WO2018140919A1 - Procédé de fabrication additive d'éléments - Google Patents
Procédé de fabrication additive d'éléments Download PDFInfo
- Publication number
- WO2018140919A1 WO2018140919A1 PCT/US2018/015865 US2018015865W WO2018140919A1 WO 2018140919 A1 WO2018140919 A1 WO 2018140919A1 US 2018015865 W US2018015865 W US 2018015865W WO 2018140919 A1 WO2018140919 A1 WO 2018140919A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder materials
- component
- laser
- layer
- residual stress
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
- C23C14/083—Oxides of refractory metals or yttrium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
- B23K26/342—Build-up welding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
- B29C64/393—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y50/00—Data acquisition or data processing for additive manufacturing
- B33Y50/02—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/08—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/04—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
- C23C28/042—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/32—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
- C23C28/321—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer
- C23C28/3215—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer with at least one metal alloy layer at least one MCrAlX layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C28/00—Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
- C23C28/30—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
- C23C28/34—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
- C23C28/345—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer
- C23C28/3455—Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one oxide layer with a refractory ceramic layer, e.g. refractory metal oxide, ZrO2, rare earth oxides or a thermal barrier system comprising at least one refractory oxide layer
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/06—Metallic material
- C23C4/073—Metallic material containing MCrAl or MCrAlY alloys, where M is nickel, cobalt or iron, with or without non-metal elements
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/04—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
- C23C4/10—Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
- C23C4/11—Oxides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
- C23C4/134—Plasma spraying
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/18—After-treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/28—Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
- F01D5/288—Protective coatings for blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F2003/247—Removing material: carving, cleaning, grinding, hobbing, honing, lapping, polishing, milling, shaving, skiving, turning the surface
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F2003/248—Thermal after-treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
Definitions
- the present invention relates to a method of additive manufacturing of components.
- a method of additive manufacturing a component comprises: selecting powder characterization; depositing powder materials for fabricating the component; inspecting, in-situ, the powder materials deposited to determine layer characteristics; selecting process and laser parameters for laser processing based on inspection results; laser processing the powder materials; performing layer cleanup on the laser processed powder materials; additionally inspecting, in-situ, the laser processed powder materials to determine material characteristics; inspecting via ultrasonic measurement process the laser processed powder materials to determine residual stress; upon determining residual stress is less than a threshold, repeating the above steps starting with the depositing step with additional powder materials until a buildup of the component is complete.
- FIG. 1 is a flow chart depicting an exemplary embodiment of an additive manufacturing process of the present invention
- FIG. 2 depicts a laser additive manufacturing process of an exemplary embodiment of the present invention
- FIG. 3 depicts a flash thermography characteristics detection process of an exemplary embodiment of the present invention
- FIG. 4 powder layup thickness based off of a flash thermography characteristics detection process of an exemplary embodiment of the present invention
- FIG. 5 is a chart depicting pixel number versus thickness of a sample based off of a flash thermography characteristics detection process of an exemplary embodiment of the present invention
- FIG. 6 depicts a flash thermography characteristics detection process of an exemplary embodiment of the present invention
- FIG. 7 thermal conductivity of a metallic deposit based off of a flash thermography characteristics detection process of an exemplary embodiment of the present invention
- FIG. 8 depicts a laser ultrasonic residual stress detection process of an exemplary embodiment of the present invention.
- FIG. 9 depicts an option of performing a residual stress-relieving process after the laser ultrasonic physical characteristic detection process of an exemplary embodiment of the present invention.
- a method of additive manufacturing a component includes selecting powder characterization, depositing powder materials, inspecting the powder materials, selecting process and laser parameters for laser processing, laser processing the powder materials, performing layer cleanup, additionally inspecting the laser processed powder materials, and repeating steps until a buildup of the component is complete.
- An additive manufacturing process that includes high deposition rates and large volumes is desired.
- the embodiments of the process described below include embodiments that can be applied to closed, such as in selective laser melting (SLM), and open air, such as in cladding, deposition systems. These embodiments can produce height differences among the layers within a final build-up.
