[go: up one dir, main page]

WO2018057702A1 - Production et distribution d'énergie pour la propulsion d'un véhicule - Google Patents

Production et distribution d'énergie pour la propulsion d'un véhicule Download PDF

Info

Publication number
WO2018057702A1
WO2018057702A1 PCT/US2017/052660 US2017052660W WO2018057702A1 WO 2018057702 A1 WO2018057702 A1 WO 2018057702A1 US 2017052660 W US2017052660 W US 2017052660W WO 2018057702 A1 WO2018057702 A1 WO 2018057702A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
vehicle
aerial vehicle
generator
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2017/052660
Other languages
English (en)
Inventor
Matthew Sweetland
Long N. Phan
Luan H. DUONG
Samir Nayfeh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Top Flight Technologies Inc
Original Assignee
Top Flight Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Top Flight Technologies Inc filed Critical Top Flight Technologies Inc
Priority to JP2018529608A priority Critical patent/JP6570095B2/ja
Publication of WO2018057702A1 publication Critical patent/WO2018057702A1/fr
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M23/00Transmissions characterised by use of other elements; Other transmissions
    • B62M23/02Transmissions characterised by use of other elements; Other transmissions characterised by the use of two or more dissimilar sources of power, e.g. transmissions for hybrid motorcycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/60Rider propelled cycles with auxiliary electric motor power-driven at axle parts
    • B62M6/65Rider propelled cycles with auxiliary electric motor power-driven at axle parts with axle and driving shaft arranged coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/10Air crafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/42Electrical machine applications with use of more than one motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • Various types of engines can be employed in propulsion systems for vehicles such as land-based vehicles, aerial vehicles, etc. To reduce loss of generated energy, such engines are located near components that propel the vehicle forward. In airborne vehicles, an engine such as a combustion engine, etc. is located in the vicinity of propeller for which the engine is providing power. Along with limiting locations on the airborne for potentially positioning the engines, changing the performance of the propeller is controlled through changing the operating performance of the engine that drives the propeller.
  • an aerial vehicle includes a hybrid power generation system comprising an engine; a generator mechanically coupled to the engine; and a propulsion system comprising an electric motor electrically coupled to the generator and a rotational mechanism coupled to the electric motor.
  • Embodiments can include one or more of the following features.
  • the rotational mechanism includes a propeller.
  • the rotational mechanism includes a fan.
  • the generator is configured to convert mechanical energy from the engine into electrical energy.
  • the electric motor is configured to convert the electrical energy from the generator into rotational mechanical energy.
  • the rotational mechanism is configured to be driven by the rotational mechanical energy from the electric motor.
  • the engine includes a combustion engine.
  • the propulsion system is located on a wing of the aerial vehicle and the hybrid power generation system is located on a body of the aerial vehicle.
  • the aerial vehicle includes multiple propulsion systems, each propulsion system including an electric motor electrically coupled to the generator and a rotational mechanism coupled to the electric motor.
  • Each electric motor is configured to operate independently of each other electric motor.
  • the aerial vehicle includes a battery electrically coupled to the generator and to the electric motor.
  • the aerial vehicle includes one or more of a sensing subsystem, a computing subsystem, and a communications subsystem electrically coupled to the generator.
  • a method includes, in a hybrid power generation system of an aerial vehicle: generating mechanical energy in an engine; and converting the generated mechanical energy into electrical energy in a generator mechanically coupled to the engine.
  • the method includes, in a propulsion system of the aerial vehicle, converting the electrical energy into rotational mechanical energy to drive rotation of a rotational mechanism.
  • Embodiments can include one or more of the following features.
  • the method includes converting the electrical energy into rotational mechanical energy to drive rotation of a rotational mechanism in each of multiple propulsion systems of the aerial vehicle.
  • the method includes driving rotation of the rotational mechanism in each propulsion system independently of the rotation of the rotational mechanism in each other propulsion system.
  • the method includes driving rotation of a first rotational mechanism in a first direction and driving rotation of a second rotational mechanism in a second direction, the first direction different from the second direction.
  • the method includes driving rotation of a first rotational mechanism at a first speed and driving rotation of a second rotational mechanism at a second speed, the first speed different from the second speed.
  • the method includes storing at least some of the electrical energy in a battery.
  • the method includes providing at least some of the electrical energy to one or more of a sensing subsystem, a computing subsystem, and a communications subsystem.
  • a vehicle in an aspect, includes a wheel; a hybrid power generation system including an engine and a generator mechanically coupled to the engine; and a propulsion system including an electric motor electrically coupled to the generator and mechanically coupled to the wheel.
  • Embodiments can include one or more of the following features.
