WO2018032861A1 - Procédé et dispositif de reconnaissance de veine de doigt - Google Patents
Procédé et dispositif de reconnaissance de veine de doigt Download PDFInfo
- Publication number
- WO2018032861A1 WO2018032861A1 PCT/CN2017/087124 CN2017087124W WO2018032861A1 WO 2018032861 A1 WO2018032861 A1 WO 2018032861A1 CN 2017087124 W CN2017087124 W CN 2017087124W WO 2018032861 A1 WO2018032861 A1 WO 2018032861A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- finger vein
- region
- interest
- binary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
- G06V40/14—Vascular patterns
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
Definitions
- the present application relates to the field of biometrics, and more particularly to a finger vein recognition method and apparatus.
- biometrics With the continuous development of technology, traditional methods of user identification and verification through user names and passwords are insufficient to meet the growing demand for online payment.
- Biometrics has developed rapidly with its uniqueness. Specifically, the biometric identification technology utilizes biometric or behavioral characteristics of the human body for personal identity authentication, wherein the biometric features may include fingerprints, palms, irises, faces, etc., and the behavioral features may include actions, sounds, signatures, and the like.
- the vein recognition technology is one of the biometric identification technologies, which achieves the purpose of identification and authentication by performing living body recognition on the vein image of the finger or the palm, and has the characteristics of high anti-counterfeiting, living body detection, high precision, and easy operation.
- the present application provides a finger vein recognition method and device, which performs feature matching by collecting finger veins and multi-angle finger vein mosaic images, thereby realizing finger vein recognition, high accuracy, and then identity authentication. Certification is efficient.
- a finger vein recognition method includes:
- the image of the region of interest is matched with the target matching image, and if the matching is successful, the finger vein recognition is passed.
- the matching the image of the region of interest with the target matching image according to the binary structure algorithm comprises:
- the calculating the similarity between the first binary image and the second binary image comprises:
- the similarity of the first binary image and the second binary image is obtained by calculating pixels in which the expanded images of the first refined image and the second refined image overlap.
- the method further includes:
- the finger vein images of the plurality of angles are stitched into a target matching image.
- the stitching the plurality of angles of the finger vein images into a target matching image comprises:
- the registration images are added to obtain the target matching image.
- the horizontal rotation, the horizontal displacement correction, and the size normalization processing are performed on the plurality of the finger vein images, including:
- the vein image is normalized to obtain an image of a preset size.
- the acquiring the region of interest on the corrected image comprises:
- the region of interest is acquired according to the l i1 , l i2 , l i3 , and l i4 .
- a finger vein recognition device comprising:
- a first acquiring module configured to collect a finger vein image, and acquire an image of the region of interest corresponding to the finger vein image
- the identification module is configured to match the image of the region of interest with the target matching image according to the binary structure algorithm, and if the matching is successful, the finger vein recognition is passed.
- the identification module comprises:
- a first processing module configured to perform smoothing processing on the image of the region of interest in the target matching image to obtain an image to be matched
- a second processing module configured to perform binarization processing on the image of the region of interest and the image to be matched, to obtain a first binary image and a second binary image
- a calculating module configured to calculate a similarity between the first binary image and the second binary image.
- the method further includes:
- a second acquiring module configured to acquire a finger vein image of multiple angles
- a splicing module for splicing the finger vein images of a plurality of angles into a target matching image.
- a finger vein recognition method disclosed in the present application acquires a plurality of angles of the finger vein image and stitches the finger vein images of a plurality of angles into a target matching image to obtain an interest. An image of the region, and matching the image of the region of interest with the target matching image, and if the matching is successful, characterizing the finger vein recognition. It can be seen that the program collects finger vein images at different angles and performs feature matching to realize finger vein recognition, high accuracy, and then identity authentication, and the authentication efficiency is high.
- FIG. 1 is a flowchart of a finger vein recognition method disclosed in the embodiment
- FIG. 2 is still another flowchart of a method for identifying a finger vein according to the embodiment
- FIG. 3 is still another flowchart of a finger vein recognition method disclosed in the embodiment.
- FIG. 1 is a flowchart of a method for identifying a finger vein according to an embodiment of the present invention, including the steps of:
- S1 acquiring a finger vein image, and acquiring an image of the region of interest corresponding to the finger vein image;
- S2 Matching the image of the region of interest to the target matching image according to a binary structure algorithm, and if the matching is successful, characterizing the finger vein recognition.
- the finger vein images of multiple angles are acquired, and then the images are matched and synthesized by the features, the finger veins are recognized, the accuracy is high, and the identity authentication is performed, and the authentication efficiency is high.