- SLM selective laser melting
- SLS selective laser sintering
- a simulation may take place prior to laser processing. However, simulation is not effective when handling variable heights within the additive manufacturing process.
- powder characterization occurs.
- the size of each layer, the total height requirements, the materials used, along with other powder characterizations are determined in an initial step. These characteristics determine the laser interaction.
- a powder feed and layup begin depositing powder material. When deposited, the layer thickness and powder bed density is important to identify and keep as required throughout the process. These layer characteristics among others are evaluated by an inspection as shown in FIGS. 3 through 5. The inspection can be through flash thermography or similar readings of the powder material. The term flash thermography is used interchangeably with the term inspection unless otherwise stated.
- Layer characteristics such as conductivity can also be evaluated by the flash thermography step in the process. Further, the flash thermography can also map defects such as porosity in the layer or crack in the layer. Based on the evaluation of the flash thermography results, laser processing and process parameters can be selected. Further, if there are any defects or non-obtained parameters, these values can affect the process parameters. These process parameters can be selected from a database of preset parameters.
- a residual stress reducing process can be performed.
- a residual stress reducing process such as a laser shock peening technique can be performed to relieve these stresses. Once the residual stresses are relieved, the process loops back to the step for set up of the powder feed and layup, i.e. deposition of powder materials.
- Embodiments include dedicated efforts in the areas of powder characteristics, deposit characteristics, and residual stresses so that an integrated closed loop is formed.
- a thicker layer can be produced for bulk areas of a final product, and for areas with fine details, a thinner layer can be produced.
- the layer thickness can vary with each layer due to the closed loop control.
- typical layer buildup size runs from 20- 100 ⁇ .
- Layer size can increase to 150 ⁇ - 4mm with embodiments described here within.
- the thicker layer sizes can be used for bulk areas as mentioned above, while fine detailed areas can be reduced to the typical thinner layer size.
- Typical speeds for a traditional additive manufacturing process run from 30 to 40 hours. Enabled to change layer thickness, the process including an embodiment described here, can now run approximately 4 hours in time.
- Step 100 has the powder characteristics selected for the additive manufacturing.
- step 102 powder feed and layup is set up. The powder material is deposited during this step.
- step 104 flash thermography for layer characteristics is performed. Results are evaluated in step 106 and incorporated into the selection of the process parameters and laser processing parameters in step 108.
- Step 110 includes the performing of the laser processing.
- Step 1 12 includes a layer cleanup post laser processing.
- An additional flash thermography is performed for material characteristics in step 114. The material characteristic is evaluated and compared to a predetermined threshold in step 116. If the material characteristic exceeds the threshold then the process returns to step 108 to be performed.
- step 1 18 is performed as an ultrasonic residual stress measurement process.
- the measured residual stress is compared to a threshold in step 120. If the residual stress exceeds the threshold value, i.e. fails a test, then step 122 is performed. Step 122 performs a residual stress reducing process such as laser shock peening. If the residual stress is lower than the threshold, it is determined if the full component build up is complete in step 124. If not, then the process is repeated starting with step 102. If a full component buildup is complete, then the process may be completed.
- the process enables the precision of closed loop control for in-situ along with quick decisions for component buildup.
- the ability to make quick decisions while a layer is being built up or in between layers creates the component in less time. Further, by dealing with any defects while building up a layer, the process is cleaned of defects at earlier stages, and therefore, with less work to redo the piece. This process saves costs and time improving the art available.
- aspects of the method of additive manufacturing disclosed herein may be implemented by any appropriate processor system using any appropriate programming language or programming technique.
- the system can take the form of any appropriate circuitry, such as may involve a hardware embodiment, a software embodiment or an embodiment comprising both hardware and software elements.
- the system may be implemented by way of software and hardware (e.g., processor, sensors, etc), which may include but is not limited to firmware, resident software, microcode, etc.
- parts of the processor system can take the form of a computer program product accessible from a processor-usable or processor-readable medium providing program code for use by or in connection with a processor or any instruction execution system.
- processor-readable media may include non-transitory tangible processor-readable media, such as a semiconductor or solid-state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a readonly memory (ROM), a rigid magnetic disk and an optical disk.
