WO2018016850A1 - Véhicule ferroviaire destiné au transport d'une dalle préfabriquée, se déplaçant sur une poutre de pont, et procédé de construction de dalle préfabriquée de pont l'utilisant - Google Patents
Véhicule ferroviaire destiné au transport d'une dalle préfabriquée, se déplaçant sur une poutre de pont, et procédé de construction de dalle préfabriquée de pont l'utilisant Download PDFInfo
- Publication number
- WO2018016850A1 WO2018016850A1 PCT/KR2017/007725 KR2017007725W WO2018016850A1 WO 2018016850 A1 WO2018016850 A1 WO 2018016850A1 KR 2017007725 W KR2017007725 W KR 2017007725W WO 2018016850 A1 WO2018016850 A1 WO 2018016850A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bottom plate
- bridge
- girder
- railcar
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C23/00—Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
- B66C23/18—Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes
- B66C23/36—Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes specially adapted for use in particular purposes mounted on road or rail vehicles; Manually-movable jib-cranes for use in workshops; Floating cranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66C—CRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
- B66C23/00—Cranes comprising essentially a beam, boom, or triangular structure acting as a cantilever and mounted for translatory of swinging movements in vertical or horizontal planes or a combination of such movements, e.g. jib-cranes, derricks, tower cranes
- B66C23/60—Derricks
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D19/00—Structural or constructional details of bridges
- E01D19/12—Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D19/00—Structural or constructional details of bridges
- E01D19/12—Grating or flooring for bridges; Fastening railway sleepers or tracks to bridges
- E01D19/125—Grating or flooring for bridges
-
- E—FIXED CONSTRUCTIONS
- E01—CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
- E01D—CONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
- E01D21/00—Methods or apparatus specially adapted for erecting or assembling bridges
Definitions
- the present invention relates to a precast deck plate transport railcar traveling over a bridge girder.
- the present invention includes a method for constructing a bridge precast deck using a precast deck transport railcar.
- the concrete slab of the bridge is constructed by placing the formwork on the girder to cast concrete on site.
- Such construction of cast-in-place construction is influenced by the weather conditions and the skill of the workers, resulting in quality deterioration, as well as falling accidents in the process of installing the formwork, which may cause human injury.
- precast slabs / precast slabs are pre-fabricated and then precast slabs are laid on the girders by ground cranes, etc.
- the use of ground cranes increases construction costs. For example, it often happens that traffic must be controlled for a hypothesis. And especially when the pier is very high, it is difficult to mount using a ground crane.
- Patent Document 1 Republic of Korea Patent No. 10-1394193
- the present invention was created to solve the above-described problems, the rail which can be placed in the installation position by loading the precast bottom plate pre-fabricated in the rear of the shift and running along the girder laid in the longitudinal direction of the bridge To provide a car.
- the present invention includes a method for constructing a bridge precast deck using the above-described railcar.
- the present invention is provided to be able to travel along the girder laid in the longitudinal direction of the bridge, the base; A derrick crane positioned on the upper surface of the base to lift and install the bottom plate; And a plurality of driving parts disposed on the lower surface of the base.
- a guide rail is arranged on the upper surface of the base, and the derrick crane is slidable along the guide rail.
- the traveling part may include a pair of wheel parts disposed to be spaced apart from each other so as to be individually folded on both edges of the girder.
- the present invention may be provided with a traveling portion that can vary the spacing between the pair of wheel portions to correspond to the girder flange width.
- the wheel unit may include a wheel moving along both edges of the girder and an outer flange outside the wheel.
- the base may load the bottom plate on the front end side upper surface.
- the construction method of the present invention includes a base for providing a loading space of the bottom plate on the front side of the front end; A guide rail disposed on the rear end side upper surface of the base; A derrick crane slid along the guide rail to assist in lifting the bottom plate loaded on the base; And a plurality of driving parts disposed on the lower surface of the base.
- the running portion may vary the spacing between the pair of wheel portions to match the girder flange width.
- the present invention may further comprise the step (S300) of connecting the bottom plate to the derrick crane.
- the traveling step S400 of the railcar 1 may stop the driving near the temporary position of the bottom plate, specifically, before reaching the temporary position, thereby securing an upper space of the girder on which the bottom plate is to be installed.
- the bottom plate After mounting the bottom plate on the upper side of the girder (S600), the bottom plate may further comprise the step of integrally connecting with the girder.