- the embodiment may further include the following steps:
- S4 splicing the finger vein images of the plurality of angles into a target matching image.
- FIG. 2 and FIG. 3 Please refer to FIG. 2 and FIG. 3 for a detailed description of the finger vein recognition method provided by the present solution, wherein multiple angles may be two or more angles, and an example of a finger vein image that collects three angles is taken as an example.
- the introduction of the program mainly includes the following steps:
- Step 1 Obtain three angles for vein image acquisition, such as:
- the light source 1 emits light, the light source 2 and the light source 3 do not emit light, and the image f 1 is acquired;
- the light source 2 emits light, the light source 1 and the light source 3 do not emit light, and the image f 2 is acquired;
- the light source 3 emits light, the light source 1 and the light source 2 do not emit light, and the image f 3 is acquired;
- Step 2 Finger vein image mosaic fusion: the finger vein images f 1 , f 2 and f 3 of the user's multiple angles are spliced into a mosaic image (user matching template).
- the image stitching technology is mainly divided into three main steps: image preprocessing, image registration and image fusion, as follows:
- Image registration Image NorF 1 and NorF 3 are used as target images, and NorF 2 is used as reference image to realize image registration of finger vein images collected at different angles.
- the specific process is as follows:
- m 2 and m 5 represent the amounts of translation of the two figures, respectively, m 0 , m 1 , m 3 and m 4 represent the scale and the amount of rotation, respectively, and m 6 and m 7 represent the amount of deformation in the horizontal and vertical directions.
- Equation 2 Perform a Fourier transform on both sides of Equation 2 and calculate the cross power spectrum, ie:
- Equation 3 Perform an inverse Fourier change on Equation 3 to obtain the amount of translation (x 0 , y 0 ).
- Step 3 The user refers to vein image acquisition and image extraction of the region of interest.
- the process is as follows:
- the light source 2 emits light, the light source 1 and the light source 3 do not emit light, and the image F 4 is acquired;
- step 2 the region of interest image NorF 4 (the size is w*h) of the image F 4 is acquired.
- Step 4 User finger vein image recognition: the user refers to the region of interest NorF 4 of the vein acquisition image and the mosaic image MosaicF (target matching image) to perform the best matching region selection, and uses the binary structure feature to complete the identification work, which mainly includes :
- SubMosaicF is taken as the best to-be-matched region MaxF
- W and H represent the width and height of SkeletonNorF, respectively, and N represents the number of non-zero pixels of SkeletonNorF.
- the embodiment further provides a finger vein recognition device, including:
- a first acquiring module configured to collect a finger vein image, and acquire an image of the region of interest corresponding to the finger vein image
- the identification module is configured to match the image of the region of interest with the target matching image according to the binary structure algorithm, and if the matching is successful, the finger vein recognition is passed.
- the identification module comprises:
- a first processing module configured to perform smoothing processing on the image of the region of interest in the target matching image to obtain an image to be matched
- a second processing module configured to perform binarization processing on the image of the region of interest and the image to be matched, to obtain a first binary image and a second binary image
- a calculating module configured to calculate a similarity between the first binary image and the second binary image.
- the method further includes:
- a second acquiring module configured to acquire a finger vein image of multiple angles
- a splicing module for splicing the finger vein images of a plurality of angles into a target matching image.
- a finger vein recognition method disclosed in the present application acquires an image of a region of interest by stitching a plurality of angles of the finger vein image into a target matching image by acquiring a plurality of angle finger vein images, and The image of the region of interest is matched with the target matching image, and if the matching is successful, the finger vein recognition is passed. It can be seen that the program collects finger vein images at different angles and performs feature matching to realize finger vein recognition, high accuracy, and then identity authentication, and the authentication efficiency is high.
- the device embodiment since it basically corresponds to the method embodiment, it can be referred to the partial description of the method embodiment.
- the device embodiments described above are merely illustrative, wherein the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, ie may be located A place, or it can be distributed to multiple network units. Can choose according to actual needs Some or all of the modules are used to achieve the objectives of the solution of the embodiment. Those of ordinary skill in the art can understand and implement without any creative effort.
