[go: up one dir, main page]

WO2018190508A1 - 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법 - Google Patents

노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법 Download PDF

Info

Publication number
WO2018190508A1
WO2018190508A1 PCT/KR2018/002267 KR2018002267W WO2018190508A1 WO 2018190508 A1 WO2018190508 A1 WO 2018190508A1 KR 2018002267 W KR2018002267 W KR 2018002267W WO 2018190508 A1 WO2018190508 A1 WO 2018190508A1
Authority
WO
WIPO (PCT)
Prior art keywords
error
remaining capacity
battery
noise variable
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/KR2018/002267
Other languages
English (en)
French (fr)
Inventor
임보미
조원태
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Priority to US16/482,949 priority Critical patent/US11340298B2/en
Priority to EP18785067.2A priority patent/EP3564693B1/en
Priority to PL18785067.2T priority patent/PL3564693T3/pl
Priority to JP2019553890A priority patent/JP7047205B2/ja
Publication of WO2018190508A1 publication Critical patent/WO2018190508A1/ko
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/374Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC] with means for correcting the measurement for temperature or ageing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Definitions

  • the present invention relates to an apparatus and method for calculating the remaining capacity of a battery by reflecting noise.
  • the present invention relates to an apparatus and a method for calculating the remaining capacity of a battery in consideration of noise generated in measuring a value used for calculating the remaining capacity of the battery.
  • a high output secondary battery using a high energy density nonaqueous electrolyte has been developed, and a plurality of high output secondary batteries can be connected in series to be used for driving a motor such as an electric vehicle, which requires a large power.
  • the secondary battery of a large capacity is constituted.
  • one large capacity secondary battery (hereinafter, referred to as a battery module for convenience of description throughout) is composed of a plurality of secondary batteries (hereinafter, referred to as unit cells for convenience of explanation throughout) in series.
  • the HEV battery module detects the voltage, current, temperature, and the like of the battery, estimates the remaining capacity (SOC) of the battery by calculation, and performs SOC control so that the fuel consumption efficiency of the vehicle is best.
  • the SOC level at this time is generally in the range of 50% to 70%, for example, in order to balance the power assist by motor driving at the time of acceleration and the energy recovery (regenerative braking) at the time of deceleration.
  • overcharge control is performed.
  • the control is over discharged. To be close.
  • the SOC may be controlled to perform charging and discharging for the entire range of the energy storage system from 0% to 100%.
  • the SOC has been calculated by an external error value arbitrarily set initially.
  • an external error value arbitrarily set is not suitable for noise in various environments, and thus an error occurs in SOC calculation.
  • the present invention provides an apparatus and method for accurately calculating the remaining capacity of a battery by setting an external error value suitable for noise in various environments.
  • a method of calculating a remaining capacity (SOC) of a battery in real time may include: measuring a battery parameter to measure current, voltage, temperature, and degree of degradation of the battery; And a real time remaining capacity calculating step of calculating a remaining capacity in real time, wherein the real time remaining capacity calculating step comprises calculating a remaining capacity of a battery in real time using an extended Kalman filter below. It can be configured to include a calculation step.
  • k order of steps
  • u additional input value
  • f (x, u, o) formula for calculating remaining capacity
  • the calculating of the real time remaining capacity may include a noise variable setting step of setting a noise variable W set by an external error.
  • the noise variable setting step may include an external error setting step of setting an error occurring when measuring each battery parameter, a temporary noise variable setting step of setting a temporary noise variable to be used as a noise variable of the extended Kalman filter, and And an error calculating step of calculating an error between the remaining capacity calculated based on the external error and the temporary noise variable and the remaining capacity in the absence of an external error.
  • the error calculation step may be repeated by changing the external error and the temporary noise to various values.
  • the noise parameter setting step may further include a final noise detection step of detecting a final noise variable optimized for the external error, wherein the final noise variable detection step includes a predetermined error calculated in the error calculation step.
  • the temporary noise variable coming into the range of can be detected as the final noise variable.
  • An apparatus for measuring the remaining capacity of a battery in real time the parameter measuring unit for measuring the current, voltage, temperature, degree of degradation of the battery, the current, voltage, temperature of the battery measured by the parameter measuring unit And a real time remaining capacity calculating unit configured to receive a degeneration degree and calculate a remaining capacity of the battery in real time, wherein the real time remaining capacity calculating unit is configured to calculate a remaining capacity of the battery in real time using an extended Kalman filter below. It can be configured to include.
  • k order of steps
  • u additional input value
  • f (x, u, o) formula for calculating remaining capacity
  • the real-time residual capacity calculator may further include a noise variable setting unit configured to set a noise variable by an external error and input the noise variable to the calculator.
  • the noise variable setting unit may include an external error setting module configured to set an external error by receiving an error generated when measuring each battery parameter from a user, and input a temporary noise variable to be used as a noise variable of the Kalman extension filter from a user. And a temporary noise variable setting module for receiving and setting a temporary noise variable, and an error calculating module for calculating an error of the remaining capacity calculated based on the external error and the temporary noise variable and the remaining capacity in the absence of an external error. have.
  • the noise variable setting unit may further include a final noise detection module configured to detect a final noise variable optimized for the external error, wherein the final noise detection module includes a range in which an error calculated by the error calculation module is predetermined. Temporary noise variables coming into can be detected as final noise variables.
  • accurate residual battery capacity can be calculated by setting an external error value suitable for noise of various external environments.
  • FIG. 1 is a flowchart of a method of calculating a battery remaining capacity in real time according to an exemplary embodiment of the present invention.
  • 3 is an error graph of a noise variable of a voltage model.
  • 6 is an error graph for degradation and noise variables.
  • FIG. 7 is a graph illustrating an error of a voltage model and a current model according to the presence or absence of an external error.
  • FIG. 8 is an overall configuration diagram of a real-time battery remaining capacity calculation apparatus according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components are not limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • the terminology used herein is for the purpose of describing particular example embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise.
  • the remaining capacity of the battery may mean a state of charge of the battery, that is, a state of charge (SOC).
  • SOC state of charge
  • a method of calculating the remaining capacity of a battery in real time according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method of calculating a battery remaining capacity in real time according to an exemplary embodiment of the present invention.