  • the vehicle includes a bicycle.
  • the generator is configured to convert mechanical energy from the engine into electrical energy.
  • the electric motor is configured to convert the electrical energy from the generator into rotational mechanical energy.
  • the wheel is configured to be driven by the rotational mechanical energy from the electric motor.
  • the engine comprises a combustion engine.
  • the vehicle includes a fuel tank configured to provide fuel to the engine.
  • the propulsion system is located on the wheel and the hybrid power generation system is located on a body of the vehicle.
  • the vehicle includes a battery electrically coupled to the generator and to the electric motor.
  • the vehicle includes one or more of a sensing subsystem, a computing subsystem, and a communications subsystem electrically coupled to the generator.
  • a method includes, in a hybrid power generation system of a vehicle:
  • Embodiments can include one or more of the following features. [037] Driving rotation of a wheel of the vehicle comprises driving rotation of a wheel of a bicycle.
  • the method includes storing at least some of the electrical energy in a battery.
  • the method includes providing at least some of the electrical energy to one or more of a sensing subsystem, a computing subsystem, and a communications subsystem.
  • FIG. 1 is a diagram of an aerial vehicle.
  • FIG. 2 is a diagram of an aerial vehicle that employs a distributed energy system.
  • FIG. 3 is a block diagram of distributed energy system.
  • FIG. 4 is a diagram of an unmanned aerial vehicle (UAV).
  • UAV unmanned aerial vehicle
  • FIG. 5 is a diagram of a single propeller UAV that employs a combustion engine.
  • FIG. 6 is a diagram of a single propeller UAV that employs a distributed energy system.
  • FIG. 7 is a diagram of a multi-propeller UAV that employs a distributed energy system.
  • FIG. 8 is a chart of battery charge level versus flight time.
  • FIG. 9 is a chart of UAV altitude versus flight time.
  • FIG. 10A is a side view of a bicycle that employs a distributed energy system.
  • FIG. 1 OB is a front view of a bicycle that employs a distributed energy system.
  • Fig. IOC is a diagram of a hybrid energy generation system.
  • a distributed energy system to provide propulsion to a vehicle, such as an aerial vehicle (e.g., a manned or unmanned aerial vehicle) or a land- based vehicle (e.g., a manned or unmanned land-based vehicle, such as an automobile, a bicycle, a mobile robot, or another type of vehicle).
  • a vehicle such as an aerial vehicle (e.g., a manned or unmanned aerial vehicle) or a land- based vehicle (e.g., a manned or unmanned land-based vehicle, such as an automobile, a bicycle, a mobile robot, or another type of vehicle).
  • an engine such as a combustion engine drives an electrical energy generator, which produces electrical energy that powers a propulsion system for propelling the vehicle (e.g., a propulsion system that drives one or more propellers of an aerial vehicle).
  • the engine does not need to be positioned close to the propulsion system (e.g., the engine can be located relatively remote from the propellers). Further, by generating electrical energy from the mechanical energy produced by the combustion engine and providing the electrical energy rather than the mechanical energy to the propulsion system, the operation of the engine is essentially decoupled from the operation of the propulsion system. As such, both the engine and the propulsion system may be operated efficiently (e.g., at optimum rotational speeds, which may be considerably different) and independently (e.g., the rotational speeds of the engine and the propellers may be changed independently of each other).
  • an aerial vehicle 100 such as a manned or unmanned aerial vehicle, includes a propulsion system that includes two propeller assemblies 102, 104.
  • Each propeller assembly 102, 104 includes an engine 105, 106, such as an internal combustion engine, mechanically coupled to a propeller 107, 108, turbine fan, or other propulsion mechanism to provide forward thrust for flight.
  • Internal combustions engines used in aerial vehicles 100 can take various forms, for example (but not limited to), two-stroke and four-stroke reciprocating engines (e.g., diesel engines, six-cylinder, eight-cylinder engines, etc.), Wankel engines, gas turbines, etc. In some arrangements, multiple engine types can be utilized for propelling the same vehicle.
  • Mechanical coupling techniques that can be used to couple the engine to the propulsion mechanism include direct coupling between the engine and the propulsion mechanism, coupling techniques employing a transmission system (e.g., a mechanical gearbox, or other types of mechanical coupling.
  • Mechanical coupling techniques constrain the combustion engine to operate at a fixed rotational speed relative to the rotational speed of the propulsion mechanism. For example, to increase the rotational speed of the propeller of an aerial vehicle (e.g., to gain altitude), the operating speed of the combustion engine is increased.
  • Direct coupling techniques can be considered relatively simple to implement and generally involve lightweight components.
  • direct coupling techniques generally do not dissipate any of the mechanical power transmitted from the engine to the propulsion mechanism (e.g., propeller, turbine fan, wheel etc.).
  • direct coupling techniques do call for the engine to rotate at a speed that depends on the rotational speed of the propulsion mechanism to which the engine is connected, which can lead to tradeoffs in system design.
  • gas turbines commonly operate most efficiently at a rotational speed of at least about
  • a transmission mechanism such as a gearbox can be employed to reduce the rotational speed of the engine to the rotational speed for the propulsion mechanism.
