WO2017211396A1 - Système et procédé de mesure des paramètres de vie pendant le sommeil - Google Patents
Système et procédé de mesure des paramètres de vie pendant le sommeil Download PDFInfo
- Publication number
- WO2017211396A1 WO2017211396A1 PCT/EP2016/062924 EP2016062924W WO2017211396A1 WO 2017211396 A1 WO2017211396 A1 WO 2017211396A1 EP 2016062924 W EP2016062924 W EP 2016062924W WO 2017211396 A1 WO2017211396 A1 WO 2017211396A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- hysteresis value
- signal level
- computer
- axes
- hysteresis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4806—Sleep evaluation
- A61B5/4818—Sleep apnoea
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/01—Measuring temperature of body parts ; Diagnostic temperature sensing, e.g. for malignant or inflamed tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Measuring devices for evaluating the respiratory organs
- A61B5/0816—Measuring devices for examining respiratory frequency
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/08—Measuring devices for evaluating the respiratory organs
- A61B5/0826—Detecting or evaluating apnoea events
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/113—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb occurring during breathing
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
- A61B5/7207—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal of noise induced by motion artifacts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/74—Details of notification to user or communication with user or patient; User input means
- A61B5/746—Alarms related to a physiological condition, e.g. details of setting alarm thresholds or avoiding false alarms
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2562/00—Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
- A61B2562/02—Details of sensors specially adapted for in-vivo measurements
- A61B2562/0219—Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording for evaluating the cardiovascular system, e.g. pulse, heart rate, blood pressure or blood flow
- A61B5/0205—Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
- A61B5/02055—Simultaneously evaluating both cardiovascular condition and temperature
Definitions
- the present invention relates to a system and method for measuring life parameters during sleep.
- the present invention relates to constant monitoring and evaluating of life parameters, as well as reporting detected abnormal events.
- monitoring is the observation of a disease, condition or one or more medical parameters over time. It can be performed by continuously measuring certain parameters by using a medical monitor (for example, by continuously measuring vital signs by a bedside monitor), and/or by repeatedly performing medical tests (such as blood glucose monitoring with a glucose meter). Transmitting data from a monitor to a distant monitoring station is known as telemetry or biotelemetry (source: Wikipedia).
- the first age group are children from 0 to 8 months of age. Apnea usually occurs during sleep and is primarily a disorder of premature infants. Babies born before 34 weeks of gestation do not have a fully developed central nervous system, and they often do not have adequate control of the breathing reflex.
- the second group of interest are children from 6 months to 3 years of age. In this age range the key monitored parameter is body temperature. Children often suffer from rapidly developing infections with very high fever. Thus, it is crucial to monitor their life parameters.
- OSA obstructive sleep apnea
- the last target group are adults suffering from obstructive sleep apnea (OSA).
- OSA is the most common category of sleep-disordered breathing.
- the muscle tone of the body ordinarily relaxes during sleep, and at the level of the throat the human airway is composed of collapsible walls of soft tissue which can obstruct breathing during sleep.
- Mild occasional sleep apnea such as many people experience during an upper respiratory infection, may not be important, but chronic severe obstructive sleep apnea requires treatment to prevent low blood oxygen (hypoxemia), sleep deprivation, and other complications (source: Wikipedia).
- heart rate may also be measured as an additional life parameter to the aforementioned.
- a US patent US6062216 discloses an apnea monitor and system for treatment includes a detector in a fixed console that projects a detection beam at a sleep surface.
- the detection beam is reflected off a patient on the surface and return light is analyzed to develop a signal which varies with external motion of the patient's upper body.
- the motion signals are then fed to a pattern recognizer which identifies breath signals and analyzes them to detect cessation or excessive pauses in breathing, and trigger an alarm or intervention to restore breathing regularity.
- the monitor includes a laser for generating radiation. The radiation is reflected from the patient and is directed onto a detector.
- the detector produces output signals corresponding to the impinging reflected light, which are processed by a control element to determine the change of movement, e.g., the breathing rate, of the patient.
- This method has a disadvantage of monitoring a patient externally. Thus, in case a patient changes positions during sleep or is covered with a thick quilt, the method is not reliable.
