余机械臂从当前点移动到目标点的运动轨迹对应的优化目标函数和约束条件。
PCT/CN2017/103286 2016-12-16 2017-09-25 冗余机械臂的控制方法及装置 Ceased WO2018107851A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611169869.4A CN106625666B (zh) 2016-12-16 2016-12-16 冗余机械臂的控制方法及装置
CN201611169869.4 2016-12-16

Publications (1)

Publication Number Publication Date
WO2018107851A1 true WO2018107851A1 (zh) 2018-06-21

Family

ID=58822194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103286 Ceased WO2018107851A1 (zh) 2016-12-16 2017-09-25 冗余机械臂的控制方法及装置

Country Status (2)

Country Link
CN (1) CN106625666B (zh)
WO (1) WO2018107851A1 (zh)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111300414A (zh) * 2020-03-06 2020-06-19 陕西理工大学 一种双准则的冗余机械臂自运动规划方法
CN111399514A (zh) * 2020-03-30 2020-07-10 浙江钱江机器人有限公司 一种机器人时间最优轨迹规划方法
CN112706163A (zh) * 2020-12-10 2021-04-27 中山大学 一种机械臂运动控制方法、装置、设备及介质
CN112914601A (zh) * 2021-01-19 2021-06-08 深圳市德力凯医疗设备股份有限公司 一种机械臂的避障方法、装置、存储介质及超声设备
CN113084803A (zh) * 2021-03-31 2021-07-09 信阳师范学院 一种基于多层结构的冗余度机械臂多任务控制方法
CN113276121A (zh) * 2021-05-31 2021-08-20 华南理工大学 一种基于二次规划的冗余度机械臂移动障碍物躲避方法
CN113843793A (zh) * 2021-09-21 2021-12-28 兰州大学 一种具有避障功能的移动冗余机械臂模型预测控制方法
CN113878578A (zh) * 2021-09-30 2022-01-04 上海景吾智能科技有限公司 适用于复合型机器人的动态自适应定位方法和系统
CN114211500A (zh) * 2021-12-31 2022-03-22 华南理工大学 一种自适应模糊神经网络的规划方法
CN114211492A (zh) * 2021-12-22 2022-03-22 武汉鼎元同立科技有限公司 一种基于模型的多自由度机械臂的最优轨迹规划方法
CN114227687A (zh) * 2021-12-28 2022-03-25 深圳市优必选科技股份有限公司 一种机器人控制方法、装置、终端设备及存储介质
CN114329986A (zh) * 2021-12-30 2022-04-12 华中科技大学 基于人体肌骨模型的冗余机械臂拟人运动学逆解求解方法
CN114637308A (zh) * 2022-03-11 2022-06-17 徐州威卡电子控制技术有限公司 一种凿岩台车推进梁姿态控制系统及控制方法
CN114670190A (zh) * 2022-03-08 2022-06-28 西北工业大学 一种基于解析数值混合法的冗余机械臂逆运动学方法
CN114734441A (zh) * 2022-04-15 2022-07-12 北京邮电大学 一种关节部分失效故障空间机械臂运动能力优化方法
CN115462908A (zh) * 2022-09-16 2022-12-13 哈尔滨工业大学 微创手术机器人的主操作手结构
CN115533920A (zh) * 2022-11-15 2022-12-30 山东理工大学 一种求解绳驱机械臂逆运动学的协同规划方法及系统、计算机存储介质
CN115648219A (zh) * 2022-11-15 2023-01-31 山东理工大学 一种绳驱机械臂变刚度规划方法及系统、计算机存储介质
WO2023024278A1 (zh) * 2021-08-24 2023-03-02 深圳市优必选科技股份有限公司 机器人关节位姿优化方法、机器人控制方法和机器人
CN116494230A (zh) * 2023-04-18 2023-07-28 浙江大学 一种抓取传送带上运动物体的机械臂轨迹规划方法及装置
CN116512247A (zh) * 2023-03-16 2023-08-01 人工智能与数字经济广东省实验室(广州) 一种冗余度机械臂运动规划方法、装置及存储介质
CN116551685A (zh) * 2023-05-17 2023-08-08 哈尔滨工业大学 一种基于采样的机械臂时间最优轨迹规划算法
CN116803625A (zh) * 2022-03-17 2023-09-26 腾讯科技(深圳)有限公司 机器人控制方法、装置、设备和存储介质
CN116985147A (zh) * 2023-09-27 2023-11-03 睿尔曼智能科技(北京)有限公司 机械臂逆运动学求解方法及装置
CN117961898A (zh) * 2024-02-05 2024-05-03 河北工业大学 一种基于目标路径的地轨式七轴机械臂多目标优化方法
CN119635670A (zh) * 2025-02-17 2025-03-18 杭州唯精医疗机器人有限公司 关节误差优化控制方法、控制器和微创机器人
CN119871450A (zh) * 2025-03-18 2025-04-25 南京特种电机厂有限公司 基于变频刹车电机机械臂的精准定位方法
CN119903732A (zh) * 2024-12-30 2025-04-29 中国航空综合技术研究所 获得指定运动轨迹的连杆机构布局的方法
CN120095826A (zh) * 2025-01-24 2025-06-06 青岛科技大学 基于高阶网络的多机械臂协同任务分配方法及系统