- the present invention provides a rail car capable of constructing a precast bottom plate on the upper side of the girder while traveling along the girder laid in the longitudinal direction of the bridge.
- the present invention is different from the extrusion method for constructing the precast deck on the upper side of the girder as in the prior art, the field casting method of the deck, the construction method using the ground crane and the like to install the bottom plate with a mold (or yard) It is possible to construct the bottom plate while reciprocating the railcar to the upper side of the girder, thereby reducing the number of working hours, shortening the construction period, construction stability, durability of the bridge and structural performance.
- the present invention can improve the transport and lifting and stability of the bottom plate by means of a rail car reciprocating along the upper side of the girder, and by adjusting the spacing between the wheel portions of the rail car and the various sizes placed on the bridge The safe operation of the railcar can be ensured for the width of the shaped girder flange.
- FIG. 1 is a perspective view schematically illustrating a precast deck plate transport railcar traveling on a bridge girder capable of traveling on a previously installed girder.
- FIG. 2 is a side view of a precast deck plate transport railcar traveling on the bridge girder shown in FIG. 1.
- FIG. 3 is an enlarged view of the arc portion A of FIG. 1.
- Figure 3a is a view schematically showing a state diagram for driving a rail car according to the invention on a plate girder.
- 3b is a view schematically showing a state diagram of driving a railcar according to the present invention on a steel box girder.
- FIGS. 4A to 4G are schematic diagrams showing an example of a step of sequentially installing a precast sole plate on a girder using a precast sole plate transport railcar traveling on a bridge girder of the present invention.
- the present invention relates to a precast deck plate transport railcar 1 that runs on a bridge girder that can travel on the girders 300 previously installed.
- the present invention is a precast bottom plate (precast) on the upper surface of the plurality of girders (300) pre-installed in parallel in the upper side of the bridge (100 (see Fig. 4a)) or the shift 200 (see Fig.
- the bridges are formed by sequentially installing the 400, and the bottom plate 400 to be installed by the rail car 1 traveling on the upper surfaces of the plurality of girders 300 previously installed is transported to the construction position and then the rail car ( On the guide rail 20 of 1), the reciprocating derrick crane (30;) is lifted by a means and is installed in a temporary position.
- the precast deck plate railcar 1 traveling on the bridge girder according to the present invention has a plurality of transversely spaced apart on the bridge 100 and / or the upper side along the longitudinal direction of the bridge
- the bottom plate 400 may be mounted on the girder 300 while reciprocating along the girder 300.
- the shift 200 may be installed at both ends of the bridge and connect the bridge and the general road, respectively, and may be a component member supporting the end of the upper structure of the bridge, respectively, the bridge 100 may be replaced with the shift 200 ( It may be a component member installed between the 200 and supporting the load of the upper structure of the bridge.
- the railcar 1 may be, for example, a mold sheet (not shown) or a prefabricated bottom plate (not shown) manufactured by dividing a precast bottom plate 400 in the vicinity of an access road of a bridge disposed at both ends of the bridge. 400 along the girder 300 to move to the installation position of the bottom plate 400 to install the bottom plate 400 from the yard loading the loading and installation is possible.
- the railcar 1 of the present invention comprises a base 10, a guide rail 20, a derrick crane 30, and a traveling part 40.
- the base 10 is capable of accommodating the members constituting the railcar 1, and assists the placement of the derrick crane 30 and the traveling part 40.
- Base 10 may be formed in a flat rectangular plate shape as shown.
- the front upper side 11 of the base 10 may be used as a loading space of the bottom plate 400, wherein the rear end upper surface of the base 10 is a space for installing the derrick crane 30 guide rail 20 is disposed.
- the derrick crane 30 is slidably arranged along the guide rails 20 at the rear end side upper surface of the base 10, and the bottom plate 400 mounted on the front side upper surface 11 of the base 10. Lifting or raising the bottom plate 400 from the yard of the bottom plate 400 of both ends of the bridge can be installed on the girders 300 located in front of the railcar (1).
- the present invention will be excluded from the detailed configuration and operating manner of the derrick crane 30 that is already well known to those skilled in the art in order to facilitate a clear understanding of the invention, the type of derrick crane 30 shown It is noted that the lifting and installation of the bottom plate 400 is not limited, but is sufficiently replaceable with other types of derrick cranes as possible.
- the railcar 1 has a plurality of running portions 40 on the lower surface of the base 10 so as to travel along a plurality of girders 300 extending in the longitudinal direction of the bridge. Equipped. That is, the rail car 1 may be moved along the plurality of girders 300 by the driving of the driving unit 40.
