WO2017111977A1 - Harnais de casque - Google Patents
Harnais de casque Download PDFInfo
- Publication number
- WO2017111977A1 WO2017111977A1 PCT/US2016/000132 US2016000132W WO2017111977A1 WO 2017111977 A1 WO2017111977 A1 WO 2017111977A1 US 2016000132 W US2016000132 W US 2016000132W WO 2017111977 A1 WO2017111977 A1 WO 2017111977A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lace
- support member
- wing
- guide
- support
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A42—HEADWEAR
- A42B—HATS; HEAD COVERINGS
- A42B3/00—Helmets; Helmet covers ; Other protective head coverings
- A42B3/04—Parts, details or accessories of helmets
- A42B3/10—Linings
- A42B3/14—Suspension devices
- A42B3/145—Size adjustment devices
-
- A—HUMAN NECESSITIES
- A42—HEADWEAR
- A42B—HATS; HEAD COVERINGS
- A42B3/00—Helmets; Helmet covers ; Other protective head coverings
- A42B3/04—Parts, details or accessories of helmets
- A42B3/10—Linings
- A42B3/14—Suspension devices
- A42B3/142—Suspension devices with restraining or stabilizing means, e.g. nape straps
Definitions
- This disclosure relates to tightening systems for use in fitting a wearable article, such as a helmet.
- Helmets and other wearable articles are commonly used to provide protection to the head or other body parts of a wearer, such as during sporting activities and other activities.
- Some helmets comprise a hard shell of plastic or Kevlar® or the like, and various pads, straps and bladders to position the helmet on a wearer's head. Heads come in a wide variety of shapes and sizes. Helmet shells, on the other hand, come in a very limited number of sizes. If a helmet does not fit properly to the wearer's head, it can cause discomfort and may not provide sufficient protection in some cases. For example, if a helmet is worn that is too large for the wearer's head, the helmet can shift positions during use and may even fall off.
- Helmets can be made to fit a variety of head sizes and shapes, but existing helmets suffer from various drawbacks. For example, some existing helmets do not provide sufficient adjustability to comfortably fit to a wide variety of head shapes and sizes. Some existing helmets apply pressure unevenly across the head of the wearer, which can cause discomfort.
- the invention is a helmet harness that uses lace tension to conform the harness to the shape and size of a person wearing the helmet.
- Figure 1 is a perspective view of an example of a helmet harness system according to the invention.
- Figure 2 is a perspective view of another example of a helmet harness system according to the invention.
- Figure 3 is a perspective view of another example of a helmet harness system according to the invention.
- Figure 4 is a perspective view of another example of a helmet harness system according to the invention.
- Figure 5 is a perspective view of another example of a helmet harness system according to the invention.
- Figure 6 is a plan view of an example of a guide support with a dynamic tension adjustment feature suitable for use with a helmet harness system according to the invention.
- Figure 7 is a plan view of a portion of the guide support shown in Figure 6.
- Figure 8 is a perspective view of the guide support shown in Figure 6.
- Figure 9 is a plan view of an example of a portion of a guide support with dynamic tension adjustment suitable for use with a helmet harness system according to the invention.
- Figure 10 is a plan view of the guide support shown in Figure 9.
- Figure 11 is a perspective view of a cover suitable for use with the guide support shown in Figure 9.
- Figure 12 is a perspective view of the guide support shown in Figure 9.
- Figure 13 is a plan view of an example of a guide support with dynamic tension adjustment suitable for use with a helmet harness system according to the invention.
- Figure 14 is a plan view of the guide support shown in Figure 13.
- Figure 15 is a perspective view of the guide support shown in Figure 13.
- Figure 16 is a perspective view of an example of a helmet harness system according to the invention.
- Figure 17 is a perspective view of an example of a helmet harness system, according to the invention, in a helmet that is partially broken away.
- Figure 18 is a perspective view of the helmet harness system shown in Figure 17.
- Figure 19 is a rear view of the helmet harness system shown in Figure 17.
- Figure 20 is a rear view of the helmet harness system shown in Figure 17 in a helmet that is partially broken , away.
- Figure 21 is a perspective view of the helmet harness system shown in Figure 17.
- Figure 22 is a top view of the helmet harness system shown in Figure 17.
- Figure 23 is a perspective view of a portion of the helmet harness system shown in Figure 17.
- Figure 24 is a perspective view of a portion of the helmet harness system shown in Figure 17.
- Figure 25 is a perspective view showing an example of a helmet harness system according to the invention.
- Figure 26 is a perspective yiew showing an example of a helmet harness system according to the invention.
- Figure 27 is a plan view of an inner frame of a helmet harness according to the invention.
- Figure 28 is a side view of a cam slide suited for use in a helmet harness according to the invention.
- Figure 29 is a plan view of an inner frame for a helmet harness according to the invention.
- Figure 30 is a perspective view of an assembled helmet harness, according to the invention, positioned on a head.
- Figure 31 is a perspective view of the assembled helmet harness shown in Figure 30 with arrows indicating that the harness accommodates and absorbs rotational forces applied to a helmet in which the harness is secured.
- Figure 1 is a perspective view of a helmet harness system according to one example of the invention.
- the parts of the system show in Figure 1 are symmetrical along a longitudinal axis extending along the top of the harness system, between the front of the system and the back of the system.
- the system comprises a front support member indicated generally at 10, a central support member indicated generally at 12, and a rear yoke support member indicated generally at 14.
- the support members 10, 12, and 14 are spaced apart from each other.
- the support members 10, 12, and 14 are provided with attachment members 16a, 16b, and 16c, respectively, for securing the support members to the inside of a helmet shell (not shown in Figure 1), for example, or to corresponding attachment members (not shown) provided on the inside of a helmet, or other wearable articles.