  • a gearbox can be used to implement a gear reduction of ten or more to adjust the initially generated rotation speed (e.g., 30,000 rpm of the gas turbine) to the rotation speed for the propeller (e.g., 2000-4000 rpm).
  • transmission mechanisms e.g., gearboxes
  • transmission mechanisms can be heavy, and thus the use of a transmission mechanism adds to the weight of the vehicle.
  • transmission mechanisms often dissipate some of the power generated by the engine and can be subject to possible failures.
  • the combustion engine and propulsion mechanism e.g., propeller or fan for an aerial vehicle
  • the engine and propulsion mechanism may not be able to operate as efficiently under a different set of operating conditions, e.g., operating conditions that may be encountered during a mission of the vehicle.
  • the rate at which the propulsion mechanism can change its rotational speed or other operating parameters is limited by the rate at which the rotational speed or other operating parameters of the engine can change.
  • Mechanical coupling of the engine to the propulsion mechanism can also limit the design aspects of the propulsion system and, more generally, the design aspects of the vehicle (e.g., the aerial vehicle 100).
  • vehicle e.g., the aerial vehicle 100
  • mechanical coupling e.g., direct coupling or coupling via a transmission mechanism
  • a design employing a single combustion engine to provide power to multiple propellers which are positioned at different locations may be difficult to implement.
  • location of the engine near the propeller can make it difficult to mechanically isolate the engine 106 from the frame of the propeller assembly 104 and from the structure of the aerial vehicle 100, which in turn makes it challenging to reduce vibration, engine sounds, etc.
  • an aerial vehicle 200 such as a manned or unmanned aerial vehicle, includes a distributed energy system.
  • the distributed energy system includes a propulsion system that includes two propeller assemblies 202, 204 and a hybrid energy generation system 210.
  • Each propeller assembly 202, 204 includes a propeller 207, 208 that is driven by an electric motor 205, 206, respectively.
  • the electric motors 205, 206 are powered by electrical energy generated by the hybrid energy generation system 210.
  • the hybrid energy generation system 210 includes an engine 212, such as a combustion engine, that is directly coupled to an electric generator 214.
  • the generator 214 generates alternating current (AC) power from the mechanical power generated by the engine 212.
  • the AC power generated by the generator 214 can be used to provide electrical power to the electric motors 205, 206 in the propeller assemblies 202, 204, which in turn drive rotation of the propellers 207, 208.
  • the engine 212 is not mechanically coupled to the propulsion system (e.g., to the electric motors 205, 206 that drive the propellers 207, 208), but rather is electrically coupled to the motors 205, 206.
  • the propulsion system e.g., to the electric motors 205, 206 that drive the propellers 207, 208
  • many of the challenges associated with mechanical coupling between an engine and a propulsion system are obviated. For instance, without mechanical coupling between the engine 212 and the propulsion system, the rotational speed of the engine 212 does not need to remain relative to the rotational speed of the propulsion system.
  • both the engine 212 and the propellers 207, 208 can be designed independently to operate at an efficient rotational speed, even if those rotational speeds are significantly different from one another. Furthermore, the rotational speed of the engine 212 does not need to be adjusted to adjust the rotational speed of the propellers 207, 208. As a result, the rotational speed of the propulsion system can be changed quickly, e.g., to effect a change in altitude or in response to changing operating conditions during a mission, and operation of the engine 212 can be maintained at an efficient rotational speed regardless of the load on the propulsion system.
  • an engine 212 that is not mechanically coupled to the propulsion system can also reduce the weight of the aerial vehicle, leading to better fuel efficiency.
  • power torque * rpm
  • a small engine operating at a high rotational speed can be used deliver sufficient power to drive the propulsion system while adding less weight onto the aerial vehicle.
  • the absence of mechanical coupling between the engine 212 and the propulsion system means that complex and heavy mechanical transmission systems, such as gearboxes, are not necessary. Rather, energy can be efficiently transferred from the engine 212 to the propulsion system as electrical energy over lightweight and less complex electrical components.
  • the hybrid energy generation system 210 can include one or more batteries 216, such as rechargeable batteries, that can store at least some of the electrical energy generated by the electric generator 214.
  • the electric generator 214 can be coupled to a rectifier, such as a bridge rectifier, that converts the AC output of the generator 214 into direct current (DC) power that is provided to the batteries 216.
  • the energy stored in the batteries 216 can be used to provide additional electrical power to the electric motors 205, 206, e.g., in response to sudden demands for power that may occur during flight, to enable safe operation and landing in the event of a failure of the engine 212, generator 214, or another component of the hybrid energy generation system 210, or for other purposes.
  • the batteries 216 can be lithium polymer batteries, e.g., batteries with between 6 and 12 cells and a charge of between about 16,000 mAh (milliAmp-hours) and about 22,000 mAh.
  • the size and charge of the batteries can depend on factors such as flight parameters, expected environmental conditions, mission tasks, or other factors.
  • the batteries 216 can enable the aerial vehicle 200 to fly with the engine 212 turned off, e.g., to enable silent or stealth operation, discussed further below.
