WO2018008503A1 - Control device - Google Patents
Control device Download PDFInfo
- Publication number
- WO2018008503A1 WO2018008503A1 PCT/JP2017/023859 JP2017023859W WO2018008503A1 WO 2018008503 A1 WO2018008503 A1 WO 2018008503A1 JP 2017023859 W JP2017023859 W JP 2017023859W WO 2018008503 A1 WO2018008503 A1 WO 2018008503A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- priority
- information
- control
- occurrence probability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J13/00—Controls for manipulators
- B25J13/08—Controls for manipulators by means of sensing devices, e.g. viewing or touching devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D45/00—Electrical control not provided for in groups F02D41/00 - F02D43/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computing arrangements based on specific mathematical models
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G1/00—Traffic control systems for road vehicles
- G08G1/09—Arrangements for giving variable traffic instructions
Definitions
- the present invention relates to a control device, and more particularly to a control device including a server and a plurality of terminals.
- Patent Document 1 includes “an input signal detection means for detecting an external input signal from the outside, an evaluation means for evaluating an external input signal detected by the input signal detection means, and an evaluation result by the evaluation means as action content information.
- a robot apparatus comprising: an association means for associating with an action control means for controlling an action based on the action content information based on the evaluation associated with the association means; (See [Claim 1]).
- Patent Document 1 controls behavior using only information that can be detected by a single robot (terminal), and controls behavior using a wider range of global information. Is not something to do.
- the present invention has been made in view of the above points, and an object of the present invention is to provide a control device that enables behavior control according to the situation of each terminal while using a wider range of global information. Is to provide.
- the present invention includes a plurality of means for solving the above-described problems.
- the control device includes a server and a plurality of terminals, and based on past information, occurrence probability of a plurality of different results that may occur in the future. Based on at least the occurrence probability of the plurality of different results, the information detected at the terminal, and the parameter calculated at the terminal.
- the parameter calculated in the terminal is a parameter that weights at least the occurrence probability of the plurality of different results and the information detected in the terminal
- the priority calculation means includes the weight It is characterized in that the priority of a plurality of control targets is calculated based on the value subjected to the attaching process.
- the occurrence probability prediction means includes a parameter value update means for updating a parameter value of the occurrence probability prediction means based on newly obtained information.
- terminal parameter updating means for updating a parameter calculated in the terminal for each terminal.
- the information detected in the terminal is at least a value based on a sensor output value installed in the terminal.
- the information detected in the terminal is a value that is uniquely learned based on at least a sensor output value installed in the terminal.
- the occurrence probability predicting means is at least a Bayesian network or a neural network.
- the priority calculation means is at least logistic regression or reinforcement learning.
- the occurrence probability prediction means includes a parameter value update means for updating the parameter value of the occurrence probability prediction means at least by Bayesian update or probabilistic gradient descent based on newly obtained information.
- control target of the control device is a moving body such as an autonomous driving vehicle, and the plurality of control targets are moving paths of the moving body.
- control target of the control device is an internal combustion engine
- the plurality of control targets are operating conditions of the internal combustion engine.
- control target of the control device is a robot
- the plurality of control targets are tasks performed by the robot.
- the occurrence probability prediction means includes a parameter value update means for updating the parameter value of the occurrence probability prediction means based on information newly obtained from the terminal.
- a plurality of different results that may occur in the future are set as the plurality of control targets.
- the current information is used as input information of the occurrence probability prediction means.
- the probability of occurrence of a plurality of different results that may occur in the future is at least the probability that the mobile object will arrive at the target value on time, or the probability that the energy efficiency / fuel efficiency of the mobile object will fall within a predetermined range, or Probability that the motor / engine torque can exceed the predetermined value, or the probability that the fuel efficiency improvement rate of the prime mover / engine is greater than the predetermined value, or the probability that the fuel efficiency deterioration rate of the prime mover / engine exceeds the predetermined value, or It is characterized by the probability that a task will be completed within a predetermined time, or the probability that the risk of the robot will increase.
- the server predicts the probability of occurrence of a plurality of different results that may occur in the future using a wider range of global information, and the terminal detects the occurrence probability of the plurality of different results at the terminal. Since the behavior of the terminal is controlled on the basis of the information, the behavior control according to the situation of each terminal can be performed while using a wider range of global information.
- FIG. 4 is an overall view of a control device in Examples 1 to 4.
- FIG. 6 is a system diagram of the server side on which the control device in Examples 1 to 4 and 6 operates.
- FIG. 6 is a system diagram of the terminal side on which the control device in Examples 1 to 4 and 6 operates.
- FIG. The figure which showed the process in the terminal in Example 1, 4, 5.
- FIG. 1 The figure which showed the process of the means to estimate the generation probability of the several different result which may occur in the future based on the past information in the server in Example 2.
- FIG. The figure which showed the process in the terminal in Example 3.
- FIG. 10 is an overall view of a control device according to a fifth embodiment.
- FIG. 10 is a system diagram of the server side on which the control device according to the fifth embodiment operates. The system figure by the side of the terminal where the control apparatus in Example 5 operate
- FIG. FIG. 10 is an overall view of a control device in Embodiment 6.
- an occurrence probability predicting means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information, and at least the occurrence probabilities of the plurality of different results are detected at the terminal.
- Priority calculating means for calculating the priority of a plurality of control targets based on information and parameters calculated in the terminal; and at least the operation of the terminal based on the control target having the highest priority. A mode provided with control signal calculation means for calculating a control signal for determination will be described.
- the controlled object is a moving body that can be moved unattended, such as an autonomous driving vehicle.
- the occurrence probability prediction means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network.
- the current information is used as the input information of the occurrence probability prediction means for predicting the occurrence probability of a plurality of different results that may occur in the future based on the past information.
- information detected at the terminal is a sensor output value installed at the terminal.
- the parameter calculated in the terminal weights at least the occurrence probability of the plurality of different results and the information detected in the terminal.
- FIG. 1 is a diagram showing the entire control device.
- the server 1 includes an occurrence probability predicting unit 2 that predicts the occurrence probability of a plurality of different results that may occur in the future based on past information, and calculates the occurrence probability of a plurality of different results that may occur in the future. Probabilities of occurrence of a plurality of different results that may occur in the future are sent to the plurality of terminals 3 by wired communication or wireless communication.
- the terminal 3 includes priority calculation means 4 that calculates the priority of a plurality of control targets based on the occurrence probability of a plurality of different results, information detected at the terminal, and parameters calculated at the terminal. And calculate the priority of the control target. Then, based on the control target with the highest priority, the control signal is calculated by the control signal calculation means 5 for calculating the control signal for determining the operation of the terminal.
- FIG. 2 is a system diagram of the server 1.
- the server 1 is provided with an input circuit 16 for processing an external signal.
- Examples of the signal from the outside here include information from outside the server such as weather, temperature, road information, information detected by the sensor of the terminal 3, and the like.
- An external signal passes through the input circuit and becomes an input signal and is sent to the input / output port 17.
- the input information sent to the input / output port 17 is written into the RAM 14 through the data bus 15. Alternatively, it is stored in the storage device 11.
- Various processes are written in the ROM 13 or the storage device 11 and executed by the CPU 12. At that time, the value written in the RAM 14 or the storage device 11 is used as appropriate for calculation.
- information (value) to be sent to the outside is sent to the input / output port 17 through the data bus 15 and sent to the output circuit 18 as an output signal.
- the signal is output from the output circuit 18 to the outside.
- the signal to the outside here is an occurrence probability of a plurality of different results that may occur in the future, and is sent to a plurality of terminals 3.
- the server 1 calculates the probability of occurrence of a plurality of different results that may occur in the future.
- the CPU 13 is used to perform later-described processing stored in the ROM 13 or the storage device 11 to calculate the output signal.
- the output signal is output (transmitted to the terminal 3) as a signal to the outside (probability of occurrence of a plurality of different results that may occur in the future) via the RAM 14, the input / output port 17, and the output circuit 18.
- FIG. 3 is a system diagram of the terminal 3.
- the terminal 3 is provided with an input circuit 26 for processing an external signal.
- the signal from the outside here may be, for example, a sensor signal installed in the terminal 3.
- These external signals are input to the input / output port 27 via the input circuit 26 as input signals.
- information on the probability of occurrence of a plurality of different results that may occur in the future is input to the input / output port 27.
- Each input information sent to the input / output port 27 is written into the RAM 24 through the data bus 25. Alternatively, it is stored in the storage device 21.
- Various processes are written in the ROM 23 or the storage device 21 and are executed by the CPU 22. At that time, the value written in the RAM 24 or the storage device 21 is used as appropriate for calculation.
- information (value) to be sent to the outside is sent to the input / output port 27 through the data bus 25 and sent to the output circuit 28 as an output signal.
- the signal is output from the output circuit 28 to the outside.
- the signal to the outside here refers to an actuator signal or the like for causing the control target to make a desired movement.
- the priority calculation means 4 calculates the priority of the control target
- the control signal calculation means 5 calculates the control signal.
- An input signal written in the RAM 24 or the storage device 21 via the input circuit 26 and the input / output port 27 and a signal from the server 1 (probability of occurrence of a plurality of different results that may occur in the future) are stored in the ROM 23 or the storage device 21.
- the stored processing to be described later is performed using the CPU 22 to calculate the output signal.
- the output signal passes through the RAM 24, the input / output port 27, and the output circuit 28, and is output as an external signal (control signal). Details of each process will be described below.
- ⁇ Occurrence probability predicting means 31 for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information>
- the probability of occurrence of a plurality of different results that may occur in the future is calculated based on past information. Specifically, it is shown in FIG. -As input information, current information such as weather, temperature, road information, and time are used. Use a Bayesian network to calculate the probability of the next four possible future outcomes.
- Bayesian network there is information representing the relationship between past weather, temperature, road information, time information and the above four occurrence probabilities. That is, the probability of occurrence of the above-mentioned four different results that may occur in the future is predicted based on the past information of weather, temperature, road information, and time.
- FIG. 5 shows an overall view of processing in the terminal 33.
- the priority calculating means 34 for calculating the priorities of a plurality of control targets calculates the priority of the movement route that is the priority of the control target.
- the control signal calculating means 35 for calculating the control signal calculates a control signal for traveling on the determined moving route, and controls the moving body 32 that is a control target.
- ⁇ Priority calculation means for calculating priorities of a plurality of control targets (FIG. 6)> In this process, priorities of a plurality of control targets are calculated. Specifically, it is shown in FIG.
- the four probabilities calculated by the occurrence probability prediction means 31 (see FIG. 4) and the information detected at the terminal are, for example, the following, which are values that can be detected by a sensor or input device installed in the terminal. ⁇ Used years (total mileage) ⁇ Today's total mileage ⁇ Driver characteristics (gender / age / driving history / fatigue) ⁇ The location of the vehicle and the remaining fuel. In addition, since the detection method of each said information is described in many literatures and books, it does not elaborate here.
- the priority calculating means 36 for calculating the priority for selecting the route A multiplies the above four probabilities and the information detected by the terminal 33 by weighting factors a_11, a_12,. The priority for selecting is calculated.
- the priority calculation means 37 for calculating the priority for selecting the route B multiplies the above four probabilities and the information detected by the terminal by weighting factors a_21, a_22,. Calculate the priority to choose.
- Control signal calculation means (FIG. 7)>
- a control signal for traveling on the determined movement route is calculated. Specifically, it is shown in FIG.
- the calculation means 38 for determining the route with the highest priority as the moving route determines the route with the highest priority among the priority for selecting the route A and the priority for selecting the route B as the moving route. When the priority values are the same, the route A or the route B may be selected. Decide in advance.
- a calculation means 39 for calculating a control signal for traveling on the determined movement route calculates a control signal for traveling on the determined movement route.
- the occurrence probability prediction means (see FIG. 4) for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network, but a similar function can be realized as a neural network.
- the priority calculation means for calculating the priorities of a plurality of control targets, the priority of the route to be selected is calculated, but a configuration in which the priority of the fuel consumption deterioration rate is also considered.
- an occurrence probability predicting means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information, and at least the occurrence probabilities of the plurality of different results are detected at the terminal.
- Priority calculating means for calculating the priority of a plurality of control targets based on information and parameters calculated in the terminal; and at least the operation of the terminal based on the control target having the highest priority. A mode provided with control signal calculation means for calculating a control signal for determination will be described.
- an object to be controlled is an engine (internal combustion engine) used in, for example, a motor for an automobile.
- the occurrence probability prediction means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network.
- the current information is used as input information of an occurrence probability prediction unit that predicts the occurrence probability of a plurality of different results that may occur in the future based on past information.
- the information detected in the terminal is a sensor output value installed in the terminal. The parameter calculated in the terminal weights at least the occurrence probability of the plurality of different results and the information detected in the terminal.
- FIG. 1 is a diagram showing the entire control apparatus, which is the same as the first embodiment and will not be described in detail.
- FIG. 2 is a system diagram of the server 1, which is the same as that of the first embodiment and will not be described in detail.
- FIG. 3 is a system diagram of the terminal 3, which is the same as in the first embodiment, and will not be described in detail.
- ⁇ Occurrence probability predicting means 41 for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information>
- the probability of occurrence of a plurality of different results that may occur in the future is calculated based on past information. Specifically, it is shown in FIG. -As the input information, the current information such as the weather within a radius of 10 km, the average temperature within a radius of 10 km, the average humidity within a radius of 10 km, and road information are used. Use a Bayesian network to calculate the probability of the next four possible future outcomes.
- Probability that the maximum torque can be produced (2) Probability that the fuel efficiency improvement rate will be 10% or more (3) Probability that the fuel efficiency deterioration rate will be 10% or more (4) Probability that the service life of the engine will be shortened by 1 year or more
- the probability of occurrence of the above-mentioned four different results that can occur in the future is predicted based on the information of the weather within the radius of 10 km, the average temperature within the radius of 10 km, the average humidity within the radius of 10 km, and the road information.
- FIG. 9 shows an overall view of processing at the terminal 46.