- At least one attachment member is provided for each of the support members 10, 12, and 14. Additional attachment members may be used, if desired.
- the attachment member 16a is located at the rear of the front support member 10.
- the attachment member 16b is located at the front of the central support member 12.
- the attachment member 16c is located at the front, or top, of the rear yoke support member 14.
- the attachment members may comprise snap basket connectors, inverse clip connectors (such as those shown and described in my US patent application published on September 18, 2014 under publication no. US 2014/0259572, the disclosure of which is expressly incorporated herein by reference), buckle connectors, fabric connectors, hook and loop connectors, elastic connectors, or any combination of these or other connectors.
- a dial lace tightening mechanism 18 is provided on the rear yoke support member 14. The ends of a lace or the ends of laces 20 are received in the dial lace tightening mechanism 18.
- dial lace tightening mechanisms which are suitable for use in the harness system of the present invention. Some of these mechanisms are shown and described in US Patent No. 9179729, the entire disclosure of which is expressly incorporated herein by reference.
- a lace 20 extends from a lace portal 22 in the dial lace tightening mechanism 18, on the right side of the dial lace tightening mechanism 18.
- the system shown in Figure 1 may be symmetrical in which case there would be a corresponding lace (not shown) extending from a lace portal (not shown) on the left side of the dial lace tightening mechanism 18.
- the right side of the helmet harness system will be described with the understanding that corresponding parts may be provided on the left side of the helmet harness system.
- the lace 20 extends out of the lace portal 22 and extends through a sliding lace guide 24a on the rear yoke support member 14, through a . sliding lace guide 24b on the central support member 12, and through a sliding lace guide 24c on the front support member.
- the end of the lace 20 that is opposite the end of the lace that extends from the dial lace tightening mechanism 18 extends through a lace terminal portal 26 into a terminal lace connection 24d on the front support member 10. This end of the lace is fixed within the terminal lace connection 24d.
- the front support member 10 has a central longitudinally extending web 27.
- the attachment member 16a is supported on this central web 27.
- a front support member front right wing 28 extends downwardly from the central web 27 with the terminal lace connection 24d positioned at the terminus of the wing 28.
- a front support member rear right wing 30 extends downwardly from the central web 27 with the sliding lace guide 24c at the terminus of the wing 30.
- the wing 28 is spaced from the wing 30.
- the central support member 12 has a central longitudinally extending web 31.
- the attachment member 16b is supported on this central web 31.
- a central support member right wing 32 extends downwardly from the central web 31 with the sliding lace guide 24b positioned at the terminus of the wing 32.
- the rear yoke support member 14 has a central longitudinally extending web 33.
- the attachment member 16c is supported on this central web 33.
- a rear yoke support member right wing 34 extends downwardly from the, central web 33 with the sliding lace guide 24a positioned at the terminus of the wing 34.
- Tension in the lace 20 serves to pull the front support member rear right wing 30 downwardly around the wearer's head and inwardly against the wearer's head.
- Tension in the lace 20 also serves to pull the central support member right wing 32 downwardly, around the wearer's head, and inwardly against the wearer's head.
- An individual can dial in a custom fit by manipulating the dial lace tightening mechanism 18 to provide the desired amount of compression in the helmet harness system ⁇
- the tension of the lace, and corresponding compression provided by the system can be adjusted on the fly to accommodate changing conditions.
- FIG. 2 is a perspective view of a helmet harness system according to another example of the invention.
- the parts of the system shown in Figure 2 may also be symmetrical along a longitudinal axis extending between the front of the system and the back of the system.
- the system comprises a front support member indicated generally at 100, a central support member indicated generally at 102, and a rear yoke support member indicated generally at 104.
- the support members 100, 102, and 104 are separate and spaced apart from each other.
- the support members 100, 102, and 104 are provided with attachment members 16a, 16b, and 16c, respectively, for securing the helmet harness system to the inside of a helmet (not shown), for example, or to corresponding attachment members (not shown) provided on the inside of a helmet.
- At least one attachment member is provided for each of the support members 100, 102, and 104. Additional attachment members may be used, if desired. Fewer attachment members may be used.
- the attachment member 16a is located in the center (front to back) of the front support member 100.
- the attachment member 16b is located in the center (front to back) of the central support member 102.
- the attachment member 16c is located at the front, or top, of the rear yoke support member 104.
- the Figure 2 example embodiment includes the dial lace tightening mechanism 18 provided on the rear yoke support member 104.
- the ends of a lace 20, or the ends of laces 20, are received in the dial lace tightening mechanism 18.
- the lace 20 extends from a lace portal 22 on the right side of the dial lace tightening mechanism 18.
- the system shown in Figure 2 may also be symmetrical so there would be a corresponding lace (not shown) extending from a lace portal (not shown) on the left side of the dial lace tightening mechanism 18.
- the lace 20 extends out of the lace portal 22 and extends through a sliding lace guide 110a on the rear yoke support member 104, through sliding lace guides 110b and 1 10c associated with the central support member 102, and through a sliding lace guide 1 lOd on the front support member 100.
- the end of the lace 20 that is opposite the end of the lace that is received in the dial lace tightening mechanism 18 extends through a lace terminal portal 1 14 into a terminal lace connection 1 lOe on the front support member 100.
- the sliding lace guides 1 10b and 110c are carried on a guide support 124 which is described in more detail below, with reference to Figures 6, 7, and 8.
- the front support member 100 has a central longitudinally extending web 127.
- the attachment member 16a is supported on this central web 127.