CN120095813A (zh) * 2025-03-10 2025-06-06 东莞理工学院 一种多自由度机械臂逆运动学实时求解方法及装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106625666B (zh) * 2016-12-16 2019-03-01 广州视源电子科技股份有限公司 冗余机械臂的控制方法及装置
JP6931457B2 (ja) 2017-07-14 2021-09-08 オムロン株式会社 モーション生成方法、モーション生成装置、システム及びコンピュータプログラム
CN107703756B (zh) * 2017-11-03 2021-03-02 广州视源电子科技股份有限公司 动力学模型参数辨识方法、装置、计算机设备及存储介质
CN108537404B (zh) * 2018-03-06 2021-10-22 中国人民解放军63920部队 一种地外天体探测采样区可采性评估方法、介质及设备
CN108638055B (zh) * 2018-04-11 2020-07-14 北京控制工程研究所 一种七自由度空间机械臂自主避障规划方法
CN111345894B (zh) * 2018-12-21 2022-08-02 上海微创医疗机器人(集团)股份有限公司 机械臂及手术机器人
CN110125942B (zh) * 2019-06-21 2022-06-10 上海工程技术大学 一种用于移动型蛇形机械臂的平面轨迹跟踪方法
CN113001537B (zh) * 2019-12-20 2022-08-02 深圳市优必选科技股份有限公司 机械臂控制方法、机械臂控制装置及终端设备
CN113378349B (zh) * 2021-03-25 2022-05-20 北京航空航天大学 S-r-s结构七自由度机械臂逆运动学解析解的数值稳定算法
CN116000911B (zh) * 2021-10-22 2024-09-20 瑞龙诺赋(上海)医疗科技有限公司 一种机械臂控制方法、装置以及机械臂
CN114800477B (zh) * 2022-05-25 2023-03-14 华东交通大学 基于最小流量的冗余液压机械臂运动规划方法
CN117301038A (zh) * 2022-06-22 2023-12-29 瑞龙诺赋(上海)医疗科技有限公司 机械臂的调整方法、装置、电子设备以及存储介质
CN119567249A (zh) * 2024-11-29 2025-03-07 北京长木谷医疗科技股份有限公司 一种基于多目标优化的机械臂控制方法、装置及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271508A (ja) * 1985-05-27 1986-12-01 Daikin Ind Ltd 多関節ロボツトの動作制御装置
JP2012130999A (ja) * 2010-12-22 2012-07-12 Kawasaki Heavy Ind Ltd 制御装置およびロボットアームの制御方法
CN103147577A (zh) * 2013-02-27 2013-06-12 中联重科股份有限公司 多关节类机械臂架的控制方法、设备、系统及工程机械
CN103984230A (zh) * 2014-05-09 2014-08-13 大连大学 一种空间机械臂基座零扰动优化控制方法
US20140358283A1 (en) * 2011-09-21 2014-12-04 Seiko Epson Corporation Robot and robot control method
CN104526695A (zh) * 2014-12-01 2015-04-22 北京邮电大学 一种最小化基座碰撞扰动的空间机械臂轨迹规划方法
CN106625666A (zh) * 2016-12-16 2017-05-10 广州视源电子科技股份有限公司 冗余机械臂的控制方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2569412B2 (ja) * 1991-04-30 1997-01-08 工業技術院長 冗長ロボットマニピュレータのためのコンプライアンス制御法
JP3379540B2 (ja) * 1991-10-31 2003-02-24 株式会社安川電機 冗長アームロボットのアーム制御方式
EP2699392B1 (en) * 2011-04-19 2015-10-21 ABB Research Ltd. An industrial robot having a kinematically redundant arm and a method for controlling the robot
CN103009389B (zh) * 2012-11-30 2015-07-08 北京控制工程研究所 一种冗余空间机械臂在轨抓捕的轨迹规划方法
CN104331547B (zh) * 2014-10-23 2017-05-10 北京控制工程研究所 一种基于可操作性的空间机械臂结构参数优化方法
CN105183009B (zh) * 2015-10-15 2017-11-21 哈尔滨工程大学 一种冗余机械臂轨迹控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61271508A (ja) * 1985-05-27 1986-12-01 Daikin Ind Ltd 多関節ロボツトの動作制御装置
JP2012130999A (ja) * 2010-12-22 2012-07-12 Kawasaki Heavy Ind Ltd 制御装置およびロボットアームの制御方法
US20140358283A1 (en) * 2011-09-21 2014-12-04 Seiko Epson Corporation Robot and robot control method
CN103147577A (zh) * 2013-02-27 2013-06-12 中联重科股份有限公司 多关节类机械臂架的控制方法、设备、系统及工程机械
CN103984230A (zh) * 2014-05-09 2014-08-13 大连大学 一种空间机械臂基座零扰动优化控制方法
CN104526695A (zh) * 2014-12-01 2015-04-22 北京邮电大学 一种最小化基座碰撞扰动的空间机械臂轨迹规划方法
CN106625666A (zh) * 2016-12-16 2017-05-10 广州视源电子科技股份有限公司 冗余机械臂的控制方法及装置

