WO2018156000A1 - Method for measuring meat quality based on infrared light absorption contrast - Google Patents
Method for measuring meat quality based on infrared light absorption contrast Download PDFInfo
- Publication number
- WO2018156000A1 WO2018156000A1 PCT/MX2017/000016 MX2017000016W WO2018156000A1 WO 2018156000 A1 WO2018156000 A1 WO 2018156000A1 MX 2017000016 W MX2017000016 W MX 2017000016W WO 2018156000 A1 WO2018156000 A1 WO 2018156000A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tissue
- cut
- present
- absorption
- classification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/02—Food
- G01N33/12—Meat; Fish
Definitions
- the present invention has its preponderant field of application in the detection and measurement of quality of cuts of cattle carcasses, specifically by the impiementation of methods and systems with artificial vision.
- CN102156128 describes a system and method of intelligent classification of meat quality in artificial vision comprising a positioning platform for the beef carcass, a dark room, a camera for capturing images and a classification module for Meat quality
- This technique is used for digital image processing of the cross section of the beef carcass and serves to analyze three indices of meat quality corresponding to marbling, fat color and red color in an effective area of Ribeye.
- the invention AU2013264002 provides a method of standard determination of meat color classification that allows the determination of detailed meat color classification, comprising a camera for image capture and a beef color sorter .
- the method comprises the following stages: taking an image of the Ribeye cross section of the bovine; marble extraction in the Ribeye region and marble classification.
- US Patent No. 7123685 refers to the continuous determination of the fat content of meat where a conveyor belt is used to examine the meat when it is moving towards a radiation source that serves as a method of fat analysis.
- Figure 1 is an outline of the key activities for the Method of Meat Quality Measurement through Tissue Identification and Spot Discrimination in 2D Images of the present invention.
- Figure 2 is a diagram of the curves of the Absorption Coefficient behavior of different types of molecules present in biological tissues through the infrared spectrum, from 900 nm to 1300 nm.
- the method starts after a cut of the cattle carcass is obtained [101].
- the first capture is made with illumination and IR reception filter at 900 nm [102] from where, from the darkest areas, an estimate of the location of connective tissue [103] present in said cut will be obtained.
- a capture will be made with illumination and IR filtration of wavelength 1170 nm [104], followed by 1210 nm [105]; from a contrast in these last two captures, the areas where adipose tissue is contained are determined [108].
- the areas of each composition are calculated to obtain an average marbling percentage [107] of the cut of the canal.
- FIG. 2 shows the behavior of the optical absorption curves in the infrared spectrum for different molecules present in a channel cut.
- Muscle tissue contains water, elastin, collagen and other molecules.
- the Elastin and Collagen curve is taken into account and for the fatty tissue the Lipid curve. It is illustrated that in the 900 nm wavelength the absorption of lipids and water is close to zero, so they are seen more clearly unlike the connective tissue that is observed darker. In the wavelength with a value of 1170 nm there is a very close absorption value for all types of molecules; If starting from 1170 nm to 1210 nm, the adipose tissue can be differentiated from the other tissues with greater contrast.
Landscapes
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Pathology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Medicinal Chemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
MÉTODO DE MEDICIÓN DE CALIDAD DE CARNE BASADO EN MEAT METHOD OF MEAT QUALITY BASED ON
CONTRASTE DE ABSORCIÓN DE LUZ INFRARROJA INFRARED LIGHT ABSORPTION CONTRAST
CAMPO TÉCNICO DE LA INVENCIÓN TECHNICAL FIELD OF THE INVENTION
La presente invención tiene su campo de aplicación preponderante en la detección y medición de calidad de cortes de canales de ganado, específicamente mediante la impiementación de métodos y sistemas con visión artificial. The present invention has its preponderant field of application in the detection and measurement of quality of cuts of cattle carcasses, specifically by the impiementation of methods and systems with artificial vision.