- a front support member front right wing 128 extends downwardly from the central web 127 with the terminal lace connection 1 lOe positioned at the terminus of the wing 128.
- a front support member rear right wing 130 extends downwardly from the central web 127 with the sliding lace guide 1 lOd at the terminus of the wing 130.
- the wing 128 is spaced from the wing 130.
- the central support member 102 has a central longitudinally extending web 131.
- the attachment member 16b is supported on this central web 31.
- a central support member right wing 132 extends downwardly from the central web 131.
- the right wing is slidingly supported in the guide support 124 which carries the sliding lace guides 110b and 1 10c and is positioned at the terminus of the wing 132.
- the rear yoke support member 104 has a central longitudinally extending web 133.
- the attachment member 16c is supported on this central web 33.
- a rear yoke support member right wing 134 extends downwardly from the central web 133 with the sliding lace guide 110a positioned at the terminus of the wing 134. Tightening the lace 20, as by manipulating the dial lace tightening mechanism 18, draws the terminus of the front support member front right wing 128 back towards the rear yoke support member 104.
- Tension in the lace 20 serves to pull the front support member rear right wing 130 downwardly around the wearer's head and inwardly against the wearer's head.
- Tension in the lace 20, acting through the sliding lace guides 1 10b and 1 10c carried on the guide support also serves to pull the central support member right wing 132 downwardly, around the wearer's head, and inwardly against the wearer's head.
- Figure 3 is a perspective view of a helmet harness system according to another example of the invention.
- the parts of the system shown in Figure 3 may also be symmetrical along a longitudinal axis extending between the front of the system and the back of the system.
- the Figure 3 system corresponds generally with the Figure 2 system.
- a front support member indicated generally at 200 in Figure 3 has more surface area than the corresponding front support member 100 shown in Figure 2, and the right wings on the front support member 200 are wider and shorter than the corresponding wings shown in Figure 2.
- a central support member indicated generally at 202 in Figure 3 has more surface area than the corresponding central support member 102 shown in Figure 2.
- the rear yoke support member indicated generally at 204 in Figure 3 has more surface area than the corresponding rear yoke support member 104 shown in Figure 2. This configuration can be advantageous in that forces that arise from tension in the lace(s) 20 may be distributed over a larger area.
- the support members 200, 202, and 204 are separate and spaced apart from each other.
- the support members 200, 202, and 204 are provided with attachment members 16a, 16b, and 16c, respectively, for securing the support members to the inside of a helmet (not shown), for example, or to corresponding attachment members (not shown) provided on the inside of a helmet.
- At least one attachment member is provided for each of the support members 200, 202, and 204. Additional attachment members, or fewer attachment members may be used, if desired.
- the attachment member 16a is located in the rear (front to back) of the front support member 200.
- the attachment member 16b is located in the center (front to back) of the central support member 202.
- the attachment member 16c is located at the front, or top, of the rear yoke support member 204.
- a central support member right wing 203 extends downwardly from the central support member 202.
- the right wing 203 is slidingly supported in a guide support 124 which carries the sliding lace guides 1 10b and 110c, and is positioned at the terminus of the wing 203.
- FIG. 4 is a perspective view of a helmet harness system according to another example of the invention.
- the parts of the system shown in Figure 4 may also be symmetrical along a longitudinal axis extending between the front of the system and the back of the system.
- the system comprises a front support member indicated generally at 50, a central support member indicated generally at 52, and a rear yoke support member indicated generally at 54.
- the support members 50, 52, and 54 are separate and spaced apart from each other.
- the support members 50, 52, and 54 are provided with attachment members 16a, 16b, and 16c, respectively, for securing the support members to the inside of a helmet (not shown), for example, or to corresponding attachment members (not shown) provided on the inside of a helmet or other wearable article.
- At least one attachment member is provided for each of the support members 50, 52, and 54.
- the attachment member 16a is located in the rear (front to back) of the front support member 0.
- the attachment member 16b is located in the center (front to back) of the central support member 52.
- the attachment member 16c is located at the front, or top, of the rear yoke support member 54.
- the Figure 4 example embodiment includes the dial lace tightening mechanism 18 provided on the rear yoke support member 54.
- a single lace 20 extends from a lace portal 22 on the right side of the dial lace tightening mechanism 18, through a circuitously arranged plurality of sliding lace guides and back into a lace portal (left lace portal 22, not shown) on the left side of the dial lace tightening system 18.
- the system shown in Figure 4 may also be symmetrical.
- the front support member 50 constitutes a forehead strap having a front support member right wing 58 with lower right and upper right sliding lace guides 64d and 64e.
- a front support member left wing (left wing 58, not shown) is provided with lower left and upper left sliding lace guides (left lace guide 64d and left lace guide 64e, not shown).
- the central support member 52 has a central support member right wing 60 with a sliding lace guide 64g and a guide support 56 at the end, with sliding lace guides 64b and 64c, and a lace shoulder 66.
- a central support member left wing (left wing 60, not shown) is provided with a left sliding lace guide (left lace guide 64g, not shown) and a left guide support 56 (left guide support 56, not shown) at the end, with left sliding lace guides (left sliding lace guides 64b and 64c, not shown) a left lace shoulder (left lace shoulder 66, not shown).
- the central support member 52 has a longitudinally extending wing 61 with a dual sliding lace guide 64f at the front, and a rear, crossover, sliding lace guide 64h.
- the rear yoke support member 54 has an upper rear yoke support member right wing 70, with a sliding lace guide 64k, and a lower rear yoke support member right wing 62, with a sliding lace guide 64a.