  • a method of calculating a remaining capacity of a battery in real time may include measuring battery current, voltage, temperature, degree of degradation, and the like, based on the measured battery parameter. It may be configured to include a real-time remaining capacity calculation step (S200) for calculating the remaining capacity of the battery in real time.
  • S200 real-time remaining capacity calculation step
  • the battery parameter measuring step S100 is a step of measuring current battery state values, measured in a battery management system (BMS) mounted in the battery, or by a separate device, current, voltage, Current battery state values such as temperature, degree of degradation, etc. can be measured.
  • BMS battery management system
  • the real time remaining capacity calculating step S200 may include a real time remaining capacity calculating step S220 of calculating a remaining capacity of a battery in real time using an extended Kalman filter.
  • the extended Kalman filter may be based on Equation 1 below.
  • k order of steps
  • u additional input value
  • f (x, u, o) formula for calculating remaining capacity
  • the extended Kalman filter can be roughly divided into a prediction step and a correction step.
  • the predicting step is a step of calculating an expected state when a user input is input according to a state estimated at a previous time
  • the correcting step is a step of calculating an accurate state based on a previously estimated state and an actual measurement state. Can be.
  • the extended Kalman filter may be a method of reducing an error by repeatedly performing prediction-> correction-> prediction-> correction.
  • f (x, u, 0) which is a formula for calculating the remaining capacity in the Kalman filter, may be calculated based on Equation 2 below.
  • the real-time remaining capacity calculation step S200 may further include a noise variable setting step S210 for setting a noise variable W set by a noise value of an external process.
  • the noise variable setting step S210 may include an external error setting step S211 of setting an external error that inevitably occurs when measuring each battery parameter, and the noise variable W of the extended Kalman filter.
  • the error calculation step S213 may be repeatedly performed by changing the external error and the temporary noise variable to various values.
  • the error calculation step (S213) it is possible to represent the error value in a time-error graph.
  • the value with the smallest noise variable of the voltage model may be advantageous.
  • the noise parameter setting step S210 may further include a final noise variable detection step S214 for detecting a final noise variable optimized for the external error.
  • the final noise variable may be a temporary noise variable in which the error calculated in the error calculating step S213 falls within a predetermined range.
  • 3 to 6 are graphs of errors for noise parameters of the models of voltage, temperature, current, and degradation degree, respectively.
  • Figure 3 is a graph of the error of the noise model of the voltage model, when there is a voltage error.
  • the error change rate of the remaining capacity may vary by up to 2% when the noise parameter of the voltage model is increased when there is an external voltage error.
  • the error according to the noise variable of the current model is a maximum of 1%
  • the final noise variable is set as low as possible to the noise variable of the voltage model, and to the noise variable of the current model It may be the right way to let the weight be set high.
  • Figure 4 is a graph of the error of the noise model of the voltage model when there is a temperature error.
  • the error change rate of the remaining capacity is close to zero, and the noise parameter of the temperature model is not large. It can be confirmed that.
  • Figure 5 is a graph of the error of the noise model of the voltage model when there is a current error.
  • the noise variable of the voltage model when external current noise is present, it may be desirable to set the noise variable of the voltage model to a small value, to set a weight corresponding to the voltage model to a large value, and to set a weight corresponding to the current model to a low value.
  • FIG. 6 is a graph showing an error generated according to the degree of degradation and the weight corresponding to the current model and the voltage model.
  • the graph above FIG. 6 is an error graph showing an error generated according to a weight corresponding to the current model and the voltage model when the degree of degradation is 5%.
  • FIG. 7 is a graph showing the error of the voltage model and the current model according to the presence or absence of the external error.
  • the noise parameter of the voltage model is set as small as possible. It may be desirable to set a weight corresponding to the model to be large.
  • FIG. 8 is an overall configuration diagram of a real-time battery remaining capacity calculation apparatus according to an embodiment of the present invention.
  • the apparatus for calculating a real time battery remaining capacity includes a parameter measuring unit 100 measuring a current, voltage, temperature, and degree of degradation of a battery, and a current and voltage of a battery measured by the parameter measuring unit 100. It may be configured to include a real-time remaining capacity calculation unit 200 for receiving the temperature, the degree of degradation and calculates the remaining capacity of the battery in real time.
  • the parameter measuring unit 100 although expressed in a separate configuration in the present invention, may be measured in a battery management system that is basically mounted on the battery.
  • the real-time remaining capacity calculator 200 may be configured to include a calculation unit 210 for calculating the remaining capacity of the battery in real time using an extended Kalman filter.
  • the extended Kalman filter is the same as the extended Kalman filter used in the method for calculating the remaining capacity of the battery in real time according to an embodiment of the present invention, a detailed description thereof will be omitted.
  • the real-time remaining capacity calculation unit 200 may be configured to further include a noise variable setting unit 220 for setting the noise variable by the external error and input to the calculation unit.
  • the noise variable setting unit 220 an external error setting module 221 for setting an external error by receiving an error generated when measuring each battery parameter from a user, the user of the Kalman extension filter Temporary noise variable setting module 222 which receives a temporary noise variable to be used as a noise variable and sets a temporary noise variable, and the residual capacity calculated based on the external error and the temporary noise variable and the residual capacity in the absence of external error It may be configured to include an error calculation module 223 for calculating the.
  • the external error setting module 221 performs an external error setting step of the battery remaining capacity calculation method in real time according to an embodiment of the present invention
  • the temporary noise variable setting module 222 is implemented of the present invention
  • a temporary noise parameter setting step of a battery remaining capacity calculation method may be performed in real time
  • the error calculation module 223 may perform an error calculation step of a battery remaining capacity calculation method in real time according to an embodiment of the present invention. Can be.
  • the noise variable setting unit 220 may further include a final noise variable detection module 224 for detecting a final noise variable optimized for the external error.
  • the final noise variable detection module 224 may detect a temporary noise variable in which the error calculated by the error calculation module 223 falls within a predetermined range, as the final noise variable.
  • the calculator 210 may calculate the real-time remaining capacity by substituting the Kalman filter of Equation 1 into a value set by the noise variable setting unit 220.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명의 실시 예에 따른 실시간으로 배터리의 잔존 용량(SOC)을 산출하는 방법은, 배터리의 전류, 전압, 온도, 퇴화도를 측정하는 배터리 파라미터 측정 단계, 상기 측정된 배터리 파라미터를 기반으로 배터리의 잔존 용량을 실시간으로 산출하는 실시간 잔존 용량 산출 단계를 포함하여 구성되며, 상기 실시간 잔존 용량 산출 단계는, 확장 칼만 필터(Extended Kalman Filter)를 이용하여 배터리의 잔존 용량을 실시간으로 산출할 수 있다.

