[go: up one dir, main page]

WO2018164157A1 - 歩行・足部評価方法、歩行・足部評価プログラムおよび歩行・足部評価装置 - Google Patents

歩行・足部評価方法、歩行・足部評価プログラムおよび歩行・足部評価装置 Download PDF

Info

Publication number
WO2018164157A1
WO2018164157A1 PCT/JP2018/008663 JP2018008663W WO2018164157A1 WO 2018164157 A1 WO2018164157 A1 WO 2018164157A1 JP 2018008663 W JP2018008663 W JP 2018008663W WO 2018164157 A1 WO2018164157 A1 WO 2018164157A1
Authority
WO
WIPO (PCT)
Prior art keywords
foot
walking
data
parameter
evaluation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/JP2018/008663
Other languages
English (en)
French (fr)
Inventor
裕治 太田
絵美 安在
香奈子 中嶋
美希 留奥
直樹 才脇
安那 笹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NARA WOMEN'S UNIVERSITY
National Institute of Advanced Industrial Science and Technology AIST
Ochanomizu University
Original Assignee
NARA WOMEN'S UNIVERSITY
National Institute of Advanced Industrial Science and Technology AIST
Ochanomizu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NARA WOMEN'S UNIVERSITY, National Institute of Advanced Industrial Science and Technology AIST, Ochanomizu University filed Critical NARA WOMEN'S UNIVERSITY
Priority to JP2019504620A priority Critical patent/JP6928355B2/ja
Publication of WO2018164157A1 publication Critical patent/WO2018164157A1/ja
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43DMACHINES, TOOLS, EQUIPMENT OR METHODS FOR MANUFACTURING OR REPAIRING FOOTWEAR
    • A43D1/00Foot or last measuring devices; Measuring devices for shoe parts
    • A43D1/02Foot-measuring devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb

Definitions

  • the present invention relates to a walking / foot evaluation method, a walking / foot evaluation program, and a walking / foot evaluation device.
  • Patent Documents 1 and 2 In related fields, inventions relating to the development of devices for detecting human plantar pressure have been made (Patent Documents 1 and 2).
  • the foot shape is measured in a standing position, and the shoe is supported by a technique that supports shoe selection based on foot arch height data (Patent Document 3) and a sample insole with a different fitting point and raised height.
  • Patent Document 4 There has also been proposed a technique (Patent Document 4) for determining a fitting point and a raised height by comparing the walking motion data out of balance with the acceleration measured by the user.
  • Non-Patent Documents 1 to 3 development of a measuring device for evaluating plantar pressure and verification of its effectiveness (Non-Patent Document 1), investigation on the relationship between the foot arch structure and plantar pressure using the developed device (Non-Patent Document 2) , Research on the relationship between plantar pressure value characteristics and the fall history of the elderly (Non-Patent Document 3), proposal of a mechanism that can evaluate the state of the foot in daily life, and the feature value of the data obtained Have been evaluated.
  • the conventional technology was able to acquire data from individual subjects, it does not consider collecting data of multiple users in a unified manner, and performs appropriate analysis and evaluation It was not enough on.
  • the conventional technology uses measurement data in a stationary state or measurement data of a walking state in an experimentally set environment, both of which acquire data from walking movements in daily life and perform analysis / evaluation Is not realized.
  • the present invention has been proposed in view of the above-described conventional problems, the purpose of which is to grasp the daily walking state of the user as data, and further collect data of a plurality of users in a unified manner, It is to ensure that appropriate analysis and evaluation is performed.
  • At least plantar pressure data for a predetermined time during walking and standing from one or more sensors provided on an insole of a shoe used by a plurality of users. And analyzing the acquired data, and for each user, at least the plantar pressure parameter, the foot pressure center parameter and the time parameter during walking, and at least the plantar pressure parameter and the foot pressure center parameter when standing still
  • the computer executes the process of acquiring and accumulating.
  • data of a plurality of users are uniformly collected from information obtained from daily walking motions of the user, and appropriate analysis / evaluation is performed.
  • FIG. (2) which shows the structural example of various data.
  • FIG. (3) which shows the structural example of various data.
  • FIG. (4) which shows the structural example of various data.
  • FIG. (5) which shows the structural example of various data.
  • FIG. (6) which shows the structural example of various data.
  • FIG. (7) which shows the example of a structure of various data.
  • FIG. 6 is a second diagram illustrating an example of COP variation. It is a flowchart which shows the process example of a stance time evaluation part. It is a flowchart which shows the process example of a both leg support ratio evaluation part. It is a flowchart which shows the process example of a right-and-left difference evaluation part.
  • FIG. 1 is a diagram showing a configuration example of a system according to an embodiment of the present invention.
  • a shoe 1 left and right used by a user is provided with a measuring device (shoe device) 2, and signal data detected by a sensor unit 21 is transmitted via Bluetooth (registered trademark) via a communication unit 22.
  • the information is transmitted to an information terminal 3 such as a smartphone, a tablet, or a PC (Personal Computer) by wireless communication means such as a wireless local area network (LAN).
  • the data transmission interval from the measuring device 2 to the information terminal 3 is, for example, 10 ms (millisecond, 100 Hz).
  • the sensor unit 21 includes, for example, a plurality of (seven in the illustrated example) pressure sensors 212 on an insole (insole) type base material 211.
  • a shearing force (frictional force) sensor may be provided.
  • the insole is provided with a mechanism for changing color (mechanism for applying visual stimulation) or a mechanism for changing material or changing hardness (mechanism for applying tactile stimulation) by control from the information terminal 3 side. By doing so, the user may be fed back with respect to the state of walking or foot.
  • the communication unit 22 also has a function of transmitting position data by GPS (Global Positioning System) or the like. The position data may be acquired from the information terminal 3 instead of the measurement device 2.
  • the information terminal 3 transmits the data received from the measuring device 2 and temporarily accumulated to the server device 5 via a network 4 such as a mobile radio network or the Internet at predetermined time intervals (for example, 10 s). It has a function to do. In addition, the information terminal 3 acquires information on the user's walking and foot state from the server device 5 and displays the screen, and provides the user with feedback on walking and foot state, shoe selection support, and the like. It also has a function. In addition, although it was description about the case where data are transmitted to the server apparatus 5 via the information terminal 3 from the measurement device 2, data are directly transmitted from the measurement device 2 to the server apparatus 5 depending on an environment. It may be a thing. In this case, the information terminal 3 is used for the operation of the measuring device 2 and feedback to the user.
  • a network 4 such as a mobile radio network or the Internet at predetermined time intervals (for example, 10 s). It has a function to do.
  • the information terminal 3 acquires information on the user's walking and foot state from the server
  • the server device 5 includes a basic data input unit 501, a measurement data receiving unit 502, a data analysis unit 503, a life log writing unit 506, an evaluation unit 507, a comprehensive evaluation unit 515, and a comprehensive analysis unit 516 as parts for realizing processing functions. And. Further, a database 521 for accumulating data used for processing is provided. The database 521 may be held and managed separately from the server device 5.
  • the database 521 holds user data 522, shoe data 523, life log data 524, position data 525, measurement data 526, post-walking processing data 527, and stationary post-processing data 528.
  • User data 522 and shoe data 523 are basic data such as users and shoes.
  • the life log data 524 is data indicating user behavior (including a schedule).
  • the position data 525 is data acquired from the measurement device 2 or the information terminal 3
  • the measurement data 526 is data acquired from the measurement device 2.
  • the post-walking processing data 527 and the stationary standing processing post-processing data 528 are data obtained by analysis from the measurement data 526.
  • the user data 522 includes “user ID”, “name”, “shoe ID”, “sex”, “birth date”, “height”, “weight”, “shoe size”, “foot length”, “foot width”. ”,“ Foot height ”,“ foot circumference ”,“ registration date ”, and“ update date ”.
  • the shoe data 523 includes “shoe ID”, “user ID”, “purchase date”, “use start date”, “shoe store ID”, “shoe manufacturer model number”, “shoe type”, “theme”, “shoe rub”.
  • the life log data 524 includes “log ID”, “year / month / day / time”, “user ID”, “plan for one day”, “destination”, “movement distance”, “step count”, and “average walking speed”. ”,“ Most position information (GPS) ”,“ registration date ”,“ update date ”, and the like.
  • the position data 525 has items such as “year / month / day / time”, “user ID”, and “position information (GPS)” as illustrated in FIG.
  • the measurement data 526 includes “year / month / day / time”, “user ID”, “left foot 1 sensor: hind foot (heel) pressure value”, “left foot 2 sensor: middle foot 1). “Pressure value” “Left foot No. 3 sensor: Forefoot 1) Pressure value” “Left foot No. 4 sensor: Forefoot 2 pressure value” “Left foot No. 5 sensor: Forefoot 3 pressure value” “Left foot No.
  • the sensor numbers are shown in FIG.
  • the waveform data is continuous data of pressure values for a time (for example, 10 s) accumulated in the information terminal 3 in a sampling period (for example, 10 ms).
  • COP is the center of foot pressure.
  • Left foot first sensor: rear foot ( ⁇ ) pressure value indicate waveform data of the pressure value.
  • Bottom foot pressure center COP_X coordinate value indicates a locus of coordinate values.
  • the post-walking data 527 includes “year / month / day time”, “user ID”, “number of steps”, “left leg average stance time”, “right leg average stance time”, “both leg support ratio”, “left leg monopod”.
  • "Support ratio” "Right foot single leg support ratio”
  • Right foot 3rd sensor Forefoot 1 maximum pressure value average”“ Right foot 4 sensor
  • Left foot No. 1 sensor rear foot ( ⁇ ) maximum pressure value average” and the like are plantar pressure parameters.
  • Left foot COP bending angle “Left foot walking middle period COP_X coordinate range” and the like are COP parameters.
  • Left foot average stance time “right foot average stance time”, “both leg support ratio”, “left foot single leg support ratio”, and “right foot single leg support ratio” are time parameters.
  • the post-stillation processing data 528 includes “year / month / day / time”, “user ID”, “left foot 1 sensor: rear foot (heel) load ratio”, “left foot 2 sensor: middle”.
  • “1st foot load ratio” "Left foot 3 sensor: front foot 1 load ratio”
  • Left foot 4 sensor front foot 2 load ratio”
  • Left foot 5 sensor front foot 3 load ratio
  • Left foot 6 sensor middle foot Section 2 load ratio ""
  • Right foot 3 sensor Middle foot 1 load ratio ""
  • Right foot 3 sensor “Forefoot 1 load ratio”
  • Right foot 6 sensor Middle foot 2 load ratio”
  • the basic data input unit 501 has a function of accepting basic data settings such as users and shoes and registering them in the user data 522 and shoe data 523 of the database 521, respectively.
  • the measurement data receiving unit 502 has a function of receiving data transmitted from the measurement device 2 via the information terminal 3 and registering it in the position data 525 and the measurement data 526 of the database 521.
  • the data analysis unit 503 includes a stance phase data analysis unit 504 and a stationary standing data analysis unit 505, and has a function of generating data serving as a basis for evaluation by the subsequent evaluation unit 507. That is, the stance phase data analysis unit 504 analyzes the measurement data 526 and generates post-walking data 527, and the stationary standing data analysis unit 505 analyzes the measurement data 526 and generates post-resting processing data 528. .
  • the life log writing unit 506 has a function of recording in the position data 525 and the life log data 524 of the database 521.
  • the evaluation unit 507 includes a forefoot local load evaluation unit 508, a pronation foot / extraction foot evaluation unit 509, a multi-step balance evaluation unit 510, a stance time evaluation unit 511, a both-leg support ratio evaluation unit 512, and a left-right difference evaluation unit 513.
  • a foot arch evaluation unit 514 and a buckle contact evaluation unit 517 are provided and have a function of performing various evaluations and generating an evaluation result.
  • the evaluation unit 507 evaluates each time, the evaluation result may be stored in association with the user.
  • the comprehensive evaluation unit 515 calculates a degree of leg, a body balance, a walking rhythm, and an activity from various evaluation results by the evaluation unit 507 and the life log data 524, and performs a comprehensive evaluation of the user's walking / foot. It has a function of visualizing and feeding back to the user.
  • the comprehensive analysis unit 516 has a function of performing a comprehensive analysis based on data accumulated in the database 521 and taking into account temporal changes, and realizing early detection / prediction warning of foot abnormalities. For example, even if the possibility of occurrence of a disorder or the like has not been evaluated for the target user at this time, the foot / still standing state and walking function are similar from other users' past data, When the possibility of the occurrence of a failure or the like is subsequently evaluated by the user, the occurrence of the failure or the like is also estimated in the future for the target user, and that fact is fed back.
  • the comprehensive analysis unit 516 also has a function of providing advice on selecting shoes suitable for the individual user and suggesting how to walk.
  • the management terminal 6 operated by the administrator can be connected to the server device 5 via the network 4 so that the administrator can confirm and maintain data managed by the server device 5.
  • FIG. 10 is a diagram illustrating a hardware configuration example related to information processing of the measurement device 2, the information terminal 3, the server device 5, and the management terminal 6, and illustrates a general computer configuration.
  • a measurement device 2 and the like are a CPU (Central Processing Unit) 201, a ROM (Read Only Memory) 202, a RAM (Random Access Memory) 203, and an SSD (Solid State Drive) that are connected to each other via a bus 207.
  • / HDD (Hard Disk Disk Drive) 204 is provided.
  • the measuring device 2 and the like include a connection I / F (Interface) 205 and a communication I / F 206.
  • the CPU 201 performs overall control of the operation of the measurement device 2 and the like by executing a program stored in the ROM 202 or the SSD / HDD 204 or the like using the RAM 203 as a work area.
  • the functions of the measurement device 2 and the like described in FIG. 1 are realized by executing a predetermined program in the CPU 201.
  • the program may be acquired via a recording medium, may be acquired via a network, or may be embedded in a ROM.
  • the stance phase data analysis unit 504 analyzes the measurement data 526 acquired during stance walking and generates post-walking processing data 527. In other words, the stance phase data analysis unit 504 uses the waveform data representing the human walking motion to perform walking events such as the stance phase and the free leg phase (when one foot of the human walking motion is seen, the foot touches the ground. Automatically detected in the stance phase in the separated state and the free leg phase in the state of getting out of the ground) to obtain numerical values related to human walking motion.
  • FIG. 11 is a flowchart illustrating a processing example of the stance phase data analysis unit 504.
  • the stance phase data analysis unit 504 acquires waveform data of pressure values of the respective sensors in the measurement data 526 (step S111), detects a ground contact point from the rising edge of the waveform, and cuts out waveform data for each walk. (Step S112). That is, the state from the point where the pressure values of all the sensors become the minimum to the point where the pressure values of all the sensors become the next is set as one stance phase, but the stance phase data is data of a normal walking state. This is scrutinized under the following conditions, and data corresponding to this is defined as one stance phase used for parameter extraction.
  • a sensor showing the highest pressure value (top maximum value) in the entire waveform data for a fixed period of walking is specified, and a plurality of maximum values of the waveform data from the sensor are all 80% based on the top maximum value.
  • B The length of one stance phase is less than 1200 ms.
  • FIG. 12 shows an example of the waveform data of seven sensors, and the waveforms of a plurality of steps are recorded. From these, the waveform data for each walk as shown in FIG. 13 is cut out.
  • the stance phase data analysis unit 504 detects the maximum pressure value of the waveform for each walk of each sensor, and divides the total maximum pressure value of a plurality of steps for each sensor by the number of steps. "Left foot No. 1 sensor: hind foot ( ⁇ ) maximum pressure value average” etc.) is acquired and acquired as a plantar pressure parameter (step S113).
  • FIG. 14 shows a state in which the maximum value (illustrated by a black circle) is acquired from the waveform of each sensor.
  • the stance phase data analysis unit 504 then includes the “left foot foot pressure center COP_X coordinate value”, “left foot foot pressure center COP_Y coordinate value”, “right foot foot pressure center COP_X coordinate value”, and “right foot foot pressure” in the measurement data 526.
  • center COP_Y coordinate value as COP parameters, “COP start position X coordinate” “COP start position Y coordinate” “COP end position X coordinate” “COP end position Y coordinate” “left foot COP flex angle” “right foot COP flex angle” "" Left-foot walking middle period COP_X coordinate range "" "Right-foot walking middle period COP_X coordinate range” is acquired (step S114).
  • FIG. 15 shows a COP trajectory passing from point A, which is the COP start position, through point H, (the intersection of the straight line connecting the third sensor and the fifth sensor and the COP trajectory) and passing through point B, which is the COP end position.
  • the angle formed by the straight line AH and the straight line HB is the COP bending angle.
  • the lateral direction in a plurality of steps of the COP coordinate closest to the midpoint of the COP start position Y coordinate and the COP end position Y coordinate intermediate between ground contact and getting out of bed
  • the Y coordinate direction that is the walking direction (longitudinal direction of the sole)
  • the difference between the maximum value and the minimum value is the middle walking COP_X coordinate range.
  • the stance phase data analysis unit 504 then, as a time parameter, “left foot average stance time”, “right foot average stance time”, “both leg support ratio”, “left foot single leg support ratio”, which is an average of a plurality of steps.
  • "Right foot single leg support ratio” is acquired (step S115).
  • FIG. 16 shows the ground contact state of the left and right feet. The time from one foot to the floor is the standing time, the time when both feet are grounded is the both-leg support period, and the time when only one foot is grounded is the single-leg support. It is a period.
  • the both-leg support ratio is a ratio of the time of the both-leg support period in the stance time.
  • the monopod support ratio is a ratio of the time of the single leg support period in the stance time.
  • the stance phase data analysis unit 504 then walks the acquired plantar pressure parameter, COP parameter, and time parameter, and the number of steps that are the number of stance phases within a predetermined walking time used in the analysis. It records in the post-processing data 527 (step S116).
  • the static standing data analysis unit 505 analyzes the measurement data 526 acquired when the standing posture is maintained for a certain period, and generates post-static standing processing data 528.
  • FIG. 17 is a flowchart showing a processing example of the stationary standing data analysis unit 505.
  • the stationary standing data analysis unit 505 acquires waveform data of the pressure value of each sensor of the measurement data 526 (step S121), and COP trajectory data (“both foot foot pressure center COP_X coordinate value” “both foot foot pressure”.
  • the center COP_Y coordinate value ”) is acquired (step S122).
  • the COP trajectory here is in a state of standing on both feet, and is therefore located near the center of both feet.
  • FIG. 18 shows an example of a COP locus, which fluctuates slightly toward the right foot.
  • the stationary standing data analysis unit 505 acquires the COP total trajectory length as one of the COP parameters from the COP trajectory (step S123). That is, the minute movement amount is obtained from the displacement of the COP x-coordinate and y-coordinate for each sampling period of the measurement data 526, and the total movement length is obtained by integrating the minute movement amount.
  • the stationary standing data analysis unit 505 acquires a COP rectangular area as one of the COP parameters (step S124).
  • the COP rectangular area is obtained as an area of a circumscribed rectangle of the COP locus.
  • the static standing data analysis unit 505 acquires the load ratio of each sensor as one of the plantar pressure parameters (step S125).
  • the load ratio of each sensor is obtained by dividing the average pressure value of each sensor by the sum of the average pressure values of all sensors (14 sensors on both feet).