- the rear yoke support member 54 has an upper rear yoke support member left wing (left wing 70, not shown) with a sliding lace guide 64k (left sliding lace guide 64k, not shown), and a lower rear yoke support member left wing (left wing 62, not shown) with a sliding lace guide 64a (left sliding lace guide 64a, not shown).
- the rear yoke support member 54 includes a sliding lace guide 64j on the right side and a corresponding lace guide on the left (left sliding lace guide 64j, not shown).
- the lace pattern in the helmet harness system shown in Figure 4 may be described as follows.
- the lace exits the right side lace portal 22 on the dial lace tightening mechanism and extends, in the following order, through:
- the Figure 4 harness system affords freedom of movement in respect of pitch, yaw and roll, and in respect of movement to the right and left, movement up or down, and movement front and back, all while maintaining the harness system securely supported on one's head.
- This freedom of movement is referred to herein as six degrees of freedom, as illustrated below.
- the helmet harness system shown in Figure 5 comprises a front support member 200a, a central support member 202a, and a rear yoke support member 204a.
- the front support member 200a corresponds, generally, with the front support members 100 and 200 shown in Figures 2 and 3, and further includes a closed lace loop 210 secured to the front support member 200a by a rear lace guide 31 Of, a front lace guide 31 Od, a right lace guide 310e and a corresponding left lace guide (left lace guide 31 Oe, not shown).
- the central support member 202a corresponds, generally, with the central support members 102 and 202 shown in Figures 2 and 3, and further includes a closed lace loop 212 secured to the central support member 202a by a rear lace guide 310c, and a front lace guide 310b.
- the right guide support 124a and the left guide support (left guide support 124a, not shown) correspond generally with the guide supports 124 shown in Figures 2 and 3, and they further include right front lace guide 1 10c, a corresponding left front lace guide (left lace guide 1 10c, not shown), a right rear lace guide 1 10b, and a corresponding left rear lace guide (left lace guide 1 10b, not shown).
- the closed lace loop 212 is further secured to the central support member 202a by the right lace guide 310a on the guide support 124a, and a left lace guide 310a.
- the lace guide support 124 shown in Figures 2 and 3 is shown in more detail in Figures 6, 7 and 8.
- the lace guide support 124 cooperates with the strap 132 and 203, which are connected to or integral with the central support members 102 and 202, respectively.
- Lace guide support 124a is shown in Figure 5 and is connected to or integral with central support member 202a.
- the lace guide supports 124 and 124a can be used in cooperation with any support member, such as a front support member or a rear yoke support member. Lace guide support 124a is shown in more detail in Figures 13 through 15.
- the lace guide support 124 is a dynamic lace connector and it comprises a buckle 402 which is operable to receive, for example, a strap 400. Specifically, there is an opening indicated at 404 through which the strap 400 can pass. The opening 404 is defined between a first bridge 406 and a portion (not shown) of the buckle 402 that is spaced from the first bridge 406. In the example shown in Figures 6 through 8, the portion of the buckle 402 that cooperates with the first bridge 406 to define the opening 404 is below a lower portion 408 of the strap 400.
- On portion 408 of the strap 400 there is a first sliding lace guide defined, in the example shown in Figures 6 through 8, by a first shoulder 410 and a second shoulder 412. The first sliding lace guide between the first and second shoulders 410 and 412 permits sliding movement of the lace 20 in either direction, as indicated by the arrows adjacent to the lace 20 in Figure 7.
- the buckle 402 is provided with a second sliding lace guide 414 and a third sliding lace guide 416.
- the sliding lace guides 414 and 416 are positioned between the first bridge 406 and a first end 418 of the buckle 402.
- the sliding lace guides 414 and 416 are spaced from each other with the sliding lace guides 414 and 416 between the first bridge 406 and a second bridge 420.
- the buckle 402 may include a third bridge 422 and a fourth bridge 424. With this arrangement, the strap 400 can pass under the second bridge 420, under the first bridge 406, over the third bridge 424, and under the third bridge 422. This arrangement tends to keep the strap 400 and the buckle 402 aligned, especially when the strap 400 is under tension.
- a strap 902 is provided with a first sliding lace guide comprising a first strap shoulder 904 and a second strap shoulder 906.
- the shoulders 904 and 906 are spaced to receive a lace 20 for sliding movement therebetween.
- the strap 902 slides on a base 908 in a groove between a first ledge 910 and a second ledge 912, each supported on the base 908 in spaced relationship. It is preferred that the height of the ledges 910 and 912 be about the same as the thickness of the strap 902.
- the first ledge 910 carries a second sliding lace guide comprising a first lace guide shoulder 914 and a second lace guide shoulder 916.
- the second ledge 912 carries a third sliding lace guide comprising a first lace guide shoulder 918 and a second lace guide shoulder 920,
- a cover 922 ( Figure 11) may be provided and secured to the first and second first ledge shoulders 914 and 916, and to the first and second second ledge shoulders 918 and 920. With the cover 922 in place, the strap 902 and the lace 20 are held captive between the base 908 and the cover 922.
- the lace 20 is positioned in the first, second, and third sliding lace guides, and the strap 902 is in the groove between the first and second ledges 910 and 912.
- the lace 20 and strap 902 are in the positions shown in Figure 10, and tension is applied to the strap 902 in the direction shown in Figure 9, the lace 20 is drawn into the connector 900 as indicated by the lace arrows.
- the tension force is greater than the tension force on the strap 902
- the strap 902 will be drawn into the connector 900 towards the position shown in Figure 10.
- the connector Whenever the tension force acting directly on the strap 902 is not equal to the tension force applied to the strap 902 by the lace 20, the connector will dynamically adjust the position of the strap within the connector 900 until equilibrium is reached.