- the traveling part 40 consists of a pair of wheel parts 41 and 42 as shown.
- the pair of wheel parts 41 and 42 may be disposed to be spaced apart from each other so that the pair of wheel parts 41 and 42 may be folded on both edges of the girder 300.
- the wheel parts 41 and 42 are wheels 41a and 42a which can move along both edges of the girder 300, and a driving motor (not shown) and wheel part 41 connected to the drive shafts of the wheels 41a and 42a.
- 42 may be provided with a buffer member interposed between the upper portion and the base 10.
- the shock absorbing member not only protects the driving part 40 from the impact received when the railcar 1 moves, but also the wheel parts 41 and 42 along the girders 300 which are inclined at a predetermined angle according to the displacement amount of the shock absorbing member. ) Can be moved up and down.
- each of the wheels 41a and 42a may have outer flanges 41b and 42b on the outside thereof. This may limit the lateral deviation of the girder 300 between the pair of wheels 41a and 42a disposed to face each other.
- the girder 300 can not only change the size of the girder according to the length of the bridge, the construction method, etc., and the railcar 1 disposed on the girder 300 may not be newly manufactured for each construction site of the bridge. Accordingly, the present invention enables to vary the separation interval between the pair of wheels (41, 42) to correspond to various sizes, for example, the girder flange width (W 300 ).
- the present invention arranges the variable lubrication traveling part 40, so that the separation distance between the pair of wheels (41, 42), ie, the distance between the wheels can be adjusted to the girder flange width (W 300 ).
- each of the wheel parts 41 and 42 is suspended in a suspend manner so as to be movable along the lower surface transverse direction of the base 10, and a pair of wheel parts (W 300 ) according to the girder flange width W 300 .
- the lateral movement can be limited after adjusting the lubrication between 41 and 42).
- each of the wheel parts 41 and 42 may be detachably mounted in a module assembling method after adjusting the gap as needed through bolting method to the lower surface of the base 10. It is possible to vary the lubrication between a pair of wheels.
- the present invention can operate by seating the running portion of the precast deck plate railcar on the bridge girders 300, but is not limited to various types of girders, such as plate girders (see Fig. 3a). ), On both side edges of the steel box girders (see FIG. 3B) can be mounted a lubricated variable running portion to enable forward and / or reverse travel of the railcar.
- the present invention includes the step (S100) of providing a precast bottom plate transport railcar (1) running on the bridge girder.
- the railcar 1 is seated so as to run on a plurality of girders 300 pre-installed in parallel on the pier 100 or the alternating 200, the shift 200 is installed on both ends of the bridge It is preferable to arrange
- the railcar 1 (see FIG. 2) has a base 10 that allows placement of the derrick crane 30 and loading of the bottom plate 400, and a rear end of the base 10 to help the derrick crane 30 slide.
- Derrick crane 30 disposed on the upper side of the guide rail 20, slideable along the guide rail 20 to allow the lifting and unloading of the bottom plate 400 loaded on the base 10
- a traveling portion 40 that enables forward and / or backward movement of the railcar on the plurality of girders 300 extending along the longitudinal direction of the bridge.
- the rail car providing step S100 includes adjusting the lubrication (gangbang distance) between the pair of wheel parts 41 and 42 of the driving part 40 to correspond to the girder flange width W 300 . (See FIG. 3). It can adjust the lubrication between a pair of wheels according to the width of the girder flange installed on the bridge under construction. Will be able to prevent.
- FIG. 4B illustrates the step S200 of loading the bottom plate 400 on the railcar 1.
- the railcar 1 is, for example, seated so as to run on the girder 300 which is installed at the original home position adjacent to the shift, the mold station, the unloading station, and then the railcar through a lifting device such as a crane (not shown).
- the precast bottom plate 400 is placed in (1).
- the bottom plate 400 is to be mounted on the upper surface of the base 10 of the railcar 1, specifically, the front side 11 of the base 10 (see FIG. 4A).
- the bottom plate 400 and the guide rail 20 or derrick crane to be loaded Overlap or interference between the 30 may be prevented in advance.
- the guide rail 20 is formed in a straight line from the rear end side of the base 10 toward the front end side.
- the present invention includes a step (S300) of connecting the bottom plate 400, which was loaded on the front end side of the base 10 to the derrick crane (30).