- the priority calculation means 47 for calculating the priority of a plurality of control targets calculates the priority of the engine operation mode (operating condition of the internal combustion engine) that is the priority of the control target.
- the control signal calculation means 48 for calculating the control signal calculates a control signal for setting the determined engine operation mode, and controls the engine 42 to be controlled.
- ⁇ Priority calculating means for calculating priorities of a plurality of control targets (FIG. 10)> In this process, priorities of a plurality of control targets are calculated. Specifically, it is shown in FIG.
- the four probabilities calculated by the occurrence probability predicting means 41 (see FIG. 8) and the information detected by the terminal 46 are, for example, the following values that can be detected by a sensor or an input device installed in the terminal 46. . ⁇ Used years (total mileage) ⁇ Temperature, humidity, remaining fuel, etc.
- the priority calculation means 49 for calculating the priority for selecting the power mode the above four probabilities and the information detected by the terminal 46 are multiplied by weighting factors a_11, a_12,. The priority for selecting is calculated.
- the priority calculation means 50 for calculating the priority for selecting the fuel consumption mode multiplies the above four probabilities and the information detected at the terminal by weighting factors a_21, a_22,. Calculate the priority to choose.
- the priority calculation means 51 for calculating the priority for selecting the intermediate mode multiplies the above four probabilities and the information detected by the terminal by weighting factors a_31, a_32,. Calculate the priority to choose.
- Control signal calculating means for calculating the control signal (FIG. 11)>
- a control signal for setting the determined operation mode is calculated. Specifically, it is shown in FIG.
- the calculation means 52 that determines the mode with the highest priority as the operation mode determines the mode with the highest priority among the power mode, the fuel consumption mode, and the intermediate mode as the operation mode.
- the control means 53 for calculating the control signal for setting the determined operation mode calculates the control signal for setting the determined operation mode.
- the occurrence probability prediction means (see FIG. 8) for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network, but a similar function can be realized as a neural network.
- the priority of the engine operation mode is calculated. Based on the past information, a plurality of different results that may occur in the future are calculated.
- An operation mode for generating the maximum torque which is a result calculated by the occurrence probability predicting means 41 (FIG. 8) for predicting the occurrence probability.
- power, fuel consumption, life, energy efficiency, etc. can be set according to the operation history of each engine. Therefore, engine control according to the user's preference can be performed.
- an occurrence probability predicting means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information, and at least the occurrence probabilities of the plurality of different results are detected at the terminal.
- Priority calculating means for calculating the priority of a plurality of control targets based on information and parameters calculated in the terminal; and at least the operation of the terminal based on the control target having the highest priority. A mode provided with control signal calculation means for calculating a control signal for determination will be described.
- the controlled object is a robot.
- the occurrence probability prediction means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network.
- the current information is used as input information of an occurrence probability prediction unit that predicts the occurrence probability of a plurality of different results that may occur in the future based on past information.
- the information detected in the terminal is a sensor output value installed in the terminal. The parameter calculated in the terminal weights at least the occurrence probability of the plurality of different results and the information detected in the terminal.
- FIG. 1 is a diagram showing the entire control apparatus, which is the same as the first embodiment and will not be described in detail.
- FIG. 2 is a system diagram of the server 1, which is the same as that of the first embodiment and will not be described in detail.
- FIG. 3 is a system diagram of the terminal 3, which is the same as in the first embodiment, and will not be described in detail.
- ⁇ Occurrence probability predicting means 61 for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information>
- the probability of occurrence of a plurality of different results that may occur in the future is calculated based on past information. Specifically, it is shown in FIG. -As input information, the number of active robots, the number of stopped robots, the number of all packages to be moved, and the total travel distance of packages are used as input information. Use a Bayesian network to calculate the probability of the next four possible future outcomes.
- FIG. 13 shows an overall view of processing at the terminal 63.
- the priority calculation means 64 for calculating the priority of a plurality of control targets calculates the priority of the robot operation mode, which is the priority of the control target.
- the control signal calculation means 65 for calculating the control signal calculates a control signal for setting the determined robot operation mode, and controls the robot 62 to be controlled.
- Priority calculating means for calculating priorities of a plurality of control targets (FIG. 14)> In this process, priorities of a plurality of control targets are calculated. Specifically, it is shown in FIG.
- the four probabilities calculated by the occurrence probability predicting means 61 (see FIG. 12) and information detected by the terminal 63 are, for example, the following, which are values that can be detected by a sensor or input device installed in the terminal 63. . ⁇ Operating years, temperature, humidity, remaining battery power, presence of obstacles, presence of people, etc.
- the priority calculating means 66 for calculating the priority for selecting the speed mode multiplies the above four probabilities and the information detected by the terminal 63 by weighting factors a_11, a_12,. The priority for selecting is calculated.
- the priority calculating means 67 for calculating the priority for selecting the careful mode multiplies the above four probabilities and the information detected by the terminal 63 by weighting factors a_21, a_22,. The priority for selecting is calculated.
- the priority calculation means 68 for calculating the priority for selecting the intermediate mode multiplies the above four probabilities and the information detected by the terminal 63 by weighting factors a_31, a_32,. The priority for selecting is calculated.
- Control signal means for calculating the control signal (FIG. 15)>
- a control signal for setting the determined operation mode is calculated. Specifically, it is shown in FIG.
- the calculation unit 69 that determines the mode with the highest priority as the operation mode determines the mode with the highest priority among the speed mode, the cautious mode, and the intermediate mode as the operation mode.
- the control means 70 for calculating the control signal for setting the determined operation mode calculates the control signal for setting the determined operation mode.
- a drive signal to a motor for moving the robot's arms and legs can be considered.
- the occurrence probability prediction means (see FIG. 12) for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network, but a similar function can be realized as a neural network.
- the priority calculation means for calculating the priority of the plurality of control targets, the priority of the operation mode of the robot is calculated. Based on past information, a plurality of different results that may occur in the future are calculated. A configuration is also possible in which the task is terminated within a predetermined time, which is a result calculated by the occurrence probability predicting means 61 (FIG. 12) for predicting the occurrence probability. According to the present embodiment, it is possible to select whether the production robot or the baggage handling robot emphasizes speed or safety, or whether the risk is high or low.
- an occurrence probability predicting means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information, and at least the occurrence probabilities of the plurality of different results are detected at the terminal.
- Priority calculating means for calculating the priority of a plurality of control targets based on information, a parameter calculated in the terminal and a value uniquely learned based on a sensor output value installed in the terminal; At least, a mode including control signal calculation means for calculating a control signal for determining the operation of the terminal based on the control target having the highest priority will be described.
- the occurrence probability prediction means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network.
- the current information is used as input information of an occurrence probability prediction unit that predicts the occurrence probability of a plurality of different results that may occur in the future based on past information.
- the information detected in the terminal is a value that is uniquely learned based on the sensor output value installed in the terminal and the sensor output value installed in the terminal.
- the parameter calculated in the terminal weights at least the occurrence probability of the plurality of different results and the information detected in the terminal.
- FIG. 1 is a diagram showing the entire control apparatus, which is the same as the first embodiment and will not be described in detail.
- FIG. 2 is a system diagram of the server 1, which is the same as that of the first embodiment and will not be described in detail.
- FIG. 3 is a system diagram of the terminal 3, which is the same as in the first embodiment, and will not be described in detail.
- FIG. 4 ⁇ Occurrence probability predicting means 31 (FIG. 4) for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information>
- the probability of occurrence of a plurality of different results that may occur in the future is calculated based on past information.
- FIG. 5 shows an overall view of the processing in the terminal 33, which is the same as that of the first embodiment and will not be described in detail.
- Priority calculating means for calculating priorities of a plurality of control targets (FIG. 16)> In this process, priorities of a plurality of control targets are calculated. Specifically, it is shown in FIG.
- the four probabilities calculated by the occurrence probability predicting means 31 (see FIG. 4) and information detected at the terminal are, for example, the following, which are values that can be detected by a sensor or input device installed in the terminal 33. ⁇ Used years (total mileage) ⁇ Today's total mileage ⁇ Driver characteristics (gender / age / driving history / fatigue) ⁇ The location of the vehicle and the remaining fuel.
- the user characteristic is a value that is uniquely learned based on the sensor output value of the sensor installed in the terminal. For example, it is conceivable to learn the frequency of selecting the route A (for example, a large road) and the frequency of selecting the route B (for example, a back road) from the travel history information. Users can also choose their preferences directly.
- the priority for selecting the route A is calculated by multiplying the weight coefficients a_11, a_12,.
- the priority for selecting the route B is calculated by multiplying the weight coefficients a_21, a_22,.
- Control Signal Calculation Means for Calculation of Control Signal (FIG. 7)>
- a control signal for traveling on the determined movement route is calculated.
- FIG. 7 it is the same as that of the first embodiment, and therefore will not be described in detail.
- the occurrence probability prediction means 31 for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network
- a similar function can also be realized as a neural network.
- the priority calculation means that calculates the priority of a plurality of control targets, the priority of the route to be selected is calculated, but a configuration in which the priority of the fuel consumption deterioration rate is also considered.
- an occurrence probability predicting means for predicting an occurrence probability of a plurality of different results that may occur in the future based on past information, and a plurality of events that may occur in the future from past information based on newly obtained information.
- Parameter value updating means for updating parameter values of means used for predicting the occurrence probability of different results, occurrence probability of the plurality of different results, information detected in the terminal, and parameters calculated in the terminal.
- a priority calculation means for calculating the priority of a plurality of control targets, and a control signal calculation for calculating a control signal for determining the operation of the terminal based on at least the control target having the highest priority It shows about the form provided with the means.
- the occurrence probability prediction means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network.
- the means for updating the parameter value of the occurrence probability prediction means used for predicting the occurrence probability of a plurality of different results that may occur in the future from the past information is based on newly obtained information such as information obtained from the terminal.
- the parameter update means is Bayesian update.
- the current information is used as input information of an occurrence probability prediction unit that predicts the occurrence probability of a plurality of different results that may occur in the future based on past information.
- the information detected in the terminal is a value that is uniquely learned based on the sensor output value installed in the terminal and the sensor output value installed in the terminal.
- the parameter calculated in the terminal weights at least the occurrence probability of the plurality of different results and the information detected in the terminal.
- FIG. 17 is a diagram showing the entire control device.
- the server 81 includes an occurrence probability prediction unit 82 that predicts the occurrence probability of a plurality of different results that may occur in the future based on past information, and a parameter value update unit 83 that updates a parameter value. Calculate the probability of occurrence of different results. Probabilities of occurrence of a plurality of different results that may occur in the future are sent to the plurality of terminals 84 by wired communication or wireless communication.
- the terminal 84 has priority calculation means 85 that calculates the priority of a plurality of control targets based on the occurrence probability of a plurality of different results, information detected at the terminal, and parameters calculated at the terminal 84. It is provided and calculates the priority of the control target.
- the control signal is calculated by the control signal calculation means 86 for calculating the control signal for determining the operation of the terminal 84. Also, information detected by the terminal 84 is sent from the terminal 84 to the server 81 by wired communication or wireless communication.
- FIG. 18 is a system diagram of the server 81, and information from the terminal 84 is input to the input / output port 17. Since other than that is the same as Example 1, it does not elaborate in detail.
- FIG. 19 is a system diagram of the terminal 84, and information from the terminal 84 is output from the input / output port 27. Since it is the same in Example 1, it does not elaborate.
- the occurrence probability of a plurality of different results that may occur in the future is calculated based on past information, and the parameter value is updated. Specifically, it is shown in FIG. -As input information, current information such as weather, temperature, road information, and time are used. Use a Bayesian network to calculate the probability of the next four possible future outcomes.
- the Bayesian network parameter value updating means 88 updates the Bayesian network parameter values using a Bayesian updater using the current information such as weather, temperature, road information, time, and information from the terminal.
- the information from the terminal 84 is, for example, a control result at the terminal 84, -Arrival time when route A is selected-Arrival time when route B is selected-Whether route A is selected, is the fuel consumption deterioration rate 10% or higher? ⁇ Whether route B is selected, has the fuel consumption deterioration rate been 10% or more? Can be considered. That is, the Bayesian network is updated based on the latest information so that a more accurate prediction probability can be obtained.
- FIG. 5 shows an overall view of processing in the terminal, but since it is the same as in the first embodiment, it will not be described in detail.
- Control Signal Calculation Means for Calculation of Control Signal (FIG. 7)>
- a control signal for traveling on the determined movement route is calculated.
- FIG. 7 it is the same as that of the first embodiment, and therefore will not be described in detail.
- the occurrence probability predicting means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network
- a similar function can be realized as a neural network.
- the priority calculation means for calculating the priorities of a plurality of control targets, the priority of the route to be selected is calculated.
- an occurrence probability predicting means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information, and at least the occurrence probabilities of the plurality of different results are detected at the terminal.
- Priority calculating means for calculating the priority of a plurality of control targets based on information and parameters calculated in the terminal; and at least the operation of the terminal based on the control target having the highest priority.
- a mode signal control means for calculating a control signal for determination and a terminal parameter update means for updating a parameter calculated in the terminal for each terminal will be described.
- the controlled object is a moving body that can be moved unattended, such as an autonomous driving vehicle.
- the occurrence probability prediction means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network.
- the current information is used as input information of an occurrence probability prediction unit that predicts the occurrence probability of a plurality of different results that may occur in the future based on past information.
- the information detected in the terminal is a sensor output value installed in the terminal.
- the parameter calculated in the terminal weights at least the occurrence probability of the plurality of different results and the information detected in the terminal.
- the function which updates the parameter calculated in the said terminal for every terminal is linear regression and logistic regression.
- FIG. 21 is a diagram showing the entire control device.
- the server 1 includes an occurrence probability predicting unit 2 that predicts the occurrence probability of a plurality of different results that may occur in the future based on past information, and calculates the occurrence probability of a plurality of different results that may occur in the future. Probabilities of occurrence of a plurality of different results that may occur in the future are sent to the plurality of terminals 91 by wired communication or wireless communication.