  • FIG. 18 shows an example of load ratio values for each sensor (illustrated by a circle).
  • the stationary standing data analysis unit 505 then records the acquired plantar pressure parameter and COP parameter in the stationary standing post-processing data 528 (step S ⁇ b> 126).
  • the forefoot local load evaluating unit 508 evaluates the presence or absence of a local load on the forefoot part based on the post-walking data 527, and whether or not there is a possibility of occurrence of abnormalities such as eyelids or fish eyes.
  • FIG. 19 is a flowchart showing a processing example of the forefoot local load evaluation unit 508, which is an example of evaluating the possibility of wrinkles by evaluating the presence or absence of a local load on the forefoot.
  • the presence or absence of a local load is evaluated by comparing the values of each sensor based on the average of the maximum pressure values from the three sensors on the forefoot.
  • the forefoot local load evaluating unit 508 refers to the maximum pressure value average of the forefoot (3rd, 5th, and 7th sensors) from the post-walking data 527 (step S211).
  • the forefoot local load evaluating unit 508 sets the sensor indicating the maximum value among the three sensors and its value as S, and the other two sensors and their values as a and b (step S212).
  • the forefoot local load evaluating unit 508 determines the load ratio between S and 2a, and S and 2b (step S213).
  • the forefoot local load evaluating unit 508 When the forefoot local load evaluating unit 508 does not satisfy the condition that S is greater than 2a and S is greater than 2b (NO in step S213), the forefoot local load evaluating unit 508 assumes a normal load (step S214).
  • the forefoot local load evaluating unit 508 has a local load on the sensor S (step S215). It is evaluated that there is a possibility of occurrence of wrinkles in the area of the sensor S (step S216).
  • the pronation / extroversion foot evaluation unit 509 evaluates whether there is an abnormality in the pronation / extroversion foot based on the post-walking data 527.
  • FIG. 20 is a flowchart showing a processing example of the pronation / extroversion foot evaluation unit 509.
  • the pronation / extroversion foot evaluation unit 509 refers to the COP bending angle from the post-walking processing data 527 (step S221).
  • the pronation / extroversion foot evaluation unit 509 determines whether or not the COP flexion angle is smaller than 155 (step S222), and if it is determined that the COP flexion angle is smaller than 155 (YES in step S222), It is evaluated that there is a possibility of an outer leg (step S223).
  • the pronation foot / exterior foot evaluation unit 509 determines whether or not the COP bending angle is larger than 175 (step S224). If it is determined that the COP bending angle is greater than 175 (YES in step S224), it is evaluated that there is a possibility of a pronation foot (step S225). When determining that the COP flexion angle is not larger than 175 (NO in step S224), the pronation / extroversion foot evaluation unit 509 evaluates normal (step S226).
  • the multi-step balance evaluation unit 510 evaluates the multi-step balance based on the post-walking processing data 527.
  • FIG. 21 is a flowchart showing a processing example of the multi-step balance evaluation unit 510.
  • the multi-step balance evaluation unit 510 refers to the intermediate walking period COP_X coordinate range from the post-walking data 527 (step S231), and determines whether the intermediate walking period COP_X coordinate range is greater than 1 (step S232).
  • the multi-step balance evaluation unit 510 determines that the mid-walk COP_X coordinate range is larger than 1 (YES in step S232)
  • the multi-step balance evaluation unit 510 evaluates that the variation in the multi-step balance when walking is large (step S233). Further, when determining that the middle walking COP_X coordinate range is not larger than 1 (NO in step S232), the multiple-step balance evaluation unit 510 evaluates that the variation in the multiple-step balance when walking is small (step S234).
  • FIG. 22 and FIG. 23 are diagrams showing examples of COP variation, FIG. 22 shows an example where COP variation at a plurality of steps is small, and FIG. 23 shows an example where COP variation at a plurality of steps is large.
  • the stance time evaluation unit 511 evaluates the stance time based on the post-walking processing data 527.
  • FIG. 24 is a flowchart showing a processing example of the stance time evaluation unit 511.
  • the stance time evaluation unit 511 refers to the stance time as a time parameter from the post-walking data 527 (step S241) and compares it with the normal value of the stance time (eg, 600 to 900 ms). Evaluation such as shorter or longer is performed (step S242).
  • the both-leg support ratio evaluation unit 512 evaluates the both-leg support ratio based on the post-walking processing data 527.
  • FIG. 25 is a flowchart showing a processing example of the both-leg support ratio evaluation unit 512.
  • the both-leg support ratio evaluation unit 512 refers to the both-leg support ratio and the single-leg support ratio as time parameters from the post-walking data 527 (step S251), and each normal value (for example, about the both-leg support ratio). 20% to 40% and the single leg support ratio is 60% to 80%), and the evaluation is normal or less or more (step S252).
  • the left / right difference evaluation unit 513 evaluates the left / right difference in the static standing state based on the post-static standing process data 528.
  • FIG. 26 is a flowchart showing a processing example of the left / right difference evaluation unit 513.
  • the left / right difference evaluation unit 513 refers to the load ratios of the left foot 1st to 7th from the post-static standing process data 528 (step S311) and calculates the total left foot load ratio (Sum_Left) (step S312). .
  • the left / right difference evaluation unit 513 refers to the load ratios of the right foot No. 1 to No. 7 from the post-static standing process data 528 (Step S313), and calculates the right foot load ratio sum (Sum_Right) (Step S314).
  • the left / right difference evaluation unit 513 determines a value obtained by subtracting the right foot load ratio sum (Sum_Right) from the left foot load ratio sum (Sum_Left) (step S315). If it is less than ⁇ 20, it is evaluated that it is a right foot load (step S317), and if it is greater than ⁇ 20 and less than 20, it is evaluated as normal (step S318).
  • the foot arch evaluation unit 514 evaluates the formation state of the foot arch in the static standing state based on the post-static standing process data 528, and evaluates whether or not a flat foot is likely to be generated.
  • FIG. 27 is a flowchart showing a processing example of the foot arch evaluation unit 514.
  • the foot arch evaluation unit 514 refers to the left foot 2 sensor: middle foot 1 load ratio and the left foot 6 sensor: middle foot 2 load ratio from the post-static standing processing data 528 (step S321). ).
  • the foot arch evaluation unit 514 compares the load ratios of the left foot second sensor and the sixth sensor (step S322).
  • the foot arch evaluation unit 514 evaluates that the left foot is normal (step S323), and the load ratio of the second sensor is equal to or less than the load ratio of the sixth sensor. If it is, it is evaluated that the foot arch formation of the left foot is insufficient (step S324).
  • the foot arch evaluation unit 514 refers to the right foot 2 sensor: middle foot 1 load ratio and the right foot 6 sensor: middle foot 2 load ratio from the post-static standing process data 528 (steps S325 and S326). ).
  • the foot arch evaluation unit 514 compares the right foot second sensor and the sixth sensor load ratio (steps S327 and S328).
  • the foot arch evaluation unit 514 determines that the left foot is normal and the right foot arch is formed when the load ratio of the 2nd sensor is equal to or less than the load ratio of the 6th sensor in the comparison (step S327) after the evaluation that the left foot is normal (step S323). Evaluation is insufficient (step S329), and in this case, it is determined that the right foot may be a flat foot (step S330). If the load ratio of the second sensor is larger than the load ratio of the sixth sensor, it is evaluated that both feet are normal (step S331).
  • the foot arch evaluation unit 514 determines that the left foot arch formation is insufficient (step S324) and the comparison is made after the load ratio of the second sensor is larger than the load ratio of the sixth sensor in the comparison (step S328). It is evaluated that the right foot is normal with insufficient arch formation (step S332), and in this case, it is determined that the left foot may be a flat foot (step S333). Further, when the load ratio of the second sensor is equal to or less than the load ratio of the sixth sensor, it is evaluated that the arch of both feet is insufficiently formed (step S334), and it is determined that there is a possibility of both feet flat feet (step S335). ).
  • FIG. 28 is a flowchart showing a processing example of the toe contact evaluation unit 517.
  • the toe contact evaluation unit 517 refers to the left foot 4 sensor: forefoot 2 maximum pressure value average and the right foot 4 sensor: forefoot 2 maximum pressure value average from the post-walking data 527 (step S341). ).
  • the mother's ground contact evaluation unit 517 evaluates the ground contact of the mother's body based on the total value of the pressure values indicated by both sensors (step S342). For example, the evaluation is performed by comparing the total value with a predetermined value set in advance.
  • the predetermined value is 5N (Newton).
  • the predetermined value is a value that can be set, for example, a value determined by weight or the like.
  • the predetermined value is “5N”
  • the weight is about “40 kg to 50 kg”.
  • the predetermined value may be “50 kPa”. That is, the evaluation may be performed with either force or pressure.
  • the toe ground contact evaluation unit 517 evaluates that the toe contact is normal (step S343).
  • the toe ground contact evaluation unit 517 evaluates that the toe touch is weak and that the toe is slightly floating (step S344). ).
  • the toe ground contact evaluation unit 517 evaluates that the toe is not touched and is a floating finger (step S345). ).
  • the mother ground contact evaluation unit 517 outputs the evaluation result of the mother ground contact.
  • the comprehensive evaluation unit 515 includes a forefoot local load evaluation unit 508, a pronation foot / extraction foot evaluation unit 509, a multi-step balance evaluation unit 510, a stance time evaluation unit 511, a both-leg support ratio evaluation unit 512, and a left-right difference evaluation unit 513.
  • the overall evaluation for each user is performed with reference to the evaluation result by the foot arch evaluation unit 514, the evaluation result by the toe contact evaluation unit 517, and the life log data 524.
  • FIG. 29 is a flowchart showing a processing example of the comprehensive evaluation unit 515.
  • the comprehensive evaluation unit 515 calculates the body balance degree based on the evaluation result of the multi-step balance evaluation unit 510 and the evaluation result of the left / right difference evaluation unit 513 (step S41). Specifically, by adding, multiplying, standardizing, etc. each evaluation result (the one that has not been digitized is digitized), it is finally scored to a value of 1 to 10, for example, to improve the body balance degree. calculate.
  • the comprehensive evaluation unit 515 calculates a walking rhythm (degree) based on the evaluation result of the stance time evaluation unit 511 and the evaluation result of the both leg support ratio evaluation unit 512 (step S42). Specifically, by adding, multiplying, standardizing, etc. each evaluation result (unquantized ones are digitized), the score is finally converted to a value of 1 to 10, for example, to change the walking rhythm calculate.
  • the comprehensive evaluation unit 515 determines the beauty foot based on the evaluation result of the forefoot local load evaluation unit 508, the evaluation result of the pronation foot / extroversion foot evaluation unit 509, and the evaluation result of the foot arch evaluation unit 514.
  • the degree is calculated (step S43). Specifically, by adding, multiplying, standardizing, etc. each evaluation result (the one that has not been digitized is digitized), it is finally scored to a value of 1 to 10, for example, to improve the leg calculate.
  • the degree of similarity may be taken into account when calculating the degree of beauty, such as the degree of similarity compared to a normal healthy foot or whether an anatomically abnormal load is applied.
  • the degree of beauty is a value that increases when the foot is in a healthy state.
  • the degree of beauty foot is calculated by using at least one of the eye / fish eye evaluation result, the pronation / extraction foot evaluation result, the foot arch evaluation result, and the evaluation result of the toe contact with the heel. .
  • the evaluation result may be weighted. That is, the evaluation result of the toe contact may be added to the calculation of the degree of beauty.
  • the foot arch evaluation result has a higher weight as a value indicating the health condition than the other evaluation results. Therefore, the leg degree may be calculated only from the foot arch evaluation result, or may be calculated by increasing the weight of the foot arch evaluation result. With such a calculation method, it is possible to accurately calculate the degree of beauty.
  • the comprehensive evaluation unit 515 refers to the life log data 524 and calculates an activity level (step S44). Specifically, the degree of activity is calculated by finally scoring to a value of 1 to 10, for example, by adding, multiplying, normalizing, etc. the moving distance, the number of steps, and the average walking speed within the most recent predetermined period.
  • the calculated comprehensive evaluation results can be displayed (visualized) by plotting on a graph (radar chart) as shown in FIG.
  • the comprehensive analysis unit 516 performs a comprehensive analysis of walking motion / daily life activity data based on the data obtained by the above-described processing and other additional data. Additional data includes user data 522, shoe data 523, and life log data 524. “Daily schedule”, “Destination”, etc. are used by manually inputting the user and acquiring information recorded in an Internet service having an arbitrary schedule function or calendar function used by the user. “Movement distance”, “number of steps”, “average walking speed”, “most frequent position information (GPS)” and the like are acquired from the information terminal 3 or any wearable information terminal used by the user, and are calculated from the acquired information and recorded.
  • GPS most frequent position information
  • “Shoemaker model number” and the like are obtained by manual input by a user, reading of a shoe product barcode, or the like.
  • information such as “Shoe rubbing presence / absence”, “Shoe rubbing site”, “Wheel presence / absence”, “Hail location”, “Pain presence / absence”, “Pain location”, “Pressure presence / absence”, “Pressure location”, etc. Entered.
  • the comprehensive analysis unit 516 has a foot state that is similar to the current foot state of the user of the system, and how the other person who has a close amount of action is later than the similar time point. It is possible to determine whether or not the foot state has been changed, and to predict and predict the future foot state.
  • the process up to the comprehensive evaluation by the comprehensive evaluation unit 515 is performed on the accumulated post-walking data 527 of all the users, and the comprehensive analysis unit 516 can divide groups of similar tendencies by performing clustering.
  • the comprehensive analysis unit 516 can show the result as a ratio to the total number of groups to which the user belongs (small or large) and a distance to a comprehensive evaluation index distribution of a good group.
  • a radar chart as shown in FIG. 30 can be used for this feedback.
  • the comprehensive analysis unit 516 presents shoes candidates suitable for the user together with feedback of other analysis results or in response to individual requests.
  • FIG. 31 is a flowchart showing an example of recommended shoe processing.
  • the comprehensive analysis unit 516 extracts other users who are similar in a walking / still standing state to the target user (step S51). Similarity in this case may be obtained by extracting information on “foot length”, “foot width”, “foot height”, and “foot circumference” from the user data 522, and looking at the similarity of the outer shape of the foot. Similarity of each parameter may be seen from post-position processing data 528.
  • the comprehensive analysis unit 516 narrows down to other users who have similar evaluation results from the evaluation unit 507 or the comprehensive evaluation unit 515 (step S52).
  • the comprehensive analysis unit 516 narrows down the narrowed-down users to those who have not been evaluated for failures after the time when they are regarded as similar (step S53).
  • the comprehensive analysis unit 516 acquires the shoe data 523 that has been used since the similar time of other narrowed-down users and presents it as a recommended shoe selection candidate (step S54).
  • the comprehensive analysis unit 516 acquires information such as the sex and age / generation of the target user and other users from the user data 522, and further acquires various types of information indicating behavior patterns from the life log data 524. You may make it narrow down further to other similar users.
  • auxiliary devices such as an insole, a toe correction pad, and a supporter for hallux valgus.
  • the comprehensive analysis unit 516 predicts foot abnormalities due to the use of shoes in the following procedure.
  • step 3 From the post-processing data specified in step 1, data having a walking function similar to that of the user of this system is selected. The processing contents will be described later.
  • the relevant user has information about the feet and shoes when using similar shoes (specifically, “formation of wrinkles”, “presence / absence of shoe rubs”, “shoes” ”Pressure” and “pain” information), it is determined that there is a possibility that the foot abnormalities may occur or not when the shoes selected by the user of the system are used.
  • the possibility of “presence / absence of wrinkle formation”, “presence / absence of shoe rub”, “presence / absence of pressure”, and “presence / absence of pain” can be predicted, and it is possible to predict over time from the start of wearing to the occurrence of occurrence. Become.
  • FIG. 32 is a flowchart showing a processing example of target data determination similar to the walking function in the above-described processing “3.”.
  • the comprehensive analysis unit 516 uses the post-walking processing data 527 for the user A and the other user group B of this system to calculate the maximum pressure value average of the sensors of the feet 3, 4, 5, and 7 and the COP flexion angle. Are extracted and referenced (step S61).
  • the comprehensive analysis unit 516 specifies the bed leaving area from the average maximum pressure value of the sensors of the three feet 3, 4, 5, and 7 (step S62).
  • the comprehensive analysis unit 516 extracts a target in which the area at the time of bed leaving coincides with A from the group B (step S63). If the areas at the time of getting out do not match, the process ends.
  • the comprehensive analysis unit 516 sets walking type A when the COP bending angle is larger than 175, walking type B when the COP bending angle is smaller than 155, and walking type C otherwise (step S64).
  • the comprehensive analysis unit 516 extracts a target in which the walking type (A to C) matches A from the group B (step S65), and determines a comparison target for A (step S66). If the walking type does not match, the process ends. In this case, users having data belonging to the same walking type can be regarded as having a walking function close to each other.
  • ⁇ Summary> it is possible to capture temporal changes in foot / walking data during daily life of a user, collect data of a plurality of users uniformly, and perform appropriate analysis / evaluation. Done. More specifically, ⁇ Evaluation / prediction is possible not only by individual comparison of foot condition and walking function, but also by comparison between individuals with other data. -Optimization of walking (optimization of foot pain, etc.) by predicting signs of disease or disability can be realized. -It leads to user's own health management and shoe selection in daily life. ⁇ All age groups from children to the elderly are targeted, so it is possible to analyze aged data as a record of child development and growth.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Medical Informatics (AREA)
  • Dentistry (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)