  • the engine 212 can be mounted on the chassis or airframe of the aerial vehicle 200 using resilient mounts to isolate the chassis or airframe from engine vibrations and/or engine noise. This isolation can decrease the vibratory stresses on the chassis or airframe, mitigate the impact of vibrations on the instrumentation and/or payload of the aerial vehicle 200, lessen the exterior and interior sound radiated from the airframe, and increase the comfort of pilots or passengers (for manned aerial vehicles).
  • the distributed energy system described here can be used to provide power to propulsion systems for land-based vehicles (e.g., manned or unmanned automobiles, bicycles, etc.), marine-based vehicles (e.g., unmanned ships, unmanned underwater vehicle (UUV)), or other types of vehicles.
  • land-based vehicles e.g., manned or unmanned automobiles, bicycles, etc.
  • marine-based vehicles e.g., unmanned ships, unmanned underwater vehicle (UUV)
  • the hybrid energy generation system can be used to provide power to an electric motor that drives one or more wheels or another mechanism that provides torque for forward motion.
  • FIG. 3 is a diagram of a distributed energy system 300 of an aerial vehicle (e.g., the aerial vehicle 200 of Fig. 2).
  • the engine 212 e.g., the combustion engine
  • the generator 214 is coupled to the propeller assemblies 202, 204, via an electrical coupling 304, such that the electrical energy generated by the generator 214 can be used to power the propeller assemblies 202, 204.
  • the motor 205, 206 converts the electrical energy back into mechanical energy, which is provided across a mechanical coupling 306, 308 to drive the corresponding propeller 207, 208.
  • the presence of an electrical coupling 304 rather than a mechanical coupling between the hybrid energy generation system 210 and the propeller assemblies 202, 204 enables both the engine 212 and the motors 205, 206 to be run with efficient operating characteristics that can be set independently of each other. For instance, the engine 212 can be operated at a high rotational speed while the motors 205, 206 can be operated at a much lower rotational speed without requiring a complex and heavy mechanical transmission system.
  • the electrical coupling 304 allows each motor 205, 206 to be operated
  • the motors 205, 206 independently of the other motor, enabling the motors 205, 206 to be operated at different rotational speeds or with differing other parameters or even in opposite directions.
  • the hybrid energy generation system 210 can also provide power to other types of propulsion mechanisms 310 on the same aerial vehicle. For instance, in addition to powering the propeller assemblies 202, 204, the hybrid energy generation system 210 can also power a fan or another type of propulsion mechanism.
  • the hybrid energy generation system 210 can be used to provide power to other subsystems of the aerial vehicle.
  • the hybrid energy generation system can provide power through the electrical coupling 304 to sensing subsystems 312, computing subsystems 314, communications subsystems 316, or other subsystems without the need for a dedicated electrical power unit for these subsystems.
  • the use of the hybrid energy generation system to power other subsystems of the aerial vehicle enables the aerial vehicle to be smaller and lighter, thus improving fuel efficiency and performance.
  • the aerial vehicle can implement regenerative soaring.
  • the engine can be deactivated, e.g., to operate the aerial vehicle in stealth mode (discussed further below).
  • the free spinning propellers can then be used as a turbine to recharge the batteries.
  • the propellers can also recharge the batteries when to aerial vehicle encounters an updraft.
  • UAV 400 a Mugin 3 m UAV with the following specifications:
  • a UAV e.g., the Mugin 3 m UAV with the specifications given for the UAV 400 of Fig. 4
  • a UAV 500 can be configured as a UAV 500 that is powered by a combustion engine 502 mechanically coupled to a propeller 504.
  • a DA-50 combustion engine (Desert Aircraft, Arlington, AZ) is used as the combustion engine 502 and the propeller 504 is a 22x8 propeller.
  • Other types of combustion engines and/or propellers can also be used.
  • the UAV 600 can be configured as a UAV 600 with a distributed energy system.
  • the distributed energy system includes a combustion engine (not shown) and an electric generator 602 electrically coupled to a brushless motor 606 that drives a propeller 604.
  • the engine is a Zenoah® G290RC 3.5 HP engine (Husqvarna Zenoah Co. Ltd., Saitama, Japan)
  • the generator and propulsion motor are both a Turnigy® RotoMax 1.60 Brushless Outrunner Motor
  • the battery is a 6S 16000 mAh Lipo battery
  • the propeller is a 22x8 propeller.
  • Other types of engines, generators, motors, batteries, and/or propellers can also be used.
  • the distributed energy system powered UAV 600 is lighter (e.g., because less fuel is carried) and has a longer flight time with correspondingly longer range.
  • the UAV 700 can be configured as a UAV 700 with a distributed energy system.
  • the distributed energy system includes a combustion engine (not shown) and an electric generator 702 and is electrically coupled to two brushless motors 705, 706 each of which drives a corresponding propeller 707, 708.
  • the engine is a Zenoah® G340RC 34 cc engine
  • the generator is a Hacker Motor Q80-4L Brushless motor (Hacker Motor GmbH, Ergolding, Germany)
  • the propulsion motors are Turnigy® RotoMax 1.60 Brushless Outrunner Motors
  • the battery is a 6S 16000 mAh Lipo battery
  • each propeller is a 22x8 propeller.
  • Other types of engines, generators, motors, batteries, and/or propellers can also be used. Specifications of operating parameters for the example UAV 700 are given in Table 1.