- the terminal 91 has a priority calculation unit 92 that calculates the priority of a plurality of control targets based on the occurrence probability of a plurality of different results, information detected by the terminal 91, and parameters calculated by the terminal 91. And calculate the priority of the control target.
- the control signal is calculated by the control signal calculation means 93 that calculates the control signal for determining the operation of the terminal 91. Further, a terminal parameter update unit 94 that updates the parameters for each terminal 91 is provided, and the parameters of the priority calculation unit 92 are updated.
- FIG. 2 is a system diagram of the server 1, which is the same as that of the first embodiment and will not be described in detail.
- FIG. 3 is a system diagram of the terminal 3, which is the same as in the first embodiment, and will not be described in detail.
- ⁇ Occurrence probability predicting means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information FOG. 4
- the probability of occurrence of a plurality of different results that may occur in the future is calculated based on past information.
- FIG. 4 it is the same as that of the first embodiment, and will not be described in detail.
- FIG. 22 shows an overall view of processing at the terminal 95.
- the priority calculation means 96 for calculating the priority of the plurality of control targets calculates the priority of the movement route that is the priority of the control target.
- the control signal calculation means 97 that calculates the control signal calculates a control signal for traveling on the determined moving route, and controls the moving body 32 that is a control target.
- the terminal parameter update unit 98 that updates the parameters for each terminal 91 updates the parameters of the priority calculation unit 96.
- ⁇ Priority calculating means for calculating priorities of a plurality of control targets (FIG. 23)> In this process, priorities of a plurality of control targets are calculated. Specifically, it is shown in FIG.
- the four probabilities calculated by the occurrence probability predicting means 31 (see FIG. 4) and the information detected by the terminal 91 are, for example, the following values that can be detected by a sensor or an input device installed in the terminal 91. . ⁇ Used years (total mileage) ⁇ Today's total mileage ⁇ Driver characteristics (gender / age / driving history / fatigue) ⁇ The location of the vehicle and the remaining fuel.
- the priority calculation means 99 for calculating the priority for selecting the route A multiplies the above four probabilities and the information detected by the terminal 91 by weighting factors a_11, a_12,. The priority for selecting is calculated.
- the priority calculation means 100 for calculating the priority for selecting the route B the above four probabilities and the information detected by the terminal 91 are multiplied by weighting factors a_21, a_22,. The priority for selecting is calculated.
- weighting coefficients a_11, a_12,..., A_1n and a_21, a_22,..., A_2n are sequentially determined by the update values calculated by the terminal parameter updating means 98 for updating the parameters described later for each terminal 91, Updated.
- Weight coefficients a_11, a_12,... are minimized so that the error between “value of A1 below” and “value obtained by performing the same calculation as the priority calculation means 99 for selecting path A using B below” is minimized. ⁇ Calculate the update value of a_1n.
- weight coefficients a_21, a_22, and so on are minimized so that the error between “the value of A2” and “the value obtained by performing the same calculation as the priority calculation means 100 for selecting the path B using B” is minimized. ..., calculate the updated value of a_2n.
- linear regression using the least square method or logistic regression can be considered. Details of these methods have been described in many documents and books, and will not be described in detail here. In addition to linear regression and logistic regression, other learning methods such as reinforcement learning may be used.
- the occurrence probability prediction means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network
- a similar function can be realized as a neural network.
- the priority calculation means for calculating the priority of a plurality of control targets, the priority of the route to be selected is calculated, but a configuration in which the priority of the fuel consumption deterioration rate is also considered.
- the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed.
- the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
- a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Robotics (AREA)
- Algebra (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computing Systems (AREA)
- Artificial Intelligence (AREA)
- Computational Mathematics (AREA)
- Software Systems (AREA)
- Human Computer Interaction (AREA)
- Transportation (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Manipulator (AREA)
- Navigation (AREA)
Abstract
Description
本発明は、制御装置に関するものであり、特に、サーバーと複数の端末で構成される制御装置に関する。 The present invention relates to a control device, and more particularly to a control device including a server and a plurality of terminals.
本技術分野の背景技術として、特許文献1がある。この文献には、「外部からの外部入力信号を検出する入力信号検出手段と、上記入力信号検出手段により検出された外部入力信号を評価する評価手段と、上記評価手段による評価結果を行動内容情報に対応付けする対応付け手段と、上記対応付け手段により対応付けされた評価に基づいて、上記行動内容情報に基づいて行動の制御を行う行動制御手段とを備えることを特徴とするロボット装置」と記載されている([請求項1]参照)。
There is
しかしながら、前述の先行技術(特許文献1)は、ロボット単体(端末)が検出可能な情報のみを用いて、行動の制御を行うものであり、より広い範囲のグローバルな情報を用いて行動の制御を行うものではない。 However, the above-mentioned prior art (Patent Document 1) controls behavior using only information that can be detected by a single robot (terminal), and controls behavior using a wider range of global information. Is not something to do.
本発明は、上記の点に鑑みてなされたものであり、その目的とするところは、より広い範囲のグローバルな情報を用いつつ、個々の端末の状況に応じた行動制御が可能となる制御装置を提供することである。 The present invention has been made in view of the above points, and an object of the present invention is to provide a control device that enables behavior control according to the situation of each terminal while using a wider range of global information. Is to provide.
上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。本発明は上記課題を解決する手段を複数含んでいるが、例えば、サーバーと複数の端末で構成される制御装置であって、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段と、少なくとも、前記複数の異なる結果の発生確率と、前記端末において検出される情報と、前記端末において演算されるパラメータとに基づいて、複数の制御目標の優先度を演算する優先度演算手段と少なくとも、前記優先度がもっとも高い制御目標に基づいて、前記端末の動作を決定するための制御信号を演算する制御信号演算手段とを備えたことを特徴とする。 In order to solve the above problems, for example, the configuration described in the claims is adopted. The present invention includes a plurality of means for solving the above-described problems. For example, the control device includes a server and a plurality of terminals, and based on past information, occurrence probability of a plurality of different results that may occur in the future. Based on at least the occurrence probability of the plurality of different results, the information detected at the terminal, and the parameter calculated at the terminal. Priority calculating means for calculating, and at least control signal calculating means for calculating a control signal for determining the operation of the terminal based on the control target having the highest priority.
また、例えば、前記端末において演算されるパラメータは、少なくとも、前記複数の異なる結果の発生確率と前記端末において検出される情報とに、重み付けをするパラメータであり、前記優先度演算手段は、前記重みづけ処理をした値に基づいて、複数の制御目標の優先度を演算することを特徴とする。 In addition, for example, the parameter calculated in the terminal is a parameter that weights at least the occurrence probability of the plurality of different results and the information detected in the terminal, and the priority calculation means includes the weight It is characterized in that the priority of a plurality of control targets is calculated based on the value subjected to the attaching process.
また、例えば、前記発生確率予測手段は、新たに得られる情報に基づいて、前記発生確率予測手段のパラメータ値を更新するパラメータ値更新手段を備えたことを特徴とする。 Further, for example, the occurrence probability prediction means includes a parameter value update means for updating a parameter value of the occurrence probability prediction means based on newly obtained information.
また、例えば、前記端末において演算されるパラメータを端末ごとに更新する端末パラメータ更新手段を備えたことを特徴とする。 Further, for example, it is characterized by comprising terminal parameter updating means for updating a parameter calculated in the terminal for each terminal.
また、例えば、前記端末において検出される情報は、少なくとも、前記端末に設置されているセンサ出力値に基づく値であることを特徴とする。 Further, for example, the information detected in the terminal is at least a value based on a sensor output value installed in the terminal.
また、例えば、前記端末において検出される情報は、少なくとも、前記端末に設置されているセンサ出力値に基づいて、独自に学習される値であることを特徴とする。 Further, for example, the information detected in the terminal is a value that is uniquely learned based on at least a sensor output value installed in the terminal.
また、例えば、発生確率予測手段は、少なくとも、ベイジアンネットワークもしくはニューラルネットワークであることを特徴とする。 Further, for example, the occurrence probability predicting means is at least a Bayesian network or a neural network.
また、例えば、優先度演算手段は、少なくとも、ロジスティック回帰もしくは強化学習であることを特徴とする。 Further, for example, the priority calculation means is at least logistic regression or reinforcement learning.
また、例えば、発生確率予測手段は、新たに得られる情報に基づいて、少なくとも、ベイズ更新もしくは確率的勾配降下法により、発生確率予測手段のパラメータ値を更新するパラメータ値更新手段を備えたことを特徴とする。 Further, for example, the occurrence probability prediction means includes a parameter value update means for updating the parameter value of the occurrence probability prediction means at least by Bayesian update or probabilistic gradient descent based on newly obtained information. Features.
また、例えば、前記制御装置の制御対象は、自動運転車などの移動体であり、前記複数の制御目標は、前記移動体の移動経路であることを特徴とする。 Further, for example, the control target of the control device is a moving body such as an autonomous driving vehicle, and the plurality of control targets are moving paths of the moving body.
また、例えば、前記制御装置の制御対象は、内燃機関であり、前記複数の制御目標は、前記内燃機関の運転条件であることを特徴とする。 Further, for example, the control target of the control device is an internal combustion engine, and the plurality of control targets are operating conditions of the internal combustion engine.
また、例えば、前記制御装置の制御対象は、ロボットであり、前記複数の制御目標は、前記ロボットが行うタスクであることを特徴とする。 Further, for example, the control target of the control device is a robot, and the plurality of control targets are tasks performed by the robot.
また、例えば、発生確率予測手段は、端末から新たに得られる情報に基づいて、前記発生確率予測手段のパラメータ値を更新するパラメータ値更新手段を備えたことを特徴とする。 Further, for example, the occurrence probability prediction means includes a parameter value update means for updating the parameter value of the occurrence probability prediction means based on information newly obtained from the terminal.
また、例えば、前記将来起こり得る複数の異なる結果を、前記複数の制御目標とすることを特徴とする。 Further, for example, a plurality of different results that may occur in the future are set as the plurality of control targets.
また、例えば、前記発生確率予測手段の入力情報に、現在の情報を用いることを特徴とする。 Further, for example, the current information is used as input information of the occurrence probability prediction means.
また、例えば、将来起こり得る複数の異なる結果の発生確率は、少なくとも移動体が目的値に時刻通りに到着する確率、もしくは、移動体のエネルギー効率/燃費効率が所定範囲内に収まる確率、もしくは、原動機/エンジンのトルクが所定値以上出せる確率、もしくは、原動機/エンジンの燃費改善率が所定値以上となる確率、もしくは、原動機/エンジンの燃費悪化率が所定値以上となる確率、もしくは、ロボットのタスクが所定時間内に完了する確率、もしくはロボットの危険度が上がる確率であることを特徴とする。 Further, for example, the probability of occurrence of a plurality of different results that may occur in the future is at least the probability that the mobile object will arrive at the target value on time, or the probability that the energy efficiency / fuel efficiency of the mobile object will fall within a predetermined range, or Probability that the motor / engine torque can exceed the predetermined value, or the probability that the fuel efficiency improvement rate of the prime mover / engine is greater than the predetermined value, or the probability that the fuel efficiency deterioration rate of the prime mover / engine exceeds the predetermined value, or It is characterized by the probability that a task will be completed within a predetermined time, or the probability that the risk of the robot will increase.
本発明によれば、サーバーで、より広い範囲のグローバルな情報を用いて、将来起こり得る複数の異なる結果の発生確率を予測し、端末で、前記複数の異なる結果の発生確率と端末において検出される情報とに基づいて、端末の行動を制御するので、より広い範囲のグローバルな情報を用いつつ、個々の端末の状況に応じた行動制御が可能となる。 According to the present invention, the server predicts the probability of occurrence of a plurality of different results that may occur in the future using a wider range of global information, and the terminal detects the occurrence probability of the plurality of different results at the terminal. Since the behavior of the terminal is controlled on the basis of the information, the behavior control according to the situation of each terminal can be performed while using a wider range of global information.
本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施形態の説明により明らかにされる。 Further features related to the present invention will become apparent from the description of the present specification and the accompanying drawings. Further, problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.
以下、実施例を図面を用いて説明する。
[実施例1]
Hereinafter, examples will be described with reference to the drawings.
[Example 1]
本実施例においては、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段と、少なくとも、前記複数の異なる結果の発生確率と、前記端末において検出される情報と、前記端末において演算されるパラメータとに基づいて、複数の制御目標の優先度を演算する優先度演算手段と、少なくとも、前記優先度がもっとも高い制御目標に基づいて、前記端末の動作を決定するための制御信号を演算する制御信号演算手段とを備えた形態について示す。 In the present embodiment, an occurrence probability predicting means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information, and at least the occurrence probabilities of the plurality of different results are detected at the terminal. Priority calculating means for calculating the priority of a plurality of control targets based on information and parameters calculated in the terminal; and at least the operation of the terminal based on the control target having the highest priority. A mode provided with control signal calculation means for calculating a control signal for determination will be described.
特に、制御対象は、自動運転車に代表される無人で移動可能な移動体である。 In particular, the controlled object is a moving body that can be moved unattended, such as an autonomous driving vehicle.
また、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段は、ベイジアンネットワークである。 Also, the occurrence probability prediction means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network.
また、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段の入力情報に、現在の情報を用いる。 Also, the current information is used as the input information of the occurrence probability prediction means for predicting the occurrence probability of a plurality of different results that may occur in the future based on the past information.
また、端末において検出される情報は、端末に設置されているセンサ出力値である。 Also, information detected at the terminal is a sensor output value installed at the terminal.
また、前記端末において演算されるパラメータは、少なくとも、前記複数の異なる結果の発生確率と前記端末において検出される情報とに、重み付けをするものである。 Further, the parameter calculated in the terminal weights at least the occurrence probability of the plurality of different results and the information detected in the terminal.