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Collating Specific Patterns (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
La présente invention concerne un procédé de reconnaissance de veine de doigt consistant : à capturer des images de veine de doigt à de multiples angles (S3) ; après avoir associé les images de veine de doigt capturées à de multiples angles dans une image d'appariement cible (S4), à capturer une image d'une région d'intérêt (S1) ; et à mettre en correspondance l'image de la région d'intérêt et l'image d'appariement cible, une mise en correspondance réussie indiquant que la reconnaissance de veine de doigt est réussie (S2). Le procédé ci-dessus capture des images de veine de doigt à différents angles, et effectue une mise en correspondance de caractéristiques pour réaliser une reconnaissance d'une veine de doigt, ce qui présente une précision élevée. L'application de l'invention dans la vérification d'identité permet d'obtenir un niveau d'efficacité de vérification élevé.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201610681717.6A CN107766776A (zh) | 2016-08-17 | 2016-08-17 | 一种手指静脉识别方法及装置 |
| CN201610681717.6 | 2016-08-17 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018032861A1 true WO2018032861A1 (fr) | 2018-02-22 |
Family
ID=61196453
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/CN2017/087124 Ceased WO2018032861A1 (fr) | 2016-08-17 | 2017-06-05 | Procédé et dispositif de reconnaissance de veine de doigt |
Country Status (2)
| Country | Link |
|---|---|
| CN (1) | CN107766776A (fr) |
| WO (1) | WO2018032861A1 (fr) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109684950A (zh) * | 2018-12-12 | 2019-04-26 | 联想(北京)有限公司 | 一种处理方法及电子设备 |
| CN110348289A (zh) * | 2019-05-27 | 2019-10-18 | 广州中国科学院先进技术研究所 | 一种基于二值图的手指静脉识别方法 |
| CN110599436A (zh) * | 2019-09-24 | 2019-12-20 | 北京凌云天润智能科技有限公司 | 一种双目图像拼接融合算法 |
| CN111310688A (zh) * | 2020-02-25 | 2020-06-19 | 重庆大学 | 一种基于多角度成像的手指静脉识别方法 |
| CN113269029A (zh) * | 2021-04-07 | 2021-08-17 | 张烨 | 一种多模态及多特征的指静脉图像识别方法 |
| CN113673363A (zh) * | 2021-07-28 | 2021-11-19 | 大连海事大学 | 结合表观相似度与奇异点匹配个数的手指静脉识别方法 |
| CN114067372A (zh) * | 2021-10-28 | 2022-02-18 | 安徽澄小光智能科技有限公司 | 一种基于深度相关特征学习的指静脉识别方法 |
| CN114724199A (zh) * | 2022-04-29 | 2022-07-08 | 浙江工业大学 | 一种基于svd和静脉图有机耦合的指静脉识别方法 |
| CN115186122A (zh) * | 2022-06-20 | 2022-10-14 | 华南理工大学 | 一种大规模指静脉图像实时检索方法 |
| CN115311696A (zh) * | 2022-10-11 | 2022-11-08 | 山东圣点世纪科技有限公司 | 一种基于静脉纹理特征的手指区域检测方法 |
| CN116778538A (zh) * | 2023-07-24 | 2023-09-19 | 北京全景优图科技有限公司 | 一种基于小波分解的静脉图像识别方法及系统 |
| CN118212666A (zh) * | 2024-05-21 | 2024-06-18 | 杭州名光微电子科技有限公司 | 基于多角度的活体掌静脉识别系统及其方法 |
| WO2025213497A1 (fr) * | 2024-04-08 | 2025-10-16 | 重庆工商大学 | Procédé et appareil d'extraction de caractéristiques |
Families Citing this family (12)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN108549887B (zh) * | 2018-07-23 | 2021-07-30 | 北京智芯原动科技有限公司 | 一种活体人脸检测方法及装置 |
| CN109727194B (zh) * | 2018-11-20 | 2023-08-04 | 广东智媒云图科技股份有限公司 | 一种获取宠物鼻纹的方法、电子设备和存储介质 |
| CN109784174A (zh) * | 2018-12-14 | 2019-05-21 | 深圳壹账通智能科技有限公司 | 一种用户账户的登录方法及设备 |