Description

노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법
본 발명은 노이즈를 반영하여 배터리의 잔존용량을 산출하는 장치 및 방법에 관한 것이다.
보다 구체적으로는, 배터리의 잔존용량 산출에 사용되는 값을 측정하는데 발생하는 노이즈를 고려하여 배터리의 잔존용량을 산출하는 장치 및 방법에 관한 것이다.
최근들어 고에너지 밀도의 비수전해해액을 이용한 고출력 이차 전지가 개발되고 있으며, 대전력을 필요로 하는 기기 예컨대, 전기 자동차 등의 모터 구동에 사용될 수 있도록 상기한 고출력 이차 전지를 복수개 직렬로 연결하여 대용량의 이차 전지를 구성하게 된다.
이와같이 하나의 대용량 이차 전지(이하 명세서 전반에 걸쳐 설명의 편의상 전지모듈이라 칭한다)는 통상 직렬로 연결되는 복수개의 이차 전지(이하 명세서 전반에 걸쳐 설명의 편의상 단위전지라 칭한다)로 이루어진다.
상기한 전지모듈 특히, HEV용 이차 전지 모듈의 경우 수 개에서 많게는 수십 개의 단위전지가 충전과 방전을 번갈아가면서 수행하게 됨에 따라 이러한 충방전 등을 제어하여 전지 모듈이 적정한 동작 상태로 유지하도록 관리할 필요성이 있다.
이를 위해, HEV용 전지 모듈은 전지의 전압, 전류, 온도 등을 검출하여 배터리의 잔존용량(SOC)을 연산에 의해 추정하고, 차량의 연료 소비 효율이 가장 좋아지도록 SOC 제어를 행하고 있다. 또, 이 때의 SOC 레벨은, 가속시의 모터 구동에 의한 파워 어시스트 및 감속시의 에너지 회수(회생 제동)를 밸런스 좋게 동작시키기 위해서, 일반적으로, 예를 들면 SOC가 50%부터 70%의 범위 내가 되도록, SOC가 저하하여 예를 들면 50%가 된 경우에는 충전 과다의 제어를 행하고, 반대로, SOC가 상승하여 예를 들면 70%가 된 경우에는 방전 과다의 제어를 행하여, SOC를 제어 중심에 근접하도록 하는 것이다.
한편, 에너지 저장 시스템의 경우에는, SOC가 0%부터 100%까지 에너지 저장 시스템의 전체 범위에 대해서 충전 및 방전을 수행하도록 제어할 수 있다.
이러한 SOC 제어를 정확히 행하기 위해서는, 충방전을 행하고 있는 이차 전지의 SOC를 정확히 추정하는 것이 필요해진다.
종래에는, 이러한 SOC를 추정하는데 있어서, 초기에 임의로 설정된 외부 오차 값에 의해서 SOC가 산출되어 왔다.
이와 같이 초기에 임의로 설정된 외부 오차 값은, 다양한 환경의 노이즈에 적합하지 않아 SOC 산출에 오차가 발생하는 문제점이 존재하였다.
본 발명에서는 다양한 환경의 노이즈에 적합한 외부 오차 값을 설정하여 배터리의 잔존용량을 정확하게 산출하는 장치 및 방법을 제공한다.
본 발명의 실시 예에 따른 실시간으로 배터리의 잔존 용량(SOC)을 산출하는 방법은, 배터리의 전류, 전압, 온도, 퇴화도를 측정하는 배터리 파라미터 측정 단계, 상기 측정된 배터리 파라미터를 기반으로 배터리의 잔존 용량을 실시간으로 산출하는 실시간 잔존 용량 산출 단계를 포함하여 구성되며, 상기 실시간 잔존 용량 산출 단계는, 아래 확장 칼만 필터(Extended Kalman Filter)를 이용하여 배터리의 잔존 용량을 실시간으로 산출하는 실시간 잔존 용량 연산 단계를 포함하여 구성될 수 있다.
(확장칼만필터)
Figure PCTKR2018002267-appb-I000001
(P : 오차 공분산, H : 변환 계수, K : 칼만 게인, Q : 참 값에 대한 표준 편차
W : 시스템 노이즈, x : 상태 변수(SOC), z : 관측 값, V : 관측 참값과의 오차
k : 단계의 차수, u : 추가 입력 값, f(x,u,o) : 잔존용량을 산출하는 수식,
I : 단위행렬)
상기 실시간 잔존 용량 산출 단계는, 외부 오차에 의해 설정되는 노이즈 변수(W)를 설정하는 노이즈 변수 설정 단계를 포함하여 구성될 수 있다.
한편, 상기 노이즈 변수 설정 단계는, 각각의 배터리 파라미터를 측정할 때 발생하는 오차를 설정하는 외부 오차 설정 단계, 상기 확장 칼만 필터의 노이즈 변수로 사용될 임시 노이즈 변수를 설정하는 임시 노이즈 변수 설정 단계, 상기 외부 오차와 상기 임시 노이즈 변수를 기반으로 산출된 잔존 용량과 외부 오차가 없는 상태의 잔존 용량과의 오차를 산출하는 오차 산출 단계를 포함하여 구성될 수 있다.
한편, 상기 노이즈 변수 설정 단계는, 상기 외부 오차 및 상기 임시 노이즈를 여러 값으로 변화시켜, 상기 오차 산출 단계를 반복 수행할 수 있다.
한편, 상기 노이즈 변수 설정 단계는, 상기 외부 오차에 최적화된 최종 노이즈 변수를 검출하는 최종 노이즈 검출 단계를 더 포함하여 구성되며, 상기 최종 노이즈 변수 검출 단계는, 상기 오차 산출 단계에서 산출된 오차가 소정의 범위 내로 들어오는 임시 노이즈 변수를 최종 노이즈 변수로 검출할 수 있다.
본 발명의 실시 예에 따른 실시간으로 배터리의 잔존 용량을 측정하는 장치는, 배터리의 전류, 전압, 온도, 퇴화도를 측정하는 파라미터 측정부, 상기 파라미터 측정부에서 측정된 배터리의 전류, 전압, 온도, 퇴화도를 입력 받아 실시간으로 배터리의 잔존 용량을 산출하는 실시간 잔존 용량 산출부를 포함하여 구성되며, 상기 실시간 잔존 용량 산출부는, 아래 확장 칼만 필터를 이용하여 실시간으로 배터리의 잔존 용량을 산출하는 연산부를 포함하여 구성될 수 있다.
(확장칼만필터)
Figure PCTKR2018002267-appb-I000002
(P : 오차 공분산, H : 변환 계수, K : 칼만 게인, Q : 참 값에 대한 표준 편차
W : 시스템 노이즈, x : 상태 변수(SOC), z : 관측 값, V : 관측 참값과의 오차
k : 단계의 차수, u : 추가 입력 값, f(x,u,o) : 잔존용량을 산출하는 수식,
I : 단위행렬)
한편, 상기 실시간 잔존 용량 산출부는, 외부 오차에 의해 노이즈 변수를 설정하여 상기 연산부로 입력하는 노이즈 변수 설정부를 더 포함하여 구성될 수 있다.
한편, 상기 노이즈 변수 설정부는, 사용자로부터 각각의 배터리 파라미터를 측정할 때 발생하는 오차를 입력 받아 외부 오차를 설정하는 외부 오차 설정 모듈, 사용자로부터 상기 칼만 확장 필터의 노이즈 변수로 사용될 임시 노이즈 변수를 입력받아 임시 노이즈 변수를 설정하는 임시 노이즈 변수 설정 모듈, 상기 외부 오차와 임시 노이즈 변수를 기반으로 산출된 잔존 용량과 외부 오차가 없는 상태의 잔존 용량의 오차를 산출하는 오차 산출 모듈을 포함하여 구성될 수 있다.
한편, 상기 노이즈 변수 설정부는, 상기 외부 오차에 최적화된 최종 노이즈 변수를 검출하는 최종 노이즈 검출 모듈을 더 포함하여 구성되며, 상기 최종 노이즈 검출 모듈은, 상기 오차 산출 모듈에서 산출된 오차가 소정의 범위 내로 들어오는 임시 노이즈 변수를 최종 노이즈 변수로 검출할 수 있다.