  • the combustion engine powered UAV 500 and the distributed energy system powered UAV 700 have the same total take-off weight, yet the range and flight time of the hybrid energy generation system powered UAV 700 are more than double the range and flight time of the combustion engine powered UAV. This difference in range and flight time is due, e.g., to the additional energy provided by the hybrid energy generation system.
  • Wireless energy system powered UAVs can have multiple modes of operation, such as silent mode and glide mode.
  • silent mode the UAV can operate on battery power over an area of interest, allowing the engine to be idled or deactivated to reduce the noise and heat signature of the UAV.
  • glide mode sometimes also referred to as stealth mode
  • the UAV can glide over an area of interest with the engine idled or deactivated and no power being provided to the electric motors of the propulsion mechanism. Operation in silent mode or glide mode enables the UAV to be deployed, e.g., for surveillance missions.
  • the UAV in silent mode, the UAV can begin its mission at take-off with both the combustion engine and the electric motor(s) of the propulsion system operating. As the mission proceeds, some of the electric power generated by the generator is used to power the electric motors, and some of the electric power generated by the generator is sent to the batteries for storage. When the UAV reaches cruising altitude, the batteries are fully charged, as shown at point 802 on a battery charge level plot 800.
  • the combustion engine can be idled or deactivated, and the electric motors coupled to the propellers can receive electric power from the batteries. As the batteries provide power to the electric motors, the batteries discharge, shown as region 804 on the battery charge level plot 80. When the charge level of the batteries declines to a pre-determined level (e.g., 10%, 20%, 30%, 40%, 50%, or another charge level), shown at point 806, the combustion engine can be reactivated. The activated combustion engine can both provide power to the electric motors and recharge the batteries, shown as region 808.
  • a pre-determined level e.g. 10%, 20%, 30%, 40%, 50%, or another charge level
  • the combustion engine can be deactivated (shown as point 810) when the UAV gets close to an area of interest for its mission, such as an area within which silent mode operation is desired. Deactivating the combustion engine reduces the noise level and the temperature of the UAV, thus helping the UAV to avoid sound and/or heat detection sensors. With the combustion engine deactivated, the batteries provide power to the electric motors (shown as region 812) as the UAV flies within or near the area of interest. When the charge level of the batteries declines to a pre-determined level, shown at point 814, the UAV can exit the area of interest and the combustion engine can be reactivated to recharge the batteries. This cycle can be repeated multiple times, e.g., until the mission has been completed, until the fuel for the combustion engine is nearly used up, etc.
  • the UAV in glide mode, the UAV can begin its mission at take-off with both the combustion engine and the electric motor(s) of the propulsion system operating.
  • the engine and electric motors are deactivated, allowing the UAV to glide down to a predetermined lower altitude (shown at point 904).
  • the engine and electric motors are reactivated to propel the UAV back to the higher altitude (shown at point 906).
  • This process can be repeated until the UAV reaches an area of interest.
  • the engine and electric motors are deactivated, allowing the UAV to operate completely silently, thus evading noise and heat detection sensors.
  • the UAV can remain over the area of interest in glide mode, e.g., to capture surveillance images or to drop a payload into the area of interest.
  • the UAV can leave the area of interest.
  • the engine and electric motors can be reactivated to propel the UAV back to a higher altitude, e.g., to re-enter the area of interest or to return to a base.
  • the UAV can fly to the area of interest with the engine continuously running and/or on battery power, and can operate in glide mode only once the UAV is near the area of interest.
  • the free-spinning propellers can be used as turbines to charge the batteries.
  • the spinning of the propellers is transferred to the electric motor as torque, which causes the electric motor to generate electrical energy.
  • the generated electrical energy can be provided to the batteries.
  • the presence of a distributed energy system enables the rotational speed (e.g., rpm) of a propeller of a twin propeller aerial vehicle to be varied to carry out a turn.
  • the location of the combustion engine on the aerial vehicle can be quickly changed, e.g., after manufacture of the aerial vehicle, to accommodate different payloads. For instance, the location of the engine can be adjusted to keep the center of gravity of the aerial vehicle (including its payload) fixed.
  • the propeller is mounted on a wing of the aerial vehicle, the wing can be built with less mechanical structure because the electrical motor is lighter than a traditional combustion engine or jet engine.
  • the UAVs described here can be deployed for weather monitoring or forecasting applications.
  • an NCAR dropsonde containing a UAV can be released into the center of a hurricane by a weather reconnaissance aircraft.
  • the UAV deployed from the NCAR dropsonde can collect weather data from inside the hurricane and transmit the data to a remote destination (e.g., the weather reconnaissance aircraft or another destination) or store the data in an on-board data storage for future recovery.
  • the UAV can be operated to collect weather data as a function of both vertical altitude and lateral position within the hurricane.
  • Such positional data can be useful for short term forecasting of the particular hurricane and for training existing weather models or creating new weather models for improved weather forecasting capabilities.