ANTECEDENTES DE LA INVENCIÓN Las consideraciones básicas para la clasificación de carne de vaca es evaluar las características asociadas con su palatabilidad y del deseo relativo esperado de la carne en un corte expresado en términos estandarizados de calidad. Esta situación da pie a que se generen tecnologías que aportan diversas herramientas para tal fin. Una característica deseable en este tipo de procesos es el monitoreo de variables que permiten conocer la calidad del proceso de ¡as plantas de sacrificio, mismas que son reflejadas particularmente en la acidez, temperatura interna, color y porcentajes de contenido (marmoleo) de la canal. Tradicionalmente, la clasificación de carnes se basa en la experiencia de personas largamente entrenadas para tal fin. Sin embargo, debido a la subjetividad implícita de este tipo de evaluaciones ¡a tendencia en esta industria apunta a utilizar tecnologías que conlleven a una situación en que exista más exactitud y consistencia, pues una variación pequeña en puntos porcentuales podrá determinar un mercado y costo distinto del producto. Dando respuesta a la tendencia de las industrias por optar por sistemas modernos como tecnología de visión artificial, métodos de procesamiento electrónico, y otras, ¡a presente invención tiene como objetivo reclamar un método de medición de calidad, en el cual se detalla como un método de clasificación de carne con base en tecnología breve descripción de patentes actuales en relación al tema, con el fin de resaltar la actividad inventiva de ía presente invención. La Patente No. CN102156128 describe un sistema y un método de clasificación inteligente de calidad de la carne en visión artificial que comprende una plataforma de colocación para la canal de la res, un cuarto oscuro, una cámara para capturar imágenes y un módulo de clasificación de calidad de la carne. Esta técnica se utiliza para procesamiento de imagen digital de la sección transversal de la canal de res y sirve para análisis de tres índices de calidad de la carne correspondientes a marmoleado, color de la grasa y el color rojo en un área efectiva de Ribeye. Así mismo, la invención AU2013264002 proporciona un método de determinación estándar de clasificación del color de la carne que permite la determinación de la clasificación detallada del color de la carne, comprendiendo una cámara para la captura de imágenes y un clasificador de color de carne de ternera. BACKGROUND OF THE INVENTION The basic considerations for the classification of beef is to evaluate the characteristics associated with its palatability and the expected relative desire of the meat in a cut expressed in standardized terms of quality. This situation leads to the generation of technologies that provide various tools for this purpose. A desirable characteristic in this type of process is the monitoring of variables that allow to know the quality of the process of the slaughter plants, which are particularly reflected in the acidity, internal temperature, color and content percentages (marbling) of the canal . Traditionally, the classification of meats is based on the experience of people long trained for this purpose. However, due to the implicit subjectivity of this type of evaluation, the trend in this industry aims to use technologies that lead to a situation where there is more accuracy and consistency, since a small variation in percentage points may determine a different market and cost of the product. Responding to the tendency of industries to opt for modern systems such as artificial vision technology, electronic processing methods, and others, the present invention aims to claim a quality measurement method, which is detailed as a method of meat classification based on technology brief description of current patents in relation to the subject, in order to highlight The inventive activity of the present invention. Patent No. CN102156128 describes a system and method of intelligent classification of meat quality in artificial vision comprising a positioning platform for the beef carcass, a dark room, a camera for capturing images and a classification module for Meat quality This technique is used for digital image processing of the cross section of the beef carcass and serves to analyze three indices of meat quality corresponding to marbling, fat color and red color in an effective area of Ribeye. Likewise, the invention AU2013264002 provides a method of standard determination of meat color classification that allows the determination of detailed meat color classification, comprising a camera for image capture and a beef color sorter .
Entre la búsqueda se encuentra un aparato y un método para predecir la suavidad de la carne, que permite la identificación de carne tierna e incluye la inserción de una o más cuchillas de punta plana en una muestra de carne para la medición de un valor como el estrés, la fuerza o la energía de corte y cálculo de factor de suavidad de los mismos basados en un límite de suavidad (US8225645). Similarmente, se encuentra la patente CN1026081 18 que describe un dispositivo portátil de adquisición de imágenes del sistema de clasificación de calidad de carne basada en tecnología de visión artificial integrada por una carcasa, un reflector y una cámara industrial, el cual tiene el objetivo de capturar una imagen para después ser procesada. Por otro lado la invención CN101706445 describe un método y un aparato de clasificación de marmoleado de carne de vaca. El método comprende las siguientes etapas: toma de una imagen de la sección transversal de Ribeye del bovino; extracción de marmoleado en región del Ribeye y clasificación del marmoleado. La Patente Estadounidense No. 7123685 se refiere a la determinación continua del contenido de grasa de la carne en donde una cinta transportadora se utiliza para la examinar la carne cuando esta avanza hacia una fuente de radiación que sirve como método de análisis de la grasa. Among the search is an apparatus and a method to predict the smoothness of the meat, which allows the identification of tender meat and includes the insertion of one or more blades with a flat tip in a meat sample for the measurement of a value such as stress, the force or the energy of cut and calculation of factor of smoothness of the same based on a limit of smoothness (US8225645). Similarly, there is the CN1026081 18 patent which describes a portable image acquisition device of the meat quality classification system based on artificial vision technology composed of a housing, a reflector and an industrial camera, which aims to capture An image to be processed later. On the other hand, the invention CN101706445 describes a method and an apparatus for classifying beef marbling. The method comprises the following stages: taking an image of the Ribeye cross section of the bovine; marble extraction in the Ribeye region and marble classification. US Patent No. 7123685 refers to the continuous determination of the fat content of meat where a conveyor belt is used to examine the meat when it is moving towards a radiation source that serves as a method of fat analysis.