Abstract

複数のユーザが使用する靴のインソールに設けられた1以上のセンサから歩行時および静止立位時における所定時間の少なくとも足底圧のデータを取得し、取得されたデータを解析して、ユーザ毎の、歩行時における少なくとも足底圧パラメータ、足圧中心パラメータおよび時間パラメータと、静止立位時における少なくとも足底圧パラメータおよび足圧中心パラメータとを取得して蓄積する、処理をコンピュータが実行する。

Description

歩行・足部評価方法、歩行・足部評価プログラムおよび歩行・足部評価装置
 本発明は、歩行・足部評価方法、歩行・足部評価プログラムおよび歩行・足部評価装置に関する。
 関連分野において、ヒトの足底圧を検知するための装置の開発に関する発明がなされている(特許文献1、2)。また、静止立位状態において足部形状を計測し、足部アーチ高のデータから靴選択支援を行う技術(特許文献3)や、フィッティングポイントと盛り上げ高さを変えた標本中敷により無理に歩行バランスを崩した歩行運動データと、利用者から計測した加速度とを比較して、フィッティングポイントと盛り上げ高さを決定する技術(特許文献4)も提案されている。
 これまでに本発明者らは、足底圧を評価するための計測装置を開発し、その有用性や得られたデータの分析結果について報告した(非特許文献1~3)。すなわち、足底圧を評価するための計測装置の開発およびその有効性の検証(非特許文献1)、開発デバイスを用いた足部アーチ構造と足底圧の関連に関する調査(非特許文献2)、足底部圧力値特徴と高齢者の転倒歴との関連の調査(非特許文献3)を進め、足部の状態を日常生活の中で評価可能な仕組みの提案と、得られるデータの特徴量について評価を行ってきた。
特表2011-505015号公報 特開2009-254811号公報 W02005/006905 特開2007-144147号公報
M. Saito. K. Nakajima, C. Takano, Y. Ohta, C. Sugimoto, R. Ezoe, K. Sasaki, H. Hosaka, T. Ifukube, S. Ino, K. Yamashita. An in-shoe device to measure planter pressure during daily human activity, Medical Engineering & physics, Vol. 33, pp.638-645, 2011. E. Anzai, K. Nakajima, Y. Iwakami, M. Sato, S. Ino, T. Ifukube, K. Yamashita and Y. Ohta. Effects of Foot Arch Structure on Postural Stability, Clinical Research on Foot & Ankle, 2:2, 2014 (Open access). K. Nakajima, E. Anzai, Y. Iwakami, S. Ino, K. Yamashita, Y. Ohta. Measuring gait pattern in elderly individuals by using a plantar pressure measurement device, Technology and Health Care, 22(6), pp.805-15, 2014.
 上述した従来の技術は、個別の対象者からデータを取得することは可能であったが、複数のユーザのデータを統一的に収集することは考慮されておらず、適切な分析・評価を行う上で十分ではなかった。また、従来技術は静止した状態の計測データや試験的に設定された環境における歩行状態の計測データを用いており、いずれも、日常生活における歩行動作からデータを取得して分析・評価を行うことは実現されていない。
 本発明は上記の従来の問題点に鑑み提案されたものであり、その目的とするところは、ユーザの日常の歩行状態をデータとして把捉し、さらに複数のユーザのデータが統一的に収集され、適切な分析・評価が行われるようにすることにある。
 上記の課題を解決するため、本発明にあっては、複数のユーザが使用する靴のインソールに設けられた1以上のセンサから歩行時および静止立位時における所定時間の少なくとも足底圧のデータを取得し、取得されたデータを解析して、ユーザ毎の、歩行時における少なくとも足底圧パラメータ、足圧中心パラメータおよび時間パラメータと、静止立位時における少なくとも足底圧パラメータおよび足圧中心パラメータとを取得して蓄積する、処理をコンピュータが実行する。
 本発明にあっては、ユーザの日常の歩行動作から得られる情報から、複数のユーザのデータが統一的に収集され、適切な分析・評価が行われる。
本発明の一実施形態にかかるシステムの構成例を示す図である。 各種データの構造例を示す図(その1)である。 各種データの構造例を示す図(その2)である。 各種データの構造例を示す図(その3)である。 各種データの構造例を示す図(その4)である。 各種データの構造例を示す図(その5)である。 各種データの構造例を示す図(その6)である。 各種データの構造例を示す図(その7)である。 センサ位置の例を示す図である。 計測デバイス、情報端末、サーバ装置および管理端末の情報処理にかかるハードウェア構成例を示す図である。 立脚期データ解析部の処理例を示すフローチャートである。 波形データの例を示す図(その1)である。 波形データの例を示す図(その2)である。 歩行時の足底圧パラメータの抽出の例を示す図である。 歩行時のCOPパラメータの抽出の例を示す図である。 歩行時の時間パラメータの抽出の例を示す図である。 静止立位データ解析部の処理例を示すフローチャートである。 静止立位時の足底圧パラメータとCOPパラメータの抽出の例を示す図である。 前足部局所荷重評価部の処理例を示すフローチャートである。 回内足・回外足評価部の処理例を示すフローチャートである。 複数歩バランス評価部の処理例を示すフローチャートである。 COPのばらつきの例を示す図(その1)である。 COPのばらつきの例を示す図(その2)である。 立脚時間評価部の処理例を示すフローチャートである。 両脚支持割合評価部の処理例を示すフローチャートである。 左右差評価部の処理例を示すフローチャートである。 足部アーチ評価部の処理例を示すフローチャートである。 母趾接地評価部の処理例を示すフローチャートである。 総合評価部の処理例を示すフローチャートである。 総合評価結果のグラフ化の例を示す図である。 靴の推奨の処理例を示すフローチャートである。 歩行機能の類似する対象データ決定の処理例を示すフローチャートである。
 以下、本発明の好適な実施形態につき説明する。
 <構成>
 図1は本発明の一実施形態にかかるシステムの構成例を示す図である。図1において、ユーザが使用する靴1(左右)には計測デバイス(靴デバイス)2が設けられており、センサ部21で検出された信号のデータは通信部22を介し、Bluetooth(登録商標)、無線LAN(Local Area Network)等の無線通信手段によりスマートフォン、タブレット、PC(Personal Computer)等の情報端末3に送信されるようになっている。計測デバイス2から情報端末3へのデータ送信間隔は、例えば、10ms(ミリ秒、100Hz)である。センサ部21は、例えば、インソール(中敷き)型の基材211に複数(図示の例では片足に7個)の圧力センサ212が設けられている。なお、圧力センサ以外に、剪断力(摩擦力)センサ、加速度センサ、温度センサ、湿度センサ等が設けられるようにしてもよい。更に、インソールには、情報端末3側からの制御により、色が変化する機構(視覚刺激を与える機構)や素材が変形したり硬さが変化したりする機構(触覚刺激を与える機構)が設けられることで、ユーザに対して歩行や足部の状態がフィードバックされるようにしてもよい。また、通信部22は、GPS(Global Positioning System)等による位置データも送信する機能を備えている。位置データは、計測デバイス2からに代え、情報端末3から取得されるようにしてもよい。
 情報端末3は、計測デバイス2から受信して一時的に蓄積していたデータを、所定時間間隔(例えば、10s)毎に、移動無線ネットワークやインターネット等のネットワーク4を介してサーバ装置5に送信する機能を有している。また、情報端末3は、サーバ装置5からユーザの歩行や足部の状態の情報を取得して画面表示を行い、ユーザに対して歩行や足部の状態のフィードバックや靴選択の支援等を行う機能も有している。なお、計測デバイス2から情報端末3を経由してサーバ装置5にデータが送信される場合についての説明であったが、環境によっては、計測デバイス2からサーバ装置5にデータが直接に送信されるものとしてもよい。この場合、情報端末3は計測デバイス2の操作やユーザへのフィードバック等に用いられる。
 サーバ装置5は、処理機能を実現する部分として、基本データ入力部501と計測データ受信部502とデータ解析部503とライフログ書込部506と評価部507と総合評価部515と総合分析部516とを備えている。また、処理に際して用いられるデータを蓄積するデータベース521が設けられている。データベース521はサーバ装置5とは別に保持・管理されるようにしてもよい。
 データベース521には、ユーザデータ522と靴データ523とライフログデータ524と位置データ525と計測データ526と歩行処理後データ527と静止立位処理後データ528とが保持されている。ユーザデータ522と靴データ523とは、ユーザや靴等の基本的なデータである。ライフログデータ524は、ユーザの行動(予定を含む)を示すデータである。位置データ525は、計測デバイス2または情報端末3から、計測データ526は計測デバイス2から、それぞれ取得されるデータである。歩行処理後データ527と静止立位処理後データ528は、計測データ526から解析により得られるデータである。
 ユーザデータ522は、図2に例示されるように、「ユーザID」「名前」「靴ID」「性別」「生年月日」「身長」「体重」「靴サイズ」「足長」「足幅」「足高」「足囲」「登録日」「更新日」等の項目を有している。靴データ523は、図3に例示されるように、「靴ID」「ユーザID」「購入日」「使用開始日」「靴店舗ID」「靴メーカー型番」「靴タイプ」「テーマ」「靴擦れ有無」「靴擦れ部位」「胼胝有無」「胼胝部位」「痛み有無」「痛み部位」「圧迫有無」「圧迫部位」「登録日」「更新日」等の項目を有している。「靴擦れ有無」「靴擦れ部位」「胼胝有無」「胼胝部位」「痛み有無」「痛み部位」「圧迫有無」「圧迫部位」等は、例えば、ユーザから入力される。
 ライフログデータ524は、図4に例示されるように、「ログID」「年月日時刻」「ユーザID」「1日の予定」「目的地」「移動距離」「歩数」「平均歩行速度」「最多位置情報(GPS)」「登録日」「更新日」等の項目を有している。
 位置データ525は、図5に例示されるように、「年月日時刻」「ユーザID」「位置情報(GPS)」等の項目を有している。
 計測データ526は、図6に例示されるように、「年月日時刻」「ユーザID」「左足1番センサ:後足部(踵)圧力値」「左足2番センサ:中足部1)圧力値」「左足3番センサ:前足部1)圧力値」「左足4番センサ:前足部2圧力値」「左足5番センサ:前足部3圧力値」「左足6番センサ:中足部2圧力値」「左足7番センサ:前足部4圧力値」「右足1番センサ:後足部(踵)圧力値」「右足2番センサ:中足部1圧力値」「右足3番センサ:前足部1圧力値」「右足4番センサ:前足部2圧力値」「右足5番センサ:前足部3圧力値」「右足6番センサ:中足部2圧力値」「右足7番センサ:前足部4圧力値」「両足足圧中心COP_X座標値」「両足足圧中心COP_Y座標値」「左足足圧中心COP_X座標値」「左足足圧中心COP_Y座標値」「右足足圧中心COP_X座標値」「右足足圧中心COP_Y座標値」等の項目を有している。センサの番号は、図9に示されるものとしている。波形データは、サンプリング周期(例えば、10ms)で情報端末3において蓄積される時間(例えば、10s)分の圧力値の連続データである。COPは足圧中心(Center of Pressure)である。「左足1番センサ:後足部(踵)圧力値」等は圧力値の波形データを示している。「両足足圧中心COP_X座標値」等は座標値の軌跡を示している。
 歩行処理後データ527は、図7に例示されるように、「年月日時刻」「ユーザID」「歩数」「左足平均立脚時間」「右足平均立脚時間」「両脚支持割合」「左足単脚支持割合」「右足単脚支持割合」「左足1番センサ:後足部(踵)最大圧力値平均」「左足2番センサ:中足部1最大圧力値平均」「左足3番センサ:前足部1最大圧力値平均」「左足4番センサ:前足部2最大圧力値平均」「左足5番センサ:前足部3最大圧力値平均」「左足6番センサ:中足部2最大圧力値平均」「左足7番センサ:前足部4最大圧力値平均」「右足1番センサ:後足部(踵)最大圧力値平均」「右足2番センサ:中足部1最大圧力値平均」「右足3番センサ:前足部1最大圧力値平均」「右足4番センサ:前足部2最大圧力値平均」「右足5番センサ:前足部3最大圧力値平均」「右足6番センサ:中足部2最大圧力値平均」「右足7番センサ:前足部4最大圧力値平均」「COP開始位置X座標」「COP開始位置Y座標」「COP終了位置X座標」「COP終了位置Y座標」「左足COP屈曲角」「右足COP屈曲角」「左足歩行中期COP_X座標範囲」「右足歩行中期COP_X座標範囲」等の項目を有している。「左足1番センサ:後足部(踵)最大圧力値平均」等は足底圧パラメータである。「左足COP屈曲角」「左足歩行中期COP_X座標範囲」等はCOPパラメータである。「左足平均立脚時間」「右足平均立脚時間」「両脚支持割合」「左足単脚支持割合」「右足単脚支持割合」は時間パラメータである。
 静止立位処理後データ528は、図8に例示されるように、「年月日時刻」「ユーザID」「左足1番センサ:後足部(踵)荷重比率」「左足2番センサ:中足部1荷重比率」「左足3番センサ:前足部1荷重比率」「左足4番センサ:前足部2荷重比率」「左足5番センサ:前足部3荷重比率」「左足6番センサ:中足部2荷重比率」「左足7番センサ:前足部4荷重比率」「右足1番センサ:後足部(踵)荷重比率」「右足2番センサ:中足部1荷重比率」「右足3番センサ:前足部1荷重比率」「右足4番センサ:前足部2荷重比率」「右足5番センサ:前足部3荷重比率」「右足6番センサ:中足部2荷重比率」「右足7番センサ:前足部4荷重比率」「COP総軌跡長」「COP矩形面積」等の項目を有している。「左足1番センサ:後足部(踵)荷重比率」等は足底圧パラメータである。「COP総軌跡長」「COP矩形面積」はCOPパラメータである。
 図1に戻り、基本データ入力部501は、ユーザ、靴等の基本的なデータの設定を受け付け、データベース521のユーザデータ522、靴データ523にそれぞれに登録する機能を有している。
 計測データ受信部502は、計測デバイス2から情報端末3を介して送信されるデータを受信し、データベース521の位置データ525と計測データ526に登録する機能を有している。