  • Further description of a deployable UAV can be found in U.S. Patent Application No. 15/593,803, filed May 12, 2017, the entire contents of which are incorporated here by reference.
  • the UAVs described here can be deployed for sensing applications, such as air quality testing, monitoring or forecasting of forest fires, monitoring of volcanic eruptions, environmental monitoring inside of a region exposed to radioactivity, or other situations in which remote monitoring or measurements can be useful.
  • the UAVs can collect data, such as environmental measurements, still or video images, or other data, and store the data in an onboard data storage. Later, when the UAV is recovered or returns to a base station, the data can be retrieved from the on-board data storage.
  • the UAVs can transmit the collected data, e.g., in real time or in batches, to a destination, such as a remote server (e.g., on the aircraft from which the UAV was released), a satellite, or another destination.
  • a destination such as a remote server (e.g., on the aircraft from which the UAV was released), a satellite, or another destination.
  • the UAVs described here can be used for military applications, such as for reconnaissance in advance of troop movements, delivery of computing capability (e.g., data storage capability, data processing capability, communications capability, or other computing capabilities) to troops deployed in remote (e.g., wilderness) areas, or other military applications.
  • computing capability e.g., data storage capability, data processing capability, communications capability, or other computing capabilities
  • the distributed energy system described here can be employed to provide energy to a propulsion mechanism of a manned or unmanned land-based vehicle, such as an automobile, truck, bus, bicycle, mobile robot, or other land-based vehicle.
  • a propulsion mechanism of a manned or unmanned land-based vehicle such as an automobile, truck, bus, bicycle, mobile robot, or other land-based vehicle.
  • the distributed energy system provides energy to rotate one or more wheels of the land-based vehicle.
  • a bicycle 150 is powered by a distributed energy system that provides energy to drive rotation of a rear wheel 152 of the bicycle 150.
  • the distributed energy system includes a hybrid energy generation system 154 that includes an engine 156, such as a combustion engine, and a generator 158 mechanically coupled to the engine 156.
  • the hybrid energy generation system 156 operates substantially as described above.
  • a fuel tank 159 to provide fuel, such as gasoline, to the engine 156 can be mounted on the bicycle 150, such as on a side of the bicycle.
  • Electrical energy generated by the generator 158 is provided to an electric motor 160 located on the rear wheel 152, such as at a central position on the wheel, e.g., mounted on a hub 162 of the wheel.
  • the electric motor 160 generates torque that drives rotation of the rear wheel 152, which causes the bicycle 150 to move.
  • the hybrid energy generation system 156 and the electric motor 160 can be located at different positions on the bicycle 150.
  • the hybrid energy generation system 156 can be attached to the body of the bicycle 150, can be mounted on a rack 164 at the back (as shown) or front of the bicycle. Locating the hybrid energy generation system 156 and the electric motor 150 at different positions on the bicycle 150 can help to balance the bicycle 150, thus providing a comfortable riding experience to a rider.
  • the hybrid energy system 156 can be positioned over a central axis of the bicycle 150 such that the weight of the hybrid energy system 156 is evenly distributed between the two sides of the bicycle.
  • the hybrid energy generation system 154 can include one or more batteries 166 to store electrical energy generate by the generator 158.
  • the stored energy in the batteries 166 can be used to provide additional electrical energy to the electric motor 160, e.g., to assist when the bicycle 150 is climbing a hill, or to provide energy when the fuel tank 159 is empty.
  • the rear wheel 152 and electric motor 160 can act as a turbine, generating energy that can be stored in the batteries 164.
  • the engine 156 is not mechanically coupled to the rear wheel 152 of the bicycle 150, the engine 156 can be operated under efficient operating conditions regardless of the rotational speed of the rear wheel 152. For instance, a small, lightweight engine operating at a high rotational speed can be used.
  • the distributed energy system drives rotation of the rear wheel 152.
  • the distributed energy system can drive rotation of a front wheel 166 of the bicycle or of both the front wheel 166 and the rear wheel 152 of the bicycle.
  • a distributed energy system can be employed to drive rotation of one or more wheels of another type of land-based vehicle, such as an automobile or truck.
  • each wheel of a land-based vehicle can be driven by a dedicated electric motor such that each wheel can be driven independently from each other wheel.
  • Other systems of the land-based vehicles such as sensing subsystems, computing subsystems, communications subsystems, or other subsystems, can be powered by the distributed energy system. For instance, autopilot- related functions in a driverless car can be powered by a distributed energy system.
  • a land-based mobile robot can be implemented with a distributed energy system.
  • land-based mobile robots can be used in military or public safety applications, construction applications, industrial applications, or other uses.
  • the use of a distributed energy system with such land-based mobile robots can help these robots operate efficiently; can allow for the design of compact, light-weight robots; and can allow the robots to operate quietly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