- Current examples of optical disks include compact disk—read only memory (CD-ROM), compact disk— read/write (CD-R/W) and DVD and other known optical, electrical, or magnetic storage devices drives and media.
- the process parameters may be provided in a database and correspond to a primary record store that comprises data from a plurality of different source data sets. Data used to populate the process parameters may originate from other databases, XML structures, and/or other data store structures. Also the process of providing data to generate the process parameters, may involve an extract/translate/load (ETL) process.
- ETL extract/translate/load
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Plasma & Fusion (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Ceramic Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Laser Beam Processing (AREA)
- Powder Metallurgy (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Laminated Bodies (AREA)
Abstract
L'invention concerne un procédé de fabrication additive d'un élément. Le procédé comprend la sélection d'une caractérisation de poudre, le dépôt de matières pulvérulentes, l'inspection des matières pulvérulentes, la sélection de paramètres processus et laser pour le traitement au laser, le traitement au laser des matières pulvérulentes, la réalisation d'un nettoyage de couche, la détermination d'un état de contrainte et d'une relaxation, l'inspection supplémentaire des matières pulvérulentes traitées au laser, et la répétition des étapes jusqu'à l'achèvement de la formation de l'élément.
Priority Applications (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/478,331 US11359290B2 (en) | 2017-01-30 | 2018-01-30 | Method of additive manufacturing of components |
| EP18705254.3A EP3558571B1 (fr) | 2017-01-30 | 2018-01-30 | Procédé de fabrication additive d'éléments |
| CN201880009051.7A CN110352105B (zh) | 2017-01-30 | 2018-01-30 | 组件的增材制造的方法 |
| JP2019541186A JP6926213B2 (ja) | 2017-01-30 | 2018-01-30 | 構成部品の付加製造方法 |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201762452124P | 2017-01-30 | 2017-01-30 | |
| US62/452,124 | 2017-01-30 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018140919A1 true WO2018140919A1 (fr) | 2018-08-02 |
Family
ID=61224555
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2018/015865 Ceased WO2018140919A1 (fr) | 2017-01-30 | 2018-01-30 | Procédé de fabrication additive d'éléments |
| PCT/US2018/015860 Ceased WO2018140918A1 (fr) | 2017-01-30 | 2018-01-30 | Système d'enduction d'une couche formant barrière thermique compatible avec un revêtement |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2018/015860 Ceased WO2018140918A1 (fr) | 2017-01-30 | 2018-01-30 | Système d'enduction d'une couche formant barrière thermique compatible avec un revêtement |
Country Status (6)
| Country | Link |
|---|---|
| US (2) | US11174557B2 (fr) |
| EP (2) | EP3558571B1 (fr) |
| JP (2) | JP6926213B2 (fr) |
| CN (3) | CN117926184A (fr) |
| SA (1) | SA519402328B1 (fr) |
| WO (2) | WO2018140919A1 (fr) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2020189324A (ja) * | 2019-05-23 | 2020-11-26 | 株式会社神戸製鋼所 | 構造体の製造システム及び製造方法 |
| EP4116017A3 (fr) * | 2021-07-09 | 2023-03-22 | Howmedica Osteonics Corporation | Ajustements de réglages automatiques en boucle fermée pour la fabrication additive basés sur l'imagerie de couche |