 データ解析部503は、立脚期データ解析部504と静止立位データ解析部505とを備え、後続の評価部507による評価の基礎となるデータを生成する機能を有している。すなわち、立脚期データ解析部504は計測データ526を解析して歩行処理後データ527を生成し、静止立位データ解析部505は計測データ526を解析して静止立位処理後データ528を生成する。
 ライフログ書込部506は、データベース521の位置データ525とライフログデータ524とに記録を行う機能を有している。
 評価部507は、前足部局所荷重評価部508と回内足・回外足評価部509と複数歩バランス評価部510と立脚時間評価部511と両脚支持割合評価部512と左右差評価部513と足部アーチ評価部514と母趾接地評価部517とを備え、各種の評価を行い、評価結果を生成する機能を有している。なお、評価部507ではその都度に評価が行われることが想定されているが、評価結果がユーザに対応付けられて保存されるようにしてもよい。
 総合評価部515は、評価部507による各種の評価結果とライフログデータ524とから、美足度、カラダバランス度、歩き方リズム、活動度を算出し、ユーザの歩行・足部の総合評価を可視化してユーザに対してフィードバックする機能を有している。
 総合分析部516は、データベース521に蓄積されたデータに基づき、時間的な状態変化を加味して総合分析を行い、足部異常の早期発見・予測警告等を実現する機能を有している。例えば、対象ユーザについて現時点で障害等の発生の可能性が評価されていない場合であっても、他のユーザの過去のデータから足部・静止立位の状態や歩行機能が類似し、その他のユーザがその後に障害等の発生の可能性が評価されている場合に、対象ユーザについても将来的に障害等の発生が推定され、その旨がフィードバックされる。また、総合分析部516は、ユーザ個人に合った靴選びのアドバイスや歩き方の提案を行う機能も有している。
 また、管理者が操作する管理端末6がネットワーク4を介してサーバ装置5に接続可能となっており、管理者はサーバ装置5で管理されるデータの確認やメンテナンスが行えるようになっている。
 図10は計測デバイス2、情報端末3、サーバ装置5および管理端末6の情報処理にかかるハードウェア構成例を示す図であり、一般的なコンピュータの構成が示されている。図10において、計測デバイス2等は、バス207を介して相互に接続されたCPU(Central Processing Unit)201、ROM(Read Only Memory)202、RAM(Random Access Memory)203、SSD(Solid State Drive)/HDD(Hard Disk Drive)204を備えている。また、計測デバイス2等は、接続I/F(Interface)205、通信I/F206を備えている。
 CPU201は、RAM203をワークエリアとしてROM202またはSSD/HDD204等に格納されたプログラムを実行することで、計測デバイス2等の動作を統括的に制御する。図1で説明した計測デバイス2等の機能は、CPU201において所定のプログラムが実行されることで実現される。プログラムは、記録媒体を経由して取得されるものでもよいし、ネットワークを経由して取得されるものでもよいし、ROM組込でもよい。
 <立脚期データ解析部504による処理>
 立脚期データ解析部504は、立脚歩行時に取得された計測データ526を解析し、歩行処理後データ527を生成する。すなわち、立脚期データ解析部504は、ヒトの歩行動作を表す波形データから立脚期・遊脚期などの歩行イベント(ヒトの歩行動作はある一方の足を見たときにその足が地面に接地した状態の立脚期と地面から離床した状態の遊脚期に分けられる)を自動検知し、ヒトの歩行動作に関連する数値を取得する。
 図11は立脚期データ解析部504の処理例を示すフローチャートである。図11において、立脚期データ解析部504は、計測データ526の各センサの圧力値の波形データを取得し(ステップS111)、波形の立ち上がりから接地時点を検出し、一歩行毎の波形データを切り出す(ステップS112)。すなわち、全センサの圧力値が最小になる点から次に全センサの圧力値が最小になる点までの状態を1立脚期とするが、当該の立脚期データが正常な歩行状態のデータであることを次の条件で精査し、これに当てはまるデータをパラメータ抽出に用いる1立脚期とする。
(a)歩行一定期間の波形データ全体のうち最も高い圧力値(トップ最大値)を示すセンサを特定し、そのセンサからの波形データの複数の最大値がいずれもトップ最大値を基準として80%以上の値を示すこと
(b)1立脚期の長さが1200ms未満であること
 図12は7個のセンサの波形データの例を示しており、複数歩による波形が記録されているが、これらから図13に示されるような一歩行毎の波形データが切り出される。
 図11に戻り、次いで、立脚期データ解析部504は、各センサの一歩行毎の波形の最大圧力値を検出し、センサ毎の複数歩の最大圧力値合計を歩数で除算することで平均(「左足1番センサ:後足部(踵)最大圧力値平均」等)をとり、足底圧パラメータとして取得する(ステップS113)。図14は各センサの波形から最大値(黒丸で図示)が取得された様子を示している。
 図11に戻り、次いで、立脚期データ解析部504は、計測データ526の「左足足圧中心COP_X座標値」「左足足圧中心COP_Y座標値」「右足足圧中心COP_X座標値」「右足足圧中心COP_Y座標値」から、COPパラメータとして、「COP開始位置X座標」「COP開始位置Y座標」「COP終了位置X座標」「COP終了位置Y座標」「左足COP屈曲角」「右足COP屈曲角」「左足歩行中期COP_X座標範囲」「右足歩行中期COP_X座標範囲」を取得する(ステップS114)。図15は、COP開始位置であるA点から、H点(3番センサと5番センサを結ぶ直線とCOP軌跡の交点)を通り、COP終了位置であるB点を通るCOP軌跡が示されており、直線AHと直線HBのなす角度がCOP屈曲角となる。また、歩行方向(足底の長手方向)となるY座標方向におけるCOP開始位置Y座標とCOP終了位置Y座標の中点(接地と離床の中間)に最も近いCOP座標の複数歩における側方方向の最大値と最小値の差が歩行中期COP_X座標範囲となる。
 図11に戻り、次いで、立脚期データ解析部504は、時間パラメータとして、複数歩の平均である「左足平均立脚時間」「右足平均立脚時間」「両脚支持割合」「左足単脚支持割合」「右足単脚支持割合」を取得する(ステップS115)。図16は左右の足の接地状態を示しており、片足の接地から離床までが立脚時間となり、両足が接地している期間が両脚支持期となり、片足のみが接地している期間が単脚支持期となる。両脚支持割合は、立脚時間における両脚支持期の時間の割合である。単脚支持割合は、立脚時間における単脚支持期の時間の割合である。
 図11に戻り、次いで、立脚期データ解析部504は、取得された足底圧パラメータ、COPパラメータ、時間パラメータと、解析時に用いられた歩行一定時間内の立脚期の数である歩数とを歩行処理後データ527に記録する(ステップS116)。
 <静止立位データ解析部505による処理>
 静止立位データ解析部505は、立位姿勢が一定期間維持された際に取得された計測データ526を解析し、静止立位処理後データ528を生成する。
 図17は静止立位データ解析部505の処理例を示すフローチャートである。図17において、静止立位データ解析部505は、計測データ526の各センサの圧力値の波形データを取得し(ステップS121)、COP軌跡データ(「両足足圧中心COP_X座標値」「両足足圧中心COP_Y座標値」)を取得する(ステップS122)。ここでのCOP軌跡は、両足で立っている状態であるため、両足の中心付近に位置する。図18にはCOP軌跡の例が示されており、若干右足寄りで変動するものとなっている。
 図17に戻り、次いで、静止立位データ解析部505は、COP軌跡から、COPパラメータの一つとして、COP総軌跡長を取得する(ステップS123)。すなわち、計測データ526のサンプリング周期毎のCOPのx座標とy座標の変位から微小移動量が求められ、それが積算されることでCOP総軌跡長が求められる。
 次いで、静止立位データ解析部505は、COPパラメータの一つとして、COP矩形面積を取得する(ステップS124)。COP矩形面積は、COP軌跡の外接矩形の面積として求められる。
 次いで、静止立位データ解析部505は、足底圧パラメータの一つとして、各センサの荷重比率を取得する(ステップS125)。各センサの荷重比率は、各センサの平均圧力値が全センサ(両足の14個のセンサ)の平均圧力値の総和で除算されることで求められる。図18には各センサ(丸で図示)に荷重比率の値の例が示されている。
 図17に戻り、次いで、静止立位データ解析部505は、取得された足底圧パラメータ、COPパラメータを静止立位処理後データ528に記録する(ステップS126)。
 <前足部局所荷重評価部508による処理>
 前足部局所荷重評価部508は、歩行処理後データ527に基づいて前足部の局所的荷重の有無、ひいては胼胝や魚の目等の異常発生の可能性がないか評価を行う。
 図19は前足部局所荷重評価部508の処理例を示すフローチャートであり、前足部の局所的荷重の有無を評価し、胼胝発生の可能性を判定する例である。ここでは、前足部の3か所のセンサからの最大圧力値平均に基づき、センサごとの値の大小の比較により局所的荷重の有り無しが評価される。
 図19において、前足部局所荷重評価部508は、歩行処理後データ527より前足部(3、5、7番センサ)の最大圧力値平均を参照する(ステップS211)。
 次いで、前足部局所荷重評価部508は、3センサ中の最大値を示すセンサおよびその値をS、他の2つのセンサおよびその値をa、bとする(ステップS212)。
 次いで、前足部局所荷重評価部508は、Sと2a、Sと2bの荷重比率を判断する(ステップS213)。
 前足部局所荷重評価部508は、Sが2aより大きく、かつSが2bより大きいという条件を満たさない場合(ステップS213のNO)、正常荷重であるとする(ステップS214)。
 また、Sが2aより大きく、かつSが2bより大きいという条件を満たす場合(ステップS213のYES)、前足部局所荷重評価部508は、センサSへの局所的荷重があるとし(ステップS215)、センサSのエリアでの胼胝発生の可能性があると評価する(ステップS216)。
 <回内足・回外足評価部509による処理>
 回内足・回外足評価部509は、歩行処理後データ527に基づいて回内足・回外足の異常がないか評価を行う。
 図20は回内足・回外足評価部509の処理例を示すフローチャートである。図20において、回内足・回外足評価部509は、歩行処理後データ527よりCOP屈曲角を参照する(ステップS221)。
 次いで、回内足・回外足評価部509は、COP屈曲角が155より小さいか否か判断し(ステップS222)、COP屈曲角が155より小さいと判断した場合(ステップS222のYES)、回外足の可能性があると評価する(ステップS223)。
 また、回内足・回外足評価部509は、COP屈曲角が155より小さくないと判断した場合(ステップS222のNO)、COP屈曲角が175より大きいか否か判断し(ステップS224)、COP屈曲角が175より大きいと判断した場合(ステップS224のYES)、回内足の可能性があると評価する(ステップS225)。回内足・回外足評価部509は、COP屈曲角が175より大きくないと判断した場合(ステップS224のNO)、正常と評価する(ステップS226)。
 <実験結果>
 回内足・回外足評価部509によって、724人について回内足・回外足の異常を評価した結果、88%乃至90%の精度で評価することができた。
 <複数歩バランス評価部510による処理>
 複数歩バランス評価部510は、歩行処理後データ527に基づいて複数歩バランスを評価する。
 図21は複数歩バランス評価部510の処理例を示すフローチャートである。図21において、複数歩バランス評価部510は、歩行処理後データ527より歩行中期COP_X座標範囲を参照し(ステップS231)、歩行中期COP_X座標範囲が1より大きいか否か判断する(ステップS232)。
 そして、複数歩バランス評価部510は、歩行中期COP_X座標範囲が1より大きいと判断した場合(ステップS232のYES)、歩行立脚時の複数歩バランスのばらつきが大きいと評価する(ステップS233)。また、複数歩バランス評価部510は、歩行中期COP_X座標範囲が1より大きくないと判断した場合(ステップS232のNO)、歩行立脚時の複数歩バランスのばらつきが小さいと評価する(ステップS234)。
 図22及び図23はCOPのばらつきの例を示す図であり、図22は複数歩のCOPのばらつきが少ない例、図23は複数歩のCOPのばらつきが多い例を示している。
 <立脚時間評価部511による処理>
 立脚時間評価部511は、歩行処理後データ527に基づいて立脚時間を評価する。
 図24は立脚時間評価部511の処理例を示すフローチャートである。図24において、立脚時間評価部511は、歩行処理後データ527より時間パラメータとしての立脚時間を参照し(ステップS241)、立脚時間の正常値(例えば、600~900ms)と比較して正常またはそれより短いもしくは長いなどの評価を行う(ステップS242)。
 <両脚支持割合評価部512による処理>
 両脚支持割合評価部512は、歩行処理後データ527に基づいて両脚支持割合を評価する。
 図25は両脚支持割合評価部512の処理例を示すフローチャートである。図25において、両脚支持割合評価部512は、歩行処理後データ527より時間パラメータとしての両脚支持割合と単脚支持割合を参照し(ステップS251)、それぞれの正常値(例えば、両脚支持割合については20~40%、単脚支持割合については60~80%)と比較して正常またはそれより少ないもしくは多いなどの評価を行う(ステップS252)。
 <左右差評価部513による処理>
 左右差評価部513は、静止立位処理後データ528に基づいて静止立位の状態における左右差を評価する。
 図26は左右差評価部513の処理例を示すフローチャートである。図26において、左右差評価部513は、静止立位処理後データ528より左足1番~7番の荷重比率を参照し(ステップS311)、左足荷重比率合計(Sum_Left)を算出する(ステップS312)。
 また、左右差評価部513は、静止立位処理後データ528より右足1番~7番の荷重比率を参照し(ステップS313)、右足荷重比率合計(Sum_Right)を算出する(ステップS314)。
 次いで、左右差評価部513は、左足荷重比率合計(Sum_Left)から右足荷重比率合計(Sum_Right)を引いた値を判断し(ステップS315)、20以上である場合は左足荷重であると評価し(ステップS316)、-20以下の場合は右足荷重であると評価し(ステップS317)、-20より大きく、かつ20より小さい場合は正常であると評価する(ステップS318)。
 <足部アーチ評価部514による処理>
 足部アーチ評価部514は、静止立位処理後データ528に基づいて静止立位の状態における足部アーチの形成状態を評価し、ひいては扁平足発生の可能性がないかを評価する。
 図27は足部アーチ評価部514の処理例を示すフローチャートである。図27において、足部アーチ評価部514は、静止立位処理後データ528より左足2番センサ:中足部1荷重比率と、左足6番センサ:中足部2荷重比率を参照する(ステップS321)。