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111300414B (zh) * 2020-03-06 2022-07-15 陕西理工大学 一种双准则的冗余机械臂自运动规划方法
CN111300414A (zh) * 2020-03-06 2020-06-19 陕西理工大学 一种双准则的冗余机械臂自运动规划方法
CN111399514A (zh) * 2020-03-30 2020-07-10 浙江钱江机器人有限公司 一种机器人时间最优轨迹规划方法
CN112706163A (zh) * 2020-12-10 2021-04-27 中山大学 一种机械臂运动控制方法、装置、设备及介质
CN112706163B (zh) * 2020-12-10 2022-03-04 中山大学 一种机械臂运动控制方法、装置、设备及介质
CN112914601A (zh) * 2021-01-19 2021-06-08 深圳市德力凯医疗设备股份有限公司 一种机械臂的避障方法、装置、存储介质及超声设备
CN112914601B (zh) * 2021-01-19 2024-04-02 深圳市德力凯医疗设备股份有限公司 一种机械臂的避障方法、装置、存储介质及超声设备
CN113084803A (zh) * 2021-03-31 2021-07-09 信阳师范学院 一种基于多层结构的冗余度机械臂多任务控制方法
CN113276121A (zh) * 2021-05-31 2021-08-20 华南理工大学 一种基于二次规划的冗余度机械臂移动障碍物躲避方法
CN113276121B (zh) * 2021-05-31 2022-08-09 华南理工大学 一种基于二次规划的冗余度机械臂移动障碍物躲避方法
WO2023024278A1 (zh) * 2021-08-24 2023-03-02 深圳市优必选科技股份有限公司 机器人关节位姿优化方法、机器人控制方法和机器人
CN113843793A (zh) * 2021-09-21 2021-12-28 兰州大学 一种具有避障功能的移动冗余机械臂模型预测控制方法
CN113878578A (zh) * 2021-09-30 2022-01-04 上海景吾智能科技有限公司 适用于复合型机器人的动态自适应定位方法和系统
CN113878578B (zh) * 2021-09-30 2024-01-16 上海景吾智能科技有限公司 适用于复合型机器人的动态自适应定位方法和系统
CN114211492A (zh) * 2021-12-22 2022-03-22 武汉鼎元同立科技有限公司 一种基于模型的多自由度机械臂的最优轨迹规划方法
CN114211492B (zh) * 2021-12-22 2023-07-07 武汉鼎元同立科技有限公司 一种基于模型的多自由度机械臂的最优轨迹规划方法
CN114227687B (zh) * 2021-12-28 2023-08-15 深圳市优必选科技股份有限公司 一种机器人控制方法、装置、终端设备及存储介质
CN114227687A (zh) * 2021-12-28 2022-03-25 深圳市优必选科技股份有限公司 一种机器人控制方法、装置、终端设备及存储介质
CN114329986A (zh) * 2021-12-30 2022-04-12 华中科技大学 基于人体肌骨模型的冗余机械臂拟人运动学逆解求解方法
CN114211500A (zh) * 2021-12-31 2022-03-22 华南理工大学 一种自适应模糊神经网络的规划方法
CN114211500B (zh) * 2021-12-31 2023-05-30 华南理工大学 一种自适应模糊神经网络的规划方法