| CN110008902B (zh) * | 2019-04-04 | 2020-11-17 | 山东财经大学 | 一种融合基本特征和形变特征的手指静脉识别方法及系统 |
| CN110532851B (zh) * | 2019-07-04 | 2022-04-15 | 珠海格力电器股份有限公司 | 指静脉识别方法、装置、计算机设备和存储介质 |
| CN111191623B (zh) * | 2020-01-03 | 2023-09-19 | 圣点世纪科技股份有限公司 | 一种指静脉拍摄距离的确定方法 |
| CN111652088B (zh) * | 2020-05-15 | 2023-06-20 | 圣点世纪科技股份有限公司 | 一种基于视频选优机制的指静脉注册方法及注册装置 |
| CN111898455B (zh) * | 2020-07-02 | 2023-04-07 | 珠海格力电器股份有限公司 | 一种静脉图像的匹配方法和装置 |
| CN112883356B (zh) * | 2021-03-31 | 2024-04-23 | 中国工商银行股份有限公司 | 一种身份认证方法、装置及设备 |
| CN113609943B (zh) * | 2021-07-27 | 2024-05-17 | 东风汽车有限公司东风日产乘用车公司 | 手指指静脉识别方法、电子设备及存储介质 |
| CN116704565B (zh) * | 2023-02-09 | 2025-10-24 | 浙江工业大学 | 一种利用谷形特征的掌静脉图像识别与匹配的方法及其系统 |
| CN116631006A (zh) * | 2023-04-28 | 2023-08-22 | 新东方教育科技集团有限公司 | 手指识别方法、装置、存储介质及电子设备 |
Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120057011A1 (en) * | 2010-09-03 | 2012-03-08 | Shi-Jinn Horng | Finger vein recognition system and method |
| CN102663393A (zh) * | 2012-03-02 | 2012-09-12 | 哈尔滨工程大学 | 基于旋转校正的手指静脉图像感兴趣区域提取方法 |
| CN103310196A (zh) * | 2013-06-13 | 2013-09-18 | 黑龙江大学 | 感兴趣区域与方向元素的手指静脉识别方法 |
| CN103729640A (zh) * | 2013-12-24 | 2014-04-16 | 小米科技有限责任公司 | 一种手指静脉特征提取方法、装置及一种终端 |
| CN105474234A (zh) * | 2015-11-24 | 2016-04-06 | 厦门中控生物识别信息技术有限公司 | 一种掌静脉识别的方法和掌静脉识别装置 |
| WO2016072921A1 (fr) * | 2014-11-07 | 2016-05-12 | Fingerprint Cards Ab | Authentification d'empreinte digitale par assemblage-coupure |
-
2016
- 2016-08-17 CN CN201610681717.6A patent/CN107766776A/zh active Pending
-
2017
- 2017-06-05 WO PCT/CN2017/087124 patent/WO2018032861A1/fr not_active Ceased
Patent Citations (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20120057011A1 (en) * | 2010-09-03 | 2012-03-08 | Shi-Jinn Horng | Finger vein recognition system and method |
| CN102663393A (zh) * | 2012-03-02 | 2012-09-12 | 哈尔滨工程大学 | 基于旋转校正的手指静脉图像感兴趣区域提取方法 |
| CN103310196A (zh) * | 2013-06-13 | 2013-09-18 | 黑龙江大学 | 感兴趣区域与方向元素的手指静脉识别方法 |
| CN103729640A (zh) * | 2013-12-24 | 2014-04-16 | 小米科技有限责任公司 | 一种手指静脉特征提取方法、装置及一种终端 |
| WO2016072921A1 (fr) * | 2014-11-07 | 2016-05-12 | Fingerprint Cards Ab | Authentification d'empreinte digitale par assemblage-coupure |
| CN105474234A (zh) * | 2015-11-24 | 2016-04-06 | 厦门中控生物识别信息技术有限公司 | 一种掌静脉识别的方法和掌静脉识别装置 |
Cited By (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109684950A (zh) * | 2018-12-12 | 2019-04-26 | 联想(北京)有限公司 | 一种处理方法及电子设备 |
| CN110348289B (zh) * | 2019-05-27 | 2023-04-07 | 广州中国科学院先进技术研究所 | 一种基于二值图的手指静脉识别方法 |
| CN110348289A (zh) * | 2019-05-27 | 2019-10-18 | 广州中国科学院先进技术研究所 | 一种基于二值图的手指静脉识别方法 |
| CN110599436A (zh) * | 2019-09-24 | 2019-12-20 | 北京凌云天润智能科技有限公司 | 一种双目图像拼接融合算法 |
| CN111310688A (zh) * | 2020-02-25 | 2020-06-19 | 重庆大学 | 一种基于多角度成像的手指静脉识别方法 |
| CN111310688B (zh) * | 2020-02-25 | 2023-04-21 | 重庆大学 | 一种基于多角度成像的手指静脉识别方法 |
| CN113269029A (zh) * | 2021-04-07 | 2021-08-17 | 张烨 | 一种多模态及多特征的指静脉图像识别方法 |
| CN113269029B (zh) * | 2021-04-07 | 2022-09-13 | 张烨 | 一种多模态及多特征的指静脉图像识别方法 |
| CN113673363A (zh) * | 2021-07-28 | 2021-11-19 | 大连海事大学 | 结合表观相似度与奇异点匹配个数的手指静脉识别方法 |
| CN113673363B (zh) * | 2021-07-28 | 2024-03-01 | 大连海事大学 | 结合表观相似度与奇异点匹配个数的手指静脉识别方法 |