 次いで、足部アーチ評価部514は、左足2番センサと6番センサの荷重比率を比較する(ステップS322)。
 足部アーチ評価部514は、2番センサの荷重比率が6番センサの荷重比率よりも大きい場合、左足正常と評価し(ステップS323)、2番センサの荷重比率が6番センサの荷重比率以下である場合、左足の足部アーチ形成不十分と評価する(ステップS324)。
 その後、足部アーチ評価部514は、静止立位処理後データ528より右足2番センサ:中足部1荷重比率と、右足6番センサ:中足部2荷重比率を参照する(ステップS325、S326)。
 次いで、足部アーチ評価部514は、右足2番センサと6番センサ荷重比率を比較する(ステップS327、S328)。
 足部アーチ評価部514は、左足正常と評価(ステップS323)した後の比較(ステップS327)において、2番センサの荷重比率が6番センサの荷重比率以下である場合、左足正常で右足アーチ形成不十分と評価し(ステップS329)、この場合、右足が扁平足である可能性ありと判定する(ステップS330)。また、2番センサの荷重比率が6番センサの荷重比率よりも大きい場合、両足正常と評価する(ステップS331)。
 また、足部アーチ評価部514は、左足アーチ形成不十分と評価(ステップS324)した後の比較(ステップS328)において、2番センサの荷重比率が6番センサの荷重比率よりも大きい場合、左足アーチ形成不十分で右足正常と評価し(ステップS332)、この場合、左足が扁平足である可能性ありと判定する(ステップS333)。また、2番センサの荷重比率が6番センサの荷重比率以下である場合、両足のアーチが形成不十分であると評価し(ステップS334)、両足扁平足の可能性があると判定する(ステップS335)。
 <実験結果>
 足部アーチ評価部514によって、724人について扁平足を評価した結果、91.5%の精度で評価することができた。
 <母趾接地評価部517による処理>
 図28は母趾接地評価部517の処理例を示すフローチャートである。図28において、母趾接地評価部517は、歩行処理後データ527より左足4番センサ:前足部2最大圧力値平均と、右足4番センサ:前足部2最大圧力値平均を参照する(ステップS341)。
 次いで、母趾接地評価部517は、両センサが示す圧力値を合計した合計値に基づいて、母趾の接地を評価する(ステップS342)。例えば、評価は、合計値と、あらかじめ設定される所定値とを比較して行われる。以下、説明では、所定値は、5N(ニュートン)であるとする。ただし、所定値は、設定可能な値であり、例えば、体重等によって定まる値となる。なお、所定値を「5N」とする場合は、体重が「40kg乃至50kg」程度の場合である。また、所定値は、「50kPa」としてもよい。すなわち、評価は、力又は圧力のどちらで行われてもよい。
 例えば、両センサが示す圧力値の合計値が5N以上であると評価される場合、母趾接地評価部517は、母趾の接地が通常と評価する(ステップS343)。
 また、両センサが示す圧力値の合計値が5N未満かつ0Nより大きいと評価される場合、母趾接地評価部517は、母趾の接地が弱く、浮指気味であると評価する(ステップS344)。
 さらに、両センサが示す圧力値の合計値が0N、すなわち、出力がないと評価される場合、母趾接地評価部517は、母趾の接地がなく、浮指であると評価する(ステップS345)。
 以上のようにして、母趾接地評価部517は、母趾接地の評価結果を出力する。
 <総合評価部515による処理>
 総合評価部515は、前足部局所荷重評価部508、回内足・回外足評価部509、複数歩バランス評価部510、立脚時間評価部511、両脚支持割合評価部512、左右差評価部513、足部アーチ評価部514による評価結果と、母趾接地評価部517による評価結果と、ライフログデータ524とを参照し、ユーザ毎の総合評価を行う。
 図29は総合評価部515の処理例を示すフローチャートである。図29において、総合評価部515は、複数歩バランス評価部510の評価結果と、左右差評価部513の評価結果とに基づき、カラダバランス度を算出する(ステップS41)。具体的には、それぞれの評価結果(数値化されていないものは数値化を実施)の加算・乗算・規格化等により、最終的に例えば1~10の値に点数化して、カラダバランス度を算出する。
 次いで、総合評価部515は、立脚時間評価部511の評価結果と、両脚支持割合評価部512の評価結果とに基づき、歩き方リズム(度)を算出する(ステップS42)。具体的には、それぞれの評価結果(数値化されていないものは数値化を実施)の加算・乗算・規格化等により、最終的に例えば1~10の値に点数化して、歩き方リズムを算出する。
 次いで、総合評価部515は、前足部局所荷重評価部508の評価結果と、回内足・回外足評価部509の評価結果と、足部アーチ評価部514の評価結果とに基づき、美足度を算出する(ステップS43)。具体的には、それぞれの評価結果(数値化されていないものは数値化を実施)の加算・乗算・規格化等により、最終的に例えば1~10の値に点数化して、美足度を算出する。なお、一般的な健常足と比較した場合の類似度や解剖学的に異常な荷重が行われていないか等が美足度の算出に考慮されるようにしてもよい。また、美足度は、足が健康な状態であると高くなる値である。
 なお、美足度は、胼胝・魚の目評価結果と、回内足・回外足評価結果と、足部アーチ評価結果と、母趾接地の評価結果のうち、少なくとも1つを用いて算出される。そして、算出は、評価結果を重み付けしてもよい。すなわち、美足度の算出には、母趾接地の評価結果が加わってもよい。
 また、足部アーチ評価結果は、他の評価結果と比較して、健康状態を示す値として重みが大きい。したがって、美足度は、足部アーチ評価結果のみで算出されたり、足部アーチ評価結果の重みを高くして算出されたりしてもよい。このような算出方法であると、精度良く美足度を算出できる。
 次いで、総合評価部515は、ライフログデータ524を参照し、活動度を算出する(ステップS44)。具体的には、直近の所定期間内の移動距離、歩数、平均歩行速度等の加算・乗算・規格化等により、最終的に例えば1~10の値に点数化して、活動度を算出する。
 算出された総合評価の結果(美足度、カラダバランス度、歩き方リズム、活動度)は、図30に示されるようなグラフ(レーダーチャート)へのプロットにより表示(可視化)が可能である。
 <総合分析部516による処理>
 総合分析部516は、上述した処理により得られたデータとその他の追加的なデータに基づき、歩行動作・日常生活活動データの総合分析を行う。追加的なデータとしては、ユーザデータ522や靴データ523やライフログデータ524がある。「1日の予定」「目的地」等はユーザの手入力およびユーザが利用する任意のスケジュール機能やカレンダー機能を持つインターネットサービスに記録された情報を取得するなどして利用する。「移動距離」「歩数」「平均歩行速度」「最多位置情報(GPS)」等は情報端末3またはユーザが利用する任意のウェアラブル情報端末から取得され、また取得情報から計算されて記録される。「靴メーカー型番」等はユーザの手入力や靴製品バーコードの読み取り等により情報取得が行われる。また、靴購入後1週間~1カ月などに「靴擦れ有無」「靴擦れ部位」「胼胝有無」「胼胝部位」「痛み有無」「痛み部位」「圧迫有無」「圧迫部位」等の情報がユーザにより入力される。
 分析の例として、総合分析部516は、本システムのユーザの現在の足部状態に類似している足部状態を持ち、かつ行動量が近い他者が、類似時点より後の時点でどのような足部状態に遷移したかを特定し、未来の足部状態の予測判定をすることができる。
 [分析の具体例#1:他者との比較]
 総合評価部515による総合評価までの処理を、蓄積しているすべてのユーザの歩行処理後データ527に対して行い、総合分析部516はクラスタリングを行うことで類似傾向のグループを分けることができる。総合分析部516は、その結果を、本システムのユーザに対し、属しているグループの全体に占める割合(多さ少なさ)や良好なグループの総合評価指標分布に対する距離として示すことができる。このフィードバックには、図30に示されたようなレーダーチャートを利用することができる。
 [分析の具体例#2:靴の推奨]
 総合分析部516は、他の分析結果のフィードバックとともに、あるいは個別の要求に応じて、ユーザに相応しい靴の候補を提示する。
 成人女性において、約7割が靴選びで後悔するという結果が得られており、その要因の一つとして個人の主観や経験で靴や履物の選択が行われている点が挙げられる。また、靴販売店で一時的な足部形状計測は行われているものの、日常活動中の歩行データに基づいた靴の選択は行われていない。ここでは、客観的かつ定量的な歩行運動データに基づいて評価された個人の歩行・足部状態の特徴から、他者との比較により、類似する状態の他者であって、その後に障害等が発生していない健常足の持ち主が類似していた時期以降に履いていた靴を提案することで、適切な靴選択を支援するようにしている。
 図31は靴の推奨の処理例を示すフローチャートである。図31において、総合分析部516は、対象ユーザに対し、歩行・静止立位の状態が類似する他ユーザを抽出する(ステップS51)。この場合の類似は、ユーザデータ522から「足長」「足幅」「足高」「足囲」の情報を取り出し、足の外形の類似をみてもよいし、歩行処理後データ527および静止立位処理後データ528から各パラメータの類似をみてもよい。
 次いで、総合分析部516は、評価部507または総合評価部515の評価結果が類似する他ユーザに絞り込みを行う(ステップS52)。
 次いで、総合分析部516は、絞り込まれた他ユーザのうち、類似するとされた時期以降に障害の評価が行われていない者に絞り込みを行う(ステップS53)。
 次いで、総合分析部516は、絞り込まれた他ユーザの、類似するとされた時期以降に使用されていた靴データ523を取得し、推奨される靴選択候補として提示する(ステップS54)。
 なお、総合分析部516は、ユーザデータ522から対象ユーザと他ユーザの性別や年齢・世代等の情報を取得し、更にはライフログデータ524から行動パターンを示す各種の情報を取得し、それらが類似している他ユーザに更に絞り込みを行うようにしてもよい。
 なお、靴の候補が提示される場合についての処理例であったが、インソール、足指矯正パッド、外反母趾用サポーター等の補助装具についても、同様に提示されるようにしてもよい。
 [分析の具体例#3:靴の使用による足部異常の予測]
 総合分析部516は、例えば、次のような手順で靴の使用による足部異常を予測する。
 1.ユーザデータ522から「足長」「足幅」「足高」「足囲」の情報を取り出し、他者間比較で足の外形が類似する他者を特定する。
 2.上記1.で特定した他者の処理後データ(過去のデータから本システムのユーザの利用時までのすべての時系列データを含む)から、靴データ523を用い、本システムのユーザが選択している靴と類似した靴を使用しているときに取得された歩行処理後データ527および静止立位処理後データ528を特定する。
 3.上記2.で特定した処理後データから、本システムのユーザと歩行機能が類似するデータを選び出す。処理内容については後述する。
 4.類似該当データがある場合、その該当ユーザ(ユーザ群)が、類似した靴を使用していた際の足部と靴に関する情報(具体的には「胼胝形成」、「靴擦れの有無」、「靴の圧迫」、「痛み」の情報)を捉えることで、本システムのユーザが選択している靴を使用継続した場合に足部異常発生の可能性ありあるいはなしと判定する。この場合、「胼胝形成の有無」、「靴擦れの有無」、「圧迫の有無」、「痛みの有無」の可能性が予測でき、履き始めてから発生に至るまでの、経時的な予測が可能となる。
 図32は上述の処理「3.」での歩行機能の類似する対象データ決定の処理例を示すフローチャートである。図32において、総合分析部516は、本システムのユーザAと他者のユーザ群Bについて、歩行処理後データ527により両足3、4、5、7番センサの最大圧力値平均とCOP屈曲角とを抽出・参照する(ステップS61)。
 次いで、総合分析部516は、両足3、4、5、7番センサの最大圧力値平均から離床時エリアを特定する(ステップS62)。
 次いで、総合分析部516は、B群からAと離床時エリアが一致する対象を抽出する(ステップS63)。離床時エリアが一致しない場合、処理を終了する。
 次いで、総合分析部516は、COP屈曲角が175より大きい場合は歩行タイプA、COP屈曲角が155より小さい場合は歩行タイプB、それ以外の場合は歩行タイプCとする(ステップS64)。
 次いで、総合分析部516は、B群からAと歩行タイプ(A~C)が一致する対象を抽出し(ステップS65)、Aに対する比較対象を決定する(ステップS66)。歩行タイプが一致しない場合、処理を終了する。この場合、同じ歩行タイプに属するデータを持つユーザ同士は歩行機能が近いとみなすことができる。
 <総括>
 以上説明したように、本実施形態によれば、ユーザの日常生活中における足部・歩行データの経時的変化を捉えられ、複数のユーザのデータが統一的に収集され、適切な分析・評価が行われる。より具体的には、
・足部状態や歩行機能の個人内比較だけでなく、他者データも交えた個人間比較による評価・予測が可能である。
・疾患や障害の兆候の予測による歩行の最適化(足部の痛み等の最適化)が実現可能である。
・日常生活中でユーザ自身の健康管理や靴選択に繋がる。
・子どもから高齢者まで、全ての年代層が対象となることから、子どもの発達・成長記録として経年データの分析が可能である。
 以上、本発明の好適な実施の形態により本発明を説明した。ここでは特定の具体例を示して本発明を説明したが、特許請求の範囲に定義された本発明の広範な趣旨および範囲から逸脱することなく、これら具体例に様々な修正および変更を加えることができることは明らかである。すなわち、具体例の詳細および添付の図面により本発明が限定されるものと解釈してはならない。
 本国際出願は、2017年3月8日に出願された日本国特許出願2017‐044385号に基づく優先権を主張するものであり、その全内容を本国際出願に援用する。
 1     靴
 2     計測デバイス
 21    センサ部
 211   基材
 212   圧力センサ
 22    通信部
 3     情報端末
 4     ネットワーク
 5     サーバ装置
 501   基本データ入力部
 502   計測データ受信部
 503   データ解析部
 504   立脚期データ解析部
 505   静止立位データ解析部
 506   ライフログ書込部
 507   評価部
 508   前足部局所荷重評価部
 509   回内足・回外足評価部
 510   複数歩バランス評価部
 511   立脚時間評価部
 512   両脚支持割合評価部
 513   左右差評価部
 514   足部アーチ評価部
 515   総合評価部
 516   総合分析部
 517   母趾接地評価部
 521   データベース
 522   ユーザデータ
 523   靴データ
 524   ライフログデータ
 525   位置データ
 526   計測データ
 527   歩行処理後データ
 528   静止立位処理後データ
 6     管理端末