본 발명은, 다양한 외부 환경의 노이즈에 적합한 외부 오차 값을 설정함으로써 정확한 배터리의 잔존용량을 산출할 수 있다.
도 1은 본 발명의 실시 예에 따른 실시간으로 배터리 잔존 용량을 산출하는 방법의 순서도이다.
도 2는, 상기 오차 산출 단계에서 전압 모델의 노이즈 변수에 대한 오차를 시간-오차 그래프로 표현된 예이다.
도 3은 전압 모델의 노이즈 변수에 대한 오차 그래프이다.
도 4는 온도 모델의 노이즈 변수에 대한 오차 그래프이다.
도 5는, 전류 모델의 노이즈 변수에 대한 오차 그래프이다.
도 6은 퇴화도와 노이즈 변수에 대한 오차 그래프이다.
도 7은 외부 오차의 유무에 따른 전압 모델 및 전류 모델의 오차를 나타낸 그래프이다.
도 8은 본 발명의 실시 예에 따른 실시간 배터리 잔존 용량 산출 장치의 전체적인 구성도이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면부호를 붙였다.
제1, 제2 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예컨대, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다. 본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
명세서 전체에서, 어떤 부분이 다른 부분과 “연결”되어 있다고 할 때, 이는 “직접적으로 연결”되어 있는 경우뿐 아니라, 그 중간에 다른 소자를 사이에 두고 “전기적으로 연결”되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 “포함”한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 “~(하는) 단계” 또는 “~의 단계”는 “~를 위한 단계”를 의미하지 않는다.
본 발명에서 사용되는 용어는 본 발명에서의 기능을 고려하면서 가능한 현재 널리 사용되는 일반적인 용어들을 선택하였으나, 이는 당 분야에 종사하는 기술자의 의도 또는 판례, 새로운 기술의 출현 등에 따라 달라질 수 있다. 또한, 특정한 경우는 출원인이 임의로 선정한 용어도 있으며, 이 경우 해당되는 발명의 설명 부분에서 상세히 그 의미를 기재할 것이다. 따라서 본 발명에서 사용되는 용어는 단순한 용어의 명칭이 아닌, 그 용어가 가지는 의미와 본 발명의 전반에 걸친 내용을 토대로 정의되어야 한다.
한편, 본 발명에서 배터리의 잔존 용량이라 함은, 배터리의 충전 상태, 즉 SOC(State of Charge)를 의미할 수 있다.
1. 본 발명의 실시 예에 따른 실시간으로 배터리의 잔존 용량을 산출하는 방법.
도 1은 본 발명의 실시 예에 따른 실시간으로 배터리 잔존 용량을 산출하는 방법의 순서도이다.
이하에서는, 도 1을 참조하여 본 발명의 실시 예에 따른 실시간으로 배터리 잔존 용량을 산출하는 방법을 설명한다.
본 발명의 실시 예에 따르면, 실시간으로 배터리의 잔존 용량을 산출하는 방법은, 배터리의 전류, 전압, 온도, 퇴화도 등을 측정하는 배터리 파라미터 측정 단계(S100), 상기 측정된 배터리 파라미터를 기반으로 배터리의 잔존 용량을 실시간으로 산출하는 실시간 잔존 용량 산출 단계(S200)를 포함하여 구성될 수 있다.
보다 구체적으로, 상기 배터리 파라미터 측정 단계(S100)는, 현재의 배터리 상태 값들을 측정하는 단계로, 배터리에 탑재되는 배터리 관리 시스템(BMS)에서 측정되거나, 별도의 장치에 의해 배터리의 전류, 전압, 온도, 퇴화도 등과 같은 현재의 배터리 상태 값들이 측정될 수 있다.
한편, 상기 실시간 잔존 용량 산출 단계(S200)는, 확장 칼만 필터(Extended Kalman Filter)를 이용하여 배터리의 잔존 용량을 실시간으로 산출하는 실시간 잔존 용량 연산 단계(S220)를 포함할 수 있다.
상기 확장 칼만 필터는 아래 수식 1을 기반으로 할 수 있다.
(수식1)
Figure PCTKR2018002267-appb-I000003
(P : 오차 공분산, H : 변환 계수, K : 칼만 게인, Q : 참 값에 대한 표준 편차
W : 시스템 노이즈, x : 상태 변수(SOC), z : 관측 값, V : 관측 참값과의 오차
k : 단계의 차수, u : 추가 입력 값, f(x,u,o) : 잔존용량을 산출하는 수식,
I : 단위행렬)
보다 구체적으로는, 확장 칼만 필터는 크게 예측 단계와 보정 단계로 나눌 수 있다.
상기 예측 단계에서는 이전 시간에 추정된 상태에 따라, 사용자의 입력이 들어왔을 경우, 예상되는 상태를 계산하는 단계이고, 상기 보정 단계는 앞서 예상한 상태와 실제 측정 상태를 토대로 정확한 상태를 계산하는 단계일 수 있다.
즉, 확장 칼만 필터는, 예측->보정->예측->보정을 반복적으로 수행하여 오차를 감소시키는 방법일 수 있다.
한편, 상기 칼만 필터에서 잔존 용량을 산출하는 수식인 f(x,u,0)는 아래 수식 2를 기반으로 하여 산출 될 수 있다.
(수식2)
Figure PCTKR2018002267-appb-I000004
한편, 상기 실시간 잔존 용량 산출 단계(S200)는, 외부 프로세스의 노이즈 값에 의해 설정 되는 노이즈 변수(W)를 설정하는 노이즈 변수 설정 단계(S210)를 더 포함하여 구성될 수 있다.
보다 구체적으로, 노이즈 변수 설정 단계(S210)는, 배터리 파라미터 각각을 측정할 때, 필연적으로 발생할 수 밖에 없는 외부 오차를 설정하는 외부 오차 설정 단계(S211), 상기 확장 칼만 필터의 노이즈 변수(W)로 사용될 임시 노이즈 변수를 설정하는 임시 노이즈 변수 설정 단계(S212), 상기 외부 오차와 상기 임시 노이즈 변수를 기반으로 산출된 잔존 용량과 외부 오차가 없는 상태의 잔존 용량과의 오차를 산출하는 오차 산출 단계(S213)를 포함하여 구성될 수 있다.
한편, 상기 노이즈 변수 설정 단계(S210)는, 상기 외부 오차 및 상기 임시 노이즈 변수를 여러 값으로 변화시켜, 상기 오차 산출 단계(S213)를 반복적으로 수행할 수 있다.
한편, 상기 오차 산출 단계(S213)는, 오차 값을 시간-오차 그래프로 표현할 수 있다.
도 2는, 상기 오차 산출 단계에서 전압 모델의 노이즈 변수에 대한 오차를 시간-오차 그래프로 표현된 예이다.
도 2를 살펴보면 전압 모델의 노이즈 변수가 클수록, 배터리의 잔존 용량이 실제 값으로 수렴하기 위해서 오랜 시간이 걸리는 것을 확인할 수 있다.
따라서, 이런 경우, 전압 모델의 노이즈 변수가 가장 작은 값이 유리할 수 있다.
한편, 상기 노이즈 변수 설정 단계(S210)는, 상기 외부 오차에 최적화된 최종 노이즈 변수를 검출하는 최종 노이즈 변수 검출 단계(S214)를 더 포함하여 구성될 수 있다.
보다 구체적으로, 최종 노이즈 변수는, 상기 오차 산출 단계(S213)에서 산출된 오차가 소정의 범위 내로 들어오는 임시 노이즈 변수일 수 있다.