- a dynamic lace to lace connector is indicated generally at 500.
- the connector 500 comprises a base 502 with first and second shoulders 504 and 506 supported on the base 502 in spaced relationship.
- a slider 508 is positioned between the shoulders 504 and 506 which are provided with ledges 510 and 512, respectively ( Figure 15).
- the slider 508 has a ridge 514 extending outwardly, adjacent to the base 502, under the ledge 512, and a
- First and second stops 516 and 518 limit movement of the slider 508 so that it can slide between the relative position shown in Figures 13 and 15, on one hand, and the relative position shown in Figure 14, on the other hand.
- the slider 508 is provided with a dual sliding lace guide 520 in which laces 522 and 524 are supported for sliding movement.
- the lace 522 loops around towards the stop 516 so that tension in the lace 522 creates tension in the slider 508 tending to move the slider 508 towards the stop 516.
- the lace 524 loops around towards the stop 518 so that tension in the lace 524 creates tension in the slider 508 tending to move the slider 508 towards the stop 518.
- the connector 500 dynamically adjusts to move the system towards equilibrium.
- FIG. 16 Another example of a helmet harness system according to the invention is shown in Figure 16.
- the system comprises a front support member 600, a central support member 602, and a rear yoke support member 604.
- a lower lace 20 extends from a dial lace tightening system 18 through a plurality of sliding lace guides 606a, 606b, 606c, 606d, and 606e and into a terminal lace connection 608 on the front support member 600.
- a dynamic lace to lace connector 500 is provided on the rear yoke support member 604 and the lace 20 is in the dual sliding lace guide 520 thereon.
- a closed lace loop 20c is supported on the rear yoke support member 604, as by lace guides 610, and the closed lace loop 20c is also in the dual sliding lace guide 520.
- a dynamic lace to lace connector 500a is provided on the central support member 602 and the lace 20 passes through the dual sliding lace guide 520 thereon.
- a closed lace loop 20b is supported on the central support member 602, as by lace guides 610, and the closed lace loop 20b passes through a dual sliding lace guide 520 on the connector 500a.
- a dynamic lace to lace connector 500b is provided on the front support member 600; and the lace 20 is in the dual sliding lace guide 520 thereon.
- a closed lace loop 20a is supported on the front support member 600, as by lace guides 610, and the closed lace loop 20a passes through the dual sliding lace guide 520.
- the dynamic lace to lace connector 500a corresponds with the lace connector 500 and additionally includes sliding lace guides 606b and 606c, which are offset from the dual sliding lace guide 520 on the dynamic lace to lace connector 520a.
- the dynamic lace to lace connector 500b corresponds with the lace connector 500 and additionally includes sliding lace guides 606d and 606e, which are in line with the dual sliding lace guide 520 on the dynamic lace to lace connector 520b.
- a sliding lace guide 606a is provided on the rear yoke support member 604.
- FIG. 17 through 22 Another example of a helmet harness system according to the invention is indicated at 700 in Figures 17 through 22.
- the system comprises a forehead support member 702, a first central support member 704; a second central support member 706, a third central support member 708, and a rear yoke support member 710.
- the members 702, 704, 706, 708 and 710 are unitary as they are connected to each other along the top of the system 700.
- a dial lace tightening mechanism 712 is provided on the rear yoke support member 710.
- a lower lace 714 extends through lower lace guides 716a, 716b, and 716c into a terminal lace connector 718. Tension in the lace 714 can be adjusted up or down by manipulating the dial lace tightening mechanism 712. More tension will draw the lower ends of the members 702, 704, 706, 708 and 710 against the sides and forehead of a wearer and less tension will do the opposite.
- Attachment members 720a and 720b are secured to the top of the system 700.
- the attachment members 720 also comprise dual sliding lace guides. Sliding lace guides 722a and 722b are secured to the top of the system 700. Closed lace loops 724a, 724b, and 724c are provided on the top of the system. Closed lace loop 724a is sliding supported in lower lace guides 716a (left and right), dual sliding lace guides 720a (left and right), and sliding lace guides 722a (left and right. Closed lace loops 724b and 724c are similarly supported for sliding movement.
- the lower lace guides 716a, 716b, and 716c constitute dynamic dual sliding lace guides and they are supported for sliding movement in slots indicated at 726a, 726b, and 726c. They self-adjust, as needed, to equalize tension in the closed lace loops 724 and the lower lace 714.
- the lower lace guides 71.6 comprise a base 728, a top 730, and two posts (not visible) therebetween around which the lower lace 714 and the closed lace loop 724 extend.
- a backer, behind the support member 706 cooperates with the base 728 to keep the lower lace guides supported in the slot 726 for sliding movement.
- FIG 25 is a perspective view of a helmet harness system according to another example of the invention.
- the parts of the system, indicated generally at 800 in Figure 25, may be symmetrical along a longitudinal axis extending between the front of the system and the back of the system.
- the system comprises a central web 802 which extends, longitudinally, between a rear yoke support member 804 and a forehead support member 806.
- a first, front right support wing 808 extends downwardly from the central web 802.
- a second, middle right support wing 810 extends downwardly from the central web 802.
- a third, rear right support wing 812 extends downwardly from the central web 802.
- a first, front right intermediate support wing 814 extends downwardly from the central web 802.
- a second, middle right intermediate support wing 816 extends downwardly from the central web 802.
- a third, rear right intermediate support wing 818 extends downwardly from the central web 802.
- the intermediate support wings 814, 816, and 818 extend a first given distance from the central web 802 and the support wings 808, 810, and 812 extend a second given distance. The second distance is longer than the first distance. In other words, the intermediate support wings 814, 816, and 818 are shorter than the support wings 808, 810, and 812.