Como se menciona anteriormente, ninguna de las patentes considera un proble ma muy común en la clasificación automática de carnes que consiste en tomar manchas de grasa (causadas por la operación de corte) y sangre como elementos profundos, siendo que deberían discriminarse al tratarse de estar solamente presentes en la superficie. A través de la generación de imágenes en distintas longitudes de onda en el espectro IR se ha podido atacar este y otros retos en esta práctica. As mentioned above, none of the patents consider a very common problem in the automatic classification of meats that consists of taking grease stains (caused by the cutting operation) and blood as deep elements, since they should be discriminated against when they are only present on the surface. Through the generation of images at different wavelengths in the IR spectrum it has been possible to attack this and other challenges in this practice.
DESCRIPCION DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
Los detalles característicos de la presente invención, se muestran claramente en la siguiente descripción y en las figuras que se acompañan, las cuales se mencionan a manera de ejemplo, por lo que no deben considerarse como una limitante para dicha invención. The characteristic details of the present invention are clearly shown in the following description and in the accompanying figures, which are mentioned by way of example, and therefore should not be considered as a limitation for said invention.
Breve descripción de las figuras: Brief description of the figures:
La figura 1 es un esquema de las actividades clave para el Método de Medición de Calidad de Carne a través de Identificación de Tejidos y Discriminación de Manchas en Imágenes 2D de la presente invención. Figure 1 is an outline of the key activities for the Method of Meat Quality Measurement through Tissue Identification and Spot Discrimination in 2D Images of the present invention.
La figura 2 es un diagrama de las curvas d el comportamiento del Coeficiente de Absorción de distintos tipos de moiéculas presentes en tejidos biológicos a través del espectro infrarrojo, desde 900 nm hasta 1300 nm. Figure 2 is a diagram of the curves of the Absorption Coefficient behavior of different types of molecules present in biological tissues through the infrared spectrum, from 900 nm to 1300 nm.
Como se indica en la Figura 1 , el método parte después de obtenerse un corte de la canal de ganado [101]. La primera captura se realiza con iluminación y filtro de recepción IR a 900 nm [102] de donde se obtendrá, a partir de las zonas más oscuras, una estimación de localización de tejido conectivo [103] presente en dicho corte. A continuación, se realizará una captura con iluminación y filtrado IR de longitud de onda 1170 nm [104], seguido por 1210 nm [105]; a partir de un contraste en estas últimas dos capturas se determinan las zonas donde se contiene tejido adiposo [108]. Para finalizar, a partir de la identificación de los distintos tipos de tejidos, se calculan las áreas de cada composición para obtener un porcentaje de marmoleo [107] promedio del corte de la canal. As indicated in Figure 1, the method starts after a cut of the cattle carcass is obtained [101]. The first capture is made with illumination and IR reception filter at 900 nm [102] from where, from the darkest areas, an estimate of the location of connective tissue [103] present in said cut will be obtained. Next, a capture will be made with illumination and IR filtration of wavelength 1170 nm [104], followed by 1210 nm [105]; from a contrast in these last two captures, the areas where adipose tissue is contained are determined [108]. Finally, from the identification of the different types of tissues, the areas of each composition are calculated to obtain an average marbling percentage [107] of the cut of the canal.
La figura 2 muestra el comportamiento de las curvas de absorción óptica en el espectro infrarrojo para distintas moléculas presentes en un corte de canal. El tejido musculoso contiene agua, elastina, colágeno y otras moléculas. Para identificar el tejido conectivo se toma en cuenta la curva de Elastina y Colágeno y para el tejido graso la curva para Lípidos. Se ilustra que en la longitud de onda de 900 nm la absorción de lípidos y agua es cercana a cero, por lo que se ven de manera más clara a diferencia del tejido conectivo que se observa más oscuro. En la longitud de onda con valor de 1170 nm se tiene un valor de absorción muy cercano para todos tos tipos de moléculas; si se parte desde 1170 nm a 1210 nm se podrá diferenciar el tejido adiposo de los demás tejidos con un mayor contraste. Figure 2 shows the behavior of the optical absorption curves in the infrared spectrum for different molecules present in a channel cut. Muscle tissue contains water, elastin, collagen and other molecules. To identify the connective tissue, the Elastin and Collagen curve is taken into account and for the fatty tissue the Lipid curve. It is illustrated that in the 900 nm wavelength the absorption of lipids and water is close to zero, so they are seen more clearly unlike the connective tissue that is observed darker. In the wavelength with a value of 1170 nm there is a very close absorption value for all types of molecules; If starting from 1170 nm to 1210 nm, the adipose tissue can be differentiated from the other tissues with greater contrast.