이하에서는 구체적인 실험 데이터를 기반으로, 본 발명의 실시 예에 따른 최적화된 노이즈 변수 설정을 설명한다.
도 3 내지 도 6은 전압, 온도, 전류, 퇴화도 각각의 모델의 노이즈 변수에 대한 오차 그래프이다.
먼저 도 3은 전압 오차가 있을때, 전압 모델의 노이즈 변수에 대한 오차 그래프이다.
도 3의 위에 그래프를 살펴보면, 외부 오차가 0.02V인 경우, 전압 모델의 노이즈 변수가 클수록 오차가 적게 발생하는 것을 확인 할 수 있다.
한편, 도 3의 아래 그래프를 살펴보면 잔존 용량의 에러 변화율은 외부 전압 오차가 있는 경우에는 전압 모델의 노이즈 변수를 크게 하는 경우 오차가 최대 2%정도 차이가 날 수 있다.
한편, 전류 모델의 노이즈 변수에 따른 오차는 최대 1%로, 외부 전압의 오차가 있는 경우, 최종 노이즈 변수는, 전압 모델의 노이즈 변수에 대한 가중치는 최대한 낮게 설정되고, 전류 모델의 노이즈 변수에 대한 가중치가 높게 설정되도록 하는 것이 올바른 방법일 수 있다.
한편, 도 4는, 온도 오차가 있을때, 전압 모델의 노이즈 변수에 대한 오차 그래프이다.
도 4의 위에 그래프를 살펴보면, 온도 모델의 노이즈 변수가 클수록 오차가 작은 것으로 나타나지만, 실제의 셀의 충/방전을 고려하게되면 잔존 용량의 에러 변화율은 0에 가까워서, 온도 모델의 노이즈 변수는 크지 않은 것으로 확인할 수 있다.
한편, 도 5는, 전류 오차가 있을때, 전압 모델의 노이즈 변수에 대한 오차 그래프이다.
먼저 도 5의 위에 그래프를 살펴보면 전압 모델의 노이즈 변수가 작을수록 잔존용량 에러가 적게 나타나는 것을 확인할 수 있다.
한편, 도 5의 아래 그래프를 살펴보면, 전압 모델의 노이즈 변수를 최대한 작게 하는 경우, 잔존 용량 에러 변화율이 최대 2%인데 비해, 전류 모델의 노이즈 변수에 대한 잔존 용량 에러 변화율은 9%이상인 것을 확인 할 수 있다.
따라서, 외부의 전류 노이즈가 존재하는 경우, 전압 모델의 노이즈 변수는 작은 값으로 설정하고, 전압 모델에 대응되는 가중치는 크게 설정하고, 전류 모델에 대응되는 가중치는 낮게 설정하는 것이 바람직할 수 있다.
한편, 도 6은 퇴화도 및 전류 모델과 전압 모델에 대응되는 가중치에 따라 발생하는 오차를 나타낸 그래프이다.
먼저 도 6의 위에 그래프는 퇴화도가 5%일 때 전류 모델과 전압 모델에 대응되는 가중치에 따라 발생하는 오차를 나타낸 오차 그래프이다.
이때는 전류 모델의 가중치 및 전압 모델 가중치에 상관 없이 유사한 값을 가지는 것을 확인할 수 있다.
그러나 도 6의 아래 그래프를 살펴보면 퇴화도가 10%일때는 전압 모델에 대응되는 가중치가 큰 경우가, 전류 모델에 대응되는 가중치가 큰 경우 보다 오차가 적게 나는 것을 확인할 수 있다.
따라서, 퇴화도가 진행 될수록 전압 모델에 대응되는 가중치를 높게 설정하는 것이 바람직할 수 있다.
도 7은 상기 외부 오차의 유무에 따른 전압 모델 및 전류 모델의 오차를 나타낸 그래프이다.
종합해보면, 배터리의 전압, 전류, 온도, 퇴화도 등의 파라미터를 측정하는 프로세스에서 오차가 발생할 수 밖에 없고, 이를 보다 정확한 값으로 보정하기 위해서는 전압 모델의 노이즈 변수를 되도록 작은 값으로 설정하고, 전압 모델에 대응되는 가중치를 크게 설정하는 것이 바람직할 수 있다.
2. 본 발명의 실시 예에 따른 실시간 배터리 잔존 용량 산출 장치.
도 8은 본 발명의 실시 예에 따른 실시간 배터리 잔존 용량 산출 장치의 전체적인 구성도이다.
이하에서는 도 8을 참조하여 본 발명의 실시 예에 따른 실시간 배터리 잔존 용량 산출 장치를 설명한다.
본 발명의 실시 예에 따른 실시간 배터리 잔존 용량 산출 장치는, 배터리의 전류, 전압, 온도, 퇴화도를 측정하는 파라미터 측정부(100), 상기 파라미터 측정부(100)에서 측정된 배터리의 전류, 전압, 온도, 퇴화도를 입력 받아 실시간으로 배터리의 잔존 용량을 산출하는 실시간 잔존 용량 산출부(200)를 포함하여 구성될 수 있다.
보다 구체적으로, 상기 파라미터 측정부(100)는, 본 발명에서는 별도의 구성으로 표현하였지만, 배터리의 기본적으로 탑재되는 배터리 관리 시스템에서 측정될 수도 있다.
한편, 상기 실시간 잔존 용량 산출부(200)는, 확장 칼만 필터를 이용하여 실시간으로 배터리의 잔존 용량을 산출하는 연산부(210)를 포함하여 구성될 수 있다.
한편, 상기 확장 칼만 필터는 상기 본 발명의 실시 예에 따른 실시간으로 배터리의 잔존 용량을 산출하는 방법에서 사용되는 확장 칼만 필터와 동일하므로, 자세한 설명은 생략 하도록 한다.
한편, 상기 실시간 잔존 용량 산출부(200)는, 외부 오차에 의해 노이즈 변수를 설정하여 상기 연산부로 입력하는 노이즈 변수 설정부(220)를 더 포함하여 구성될 수 있다.
보다 구체적으로, 상기 노이즈 변수 설정부(220)는, 사용자로부터 각각의 배터리 파라미터를 측정할 때 발생하는 오차를 입력 받아 외부 오차를 설정하는 외부 오차 설정 모듈(221), 사용자로부터 상기 칼만 확장 필터의 노이즈 변수로 사용될 임시 노이즈 변수를 입력받아 임시 노이즈 변수를 설정하는 임시 노이즈 변수 설정 모듈(222), 상기 외부 오차와 임시 노이즈 변수를 기반으로 산출된 잔존 용량과 외부 오차가 없는 상태의 잔존 용량의 오차를 산출하는 오차 산출 모듈(223)을 포함하여 구성될 수 있다.
한편, 상기 외부 오차 설정 모듈(221)은 상기 본 발명의 실시 예에 따른 실시간으로 배터리 잔존 용량 산출 방법의 외부 오차 설정 단계를 수행하고, 상기 임시 노이즈 변수 설정 모듈(222)은 상기 본 발명의 실시 예에 따른 실시간으로 배터리 잔존 용량 산출 방법의 임시 노이즈 변수 설정 단계를 수행하고, 상기 오차 산출 모듈(223)은 상기 본 발명의 실시 예에 따른 실시간으로 배터리 잔존 용량 산출 방법의 오차 산출 단계를 수행할 수 있다.
한편, 상기 노이즈 변수 설정부(220)는, 상기 외부 오차에 최적화된 최종 노이즈 변수를 검출하는 최종 노이즈 변수 검출 모듈(224)을 더 포함하여 구성될 수 있다.
보다 구체적으로, 상기 최종 노이즈 변수 검출 모듈(224)은, 상기 오차 산출 모듈(223)에서 산출된 오차가 소정의 범위 내로 들어오는 임시 노이즈 변수를 최종 노이즈 변수로 검출할 수 있다.
한편, 상기 연산부(210)는, 상기 노이즈 변수 설정부(220)에서 설정된 값을 상기 수식 1의 칼만 필터에 대입하여 실시간 잔존 용량을 연산할 수 있다.
한편, 본 발명의 기술적 사상은 상기 실시 예에 따라 구체적으로 기술되었으나, 상기 실시 예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주지해야 한다. 또한, 본 발명의 기술분야에서 당업자는 본 발명의 기술 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.