Claims (10)

  1.  複数のユーザが使用する靴のインソールに設けられた1以上のセンサから歩行時および静止立位時における所定時間の少なくとも足底圧のデータを取得し、
     取得されたデータを解析して、ユーザ毎の、歩行時における少なくとも足底圧パラメータ、足圧中心パラメータおよび時間パラメータと、静止立位時における少なくとも足底圧パラメータおよび足圧中心パラメータとを取得して蓄積する、
    処理をコンピュータが実行することを特徴とする歩行・足部評価方法。
  2.  前記足底圧のデータは、靴に設けられた送信部から、直接に、または携帯端末を経由して、取得する、
    ことを特徴とする請求項1に記載の歩行・足部評価方法。
  3.  歩行時における所定時間の足底圧のデータから、各センサの最大圧力値の複数歩の平均値を取得して歩行時における前記足底圧パラメータとし、足圧中心軌跡の屈曲角を取得して歩行時における前記足圧中心パラメータとし、立脚時間、両脚支持割合および単脚支持割合を取得して前記時間パラメータとし、
     静止立位時における所定時間の足底圧のデータから、各センサの荷重比率を取得して静止立位時における前記足底圧パラメータとし、足圧中心総軌跡長および足圧中心矩形面積を取得して静止立位時における前記足圧中心パラメータとする、
    ことを特徴とする請求項1に記載の歩行・足部評価方法。
  4.  前記歩行時における所定時間の足底圧のデータから取得した足底圧パラメータ、足圧中心パラメータおよび時間パラメータから、胼胝・魚の目の評価を行って胼胝・魚の目評価結果を取得し、回内足・回外足の評価を行って回内足・回外足評価結果を取得し、複数歩バランスの評価を行って複数歩バランス評価結果を取得し、立脚時間の評価を行って立脚時間評価結果を取得し、両脚支持割合の評価を行って両脚支持割合評価結果を取得し、若しくは、母趾接地の評価を行って母趾接地の評価結果を取得し、
     または、前記静止立位時における所定時間の足底圧のデータから取得した足底圧パラメータおよび足圧中心パラメータから、左右差の評価を行って左右差評価結果を取得し、若しくは、足部アーチの評価を行って足部アーチ評価結果を取得する、
    ことを特徴とする請求項1に記載の歩行・足部評価方法。
  5.  前記胼胝・魚の目評価結果と前記回内足・回外足評価結果と前記足部アーチ評価結果と母趾接地の評価結果のうち、少なくとも1つを用いて美足度を取得し、
     前記複数歩バランス評価結果と前記左右差評価結果とからカラダバランス度を取得し、
     前記立脚時間評価結果と前記両脚支持割合評価結果とから歩き方リズムを取得し、
     ユーザの行動を示すライフログから活動度を取得する、
    ことを特徴とする請求項4に記載の歩行・足部評価方法。
  6.  前記美足度、前記カラダバランス度、前記歩き方リズムおよび前記活動度から、各々を独立した軸とする評価チャートを生成する、
    ことを特徴とする請求項5に記載の歩行・足部評価方法。
  7.  前記胼胝・魚の目評価結果、前記回内足・回外足評価結果、前記母趾接地の評価結果、前記複数歩バランス評価結果、前記立脚時間評価結果、前記両脚支持割合評価結果、前記左右差評価結果および前記足部アーチ評価結果のうち、少なくとも1つの評価結果が類似し、かつ足部に異常の発生していない他のユーザを特定し、
     当該他のユーザが使用している靴を選択候補として提示する、
    ことを特徴とする請求項4に記載の歩行・足部評価方法。
  8.  蓄積された前記データおよび/または歩行時における少なくとも足底圧パラメータ、足圧中心パラメータ並びに時間パラメータと、静止立位時における少なくとも足底圧パラメータ並びに足圧中心パラメータのうち、少なくとも1つのパラメータに基づき、時間的な状態変化を加味して総合分析を行い、足部異常の早期発見または予測警告を行う、
    ことを特徴とする請求項1に記載の歩行・足部評価方法。
  9.  複数のユーザが使用する靴のインソールに設けられた1以上のセンサから歩行時および静止立位時における所定時間の少なくとも足底圧のデータを取得し、
     取得されたデータを解析して、ユーザ毎の、歩行時における少なくとも足底圧パラメータ、足圧中心パラメータおよび時間パラメータと、静止立位時における少なくとも足底圧パラメータおよび足圧中心パラメータとを取得して蓄積する、
    処理をコンピュータに実行させることを特徴とする歩行・足部評価プログラム。
  10.  複数のユーザが使用する靴のインソールに設けられた1以上のセンサから歩行時および静止立位時における所定時間の少なくとも足底圧のデータを取得するデータ取得部と、
     取得されたデータを解析して、ユーザ毎の、歩行時における少なくとも足底圧パラメータ、足圧中心パラメータおよび時間パラメータと、静止立位時における少なくとも足底圧パラメータおよび足圧中心パラメータとを取得して蓄積する解析部と、
    を備えたことを特徴とする歩行・足部評価装置。
PCT/JP2018/008663 2017-03-08 2018-03-06 歩行・足部評価方法、歩行・足部評価プログラムおよび歩行・足部評価装置 Ceased WO2018164157A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019504620A JP6928355B2 (ja) 2017-03-08 2018-03-06 歩行・足部評価装置、歩行・足部評価プログラム、歩行・足部評価装置の作動方法、及び歩行・足部評価システム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017044385 2017-03-08
JP2017-044385 2017-03-08

Publications (1)

Publication Number Publication Date
WO2018164157A1 true WO2018164157A1 (ja) 2018-09-13

Family

ID=63448764

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008663 Ceased WO2018164157A1 (ja) 2017-03-08 2018-03-06 歩行・足部評価方法、歩行・足部評価プログラムおよび歩行・足部評価装置

Country Status (2)