- a US patent application US20030055348 discloses a method of determining a diagnostic measure of sleep apnea including the following steps: acquiring an electrocardiogram signal, calculating a set of RR intervals and electrocardiogram- derived respiratory signal from said electrocardiogram, and hence calculating a set of spectral and time-domain measurements over time periods including power spectral density, mean, and standard deviation. These measurements are processed by a classifier model which has been trained on a pre-existing data base of electrocardiogram signals to provide a probability of a specific time period containing apneic episodes or otherwise. These probabilities can be combined to form an overall diagnostic measure.
- the system also provides a system and apparatus for providing a diagnostic measure of sleep apnea.
- a disadvantage of this method is a complex equipment that may be inconvenient for a patient during sleep.
- a method for measuring life parameters during sleep by a device comprising an accelerometer attached to the body of a sleeping subject, the method comprising the steps of: (a) setting a hysteresis width having a maximum hysteresis value and a minimum hysteresis value; (b) reading , from the accelerometer , values of acceleration in three axes; (c) filtering the values of acceleration in each of the three axes with a band-pass filter to obtain filtered acceleration signals; (d) combining the filtered acceleration signals from each of the three axes to obtain a signal level; (e) checking whether the signal level is higher than the current maximum hysteresis value and if so, setting the maximum hysteresis value to the signal level and setting the minimum hysteresis value to the maximum hysteresis value decreased by the hysteresis width; and (f) signaling a breath detection when a transition from a falling edge to a rising
- the method may comprise reading the values of acceleration in the three axes with a frequency of at least 50Hz.
- the method may comprise: checking whether the signal level is lower than the current maximum hysteresis value and if so, setting the minimum hysteresis value to the signal level and setting the maximum hysteresis value to the minimum hysteresis value increased by the hysteresis width; and detecting a transition from a rising edge to a falling edge on the signal level and setting a flag indicating such detection.
- the pass band of the band-pass filter can be from 0,2 Hz to 1 ,1 Hz.
- the filtering can be effected by applying moving average filters.
- the first moving average filter may use at least 16 samples while the second moving average filter uses at least 16 latest results of the first filter over the successive sets of at least 16 samples.
- Combining the filtered acceleration signals from each of the three axes may comprise calculating a sum of absolute values of the filtered acceleration signals in each of the three axes.
- the method may further comprise returning to step (b) after step (f) to repeat the method steps for at least one subsequent data sample.
- a computer program comprising program code means for performing all the steps of the computer-implemented method as described above when said program is run on a computer, or a computer readable medium storing computer-executable instructions performing all the steps of the computer-implemented method as described above when executed on a computer, or a non-transitory computer-readable medium storing computer- executable instructions performing all the steps of the method as described above when executed on a computer.
- a system for measuring life parameters during sleep comprising: a data bus communicatively coupled to a memory ; an accelerometer coupled to the data bus; and a controller configured to execute all the steps of the method as described above.
- Fig. 1 presents a diagram of the system according to the present invention
- Fig. 2 presents a diagram of the method according to the present invention
- Fig. 3 presents a raw and filtered signal comparison
- Fig. 4 shows a signal waveform of breathing of a several-months-old child
- Fig. 5 presents a signal comprising the strong constant component
- Fig. 6 presents signal monitoring and hysteresis modification (movement).
- these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated in a computer system.
- these signals are referred to as bits, packets, messages, values, elements, symbols, characters, terms, numbers, or the like.
- generating refers to the action and processes of a computer system that manipulates and transforms data represented as physical (electronic) quantities within the computer's registers and memories into other data similarly represented as physical quantities within the memories or registers or other such information storage.
- a computer-readable (storage) medium typically may be non-transitory and/or comprise a non-transitory device.
- a non-transitory storage medium may include a device that may be tangible, meaning that the device has a concrete physical form, although the device may change its physical state.
- non-transitory refers to a device remaining tangible despite a change in state.
- example means serving as a non-limiting example, instance, or illustration.
- terms "for example” and “e.g.” introduce a list of one or more non-limiting examples, instances, or illustrations.
- Fig. 1 presents a diagram of the system according to the present invention.
- the system is a temperature and breathing measuring device. Additionally, pulse may be measured, by detecting micro moves, and body moves may be monitored in order to detect sleep phases.
- the system may be realized using dedicated components or custom made FPGA (Field-Programmable Gate Array) or ASIC (Application Specific Integrated Circuit) circuits.
- the system comprises a data bus 101 (e.g. I2C or similar) communicatively coupled to a memory 104. Additionally, other components of the system are communicatively coupled to the system bus 101 so that they may be managed by a controller 105.