| CN114067372A (zh) * | 2021-10-28 | 2022-02-18 | 安徽澄小光智能科技有限公司 | 一种基于深度相关特征学习的指静脉识别方法 |
| CN114724199A (zh) * | 2022-04-29 | 2022-07-08 | 浙江工业大学 | 一种基于svd和静脉图有机耦合的指静脉识别方法 |
| CN115186122A (zh) * | 2022-06-20 | 2022-10-14 | 华南理工大学 | 一种大规模指静脉图像实时检索方法 |
| CN115311696A (zh) * | 2022-10-11 | 2022-11-08 | 山东圣点世纪科技有限公司 | 一种基于静脉纹理特征的手指区域检测方法 |
| CN115311696B (zh) * | 2022-10-11 | 2023-02-28 | 山东圣点世纪科技有限公司 | 一种基于静脉纹理特征的手指区域检测方法 |
| CN116778538A (zh) * | 2023-07-24 | 2023-09-19 | 北京全景优图科技有限公司 | 一种基于小波分解的静脉图像识别方法及系统 |
| CN116778538B (zh) * | 2023-07-24 | 2024-01-30 | 北京全景优图科技有限公司 | 一种基于小波分解的静脉图像识别方法及系统 |
| WO2025213497A1 (fr) * | 2024-04-08 | 2025-10-16 | 重庆工商大学 | Procédé et appareil d'extraction de caractéristiques |
| CN118212666A (zh) * | 2024-05-21 | 2024-06-18 | 杭州名光微电子科技有限公司 | 基于多角度的活体掌静脉识别系统及其方法 |
Also Published As
| Publication number | Publication date |
|---|---|
| CN107766776A (zh) | 2018-03-06 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2018032861A1 (fr) | Procédé et dispositif de reconnaissance de veine de doigt | |
| JP6167733B2 (ja) | 生体特徴ベクトル抽出装置、生体特徴ベクトル抽出方法、および生体特徴ベクトル抽出プログラム | |
| US11176406B2 (en) | Edge-based recognition, systems and methods | |
| US9684815B2 (en) | Mobility empowered biometric appliance a tool for real-time verification of identity through fingerprints | |
| WO2019196308A1 (fr) | Dispositif et procédé de génération de modèle de reconnaissance faciale, et support d'informations lisible par ordinateur | |
| US9734381B2 (en) | System and method for extracting two-dimensional fingerprints from high resolution three-dimensional surface data obtained from contactless, stand-off sensors | |
| US8208692B2 (en) | Method and system for identifying a person using their finger-joint print | |
| WO2017059591A1 (fr) | Procédé et dispositif d'identification de veine de doigt | |
| CN105740781B (zh) | 一种三维人脸活体检测的方法和装置 | |
| JP6648639B2 (ja) | 生体情報処理装置、生体情報処理方法および生体情報処理プログラム | |
| CN108021919A (zh) | 穴位定位的图像处理装置和图像处理方法 | |
| CN105488512B (zh) | 基于Sift特征匹配和形状上下文的试卷阅卷方法 | |
| CN106415606B (zh) | 一种基于边缘的识别、系统和方法 | |
| Yang et al. | LFMB-3DFB: A large-scale finger multi-biometric database and benchmark for 3D finger biometrics | |
| JP6187262B2 (ja) | 生体情報処理装置、生体情報処理方法及び生体情報処理用コンピュータプログラム | |
| JP2017126168A (ja) | 生体認証装置、生体認証方法、および生体認証プログラム | |
| JP2010240215A (ja) | 静脈深度判定装置、静脈深度判定方法およびプログラム | |
| Panetta et al. | Unrolling post-mortem 3D fingerprints using mosaicking pressure simulation technique | |
| CN112926516B (zh) | 一种鲁棒的手指静脉图像感兴趣区域提取方法 | |
| JP6978665B2 (ja) | 生体画像処理装置、生体画像処理方法及び生体画像処理プログラム | |
| Raju et al. | A proposed feature extraction technique for dental X-ray images based on multiple features | |
| Wang et al. | Automatic fundus images mosaic based on SIFT feature | |
| CN110008902B (zh) | 一种融合基本特征和形变特征的手指静脉识别方法及系统 | |
| CN104992432B (zh) | 多模图像配准方法 | |
| Askarin et al. | A B-Spline Function based 3D Point Cloud Unwrapping Scheme for 3D Fingerprint Recognition and Identification |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17840837 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17840837 Country of ref document: EP Kind code of ref document: A1 |