[go: up one dir, main page]

WO2018180206A1 - 細胞画像評価装置および方法並びにプログラム - Google Patents

細胞画像評価装置および方法並びにプログラム Download PDF

Info

Publication number
WO2018180206A1
WO2018180206A1 PCT/JP2018/008085 JP2018008085W WO2018180206A1 WO 2018180206 A1 WO2018180206 A1 WO 2018180206A1 JP 2018008085 W JP2018008085 W JP 2018008085W WO 2018180206 A1 WO2018180206 A1 WO 2018180206A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
cell
evaluation
captured image
captured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2018/008085
Other languages
English (en)
French (fr)
Inventor
兼太 松原
隆史 涌井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2019509060A priority Critical patent/JP6785947B2/ja
Priority to KR1020197024431A priority patent/KR102261700B1/ko
Priority to EP18777272.8A priority patent/EP3605086B1/en
Publication of WO2018180206A1 publication Critical patent/WO2018180206A1/ja
Priority to US16/543,301 priority patent/US11756190B2/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/4833Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T1/00General purpose image data processing
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection

Definitions

  • the present invention relates to a cell image evaluation apparatus, method, and program for evaluating a state of a cell included in a photographed image using a photographed image obtained by photographing the cell.
  • Pluripotent stem cells such as ES (Embryonic Stem) cells and iPS (Induced uri Pluripotent Stem) cells have the ability to differentiate into cells of various tissues and can be applied in regenerative medicine, drug development, and disease elucidation It is attracting attention as something.
  • pluripotent stem cells such as ES cells and iPS cells or differentiation-induced cells are imaged with a microscope and the like, and the differentiation state of the cells is evaluated by capturing the characteristics of the images.
  • each observation area in the well is scanned by moving a stage on which a well plate or the like is moved with respect to the imaging optical system, and an image for each observation area is taken, and then the observation area
  • a method for stitching together images has been proposed.
  • the focus position is not necessarily optimal in all observation areas, and autofocusing is not always performed.
  • An error may occur in the control, and a captured image of a part of the observation area may become a blurred image.
  • the amount of illumination light may fluctuate due to voltage fluctuations applied to the light source in the microscope apparatus, and the captured image may become a dark image.
  • Patent Document 1 when an image of a digital microscope slide is divided into a plurality of regions and the quality of each region is evaluated, only the divided images having appropriate brightness or contrast are evaluated, and the score of the entire slide is calculated. It has been proposed to do. However, if such a divided image that does not have appropriate brightness or contrast is not evaluated at all, the information of the divided image is completely lost, and the accuracy of the evaluation of the entire slide may be lowered. is there.
  • the present invention provides a cell image evaluation apparatus, method, and program capable of performing more accurate and reliable evaluation even if a captured image of each observation region in a container is deteriorated.
  • the purpose is to provide.
  • the cell image evaluation apparatus includes an image evaluation unit that evaluates a state of a cell included in a captured image based on a captured image obtained by capturing the inside of a container in which cells are stored, and the captured image is deteriorated.
  • a deterioration determination unit that determines whether or not the image is present, and the image evaluation unit changes the evaluation method of the captured image according to the determination result of the deterioration determination unit.
  • the image evaluation unit evaluates the captured image by an evaluation method that is relatively resistant to deterioration
  • the captured image may be evaluated by an evaluation method that is relatively weak against deterioration.
  • the image evaluation unit uses the feature amount indicating the state of the cell included in the captured image when it is determined that the captured image is not deteriorated.
  • the evaluation may be performed using the image feature amount.
  • the feature amount indicating the cell state includes the feature amount of each cell state, the feature amount of the nucleolus contained in the cell, and the feature amount of white streak
  • at least one of a feature amount of a nucleus contained in a cell and an NC ratio (Nucleocytoplasmic ratio) of the cell may be included.
  • the deterioration determination unit may determine whether or not the photographed image is blurred.
  • the deterioration determination unit can include a blur discriminator that discriminates whether or not the captured image is blurred, and the blur discriminator is generated by machine learning. May be.
  • the blur discriminator is configured so that the photographed image is based on at least one of the luminance dispersion of the photographed image, the contrast, and the set of the minimum value and the maximum value. It may be determined whether or not it is blurred.
  • the deterioration determination unit includes an area discriminator that determines whether the captured image is an image obtained by imaging a cell area or an image obtained by imaging a culture medium area. Even if it is determined by the region discriminator that the captured image is an image of a cell region, and when the captured image is determined to be blurred by the blur discriminator, it is determined that the captured image is deteriorated. Good.
  • the deterioration determination unit may determine whether or not the captured image is an image that has deteriorated due to a change in the amount of illumination light.
  • the deterioration determination unit includes a light amount variation deterioration determiner that determines whether or not the photographed image is an image deteriorated due to the light amount variation of illumination light.
  • the light quantity fluctuation deterioration discriminator may be generated by machine learning.
  • the light quantity fluctuation deterioration determination unit may change the light quantity of the photographed image based on at least one of the average luminance of the photographed image and the set of the minimum value and the maximum value. It may be determined whether or not the image is deteriorated by the above.
  • the image evaluation unit may calculate the evaluation result for the container by integrating the evaluation results of the plurality of captured images in the container.
  • the captured image is obtained by moving at least one of a stage on which the container is installed and an imaging optical system that forms an image of cells in the container.
  • the degradation determination unit may determine whether or not the captured image for each observation region is deteriorated.
  • the cell image evaluation method determines whether or not a photographed image obtained by photographing the inside of a container in which cells are stored is deteriorated, and based on the photographed image, the state of cells included in the photographed image is determined. At the time of evaluation, the evaluation method of the photographed image is changed according to the determination result of deterioration.
  • the cell image evaluation program includes a computer using an image evaluation unit that evaluates a state of a cell included in a captured image based on a captured image obtained by capturing the inside of a container in which the cell is stored; A cell image evaluation program that functions as a deterioration determination unit that determines whether or not a deterioration has occurred.
  • the image evaluation unit changes a method for evaluating a captured image according to a determination result of the deterioration determination unit.
  • the cell image evaluation apparatus, method, and program of the present invention it is determined whether or not a photographed image obtained by photographing the inside of a container containing cells is deteriorated, and the state of the cells included in the photographed image is evaluated.
  • the evaluation is performed by different evaluation methods for a deteriorated captured image and a non-degraded captured image. Thereby, even if the image is deteriorated, it is possible to perform more accurate and reliable evaluation by evaluating with an evaluation method suitable for the image.
  • the block diagram which shows schematic structure of the cell image evaluation system using one Embodiment of the cell image evaluation apparatus of this invention The figure which shows the scanning locus of each observation field in a well plate The figure which shows an example of the picked-up image of each observation area
  • the block diagram which shows schematic structure of the modification of the cell image evaluation system shown in FIG. The figure which shows an example of the picked-up image of each observation area
  • FIG. 1 is a block diagram showing a schematic configuration of the cell image evaluation system of the present embodiment.
  • the cell image evaluation system of this embodiment includes a microscope device 10, a cell image evaluation device 20, a display device 30, and an input device 40, as shown in FIG.
  • the microscope apparatus 10 photographs the cells accommodated in the culture container and outputs a photographed image.
  • a phase contrast microscope apparatus including an image sensor such as a CCD (Charge-Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor is used.
  • an image sensor provided with RGB (Red Green Blue) color filters may be used, or a monochrome image sensor may be used.
  • a phase difference image of the cells stored in the culture vessel is formed on the image sensor, and a phase difference image is output as a captured image from the image sensor.
  • the microscope apparatus 10 is not limited to the phase contrast microscope apparatus, and other microscope apparatuses such as a differential interference microscope apparatus and a bright field microscope apparatus may be used.
  • the imaging target may be a cell colony in which a plurality of cells are aggregated or a plurality of cells distributed and distributed.
  • the cells to be imaged include, for example, pluripotent stem cells such as iPS cells and ES cells, nerve, skin, myocardium and liver cells derived from stem cells, and organ cells and cancer cells extracted from the human body. and so on.
  • a well plate having a plurality of wells is used as the culture container.
  • each well corresponds to a container of the present invention.
  • the microscope apparatus 10 includes a stage on which a well plate is installed. The stage moves in the X direction and the Y direction orthogonal to each other in the horizontal plane. By this movement of the stage, each observation region in each well of the well plate is scanned, and a photographed image for each observation region is photographed. The captured image for each observation area is output to the cell image evaluation apparatus 20.
  • FIG. 2 is a diagram showing the scanning trajectory of each observation region with a solid line Sc when a well plate 50 having six wells 51 is used. As shown in FIG. 2, each observation region in the well plate 50 is scanned along the solid line Sc from the scanning start point S to the scanning end point E by the movement of the stage in the X direction and the Y direction.
  • autofocus control is performed by moving an imaging optical system that forms a phase difference image of a stage or a cell on an imaging element in the vertical direction.
  • the captured image is taken for each observation region in the well by moving the stage.
  • the present invention is not limited to this, and the observation is performed by moving the imaging optical system with respect to the stage. You may make it image
  • the well plate is used.
  • the container for storing cells is not limited to this, and other containers such as a petri dish or a dish may be used.
  • the cell image evaluation apparatus 20 includes a deterioration determination unit 21, an image evaluation unit 22, and a display control unit 23.
  • the cell image evaluation apparatus 20 is composed of a computer including a central processing unit, a semiconductor memory, a hard disk, and the like, and one embodiment of the cell image evaluation program of the present invention is installed on the hard disk. Then, when the cell image evaluation program is executed by the central processing unit, the deterioration determination unit 21, the image evaluation unit 22, and the display control unit 23 shown in FIG. 1 function. In the present embodiment, the function of each unit is executed by the cell image evaluation program. However, the present invention is not limited to this.
  • a plurality of ICs Integrated Circuits
  • processors For example, a plurality of ICs (Integrated Circuits), processors, ASICs (Application Specific Integrated Circuits), and FPGAs.
  • the functions of each unit may be executed by appropriately combining (Field-Programmable Gate Array) and a memory.
  • the cell image evaluation program may be stored in a non-transitory computer-readable recording medium and read by a computer constituting the cell image evaluation apparatus 20.
  • the cell image evaluation program may be distributed via a network.
  • the degradation determination unit 21 determines whether or not the captured image for each observation region captured by the microscope apparatus 10 is degraded. Specifically, the degradation determination unit 21 of the present embodiment includes a blur determination unit 21a, and whether or not the captured image has deteriorated by determining whether or not the captured image is blurred by the blur determination unit 21a. Determine whether or not. Details of the degradation determination unit 21 will be described later.
  • the image evaluation unit 22 acquires a captured image for each observation region and evaluates the state of cells included in the captured image.
  • Evaluation of the state of a cell means, for example, evaluating whether a cell included in a photographed image is an undifferentiated cell or a differentiated cell, counting the number of cells for each type of cell during co-culture, and photographing. It means evaluating the ratio of undifferentiated cells and differentiated cells contained in an image, evaluating the growth degree of cells or cell colonies, or evaluating the reduction rate of cancer cells by an anticancer agent.
  • the evaluation of the cell state is not limited to these, and other evaluations may be used.
  • the image evaluation unit 22 evaluates the state of the cell using different evaluation methods for a blurred captured image and a non-blurred captured image. Specifically, the image evaluation unit 22 evaluates a photographed image that is not blurred using a feature amount indicating the state of a cell included in the photographed image, and an image feature amount for a blurred photographed image. Use to evaluate. Details of the image evaluation by the image evaluation unit 22 will be described later.
  • the display control unit 23 causes the display device 30 to display the evaluation result by the image evaluation unit 22. Specifically, in the present embodiment, as described above, the evaluation result in units of wells is calculated in the image evaluation unit 22, so that the display control unit 23 displays the evaluation results in units of wells on the display device 30. Display.
  • FIG. 4 is an example in which when a 6-well plate is used, the ratio of differentiated cells and the ratio of undifferentiated cells per well are calculated and displayed as integrated evaluation results.
  • the upper left well has 80% differentiated cells and 20% undifferentiated cells. In the upper center well, there are 70% differentiated cells and 30% undifferentiated cells. In the upper right well, there are 60% differentiated cells and 40% undifferentiated cells. In the lower left well, there are 60% differentiated cells and 40% undifferentiated cells. In the lower center well, there are 30% differentiated cells and 70% undifferentiated cells. In the lower right well, there are 40% differentiated cells and 60% undifferentiated cells.
  • the display control unit 23 generates a composite image by connecting the captured images for each observation region, and displays the composite image on the display device 30.
  • the display device 30 includes, for example, a liquid crystal display that displays the evaluation result by the image evaluation unit 22 and the composite image generated by the display control unit 23 as described above. Further, the display device 30 may be configured by a touch panel and may also be used as the input device 40.
  • the input device 40 includes a mouse and a keyboard, and accepts various setting inputs by the user.
  • FIG. 3 is a diagram illustrating an example of a captured image of each observation region in the well.
  • each area divided into rectangular areas corresponds to each observation area.
  • the captured image in the observation region indicated by the dotted square is a blurred image.
  • the deterioration determination unit 21 determines whether or not the captured image for each observation region is blurred, and changes the evaluation method according to the determination result.
  • the blur discriminator 21a receives at least one of a luminance variance, a contrast, and a set of minimum and maximum values of a blurred captured image and a non-blurred captured image, and whether or not it is blurred.
  • the discrimination result is generated by machine learning.
  • a known method can be used, such as support vector machine (SVM), deep neural network (DNN), convolutional neural network (CNN), recurrent neural network (RNN), and denoising stack auto.
  • SVM support vector machine
  • DNN deep neural network
  • CNN convolutional neural network
  • RNN recurrent neural network
  • DSA denoising stack auto.
  • An encoder (DSA) or the like can be used.
  • the blur discriminator 21a receives an input of a captured image for each observation region, and outputs a determination result as to whether or not the captured image is blurred.
  • the discrimination method is not limited to this.
  • An edge may be detected from a captured image and determined based on the amount of the edge, or may be determined from a set of maximum and minimum luminance values, or the spatial frequency component of the captured image is analyzed. You may make it discriminate
  • the image evaluation unit 22 can obtain an evaluation result excellent in biological explanatory power by performing evaluation using the feature amount indicating the state of the cell as described above.
  • the evaluation method using the feature amount indicating the state of the cell is an evaluation method that is relatively weak against blur (deterioration).
  • the feature quantity indicating the state of the cell includes the feature quantity of each cell state, the feature quantity of the nucleolus contained in the cell, the feature quantity of the white streak, the feature quantity of the nucleus contained in the cell, and the NC of the cell. At least one of the ratios can be used.
  • the feature quantity of each cell state includes, for example, the number of cells, the cell density, the cell increase rate, and the cell circularity.
  • the individual cells included in the photographed image are recognized and the recognized cells.
  • Other feature amounts may be used as long as the feature amount is calculated based on the above.
  • a method for recognizing a cell included in a captured image for example, a method of detecting an edge of a cell image, detecting using a pattern matching process, or detecting using a discriminator generated by machine learning.
  • other known techniques can be used.
  • undifferentiated cells have a relatively high circularity, but differentiated cells have, for example, an elongated shape and a relatively low circularity.
  • the circularity of each cell it can be evaluated whether it is a differentiated cell or an undifferentiated cell.
  • a pluripotent stem cell when a cell differentiates, the chromatin structure in a nucleus changes and it becomes blackish, Therefore Differentiation or undifferentiation can be evaluated by evaluating the brightness
  • the method for evaluating whether it is a differentiated cell or an undifferentiated cell is not limited to this, and other known methods can be used.
  • the length of dendrites can be used as a feature amount indicating the state of each cell. By using the length of dendrites, the degree of growth of nerve cells can be evaluated.
  • the feature amount of the nucleus or nucleolus contained in the cell includes, for example, the number of nuclei or nucleolus, the density of the nucleus or nucleolus, and the rate of increase of the nucleus or nucleolus. Any other feature amount may be used as long as it is a feature amount calculated based on the recognized nucleus or nucleolus.
  • edge detection, detection by pattern matching, detection using a discriminator, and the like can be used as in the cell recognition method.
  • white stripes are halos of light caused by diffracted light generated between cells and the background.
  • the white streak features include, for example, the total white streak area, white streak density, and white streak distribution state.
  • the white streak is recognized based on the recognized white streak.
  • Other feature amounts may be used as long as the feature amounts are calculated in this manner.
  • a method for recognizing white stripes for example, a photographed image may be binarized, and white stripes may be extracted by threshold processing, or a classifier generated by machine learning or detected using pattern matching processing may be used. Although there is a method of detecting by using other methods, other known methods can be used.
  • the characteristic amount of white streaks for example, white streaks are small when there are many undifferentiated cells in a cell colony, but the amount of white streaks increases as differentiated and differentiated cells increase. Therefore, the degree of differentiation or undifferentiation of cell colonies, the degree of growth of cell colonies, or the like can be evaluated based on the feature amount of white stripes.
  • the NC ratio of the cell is the nucleus / cytoplasm area ratio.
  • the NC ratio can be determined by using cytoplasmic and nuclear detectors.
  • the cytoplasm generally has a gray and flat appearance, whereas the nucleus is relatively round and contains a structure such as a nucleolus inside. Therefore, a cytoplasm region and a nucleus region can be obtained by creating each detector by machine learning and applying it to a captured image.
  • the NC ratio can be calculated by calculating the ratio of the area between the cytoplasmic region and the nuclear region thus obtained.
  • the NC ratio may be calculated for each cell colony, or the NC ratio in a region designated in advance may be calculated.
  • the evaluation method using the image feature amount is an evaluation method that is relatively resistant to blur (deterioration) than the evaluation method using the feature amount indicating the cell state described above.
  • the image feature quantity used when evaluating a blurred photographed image is a feature quantity of the photographed image itself, and specifically, the average brightness of the photographed image, the variance of the brightness of the photographed image, and the brightness of the photographed image.
  • the difference between the maximum value and the minimum value, the contrast of the captured image, the entropy of the captured image, the spatial frequency distribution of the captured image, the directionality of the captured image, the Zernike characteristics of the captured image, and the like can be used.
  • a relationship between the image feature amount and an evaluation result corresponding to the image feature amount is obtained in advance by experiments or the like.
  • An evaluation result may be obtained based on the image feature amount of the photographed image and the above relationship. Further, by learning the relationship between the image feature quantity and the evaluation result corresponding to the image feature quantity using, for example, machine learning, an evaluator is generated, and the image feature quantity of the captured image is input to the evaluator. An evaluation result may be obtained.
  • the image evaluation unit 22 of this embodiment calculates the evaluation result for the well by integrating the evaluation results of the captured images of each observation region in the well. That is, the evaluation result in units of wells is calculated.
  • the results can be managed in units of wells at the time of passage or cell shipment.
  • the captured image of each observation region can be evaluated with an appropriate evaluation method.
  • the evaluation result can be evaluated, and a more accurate and reliable evaluation result can be obtained as the evaluation result for each well.
  • the proportion of differentiated cells and undifferentiated cells in each well unit are calculated. You may make it calculate
  • an average value of the growth degree of each observation region may be obtained as the growth degree in units of wells.
  • a ratio of the number of observation areas having a growth degree equal to or greater than a threshold value among all the observation areas in the well may be calculated, and the ratio may be obtained as the growth degree in units of wells.
  • the evaluation result for each well may be “good”, and when the ratio is less than the threshold value, the evaluation result for each well may be “bad”.
  • the evaluation result of the observation region whose growth degree is equal to or greater than the threshold is “good”, the evaluation result of the observation region whose growth is less than the threshold is “bad”, and the evaluation result included in the well is “good”.
  • the evaluation result for each well may be “good”, and when the number is less than the threshold value, the evaluation result for each well may be “bad”.
  • a well plate containing cells and a culture solution is placed on the stage of the microscope apparatus 10 (S10). Then, as the stage moves in the X direction and the Y direction, the observation area in each well of the well plate is scanned, and a photographed image of each observation area is photographed (S12).
  • the captured images for each observation region captured by the microscope apparatus 10 are sequentially output to the cell image evaluation apparatus 20 and sequentially input to the deterioration determination unit 21 and the display control unit 23 (S12).
  • the degradation determination unit 21 determines whether the input captured image of the observation area is a blurred captured image or a blurred captured image (S14).
  • the image evaluation unit 22 evaluates the captured image using the blurred captured image evaluation method (S16). Specifically, an image feature amount is calculated for the photographed image, and the state of cells included in the photographed image is evaluated using the image feature amount.
  • the image evaluation unit 22 evaluates the captured image using an unblurred captured image evaluation method. (S18). Specifically, a feature amount indicating a cell state is calculated for the captured image, and the state of the cell included in the captured image is evaluated using the feature amount.
  • the image evaluation unit 22 integrates the evaluation results of the captured images of each observation region in units of wells and acquires the evaluation results in units of wells. (S22).
  • the display control unit 23 generates a composite image using the captured image of each observation image, displays the composite image on the display device 30, and displays the integrated evaluation result in units of wells on the display device 30 (S24). ).
  • the cell image evaluation system of the above embodiment it is determined whether or not the captured image for each observation region is blurred, and when evaluating the state of the cells included in the captured image, the blurred captured image and the unfocused captured image Since the evaluation is performed using a different evaluation method for the image, the evaluation can be performed using an evaluation method suitable for the photographed image, and a more accurate and reliable evaluation can be performed.
  • the image evaluation unit 22 integrates the captured images of the observation regions in the well and calculates the evaluation result in units of wells.
  • a weight may be added to the evaluation result of the blurred photographed image and the evaluation result of the photographed image not blurred.
  • the weighting is preferably set so that the weight added to the evaluation result of the blurred image is larger than the weight added to the evaluation result of the meniscus region image. This is because a photographed image that is not blurred is considered to have higher accuracy in evaluation results.
  • a weight smaller than 0.5 is added to the growth degree of the observation area of the blurred photographed image.
  • a weight of 0.5 or more may be added to the degree of growth of the observation area of the photographed image that is not blurred.
  • the evaluation result of the observation area whose growth degree is equal to or greater than the threshold is “good” and the evaluation result of the observation area where the growth degree is less than the threshold is “bad”
  • the growth degree of the observation area of the blurred photographed image is A weight smaller than 0.5 is added to evaluate “good” or “bad”
  • a weight of 0.5 or more is added to the degree of growth of the observation area of the unfocused captured image to “good” or You may make it evaluate "bad”.
  • the evaluation result in the well unit is set to “good”, and when the number is less than the threshold value, the well unit.
  • the evaluation result may be “bad”.
  • the blur discriminator 21a discriminates whether or not the photographed image is blurred. For example, among the photographed images obtained by photographing each observation region in the well, the medium such as a culture solution is used. A photographed image obtained by photographing the observation region of the range has a similar luminance distribution to the blurred image, and thus may be erroneously determined to be a blurred image even though it is not blurred.
  • an area discriminator 21b may be further provided in the degradation discriminating unit 21.
  • the region discriminator 21b determines whether the captured image is an image obtained by photographing a cell region or an image obtained by photographing a medium region.
  • the region discriminator 21b receives a photographed image obtained by photographing the cell region and a photographed image obtained by photographing the medium region, and is a photographed image obtained by photographing the cell region or a photographed image obtained by photographing the medium region.
  • the discrimination result is generated by machine learning.
  • a machine learning technique a known technique can be used as in the blur classifier 21a.
  • the region discriminator 21b receives an input of a photographed image for each observation region, and outputs a discrimination result of whether the photographed image is a photographed image obtained by photographing a cell region or a medium region. .
  • the machine discriminating region discriminator 21b is used to discriminate whether the image is a photographed image obtained by photographing a cell region or a photographed image obtained by photographing a medium region.
  • the determination method is not limited to this.
  • an edge may be detected from a captured image and determined based on the amount of the edge, or may be determined based on a set of the maximum value and the minimum value of luminance.
  • the determination may be made by analyzing the spatial frequency component of the captured image.
  • the captured image is deteriorated when it is determined by the region discriminator 21b that the captured image is an image of the cell region and the blurred discriminator 21a determines that the captured image is blurred.
  • the captured image may be evaluated using the image feature amount.
  • the region discriminator 21b determines that the photographed image is an image obtained by photographing the culture medium region, it is not an image feature amount. You may make it evaluate using the characteristic which shows the state of a cell.
  • the deterioration determining unit 21 determines whether or not the captured image is deteriorated by determining whether or not the captured image is blurred. Although the deterioration of the photographed image due to the mistake is determined, this is not the only cause of the deterioration of the photographed image.
  • the amount of illumination light may fluctuate due to voltage fluctuations applied to the light source in the microscope apparatus 10, and the captured image may become a dark image. If such a dark photographed image is evaluated in the same manner as other photographed images with a normal light amount, an accurate evaluation result may not be obtained.
  • FIG. 7 is a diagram illustrating an example of a captured image of each observation region in the well. In FIG. 7, each area divided into rectangular areas corresponds to each observation area. In the example illustrated in FIG. 7, the captured image in the observation region indicated by the dotted square is an image that has deteriorated due to fluctuations in the amount of illumination light.
  • the deterioration determining unit 21 is provided with a light amount variation deterioration determining unit 21c, and in the light amount variation deterioration determining unit 21c, whether or not a captured image for each observation region is deteriorated due to a light amount variation of illumination light.
  • the evaluation method may be changed according to the determination result.
  • the light quantity fluctuation degradation discriminator 21c receives at least one of a set of average luminance and minimum value and maximum value of the captured image, and determines whether or not the light quantity fluctuation degradation classifier 21c has deteriorated due to the light quantity fluctuation of illumination light. Generated by machine learning with the discrimination result as output.
  • a machine learning technique a known technique can be used as in the blur classifier 21a.
  • the light quantity fluctuation degradation discriminator 21c receives an input of a photographed image for each observation region, and outputs a judgment result as to whether or not the photographed image has deteriorated due to the light quantity fluctuation of illumination light.
  • the machine-learned light quantity fluctuation deterioration discriminator 21c is used to determine whether or not the captured image is deteriorated due to the light quantity fluctuation.
  • the present invention is not limited to this.
  • the determination may be made by determining the average luminance threshold value of the photographed image, or by analyzing the luminance distribution of the photographed image.
  • the photographed image may be evaluated using the image feature quantity.
  • the evaluation may be made using not the image feature amount but the feature indicating the cell state.
  • the deterioration determination unit 21 may include both the blur determination unit 21a and the light amount fluctuation deterioration determination unit 21c, or may further include a region determination unit 21b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Sustainable Development (AREA)
  • Pathology (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Quality & Reliability (AREA)
  • Biophysics (AREA)
  • Optics & Photonics (AREA)
  • Cell Biology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Image Analysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

容器内の各観察領域の撮影画像が劣化していたとしても、より正確かつ、信頼性の高い評価を行うことができる細胞画像評価装置および方法並びにプログラムを提供する。細胞が収容された容器内を撮影した撮影画像に基づいて、撮影画像に含まれる細胞の状態を評価する画像評価部(22)と、撮影画像が劣化しているか否かを判別する劣化判別部(21)とを備え、画像評価部(22)が、劣化判別部の判別結果に応じて、撮影画像の評価方法を変更する。

Description

細胞画像評価装置および方法並びにプログラム
 本発明は、細胞を撮影した撮影画像を用いて、撮影画像に含まれる細胞の状態を評価する細胞画像評価装置および方法並びにプログラムに関する。
 ES(Embryonic Stem)細胞およびiPS(Induced Pluripotent Stem)細胞などの多能性幹細胞は、種々の組織の細胞に分化する能力を備え、再生医療、薬の開発、および病気の解明などにおいて応用が可能なものとして注目されている。
 そして、ES細胞およびiPS細胞などの多能性幹細胞や分化誘導された細胞などを顕微鏡などで撮像し、その画像の特徴を捉えることで細胞の分化状態などを評価する方法が提案されている。
 一方、上述したように細胞を顕微鏡で撮像する際、高倍率な広視野画像を取得するため、いわゆるタイリング撮影を行うことが提案されている。具体的には、たとえばウェルプレートなどが設置されたステージを、結像光学系に対して移動させることによってウェル内の各観察領域を走査し、観察領域毎の画像を撮影した後、その観察領域毎の画像を繋ぎ合わせる方法が提案されている。
特表2013-535048号公報
 ここで、上述したようにウェル内の各観察領域を走査して撮影する際、各観察領域においてオートフォーカス制御が行われるが、全ての観察領域において最適な焦点位置となるとは限らず、オートフォーカス制御でミスを生じ、一部の観察領域の撮影画像がボケた画像となる場合がある。また、たとえば顕微鏡装置における光源に印可される電圧変動によって照明光の光量が変動し、撮影画像が暗い画像となってしまう場合がある。
 このようにボケた画像および暗い画像のように劣化した撮影画像については、個々の細胞の画像を高精度に抽出することができないため、たとえば個々の細胞の状態を示す特徴量を用いて評価を行うようにしたのでは、評価結果の精度が低くなり、信頼性も低い評価結果となる場合がある。すなわち、劣化した撮影画像と劣化していない撮影画像とを同じように評価したのでは正確な評価結果を得ることができない場合がある。
 なお、特許文献1では、デジタル顕微鏡スライドの画像を複数の領域に分割し、各領域の品質を評価する際、適切な明るさまたはコントラストを有する分割画像のみ評価を行い、スライド全体のスコアを算出することが提案されている。しかしながら、このように適切な明るさまたはコントラストでない分割画像を全く評価しないようにしたのでは、その分割画像の情報を完全に失うことになるので、スライド全体の評価としては精度が低下する場合がある。
 本発明は、上記の問題に鑑み、容器内の各観察領域の撮影画像が劣化していたとしても、より正確かつ、信頼性の高い評価を行うことができる細胞画像評価装置および方法並びにプログラムを提供することを目的とする。
 本発明の一態様による細胞画像評価装置は、細胞が収容された容器内を撮影した撮影画像に基づいて、撮影画像に含まれる細胞の状態を評価する画像評価部と、撮影画像が劣化しているか否かを判別する劣化判別部とを備え、画像評価部が、劣化判別部の判別結果に応じて、撮影画像の評価方法を変更する。
 また、上記本発明の一態様による細胞画像評価装置において、画像評価部は、撮影画像が劣化していると判別された場合には、相対的に劣化に強い評価方法によって撮影画像を評価し、撮影画像が劣化していないと判別された場合には、相対的に劣化に弱い評価方法によって撮影画像を評価してもよい。
 また、上記本発明の一態様による細胞画像評価装置において、画像評価部は、撮影画像が劣化していないと判別された場合には、撮影画像に含まれる細胞の状態を示す特徴量を用いて評価し、撮影画像が劣化していると判別された場合には、画像特徴量を用いて評価してもよい。
 また、上記本発明の一態様による細胞画像評価装置において、細胞の状態を示す特徴量は、個々の細胞の状態の特徴量、細胞内に含まれる核小体の特徴量、白すじの特徴量、細胞内に含まれる核の特徴量および細胞のNC比(Nucleocytoplasmic ratio)の少なくとも1つを含んでもよい。
 また、上記本発明の一態様による細胞画像評価装置において、劣化判別部は、撮影画像がボケているか否かを判別してもよい。
 また、上記本発明の一態様による細胞画像評価装置において、劣化判別部は、撮影画像がボケているか否かを判別するボケ判別器を備えることができ、ボケ判別器は、機械学習によって生成されてもよい。
 また、上記本発明の一態様による細胞画像評価装置において、ボケ判別器は、撮影画像の輝度の分散、コントラスト、および最小値と最大値の組のうちの少なくとも1つに基づいて、撮影画像がボケているか否かを判別してもよい。
 また、上記本発明の一態様による細胞画像評価装置において、劣化判別部は、撮影画像が、細胞領域を撮影した画像であるのか培地領域を撮影した画像であるのかを判別する領域判別器を備え、撮影画像が細胞領域を撮影した画像であると領域判別器によって判別され、かつ撮影画像がボケているとボケ判別器によって判別された場合に、撮影画像が劣化していると判別してもよい。
 また、上記本発明の一態様による細胞画像評価装置において、劣化判別部は、撮影画像が、照明光の光量変動によって劣化した画像であるか否かを判別してもよい。
 また、上記本発明の一態様による細胞画像評価装置において、劣化判別部は、撮影画像が、照明光の光量変動によって劣化した画像であるか否かを判別する光量変動劣化判別器を備えることができ、光量変動劣化判別器は、機械学習によって生成されてもよい。
 また、上記本発明の一態様による細胞画像評価装置において、光量変動劣化判別器は、撮影画像の平均輝度および最小値と最大値の組のうちの少なくとも1つに基づいて、撮影画像が光量変動によって劣化した画像であるか否かを判別してもよい。
 また、上記本発明の一態様による細胞画像評価装置において、画像評価部は、容器内の複数の撮影画像の評価結果を統合して容器に対する評価結果を算出してもよい。
 また、上記本発明の一態様による細胞画像評価装置において、撮影画像は、容器が設置されるステージおよび容器内の細胞の像を結像する結像光学系の少なくとも一方を移動させることによって、容器内の各観察領域を撮影した画像とすることができ、劣化判別部は、観察領域毎の撮影画像が劣化しているか否かを判別してもよい。
 本発明の一態様による細胞画像評価方法は、細胞が収容された容器内を撮影した撮影画像が劣化しているか否かを判別し、撮影画像に基づいて、撮影画像に含まれる細胞の状態を評価する際、劣化の判別結果に応じて、撮影画像の評価方法を変更する。
 本発明の一態様による細胞画像評価プログラムは、コンピュータを、細胞が収容された容器内を撮影した撮影画像に基づいて、撮影画像に含まれる細胞の状態を評価する画像評価部と、撮影画像が劣化しているか否かを判別する劣化判別部として機能させる細胞画像評価プログラムであって、画像評価部が、劣化判別部の判別結果に応じて、撮影画像の評価方法を変更する。
 本発明の細胞画像評価装置および方法並びにプログラムによれば、細胞が収容された容器内を撮影した撮影画像が劣化しているか否かを判別し、撮影画像に含まれる細胞の状態を評価する際、劣化している撮影画像と劣化していない撮影画像とで異なる評価方法で評価する。これにより、劣化している画像であったとしても、その画像に適した評価方法で評価することによって、より正確かつ、信頼性の高い評価を行うことができる。
本発明の細胞画像評価装置の一実施形態を用いた細胞画像評価システムの概略構成を示すブロック図 ウェルプレートにおける各観察領域の走査軌跡を示す図 ウェル内の各観察領域の撮影画像の一例を示す図 ウェル単位で統合された評価結果の表示例を示す図 本発明の細胞画像評価装置の一実施形態を用いた細胞画像評価システムの作用を説明するためのフローチャート 図1に示す細胞画像評価システムの変形例の概略構成を示すブロック図 ウェル内の各観察領域の撮影画像の一例を示す図 本発明の細胞画像評価装置のその他の実施形態を用いた細胞画像評価システムの概略構成を示すブロック図
 以下、本発明の細胞画像評価装置および方法並びにプログラムの一実施形態を用いた細胞画像評価システムについて、図面を参照しながら詳細に説明する。図1は、本実施形態の細胞画像評価システムの概略構成を示すブロック図である。
 本実施形態の細胞画像評価システムは、図1に示すように、顕微鏡装置10と、細胞画像評価装置20と、表示装置30と、入力装置40とを備えている。
 顕微鏡装置10は、培養容器内に収容された細胞を撮影し、撮影画像を出力する。本実施形態においては、具体的には、CCD(Charge-Coupled Device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサなどの撮像素子を備えた位相差顕微鏡装置を用いる。撮像素子としては、RGB(Red Green Blue)のカラーフィルタが設けられた撮像素子を用いてもよいし、モノクロの撮像素子を用いるようにしてもよい。培養容器内に収容された細胞の位相差像が撮像素子に結像され、撮像素子から撮影画像として位相差画像が出力される。なお、顕微鏡装置10としては、位相差顕微鏡装置に限らず、微分干渉顕微鏡装置および明視野顕微鏡装置などのその他の顕微鏡装置を用いるようにしてもよい。
 撮影対象としては、複数の細胞が凝集した細胞コロニーでもよいし、分散して分布した複数の細胞でもよい。また、撮影対象の細胞としては、たとえばiPS細胞およびES細胞といった多能性幹細胞、幹細胞から分化誘導された神経、皮膚、心筋および肝臓の細胞、並びに人体から取り出された臓器の細胞およびがん細胞などがある。
 また、本実施形態においては、培養容器として、複数のウェルを有するウェルプレートを用いる。なお、ウェルプレートを用いる場合、各ウェルが、本発明の容器に相当する。そして、顕微鏡装置10は、ウェルプレートが設置されるステージを備えている。ステージは、水平面内において直交するX方向およびY方向に移動する。このステージの移動によって、ウェルプレートの各ウェル内における各観察領域が走査され、観察領域毎の撮影画像が撮影される。観察領域毎の撮影画像は細胞画像評価装置20に出力される。
 図2は、6つのウェル51を有するウェルプレート50を用いた場合における各観察領域の走査軌跡を実線Scで示した図である。図2に示すように、ウェルプレート50内の各観察領域は、ステージのX方向およびY方向の移動によって走査開始点Sから走査終了点Eまでの実線Scに沿って走査される。
 また、本実施形態においては、ウェル内の各観察領域において、ステージまたは細胞の位相差像を撮像素子に結像する結像光学系を鉛直方向に移動させることによってオートフォーカス制御を行う。
 なお、本実施形態においては、ステージを移動させることによってウェル内の観察領域毎の撮影画像を撮影するようにしたが、これに限らず、結像光学系をステージに対して移動させることによって観察領域毎の撮影画像を撮影するようにしてもよい。または、ステージと結像光学系の両方を移動させるようにしてもよい。
 また、本実施形態においては、ウェルプレートを用いるようにしたが、細胞が収容される容器としてはこれに限らず、たとえばシャーレまたはディッシュなどその他の容器を用いるようにしてもよい。
 細胞画像評価装置20は、図1に示すように、劣化判別部21と、画像評価部22と、表示制御部23とを備えている。細胞画像評価装置20は、中央処理装置、半導体メモリおよびハードディスクなどを備えたコンピュータから構成され、ハードディスクに本発明の細胞画像評価プログラムの一実施形態がインストールされている。そして、この細胞画像評価プログラムが中央処理装置によって実行されることによって、図1に示す劣化判別部21、画像評価部22および表示制御部23が機能する。なお、本実施形態においては、細胞画像評価プログラムによって、各部の機能を実行するようにしたが、これに限らず、たとえば複数のIC(Integrated Circuit)、プロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、およびメモリなどを適宜組み合わせることによって各部の機能を実行するようにしてもよい。なお、細胞画像評価プログラムは、非一時的なコンピュータ読取り可能な記録媒体に格納され、細胞画像評価装置20を構成するコンピュータに読み取られても良い。また、細胞画像評価プログラムは、ネットワークを介して配信されても良い。
 劣化判別部21は、顕微鏡装置10によって撮影された観察領域毎の撮影画像が劣化しているか否かを判別する。具体的には、本実施形態の劣化判別部21は、ボケ判別器21aを有し、このボケ判別器21aによって撮影画像がボケているか否かを判別することによって、撮影画像が劣化しているか否かを判別する。劣化判別部21の詳細については、後述する。
 画像評価部22は、観察領域毎の撮影画像を取得し、その撮影画像に含まれる細胞の状態を評価する。細胞の状態を評価するとは、たとえば撮影画像に含まれる細胞が未分化細胞であるのか分化細胞であるのかを評価したり、共培養の際の細胞の種類ごとの細胞数をカウントしたり、撮影画像に含まれる未分化細胞と分化細胞の割合を評価したり、細胞または細胞コロニーの成長度を評価したり、または抗がん剤によるがん細胞の縮小率を評価したりすることをいう。ただし、細胞の状態の評価としては、これらに限らず、その他の評価でもよい。
 また、画像評価部22は、ボケている撮影画像とボケていない撮影画像とで異なる評価方法で細胞の状態を評価する。具体的には、画像評価部22は、ボケていない撮影画像については、その撮影画像に含まれる細胞の状態を示す特徴量を用いて評価し、ボケている撮影画像については、画像特徴量を用いて評価する。画像評価部22による画像評価の詳細については、後述する。
 表示制御部23は、画像評価部22による評価結果を表示装置30に表示させる。具体的には、本実施形態においては、上述したように画像評価部22においてウェル単位での評価結果が算出されるので、表示制御部23は、そのウェル単位での評価結果を表示装置30に表示させる。図4は、6ウェルのウェルプレートを用いた場合に、ウェル単位での分化細胞の割合と未分化細胞の割合とを算出し、統合された評価結果として表示した例である。図4の例において、上段左のウェルには、分化細胞が80%存在し、未分化細胞が20%存在する。上段中央のウェルには、分化細胞が70%存在し、未分化細胞が30%存在する。上段右のウェルには、分化細胞が60%存在し、未分化細胞が40%存在する。下段左のウェルには、分化細胞が60%存在し、未分化細胞が40%存在する。下段中央のウェルには、分化細胞が30%存在し、未分化細胞が70%存在する。下段右のウェルには、分化細胞が40%存在し、未分化細胞が60%存在する。
 また、表示制御部23は、観察領域毎の撮影画像を繋ぎ合わせることによって合成画像を生成し、その合成画像を表示装置30に表示させる。
 表示装置30は、上述したように画像評価部22による評価結果および表示制御部23によって生成された合成画像を表示する、たとえば液晶ディスプレイなどを備えた。また、表示装置30をタッチパネルによって構成し、入力装置40と兼用するようにしてもよい。
 入力装置40は、マウスやキーボードなどを備え、ユーザによる種々の設定入力を受け付ける。
 次に、劣化判別部21の詳細を説明する。本実施形態においては、上述したようにウェル内の各観察領域を走査し、各観察領域においてオートフォーカス制御を行うが、全ての観察領域において最適な焦点位置となるとは限らず、オートフォーカス制御でミスを生じ、一部の観察領域の撮影画像がボケた画像となる場合がある。このようなボケた撮影画像を、その他のボケていない撮影画像と同じように評価したのでは、正確な評価結果が得られない場合がある。図3は、ウェル内の各観察領域の撮影画像の一例を示す図である。図3において矩形領域で分割された各領域が各観察領域に相当する。また、図3に示す例では、点線四角で示す観察領域の撮影画像がボケている画像である。
 そこで、本実施形態の細胞画像評価システムにおいては、劣化判別部21において、観察領域毎の撮影画像がボケているか否かを判別し、その判別結果に応じて、評価方法を変更する。
 具体的には、ボケ判別器21aは、ボケた撮影画像とボケていない撮影画像の輝度の分散、コントラスト、および最小値と最大値の組のうちの少なくとも1つを入力とし、ボケているか否かの判別結果を出力として機械学習によって生成される。機械学習の手法としては、公知な手法を用いることができ、サポートベクタマシン(SVM)、ディープニューラルネットワーク(DNN)、畳み込みニューラルネットワーク(CNN)、リカレントニューラルネットワーク(RNN)、およびデノイジングスタックオートエンコーダ(DSA)などを用いることができる。
 そして、ボケ判別器21aは、観察領域毎の撮影画像の入力を受け付け、その撮影画像がボケているか否かの判別結果を出力する。
 なお、本実施形態においては、上述したように機械学習されたボケ判別器21aを用いて撮影画像がボケているか否かを判別するようにしたが、判別方法としては、これに限らず、たとえば撮影画像からエッジを検出し、エッジの量に基づいて判別するようにしてもよいし、輝度の最大値と最小値の組から判別するようにしてもよし、撮影画像の空間周波数成分を解析することによって判別するようにしてもよい。
 次に、画像評価部22による画像評価の詳細を説明する。ボケていない撮影画像については、撮影画像に含まれる細胞の画像または核もしくは核小体などの画像を高精度に認識することができる。そのため、画像評価部22は、上述したように細胞の状態を示す特徴量を用いて評価することによって、生物学的な説明力に優れる評価結果を得ることができる。本実施形態において、細胞の状態を示す特徴量を用いた評価方法は、相対的にボケ(劣化)に弱い評価方法である。
 細胞の状態を示す特徴量としては、個々の細胞の状態の特徴量、細胞内に含まれる核小体の特徴量、白すじの特徴量、細胞内に含まれる核の特徴量および細胞のNC比の少なくとも1つを用いることができる。
 個々の細胞の状態の特徴量としては、たとえば細胞の数、細胞の密度、細胞の増加率および細胞の円形度などがあるが、撮影画像に含まれる個々の細胞を認識し、その認識した細胞に基づいて算出される特徴量であればその他の特徴量でもよい。撮影画像に含まれる細胞の認識方法としては、たとえば細胞の画像のエッジを検出したり、パターンマッチング処理を用いて検出したり、機械学習によって生成された判別器を用いて検出したりする方法があるが、その他の公知な手法を用いることができる。なお、細胞の円形度については、未分化細胞は円形度が相対的に高くなるが、分化細胞は、たとえば細長い形状となり、円形度が相対的に低くなる。したがって、個々の細胞の円形度を算出することによって分化細胞であるか、または未分化細胞であるかを評価することができる。また、多能性幹細胞において、細胞が分化すると核内のクロマチン構造が変化し黒っぽくなるため、核を検出した後に核の輝度を評価することによって分化または未分化を評価することができる。ただし、分化細胞か未分化細胞かを評価する方法としては、これに限らず、その他の公知な手法を用いることができる。または、神経細胞を評価する場合には、個々の細胞の状態を示す特徴量として、樹状突起の長さを用いることができる。樹状突起の長さを用いることによって、神経細胞の成長度を評価することができる。
 また、細胞内に含まれる核または核小体の特徴量としては、たとえば核または核小体の数、核または核小体の密度および核または核小体の増加率などがあるが、撮影画像に含まれる核または核小体を認識し、その認識した核または核小体に基づいて算出される特徴量であればその他の特徴量でもよい。撮影画像に含まれる核または核小体の認識方法としては、細胞の認識方法と同様に、エッジ検出、パターンマッチングによる検出および判別器を用いた検出などを用いることができる。
 また、白すじとは、細胞と背景間に発生する回折光による光のにじみ(ハロ)のことである。そして、白すじの特徴量としては、たとえば白すじの総面積、白すじの密度および白すじの分布状態などがあるが、撮影画像に含まれる白すじを認識し、その認識した白すじに基づいて算出される特徴量であればその他の特徴量でもよい。白すじの認識方法としては、たとえば撮影画像を2値化し、閾値処理によって白すじを抽出するようにしてもよいし、パターンマッチン処理を用いて検出したり、機械学習によって生成された判別器を用いて検出したりする方法があるが、その他の公知な手法を用いることができる。なお、白すじの特徴量については、たとえば細胞コロニー内に未分化細胞が多い状態では白すじは少ないが、分化が進み分化細胞が多くなると白すじの量が多くなる。したがって、白すじの特徴量に基づいて、細胞コロニーの分化度または未分化度、もしくは細胞コロニーの成長度などを評価することができる。
 また、細胞のNC比とは、核/細胞質面積比である。NC比については、細胞質と核のそれぞれの検出器を使用することで求めることができる。細胞質は、一般的にグレーかつフラットな見た目を有し、これに対し、核は比較的丸くかつ内部に核小体等の構造を含む。したがって、それぞれの検出器を機械学習により作成し、撮影画像に適用することによって細胞質領域と核領域とが得られる。このようにして得られた細胞質領域と核領域の面積の比を算出することによって、NC比を算出することができる。NC比は、細胞コロニー単位で算出してもよいし、予め指定された領域内でのNC比を算出するようにしてもよい。
 一方、ボケた撮影画像については、個々の細胞の画像または核小体の画像などの検出精度が低くなる。したがって、ボケていない撮影画像のように個々の細胞の状態を示す特徴量を用いて評価するよりも、撮影画像自体の画像特徴量を用いて評価した方が、評価精度が向上する。本実施形態において、画像特徴量を用いた評価方法は、上述した細胞の状態を示す特徴量を用いた評価方法よりも、相対的にボケ(劣化)に強い評価方法である。
 ボケた撮影画像を評価する際に用いられる画像特徴量とは、撮像画像自体の特徴量であって、具体的には、撮影画像の平均輝度、撮影画像の輝度の分散、撮影画像の輝度の最大値と最小値の差、撮影画像のコントラスト、撮影画像のエントロピー、撮影画像の空間周波数分布、撮影画像の方向性および撮影画像のゼルニケ特徴などを用いることができる。
 このような画像特徴量を用いて撮影画像に含まれる細胞の状態を評価する方法としては、たとえば画像特徴量とその画像特徴量に対応する評価結果との関係を予め実験などによって求めておき、撮影画像の画像特徴量と上記関係とに基づいて、評価結果を得るようにすればよい。また、画像特徴量とその画像特徴量に対応する評価結果との関係を、たとえば機械学習を用いて学習させて評価器を生成し、撮影画像の画像特徴量をその評価器に入力することによって評価結果を得るようにしてもよい。
 また、本実施形態の画像評価部22は、ウェル内の各観察領域の撮影画像の評価結果を統合して、そのウェルに対する評価結果を算出する。すなわちウェル単位での評価結果を算出する。このようにウェル単位(容器単位)での評価結果を算出することによって、継代または細胞の出荷の際などにおいてウェル単位で管理することができる。
 本実施形態においては、上述したようにボケている撮影画像とボケていない撮影画像とで異なる評価方法で細胞の状態を評価するようにしたので、各観察領域の撮影画像を適切な評価方法で評価することができ、ウェル単位での評価結果としてもより正確で、かつ信頼性のある評価結果を得ることができる。
 具体的には、たとえばウェル内の各観察領域の撮影画像に含まれる分化細胞の割合と未分化細胞の割合の平均値をそれぞれ算出することによって、ウェル単位での分化細胞の割合と未分化細胞の割合を求めるようにしてもよい。
 または、ウェル内の各観察領域の撮影画像について細胞または細胞コロニーの成長度を評価する場合には、その各観察領域の成長度の平均値をウェル単位の成長度として求めるようにしてもよい。また、ウェル内の全観察領域のうち、成長度が閾値以上である観察領域の数の割合を算出し、その割合をウェル単位の成長度として求めるようにしてもよい。もしくは、上記割合が閾値以上である場合には、ウェル単位での評価結果を「良い」とし、閾値未満である場合には、ウェル単位での評価結果を「悪い」としてもよい。または、成長度が閾値以上である観察領域の評価結果を「良い」とし、閾値未満である観察領域の評価結果を「悪い」とし、ウェル内に含まれる評価結果が「良い」の観察領域の数が、閾値以上である場合にウェル単位での評価結果を「良い」とし、閾値未満である場合にウェル単位での評価結果を「悪い」としてもよい。
 次に、本実施形態の細胞画像評価システムの作用について、図5に示すフローチャートを参照しながら説明する。
 まず、細胞および培養液が収容されたウェルプレートが顕微鏡装置10のステージ上に設置される(S10)。そして、ステージがX方向およびY方向に移動することによって、ウェルプレートの各ウェル内の観察領域が走査され、各観察領域の撮影画像が撮影される(S12)。
 そして、顕微鏡装置10において撮影された観察領域毎の撮影画像は、細胞画像評価装置20に順次出力され、劣化判別部21および表示制御部23に順次入力される(S12)。劣化判別部21は、入力された観察領域の撮影画像がボケた撮影画像であるかボケていない撮影画像であるかを判別する(S14)。
 そして、劣化判別部21によって、撮影画像がボケた撮影画像と判別された場合には、画像評価部22は、その撮影画像について、ボケた撮影画像の評価方法を用いて評価する(S16)。具体的には、その撮影画像について画像特徴量を算出し、その画像特徴量を用いて撮影画像に含まれる細胞の状態を評価する。
 一方、劣化判別部21によって、撮影画像がボケていない撮影画像であると判別された場合には、画像評価部22は、その撮影画像について、ボケていない撮影画像の評価方法を用いて評価する(S18)。具体的には、その撮影画像について、細胞の状態を示す特徴量を算出し、その特徴量を用いて撮影画像に含まれる細胞の状態を評価する。
 そして、全ての観察領域が走査され、全ての観察領域の撮影画像の評価が終了するまでS12~S18までの処理が繰り返される(S20,NO)。
 全ての観察領域の撮影画像の評価が終了した場合には(S20,YES)、画像評価部22は、各観察領域の撮影画像の評価結果をウェル単位で統合し、ウェル単位の評価結果を取得する(S22)。
 そして、表示制御部23は、各観察画像の撮影画像を用いて合成画像を生成し、合成画像を表示装置30に表示させ、かつウェル単位での統合評価結果を表示装置30に表示させる(S24)。
 上記実施形態の細胞画像評価システムによれば、観察領域毎の撮影画像がボケているか否かを判別し、撮影画像に含まれる細胞の状態を評価する際、ボケた撮影画像とボケていない撮影画像とで異なる評価方法で評価するようにしたので、その撮影画像に適した評価方法で評価することができ、より正確かつ、信頼性の高い評価を行うことができる。
 なお、上記実施形態においては、画像評価部22において、ウェル内の各観察領域の撮影画像を統合して、ウェル単位での評価結果を算出するようにしたが、このように統合された評価結果を算出する際、ボケた撮影画像の評価結果とボケていない撮影画像の評価結果とに重み付けを付加するようにしてもよい。重み付けとしては、ボケていない撮影画像の評価結果に付加される重み付けが、メニスカス領域画像の評価結果に付加される重み付けよりも大きくなるように設定することが好ましい。これは、ボケていない撮影画像の方が評価結果の精度が高いと考えられるからである。
 具体的には、たとえばウェル内の各観察領域の成長度の平均値をウェル単位の成長度として求める場合、ボケた撮影画像の観察領域の成長度に対して0.5よりも小さい重み付けを付加し、ボケていない撮影画像の観察領域の成長度に対して0.5以上の重み付けを付加するようにすればよい。
 または、成長度が閾値以上である観察領域の評価結果を「良い」とし、閾値未満である観察領域の評価結果を「悪い」とする場合、ボケた撮影画像の観察領域の成長度に対して0.5よりも小さい重み付けを付加して「良い」または「悪い」を評価し、ボケていない撮影画像の観察領域の成長度に対して0.5以上の重み付けを付加して「良い」または「悪い」を評価するようにしてもよい。そして、上述したようにウェル内に含まれる評価結果が「良い」の観察領域の数が、閾値以上である場合にウェル単位での評価結果を「良い」とし、閾値未満である場合にウェル単位での評価結果を「悪い」としてもよい。
 また、上記実施形態においては、ボケ判別器21aによって撮影画像がボケているか否かを判別するようにしたが、たとえばウェル内の各観察領域を撮影した撮影画像のうち、培養液などの培地の範囲の観察領域を撮影した撮影画像については、ボケた画像と輝度分布が類似しているため、ボケていないにも関わらず、ボケた画像であると誤判別される可能性がある。
 そこで、図6に示すように、劣化判別部21にさらに領域判別器21bを設けるようにしてもよい。領域判別器21bは、撮影画像が、細胞領域を撮影した画像であるのか培地領域を撮影した画像であるのかを判別する。
 具体的には、領域判別器21bは、細胞領域を撮影した撮影画像と培地領域を撮影した撮影画像を入力とし、細胞領域を撮影した撮影画像であるか培地領域を撮影した撮影画像であるかの判別結果を出力として機械学習によって生成される。機械学習の手法としては、ボケ判別器21aと同様に、公知な手法を用いることができる。
 そして、領域判別器21bは、観察領域毎の撮影画像の入力を受け付け、その撮影画像が、細胞領域を撮影した撮影画像であるか培地領域を撮影した撮影画像であるかの判別結果を出力する。
 なお、本実施形態においては、上述したように機械学習された領域判別器21bを用いて細胞領域を撮影した撮影画像であるか培地領域を撮影した撮影画像であるかを判別するようにしたが、判別方法としては、これに限らず、たとえば撮影画像からエッジを検出し、エッジの量に基づいて判別するようにしてもよいし、輝度の最大値と最小値の組から判別するようにしてもよし、撮影画像の空間周波数成分を解析することによって判別するようにしてもよい。
 そして、撮影画像が細胞領域を撮影した画像であると領域判別器21bによって判別され、かつ撮影画像がボケているとボケ判別器21aによって判別された場合に、撮影画像が劣化していると判別し、その撮影画像については、画像特徴量を用いて評価するようにしてもよい。一方、撮影画像がボケているとボケ判別器21aによって判別された場合でも、撮影画像が培地領域を撮影した画像であると領域判別器21bによって判別された場合には、画像特徴量ではなく、細胞の状態を示す特徴を用いて評価するようにしてもよい。
 また、上記実施形態においては、劣化判別部21において、撮影画像がボケているか否かを判別することによって、撮影画像が劣化しているか否かを判別するようにしたが、すなわちオートフォーカス制御のミスによる撮影画像の劣化を判別するようにしたが、撮影画像の劣化要因としてはこれだけではない。
 たとえば顕微鏡装置10における光源に印可される電圧変動によって照明光の光量が変動し、撮影画像が暗い画像となってしまう場合がある。このような暗い撮影画像を、その他の正常な光量の撮影画像と同じように評価したのでは、正確な評価結果が得られない場合がある。図7は、ウェル内の各観察領域の撮影画像の一例を示す図である。図7において矩形領域で分割された各領域が各観察領域に相当する。また、図7に示す例では、点線四角で示す観察領域の撮影画像が、照明光の光量変動によって劣化した画像である。
 そこで、図8に示すように、劣化判別部21に光量変動劣化判別器21cを設け、光量変動劣化判別器21cにおいて、観察領域毎の撮影画像が照明光の光量変動によって劣化しているか否か判別し、その判別結果に応じて、評価方法を変更するようにしてもよい。
 具体的には、光量変動劣化判別器21cは、撮影画像の平均輝度および最小値と最大値の組のうちの少なくとも1つを入力とし、照明光の光量変動によって劣化しているいか否かの判別結果を出力として機械学習によって生成された。機械学習の手法としては、ボケ判別器21aと同様に、公知な手法を用いることができる。
 そして、光量変動劣化判別器21cは、観察領域毎の撮影画像の入力を受け付け、その撮影画像が、照明光の光量変動によって劣化している否かの判別結果を出力する。
 なお、本実施形態においては、上述したように機械学習された光量変動劣化判別器21cを用いて撮影画像が光量変動によって劣化しているか否かを判別するようにしたが、判別方法としては、これに限らず、たとえば撮影画像の平均輝度の閾値判定によって判別するようにしてもよいし、撮影画像の輝度分布を解析することによって判別するようにしてもよい。
 そして、撮影画像が照明光の光量変動によって劣化していると光量変動劣化判別器21cによって判別された場合には、その撮影画像については、画像特徴量を用いて評価するようにすればよい。一方、撮影画像が照明光の光量変動によって劣化していない場合には、画像特徴量ではなく、細胞の状態を示す特徴を用いて評価するようにすればよい。
 なお、劣化判別部21が、ボケ判別器21aと光量変動劣化判別器21cとの両方を備えるようにしてもよいし、さらに領域判別器21bを備えるようにしてもよい。
10  顕微鏡装置
20  細胞画像評価装置
21  劣化判別部
21a ボケ判別器
21b 領域判別器
21c 光量変動劣化判別器
22  画像評価部
23  表示制御部
30  表示装置
40  入力装置
50  ウェルプレート
51  ウェル
E   走査終了点
S   走査開始点
Sc  走査軌跡を示す実線

Claims (15)

  1.  細胞が収容された容器内を撮影した撮影画像に基づいて、前記撮影画像に含まれる前記細胞の状態を評価する画像評価部と、
     前記撮影画像が劣化しているか否かを判別する劣化判別部とを備え、
     前記画像評価部が、前記劣化判別部の判別結果に応じて、前記撮影画像の評価方法を変更する細胞画像評価装置。
  2.  前記画像評価部が、前記撮影画像が劣化していると判別された場合には、相対的に劣化に強い評価方法によって前記撮影画像を評価し、前記撮影画像が劣化していないと判別された場合には、相対的に劣化に弱い評価方法によって前記撮影画像を評価する請求項1記載の細胞画像評価装置。
  3.  前記画像評価部が、前記撮影画像が劣化していないと判別された場合には、前記撮影画像に含まれる細胞の状態を示す特徴量を用いて評価し、前記撮影画像が劣化していると判別された場合には、画像特徴量を用いて評価する請求項1または2記載の細胞画像評価装置。
  4.  前記細胞の状態を示す特徴量が、個々の細胞の状態の特徴量、細胞内に含まれる核小体の特徴量、白すじの特徴量、細胞内に含まれる核の特徴量および細胞のNC比(Nucleocytoplasmic ratio)の少なくとも1つを含む請求項3記載の細胞画像評価装置。
  5.  前記劣化判別部が、前記撮影画像がボケているか否かを判別する請求項1から4いずれか1項記載の細胞画像評価装置。
  6.  前記劣化判別部が、前記撮影画像がボケているか否かを判別するボケ判別器を備え、
     前記ボケ判別器が、機械学習によって生成される請求項5記載の細胞画像評価装置。
  7.  前記ボケ判別器が、前記撮影画像の輝度の分散、コントラスト、および最小値と最大値の組のうちの少なくとも1つに基づいて、前記撮影画像がボケているか否かを判別する請求項6記載の細胞画像評価装置。
  8.  前記劣化判別部が、前記撮影画像が、細胞領域を撮影した画像であるのか培地領域を撮影した画像であるのかを判別する領域判別器を備え、
     前記撮影画像が前記細胞領域を撮影した画像であると前記領域判別器によって判別され、かつ前記撮影画像がボケていると前記ボケ判別器によって判別された場合に、前記撮影画像が劣化していると判別する請求項6または7記載の細胞画像評価装置。
  9.  前記劣化判別部が、前記撮影画像が、照明光の光量変動によって劣化した画像であるか否かを判別する請求項1から4いずれか1項記載の細胞画像評価装置。
  10.  前記劣化判別部が、前記撮影画像が、照明光の光量変動によって劣化した画像であるか否かを判別する光量変動劣化判別器を備え、
     前記光量変動劣化判別器が、機械学習によって生成される請求項9記載の細胞画像評価装置。
  11.  前記光量変動劣化判別器が、前記撮影画像の平均輝度および最小値と最大値の組のうちの少なくとも1つに基づいて、前記撮影画像が光量変動によって劣化した画像であるか否かを判別する請求項10記載の細胞画像評価装置。
  12.  前記画像評価部が、前記容器内の複数の前記撮影画像の評価結果を統合して前記容器に対する評価結果を算出する請求項1から11いずれか1項記載の細胞画像評価装置。
  13.  前記撮影画像が、前記容器が設置されるステージおよび前記容器内の細胞の像を結像する結像光学系の少なくとも一方を移動させることによって、前記容器内の各観察領域を撮影した画像であり、
     前記劣化判別部が、前記観察領域毎の撮影画像が劣化しているか否かを判別する請求項1から12いずれか1項記載の細胞画像評価装置。
  14.  細胞が収容された容器内を撮影した撮影画像が劣化しているか否かを判別し、
     前記撮影画像に基づいて、前記撮影画像に含まれる前記細胞の状態を評価する際、前記劣化の判別結果に応じて、前記撮影画像の評価方法を変更する細胞画像評価方法。
  15.  コンピュータを、
     細胞が収容された容器内を撮影した撮影画像に基づいて、前記撮影画像に含まれる前記細胞の状態を評価する画像評価部と、
     前記撮影画像が劣化しているか否かを判別する劣化判別部として機能させる細胞画像評価プログラムであって、
     前記画像評価部が、前記劣化判別部の判別結果に応じて、前記撮影画像の評価方法を変更する細胞画像評価プログラム。
PCT/JP2018/008085 2017-03-30 2018-03-02 細胞画像評価装置および方法並びにプログラム Ceased WO2018180206A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019509060A JP6785947B2 (ja) 2017-03-30 2018-03-02 細胞画像評価装置および方法並びにプログラム
KR1020197024431A KR102261700B1 (ko) 2017-03-30 2018-03-02 세포 화상 평가 장치 및 방법과, 프로그램
EP18777272.8A EP3605086B1 (en) 2017-03-30 2018-03-02 Cell-image evaluation device and method and program
US16/543,301 US11756190B2 (en) 2017-03-30 2019-08-16 Cell image evaluation device, method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-067954 2017-03-30
JP2017067954 2017-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/543,301 Continuation US11756190B2 (en) 2017-03-30 2019-08-16 Cell image evaluation device, method, and program

Publications (1)

Publication Number Publication Date
WO2018180206A1 true WO2018180206A1 (ja) 2018-10-04

Family

ID=63677195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008085 Ceased WO2018180206A1 (ja) 2017-03-30 2018-03-02 細胞画像評価装置および方法並びにプログラム

Country Status (5)

Country Link
US (1) US11756190B2 (ja)
EP (1) EP3605086B1 (ja)
JP (1) JP6785947B2 (ja)
KR (1) KR102261700B1 (ja)
WO (1) WO2018180206A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020188814A1 (ja) * 2019-03-20 2020-09-24 株式会社島津製作所 細胞解析装置
JP2022187196A (ja) * 2021-06-07 2022-12-19 株式会社島津製作所 細胞画像解析方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12198309B2 (en) * 2018-10-26 2025-01-14 The Regents Of The University Of Michigan Phase detection and correction using image-based processing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549467A (ja) * 1991-08-23 1993-03-02 Tokimec Inc 培養細胞観察装置
JP2010231695A (ja) * 2009-03-30 2010-10-14 Dainippon Screen Mfg Co Ltd ボケ画像判定方法およびボケ画像判定装置
JP2011210156A (ja) * 2010-03-30 2011-10-20 Nec Corp 画像処理装置、画像読取装置、画像処理方法及び画像処理プログラム
JP2013535048A (ja) 2010-06-04 2013-09-09 アペリオ・テクノロジーズ・インコーポレイテッド デジタル化された顕微鏡スライドのスライド品質を判断するシステム及び方法
US20150055844A1 (en) * 2013-08-21 2015-02-26 Sectra Ab Methods, systems and circuits for generating magnification-dependent images suitable for whole slide images
JP2015061522A (ja) * 2013-08-22 2015-04-02 富士フイルム株式会社社 観察画像撮影評価装置および方法並びにプログラム
WO2015182382A1 (ja) * 2014-05-30 2015-12-03 富士フイルム株式会社 細胞評価装置および方法並びにプログラム
WO2016170656A1 (ja) * 2015-04-23 2016-10-27 オリンパス株式会社 画像処理装置、画像処理方法および画像処理プログラム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024193A (ja) * 2004-06-07 2006-01-26 Fuji Photo Film Co Ltd 画像補正装置、画像補正プログラム、画像補正方法、および画像補正システム
KR20090006295A (ko) * 2007-07-11 2009-01-15 하숙태 세포 슬라이드 판독 장치, 세포 슬라이드 판독 시스템,이를 이용하는 세포 슬라이드 판독 방법 및 기록매체
US20110317000A1 (en) 2009-03-05 2011-12-29 Hwee Guan Lee Method and system for enhancing microscopy image
JP5745919B2 (ja) * 2011-04-28 2015-07-08 浜松ホトニクス株式会社 細胞解析方法、細胞解析装置、および細胞解析プログラム
JP5333635B1 (ja) * 2012-08-23 2013-11-06 富士ゼロックス株式会社 画像処理装置、プログラム及び画像処理システム
KR20140140941A (ko) * 2013-05-30 2014-12-10 삼성디스플레이 주식회사 열화 보상 시스템 및 열화 보상 방법
WO2016120441A2 (en) * 2015-01-30 2016-08-04 Ventana Medical Systems, Inc. Quality metrics for automatic evaluation of dual ish images
CN107406811A (zh) * 2015-04-07 2017-11-28 奥林巴斯株式会社 细胞解析装置和细胞解析方法
JP6742724B2 (ja) * 2015-12-28 2020-08-19 シスメックス株式会社 細胞領域決定方法、細胞撮像システム、細胞画像の処理装置及びコンピュータプログラム
WO2017169139A1 (ja) * 2016-03-29 2017-10-05 ソニー株式会社 画像処理装置、画像処理方法及び医療システム
US10438096B2 (en) * 2016-12-27 2019-10-08 Definiens Ag Identifying and excluding blurred areas of images of stained tissue to improve cancer scoring
JP6739060B2 (ja) * 2017-01-24 2020-08-12 パナソニックIpマネジメント株式会社 画像生成装置及び画像生成方法
CN115247129A (zh) * 2017-02-27 2022-10-28 田边刚士 细胞处理装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549467A (ja) * 1991-08-23 1993-03-02 Tokimec Inc 培養細胞観察装置
JP2010231695A (ja) * 2009-03-30 2010-10-14 Dainippon Screen Mfg Co Ltd ボケ画像判定方法およびボケ画像判定装置
JP2011210156A (ja) * 2010-03-30 2011-10-20 Nec Corp 画像処理装置、画像読取装置、画像処理方法及び画像処理プログラム
JP2013535048A (ja) 2010-06-04 2013-09-09 アペリオ・テクノロジーズ・インコーポレイテッド デジタル化された顕微鏡スライドのスライド品質を判断するシステム及び方法
US20150055844A1 (en) * 2013-08-21 2015-02-26 Sectra Ab Methods, systems and circuits for generating magnification-dependent images suitable for whole slide images
JP2015061522A (ja) * 2013-08-22 2015-04-02 富士フイルム株式会社社 観察画像撮影評価装置および方法並びにプログラム
WO2015182382A1 (ja) * 2014-05-30 2015-12-03 富士フイルム株式会社 細胞評価装置および方法並びにプログラム
WO2016170656A1 (ja) * 2015-04-23 2016-10-27 オリンパス株式会社 画像処理装置、画像処理方法および画像処理プログラム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020188814A1 (ja) * 2019-03-20 2020-09-24 株式会社島津製作所 細胞解析装置
JPWO2020188814A1 (ja) * 2019-03-20 2021-12-02 株式会社島津製作所 細胞解析装置
JP7006833B2 (ja) 2019-03-20 2022-01-24 株式会社島津製作所 細胞解析装置
JP2022187196A (ja) * 2021-06-07 2022-12-19 株式会社島津製作所 細胞画像解析方法
JP7707664B2 (ja) 2021-06-07 2025-07-15 株式会社島津製作所 細胞画像解析方法

Also Published As

Publication number Publication date
JPWO2018180206A1 (ja) 2019-12-26
US20190370967A1 (en) 2019-12-05
EP3605086A1 (en) 2020-02-05
KR102261700B1 (ko) 2021-06-04
EP3605086B1 (en) 2023-06-07
EP3605086A4 (en) 2020-02-12
JP6785947B2 (ja) 2020-11-18
KR20190110576A (ko) 2019-09-30
US11756190B2 (en) 2023-09-12

Similar Documents

Publication Publication Date Title
US12411329B2 (en) Auto-focus methods and systems for multi-spectral imaging
JP6837493B2 (ja) 細胞画像評価装置および細胞画像評価制御プログラム
US8237785B2 (en) Automatic focusing apparatus for use in a microscope in which fluorescence emitted from a cell is captured so as to acquire a cell image, and automatic focusing method therefor
US11030751B2 (en) Cell image evaluation device, method, and program
US11756190B2 (en) Cell image evaluation device, method, and program
JP6045292B2 (ja) 細胞計数装置及び細胞計数プログラム
CN111932542B (zh) 一种基于多焦距的图像识别方法及装置、存储介质
WO2019044416A1 (ja) 撮影処理装置、撮影処理装置の制御方法および撮影処理プログラム
JP6534294B2 (ja) 撮像装置および方法並びに撮像制御プログラム
WO2017154203A1 (ja) 画像処理装置、観察装置、及びプログラム
JP2016208854A (ja) 撮像装置および方法並びに撮像制御プログラム
JP2017063651A (ja) 細胞評価装置および方法
JP2016208856A (ja) 撮像装置および方法並びに撮像制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18777272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019509060

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197024431

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018777272

Country of ref document: EP

Effective date: 20191030