| US11987006B2 (en) | 2019-07-19 | 2024-05-21 | Hewlett-Packard Development Company, L.P. | Adjustments to forming data for forming a build layer |
Families Citing this family (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10857735B1 (en) * | 2017-04-25 | 2020-12-08 | Hrl Laboratories, Llc | Apparatus and method for additive manufacturing and determining the development of stress during additive manufacturing |
| CN111041401B (zh) * | 2019-12-02 | 2022-02-11 | 北京工业大学 | 一种铁基非晶-陶瓷叠层隔热涂层及其制备方法和应用 |
| US11491718B2 (en) * | 2019-12-20 | 2022-11-08 | Nutech Ventures | Hybrid additive manufacturing method |
| KR102236149B1 (ko) * | 2019-12-31 | 2021-04-06 | 한국과학기술원 | 3d 프린팅 시스템 및 이의 실시간 피드백 공정제어 방법 |
| CN112059179B (zh) * | 2020-08-04 | 2021-11-02 | 北京航空航天大学 | 用于大型金属构件制造的激光增材制造设备及方法 |
| WO2022036591A1 (fr) * | 2020-08-19 | 2022-02-24 | 西门子股份公司 | Procédé et dispositif de formulation d'un procédé d'impression en fabrication additive |
| US11661861B2 (en) | 2021-03-03 | 2023-05-30 | Garrett Transportation I Inc. | Bi-metal variable geometry turbocharger vanes and methods for manufacturing the same using laser cladding |
| CN116426884B (zh) * | 2023-03-25 | 2025-05-06 | 中国航发北京航空材料研究院 | 一种镁硅铈氧双陶瓷层结构热障涂层的制备方法 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6925346B1 (en) * | 1998-06-30 | 2005-08-02 | Jyoti Mazumder | Closed-loop, rapid manufacturing of three-dimensional components using direct metal deposition |
| US20120217226A1 (en) * | 2009-10-31 | 2012-08-30 | Mtu Aero Engines Gmbh | Method and device for producing a component of a turbomachine |
| US20130343947A1 (en) * | 2011-01-28 | 2013-12-26 | MTU Aero Engines AG | Method and device for process monitoring |
| EP3170592A1 (fr) * | 2015-11-19 | 2017-05-24 | General Electric Company | Procédé de surveillance acoustique pour processus de fabrication additive |
| EP3251844A1 (fr) * | 2016-06-03 | 2017-12-06 | The Boeing Company | Techniques de contrôle et de correction en temps réel pour des systèmes d'écriture directe |
| EP3308945A1 (fr) * | 2016-10-11 | 2018-04-18 | General Electric Company | Procédé et système d'inspection fondée sur la topographie et de commande de processus pour des pièces fabriquées par fabrication additive |
Family Cites Families (43)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3475258B2 (ja) * | 1994-05-23 | 2003-12-08 | 株式会社海水化学研究所 | セラミック被膜形成剤およびその製造方法 |
| US5660885A (en) | 1995-04-03 | 1997-08-26 | General Electric Company | Protection of thermal barrier coating by a sacrificial surface coating |
| KR100436256B1 (ko) * | 1995-04-03 | 2004-07-16 | 제너럴 일렉트릭 캄파니 | 희생적인 표면피막에 의해 열차단 피복물을 보호하기 위한 방법 및 복합재 |
| US5871820A (en) | 1995-04-06 | 1999-02-16 | General Electric Company | Protection of thermal barrier coating with an impermeable barrier coating |
| US5851678A (en) * | 1995-04-06 | 1998-12-22 | General Electric Company | Composite thermal barrier coating with impermeable coating |
| JP3727948B2 (ja) * | 1995-04-06 | 2005-12-21 | ゼネラル・エレクトリック・カンパニイ | 不浸透性バリアコーティングによりサーマルバリアコーティングを保護するための方法および複合材 |
| US5773141A (en) | 1995-04-06 | 1998-06-30 | General Electric Company | Protected thermal barrier coating composite |
| JP4245661B2 (ja) * | 1995-06-26 | 2009-03-25 | ゼネラル・エレクトリック・カンパニイ | 多重被膜で保護した遮熱コーティング複合物 |