- the memory 104 may store computer program or programs executed by the controller 106 in order to execute steps of the method according to the present invention. Further, the memory 104 may store any temporary and final data produced by the controller.
- the controller 105 may process the received data or may pass raw data to an external processing unit, preferably via a communication means 103 that may be wired or wireless (e.g. Bluetooth). Alternatively, the controller 105 may process the received data and transmit externally only signals on abnormal conditions, for example to a mobile phone.
- a communication means 103 may be wired or wireless (e.g. Bluetooth).
- the controller 105 may process the received data and transmit externally only signals on abnormal conditions, for example to a mobile phone.
- the system may have several versions differing by the number and envisaged placement of temperature sensor(s).
- the division results from assumed ages of monitored persons as well as from the characteristics of the measured parameters. For example, it is best to measure temperature in an armpit while breathing is best measured at abdomen.
- the system may comprise an external temperature sensor 106, preferably for positioning in an armpit.
- the system may comprise at least one temperature sensor 102, preferably at the exterior of its casing, wherein a temperature sensor may measure ambient temperature or body temperature.
- the temperature sensor may be TMP112AIDRLT offered by Texas Instruments. It is sufficiently precise, has 12-bit processing and digital communication capabilities.
- the present system comprises an accelerometer 107.
- Accelerometers have multiple applications in industry and science. Highly sensitive accelerometers are components of inertial navigation systems.
- the controller 105 requests data from the accelerometer 107 and the temperature sensor(s). Then the data is processed and the results are stored. In case of detection of an abnormal condition, the controller 107 may be configured to signal an event that may be indicated by the system e.g. by a sound or a light indication, or be transmitted to an external device.
- the present system comprises a filters module 108 required for filtering of the accelerometer data. Details of such filtering have been presented with reference to Fig. 2.
- Fig. 2 presents a diagram of the method according to the present invention.
- the method starts at step 201 from acquiring samples of data from the accelerometer 107. Samples may be gathered over a period of time in order to obtain a signal variable in time.
- Fig. 4 shows a signal waveform of breathing of a several-months-old child as sampled.
- the controller 105 reads data from the accelerometer 107 with a frequency of at least 50Hz (i.e. it reads data every 20 ms or more frequently) by using the data bus 101 .
- These data denote acceleration values in all three accelerometer axes. Naturally, other sampling frequencies may be applied.
- Analysis of the sampled signal is executed by using a method of detection of a maximum and minimum value with a moving hysteresis (time-based dependence of a system's output on present and past inputs).
- the present method applies a joint movement, of both the maximum and the minimum level of the hysteresis window (i.e. the maximum hysteresis and the minimum hysteresis parameters appropriately). This means that the width of the hysteresis is constant (i.e. the difference between the maximum hysteresis and the minimum hysteresis parameters is constant) but rather its placement on the Y axis changes.
- the width of the hysteresis is system-specific and selected experimentally depending on e.g. the desired sensitivity of the system.
- Increasing values received by the method result in, after crossing a maximum hysteresis level, moving the hysteresis towards higher values.
- the maximum hysteresis value is at this point determined as the signal level while the minimum hysteresis value equals a difference between the signal level and a predefined hysteresis width.
- the hysteresis width may be adapted to measurement conditions and is aimed at reducing interferences of noise. In particular, it is the aim of setting up the hysteresis width so that noise present, which does not exceed the hysteresis width, will not affect breathing detections.
- a change of signal level monotonicity for example from a rising to a different monotonicity, will not immediately result in for example moving the hysteresis downwards on the Y axis. This will happen when the signal level crosses the current minimum hysteresis value. At this moment the minimum hysteresis value will be determined at the signal level while the maximum hysteresis value will be determined at the level equaling a sum of the signal level (filtered and combined data from accelerometer in 3 axes) and a predefined hysteresis width. A movement of the hysteresis towards the rising value followed by a movement towards the falling values will denote a breath.
- the minimum and the maximum amplitude values are obtained after merging signals from the three accelerometer axes.
- a timer may be started. When the time without breath reaches a predefined threshold, for example 15 seconds, an abnormal event may be signaled. The method detects a rising edge or a falling edge of the signal and appropriately corrects the hysteresis value as defined above.
- a change of a monitored edge is present when the signal crosses hysteresis value appropriately separated (by a predefined threshold) from a previously stored minimum or maximum value.
- a maximum value is constantly updated as well as the lower level of the hysteresis, which is a difference between the maximum value and the hysteresis width.