- a portion of the first support wing 808 is on one side of the first intermediate support wing 814, and a second portion of the first support wing 808 is on the other side of the first intermediate support wing 814.
- a portion of the second support wing 810 is on one side of the second intermediate support wing 816, and a second portion of the second support wing 810 is on the other side of the second intermediate support wing 816.
- a portion of the third support wing 812 is on one side of the third intermediate support wing 818, and a second portion of the third support wing 812 is on the other side of the third intermediate support wing 8.18.
- a dial lace tightening mechanism 820 is supported on the rear yoke support member 804.
- a sliding lace guide 822 is supported on the rear yoke support member 804.
- a sliding lace guide 823 is supported on the forehead support member 806.
- a lower sliding lace path is defined between the lace guides 822 and 823 and a lace extending between these lace guides is supported in lace guides provided on the first, front right support wing 808, the second, middle right support wing 810, and the third, rear right support wing 812.
- lace guides 824 and 826 are supported on the third, rear right support wing 812.
- Lace guides 828 and 830 are supported on the second, middle right support wing 810.
- Lace guides 832 and 834 are supported on the first, front right support wing 808. Tension in a lace in the lower lace path tends to pull the support wings 808, 810, and 812 downwardly.
- An upper sliding lace path is defined between the lace guide 822 on the rear yoke support member 804 and the sliding lace guide 823 on the forehead support member 806 and a lace extending between these lace guides is supported in lace guides provided on the intermediate support wings 814, 816, and 818, and is also supported in lace guides provided on the support wings 808, 810, and 812.
- a lace guide 836 is supported on the third, rear right intermediate support wing 818.
- a lace guide 838 is supported on the second, middle right intermediate support wing 816.
- a lace guide 840 is supported on the first, front right intermediate support wing 814.
- a portion of a lace extending through lace guides 824 and 826 extends over or through the lace guide 836.
- a portion of a lace extending through lace guides 828 and 830 extends over or through the lace guide 838.
- a portion of a lace extending through lace guides 832 and 834 extends over or through the lace guide 840.
- Tension in a lace in the upper lace path tends to pull the intermediate support wings 814, 816, and 818 downwardly.
- a sliding lace guide 842 is supported on the rear yoke support member 804.
- the portion of the lace that is in the upper lace path and is adjacent to the rear yoke support member 804 may extend through the sliding lace guide 842 to a similar lacing system on the other side of the system 800. Alternatively, that portion of the lace may be fixedly connected to the rear yoke support member 804.
- Figure 26 is a perspective view of a helmet harness system according to another example of the invention.
- the parts of the system, indicated generally at 850 in Figure 26, maybe symmetrical along a longitudinal axis extending between the front of the system and the back of the system.
- the system comprises a central web 852 which extends, longitudinally, between a rear yoke support member 854 and a forehead support member 856.
- a first, front right support wing 858 extends downwardly from the central web 852.
- a second, rear right support wing 860 extends downwardly from the central . eb 852.
- a first, front right intermediate support wing 862 extends downwardly from the central web 852.
- a second, middle right intermediate support wing 864 extends downwardly from the central web 852.
- a third, rear right intermediate support wing 866 extends downwardly from the central web 852.
- the intermediate support wings 862, 864, and 866 extend a first given distance from the central web 852 and the support wings 858 and 860 extend a second given distance. The second distance is longer than the first distance. In other words, the intermediate support wings 862, 864, and 866 are shorter than the support wings 858 and 860.
- first, front right intermediate support wing 862 is between the forehead support member 856 and the first, front right support wing 858.
- the third, rear right intermediate support wing 866 is between the rear yoke support member 854 and the second, rear right support wing 860.
- the second, middle right intermediate support wing 864 is between the first, front right support wing 858 and the second, rear right support wing 860.
- a dial lace tightening mechanism 868 is supported on the rear yoke support member 854.
- a sliding lace guide 870 is supported on the rear yoke support member 854.
- a sliding lace guide 872 is supported on the forehead support member 856.
- a lower sliding lace path is defined between the lace guides 870 and 872 and a lace extending between these lace guides is supported in lace guides provided on the first, front right support wing 858 and the second, rear right support wing 860.
- lace guide 874 is supported on the second, rear right support wing 860.
- Lace guide 876 is supported on the first, front right support wing 858. Tension in a lace in the lower lace path tends to pull the support wings 860 and 858 downwardly.
- An upper sliding lace path is defined between the lace guide 870 on the rear yoke support member 870 and the sliding lace guide 872 on the forehead support member 856 and a lace extending between these lace guides is supported in lace guides provided on the intermediate support wings 862, 864, and 866, and is also supported in lace guides provided on the support wings 858 and 860.
- a lace guide 878 is supported on the third, rear right intermediate support wing 866.
- a lace guide 880 is supported on the second, middle right intermediate support wing 864.
- a lace guide 882 is supported on the first, front right intermediate support wing 862.
- a portion of a lace extending through" lace guides 870 and 874 extends over or through the lace guide 878.
- a portion of a lace extending through lace guides 874 and 876 extends over or through the lace guide 880.
- a portion of a lace extending through lace guides 876 and 872 extends over or through the lace guide 882.
- Tension in a lace in the upper lace path tends to pull the intermediate support wings 862, 864, and 866 downwardly, away from the central web 852.
- a sliding lace guide 884 is supported on the rear yoke support member 854.
- the portion of the lace that is in the upper lace path and is adjacent to the rear yoke support member 854 may extend through the sliding lace guide 884 to a similar lacing system on the other side of the system 800.