図1は、制御装置の全体を表した図である。サーバー1では、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段2が備わっており、将来起こり得る複数の異なる結果の発生確率を演算する。将来起こり得る複数の異なる結果の発生確率は、複数の端末3に有線通信あるいは無線通信で送られる。端末3には、複数の異なる結果の発生確率と、端末において検出される情報と、端末において演算されるパラメータとに基づいて、複数の制御目標の優先度を演算する優先度演算手段4が備わっており、制御目標の優先度を演算する。そして、優先度がもっとも高い制御目標に基づいて、端末の動作を決定するための制御信号を演算する制御信号演算手段5で、制御信号を演算する。
FIG. 1 is a diagram showing the entire control device. The
図2は、サーバー1のシステム図である。サーバー1には、外部からの信号を処理する入力回路16が設けてある。ここでいう外部からの信号とは、例えば、天気、気温、道路情報などのサーバー外からの情報、端末3のセンサで検出された情報等が考えられる。外部からの信号は、入力回路を経て、入力信号となり入出力ポート17へ送られる。入出力ポート17に送られた入力情報は、データバス15を通って、RAM14に書き込まれる。あるいは、記憶装置11に記憶される。ROM13もしくは記憶装置11には、様々な処理が書き込まれていて、CPU12で実行される。その際、RAM14あるいは記憶装置11に書き込まれた値を、適宜、用いて演算を行う。演算結果の内、外部へ送り出す情報(値)は、データバス15を通って、入出力ポート17に送られ、出力信号として、出力回路18に送られる。出力回路18から外部への信号として、外部に出力される。ここでいう外部への信号とは、将来起こり得る複数の異なる結果の発生確率であり、複数の端末3へ送られる。
FIG. 2 is a system diagram of the
図1を用いて前述したように、サーバー1では、将来起こり得る複数の異なる結果の発生確率を演算する。入力回路16、入出力ポート17を経て、RAM14もしくは記憶装置11に書き込まれた入力信号を用いて、ROM13もしくは記憶装置11に記憶されている後述の処理をCPU12を用いて行い、出力信号を演算する。出力信号は、前述したように、RAM14,入出力ポート17、出力回路18を経て、外部への信号(将来起こり得る複数の異なる結果の発生確率)として、出力(端末3に送信)される。
As described above with reference to FIG. 1, the
図3は、端末3のシステム図である。端末3には、外部からの信号を処理する入力回路26が設けてある。ここでいう外部からの信号とは、例えば、端末3に設置されているセンサ信号等が考えられる。これら外部からの信号は、入力回路26を経て、入力信号となり入出力ポート27へ送られる。また、サーバー1からは、将来起こり得る複数の異なる結果の発生確率の情報が入出力ポート27に入力される。入出力ポート27に送られた各入力情報は、データバス25を通って、RAM24に書き込まれる。あるいは、記憶装置21に記憶される。ROM23もしくは記憶装置21には、様々な処理が書き込まれていて、CPU22で実行される。その際、RAM24あるいは記憶装置21に書き込まれた値を、適宜、用いて演算を行う。演算結果の内、外部へ送り出す情報(値)は、データバス25を通って、入出力ポート27に送られ、出力信号として、出力回路28に送られる。出力回路28から外部への信号として、外部に出力される。ここでいう外部への信号とは制御対象を所望の動きをさせるためのアクチュエータ信号などを指す。
FIG. 3 is a system diagram of the
図1を用いて前述したように、端末3では、優先度演算手段4で制御目標の優先度を演算し、制御信号演算手段5で制御信号を演算する。入力回路26、入出力ポート27を経て、RAM24もしくは記憶装置21に書き込まれた入力信号とサーバー1からの信号(将来起こり得る複数の異なる結果の発生確率)を用いて、ROM23もしくは記憶装置21に記憶されている後述の処理をCPU22を用いて行い、出力信号を演算する。出力信号は、前述したように、RAM24,入出力ポート27、出力回路28を経て、外部への信号(制御信号)として、出力される。以下、各処理の詳細を説明する。
As described above with reference to FIG. 1, in the
<過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段31(図4)>
本処理では、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を演算する。具体的には、図4に示される。
・入力情報として、現在の情報である天気、気温、道路情報、時刻を用いる。
・ベイジアンネットワークを用いて、次の4つの将来起こり得る複数の異なる結果の発生確率を演算する。
<Occurrence probability predicting means 31 (FIG. 4) for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information>
In this process, the probability of occurrence of a plurality of different results that may occur in the future is calculated based on past information. Specifically, it is shown in FIG.
-As input information, current information such as weather, temperature, road information, and time are used.
Use a Bayesian network to calculate the probability of the next four possible future outcomes.
(1)経路Aを選んだ場合に、時刻通りに目標値に到着する確率
(2)経路Bを選んだ場合に、時刻通りに目標値に到着する確率
(3)経路Aを選んだ場合に、燃費悪化率が10%以上となる確率
(4)経路Bを選んだ場合に、燃費悪化率が10%以上となる確率
(1) Probability of arriving at the target value on time when route A is selected (2) Probability of arriving at the target value on time when route B is selected (3) When selecting route A The probability that the fuel consumption deterioration rate will be 10% or more (4) The probability that the fuel consumption deterioration rate will be 10% or more when route B is selected
ベイジアンネットワークの内部には、過去の天気、気温、道路情報、時刻の各情報と上記4つの発生確率の関係を表す情報がある。すなわち、過去の天気、気温、道路情報、時刻の各情報に基づいて、将来起こり得る上記4つの複数の異なる結果の発生確率を予測する。 In the Bayesian network, there is information representing the relationship between past weather, temperature, road information, time information and the above four occurrence probabilities. That is, the probability of occurrence of the above-mentioned four different results that may occur in the future is predicted based on the past information of weather, temperature, road information, and time.
なお、ベイジアンネットワークの詳細については、多くの文献、書籍で述べてあるので、ここでは詳述しない。 The details of the Bayesian network have been described in many documents and books, and will not be described in detail here.
図5は、端末33での処理の全体図を示している。
・複数の制御目標の優先度を演算する優先度演算手段34で、制御目標の優先度である移動経路の優先度を演算する。
・制御信号を演算する制御信号演算手段35では、決定した移動経路を走行するための制御信号を演算し、制御対象である移動体32を制御する。
FIG. 5 shows an overall view of processing in the terminal 33.
The priority calculating means 34 for calculating the priorities of a plurality of control targets calculates the priority of the movement route that is the priority of the control target.
The control signal calculating means 35 for calculating the control signal calculates a control signal for traveling on the determined moving route, and controls the moving
次に、優先度演算手段34と制御信号演算手段35の詳細について説明する。 Next, details of the priority calculation means 34 and the control signal calculation means 35 will be described.
<複数の制御目標の優先度を演算する優先度演算手段(図6)>
本処理では、複数の制御目標の優先度を演算する。具体的には、図6に示される。
発生確率予測手段31(図4参照)で演算した4つの確率と、端末において検出される情報は、例えば下記であり、端末に設置されているセンサあるいは入力装置で検出可能な値である。
・使用年数(総走行距離)
・本日の総走行距離
・運転者の特性(性別/年齢/運転歴/疲労度)
・自車の位置
・燃料残量
など。
なお、上記の各情報の検出方法は、多くの文献、書籍で述べてあるので、ここでは詳述しない。
<Priority calculation means for calculating priorities of a plurality of control targets (FIG. 6)>
In this process, priorities of a plurality of control targets are calculated. Specifically, it is shown in FIG.
The four probabilities calculated by the occurrence probability prediction means 31 (see FIG. 4) and the information detected at the terminal are, for example, the following, which are values that can be detected by a sensor or input device installed in the terminal.
・ Used years (total mileage)
・ Today's total mileage ・ Driver characteristics (gender / age / driving history / fatigue)
・ The location of the vehicle and the remaining fuel.
In addition, since the detection method of each said information is described in many literatures and books, it does not elaborate here.
経路Aを選ぶ優先度を演算する優先度演算手段36では、上記4つの確率と、端末33において検出される情報とに、重み係数a_11,a_12,・・・,a_1nをそれぞれ乗じて、経路Aを選ぶ優先度を演算する。 The priority calculating means 36 for calculating the priority for selecting the route A multiplies the above four probabilities and the information detected by the terminal 33 by weighting factors a_11, a_12,. The priority for selecting is calculated.
経路Bを選ぶ優先度を演算する優先度演算手段37では、上記4つの確率と、端末において検出される情報とに、重み係数a_21,a_22,・・・,a_2nをそれぞれ乗じて、経路Bを選ぶ優先度を演算する。 The priority calculation means 37 for calculating the priority for selecting the route B multiplies the above four probabilities and the information detected by the terminal by weighting factors a_21, a_22,. Calculate the priority to choose.
<制御信号演算手段(図7)>
本処理では、決定した移動経路を走行するための制御信号を演算する。具体的には、図7に示される。
・優先度のもっとも高い経路を移動経路として決定する演算手段38で、経路Aを選ぶ優先度と経路Bを選ぶ優先度の内、優先度のもっとも高い経路を移動経路として決定する。優先度の値が同じ場合は、経路Aを選んでも良いし、経路Bを選んでも良い。事前に決めておけば良い。
・決定した移動経路を走行するための制御信号を演算する演算手段39で、決定した移動経路を走行するための制御信号を演算する。
<Control signal calculation means (FIG. 7)>
In this process, a control signal for traveling on the determined movement route is calculated. Specifically, it is shown in FIG.
The calculation means 38 for determining the route with the highest priority as the moving route determines the route with the highest priority among the priority for selecting the route A and the priority for selecting the route B as the moving route. When the priority values are the same, the route A or the route B may be selected. Decide in advance.
A calculation means 39 for calculating a control signal for traveling on the determined movement route calculates a control signal for traveling on the determined movement route.
なお、本手段については、文献、資料などあるので、詳述しない。現在位置を照会しつつ、移動体の速度、回転角を制御するための原動機(モーター、エンジン)への駆動信号、回転装置(電子制御ステアリング)への駆動信号などを調整することが考えられる。 This means will not be described in detail because there are documents and materials. It is conceivable to adjust the drive signal to the prime mover (motor, engine), the drive signal to the rotating device (electronic control steering), etc. for controlling the speed and rotation angle of the moving body while inquiring the current position.
過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段(図4参照)は、ベイジアンネットワークとしたが、ニューラルネットワークとしても同様の機能が実現可能である。 The occurrence probability prediction means (see FIG. 4) for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network, but a similar function can be realized as a neural network.
また、複数の制御目標の優先度を演算する優先度演算手段(図6参照)では、選択する経路の優先度を演算したが、燃費悪化率の優先度とする構成も考えられる。 Further, in the priority calculation means (see FIG. 6) for calculating the priorities of a plurality of control targets, the priority of the route to be selected is calculated, but a configuration in which the priority of the fuel consumption deterioration rate is also considered.
[実施例2]
本実施例においては、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段と、少なくとも、前記複数の異なる結果の発生確率と、前記端末において検出される情報と、前記端末において演算されるパラメータとに基づいて、複数の制御目標の優先度を演算する優先度演算手段と、少なくとも、前記優先度がもっとも高い制御目標に基づいて、前記端末の動作を決定するための制御信号を演算する制御信号演算手段とを備えた形態について示す。
[Example 2]
In the present embodiment, an occurrence probability predicting means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information, and at least the occurrence probabilities of the plurality of different results are detected at the terminal. Priority calculating means for calculating the priority of a plurality of control targets based on information and parameters calculated in the terminal; and at least the operation of the terminal based on the control target having the highest priority. A mode provided with control signal calculation means for calculating a control signal for determination will be described.
特に、制御対象は、例えば自動車の原動機に用いられるエンジン(内燃機関)である。
また、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段は、ベイジアンネットワークである。
また、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段の入力情報に、現在の情報を用いる。
また、端末において検出される情報は、端末に設置されているセンサ出力値である。
また、前記端末において演算されるパラメータは、少なくとも、前記複数の異なる結果の発生確率と前記端末において検出される情報とに、重み付けをするものである。
In particular, an object to be controlled is an engine (internal combustion engine) used in, for example, a motor for an automobile.
Moreover, the occurrence probability prediction means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network.
In addition, the current information is used as input information of an occurrence probability prediction unit that predicts the occurrence probability of a plurality of different results that may occur in the future based on past information.
Moreover, the information detected in the terminal is a sensor output value installed in the terminal.
The parameter calculated in the terminal weights at least the occurrence probability of the plurality of different results and the information detected in the terminal.
図1は、制御装置の全体を表した図であり、実施例1と同じであるので、詳述しない。
図2は、サーバー1のシステム図であり、実施例1と同じであるので、詳述しない。
図3は、端末3のシステム図であり、実施例1で同じであるので、詳述しない。
FIG. 1 is a diagram showing the entire control apparatus, which is the same as the first embodiment and will not be described in detail.
FIG. 2 is a system diagram of the
FIG. 3 is a system diagram of the
以下、各処理の詳細を説明する。 The details of each process are described below.
<過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段41(図8)>
本処理では、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を演算する。具体的には、図8に示される。
・入力情報として、現在の情報である半径10km内の天気、半径10km内の平均気温、半径10km内の平均湿度、道路情報を用いる。
・ベイジアンネットワークを用いて、次の4つの将来起こり得る複数の異なる結果の発生確率を演算する。
<Occurrence probability predicting means 41 (FIG. 8) for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information>
In this process, the probability of occurrence of a plurality of different results that may occur in the future is calculated based on past information. Specifically, it is shown in FIG.
-As the input information, the current information such as the weather within a radius of 10 km, the average temperature within a radius of 10 km, the average humidity within a radius of 10 km, and road information are used.
Use a Bayesian network to calculate the probability of the next four possible future outcomes.