- This approach does not report false positive results when significant surging is present e.g. due to movement of a monitored person.
- This method has been selected based on a series of trials and results in nearly 100% correct detections of breathing patterns.
- the next step of the method 202 is a low-pass and high-pass filtering of the signal.
- the signal comprises a strong constant (DC) component, which is a result of earth's gravity. Since the device should detect small differences in signals this strong constant component should be filtered.
- Fig. 5 presents a signal comprising the strong constant component.
- the highest concentration of components is present at discrete frequencies around 0,012, which translates to a real frequency of 0.6 Hz (the sampling frequency has been set at 50 Hz).
- the cut off frequencies of the band-pass filter are preferably set at from 0,2 Hz to 1 ,1 Hz.
- a band-pass filter may be configured as a difference between two low-pass filters.
- moving average filters have been applied: a first filtered averaging
- the filter is a band-pass filter implemented as a difference of two moving averages having a different time window.
- the first moving average is used as a low-pass filter and is calculated over the latest 16 samples.
- the second moving average is calculated over 16 latest results of the first moving average (over successive sets of 16 samples), which after a subtraction serves as a high-pass filter.
- the operation of the filter results in decrease of influence of high frequency interferences and removal of a constant component from the signal as well as low frequencies.
- the filtering is executed for signals from each axis wherein these signals are combined i.e. there is defined a sum of absolute values. From this moment onwards, these are the values used to calculate a hysteresis.
- Fig. 3 presents a raw and filtered signal comparison. As may be seen, after filtration, spectral lines 0,2 Hz and 0,6 Hz are more clear, while the strong constant component has been removed.
- step 202 After filtering in step 202 the signals of 3 axes are combined (a sum of absolute values) in step 203. Subsequently, at step 204 breathing is detected by finding local peaks in a signal waveform (minimums and maximums) with an application of an appropriate hysteresis, which allows for further filtering of interferences.
- the method does not detect any acceleration condition, caused by chest movements, within e.g. 15 seconds, it signals an alarm event in step 205. Otherwise, if movements detected are too frequent (e.g. above 6 Hz), there may be signaled an alarm event on hyperactivity 206.
- Fig. 6 presents signal monitoring and hysteresis modification (movement).
- the method reads signal level i.e. filtered and combined data from accelerometer in 3 axes as previously described with respect to the two moving averages having a different time window.
- the Slope parameter value is initialized to 0 and a predefined hysteresis width (HYSTERESIS) is set up using the minimum and maximum hysteresis values.
- step 602 it is checked whether signal level is higher than the current maximum hysteresis value. In case it is (denoting a rising edge of the signal), the method proceeds to step 603 where the maximum hysteresis value is set to the signal level. Subsequently, at step 604, the minimum hysteresis value is set to the maximum hysteresis value decreased by the predefined hysteresis width.
- step 605 it is checked whether a falling edge of the signal level has previously occurred (0 denotes that the signal level has been falling while a 1 denotes that signal level has been rising) and if it has, a flag (Slope) signaling the signal level edge is set to 1 in step 606 and breath detection is signaled in step 607.
- a breath detection is signaled when a transition from a falling edge to a rising edge is detected on the signal level.
- step 602 when at step 602 signal level is higher than the current maximum hysteresis value, the method proceeds to step 608 where it is checked whether signal level is lower than the current maximum hysteresis value. In case it is (denoting a falling edge of the signal), the method proceeds to step 609 where the minimum hysteresis value is set to the signal level. Subsequently, at step 610, the maximum hysteresis value is set to the minimum hysteresis value increased by the predefined hysteresis width.
- step 611 it is checked whether a rising edge of the signal level has previously occurred (1 denotes that the signal level has been rising while a 0 denotes that signal level has been falling) and if it has, a flag (Slope) signaling the signal level edge is set to 0 in step 612. In other words, a transition from a rising edge to a falling edge is detected on the signal level.
- a flag Slope
- the aforementioned approach has an advantage that even if it there is noise present, which does not exceed the hysteresis width, the detection will not be impaired and the hysteresis will move accordingly until a rising edge is detected.
- the aforementioned invention results in detection of sleep apnea condition and thus serves as a human being life parameters monitoring tool that may detect serious conditions. Therefore, the invention provides a useful, concrete and tangible result.
- the present invention data from an accelerometer are sampled, by a specially configured processing system, and processed in order to detect proper or abnormal breathing condition. Therefore, the machine or transformation test is fulfilled and that the idea is not abstract.