- Step S300 connects the wire wound through the winch of the derrick crane to the bottom plate 400 while winding (winding) or unwinding (unwinding the wire), which is shown when the railcar 1 runs. Or it is possible to prevent unnecessary behavior of the bottom plate 400 by the unexpected external force.
- the present invention After connecting the derrick crane 30 and the bottom plate 400, the present invention includes the step S400 of the railcar 1 along the girder 300 extending along the longitudinal direction of the bridge ( 4d).
- the railcar 1 moves forward in the direction of the arrow from the initial home position of step S100 to near the temporary position of the bottom plate 400. That is, the railcar 1 stops traveling before reaching the temporary position of the sole plate, specifically, the temporary position, so as to secure an upper space of the girder on which the sole plate is to be installed.
- the bottom plate 400 loaded on the front end side of the base 10 by means of the derrick crane 30 is upward.
- a lifting step S500 is included (see FIG. 4E).
- the derrick crane 30 lifts the bottom plate 400 upward from the upper surface of the base 10 of the rail car 1 to help the installation step of the bottom plate 400.
- Figure 4f illustrates a step (S600) for mounting the bottom plate 400 on the upper side of the girder 300 to be installed.
- the seating step S600 of the bottom plate may include a step of integrally connecting the girder 300 and the precast bottom plate 400 by placing concrete.
- the present invention includes the step (S700, FIG. 4G) of returning the railcar 1 after seating the bottom plate 400 on the upper side of the girder 300. That is, the railcar 1 moves backward along the girder 300 in which it is installed to an initial home position, such as an alternation, a mold station, and an unloading site. This is to reload the bottom plate 400 to be installed on the upper side of the girder 300.
- the present invention by repeatedly performing the step (S100) to step (S700) to sequentially install the bottom plate 400 on the upper side of the girder extending along the longitudinal direction of the bridge, the bottom along the longitudinal direction of the bridge You will be able to install the plate.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Bridges Or Land Bridges (AREA)
Abstract
La présente invention concerne un véhicule ferroviaire apte à construire des dalles préfabriquées sur le côté supérieur d'une poutre tout en se déplaçant le long de la poutre construite dans la direction longitudinale d'un pont, le véhicule ferroviaire comprenant : une base pour fournir un espace de chargement de dalle ; un rail de guidage disposé sur la surface supérieure du côté extrémité arrière de la base ; une grue derrick apte à de coulisser le long du rail de guidage de manière à aider au levage de la dalle chargée sur la base ; et une pluralité de parties mobiles disposée au niveau de la surface inférieure de la base. En outre, la présente invention comprend un procédé de construction de dalle préfabriquée de pont utilisant ledit véhicule ferroviaire.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| KR10-2016-0091790 | 2016-07-20 | ||