- that portion of the lace may be fixedly connected to the rear yoke support member 854.
- One or more of the lace guides 824, 826, 828, 830, 832, 834, 874, and 876 may be comprised of a cam slide secured in a slot for limited sliding movement.
- the lace guides and the lace tightening system cooperate so that the harness evenly and adjustably conforms to a wearer's head.
- the lace or laces
- the lace is tightened, it is tightened evenly along its length because the lace moves freely through the lace guides.
- the dual frame harness is indicated at 1000 in figures 30 and 31 and comprises an inner frame 1002 and an outer frame 1004.
- the outer frame 1004 is adapted to be connected to a helmet shell (not shown) in a suitable manner.
- connectors 1006 may be provided on the outer frame 1004 for connecting the outer frame to a helmet shell.
- adhesives, mechanical connectors, hook and loop connectors, and other connection means may be employed, singly or in combination, to secure the outer frame 1004 to a helmet shell.
- the outer frame 1004 (figure 29) comprises a rear yoke support member attachment area 1008 (figure 29) and a forehead support member 1010.
- the frame 1004 further comprises four support wings, namely, a front right outer support wing 1012, a rear right outer support wing 1014, a front left outer support wing 1016, and a rear left outer support wing 1018.
- the front right outer support wing 1012 is provided with a slot indicated at 1020 and the rear right outer support wing 1014 is provided with a slot indicated at 1022.
- the front left outer support wing 1016 is provided with a slot indicated at 1024 and the rear left outer support wing 1018 is provided with a slot indicated at 1026.
- the rear yoke support member attachment area 1008, the forehead support member 1010, the front right outer support wing 1012, the rear right outer support wing 1014, the front left outer support wing 1016, and the rear left outer support wing 1018 are connected to and connected to each other through a central web 1028.
- the connection may be such that the central web 1028 is integral with the attachment area 1008, the forehead support member 1010, and the wings 1012, 1014, 1016, and 1018 wings.
- the connection may be by way of adhesive or mechanical connectors or the like.
- a rear yoke support member 1030 (figures 30 and 31) extends from the web 1028 and may be connected thereto through the rear yoke support member attachment area 1008.
- the rear yoke support member may be integrally connected with the central web 1028.
- a dial lace tightening mechanism 1032 is connected to and supported on the rear yoke support member 1030.
- the inner 1002 (figure 2) comprises four support wings, namely, a front right inner support wing 1034, a rear right inner support wing 1036, a front left inner support wing 1038, and a rear left inner support wing 1040.
- the front right inner support wing 1034 is provided with a slot indicated at 1042 and the rear right inner support wing 1036 is provided with a slot indicated at 1044-
- the front left inner support wing 1038 is provided with a slot indicated at 1046 and the rear left inner support wing 1040 is provided with a slot indicated at 1048.
- the front right inner support wing 1034, the rear right inner support wing 1036, the front left inner support wing 1038, and the rear left inner support wing 1040 are connected to and connected to each other through a central web 1050.
- the connection may be such that the central web 1050 is integral with the front right inner support wing 1034, the rear right inner support wing 1036, the front left inner support wing 1038, and the rear left inner support wing 1040.
- the connection may be by way of adhesive or mechanical connectors or the like.
- the central webs 1028 and 1050 may be fixedly connected to each other mechanically, adhesively, or otherwise.
- the wings 1012, 1014, 1016, and 1018 wings may be connected to the front right inner support wing 1034, the rear right inner support wing 1036, the front left inner support wing 1038, and the rear left inner support wing 1040, respectively, to permit sliding movement therebetween.
- This sliding connection can be achieved through a cam slide type device 1052 shown from the side in figure 28.
- the cam slide 1052 comprises a central portion 1054, an inner flange 1056, and an outer flange 1058.
- a lace guide flange 1060 extends upwardly from the outer flange 1058 and has at least one lace guide opening 1062 and, in the configuration shown in figure 28, a second lace guide opening 1064.
- the cam slide 1052 is configured so that the central portion 1054 may be positioned in, and retained in, the slots in the inner frame 1002 and the corresponding slots in the outer frame 1004. Further, the cam slide 1052 is configured, relative to the slots in the inner frame 1002 and the slots in the outer frame 1004 so that, when corresponding slots such as slots 1020 and 1042 are aligned, the inner flange 1056 of the cam slide 1052 may be inserted into and through the slot 1020, and into and through the slot 1042 so that the central portion 1054 of the cam slide 1052 is within both slots 1020 and 1042 and so that a portion of the front right outer support wing 1012 surrounding the slot 1020 and a portion of the front right inner support wing surrounding the slot 1042 are held captive between the cam slide flanges 1056 and 1058.
- the length of the central portion 1054 of the cam slide 1052 and the length of the slots 1042, 1044, 1046, and 1048 are controlled so that sliding movement of the central portion 1054 in the slots is prevented or restricted to a short distance.
- the length of the central portion 1054 of the cam slide 1052 and the length of the slots 1020, 1022, 1024, and 1026 are controlled so that sliding movement of the central portion 1054 in the slots is permitted over a longer distance.
- a lacing system is provided in the helmet harness 100 and it comprises a lace 1066 with two ends which extend into the dial lace tightening mechanism 1032. From the side of the helmet harness visible in figures 30 and 31, the lace 1066 extends from the dial lace tightening mechanism 1032, through a lace guide 1068, openings 1070 and 1072 in the rear right outer support wing 1014, openings 1074 and 1076 in the front right outer support wing 1012, and around a lace guide 1078 on the forehead support member 1010.