Claims (9)

  1. 실시간으로 배터리의 잔존 용량(SOC)을 산출하는 방법에 있어서,
    배터리의 전류, 전압, 온도, 퇴화도를 측정하는 배터리 파라미터 측정 단계;
    상기 측정된 배터리 파라미터를 기반으로 배터리의 잔존 용량을 실시간으로 산출하는 실시간 잔존 용량 산출 단계;
    를 포함하여 구성되며,
    상기 실시간 잔존 용량 산출 단계는,
    아래 확장 칼만 필터(Extended Kalman Filter)를 이용하여 배터리의 잔존 용량을 실시간으로 산출하는 실시간 잔존 용량 연산 단계를 포함하여 구성되는 것을 특징으로 하는 실시간 배터리 잔존 용량 산출 방법.
    (확장 칼만 필터)
    Figure PCTKR2018002267-appb-I000005
    (P : 오차 공분산, H : 변환 계수, K : 칼만 게인, Q : 참 값에 대한 표준 편차
    W : 시스템 노이즈, x : 상태 변수(SOC), z : 관측 값, V : 관측 참값과의 오차
    k : 단계의 차수, u : 추가 입력 값, f(x,u,o) : 잔존용량을 산출하는 수식,
    I : 단위행렬)
  2. 청구항 1에 있어서,
    상기 실시간 잔존 용량 산출 단계는,
    상기 확장 칼만 필터에서, 외부 오차에 의해 설정되는 노이즈 변수(W)를 설정하는 노이즈 변수 설정 단계를 더 포함하여 구성되는 것을 특징으로 하는 실시간 배터리 잔존 용량 산출 방법.
  3. 청구항 2에 있어서,
    상기 노이즈 변수 설정 단계는,
    각각의 배터리 파라미터를 측정할 때 발생하는 오차를 설정하는 외부 오차 설정 단계;
    상기 확장 칼만 필터의 노이즈 변수로 사용될 임시 노이즈 변수를 설정하는 임시 노이즈 변수 설정 단계;
    상기 외부 오차와 상기 임시 노이즈 변수가 반영되어 산출된 잔존 용량과 외부 오차가 반영되지 않고 산출된 잔존 용량과의 오차를 산출하는 오차 산출 단계;
    를 포함하여 구성되는 것을 특징으로 하는 실시간 배터리 잔존 용량 산출 방법.
  4. 청구항 3에 있어서,
    상기 노이즈 변수 설정 단계는,
    상기 외부 오차 및 상기 임시 노이즈를 여러 값으로 변화시켜, 상기 오차 산출 단계를 반복 수행하는 것을 특징으로 하는 실시간 배터리 잔존 용량 산출 방법.
  5. 청구항 4에 있어서,
    상기 노이즈 변수 설정 단계는,
    상기 외부 오차에 최적화된 최종 노이즈 변수를 검출하는 최종 노이즈 변수 검출 단계를 더 포함하여 구성되며
    상기 최종 노이즈 변수 검출 단계는,
    상기 오차 산출 단계에서 산출된 오차가 소정의 범위 내로 들어오는 임시 노이즈 변수를 최종 노이즈 변수로 설정하는 것을 특징으로 하는 실시간 배터리 잔존 용량 산출 방법.
  6. 배터리의 전류, 전압, 온도, 퇴화도를 측정하는 파라미터 측정부;
    상기 파라미터 측정부에서 측정된 배터리의 전류, 전압, 온도, 퇴화도를 입력 받아 실시간으로 배터리의 잔존 용량을 산출하는 실시간 잔존 용량 산출부;
    를 포함하여 구성되며,
    상기 실시간 잔존 용량 산출부는,
    아래 확장 칼만 필터를 이용하여 실시간으로 배터리의 잔존 용량을 산출하는 연산부를 포함하여 구성되는 것을 특징으로 하는 실시간 배터리 잔존 용량 산출 장치.
    (확장 칼만 필터)
    Figure PCTKR2018002267-appb-I000006
    (P : 오차 공분산, H : 변환 계수, K : 칼만 게인, Q : 참 값에 대한 표준 편차
    W : 시스템 노이즈, x : 상태 변수(SOC), z : 관측 값, V : 관측 참값과의 오차
    k : 단계의 차수, u : 추가 입력 값, f(x,u,o) : 잔존용량을 산출하는 수식,
    I : 단위행렬)
  7. 청구항 6에 있어서,
    상기 실시간 잔존 용량 산출부는,
    상기 칼만 확장 필터에서 외부 오차에 의한 노이즈 변수(W)를 설정하여 상기 연산부로 입력하는 노이즈 변수 설정부를 더 포함하여 구성되는 것을 특징으로 하는 실시간 배터리 잔존 용량 산출 장치.
  8. 청구항 7에 있어서,
    상기 노이즈 변수 설정부는,
    사용자로부터 각각의 배터리 파라미터를 측정할 때 발생하는 오차를 입력 받아 외부 오차를 설정하는 외부 오차 설정 모듈;
    사용자로부터 상기 칼만 확장 필터의 노이즈 변수로 사용될 임시 노이즈 변수를 입력받아 임시 노이즈 변수를 설정하는 임시 노이즈 변수 설정 모듈;
    상기 외부 오차와 임시 노이즈 변수를 기반으로 산출된 잔존 용량과 외부 오차가 없는 상태의 잔존 용량의 오차를 산출하는 오차 산출 모듈;
    을 포함하여 구성되는 것을 특징으로 하는 실시간 배터리 잔존 용량 산출 장치.
  9. 청구항 8에 있어서,
    상기 노이즈 변수 설정부는,
    상기 외부 오차에 최적화된 최종 노이즈 변수를 검출하는 최종 노이즈 검출 모듈을 더 포함하여 구성되며,
    상기 최종 노이즈 검출 모듈은,
    상기 오차 산출 모듈에서 산출된 오차가 소정의 범위 내로 들어오는 임시 노이즈 변수를 최종 노이즈 변수로 검출하는 것을 특징으로 하는 실시간 배터리 잔존 용량 산출 장치.
PCT/KR2018/002267 2017-04-12 2018-02-23 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법 Ceased WO2018190508A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/482,949 US11340298B2 (en) 2017-04-12 2018-02-23 Apparatus and method for calculating state of charge of battery by reflecting noise
EP18785067.2A EP3564693B1 (en) 2017-04-12 2018-02-23 Method and device for calculating a state of charge of a battery in real time
PL18785067.2T PL3564693T3 (pl) 2017-04-12 2018-02-23 Sposób i urządzenie do obliczania stanu naładowania akumulatora w czasie rzeczywistym
JP2019553890A JP7047205B2 (ja) 2017-04-12 2018-02-23 ノイズを反映したバッテリーの残存容量の算出装置及び方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170047385A KR102179677B1 (ko) 2017-04-12 2017-04-12 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법
KR10-2017-0047385 2017-04-12