- At least parts of the methods according to the invention may be computer implemented. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a "circuit", "module” or "system”.
- the present invention may take the form of a computer program product embodied in any tangible medium of expression having computer usable program code embodied in the medium.
- the aforementioned method for measuring life parameters during sleep may be performed and/or controlled by one or more computer programs.
- Such computer programs are typically executed by utilizing the computing resources in a computing device.
- Applications are stored on a non-transitory medium.
- An example of a non-transitory medium is a non-volatile memory, for example a flash memory while an example of a volatile memory is RAM.
- the computer instructions are executed by a processor.
- These memories are exemplary recording media for storing computer programs comprising computer-executable instructions performing all the steps of the computer-implemented method according the technical concept presented herein.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Physiology (AREA)
- Pulmonology (AREA)
- Signal Processing (AREA)
- Dentistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Psychiatry (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Procédé de mesure des paramètres de vie pendant le sommeil par un dispositif comprenant un accéléromètre fixé au corps d'un sujet endormi, le procédé étant caractérisé en ce qu'il comprend les étapes consistant à : (a) définir une largeur d'hystérésis ayant une valeur d'hystérésis maximale et une valeur d'hystérésis minimale; (b) lire (201), à partir de l'accéléromètre (107), des valeurs d'accélération selon trois axes; (c) filtrer (202) les valeurs d'accélération dans chacun des trois axes avec un filtre passe-bande pour obtenir des signaux d'accélération filtrés; (d) combiner (203) les signaux d'accélération filtrés provenant de chacun des trois axes pour obtenir un niveau de signal; (e) vérifier (602) si le niveau de signal est supérieur à la valeur d'hystérésis maximale actuelle et, si tel est le cas, fixer (603) la valeur d'hystérésis maximale au niveau du signal et fixer (604) la valeur d'hystérésis minimale à la valeur d'hystérésis maximale diminuée par la largeur d'hystérésis; et (f) signaler (607) une détection d'haleine lorsqu'une transition entre un front descendant et un front d'origine est détectée sur le niveau de signal (605, 606).
Priority Applications (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PL16729520T PL3463046T3 (pl) | 2016-06-06 | 2016-06-07 | System pomiarowy i sposób pomiaru parametrów życiowych podczas snu |
| US16/307,573 US11033224B2 (en) | 2016-06-06 | 2016-06-07 | System and method for measuring life parameters during sleep |
| EP16729520.3A EP3463046B1 (fr) | 2016-06-06 | 2016-06-07 | Système et procédé de mesure des paramètres de vie pendant le sommeil |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PL41741816 | 2016-06-06 | ||
| PL417418 | 2016-06-06 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2017211396A1 true WO2017211396A1 (fr) | 2017-12-14 |
Family
ID=60578389
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/EP2016/062924 Ceased WO2017211396A1 (fr) | 2016-06-06 | 2016-06-07 | Système et procédé de mesure des paramètres de vie pendant le sommeil |
Country Status (1)
| Country | Link |
|---|---|
| WO (1) | WO2017211396A1 (fr) |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11324950B2 (en) | 2016-04-19 | 2022-05-10 | Inspire Medical Systems, Inc. | Accelerometer-based sensing for sleep disordered breathing (SDB) care |
| US11738197B2 (en) | 2019-07-25 | 2023-08-29 | Inspire Medical Systems, Inc. | Systems and methods for operating an implantable medical device based upon sensed posture information |
| US12262988B2 (en) | 2019-07-25 | 2025-04-01 | Inspire Medical Systems, Inc. | Respiration detection |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6062216A (en) | 1996-12-27 | 2000-05-16 | Children's Medical Center Corporation | Sleep apnea detector system |
| US20030055348A1 (en) | 2001-09-14 | 2003-03-20 | University College Dublin | Apparatus for detecting sleep apnea using electrocardiogram signals |