(1)最大トルクが出せる確率
(2)燃費改善率が10%以上となる確率
(3)燃費悪化率が10%以上となる確率
(4)エンジンの耐用年数が1年以上短くなる確率
(1) Probability that the maximum torque can be produced (2) Probability that the fuel efficiency improvement rate will be 10% or more (3) Probability that the fuel efficiency deterioration rate will be 10% or more (4) Probability that the service life of the engine will be shortened by 1 year or more
ベイジアンネットワークの内部には、過去の半径10km内の天気、半径10km内の平均気温、半径10km内の平均湿度、道路情報の各情報と上記4つの発生確率の関係を表す情報がある。すなわち、半径10km内の天気、半径10km内の平均気温、半径10km内の平均湿度、道路情報の各情報に基づいて、将来起こり得る上記4つの複数の異なる結果の発生確率を予測する。 In the Bayesian network, there is information representing the relationship between each of the above four occurrence probabilities, the weather within the past 10km radius, the average temperature within the 10km radius, the average humidity within the 10km radius, and road information. In other words, the probability of occurrence of the above-mentioned four different results that can occur in the future is predicted based on the information of the weather within the radius of 10 km, the average temperature within the radius of 10 km, the average humidity within the radius of 10 km, and the road information.
なお、ベイジアンネットワークの詳細については、多くの文献、書籍で述べてあるので、ここでは詳述しない。 The details of the Bayesian network have been described in many documents and books, and will not be described in detail here.
図9は、端末46での処理の全体図を示している.
・複数の制御目標の優先度を演算する優先度演算手段47で、制御目標の優先度であるエンジン動作モード(内燃機関の運転条件)の優先度を演算する。
・制御信号を演算する制御信号演算手段48では、決定したエンジン動作モードにするための制御信号を演算し、制御対象であるエンジン42を制御する。
FIG. 9 shows an overall view of processing at the terminal 46.
The priority calculation means 47 for calculating the priority of a plurality of control targets calculates the priority of the engine operation mode (operating condition of the internal combustion engine) that is the priority of the control target.
The control signal calculation means 48 for calculating the control signal calculates a control signal for setting the determined engine operation mode, and controls the
次に、優先度演算手段47と制御信号演算手段48の詳細について説明する。 Next, details of the priority calculation means 47 and the control signal calculation means 48 will be described.
<複数の制御目標の優先度を演算する優先度演算手段(図10)>
本処理では、複数の制御目標の優先度を演算する。具体的には、図10に示される。
発生確率予測手段41(図8参照)で演算した4つの確率と、端末46において検出される情報は、例えば下記であり、端末46に設置されているセンサあるいは入力装置で検出可能な値である。
・使用年数(総走行距離)
・気温
・湿度
・燃料残量
など。
<Priority calculating means for calculating priorities of a plurality of control targets (FIG. 10)>
In this process, priorities of a plurality of control targets are calculated. Specifically, it is shown in FIG.
The four probabilities calculated by the occurrence probability predicting means 41 (see FIG. 8) and the information detected by the terminal 46 are, for example, the following values that can be detected by a sensor or an input device installed in the terminal 46. .
・ Used years (total mileage)
・ Temperature, humidity, remaining fuel, etc.
なお、上記の各情報の検出方法は、多くの文献、書籍で述べてあるので、ここでは詳述しない。 In addition, since the detection method of each said information is described in many literatures and books, it does not elaborate here.
パワーモードを選ぶ優先度を演算する優先度演算手段49では、上記4つの確率と、端末46において検出される情報とに、重み係数a_11,a_12,・・・,a_1nをそれぞれ乗じて、パワーモードを選ぶ優先度を演算する。 In the priority calculation means 49 for calculating the priority for selecting the power mode, the above four probabilities and the information detected by the terminal 46 are multiplied by weighting factors a_11, a_12,. The priority for selecting is calculated.
燃費モードを選ぶ優先度を演算する優先度演算手段50では、上記4つの確率と、端末において検出される情報とに、重み係数a_21,a_22,・・・,a_2nをそれぞれ乗じて、燃費モードを選ぶ優先度を演算する。 The priority calculation means 50 for calculating the priority for selecting the fuel consumption mode multiplies the above four probabilities and the information detected at the terminal by weighting factors a_21, a_22,. Calculate the priority to choose.
中間モードを選ぶ優先度を演算する優先度演算手段51では、上記4つの確率と、端末において検出される情報とに、重み係数a_31,a_32,・・・,a_3nをそれぞれ乗じて、中間モードを選ぶ優先度を演算する。 The priority calculation means 51 for calculating the priority for selecting the intermediate mode multiplies the above four probabilities and the information detected by the terminal by weighting factors a_31, a_32,. Calculate the priority to choose.
<制御信号を演算する制御信号演算手段(図11)>
本処理では、決定した動作モードにするための制御信号を演算する。具体的には、図11に示される。
・優先度のもっとも高いモードを動作モードとして決定する演算手段52で、パワーモード、燃費モード、中間モードの各モードの内、優先度のもっとも高いモードを動作モードとして決定する。
・決定した動作モードにするための制御信号を演算する演算手段53で、決定した動作モードにするための制御信号を演算する。
<Control signal calculating means for calculating the control signal (FIG. 11)>
In this process, a control signal for setting the determined operation mode is calculated. Specifically, it is shown in FIG.
The calculation means 52 that determines the mode with the highest priority as the operation mode determines the mode with the highest priority among the power mode, the fuel consumption mode, and the intermediate mode as the operation mode.
The control means 53 for calculating the control signal for setting the determined operation mode calculates the control signal for setting the determined operation mode.
なお、本手段については、文献、資料などあるので、詳述しない。燃料噴射量と空気量による空燃比と、点火時期により所望の動作モードとすることが考えられる。 This means will not be described in detail because there are documents and materials. It is conceivable to set a desired operation mode according to the air-fuel ratio based on the fuel injection amount and the air amount, and the ignition timing.
過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段(図8参照)は、ベイジアンネットワークとしたが、ニューラルネットワークとしても同様の機能が実現可能である。 The occurrence probability prediction means (see FIG. 8) for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network, but a similar function can be realized as a neural network.
また、複数の制御目標の優先度を演算する優先度演算手段(図10参照)では、エンジンの動作モードの優先度を演算したが、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段41(図8)で演算された結果である
最大トルクを出す運転モード
燃費改善率が10%以上となる運転モード
とする構成も考えられる。
本実施例によれば、各エンジンの運転履歴に応じてパワー、燃費、寿命、エネルギー効率等を設定できる。したがって、ユーザーの好みに応じたエンジン制御を行うことができる。
Further, in the priority calculation means (see FIG. 10) for calculating the priority of the plurality of control targets, the priority of the engine operation mode is calculated. Based on the past information, a plurality of different results that may occur in the future are calculated. An operation mode for generating the maximum torque, which is a result calculated by the occurrence probability predicting means 41 (FIG. 8) for predicting the occurrence probability.
According to the present embodiment, power, fuel consumption, life, energy efficiency, etc. can be set according to the operation history of each engine. Therefore, engine control according to the user's preference can be performed.
[実施例3]
本実施例においては、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段と、少なくとも、前記複数の異なる結果の発生確率と、前記端末において検出される情報と、前記端末において演算されるパラメータとに基づいて、複数の制御目標の優先度を演算する優先度演算手段と、少なくとも、前記優先度がもっとも高い制御目標に基づいて、前記端末の動作を決定するための制御信号を演算する制御信号演算手段とを備えた形態について示す。
[Example 3]
In the present embodiment, an occurrence probability predicting means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information, and at least the occurrence probabilities of the plurality of different results are detected at the terminal. Priority calculating means for calculating the priority of a plurality of control targets based on information and parameters calculated in the terminal; and at least the operation of the terminal based on the control target having the highest priority. A mode provided with control signal calculation means for calculating a control signal for determination will be described.
特に、制御対象は、ロボットである。
また、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段は、ベイジアンネットワークである。
また、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段の入力情報に、現在の情報を用いる。
また、端末において検出される情報は、端末に設置されているセンサ出力値である。
また、前記端末において演算されるパラメータは、少なくとも、前記複数の異なる結果の発生確率と前記端末において検出される情報とに、重み付けをするものである。
In particular, the controlled object is a robot.
Moreover, the occurrence probability prediction means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network.
In addition, the current information is used as input information of an occurrence probability prediction unit that predicts the occurrence probability of a plurality of different results that may occur in the future based on past information.
Moreover, the information detected in the terminal is a sensor output value installed in the terminal.
The parameter calculated in the terminal weights at least the occurrence probability of the plurality of different results and the information detected in the terminal.
図1は、制御装置の全体を表した図であり、実施例1と同じであるので、詳述しない。
図2は、サーバー1のシステム図であり、実施例1と同じであるので、詳述しない。
図3は、端末3のシステム図であり、実施例1で同じであるので、詳述しない。
FIG. 1 is a diagram showing the entire control apparatus, which is the same as the first embodiment and will not be described in detail.
FIG. 2 is a system diagram of the
FIG. 3 is a system diagram of the
以下、各処理の詳細を説明する。 The details of each process are described below.
<過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段61(図12)>
本処理では、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を演算する。具体的には、図12に示される。
・入力情報として、現在の情報である稼働中のロボット数、停止中のロボット数、移動すべき全荷物の個数、荷物の総移動距離を用いる。
・ベイジアンネットワークを用いて、次の4つの将来起こり得る複数の異なる結果の発生確率を演算する。
<Occurrence probability predicting means 61 (FIG. 12) for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information>
In this process, the probability of occurrence of a plurality of different results that may occur in the future is calculated based on past information. Specifically, it is shown in FIG.
-As input information, the number of active robots, the number of stopped robots, the number of all packages to be moved, and the total travel distance of packages are used as input information.
Use a Bayesian network to calculate the probability of the next four possible future outcomes.
(1)スピードモードとしたとき所定時間内にタスクが終了する確率
(2)慎重モードとしたとき所定時間内にタスクが終了する確率
(3)スピードモードとしたとき危険度が上がる確率
(4)慎重モードとしたとき危険度が上がる確率
(1) Probability of completing a task within a predetermined time when in speed mode (2) Probability of completing a task within a predetermined time when in careful mode (3) Probability of increasing risk when in speed mode (4) Probability of increasing risk when using careful mode
ベイジアンネットワークの内部には、過去の稼働中のロボット数、停止中のロボット数、移動すべき全荷物の個数、荷物の総移動距離の各情報と上記4つの発生確率の関係を表す情報がある。すなわち、稼働中のロボット数、停止中のロボット数、移動すべき全荷物の個数、荷物の総移動距離の各情報に基づいて、将来起こり得る上記4つの複数の異なる結果の発生確率を予測する。 Inside the Bayesian network, there is information representing the relationship between the above four occurrence probabilities and the information on the number of robots that have been operating in the past, the number of robots that have stopped, the number of all packages to be moved, and the total movement distance of packages. . That is, the probability of occurrence of the above-mentioned four different results that can occur in the future is predicted based on the information on the number of operating robots, the number of robots that are stopped, the number of all packages to be moved, and the total movement distance of the packages. .
なお、ベイジアンネットワークの詳細については、多くの文献、書籍で述べてあるので、ここでは詳述しない。 The details of the Bayesian network have been described in many documents and books, and will not be described in detail here.
図13は、端末63での処理の全体図を示している.
・複数の制御目標の優先度を演算する優先度演算手段64で、制御目標の優先度であるロボットの動作モードの優先度を演算する。
・制御信号を演算する制御信号演算手段65では、決定したロボットの動作モードにするための制御信号を演算し、制御対象であるロボット62を制御する。
FIG. 13 shows an overall view of processing at the terminal 63.
The priority calculation means 64 for calculating the priority of a plurality of control targets calculates the priority of the robot operation mode, which is the priority of the control target.
The control signal calculation means 65 for calculating the control signal calculates a control signal for setting the determined robot operation mode, and controls the
次に、優先度演算手段64と制御信号演算手段65の詳細について説明する。 Next, details of the priority calculation means 64 and the control signal calculation means 65 will be described.
<複数の制御目標の優先度を演算する優先度演算手段(図14)>
本処理では、複数の制御目標の優先度を演算する。具体的には、図14に示される。
発生確率予測手段61(図12参照)で演算した4つの確率と、端末63において検出される情報は、例えば下記であり、端末63に設置されているセンサあるいは入力装置で検出可能な値である。
・稼働年数
・気温
・湿度
・バッテリー内電力残量
・障害物の有無
・人の有無
など。
<Priority calculating means for calculating priorities of a plurality of control targets (FIG. 14)>
In this process, priorities of a plurality of control targets are calculated. Specifically, it is shown in FIG.
The four probabilities calculated by the occurrence probability predicting means 61 (see FIG. 12) and information detected by the terminal 63 are, for example, the following, which are values that can be detected by a sensor or input device installed in the terminal 63. .
・ Operating years, temperature, humidity, remaining battery power, presence of obstacles, presence of people, etc.
なお、上記の各情報の検出方法は、多くの文献、書籍で述べてあるので、ここでは詳述しない。 In addition, since the detection method of each said information is described in many literatures and books, it does not elaborate here.
スピードモードを選ぶ優先度を演算する優先度演算手段66では、上記4つの確率と、端末63において検出される情報とに、重み係数a_11,a_12,・・・,a_1nをそれぞれ乗じて、スピードモードを選ぶ優先度を演算する。 The priority calculating means 66 for calculating the priority for selecting the speed mode multiplies the above four probabilities and the information detected by the terminal 63 by weighting factors a_11, a_12,. The priority for selecting is calculated.
慎重モードを選ぶ優先度を演算する優先度演算手段67では、上記4つの確率と、端末63において検出される情報とに、重み係数a_21,a_22,・・・,a_2nをそれぞれ乗じて、慎重モードを選ぶ優先度を演算する。 The priority calculating means 67 for calculating the priority for selecting the careful mode multiplies the above four probabilities and the information detected by the terminal 63 by weighting factors a_21, a_22,. The priority for selecting is calculated.
中間モードを選ぶ優先度を演算する優先度演算手段68では、上記4つの確率と、端末63において検出される情報とに、重み係数a_31,a_32,・・・,a_3nをそれぞれ乗じて、中間モードを選ぶ優先度を演算する。 The priority calculation means 68 for calculating the priority for selecting the intermediate mode multiplies the above four probabilities and the information detected by the terminal 63 by weighting factors a_31, a_32,. The priority for selecting is calculated.