La présente invention concerne un véhicule aérien qui comprend un système de génération d'énergie hybride comprenant un moteur; un générateur couplé mécaniquement au moteur; et un système de propulsion comprenant un moteur électrique couplé électriquement au générateur et un mécanisme de rotation couplé au moteur électrique.
PCT/US2017/052660 2016-09-22 2017-09-21 Production et distribution d'énergie pour la propulsion d'un véhicule Ceased WO2018057702A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018529608A JP6570095B2 (ja) 2016-09-22 2017-09-21 乗り物推進のための発電および分配

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662398468P 2016-09-22 2016-09-22
US201662398464P 2016-09-22 2016-09-22
US62/398,468 2016-09-22
US62/398,464 2016-09-22

Publications (1)

Publication Number Publication Date
WO2018057702A1 true WO2018057702A1 (fr) 2018-03-29

Family

ID=61691075

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/052660 Ceased WO2018057702A1 (fr) 2016-09-22 2017-09-21 Production et distribution d'énergie pour la propulsion d'un véhicule

Country Status (2)

Country Link
JP (2) JP6570095B2 (fr)
WO (1) WO2018057702A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO344545B1 (en) * 2018-10-24 2020-01-27 Griff Aviation As An aerial vehicle system and associated power generating hub
EP3950481A4 (fr) * 2019-04-19 2022-06-15 Yamaha Hatsudoki Kabushiki Kaisha Vehicule à enfourcher
US12145735B2 (en) 2021-12-24 2024-11-19 Honda Motor Co., Ltd. Flying object control device for switching power supply based on flight plan and battery status

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023025980A (ja) * 2021-08-11 2023-02-24 Ysec株式会社 バッテリ充電システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100147993A1 (en) * 2008-12-12 2010-06-17 Honeywell International Inc. Hybrid power for ducted fan unmanned aerial systems
US20100219779A1 (en) * 2009-03-02 2010-09-02 Rolls-Royce Plc Variable drive gas turbine engine
US20110046831A1 (en) * 2009-02-11 2011-02-24 Ananthakrishna Anil Electrically powered motorized vehicle with continuously variable transmission and combined hybrid system
WO2012004560A2 (fr) * 2010-07-05 2012-01-12 Vahid Rismanchi Système de production de courant pour véhicule électrique
US20140091172A1 (en) * 2005-04-14 2014-04-03 Paul E. Arlton Rotary wing vehicle
US20160023773A1 (en) * 2014-07-23 2016-01-28 Hamilton Sundstrand Corporation Hybrid electric pulsed-power propulsion system for aircraft

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2403269C (fr) * 2000-04-03 2010-06-15 Aerovironment Inc. Aeronef stratospherique a hydrogene liquide
US6516253B2 (en) * 2000-12-05 2003-02-04 Ford Global Technologies, Inc. Engine ready detection using crankshaft speed feedback
WO2006113877A2 (fr) * 2005-04-20 2006-10-26 Lugg Richard H Aeronef vtol hybride a reaction/electrique
GB0904875D0 (en) * 2009-03-20 2009-05-06 Geola Technologies Ltd Electric vtol aircraft
DE102012209803A1 (de) * 2012-06-12 2013-12-12 Siemens Aktiengesellschaft Verfahren zum Bereitstellen einer vorbestimmten Antriebscharakteristik in einem Flugzeug und zugehörige Antriebsvorrichtung
FR2992630B1 (fr) * 2012-06-29 2015-02-20 Turbomeca Procede et configuration d'apport d'energie propulsive et/ou non propulsive dans une architecture d'helicoptere par un moteur auxiliaire de puissance
DE102013109392A1 (de) * 2013-08-29 2015-03-05 Airbus Defence and Space GmbH Schnellfliegendes, senkrechtstartfähiges Fluggerät
EP3137376B1 (fr) * 2014-05-01 2020-04-22 Alakai Technologies Corporation Aéronef multirotor électrique à combustible propre pour un transport aérien de personnes et un fonctionnement avec pilote ou sans pilote
JP6425969B2 (ja) * 2014-10-29 2018-11-21 ヤンマー株式会社 ヘリコプター
JP6425968B2 (ja) * 2014-10-29 2018-11-21 ヤンマー株式会社 ヘリコプター
KR101638964B1 (ko) * 2015-07-17 2016-07-13 주식회사 한국카본 하이브리드 전기 추진시스템을 이용하는 수직이착륙 항공기