| KR1020160091790A KR101972796B1 (ko) | 2016-07-20 | 2016-07-20 | 교량 거더 위를 주행하는 프리캐스트 바닥판 운반용 레일카 및 이를 이용한 교량 프리캐스트 바닥판의 시공 방법 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018016850A1 true WO2018016850A1 (fr) | 2018-01-25 |
Family
ID=60992292
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/KR2017/007725 Ceased WO2018016850A1 (fr) | 2016-07-20 | 2017-07-18 | Véhicule ferroviaire destiné au transport d'une dalle préfabriquée, se déplaçant sur une poutre de pont, et procédé de construction de dalle préfabriquée de pont l'utilisant |
Country Status (2)
| Country | Link |
|---|---|
| KR (1) | KR101972796B1 (fr) |
| WO (1) | WO2018016850A1 (fr) |
Cited By (8)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN109371842A (zh) * | 2018-11-26 | 2019-02-22 | 章广琼 | 一种高精度双轨架桥机 |
| WO2019164875A1 (fr) * | 2018-02-22 | 2019-08-29 | Forum Us, Inc. | Appareil de levage à charge suspendue comprenant un treuil situé à distance |
| CN110258347A (zh) * | 2019-07-16 | 2019-09-20 | 重庆建工集团股份有限公司 | 一种用于步履式架桥机纵移的跨越式转换支腿 |
| CN110607761A (zh) * | 2019-10-18 | 2019-12-24 | 合肥正浩机械科技有限公司 | 一种架桥机自行转场的驱动转向装置 |
| CN111441250A (zh) * | 2020-04-02 | 2020-07-24 | 中交一公局集团有限公司 | 一种双层钢混组合梁中上桥面板的运输方法 |
| CN114229717A (zh) * | 2021-11-11 | 2022-03-25 | 中国水利水电第五工程局有限公司 | 一种可移动的地下厂房钢棒机械化施工平台车 |
| CN114873177A (zh) * | 2022-06-27 | 2022-08-09 | 中国十七冶集团有限公司 | 一种纵横向移动钢轨锂电池电动运梁车施工方法 |
| CN120039784A (zh) * | 2025-04-25 | 2025-05-27 | 中车沈阳机车车辆有限公司 | 一种运轨车吊轨钩装置以及运轨车 |
Families Citing this family (6)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20210372059A1 (en) * | 2018-10-03 | 2021-12-02 | Atesvi, S.L. | Modular Longitudinal System for Bridge Decks for Double-Track Railways |
| CN111021256B (zh) * | 2019-12-19 | 2021-04-27 | 中建六局土木工程有限公司 | 一种重吨位高精度钢箱梁吊装施工方法 |
| KR102382023B1 (ko) * | 2020-09-09 | 2022-04-01 | 다올이앤씨 주식회사 | 폼 트래블러를 이용해서 fcm 공법으로 교량을 시공하는 방법 |
| KR102327821B1 (ko) * | 2021-03-03 | 2021-11-17 | 박현희 | 원자력발전소 격납건물 라이너플레이트 정비용 다층 구조물 설치 장치 |
| KR102785167B1 (ko) * | 2022-02-08 | 2025-03-20 | 송성민 | 분절접합형 프리캐스트 코아구조물 및 그 시공방법 |
| KR102543210B1 (ko) * | 2022-04-14 | 2023-06-14 | 안아영 | 데릭 크레인 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH07228484A (ja) * | 1994-02-18 | 1995-08-29 | Ooyodo Komatsu Kk | 資材運搬用車両 |
| JP2004232426A (ja) * | 2003-02-03 | 2004-08-19 | Kawada Construction Co Ltd | 床版架設装置 |
| KR20120002392A (ko) * | 2010-07-30 | 2012-01-05 | (주) 모스펙 | 교량 설치용 크레인 및 이를 이용한 거더 설치방법 |
| JP2013007172A (ja) * | 2011-06-22 | 2013-01-10 | Ihi Infrastructure Systems Co Ltd | 合成床版架設機及び架設方法 |
| JP2014502586A (ja) * | 2010-12-22 | 2014-02-03 | コネクレーンズ ピーエルシー | 調整可能なキャリッジを持つ吊上装置 |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006298550A (ja) * | 2005-04-20 | 2006-11-02 | Daifuku Co Ltd | 運搬用車両の走行車輪 |
| KR200391266Y1 (ko) * | 2005-05-10 | 2005-08-02 | 주식회사 효성엘비데크 | 교량 시공용 무궤도 작업대차 |
| KR101394193B1 (ko) | 2012-06-15 | 2014-05-14 | 주식회사 서영엔지니어링 | 매립형 거푸집을 이용한 강합성 교량의 상부슬래브 압출가설용 압출가설 장치 |
-
2016
- 2016-07-20 KR KR1020160091790A patent/KR101972796B1/ko not_active Expired - Fee Related
-
2017
- 2017-07-18 WO PCT/KR2017/007725 patent/WO2018016850A1/fr not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JPH07228484A (ja) * | 1994-02-18 | 1995-08-29 | Ooyodo Komatsu Kk | 資材運搬用車両 |