<制御信号を演算する制御信号手段(図15)>
本処理では、決定した動作モードにするための制御信号を演算する。具体的には、図15に示される。
・優先度のもっとも高いモードを動作モードとして決定する演算手段69で、スピードモード、慎重モード、中間モードの各モードの内、優先度のもっとも高いモードを動作モードとして決定する。
・決定した動作モードにするための制御信号を演算する演算手段70で、決定した動作モードにするための制御信号を演算する。
<Control signal means for calculating the control signal (FIG. 15)>
In this process, a control signal for setting the determined operation mode is calculated. Specifically, it is shown in FIG.
The
The control means 70 for calculating the control signal for setting the determined operation mode calculates the control signal for setting the determined operation mode.
なお、本手段については、文献、資料などあるので、詳述しない。ロボットの腕、脚などを動かすためのモーターへの駆動信号が考えられる。 This means will not be described in detail because there are documents and materials. A drive signal to a motor for moving the robot's arms and legs can be considered.
過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段(図12参照)は、ベイジアンネットワークとしたが、ニューラルネットワークとしても同様の機能が実現可能である。 The occurrence probability prediction means (see FIG. 12) for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network, but a similar function can be realized as a neural network.
また、複数の制御目標の優先度を演算する優先度演算手段(図14参照)では、ロボットの動作モードの優先度を演算したが、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段61(図12)で演算された結果である
所定時間内にタスク終了するモード
とする構成も考えられる。
本実施例によれば、生産ロボットや荷物処理ロボットにおいて、スピード重視か、それとも安全重視か、リスクの高低を選択することができる。
Moreover, in the priority calculation means (see FIG. 14) for calculating the priority of the plurality of control targets, the priority of the operation mode of the robot is calculated. Based on past information, a plurality of different results that may occur in the future are calculated. A configuration is also possible in which the task is terminated within a predetermined time, which is a result calculated by the occurrence probability predicting means 61 (FIG. 12) for predicting the occurrence probability.
According to the present embodiment, it is possible to select whether the production robot or the baggage handling robot emphasizes speed or safety, or whether the risk is high or low.
[実施例4]
本実施例においては、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段と、少なくとも、前記複数の異なる結果の発生確率と、前記端末において検出される情報と、前記端末において演算されるパラメータと端末に設置されているセンサ出力値に基づいて独自に学習される値とに基づいて、複数の制御目標の優先度を演算する優先度演算手段と、少なくとも、前記優先度がもっとも高い制御目標に基づいて、前記端末の動作を決定するための制御信号を演算する制御信号演算手段とを備えた形態について示す。
[Example 4]
In the present embodiment, an occurrence probability predicting means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information, and at least the occurrence probabilities of the plurality of different results are detected at the terminal. Priority calculating means for calculating the priority of a plurality of control targets based on information, a parameter calculated in the terminal and a value uniquely learned based on a sensor output value installed in the terminal; At least, a mode including control signal calculation means for calculating a control signal for determining the operation of the terminal based on the control target having the highest priority will be described.
特に、自動運転車に代表される無人で移動可能な移動体である。
また、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段は、ベイジアンネットワークである。
また、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段の入力情報に、現在の情報を用いる。
また、端末において検出される情報は、端末に設置されているセンサ出力値と端末に設置されているセンサ出力値に基づいて独自に学習される値である。
また、前記端末において演算されるパラメータは、少なくとも、前記複数の異なる結果の発生確率と前記端末において検出される情報とに、重み付けをするものである。
In particular, it is a moving body that can be moved unattended, represented by an autonomous vehicle.
Moreover, the occurrence probability prediction means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network.
In addition, the current information is used as input information of an occurrence probability prediction unit that predicts the occurrence probability of a plurality of different results that may occur in the future based on past information.
The information detected in the terminal is a value that is uniquely learned based on the sensor output value installed in the terminal and the sensor output value installed in the terminal.
The parameter calculated in the terminal weights at least the occurrence probability of the plurality of different results and the information detected in the terminal.
図1は、制御装置の全体を表した図であり、実施例1と同じであるので、詳述しない。
図2は、サーバー1のシステム図であり、実施例1と同じであるので、詳述しない。
図3は、端末3のシステム図であり、実施例1で同じであるので、詳述しない。
FIG. 1 is a diagram showing the entire control apparatus, which is the same as the first embodiment and will not be described in detail.
FIG. 2 is a system diagram of the
FIG. 3 is a system diagram of the
以下、各処理の詳細を説明する。 The details of each process are described below.
<過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段31(図4)>
本処理では、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を演算する。具体的には、図4に示されるが、実施例1と同じであるので、詳述しない。
図5は、端末33での処理の全体図を示しているが、実施例1と同じであるので、詳述しない。
<Occurrence probability predicting means 31 (FIG. 4) for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information>
In this process, the probability of occurrence of a plurality of different results that may occur in the future is calculated based on past information. Specifically, although shown in FIG. 4, it is the same as that of the first embodiment, and will not be described in detail.
FIG. 5 shows an overall view of the processing in the terminal 33, which is the same as that of the first embodiment and will not be described in detail.
次に、優先度演算手段34と制御信号演算手段35の詳細について説明する。 Next, details of the priority calculation means 34 and the control signal calculation means 35 will be described.
<複数の制御目標の優先度を演算する優先度演算手段(図16)>
本処理では、複数の制御目標の優先度を演算する。具体的には、図16に示される。
発生確率予測手段31(図4参照)で演算した4つの確率と、端末において検出される情報は、例えば下記であり、端末33に設置されているセンサあるいは入力装置で検出可能な値である。
・使用年数(総走行距離)
・本日の総走行距離
・運転者の特性(性別/年齢/運転歴/疲労度)
・自車の位置
・燃料残量
など。
<Priority calculating means for calculating priorities of a plurality of control targets (FIG. 16)>
In this process, priorities of a plurality of control targets are calculated. Specifically, it is shown in FIG.
The four probabilities calculated by the occurrence probability predicting means 31 (see FIG. 4) and information detected at the terminal are, for example, the following, which are values that can be detected by a sensor or input device installed in the terminal 33.
・ Used years (total mileage)
・ Today's total mileage ・ Driver characteristics (gender / age / driving history / fatigue)
・ The location of the vehicle and the remaining fuel.
さらに、端末33に設置されているセンサのセンサ出力値に基づいて独自に学習される値として、
・ユーザー特性を用いる。
ユーザー特性とは、端末に設置されているセンサのセンサ出力値に基づいて、独自に学習される値である。例えば、走行履歴情報から、経路A(例えば、大きな道)を選ぶ頻度、経路B(例えば、裏道)を選ぶ頻度を学習することが考えられる。また、ユーザーが直接、好みを選ぶのも良い。
Furthermore, as a value that is uniquely learned based on the sensor output value of the sensor installed in the terminal 33,
• Use user characteristics.
The user characteristic is a value that is uniquely learned based on the sensor output value of the sensor installed in the terminal. For example, it is conceivable to learn the frequency of selecting the route A (for example, a large road) and the frequency of selecting the route B (for example, a back road) from the travel history information. Users can also choose their preferences directly.
経路Aを選ぶ優先度を演算する優先度演算手段71では、上記4つの確率と、端末において検出される情報と端末に設置されているセンサ出力値に基づいて独自に学習される値とに、重み係数a_11,a_12,・・・,a_1nをそれぞれ乗じて、経路Aを選ぶ優先度を演算する。 In the priority calculation means 71 for calculating the priority for selecting the route A, the above four probabilities, the information detected in the terminal, and the value learned independently based on the sensor output value installed in the terminal, The priority for selecting the route A is calculated by multiplying the weight coefficients a_11, a_12,.
経路Bを選ぶ優先度を演算する優先度演算手段72では、上記4つの確率と、端末において検出される情報と端末に設置されているセンサ出力値に基づいて独自に学習される値とに、重み係数a_21,a_22,・・・,a_2nをそれぞれ乗じて、経路Bを選ぶ優先度を演算する。 In the priority calculation means 72 for calculating the priority for selecting the route B, the above four probabilities, the information detected in the terminal, and the value uniquely learned based on the sensor output value installed in the terminal, The priority for selecting the route B is calculated by multiplying the weight coefficients a_21, a_22,.
<制御信号を演算する制御信号演算手段(図7)>
本処理では、決定した移動経路を走行するための制御信号を演算する。具体的には、図7に示されるが、実施例1と同じであるので、詳述しない。
<Control Signal Calculation Means for Calculation of Control Signal (FIG. 7)>
In this process, a control signal for traveling on the determined movement route is calculated. Specifically, although shown in FIG. 7, it is the same as that of the first embodiment, and therefore will not be described in detail.
過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段31(図4参照)は、ベイジアンネットワークとしたが、ニューラルネットワークとしても同様の機能が実現可能である。
また、複数の制御目標の優先度を演算する優先度演算手段(図16参照)では、選択する経路の優先度を演算したが、燃費悪化率の優先度とする構成も考えられる。
Although the occurrence probability prediction means 31 (see FIG. 4) for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network, a similar function can also be realized as a neural network. .
In addition, in the priority calculation means (see FIG. 16) that calculates the priority of a plurality of control targets, the priority of the route to be selected is calculated, but a configuration in which the priority of the fuel consumption deterioration rate is also considered.
[実施例5]
本実施例においては、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段と、新たに得られる情報に基づいて、過去の情報から将来起こり得る複数の異なる結果の発生確率の予測に用いる手段のパラメータ値を更新するパラメータ値更新手段と、前記複数の異なる結果の発生確率と、前記端末において検出される情報と、前記端末において演算されるパラメータとに基づいて、複数の制御目標の優先度を演算する優先度演算手段と、少なくとも、前記優先度がもっとも高い制御目標に基づいて、前記端末の動作を決定するための制御信号を演算する制御信号演算手段とを備えた形態について示す。
[Example 5]
In the present embodiment, an occurrence probability predicting means for predicting an occurrence probability of a plurality of different results that may occur in the future based on past information, and a plurality of events that may occur in the future from past information based on newly obtained information. Parameter value updating means for updating parameter values of means used for predicting the occurrence probability of different results, occurrence probability of the plurality of different results, information detected in the terminal, and parameters calculated in the terminal A priority calculation means for calculating the priority of a plurality of control targets, and a control signal calculation for calculating a control signal for determining the operation of the terminal based on at least the control target having the highest priority It shows about the form provided with the means.
特に、自動運転車に代表される無人で移動可能な移動体である。
また、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段は、ベイジアンネットワークである。
また、過去の情報から将来起こり得る複数の異なる結果の発生確率の予測に用いる発生確率予測手段のパラメータ値を更新する手段は、端末から得られる情報など、新たに得られる情報に基づくものであり、パラメータの更新手段は、ベイズ更新である。
また、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段の入力情報に、現在の情報を用いる。
また、端末において検出される情報は、端末に設置されているセンサ出力値と端末に設置されているセンサ出力値に基づいて独自に学習される値である。
また、前記端末において演算されるパラメータは、少なくとも、前記複数の異なる結果の発生確率と前記端末において検出される情報とに、重み付けをするものである。
In particular, it is a moving body that can be moved unattended, represented by an autonomous vehicle.
Moreover, the occurrence probability prediction means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network.
Further, the means for updating the parameter value of the occurrence probability prediction means used for predicting the occurrence probability of a plurality of different results that may occur in the future from the past information is based on newly obtained information such as information obtained from the terminal. The parameter update means is Bayesian update.
In addition, the current information is used as input information of an occurrence probability prediction unit that predicts the occurrence probability of a plurality of different results that may occur in the future based on past information.
The information detected in the terminal is a value that is uniquely learned based on the sensor output value installed in the terminal and the sensor output value installed in the terminal.
The parameter calculated in the terminal weights at least the occurrence probability of the plurality of different results and the information detected in the terminal.
図17は、制御装置の全体を表した図である。サーバー81では、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段82とパラメータ値を更新するパラメータ値更新手段83が備わっており、将来起こり得る複数の異なる結果の発生確率を演算する。将来起こり得る複数の異なる結果の発生確率は、複数の端末84に有線通信あるいは無線通信で送られる。端末84には、複数の異なる結果の発生確率と、端末において検出される情報と、端末84において演算されるパラメータとに基づいて、複数の制御目標の優先度を演算する優先度演算手段85が備わっており、制御目標の優先度を演算する。そして、優先度がもっとも高い制御目標に基づいて、端末84の動作を決定するための制御信号を演算する制御信号演算手段86で、制御信号を演算する。また、端末84からは、端末84で検出される情報が、サーバー81に、有線通信あるいは無線通信で送られる。
FIG. 17 is a diagram showing the entire control device. The
図18は、サーバー81のシステム図であり、端末84からの情報が、入出力ポート17に入力される。それ以外は、実施例1と同じであるので、詳述しない。
図19は、端末84のシステム図であり、端末84からの情報が、入出力ポート27から出力される。実施例1で同じであるので、詳述しない。
FIG. 18 is a system diagram of the
FIG. 19 is a system diagram of the terminal 84, and information from the terminal 84 is output from the input /
以下、各処理の詳細を説明する。 The details of each process are described below.
<過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段87とパラメータ値を更新するパラメータ値更新手段88(図20)>
本処理では、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を演算し、パラメータ値を更新する。具体的には、図20に示される。
・入力情報として、現在の情報である天気、気温、道路情報、時刻を用いる。
・ベイジアンネットワークを用いて、次の4つの将来起こり得る複数の異なる結果の発生確率を演算する。
(1)経路Aを選んだ場合に、時刻通りに目標値に到着する確率
(2)経路Bを選んだ場合に、時刻通りに目標値に到着する確率
(3)経路Aを選んだ場合に、燃費悪化率が10%以上となる確率
(4)経路Bを選んだ場合に、燃費悪化率が10%以上となる確率
<Occurrence probability predicting means 87 for predicting the probability of occurrence of a plurality of different results that may occur in the future based on past information, and parameter value updating means 88 for updating parameter values (FIG. 20)>
In this process, the occurrence probability of a plurality of different results that may occur in the future is calculated based on past information, and the parameter value is updated. Specifically, it is shown in FIG.