| US6465090B1 (en) * | 1995-11-30 | 2002-10-15 | General Electric Company | Protective coating for thermal barrier coatings and coating method therefor |
| US6261643B1 (en) * | 1997-04-08 | 2001-07-17 | General Electric Company | Protected thermal barrier coating composite with multiple coatings |
| US6720038B2 (en) | 2002-02-11 | 2004-04-13 | General Electric Company | Method of forming a coating resistant to deposits and coating formed thereby |
| US6627323B2 (en) * | 2002-02-19 | 2003-09-30 | General Electric Company | Thermal barrier coating resistant to deposits and coating method therefor |
| JP2005154885A (ja) * | 2003-03-26 | 2005-06-16 | Mitsubishi Heavy Ind Ltd | 遮熱コーティング材料 |
| US7148448B2 (en) | 2003-10-31 | 2006-12-12 | General Electric Company | Monitored laser shock peening |
| US20070116883A1 (en) | 2005-11-22 | 2007-05-24 | General Electric Company | Process for forming thermal barrier coating resistant to infiltration |
| US7807231B2 (en) * | 2005-11-30 | 2010-10-05 | General Electric Company | Process for forming thermal barrier coating resistant to infiltration |
| US8528339B2 (en) * | 2007-04-05 | 2013-09-10 | Siemens Energy, Inc. | Stacked laminate gas turbine component |
| JP2008274357A (ja) * | 2007-04-27 | 2008-11-13 | Japan Fine Ceramics Center | 耐久性に優れる柱状構造遮熱コーティング部材及びその製造方法 |
| EP2385155B1 (fr) * | 2008-05-26 | 2015-06-24 | Siemens Aktiengesellschaft | Système de revêtement de barrière thermique en céramique avec deux couches de céramique |
| CN101392382B (zh) | 2008-10-15 | 2010-08-11 | 江苏大学 | 一种激光熔覆结合激光喷丸强化表面改性的方法和装置 |
| EP2196559A1 (fr) * | 2008-12-15 | 2010-06-16 | ALSTOM Technology Ltd | Système de revêtement de barrière thermique, composants revêtus avec celle-ci et procédé pour l'application d'un système de revêtement de barrière thermique à des composants |
| US8658291B2 (en) * | 2008-12-19 | 2014-02-25 | General Electric Company | CMAS mitigation compositions, environmental barrier coatings comprising the same, and ceramic components comprising the same |
| JP2013028464A (ja) | 2011-07-29 | 2013-02-07 | Izumi Food Machinery Co Ltd | 粉体供給装置及び吸引式混合システム |
| US9238738B2 (en) * | 2012-08-22 | 2016-01-19 | Thermatin Industries, LLC | Germanate-containing thermal barrier coating |
| CN102888605A (zh) | 2012-10-29 | 2013-01-23 | 中国科学院上海硅酸盐研究所 | 一种镀Al-CoNiCrAlY高温抗氧化复合涂层及其制备方法与应用 |
| CN102962452B (zh) | 2012-12-14 | 2014-06-25 | 沈阳航空航天大学 | 基于红外测温图像的金属激光沉积制造扫描路径规划方法 |
| US9995169B2 (en) * | 2013-03-13 | 2018-06-12 | General Electric Company | Calcium-magnesium-aluminosilicate resistant coating and process of forming a calcium-magnesium-aluminosilicate resistant coating |
| EP2929682A4 (fr) | 2013-04-30 | 2016-10-19 | Hewlett Packard Development Co | Construction d'objet tridimensionnel |
| GB201316815D0 (en) * | 2013-09-23 | 2013-11-06 | Renishaw Plc | Additive manufacturing apparatus and method |
| JP6241244B2 (ja) | 2013-12-10 | 2017-12-06 | セイコーエプソン株式会社 | 三次元造形物製造装置、三次元造形物の製造方法および三次元造形物 |
| JP6291269B2 (ja) * | 2014-01-31 | 2018-03-14 | 三菱重工業株式会社 | 成膜装置及び成膜方法 |
| CN104400998B (zh) * | 2014-05-31 | 2016-10-05 | 福州大学 | 一种基于红外光谱分析的3d打印检测方法 |
| CN104226988B (zh) | 2014-08-25 | 2016-10-05 | 深圳光韵达光电科技股份有限公司 | 一种大尺寸零部件的3d打印制造方法 |
| JP5888826B1 (ja) | 2015-04-27 | 2016-03-22 | 株式会社ソディック | 積層造形装置 |
| CN105033408B (zh) * | 2015-05-28 | 2017-05-17 | 西南交通大学 | Gma增材制造双被动视觉传感检测装置及其检测方法 |