Country Link
JP (2) JP6928355B2 (ja)
WO (1) WO2018164157A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109528212A (zh) * 2018-12-29 2019-03-29 大连乾函科技有限公司 一种异常步态识别设备及方法
JPWO2021140658A1 (ja) * 2020-01-10 2021-07-15
JP2021119935A (ja) * 2020-01-31 2021-08-19 豊田合成株式会社 歩行分析方法及び歩行分析装置
CN113361342A (zh) * 2021-05-20 2021-09-07 杭州麦淘淘科技有限公司 一种基于多模态的人体坐姿检测方法及装置
JP2021137539A (ja) * 2020-02-28 2021-09-16 株式会社三菱ケミカルホールディングス 測定システム、方法、プログラム
JP2021137371A (ja) * 2020-03-06 2021-09-16 豊田合成株式会社 歩行診断システム
JP2022013405A (ja) * 2020-07-03 2022-01-18 日本電気株式会社 推定装置、推定方法、プログラム
JPWO2022038663A1 (ja) * 2020-08-18 2022-02-24
WO2022038664A1 (ja) * 2020-08-18 2022-02-24 日本電気株式会社 計算装置、歩容計測システム、計算方法、およびプログラム記録媒体
CN114120602A (zh) * 2021-11-28 2022-03-01 王一山 一种用大数据来矫正双脚同时跳绳的姿势方法及系统
JP2022046214A (ja) * 2020-09-10 2022-03-23 豊田合成株式会社 歩行情報取得方法、歩行情報取得装置、及び歩行情報取得システム
WO2022070416A1 (ja) * 2020-10-02 2022-04-07 日本電気株式会社 推定装置、推定方法、およびプログラム記録媒体
JP2022159934A (ja) * 2021-04-05 2022-10-18 独立行政法人国立高等専門学校機構 認知機能推定装置、認知機能推定方法、認知機能推定端末、認知機能推定システム装置、プログラム、及び、記録媒体
JPWO2022239120A1 (ja) * 2021-05-11 2022-11-17
JP7395336B2 (ja) 2019-11-18 2023-12-11 財團法人資訊工業策進會 足圧測定装置、方法、及び、その非一時的な有形の機械可読媒体
US11925483B2 (en) 2020-07-03 2024-03-12 Nec Corporation Risk estimation apparatus, risk estimation system, risk estimation method, and non-transitory computer readable recording medium
CN120293751A (zh) * 2025-06-11 2025-07-11 天纺标检测认证股份有限公司 一种袜子运动性耐磨性测试方法及装置
US12408846B2 (en) 2019-12-25 2025-09-09 Nec Corporation Estimation device, estimation system, estimation method, and program recording medium

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7679089B2 (ja) * 2022-12-22 2025-05-19 学校法人北海道科学大学 転倒予防支援プログラム、転倒予防支援装置、転倒予防支援システムおよび転倒予防支援方法
TWI852509B (zh) * 2023-04-25 2024-08-11 緯創資通股份有限公司 步態分析方法、步態分析裝置及電腦可讀儲存媒體

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141275A (ja) * 2002-10-22 2004-05-20 Japan Science & Technology Agency 足底圧分布−聴覚バイオフィードバックシステム
JP2008256470A (ja) * 2007-04-03 2008-10-23 Nitta Ind Corp 圧力分布センサシステム
JP2009106391A (ja) * 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd 歩容解析システム
JP2009106545A (ja) * 2007-10-30 2009-05-21 Univ Of Occupational & Environmental Health Japan 足底圧計測装置及び行動姿勢判別方法
US20160324445A1 (en) * 2015-05-07 2016-11-10 Samsung Electronics Co., Ltd. Method of providing information according to gait posture and electronic device for same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005242499A (ja) * 2004-02-25 2005-09-08 Sanyo Electric Co Ltd 通信システムおよび情報処理方法
JP4863365B2 (ja) * 2006-05-31 2012-01-25 アニマ株式会社 動作解析システム、動作解析装置及びプログラム
JP4805070B2 (ja) * 2006-09-07 2011-11-02 ニッタ株式会社 転倒危険度判定装置
JP5362962B2 (ja) * 2007-03-29 2013-12-11 株式会社Comfort Lab 靴またはインソールのフィッティングナビゲーションシステム
JP5886086B2 (ja) * 2012-03-06 2016-03-16 テルモ株式会社 足底圧計測装置及びその処理方法
JP2013192721A (ja) * 2012-03-19 2013-09-30 Terumo Corp 足圧分布計測システム及び情報処理装置
JP6448015B2 (ja) * 2014-04-23 2019-01-09 株式会社タニタ 運動機能測定装置、方法、及びプログラム
JP2016123816A (ja) * 2015-01-08 2016-07-11 セイコーエプソン株式会社 生体情報分析装置、生体情報分析システム及び生体情報分析プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004141275A (ja) * 2002-10-22 2004-05-20 Japan Science & Technology Agency 足底圧分布−聴覚バイオフィードバックシステム
JP2008256470A (ja) * 2007-04-03 2008-10-23 Nitta Ind Corp 圧力分布センサシステム
JP2009106391A (ja) * 2007-10-26 2009-05-21 Panasonic Electric Works Co Ltd 歩容解析システム
JP2009106545A (ja) * 2007-10-30 2009-05-21 Univ Of Occupational & Environmental Health Japan 足底圧計測装置及び行動姿勢判別方法
US20160324445A1 (en) * 2015-05-07 2016-11-10 Samsung Electronics Co., Ltd. Method of providing information according to gait posture and electronic device for same

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109528212B (zh) * 2018-12-29 2023-09-19 大连乾函科技有限公司 一种异常步态识别设备及方法
CN109528212A (zh) * 2018-12-29 2019-03-29 大连乾函科技有限公司 一种异常步态识别设备及方法
JP7395336B2 (ja) 2019-11-18 2023-12-11 財團法人資訊工業策進會 足圧測定装置、方法、及び、その非一時的な有形の機械可読媒体
US12408846B2 (en) 2019-12-25 2025-09-09 Nec Corporation Estimation device, estimation system, estimation method, and program recording medium
JPWO2021140658A1 (ja) * 2020-01-10 2021-07-15
WO2021140658A1 (ja) * 2020-01-10 2021-07-15 日本電気株式会社 異常検出装置、判定システム、異常検出方法、およびプログラム記録媒体
JP7327516B2 (ja) 2020-01-10 2023-08-16 日本電気株式会社 異常検出装置、判定システム、異常検出方法、およびプログラム
JP2021119935A (ja) * 2020-01-31 2021-08-19 豊田合成株式会社 歩行分析方法及び歩行分析装置
JP7188401B2 (ja) 2020-01-31 2022-12-13 豊田合成株式会社 歩行分析方法及び歩行分析装置
JP2021137539A (ja) * 2020-02-28 2021-09-16 株式会社三菱ケミカルホールディングス 測定システム、方法、プログラム
JP7419616B2 (ja) 2020-02-28 2024-01-23 株式会社Shosabi 測定システム、方法、プログラム
JP7283422B2 (ja) 2020-03-06 2023-05-30 豊田合成株式会社 歩行診断システム
JP2021137371A (ja) * 2020-03-06 2021-09-16 豊田合成株式会社 歩行診断システム
US12408878B2 (en) 2020-07-03 2025-09-09 Nec Corporation Risk estimation apparatus, risk estimation system, risk estimation method, and non-transitory computer readable recording medium
US11925483B2 (en) 2020-07-03 2024-03-12 Nec Corporation Risk estimation apparatus, risk estimation system, risk estimation method, and non-transitory computer readable recording medium
US12357242B2 (en) 2020-07-03 2025-07-15 Nec Corporation Risk estimation apparatus, risk estimation system, risk estimation method, and non-transitory computer readable recording medium
US12357241B2 (en) 2020-07-03 2025-07-15 Nec Corporation Risk estimation apparatus, risk estimation system, risk estimation method, and non-transitory computer readable recording medium
JP2022013405A (ja) * 2020-07-03 2022-01-18 日本電気株式会社 推定装置、推定方法、プログラム
WO2022038664A1 (ja) * 2020-08-18 2022-02-24 日本電気株式会社 計算装置、歩容計測システム、計算方法、およびプログラム記録媒体
WO2022038663A1 (ja) * 2020-08-18 2022-02-24 日本電気株式会社 検出装置、検出システム、検出方法、およびプログラム記録媒体
JPWO2022038664A1 (ja) * 2020-08-18 2022-02-24
JPWO2022038663A1 (ja) * 2020-08-18 2022-02-24
JP7480852B2 (ja) 2020-08-18 2024-05-10 日本電気株式会社 計算装置、歩容計測システム、計算方法、およびプログラム
JP7480851B2 (ja) 2020-08-18 2024-05-10 日本電気株式会社 検出装置、検出システム、検出方法、およびプログラム
JP7331810B2 (ja) 2020-09-10 2023-08-23 豊田合成株式会社 歩行情報取得方法、歩行情報取得装置、及び歩行情報取得システム
JP2022046214A (ja) * 2020-09-10 2022-03-23 豊田合成株式会社 歩行情報取得方法、歩行情報取得装置、及び歩行情報取得システム
JPWO2022070416A1 (ja) * 2020-10-02 2022-04-07
WO2022070416A1 (ja) * 2020-10-02 2022-04-07 日本電気株式会社 推定装置、推定方法、およびプログラム記録媒体
JP7582318B2 (ja) 2020-10-02 2024-11-13 日本電気株式会社 推定装置、推定システム、推定方法、およびプログラム
JP7734356B2 (ja) 2021-04-05 2025-09-05 独立行政法人国立高等専門学校機構 認知機能推定装置、認知機能推定方法、認知機能推定端末、認知機能推定システム装置、プログラム、及び、記録媒体
JP2022159934A (ja) * 2021-04-05 2022-10-18 独立行政法人国立高等専門学校機構 認知機能推定装置、認知機能推定方法、認知機能推定端末、認知機能推定システム装置、プログラム、及び、記録媒体
WO2022239120A1 (ja) * 2021-05-11 2022-11-17 日本電信電話株式会社 転落予測装置、転落予測プログラム、及び転落予測方法
JPWO2022239120A1 (ja) * 2021-05-11 2022-11-17
CN113361342A (zh) * 2021-05-20 2021-09-07 杭州麦淘淘科技有限公司 一种基于多模态的人体坐姿检测方法及装置
CN113361342B (zh) * 2021-05-20 2022-09-20 杭州好学童科技有限公司 一种基于多模态的人体坐姿检测方法及装置
CN114120602A (zh) * 2021-11-28 2022-03-01 王一山 一种用大数据来矫正双脚同时跳绳的姿势方法及系统
CN120293751A (zh) * 2025-06-11 2025-07-11 天纺标检测认证股份有限公司 一种袜子运动性耐磨性测试方法及装置

Also Published As

Publication number Publication date
JP7235260B2 (ja) 2023-03-08
JP2021166898A (ja) 2021-10-21
JPWO2018164157A1 (ja) 2020-04-16
JP6928355B2 (ja) 2021-09-01

Similar Documents

Publication Publication Date Title
JP7235260B2 (ja) 歩行・足部評価システム、端末装置、歩行・足部評価方法、及び歩行・足部評価プログラム
Sun et al. Novel sensing technology in fall risk assessment in older adults: a systematic review
Samà et al. Estimating bradykinesia severity in Parkinson's disease by analysing gait through a waist-worn sensor
Hausdorff et al. Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children
Howcroft et al. Wearable-sensor-based classification models of faller status in older adults
Silvernail et al. Comparisons of segment coordination: an investigation of vector coding
Yu et al. Assessing elderly’s functional balance and mobility via analyzing data from waist-mounted tri-axial wearable accelerometers in timed up and go tests
Similä et al. Accelerometry-based berg balance scale score estimation
Motl et al. Commercially available accelerometry as an ecologically valid measure of ambulation in individuals with multiple sclerosis
Merry et al. Classifying sitting, standing, and walking using plantar force data
Anzai et al. Random forest algorithms to classify frailty and falling history in seniors using plantar pressure measurement insoles: A large-scale feasibility study
JP2020513274A (ja) バランスを定量化するための多重パラメータ法
US20230298760A1 (en) Systems, devices, and methods for determining movement variability, illness and injury prediction and recovery readiness
Das et al. Investigations on postural stability and spatiotemporal parameters of human gait using developed wearable smart insole
Kakarla et al. Accuracy enhancement of total force by capacitive insoles
JP7283422B2 (ja) 歩行診断システム
US20240324964A1 (en) Edge-intelligent Iot-based Wearable Device For Detection of Cravings in Individuals
US20240203228A1 (en) System and method for predicting a fall
Chawan et al. Person identification and tinetti score prediction using balance parameters: A machine learning approach to determine fall risk
JP7331810B2 (ja) 歩行情報取得方法、歩行情報取得装置、及び歩行情報取得システム
Calvaresi et al. Non-intrusive patient monitoring for supporting general practitioners in following diseases evolution
Saidani et al. Fear of falling and risk factors in older adults
Domínguez-Jiménez et al. A machine learning approach for the design optimization of a multiple magnetic and inertial sensors wearable system for the spine mobility assessment
Apoorva et al. Smart Shoes for Gait and Mobility Assessment
Kirk et al. A systematic review of real-world gait-related digital mobility outcomes in Parkinson’s disease

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763184

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019504620

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763184

Country of ref document: EP

Kind code of ref document: A1