CN114670190B (zh) * 2022-03-08 2023-10-24 西北工业大学 一种基于解析数值混合法的冗余机械臂逆运动学方法
CN114670190A (zh) * 2022-03-08 2022-06-28 西北工业大学 一种基于解析数值混合法的冗余机械臂逆运动学方法
CN114637308A (zh) * 2022-03-11 2022-06-17 徐州威卡电子控制技术有限公司 一种凿岩台车推进梁姿态控制系统及控制方法
CN116803625A (zh) * 2022-03-17 2023-09-26 腾讯科技(深圳)有限公司 机器人控制方法、装置、设备和存储介质
CN114734441A (zh) * 2022-04-15 2022-07-12 北京邮电大学 一种关节部分失效故障空间机械臂运动能力优化方法
CN114734441B (zh) * 2022-04-15 2023-11-24 北京邮电大学 一种关节部分失效故障空间机械臂运动能力优化方法
CN115462908A (zh) * 2022-09-16 2022-12-13 哈尔滨工业大学 微创手术机器人的主操作手结构
CN115648219A (zh) * 2022-11-15 2023-01-31 山东理工大学 一种绳驱机械臂变刚度规划方法及系统、计算机存储介质
CN115533920A (zh) * 2022-11-15 2022-12-30 山东理工大学 一种求解绳驱机械臂逆运动学的协同规划方法及系统、计算机存储介质
CN116512247A (zh) * 2023-03-16 2023-08-01 人工智能与数字经济广东省实验室(广州) 一种冗余度机械臂运动规划方法、装置及存储介质
CN116494230A (zh) * 2023-04-18 2023-07-28 浙江大学 一种抓取传送带上运动物体的机械臂轨迹规划方法及装置
CN116551685A (zh) * 2023-05-17 2023-08-08 哈尔滨工业大学 一种基于采样的机械臂时间最优轨迹规划算法
CN116985147A (zh) * 2023-09-27 2023-11-03 睿尔曼智能科技(北京)有限公司 机械臂逆运动学求解方法及装置
CN116985147B (zh) * 2023-09-27 2023-12-22 睿尔曼智能科技(北京)有限公司 机械臂逆运动学求解方法及装置
CN117961898A (zh) * 2024-02-05 2024-05-03 河北工业大学 一种基于目标路径的地轨式七轴机械臂多目标优化方法
CN119903732A (zh) * 2024-12-30 2025-04-29 中国航空综合技术研究所 获得指定运动轨迹的连杆机构布局的方法
CN120095826A (zh) * 2025-01-24 2025-06-06 青岛科技大学 基于高阶网络的多机械臂协同任务分配方法及系统
CN119635670A (zh) * 2025-02-17 2025-03-18 杭州唯精医疗机器人有限公司 关节误差优化控制方法、控制器和微创机器人
CN119635670B (zh) * 2025-02-17 2025-07-22 杭州康基唯精医疗机器人有限公司 关节误差优化控制方法、控制器和微创机器人
CN120095813A (zh) * 2025-03-10 2025-06-06 东莞理工学院 一种多自由度机械臂逆运动学实时求解方法及装置
CN119871450A (zh) * 2025-03-18 2025-04-25 南京特种电机厂有限公司 基于变频刹车电机机械臂的精准定位方法
CN119871450B (zh) * 2025-03-18 2025-10-31 南京特种电机厂有限公司 基于变频刹车电机机械臂的精准定位方法