| JP2004232426A (ja) * | 2003-02-03 | 2004-08-19 | Kawada Construction Co Ltd | 床版架設装置 |
| KR20120002392A (ko) * | 2010-07-30 | 2012-01-05 | (주) 모스펙 | 교량 설치용 크레인 및 이를 이용한 거더 설치방법 |
| JP2014502586A (ja) * | 2010-12-22 | 2014-02-03 | コネクレーンズ ピーエルシー | 調整可能なキャリッジを持つ吊上装置 |
| JP2013007172A (ja) * | 2011-06-22 | 2013-01-10 | Ihi Infrastructure Systems Co Ltd | 合成床版架設機及び架設方法 |
Cited By (11)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019164875A1 (fr) * | 2018-02-22 | 2019-08-29 | Forum Us, Inc. | Appareil de levage à charge suspendue comprenant un treuil situé à distance |
| US10654691B2 (en) | 2018-02-22 | 2020-05-19 | Forum Us, Inc. | Overhead crane with remotely located winch |
| CN109371842A (zh) * | 2018-11-26 | 2019-02-22 | 章广琼 | 一种高精度双轨架桥机 |
| CN110258347A (zh) * | 2019-07-16 | 2019-09-20 | 重庆建工集团股份有限公司 | 一种用于步履式架桥机纵移的跨越式转换支腿 |
| CN110258347B (zh) * | 2019-07-16 | 2021-06-18 | 重庆建工集团股份有限公司 | 一种用于步履式架桥机纵移的跨越式转换支腿 |
| CN110607761A (zh) * | 2019-10-18 | 2019-12-24 | 合肥正浩机械科技有限公司 | 一种架桥机自行转场的驱动转向装置 |
| CN111441250A (zh) * | 2020-04-02 | 2020-07-24 | 中交一公局集团有限公司 | 一种双层钢混组合梁中上桥面板的运输方法 |
| CN114229717A (zh) * | 2021-11-11 | 2022-03-25 | 中国水利水电第五工程局有限公司 | 一种可移动的地下厂房钢棒机械化施工平台车 |
| CN114873177A (zh) * | 2022-06-27 | 2022-08-09 | 中国十七冶集团有限公司 | 一种纵横向移动钢轨锂电池电动运梁车施工方法 |
| CN114873177B (zh) * | 2022-06-27 | 2023-09-29 | 中国十七冶集团有限公司 | 一种纵横向移动钢轨锂电池电动运梁车施工方法 |
| CN120039784A (zh) * | 2025-04-25 | 2025-05-27 | 中车沈阳机车车辆有限公司 | 一种运轨车吊轨钩装置以及运轨车 |
Also Published As
| Publication number | Publication date |
|---|---|
| KR20180009902A (ko) | 2018-01-30 |
| KR101972796B1 (ko) | 2019-04-26 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2018016850A1 (fr) | Véhicule ferroviaire destiné au transport d'une dalle préfabriquée, se déplaçant sur une poutre de pont, et procédé de construction de dalle préfabriquée de pont l'utilisant | |
| CN106400701B (zh) | 一种单主梁低位平衡悬臂拼装架桥机 | |
| KR100989892B1 (ko) | 교량 설치용 크레인 및 이를 이용한 거더 설치방법 | |
| CN111778857B (zh) | 城市公轨双层高架桥梁上下层梁同步架设工艺 | |
| WO2012039547A2 (fr) | Grue de construction de ponts pour installer une poutre dans une section incurvée | |
| JP7144978B2 (ja) | 床版架設機 | |
| KR20150108625A (ko) | 비자주식 빔 런처를 이용한 교량시공방법 | |
| JPH10292317A (ja) | 橋桁部材の架設方法および架設装置 | |
| KR100605089B1 (ko) | 런칭거더시스템 및 이를 이용한 교량철거방법 | |
| CN113882286A (zh) | 桥梁拆建一体机及其过跨方法、桥梁拆除方法及新建方法 | |
| KR20120002392A (ko) | 교량 설치용 크레인 및 이를 이용한 거더 설치방법 | |
| KR20190018775A (ko) | 교량 거더 위를 주행하는 프리캐스트 바닥판 운반용 레일카 및 이를 이용한 교량 프리캐스트 바닥판의 시공 방법 | |
| WO2020189847A1 (fr) | Procédé d'installation et de construction de pont à poutres de pont marin | |
| JP3025227B2 (ja) | 橋梁の架設方法 | |
| KR102040602B1 (ko) | 지하철도 궤도패널 시공방법 | |
| JP2001146716A (ja) | 橋桁の架設方法 | |
| KR102724637B1 (ko) | 교량 가설방법 | |
| JP2023074170A (ja) | 床版取替方法及びこれに用いる施工機械 | |
| KR101077092B1 (ko) | 기존 도로의 교통 원활을 위한 트롤리를 이용하여 거더를 시공하는 방법 | |
| JP2002021024A (ja) | 波型鋼板ウェブ橋の架設工法 | |
| CN117845933A (zh) | 用于船闸高仓面混凝土浇筑的布料系统及施工方法 | |
| CN214007168U (zh) | 陡斜井滑模系统 | |
| CN118929390A (zh) | 电梯的滑轮更换方法以及悬挂体临时支承装置 | |
| JP2023119948A (ja) | 床版取替工法及びブーム反転式床版架設機 | |
| CN222808902U (zh) | 集装箱修箱机构 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17831323 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17831323 Country of ref document: EP Kind code of ref document: A1 |