Claims
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/MX2017/000016 WO2018156000A1 (en) | 2017-02-22 | 2017-02-22 | Method for measuring meat quality based on infrared light absorption contrast |
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/MX2017/000016 WO2018156000A1 (en) | 2017-02-22 | 2017-02-22 | Method for measuring meat quality based on infrared light absorption contrast |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018156000A1 true WO2018156000A1 (en) | 2018-08-30 |
Family
ID=63252825
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/MX2017/000016 Ceased WO2018156000A1 (en) | 2017-02-22 | 2017-02-22 | Method for measuring meat quality based on infrared light absorption contrast |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2018156000A1 (en) |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1603794A (en) * | 2004-11-02 | 2005-04-06 | 江苏大学 | Method and device for rapid detection of beef tenderness by near-infrared technology |
| WO2010081116A2 (en) * | 2009-01-10 | 2010-07-15 | Goldfinch Solutions, Llc | System and method for analyzing properties of meat using multispectral imaging |
-
2017
- 2017-02-22 WO PCT/MX2017/000016 patent/WO2018156000A1/en not_active Ceased
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN1603794A (en) * | 2004-11-02 | 2005-04-06 | 江苏大学 | Method and device for rapid detection of beef tenderness by near-infrared technology |
| WO2010081116A2 (en) * | 2009-01-10 | 2010-07-15 | Goldfinch Solutions, Llc | System and method for analyzing properties of meat using multispectral imaging |
Non-Patent Citations (2)
| Title |
|---|
| "Qué es un filtro polarizador y para qué sirve.", 16 December 2015 (2015-12-16), XP055535774, Retrieved from the Internet <URL:http://365enfoques.com/accesorios-fotografia/filtro-polarizador-para-que-sirve> [retrieved on 20170925] * |
| CHENG-LUN TSAI ET AL.: "Near-infrared Absortion Property of Biological Soft Tissue Constituents", JOURNAL OF MEDICAL AND BIOLOGICAL ENGINEERING, vol. 1, 2001 * |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| Kamruzzaman et al. | Application of NIR hyperspectral imaging for discrimination of lamb muscles | |
| ES2676511T3 (en) | Multimodal laser spotting imaging | |
| US20200166467A1 (en) | Fluorescent penetrant inspection system and method | |
| JP2021511901A (en) | Wound imaging and analysis | |
| US11519862B2 (en) | Methods and systems for assessing quality of a meat product | |
| GB2549387A8 (en) | System and method for inspecting road surfaces | |
| BRPI1006077B1 (en) | system for analyzing one or more meat properties | |
| US11092542B2 (en) | Quality evaluation method and quality evaluation device | |
| US12354266B2 (en) | Fluorescence-based detection of problematic cellular entities | |
| CN112686885B (en) | Fruit epidermis defect detection method and system | |
| CN104919273A (en) | Device and method for non-contact identifying of red tissue structures and assembly for removing a strip of red tissue structures | |
| CN107991287B (en) | Raman spectrum detection equipment and method based on image grayscale recognition | |
| JP5590541B2 (en) | Freshness evaluation apparatus and freshness evaluation method | |
| US7460227B1 (en) | Method to detect bone fragments during the processing of meat or fish | |
| KR101057730B1 (en) | Meat quality discrimination system and meat quality discrimination method using the same | |
| WO2018156004A1 (en) | Method for measuring the quality index of meat by estimating the age of cattle by identifying connective tissue when splitting a carcass | |
| WO2018156000A1 (en) | Method for measuring meat quality based on infrared light absorption contrast | |
| Ding et al. | Comparison of photometric stereo and spectral analysis for visualization and assessment of burn injury from hyperspectral imaging | |
| Yoon et al. | Embedded bone fragment detection in chicken fillets using transmittance image enhancement and hyperspectral reflectance imaging | |
| KR100919462B1 (en) | Chicken carcass individual management system | |
| US20180035679A1 (en) | Device for optically identifying the sex of a slaughter pig | |
| Felfoldi et al. | Image processing based method for characterization of the fat/meat ratio and fat distribution of pork and beef samples | |
| CN111915564B (en) | Optical characteristics detection method of frozen meat products based on combined machine vision and OCT technology | |
| Usher et al. | Development and evaluation of a vision based poultry debone line monitoring system | |
| US12347094B1 (en) | Systems and methods for determining muscle fascicle fracturing |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17897993 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17897993 Country of ref document: EP Kind code of ref document: A1 |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17897993 Country of ref document: EP Kind code of ref document: A1 |