| CN104959600B (zh) | 2015-06-25 | 2017-05-10 | 武汉大学 | 基于纳秒‑皮秒‑飞秒激光复合技术的平板式氧传感器制备方法 |
| CA3031329A1 (fr) | 2015-07-18 | 2017-01-26 | Vulcanforms Inc. | Fabrication additive par fusion de materiau spatialement controlee |
| CN105239080A (zh) | 2015-09-01 | 2016-01-13 | 广东工业大学 | 一种应力控制3d打印再制造装置及再制造方法 |
| CN105154870B (zh) | 2015-09-01 | 2018-01-23 | 广东工业大学 | 一种金属零件应力控制3d打印再制造方法 |
| CN105204791B (zh) | 2015-09-11 | 2018-08-10 | 合肥阿巴赛信息科技有限公司 | 一种基于应力分析的优化三维打印物体结构的算法 |
| CN105195742B (zh) | 2015-11-03 | 2017-06-23 | 西安赛隆金属材料有限责任公司 | 一种高能束选区熔化成形的熔化路径设计方法 |
| CN105437549B (zh) | 2015-12-18 | 2017-11-03 | 天津清研智束科技有限公司 | 一种增材制造中粉末分配量的控制装置及方法 |
| CN106041076B (zh) * | 2016-07-06 | 2018-06-19 | 中北大学 | 一种激光快速成形铺粉均匀性检测系统及检测方法 |
-
2018
- 2018-01-30 WO PCT/US2018/015865 patent/WO2018140919A1/fr not_active Ceased
- 2018-01-30 EP EP18705254.3A patent/EP3558571B1/fr active Active
- 2018-01-30 CN CN202410132282.4A patent/CN117926184A/zh active Pending
- 2018-01-30 US US16/478,301 patent/US11174557B2/en active Active
- 2018-01-30 CN CN201880009053.6A patent/CN110268098A/zh active Pending
- 2018-01-30 JP JP2019541186A patent/JP6926213B2/ja active Active
- 2018-01-30 US US16/478,331 patent/US11359290B2/en active Active
- 2018-01-30 JP JP2019541162A patent/JP6980022B2/ja active Active
- 2018-01-30 WO PCT/US2018/015860 patent/WO2018140918A1/fr not_active Ceased
- 2018-01-30 CN CN201880009051.7A patent/CN110352105B/zh active Active
- 2018-01-30 EP EP18708776.2A patent/EP3562971A1/fr active Pending
-
2019
- 2019-07-28 SA SA519402328A patent/SA519402328B1/ar unknown
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6925346B1 (en) * | 1998-06-30 | 2005-08-02 | Jyoti Mazumder | Closed-loop, rapid manufacturing of three-dimensional components using direct metal deposition |
| US20120217226A1 (en) * | 2009-10-31 | 2012-08-30 | Mtu Aero Engines Gmbh | Method and device for producing a component of a turbomachine |
| US20130343947A1 (en) * | 2011-01-28 | 2013-12-26 | MTU Aero Engines AG | Method and device for process monitoring |
| EP3170592A1 (fr) * | 2015-11-19 | 2017-05-24 | General Electric Company | Procédé de surveillance acoustique pour processus de fabrication additive |
| EP3251844A1 (fr) * | 2016-06-03 | 2017-12-06 | The Boeing Company | Techniques de contrôle et de correction en temps réel pour des systèmes d'écriture directe |
| EP3308945A1 (fr) * | 2016-10-11 | 2018-04-18 | General Electric Company | Procédé et système d'inspection fondée sur la topographie et de commande de processus pour des pièces fabriquées par fabrication additive |
Non-Patent Citations (1)
| Title |
|---|
| S. CLIJSTERS ET AL: "In situ quality control of the selective laser melting process using a high-speed, real-time melt pool monitoring system", THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, vol. 75, no. 5-8, 10 August 2014 (2014-08-10), London, pages 1089 - 1101, XP055320129, ISSN: 0268-3768, DOI: 10.1007/s00170-014-6214-8 * |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2020189324A (ja) * | 2019-05-23 | 2020-11-26 | 株式会社神戸製鋼所 | 構造体の製造システム及び製造方法 |
| JP7160759B2 (ja) | 2019-05-23 | 2022-10-25 | 株式会社神戸製鋼所 | 構造体の製造システム及び製造方法 |
| US11987006B2 (en) | 2019-07-19 | 2024-05-21 | Hewlett-Packard Development Company, L.P. | Adjustments to forming data for forming a build layer |