| US20050119586A1 (en) * | 2003-04-10 | 2005-06-02 | Vivometrics, Inc. | Systems and methods for respiratory event detection |
| US20130331723A1 (en) * | 2011-02-22 | 2013-12-12 | Miguel Hernandez-Silveira | Respiration monitoring method and system |
| US20130345585A1 (en) * | 2011-03-11 | 2013-12-26 | Koninklijke Philips N.V. | Monitoring apparatus for monitoring a physiological signal |
-
2016
- 2016-06-07 WO PCT/EP2016/062924 patent/WO2017211396A1/fr not_active Ceased
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6062216A (en) | 1996-12-27 | 2000-05-16 | Children's Medical Center Corporation | Sleep apnea detector system |
| US20030055348A1 (en) | 2001-09-14 | 2003-03-20 | University College Dublin | Apparatus for detecting sleep apnea using electrocardiogram signals |
| US20050119586A1 (en) * | 2003-04-10 | 2005-06-02 | Vivometrics, Inc. | Systems and methods for respiratory event detection |
| US20130331723A1 (en) * | 2011-02-22 | 2013-12-12 | Miguel Hernandez-Silveira | Respiration monitoring method and system |
| US20130345585A1 (en) * | 2011-03-11 | 2013-12-26 | Koninklijke Philips N.V. | Monitoring apparatus for monitoring a physiological signal |
Non-Patent Citations (1)
| Title |
|---|
| JIN JIAYI ET AL: "A Home Sleep Apnea Screening Device With Time-Domain Signal Processing and Autonomous Scoring Capability", IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, IEEE, US, vol. 9, no. 1, 1 February 2015 (2015-02-01), pages 96 - 104, XP011571113, ISSN: 1932-4545, [retrieved on 20150123], DOI: 10.1109/TBCAS.2014.2314301 * |
Cited By (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US11324950B2 (en) | 2016-04-19 | 2022-05-10 | Inspire Medical Systems, Inc. | Accelerometer-based sensing for sleep disordered breathing (SDB) care |
| US11738197B2 (en) | 2019-07-25 | 2023-08-29 | Inspire Medical Systems, Inc. | Systems and methods for operating an implantable medical device based upon sensed posture information |
| US12262988B2 (en) | 2019-07-25 | 2025-04-01 | Inspire Medical Systems, Inc. | Respiration detection |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| RU2637610C2 (ru) | Устройство мониторинга для мониторинга физиологического сигнала | |
| US7150718B2 (en) | Sleep state estimation device and program product for providing a computer with a sleep state estimation function | |
| EP3099229B1 (fr) | Améliorations de la détection de marche dans les mesures du mouvement d'un utilisateur | |
| CN107913060B (zh) | 用于监测心跳的方法及装置 | |
| US11089995B2 (en) | Method and system for identifying respiratory events | |
| CN107106027A (zh) | 婴儿睡眠监测器 | |
| JP2006020810A (ja) | 睡眠状態推定装置及びプログラム | |
| JP5353479B2 (ja) | 嚥下活動モニタリング装置、嚥下活動モニタリングシステムおよび嚥下活動モニタリングプログラム | |
| WO2024066502A1 (fr) | Procédé et dispositif de surveillance de la respiration | |
| WO2017211396A1 (fr) | Système et procédé de mesure des paramètres de vie pendant le sommeil | |
| Levy et al. | Smart cradle for baby using FN-M16P module | |
| JP6893528B2 (ja) | 生体情報モニタリングシステム、生体情報モニタリング方法、及びベッドシステム | |
| KR101853102B1 (ko) | 가속도 센서 기반 수면분류 정보 측정기 | |
| Kalkbrenner et al. | Sleep monitoring using body sounds and motion tracking | |
| KR101800739B1 (ko) | 호흡수 검출 장치 및 방법 | |
| JP2022518713A (ja) | 呼吸警報を発生させるための装置及びシステム | |
| US11033224B2 (en) | System and method for measuring life parameters during sleep | |
| WO2019063882A1 (fr) | Système de détermination de source sonore | |
| WO2023140390A1 (fr) | Dispositif de détermination d'état de sommeil, procédé de détermination d'état de sommeil, et programme | |
| EP3847961B1 (fr) | Programme de détermination de statut de déambulation, procédé de détermination statut de déambulation, et dispositif de traitement d'informations | |
| JP2025515549A (ja) | 非対面非接触型転落モニタリングシステム、非接触型睡眠モニタリングシステム及び方法 | |
| Loblaw et al. | Remote respiratory sensing with an infrared camera using the Kinect (TM) infrared projector | |
| CN117426755A (zh) | 睡眠监测方法、装置及智能设备 | |
| JP2016047156A (ja) | いびき安定性評価装置 | |
| EP4329600B1 (fr) | Détermination d'une fréquence cardiaque d'un sujet |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16729520 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2016729520 Country of ref document: EP Effective date: 20190107 |