Publications (1)

Publication Number Publication Date
WO2018190508A1 true WO2018190508A1 (ko) 2018-10-18

Family

ID=63793232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/002267 Ceased WO2018190508A1 (ko) 2017-04-12 2018-02-23 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법

Country Status (6)

Country Link
US (1) US11340298B2 (ko)
EP (1) EP3564693B1 (ko)
JP (1) JP7047205B2 (ko)
KR (1) KR102179677B1 (ko)
PL (1) PL3564693T3 (ko)
WO (1) WO2018190508A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109669131A (zh) * 2018-12-30 2019-04-23 浙江零跑科技有限公司 一种工况环境下动力电池soc估算方法
CN109839599A (zh) * 2018-11-29 2019-06-04 西安科技大学 基于二阶ekf算法的锂离子电池soc估计方法
CN109900937A (zh) * 2019-04-10 2019-06-18 河南科技大学 一种具有温度补偿功能的锂电池电荷状态估算方法
CN112034366A (zh) * 2020-08-25 2020-12-04 惠州市蓝微电子有限公司 一种soc动态补偿方法及电子系统
CN112271317A (zh) * 2020-09-11 2021-01-26 天津力神电池股份有限公司 一种调控批量电芯soc的方法
EP3839532A4 (en) * 2019-02-15 2021-11-24 LG Chem, Ltd. DEVICE AND PROCEDURE FOR ESTIMATING STATE OF CHARGE
US11255917B2 (en) 2019-06-17 2022-02-22 Volvo Car Corporation Method and system for improving battery capacity estimations

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102101912B1 (ko) * 2017-02-17 2020-04-17 주식회사 엘지화학 에너지 저장장치 충전상태 추정방법
CN110710050B (zh) * 2017-06-08 2023-02-17 松下知识产权经营株式会社 蓄电系统、管理装置
WO2019049571A1 (ja) 2017-09-11 2019-03-14 パナソニックIpマネジメント株式会社 蓄電システム、管理装置
KR102458526B1 (ko) * 2018-02-07 2022-10-25 주식회사 엘지에너지솔루션 배터리의 동작 상태에 따라 soc를 추정하는 장치 및 방법
CN109061537B (zh) * 2018-08-23 2019-07-16 重庆大学 基于观测器的电动车辆锂离子电池传感器故障诊断方法
KR102465373B1 (ko) 2019-01-23 2022-11-08 주식회사 엘지에너지솔루션 배터리 관리 장치, 배터리 관리 방법 및 배터리팩
KR102809114B1 (ko) 2019-10-25 2025-05-15 주식회사 엘지에너지솔루션 배터리의 soc를 추정하기 위한 장치, 그것을 포함하는 전기 차량 및 그 방법
KR102572652B1 (ko) * 2020-09-11 2023-08-31 삼성에스디아이 주식회사 배터리의 충전상태를 추정하는 방법
CN112269133B (zh) * 2020-10-22 2021-09-21 合肥工业大学 一种基于预充电路模型参数识别的soc估计方法
EP4016098B1 (de) * 2020-12-18 2025-04-16 HOPPECKE Systemtechnik GmbH Verfahren und vorrichtung zur robusten online-zustandsbestimmung von grossen batteriespeichersystemen

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804698B1 (ko) * 2006-06-26 2008-02-18 삼성에스디아이 주식회사 배터리 soc 추정 방법 및 이를 이용하는 배터리 관리시스템 및 구동 방법
JP2010060384A (ja) * 2008-09-02 2010-03-18 Toyota Central R&D Labs Inc 二次電池の状態推定装置
KR20140053592A (ko) * 2012-10-26 2014-05-08 주식회사 엘지화학 배터리 잔존 용량 추정 장치 및 방법
KR101529515B1 (ko) * 2014-06-12 2015-06-17 국방과학연구소 Mmae-ekf를 이용한 배터리의 soc 추정 방법 및 그 장치
KR101630411B1 (ko) * 2013-10-22 2016-06-14 주식회사 엘지화학 배터리 팩 관리 장치 및 이를 포함하는 배터리 팩