| EP4116017A3 (fr) * | 2021-07-09 | 2023-03-22 | Howmedica Osteonics Corporation | Ajustements de réglages automatiques en boucle fermée pour la fabrication additive basés sur l'imagerie de couche |
Also Published As
| Publication number | Publication date |
|---|---|
| US11174557B2 (en) | 2021-11-16 |
| US20200009656A1 (en) | 2020-01-09 |
| CN110352105B (zh) | 2021-11-30 |
| US20190368051A1 (en) | 2019-12-05 |
| EP3558571B1 (fr) | 2022-12-14 |
| US11359290B2 (en) | 2022-06-14 |
| WO2018140918A1 (fr) | 2018-08-02 |
| SA519402328B1 (ar) | 2022-12-11 |
| EP3558571A1 (fr) | 2019-10-30 |
| JP6926213B2 (ja) | 2021-08-25 |
| CN110268098A (zh) | 2019-09-20 |
| JP2020507676A (ja) | 2020-03-12 |
| JP6980022B2 (ja) | 2021-12-15 |
| CN110352105A (zh) | 2019-10-18 |
| CN117926184A (zh) | 2024-04-26 |
| EP3562971A1 (fr) | 2019-11-06 |
| JP2020507475A (ja) | 2020-03-12 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11359290B2 (en) | Method of additive manufacturing of components | |
| US20170059529A1 (en) | Adaptive additive manufacturing process using in-situ laser ultrasonic testing | |
| JP6723285B2 (ja) | 金属構成要素の加法的製造および修復 | |
| JP6707649B2 (ja) | 付加製造されるべき部材を検査するための方法及び装置 | |
| Mani et al. | A review on measurement science needs for real-time control of additive manufacturing metal powder bed fusion processes | |
| US20190291345A1 (en) | Sensor fusion for powder bed manufacturing process control | |
| Ünal-Saewe et al. | Process development for tip repair of complex shaped turbine blades with IN718 | |
| AU2014204284B2 (en) | Object production using an additive manufacturing process and quality assessment of the object | |
| CN107428081B (zh) | 材料鉴定系统和方法 | |
| US10457002B2 (en) | Method and apparatus for treating an object | |
| US20200108594A1 (en) | Real-time resonant inspection for additive manufacturing | |
| EP3461576A1 (fr) | Régulation de la taille des grains dans la fabrication additive au laser d'articles métalliques | |
| KR102176957B1 (ko) | 터보기계 구성요소 수리 방법 | |
| CN104772661A (zh) | 全频段高精度非球面光学元件的加工方法 | |
| WO2018228251A1 (fr) | Procédé d'élimination de fissures sur une surface de cavité interne d'une pièce formée par fusion laser sélective | |
| TWI769872B (zh) | 積層製造方法 | |
| KR20200001602A (ko) | 금속으로 이루어진 벨트 몸체를 갖는 무한 벨트 및 그 무한 벨트 외부 표면의 기공 크기 검사 방법 | |
| Guerra et al. | Off-axis monitoring of the melt pool spatial information in Laser Metal Deposition process | |
| Mazzarisi et al. | Off-axis optical system for the monitoring of the Laser Metal Deposition process | |
| Bańkowski et al. | Visual testing of castings defects after vibratory machining | |
| Witvrouw et al. | Precision additive metal manufacturing | |
| Nicoletto et al. | Lightweight design and additive manufacturing of a fatigue-critical automotive component | |
| El-Sari et al. | Distortion-based validation of the heat treatment simulation of directed energy deposition additive manufactured parts | |
| Bian et al. | An Investigation on Residual Stress in 316L Stainless Steel by Selective Laser Melting | |
| JP6318429B2 (ja) | コーティング層における剥離の非破壊検査方法および非破壊検査装置 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18705254 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2019541186 Country of ref document: JP Kind code of ref document: A |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2018705254 Country of ref document: EP Effective date: 20190724 |