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140091172A1 (en) * 2005-04-14 2014-04-03 Paul E. Arlton Rotary wing vehicle
US20100147993A1 (en) * 2008-12-12 2010-06-17 Honeywell International Inc. Hybrid power for ducted fan unmanned aerial systems
US20110046831A1 (en) * 2009-02-11 2011-02-24 Ananthakrishna Anil Electrically powered motorized vehicle with continuously variable transmission and combined hybrid system
US20100219779A1 (en) * 2009-03-02 2010-09-02 Rolls-Royce Plc Variable drive gas turbine engine
WO2012004560A2 (fr) * 2010-07-05 2012-01-12 Vahid Rismanchi Système de production de courant pour véhicule électrique
US20160023773A1 (en) * 2014-07-23 2016-01-28 Hamilton Sundstrand Corporation Hybrid electric pulsed-power propulsion system for aircraft

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO344545B1 (en) * 2018-10-24 2020-01-27 Griff Aviation As An aerial vehicle system and associated power generating hub
WO2020085919A1 (fr) 2018-10-24 2020-04-30 Griff Aviation As Véhicule aérien et générateur d'énergie associé
EP3950481A4 (fr) * 2019-04-19 2022-06-15 Yamaha Hatsudoki Kabushiki Kaisha Vehicule à enfourcher
US12221186B2 (en) 2019-04-19 2025-02-11 Yamaha Hatsudoki Kabushiki Kaisha Straddled vehicle
US12145735B2 (en) 2021-12-24 2024-11-19 Honda Motor Co., Ltd. Flying object control device for switching power supply based on flight plan and battery status

Also Published As

Publication number Publication date
JP2019506327A (ja) 2019-03-07
JP6570095B2 (ja) 2019-09-04
JP2019006388A (ja) 2019-01-17

Similar Documents

Publication Publication Date Title
US10017266B2 (en) Power generation and distribution for vehicle propulsion
US10371066B2 (en) Unmanned aircraft and operation method for the same
CN109421924B (zh) 多旋翼直升机
US20120209456A1 (en) Parallel Hybrid-Electric Propulsion Systems for Unmanned Aircraft
EP3548377B1 (fr) Aéronef électrique à décollage et atterrissage verticaux
US9771162B1 (en) On-board redundant power system for unmanned aerial vehicles
US8002216B2 (en) Solar powered wing vehicle using flywheels for energy storage
US8469306B2 (en) Purebred and hybrid electric VTOL tilt rotor aircraft
US20190283874A1 (en) Passenger carrying unmanned aerial vehicle powered by a hybrid generator system
US20080184906A1 (en) Long range hybrid electric airplane
CN101746507A (zh) 用于函道风扇式无人空中系统的混合动力
WO2018099856A1 (fr) Aéronef électrique à décollage et atterrissage verticaux
JP6570095B2 (ja) 乗り物推進のための発電および分配
CN109733621A (zh) 一种多推进模式的混合动力无人机
US20180079291A1 (en) Power generation and distribution for land-based vehicle propulsion
EP3786067B1 (fr) Aéronef électrique hybride à double moteur
Ausserer et al. Integration, validation, and testing of a hybrid-electric propulsion system for a small remotely piloted aircraft
EP3687899A1 (fr) Aéronef à voilure tournante doté d'un appareil de propulsion sur un mât rotatif
CN206288244U (zh) 一种具有持久续航能力的无人机
CN113479334B (zh) 一种弹射式无人机动力系统快速启动方法
RU2662600C2 (ru) Автолет (летающий автомобиль) (варианты)
JP2020142800A (ja) 飛行体
RU189830U1 (ru) Летательный аппарат вертикального взлета и посадки
CN116710359A (zh) 飞行器
RU2825903C1 (ru) Летательный аппарат вертикального взлета и посадки

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529608

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17853866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17853866

Country of ref document: EP

Kind code of ref document: A1