-As input information, current information such as weather, temperature, road information, and time are used.
Use a Bayesian network to calculate the probability of the next four possible future outcomes.
(1) Probability of arriving at the target value on time when route A is selected (2) Probability of arriving at the target value on time when route B is selected (3) When selecting route A The probability that the fuel consumption deterioration rate will be 10% or more (4) The probability that the fuel consumption deterioration rate will be 10% or more when route B is selected
ベイジアンネットワークの内部には、過去の天気、気温、道路情報、時刻の各情報と上記4つの発生確率の関係を表す情報がある。すなわち、過去の天気、気温、道路情報、時刻の各情報に基づいて、将来起こり得る上記4つの複数の異なる結果の発生確率を予測する。
ベイジアンネットワークのパラメータ値更新手段88では、現在の情報である天気、気温、道路情報、時刻と、端末からの情報とを用いてベイズ更新器により、ベイジアンネットワークのパラメータ値を更新する。
Within the Bayesian network, there is information representing the relationship between the past weather, temperature, road information, time information and the above four occurrence probabilities. That is, the probability of occurrence of the above-mentioned four different results that may occur in the future is predicted based on the past information of weather, temperature, road information, and time.
The Bayesian network parameter value updating means 88 updates the Bayesian network parameter values using a Bayesian updater using the current information such as weather, temperature, road information, time, and information from the terminal.
端末84からの情報は、例えば、端末84での制御結果であり、
・経路Aを選んだ場合の到着時刻
・経路Bを選んだ場合の到着時刻
・経路Aを選んだ場合に、燃費悪化率が10%以上となったか否か?
・経路Bを選んだ場合に、燃費悪化率が10%以上となったか否か?
が考えられる。すなわち、最新の情報に基づいて、ベイジアンネットワークを更新し、より精度の良い予測確率が得られるようにするものである。
The information from the terminal 84 is, for example, a control result at the terminal 84,
-Arrival time when route A is selected-Arrival time when route B is selected-Whether route A is selected, is the fuel consumption deterioration rate 10% or higher?
・ Whether route B is selected, has the fuel consumption deterioration rate been 10% or more?
Can be considered. That is, the Bayesian network is updated based on the latest information so that a more accurate prediction probability can be obtained.
なお、ベイジアンネットワークとベイズ更新器の詳細については、多くの文献、書籍で述べてあるので、ここでは詳述しない。 Note that the details of the Bayesian network and the Bayes renewal device are described in many documents and books, so they will not be described in detail here.
図5は、端末での処理の全体図を示しているが、実施例1と同じであるので、詳述しない。 FIG. 5 shows an overall view of processing in the terminal, but since it is the same as in the first embodiment, it will not be described in detail.
<複数の制御目標の優先度を演算する優先度演算手段(図6)>
本処理では、複数の制御目標の優先度を演算する。具体的には、図6に示されるが、実施例1と同じであるので、詳述しない。
<Priority calculation means for calculating priorities of a plurality of control targets (FIG. 6)>
In this process, priorities of a plurality of control targets are calculated. Specifically, it is shown in FIG. 6, but it is the same as that of the first embodiment, and therefore will not be described in detail.
<制御信号を演算する制御信号演算手段(図7)>
本処理では、決定した移動経路を走行するための制御信号を演算する。具体的には、図7に示されるが、実施例1と同じであるので、詳述しない。
<Control Signal Calculation Means for Calculation of Control Signal (FIG. 7)>
In this process, a control signal for traveling on the determined movement route is calculated. Specifically, although shown in FIG. 7, it is the same as that of the first embodiment, and therefore will not be described in detail.
過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段(図20参照)は、ベイジアンネットワークとしたが、ニューラルネットワークとしても同様の機能が実現可能である。その場合、パラメータの更新は、確率的勾配降下法、バックプロパゲーション法を用いるのが良い。
また、複数の制御目標の優先度を演算する優先度演算手段(図6参照)では、選択する経路の優先度を演算したが、燃費悪化率の優先度とする構成も考えられる。
Although the occurrence probability predicting means (see FIG. 20) for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network, a similar function can be realized as a neural network. In this case, it is preferable to use a stochastic gradient descent method or a back propagation method to update the parameters.
In addition, in the priority calculation means (see FIG. 6) for calculating the priorities of a plurality of control targets, the priority of the route to be selected is calculated.
[実施例6]
本実施例においては、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段と、少なくとも、前記複数の異なる結果の発生確率と、前記端末において検出される情報と、前記端末において演算されるパラメータとに基づいて、複数の制御目標の優先度を演算する優先度演算手段と、少なくとも、前記優先度がもっとも高い制御目標に基づいて、前記端末の動作を決定するための制御信号を演算する制御信号演算手段と、前記端末において演算されるパラメータを端末ごとに更新する端末パラメータ更新手段を備えた形態について示す。
[Example 6]
In the present embodiment, an occurrence probability predicting means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information, and at least the occurrence probabilities of the plurality of different results are detected at the terminal. Priority calculating means for calculating the priority of a plurality of control targets based on information and parameters calculated in the terminal; and at least the operation of the terminal based on the control target having the highest priority. A mode signal control means for calculating a control signal for determination and a terminal parameter update means for updating a parameter calculated in the terminal for each terminal will be described.
特に、制御対象は、自動運転車に代表される無人で移動可能な移動体である。
また、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段は、ベイジアンネットワークである。
また、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段の入力情報に、現在の情報を用いる。
また、端末において検出される情報は、端末に設置されているセンサ出力値である。
また、前記端末において演算されるパラメータは、少なくとも、前記複数の異なる結果の発生確率と前記端末において検出される情報とに、重み付けをするものである。
また、前記端末において演算されるパラメータを端末ごとに更新する機能は、線形回帰、ロジスティック回帰である。
In particular, the controlled object is a moving body that can be moved unattended, such as an autonomous driving vehicle.
Moreover, the occurrence probability prediction means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network.
In addition, the current information is used as input information of an occurrence probability prediction unit that predicts the occurrence probability of a plurality of different results that may occur in the future based on past information.
Moreover, the information detected in the terminal is a sensor output value installed in the terminal.
The parameter calculated in the terminal weights at least the occurrence probability of the plurality of different results and the information detected in the terminal.
Moreover, the function which updates the parameter calculated in the said terminal for every terminal is linear regression and logistic regression.
図21は、制御装置の全体を表した図である。サーバー1では、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段2が備わっており、将来起こり得る複数の異なる結果の発生確率を演算する。将来起こり得る複数の異なる結果の発生確率は、複数の端末91に有線通信あるいは無線通信で送られる。端末91には、複数の異なる結果の発生確率と、端末91において検出される情報と、端末91において演算されるパラメータとに基づいて、複数の制御目標の優先度を演算する優先度演算手段92が備わっており、制御目標の優先度を演算する。そして、優先度がもっとも高い制御目標に基づいて、端末91の動作を決定するための制御信号を演算する制御信号演算手段93で、制御信号を演算する。さらに、パラメータを端末91ごとに更新する端末パラメータ更新手段94を備えており、優先度演算手段92のパラメータを更新する。
FIG. 21 is a diagram showing the entire control device. The
図2は、サーバー1のシステム図であり、実施例1と同じであるので、詳述しない。
図3は、端末3のシステム図であり、実施例1で同じであるので、詳述しない。
FIG. 2 is a system diagram of the
FIG. 3 is a system diagram of the
以下、各処理の詳細を説明する。 The details of each process are described below.
<過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段(図4)>
本処理では、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を演算する。具体的には、図4に示されるが、実施例1と同じであるので、詳述しない。
<Occurrence probability predicting means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information (FIG. 4)>
In this process, the probability of occurrence of a plurality of different results that may occur in the future is calculated based on past information. Specifically, although shown in FIG. 4, it is the same as that of the first embodiment, and will not be described in detail.
図22は、端末95での処理の全体図を示している.
・複数の制御目標の優先度を演算する優先度演算手段96で、制御目標の優先度である移動経路の優先度を演算する。
・制御信号を演算する制御信号演算手段97では、決定した移動経路を走行するための制御信号を演算し、制御対象である移動体32を制御する。
・パラメータを端末91ごとに更新する端末パラメータ更新手段98では、優先度演算手段96のパラメータを更新演算する。
FIG. 22 shows an overall view of processing at the terminal 95.
The priority calculation means 96 for calculating the priority of the plurality of control targets calculates the priority of the movement route that is the priority of the control target.
The control signal calculation means 97 that calculates the control signal calculates a control signal for traveling on the determined moving route, and controls the moving
The terminal
次に、優先度演算手段96、制御信号演算手段97、端末パラメータ更新手段98の詳細について説明する。 Next, details of the priority calculation means 96, the control signal calculation means 97, and the terminal parameter update means 98 will be described.
<複数の制御目標の優先度を演算する優先度演算手段(図23)>
本処理では、複数の制御目標の優先度を演算する。具体的には、図23に示される。
発生確率予測手段31(図4参照)で演算した4つの確率と、端末91において検出される情報は、例えば下記であり、端末91に設置されているセンサあるいは入力装置で検出可能な値である。
・使用年数(総走行距離)
・本日の総走行距離
・運転者の特性(性別/年齢/運転歴/疲労度)
・自車の位置
・燃料残量
など。
<Priority calculating means for calculating priorities of a plurality of control targets (FIG. 23)>
In this process, priorities of a plurality of control targets are calculated. Specifically, it is shown in FIG.
The four probabilities calculated by the occurrence probability predicting means 31 (see FIG. 4) and the information detected by the terminal 91 are, for example, the following values that can be detected by a sensor or an input device installed in the terminal 91. .
・ Used years (total mileage)
・ Today's total mileage ・ Driver characteristics (gender / age / driving history / fatigue)
・ The location of the vehicle and the remaining fuel.
なお、上記の各情報の検出方法は、多くの文献、書籍で述べてあるので、ここでは詳述しない。 In addition, since the detection method of each said information is described in many literatures and books, it does not elaborate here.
経路Aを選ぶ優先度を演算する優先度演算手段99では、上記4つの確率と、端末91において検出される情報とに、重み係数a_11,a_12,・・・,a_1nをそれぞれ乗じて、経路Aを選ぶ優先度を演算する。 The priority calculation means 99 for calculating the priority for selecting the route A multiplies the above four probabilities and the information detected by the terminal 91 by weighting factors a_11, a_12,. The priority for selecting is calculated.
経路Bを選ぶ優先度を演算する優先度演算手段100では、上記4つの確率と、端末91において検出される情報とに、重み係数a_21,a_22,・・・,a_2nをそれぞれ乗じて、経路Bを選ぶ優先度を演算する。 In the priority calculation means 100 for calculating the priority for selecting the route B, the above four probabilities and the information detected by the terminal 91 are multiplied by weighting factors a_21, a_22,. The priority for selecting is calculated.
さらに、重み係数a_11,a_12,・・・,a_1nおよびa_21,a_22,・・・,a_2nは、後述のパラメータを端末91ごとに更新する端末パラメータ更新手段98による演算された更新値により、逐次、更新される。 Further, the weighting coefficients a_11, a_12,..., A_1n and a_21, a_22,..., A_2n are sequentially determined by the update values calculated by the terminal parameter updating means 98 for updating the parameters described later for each terminal 91, Updated.
<パラメータを端末ごとに更新する端末パラメータ更新手段98(図24)>
本処理では、重み係数a_11,a_12,・・・,a_1nおよびa_21,a_22,・・・,a_2nの更新値を演算する。具体的には、図24に示される。
<Terminal Parameter Updating Unit 98 (FIG. 24) for Updating Parameters for Each Terminal>
In this process, the update values of the weight coefficients a_11, a_12,..., A_1n and a_21, a_22,. Specifically, it is shown in FIG.
「下記A1の値」と「下記Bを用いて経路Aを選ぶ優先度の演算手段99と同じ演算をして得られる値」の誤差が最小となるように、重み係数a_11,a_12,・・・,a_1nの更新値を演算する。
A1:
・手動で操作しているときの経路Aを選ぶ頻度
A2:
・手動で操作しているときの経路Bを選ぶ頻度
B:
・経路Aを選んだ場合に、時刻通りに目標値に到着する確率
・経路Bを選んだ場合に、時刻通りに目標値に到着する確率
・経路Aを選んだ場合に、燃費悪化率が10%以上となる確率
・経路Bを選んだ場合に、燃費悪化率が10%以上となる確率
・使用年数(総走行距離)
・本日の総走行距離
・運転者の特性(性別/年齢/運転歴/疲労度)
・自車の位置
・燃料残量
など。
Weight coefficients a_11, a_12,... Are minimized so that the error between “value of A1 below” and “value obtained by performing the same calculation as the priority calculation means 99 for selecting path A using B below” is minimized.・ Calculate the update value of a_1n.
A1:
-Frequency A2 for selecting route A when operating manually:
-Frequency B for selecting route B when operating manually:
-Probability of arriving at the target value at the time when route A is selected-Probability of arriving at the target value at the time when route B is selected-When the route A is selected, the fuel consumption deterioration rate is 10 Probability that the fuel efficiency deterioration rate will be 10% or more when route B is selected. • Years of use (total mileage)
・ Today's total mileage ・ Driver characteristics (gender / age / driving history / fatigue)
・ Vehicle position ・ Fuel remaining amount.
また、「上記A2の値」と「上記Bを用いて経路Bを選ぶ優先度の演算手段100と同じ演算をして得られる値」の誤差が最小となるように、重み係数a_21,a_22,・・・,a_2nの更新値を演算する。 Also, the weight coefficients a_21, a_22, and so on are minimized so that the error between “the value of A2” and “the value obtained by performing the same calculation as the priority calculation means 100 for selecting the path B using B” is minimized. ..., calculate the updated value of a_2n.