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135075A (ja) 2008-12-02 2010-06-17 Calsonic Kansei Corp 組電池の温度推定方法及び装置
JP5307113B2 (ja) 2010-12-20 2013-10-02 古河電気工業株式会社 満充電検知装置および満充電検知方法
KR101486470B1 (ko) 2012-03-16 2015-01-26 주식회사 엘지화학 배터리 상태 추정 장치 및 방법
KR101399345B1 (ko) 2012-11-27 2014-05-27 에스케이씨앤씨 주식회사 배터리 잔여랑을 추정하는 방법
WO2015056964A1 (ko) 2013-10-14 2015-04-23 주식회사 엘지화학 하이브리드 이차 전지의 상태 추정 장치 및 그 방법
KR101632351B1 (ko) * 2013-10-14 2016-06-21 주식회사 엘지화학 하이브리드 이차 전지의 상태 추정 장치 및 그 방법
CN106062579B (zh) * 2014-03-03 2019-03-12 松下知识产权经营株式会社 电池状态估计装置以及电池状态估计方法
CN104242393A (zh) * 2014-09-12 2014-12-24 安徽启光能源科技研究院有限公司 基于动态soc估算系统的电池管理系统
WO2016059869A1 (ja) * 2014-10-17 2016-04-21 株式会社 東芝 二次電池の充電状態推定装置及びその充電状態推定方法
CN106291375A (zh) 2016-07-28 2017-01-04 河南许继仪表有限公司 一种基于电池老化的soc估算方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804698B1 (ko) * 2006-06-26 2008-02-18 삼성에스디아이 주식회사 배터리 soc 추정 방법 및 이를 이용하는 배터리 관리시스템 및 구동 방법
JP2010060384A (ja) * 2008-09-02 2010-03-18 Toyota Central R&D Labs Inc 二次電池の状態推定装置
KR20140053592A (ko) * 2012-10-26 2014-05-08 주식회사 엘지화학 배터리 잔존 용량 추정 장치 및 방법
KR101630411B1 (ko) * 2013-10-22 2016-06-14 주식회사 엘지화학 배터리 팩 관리 장치 및 이를 포함하는 배터리 팩
KR101529515B1 (ko) * 2014-06-12 2015-06-17 국방과학연구소 Mmae-ekf를 이용한 배터리의 soc 추정 방법 및 그 장치

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109839599A (zh) * 2018-11-29 2019-06-04 西安科技大学 基于二阶ekf算法的锂离子电池soc估计方法
CN109839599B (zh) * 2018-11-29 2021-06-25 西安科技大学 基于二阶ekf算法的锂离子电池soc估计方法
CN109669131B (zh) * 2018-12-30 2021-03-26 浙江零跑科技有限公司 一种工况环境下动力电池soc估算方法
CN109669131A (zh) * 2018-12-30 2019-04-23 浙江零跑科技有限公司 一种工况环境下动力电池soc估算方法
JP2021532370A (ja) * 2019-02-15 2021-11-25 エルジー・ケム・リミテッド 充電状態推定装置及び方法
EP3839532A4 (en) * 2019-02-15 2021-11-24 LG Chem, Ltd. DEVICE AND PROCEDURE FOR ESTIMATING STATE OF CHARGE
US11391781B2 (en) 2019-02-15 2022-07-19 Lg Energy Solution, Ltd. SOC estimating apparatus and method
JP7172014B2 (ja) 2019-02-15 2022-11-16 エルジー エナジー ソリューション リミテッド 充電状態推定装置及び方法
CN109900937B (zh) * 2019-04-10 2020-12-08 河南科技大学 一种具有温度补偿功能的锂电池电荷状态估算方法
CN109900937A (zh) * 2019-04-10 2019-06-18 河南科技大学 一种具有温度补偿功能的锂电池电荷状态估算方法
US11255917B2 (en) 2019-06-17 2022-02-22 Volvo Car Corporation Method and system for improving battery capacity estimations
CN112034366A (zh) * 2020-08-25 2020-12-04 惠州市蓝微电子有限公司 一种soc动态补偿方法及电子系统
CN112034366B (zh) * 2020-08-25 2023-07-14 惠州市蓝微电子有限公司 一种soc动态补偿方法及电子系统
CN112271317A (zh) * 2020-09-11 2021-01-26 天津力神电池股份有限公司 一种调控批量电芯soc的方法
CN112271317B (zh) * 2020-09-11 2022-09-06 天津力神电池股份有限公司 一种调控批量电芯soc的方法

Also Published As

Publication number Publication date
EP3564693B1 (en) 2023-08-02
KR20180115124A (ko) 2018-10-22
JP2020515859A (ja) 2020-05-28
KR102179677B1 (ko) 2020-11-17
US11340298B2 (en) 2022-05-24
US20190346511A1 (en) 2019-11-14
EP3564693A4 (en) 2020-01-22
PL3564693T3 (pl) 2023-10-09
EP3564693A1 (en) 2019-11-06
JP7047205B2 (ja) 2022-04-05

Similar Documents

Publication Publication Date Title
WO2018190508A1 (ko) 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법
WO2021006566A1 (ko) 배터리 셀 진단 장치 및 방법
WO2022055080A1 (ko) 배터리의 충전상태를 추정하는 방법
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2012060597A2 (ko) 배터리의 교환 시기 통보 장치 및 방법
WO2019050279A1 (ko) 배터리 재사용 수명 진단 방법
WO2017111187A1 (ko) 배터리 랙 간 전압 밸런싱 장치 및 방법
WO2019088746A1 (ko) 배터리 soc 추정 장치 및 방법
WO2022019703A1 (ko) 배터리를 진단하기 위한 장치 및 그 방법
WO2019078478A1 (ko) 배터리 저항 추정 장치 및 방법
WO2021230533A1 (ko) 배터리를 진단하기 위한 장치 및 그 방법
WO2021125674A1 (ko) 배터리 진단 장치 및 방법
WO2018131874A1 (ko) 에너지 절약 및 빠른 셀 밸런싱이 가능한 충전 제어 장치 및 방법
WO2025100861A1 (ko) 배터리 진단 장치 및 이를 이용한 배터리 진단 방법
WO2024072092A1 (ko) 배터리의 퇴화 상태를 진단하기 위한 시스템 및 방법
WO2023075163A1 (ko) 배터리 장치, 배터리 관리 시스템 및 진단 방법
WO2022085950A1 (ko) 배터리 장치 및 저항 상태 추정 방법
WO2022145831A1 (ko) 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 전기 차량
WO2021040306A1 (ko) 배터리 soh 예측 방법 및 이를 적용한 배터리 팩
WO2025143349A1 (ko) 범용 배터리 관리 방법 및 시스템
WO2024136015A1 (ko) 배터리의 내부 단락 진단 방법 및 그 방법을 제공하는 배터리 시스템
WO2019074220A1 (ko) 배터리의 용량 추정 장치 및 방법, 이를 구비하는 배터리 관리 장치 및 방법
WO2025058276A1 (ko) 배터리 진단 장치 및 이의 동작 방법
WO2025147166A1 (ko) 배터리 진단 장치 및 그의 동작 방법
WO2025178356A1 (ko) 배터리 용량 추정 장치 및 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18785067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018785067

Country of ref document: EP

Effective date: 20190802

ENP Entry into the national phase

Ref document number: 2019553890

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE