WO2018171467A1 - 一种任意关系的二阶子问题逆运动学求解方法 - Google Patents
一种任意关系的二阶子问题逆运动学求解方法 Download PDFInfo
- Publication number
- WO2018171467A1 WO2018171467A1 PCT/CN2018/078833 CN2018078833W WO2018171467A1 WO 2018171467 A1 WO2018171467 A1 WO 2018171467A1 CN 2018078833 W CN2018078833 W CN 2018078833W WO 2018171467 A1 WO2018171467 A1 WO 2018171467A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solution
- order
- formula
- inverse kinematics
- inverse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16Z—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
- G16Z99/00—Subject matter not provided for in other main groups of this subclass
Definitions
- the invention belongs to the field of robot inverse kinematics, and particularly relates to an inverse kinematic solution method for a second-order sub-problem of arbitrary relations.
- the Paden-Kanhan sub-problem is widely used in robot inverse kinematics because of its geometric and numerical stability, and the ability to flexibly provide closed solutions for a variety of robots.
- the Paden-Kanhan sub-problems are mainly divided into three categories: first-order sub-problems, second-order sub-problems, and third-order sub-problems.
- the first-order sub-problem is the inverse solution to the rotation R or translation T motion of a single joint;
- the second-order sub-problem is for the inverse problem of two joints, including three cases: RR, TT, RT/TR, where RR It is divided into different types such as intersecting, parallel, and different vertical;
- the third-order sub-problem is an inverse solution to the three joints, including six cases.
- it is difficult to guarantee many geometric relations due to machining and assembly, such as: intersecting, parallel, and different structures need to choose different formulas, which brings a lot of inconvenience to practical applications.
- the present invention proposes an inverse kinematics solving method for a second-order sub-problem with arbitrary relationship, which is reasonable in design, overcomes the deficiencies of the prior art, and has good effects.
- An inverse kinematic solution method for a second-order subproblem of arbitrary relations comprising the following steps:
- Step 1 Find ⁇ 1
- the second-order subproblem RR can be expressed as a formula
- spin quantity it can be known that:
- Step 2 Find ⁇ 2
- the specific quadrant of the ⁇ 2 angle is defined by with The sign determines that when the two adjacent joints intersect, the points r 1 and r 2 on the two joint axes must satisfy r 1 ⁇ r 2 ⁇ r 0 , where r 0 is the intersection of the two axes.
- Figure 1 is a diagram showing the RR structure of an arbitrary relationship.
- An inverse kinematic solution method for a second-order subproblem of arbitrary relations comprising the following steps:
- Step 1 Find ⁇ 1
- the second-order subproblem RR can be expressed as a
- I 3 ⁇ 3 is a 3 ⁇ 3 unit matrix
- Is a rotation matrix which can be expressed as Rodrigues:
- Is the antisymmetric matrix of the unit direction vector ⁇ [ ⁇ x , ⁇ y , ⁇ z ] T , which can be expressed as:
- equation (9) can be changed to:
- Step 2 Find ⁇ 2
- ⁇ 2 can be expressed as:
- the specific quadrant of the ⁇ 2 angle is defined by with The sign determines that when the two adjacent joints intersect, the points r 1 and r 2 on the two joint axes must satisfy r 1 ⁇ r 2 ⁇ r 0 , where r 0 is the intersection of the two axes.
Landscapes
- Manipulator (AREA)
- Prostheses (AREA)
Abstract
一种任意关系的二阶子问题逆运动学求解方法,属于机器人逆运动学领域,涉及二阶子问题RR的逆解方法,该方法在指数积模型的基础上,利用旋量理论的基本性质和Rodrigues旋转矩阵表达,将几何方法与代数方法结合起来给出一种通用的关节角求解公式,不需要考虑关节轴线之间的关系,无论是相交、平行、还是异面都可以利用这种方法直接求出。所述方法对机器人逆解的求解方法进行了拓展,扩大了适应范围,简化了求解过程,为机器人在实际的开发和应用中提供了方便。
Description
本发明属于机器人逆运动学领域,具体涉及一种任意关系的二阶子问题逆运动学求解方法。
Paden-Kanhan子问题在机器人逆运动学应用非常广泛,因为它具有几何意义和数值稳定性,能够灵活的为多种机器人提供封闭解。Paden-Kanhan子问题主要分为三类:一阶子问题,二阶子问题,三阶子问题。其中一阶子问题是针对单关节的转动R或平移T运动的逆解问题;二阶子问题是针对两个关节逆解问题,包含了3种情况:RR,TT,RT/TR,其中RR又分为相交、平行、异面垂直等不同的类型;三阶子问题是针对三个关节的逆解问题,包含了6种情况。在实际中,由于加工、装配很多几何关系很难保证,比如:相交、平行,而且不同的结构需要选择不同的公式,这为实际应用带来很多不便。
发明内容
针对现有技术中存在的上述技术问题,本发明提出了一种任意关系的二阶子问题逆运动学求解方法,设计合理,克服了现有技术的不足,具有良好的效果。
为了实现上述目的,本发明采用如下技术方案:
一种任意关系的二阶子问题逆运动学求解方法,包括如下步骤:
步骤1:求θ
1
二阶子问题RR可用公式表示为
||c-r
2||=||p-r
2|| (5);
x
1sinθ
1+y
1cosθ
1=z
1 (9);
步骤2:求θ
2
根据已知的θ
1可得c的值,而c还可表示为:
x
2sinθ
2+y
2cosθ
2=z
2 (14);
本发明所带来的有益技术效果:
1、计算效率高,给出了关节角度的封闭解,可利反三角函数直接求出,具有很高的计算效率;2、实现简单,每个关节的表达形式非常简单易懂,只需求解一次反三角函数即可;3、应用范围广,可应用于任意2R机器人中,不需要考虑其轴线之间的几何关系。
图1为任意关系的RR结构图。
下面结合附图以及具体实施方式对本发明作进一步详细说明:
一种任意关系的二阶子问题逆运动学求解方法,包括如下步骤:
步骤1:求θ
1
如图1所示,二阶子问题RR可用公式表示为
其中,
和
是空间点p和q的齐次坐标表示,且
点为初始点,绕轴ω
2转θ
2到点c,c点绕ω
1旋转θ
1到点q,
为运动旋量,由关节轴的单位方向向量
和轴上的任意一点
构成,
是刚体变换的指数表达,对于转动关节其表达式为:
根据旋量理论的距离相等原则可知:
||c-r
2||=||p-r
2|| (5);
根据旋量理论的基本原理可知:
上述两式相减可得:
将公式(7)带入公式(5)可得:
x
1sinθ
1+y
1cosθ
1=z
1 (9);
其中
则关节角度θ
1可表示为:
步骤2:求θ
2
将θ
1的值带入公式(7)中可得c的值,而c还可表示为:
x
2sinθ
2+y
2cosθ
2=z
2 (14);
其中
则θ
2可表示为:
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。
Claims (1)
- 一种任意关系的二阶子问题逆运动学求解方法,其特征在于,包括如下步骤:步骤1:求θ 1二阶子问题RR可用公式表示为||c-r 2||=||p-r 2|| (5);x 1sinθ 1+y 1cosθ 1=z 1 (9);步骤2:求θ 2根据已知的θ 1可得c的值,而c还可表示为:x 2sinθ 2+y 2cosθ 2=z 2 (14);
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201710168532.X | 2017-03-21 | ||
| CN201710168532.XA CN106991277B (zh) | 2017-03-21 | 2017-03-21 | 一种任意关系的二阶子问题逆运动学求解方法 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018171467A1 true WO2018171467A1 (zh) | 2018-09-27 |
Family
ID=59411703
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2018/078833 Ceased WO2018171467A1 (zh) | 2017-03-21 | 2018-03-13 | 一种任意关系的二阶子问题逆运动学求解方法 |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN106991277B (zh) |
| WO (1) | WO2018171467A1 (zh) |
Families Citing this family (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN106991277B (zh) * | 2017-03-21 | 2018-03-20 | 山东科技大学 | 一种任意关系的二阶子问题逆运动学求解方法 |
| CN108763151A (zh) * | 2018-04-12 | 2018-11-06 | 山东科技大学 | 一种任意三关节的逆运动学求解方法 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102509025A (zh) * | 2011-11-25 | 2012-06-20 | 苏州大学 | 一种六自由度仿人灵巧臂逆运动学的快速求解方法 |
| CN102637158A (zh) * | 2012-04-28 | 2012-08-15 | 谷菲 | 一种六自由度串联机器人运动学逆解的求解方法 |
| CN103390101A (zh) * | 2013-07-15 | 2013-11-13 | 哈尔滨工程大学 | 串联形式机器人的逆运动学通用求解方法 |
| US20160081668A1 (en) * | 2013-08-27 | 2016-03-24 | The Johns Hopkins University | System and Method For Medical Imaging Calibration and Operation |
| CN106991277A (zh) * | 2017-03-21 | 2017-07-28 | 山东科技大学 | 一种任意关系的二阶子问题逆运动学求解方法 |
-
2017
- 2017-03-21 CN CN201710168532.XA patent/CN106991277B/zh active Active
-
2018
- 2018-03-13 WO PCT/CN2018/078833 patent/WO2018171467A1/zh not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102509025A (zh) * | 2011-11-25 | 2012-06-20 | 苏州大学 | 一种六自由度仿人灵巧臂逆运动学的快速求解方法 |
| CN102637158A (zh) * | 2012-04-28 | 2012-08-15 | 谷菲 | 一种六自由度串联机器人运动学逆解的求解方法 |
| CN103390101A (zh) * | 2013-07-15 | 2013-11-13 | 哈尔滨工程大学 | 串联形式机器人的逆运动学通用求解方法 |
| US20160081668A1 (en) * | 2013-08-27 | 2016-03-24 | The Johns Hopkins University | System and Method For Medical Imaging Calibration and Operation |
| CN106991277A (zh) * | 2017-03-21 | 2017-07-28 | 山东科技大学 | 一种任意关系的二阶子问题逆运动学求解方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN106991277A (zh) | 2017-07-28 |
| CN106991277B (zh) | 2018-03-20 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| CN107203653B (zh) | 一种六自由度串联机器人的逆运动学通用求解方法 | |
| CN109895101A (zh) | 一种关节型机械臂逆运动学数值唯一解求取方法 | |
| CN103942427B (zh) | 一类六自由度机械臂运动学逆解的快速简便求法 | |
| CN105843162B (zh) | 基于空间解析几何求解工业机器人中圆弧轨迹的方法 | |
| CN109291046A (zh) | 一种七自由度拟人构型机械臂逆运动学规划方法 | |
| CN107584474B (zh) | 一种基于几何投影的球面关节双臂机器人协调运动方法 | |
| CN103901898B (zh) | 一种多自由度机器人的逆运动学通用求解方法 | |
| CN104635762B (zh) | 一种面向srs仿人手臂的自运动角计算方法 | |
| CN111452041B (zh) | 一种非球腕6r机器人逆运动学求取方法 | |
| CN102609002B (zh) | 一种六自由度串联机械臂的位置逆解控制方法 | |
| CN107589934A (zh) | 一种关节型机械臂逆运动学解析解的求取方法 | |
| CN106845037B (zh) | 一种五自由度串联机器人的逆运动学通用求解方法 | |
| CN104991448B (zh) | 一种基于构型平面的水下机械臂运动学的求解方法 | |
| CN114131601B (zh) | 偏置腕6r工业机械手笛卡尔轨迹跟踪逆运动学算法 | |
| CN107160401B (zh) | 一种解决冗余度机械臂关节角偏移问题的方法 | |
| CN106228260A (zh) | 一种平面三自由度空间机器人逆运动学求解方法 | |
| CN112276940A (zh) | 一种六自由度非球型手腕机器人逆运动学求解方法 | |
| CN105938512A (zh) | 机器人激光切割路径的计算系统及其应用 | |
| WO2018171467A1 (zh) | 一种任意关系的二阶子问题逆运动学求解方法 | |
| Li et al. | Solving inverse kinematics model for 7-DoF robot arms based on space vector | |
| CN109434838B (zh) | 线驱动连续机器人内窥操作的协同运动规划方法及系统 | |
| CN103529856B (zh) | 5旋转关节机器人末端工具位姿控制方法 | |
| Wu et al. | Inverse kinematics of a class of 7R 6-DOF robots with non-spherical wrist | |
| CN111958602A (zh) | 一种手腕偏置型6轴机器人实时逆解算法 | |
| WO2019196229A1 (zh) | 一种任意三关节的逆运动学求解方法 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18771920 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 18771920 Country of ref document: EP Kind code of ref document: A1 |