重み係数の決定方法としては、最小二乗法を用いた線形回帰、ロジスティック回帰が考えられる。これらの手法の詳細については、多くの文献、書籍で述べてあるので、ここでは詳述しない。
また、線形回帰、ロジスティック回帰以外にも、強化学習などのその他の学習方式としても良い。
As a method of determining the weighting factor, linear regression using the least square method or logistic regression can be considered. Details of these methods have been described in many documents and books, and will not be described in detail here.
In addition to linear regression and logistic regression, other learning methods such as reinforcement learning may be used.
過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段(図4参照)は、ベイジアンネットワークとしたが、ニューラルネットワークとしても同様の機能が実現可能である。
また、複数の制御目標の優先度を演算する優先度演算手段(図23参照)では、選択する経路の優先度を演算したが、燃費悪化率の優先度とする構成も考えられる。
Although the occurrence probability prediction means (see FIG. 4) for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information is a Bayesian network, a similar function can be realized as a neural network.
Further, in the priority calculation means (see FIG. 23) for calculating the priority of a plurality of control targets, the priority of the route to be selected is calculated, but a configuration in which the priority of the fuel consumption deterioration rate is also considered.
以上、本発明の実施形態について詳述したが、本発明は、前記の実施形態に限定されるものではなく、特許請求の範囲に記載された本発明の精神を逸脱しない範囲で、種々の設計変更を行うことができるものである。例えば、前記した実施の形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。さらに、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments, and various designs can be made without departing from the spirit of the present invention described in the claims. It can be changed. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described. Further, a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment. Furthermore, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
1 サーバー
2 発生確率予測手段
3 端末
4 優先度演算手段
5 制御信号演算手段
11 サーバーの記憶装置
12 サーバーのCPU
13 サーバーのROM
14 サーバーのRAM
15 サーバーのデータバス
16 サーバーの入力回路
17 サーバーの入出力ポート
18 サーバーの出力回路
21 端末の記憶装置
22 端末のCPU
23 端末のROM
24 端末のRAM
25 端末のデータバス
26 端末の入力回路
27 端末の入出力ポート
28 端末の出力回路
31 発生確率予測手段
32 移動体(自動運転車など)
33 端末
34 優先度演算手段
35 制御信号演算手段
36 経路Aを選ぶ優先度演算手段
37 経路Bを選ぶ優先度演算手段
38 優先度のもっとも高い経路を移動経路として決定する演算手段
39 決定した移動経路を走行するための制御信号を演算する演算手段
41 発生確率予測手段
42 エンジン(原動機)
43 燃料噴射弁
44 電子スロットル
45 点火プラグ
46 端末
47 優先度演算手段
48 制御信号演算手段
49 パワーモードを選ぶ優先度演算手段
50 燃費モードを選ぶ優先度演算手段
51 中間モードを選ぶ優先度演算手段
52 優先度のもっとも高いモードを動作モードとして決定する演算手段
53 決定した動作モードにするための制御信号を演算する演算手段
61 発生確率予測手段
62 ロボット
63 端末
64 優先度演算手段
65 制御信号演算手段
66 スピードモードを選ぶ優先度演算手段
67 慎重モードを選ぶ優先度演算手段
68 中間モードを選ぶ優先度演算手段
69 優先度のもっとも高いモードを動作モードとして決定する演算手段
70 決定した動作モードにするための制御信号を演算する演算手段
71 経路Aを選ぶ優先度演算手段
72 経路Bを選ぶ優先度演算手段
81 サーバー
82 発生確率予測手段
83 パラメータ値更新手段
84 端末
85 優先度演算手段
86 制御信号演算手段
87 発生確率予測手段
88 ベイジアンネットワークのパラメータ値更新手段(ベイズ更新器)
91 端末
92 優先度演算手段
93 制御信号演算手段
94 端末パラメータ更新手段
95 端末
96 優先度演算手段
97 制御信号演算手段
98 パラメータ更新手段
99 経路Aを選ぶ優先度の演算手段
100 経路Bを選ぶ優先度の演算手段
101 パラメータa_11, a_12, ・・・, a_1nの同定処理
102 パラメータa_21, a_22, ・・・, a_2nの同定処理
DESCRIPTION OF
13 Server ROM
14 Server RAM
15
23 Terminal ROM
24 Terminal RAM
25
33
43
91
Claims (17)
過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段と、
少なくとも、
前記複数の異なる結果の発生確率と、
前記端末において検出される情報と、
前記端末において演算されるパラメータとに基づいて、
複数の制御目標の優先度を演算する優先度演算手段と
少なくとも、
前記優先度がもっとも高い制御目標に基づいて、
前記端末の動作を決定するための制御信号を演算する制御信号演算手段とを
備えたことを特徴とする制御装置。 A control device comprising a server and a plurality of terminals,
An occurrence probability prediction means for predicting the occurrence probability of a plurality of different results that may occur in the future based on past information;
at least,
The probability of occurrence of the plurality of different results;
Information detected at the terminal;
Based on the parameters calculated at the terminal,
Priority calculation means for calculating the priority of a plurality of control targets, and at least
Based on the control priority with the highest priority,
A control apparatus comprising: control signal calculation means for calculating a control signal for determining the operation of the terminal.
少なくとも、
前記複数の異なる結果の発生確率と
前記端末において検出される情報とに、
重み付けをするパラメータであり、
前記優先度演算手段は、前記重みづけ処理をした値に基づいて、複数の制御目標の優先度を演算することを特徴とする請求項1に記載の制御装置。 Parameters calculated in the terminal are:
at least,
In the occurrence probability of the plurality of different results and the information detected in the terminal,
A parameter for weighting,
The control device according to claim 1, wherein the priority calculation unit calculates the priority of a plurality of control targets based on the weighted value.
新たに得られる情報に基づいて、前記発生確率予測手段のパラメータ値を更新するパラメータ値更新手段を備えたことを特徴とする請求項1に記載の制御装置。 The occurrence probability prediction means includes:
The control device according to claim 1, further comprising parameter value updating means for updating a parameter value of the occurrence probability prediction means based on newly obtained information.
少なくとも、前記端末に設置されているセンサのセンサ出力値に基づく値であることを特徴とする請求項1に記載の制御装置。 Information detected at the terminal is:
The control device according to claim 1, wherein the control device is a value based on at least a sensor output value of a sensor installed in the terminal.
少なくとも、前記端末に設置されているセンサのセンサ出力値に基づいて、独自に学習される値であることを特徴とする請求項1に記載の制御装置。 Information detected at the terminal is:
The control device according to claim 1, wherein the control device is a value that is uniquely learned based on at least a sensor output value of a sensor installed in the terminal.
少なくとも、ベイジアンネットワークもしくはニューラルネットワークであることを特徴とする請求項1に記載の制御装置。 The occurrence probability prediction means includes:
The control device according to claim 1, wherein the control device is at least a Bayesian network or a neural network.
少なくとも、ロジスティック回帰もしくは強化学習であることを特徴とする請求項1に記載の制御装置。 The priority calculation means includes:
The control device according to claim 1, wherein the control device is at least logistic regression or reinforcement learning.
新たに得られる情報に基づいて、
少なくとも、ベイズ更新もしくは確率的勾配降下法により、
前記発生確率予測手段のパラメータ値を更新するパラメータ値更新手段を備えたことを特徴とする請求項1に記載の制御装置。 The occurrence probability prediction means includes:
Based on newly obtained information,
At least by Bayesian update or stochastic gradient descent
2. The control apparatus according to claim 1, further comprising parameter value updating means for updating a parameter value of the occurrence probability prediction means.
自動運転車などの移動体であり、
前記複数の制御目標は、前記移動体の移動経路であること
を特徴とする請求項1に記載の制御装置。 The control target of the control device is
It is a mobile object such as an autonomous driving car
The control device according to claim 1, wherein the plurality of control targets are movement paths of the moving body.
内燃機関であり、
前記複数の制御目標は、前記内燃機関の運転条件であること
を特徴とする請求項1に記載の制御装置。 The control target of the control device is
An internal combustion engine,
The control device according to claim 1, wherein the plurality of control targets are operating conditions of the internal combustion engine.
ロボットであり、
前記複数の制御目標は、前記ロボットが行うタスクであること
を特徴とする請求項1に記載の制御装置。 The control target of the control device is
A robot,
The control device according to claim 1, wherein the plurality of control targets are tasks performed by the robot.
前記端末から新たに得られる情報に基づいて、
前記発生確率予測手段のパラメータ値を更新するパラメータ値更新手段を
備えたことを特徴とする請求項1に記載の制御装置。 The occurrence probability prediction means includes:
Based on information newly obtained from the terminal,
The control apparatus according to claim 1, further comprising: a parameter value updating unit that updates a parameter value of the occurrence probability prediction unit.
移動体が目的値に時刻通りに到着する確率、もしくは、
移動体のエネルギー効率/燃費効率が所定範囲内に収まる確率、もしくは、
原動機/エンジンのトルクが所定値以上出せる確率、もしくは、
原動機/エンジンの燃費改善率が所定値以上となる確率、もしくは、
原動機/エンジンの燃費悪化率が所定値以上となる確率、もしくは、
ロボットのタスクが所定時間内に完了する確率、もしくは
ロボットの危険度が上がる確率
であることを特徴とする請求項1に記載の制御装置。 The probability of multiple different outcomes that may occur in the future is at least the probability that the mobile will arrive at the target value on time, or
Probability that the energy efficiency / fuel efficiency of the moving body falls within the specified range, or
Probability that the motor / engine torque can exceed the specified value, or
The probability that the fuel efficiency improvement rate of the prime mover / engine will be above the specified value, or
The probability that the fuel efficiency deterioration rate of the prime mover / engine will be greater than or equal to a predetermined value, or
The control apparatus according to claim 1, wherein a probability that a robot task is completed within a predetermined time or a probability that a robot risk level is increased is defined.
前記サーバーは、過去の情報に基づいて、将来起こり得る複数の異なる結果の発生確率を予測する発生確率予測手段を備えたことを特徴とする制御装置。 A control device comprising a server and a plurality of terminals,
The server is provided with an occurrence probability prediction means for predicting an occurrence probability of a plurality of different results that may occur in the future based on past information.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP2016133695A JP2019168732A (en) | 2016-07-05 | 2016-07-05 | Control apparatus |
| JP2016-133695 | 2016-07-05 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2018008503A1 true WO2018008503A1 (en) | 2018-01-11 |
Family
ID=60912129
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/JP2017/023859 Ceased WO2018008503A1 (en) | 2016-07-05 | 2017-06-29 | Control device |
Country Status (2)
| Country | Link |
|---|---|
| JP (1) | JP2019168732A (en) |
| WO (1) | WO2018008503A1 (en) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019176478A1 (en) * | 2018-03-15 | 2019-09-19 | オムロン株式会社 | Operation control device for robot |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2015092311A (en) * | 2013-11-08 | 2015-05-14 | トヨタ自動車株式会社 | Intersection information generation device and processor for vehicle |
-
2016
- 2016-07-05 JP JP2016133695A patent/JP2019168732A/en active Pending
-
2017
- 2017-06-29 WO PCT/JP2017/023859 patent/WO2018008503A1/en not_active Ceased
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2015092311A (en) * | 2013-11-08 | 2015-05-14 | トヨタ自動車株式会社 | Intersection information generation device and processor for vehicle |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019176478A1 (en) * | 2018-03-15 | 2019-09-19 | オムロン株式会社 | Operation control device for robot |
| JP2019155561A (en) * | 2018-03-15 | 2019-09-19 | オムロン株式会社 | Operation control device of robot |
| US11478926B2 (en) | 2018-03-15 | 2022-10-25 | Omron Corporation | Operation control device for robot, robot control system, operation control method, control device, processing device and recording medium |
Also Published As
| Publication number | Publication date |
|---|---|
| JP2019168732A (en) | 2019-10-03 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6673293B2 (en) | Vehicle system | |
| US20210284179A1 (en) | Vehicle health calibration | |
| CN111009134A (en) | Short-term vehicle speed working condition real-time prediction method based on interaction between front vehicle and self vehicle | |
| US10377379B2 (en) | Method and system for utilizing the energy storage provided by a vehicle's mass in the form of potential and kinetic energy to optimize fuel consumption | |
| JP2013115863A (en) | Battery management system | |
| CN112498334B (en) | Robust energy management method and system for intelligent networked hybrid vehicle | |
| US20160082947A1 (en) | Method and device for operating a motor vehicle by specifying a setpoint speed | |
| JP2014019433A (en) | Hybrid vehicle fuel efficiency improvement using inverse reinforcement learning | |
| CN110617829B (en) | Method and device for predicting possible driving routes of vehicles | |
| JP2010115065A (en) | Traveling energy learning arrangement, its method, and program | |
| US11529887B2 (en) | System and method for controlling a battery management system | |
| CN113392573A (en) | Method for creating a trained artificial neural network, method for predicting vehicle emissions data and method for determining calibration values | |
| US12387087B2 (en) | Electrified vehicle with indication of adequate driving range based on autoencoder | |
| WO2017102323A1 (en) | System and method to facilitate satisfying low emission zone requirements | |
| US11579574B2 (en) | Control customization system, control customization method, and control customization program | |
| CN110546056A (en) | Method and control device for determining a control scheme for a vehicle | |
| GB2569351A (en) | Whole journey predictive energy optimisation | |
| CN114932843B (en) | A power control method and related device for a hybrid vehicle | |
| CN113246958A (en) | TD 3-based multi-target HEV energy management method and system | |
| CN107985299A (en) | Vehicle with mode boot | |
| CN117152388A (en) | Calibrating parameters within a virtual environment using reinforcement learning | |
| Choi et al. | Data-driven energy management strategy for plug-in hybrid electric vehicles with real-world trip information | |
| JP2021124420A (en) | Battery deterioration judgment device, battery deterioration judgment method, and battery deterioration judgment program | |
| WO2018008503A1 (en) | Control device | |
| US12017592B2 (en) | Powertrain control system with state of health information |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17824108 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17824108 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: JP |