Also Published As

Publication number Publication date
CN106625666A (zh) 2017-05-10
CN106625666B (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
WO2018107851A1 (zh) 冗余机械臂的控制方法及装置
US11845186B2 (en) Inverse kinematics solving method for redundant robot and redundant robot and computer readable storage medium using the same
Jin et al. Robot manipulator control using neural networks: A survey
Ananthanarayanan et al. Real-time Inverse Kinematics of (2n+ 1) DOF hyper-redundant manipulator arm via a combined numerical and analytical approach
Wang et al. Deep-learning damped least squares method for inverse kinematics of redundant robots
JP5261495B2 (ja) 重み行列を用いたリアルタイム自己衝突および障害物回避
CN110370256B (zh) 机器人及其路径规划方法、装置和控制器
CN110275436A (zh) 一种多单臂机械手的rbf神经网络自适应控制方法
WO2017132905A1 (zh) 控制运动系统的方法和装置
CN111975771A (zh) 一种基于偏差重定义神经网络的机械臂运动规划方法
Chembuly et al. An efficient approach for inverse kinematics and redundancy resolution of spatial redundant robots for cluttered environment
Zhao et al. A learning-based multiscale modelling approach to real-time serial manipulator kinematics simulation
Crenganis et al. Inverse kinematics of a 7 DOF manipulator using adaptive neuro-fuzzy inference systems
CN116945147B (zh) 一种机械臂恒力控制过程中的奇异点规避方法及装置
CN114274145B (zh) 一种腹腔镜手术中多机械臂的实时避障方法
CN113910236B (zh) 移动双臂机器人运动规划方法、系统、设备及介质
Gumus et al. A novel architecture for artificial neural networks to solve the inverse kinematics problem in robotics
Banga et al. Modeling and simulation of robotic arm movement using soft computing
KR101334356B1 (ko) 로봇 제어 장치
Fen et al. Path planning of 6-DOF humanoid manipulator based on improved ant colony algorithm
CN110543919B (zh) 一种机器人定位控制方法、终端设备及存储介质
Zafar et al. Inverse kinematic modelling of a 3-dof robotic manipulator using hybrid deep learning models
CN106875008A (zh) 一种机械手运动学逆解方法及系统
Al-Faiz et al. Human arm inverse kinematic solution based geometric relations and optimization algorithm
Bhardwaj et al. An unsupervised neural network approach for inverse kinematics solution of manipulator following kalman filter based trajectory

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17881861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22.10.2019)

122 Ep: pct application non-entry in european phase

Ref document number: 17881861

Country of ref document: EP

Kind code of ref document: A1