- the lace 1066 returns to the rear of the helmet harness 1000 through opening 1076, a lace guide opening in the cam slide 1052 on the front right outer support wing 1012, openings 1074 and 1072, a lace guide opening in the cam slide 1052 on the. rear right outer support wing 1014, opening 1070, lace guides 1068 and 1080, and around to the other side of the helmet harness 1000 where it can be similarly laced.
- the helmet harness system of the invention may be combined with other features now known or hereinafter invented.
- the harness system may include an energy absorbing layer and/or a sliding facilitator such as those shown in patent application serial number 13/263,981 published February 21, 2013 under publication no. US 2013/0042397, the entire disclosure of which is incorporated herein by reference.
- a different lace tightening mechanism may be substituted for the dial lace tightening mechanism.
Landscapes
- Helmets And Other Head Coverings (AREA)
Abstract
Harnais de casque doté d'un système de serrage à lacet. Le harnais de casque est conçu pour être fixé à l'intérieur d'une coque de casque. Le harnais comprend un système de tensionnement de lacet et des guides de lacet pour répartir les forces découlant de la tension dans les lacets afin d'assurer un ajustement sûr, confortable et réglable. Un cadre intérieur et un cadre extérieur sont reliés par des glissières à came au niveau de leurs extrémités pour égaliser la tension appliquée circonférentiellement et la tension appliquée sur la tête de l'utilisateur, et pour absorber les forces de rotation appliquées à une coque de casque dans laquelle le harnais est fixé.
Applications Claiming Priority (4)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201562387472P | 2015-12-24 | 2015-12-24 | |
| US62/387,472 | 2015-12-24 | ||
| US201662389055P | 2016-02-16 | 2016-02-16 | |
| US62/389,055 | 2016-02-16 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2017111977A1 true WO2017111977A1 (fr) | 2017-06-29 |
Family
ID=59091061
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2016/000132 Ceased WO2017111977A1 (fr) | 2015-12-24 | 2016-12-27 | Harnais de casque |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US10588374B2 (fr) |
| WO (1) | WO2017111977A1 (fr) |
Cited By (4)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| RU2711562C1 (ru) * | 2019-04-29 | 2020-01-17 | Владимир Викторович Михайлов | УСТРОЙСТВО КРОВООСТАНАВЛИВАЮЩЕЕ (варианты) |
| RU2753117C1 (ru) * | 2020-09-02 | 2021-08-11 | Станислав Анатольевич Фролов | Способ выполнения кровоостанавливающего жгута |
| USD953648S1 (en) | 2017-03-16 | 2022-05-31 | Falcon Helmet Design & Engineering, Inc. | Protective headgear |
| GB2603282A (en) * | 2020-12-08 | 2022-08-03 | Lift Airborne Tech Llc | Helmet fit system |
Families Citing this family (15)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2015153641A1 (fr) | 2014-04-01 | 2015-10-08 | Bell Sports, Inc. | Revêtement de blocage pour casque |
| DK3203868T3 (da) * | 2014-10-09 | 2021-02-01 | Artisent Llc | Individuelt tilpassende støddæmpningsforing til en hjelm |
| US11457684B2 (en) | 2015-12-24 | 2022-10-04 | Brad W. Maloney | Helmet harness |
| US20180153243A1 (en) * | 2016-12-05 | 2018-06-07 | Brainguard Technologies, Inc. | Adjustable elastic shear protection in protective gear |
| US11357279B2 (en) * | 2017-05-09 | 2022-06-14 | Boa Technology Inc. | Closure components for a helmet layer and methods for installing same |
| US10656670B2 (en) * | 2018-06-04 | 2020-05-19 | Htc Corporation | Head-mounted display device |
| IT201800007484A1 (it) * | 2018-07-25 | 2020-01-25 | Nolangroup Spa | Casco di protezione con imbottitura di conforto regolabile |
| US11391546B2 (en) * | 2018-10-08 | 2022-07-19 | United Shield International LLC | Ballistic helmet with an accessory system |
| FR3094755B1 (fr) * | 2019-04-03 | 2021-04-30 | Safran Aircraft Engines | Carter intermédiaire portant des panneaux démontables pourvus d’organes de retenue |
| US20200383416A1 (en) * | 2019-06-07 | 2020-12-10 | Msa Technology, Llc | Adjustment Mechanism and Headband Arrangement for Flexible Helmet Headband |
| US11666112B2 (en) | 2019-11-27 | 2023-06-06 | Final Forge, LLC | Headborne attachment platform including system, devices and methods |
| US11700902B2 (en) | 2020-01-08 | 2023-07-18 | ArmorSource, LLC | Helmet retention system |
| US12019248B1 (en) * | 2020-09-15 | 2024-06-25 | Apple Inc. | Adjustable head securement for head-mountable device |
| EP4228467A4 (fr) | 2020-12-15 | 2024-09-04 | Valve Corporation | Visiocasque |
| US11633000B2 (en) | 2021-07-09 | 2023-04-25 | Hard Head Veterans LLC | Tactical helmet retention harness with snapback adjustment assembly |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5572749A (en) * | 1994-06-28 | 1996-11-12 | The Walt Disney Company | Helmet mounting device and system |
| US20070157370A1 (en) * | 2004-01-28 | 2007-07-12 | Pascal Joubert Des Ouches | Semi-rigid protective helmet |
| US20120011639A1 (en) * | 2010-07-13 | 2012-01-19 | Sport Maska Inc. | Helmet with rigid shell and adjustable liner |
| US20130239303A1 (en) * | 2012-03-13 | 2013-09-19 | Boa Technology, Inc. | Tightening systems |
| US20140096310A1 (en) * | 2012-10-04 | 2014-04-10 | Intellectual Property Holdings, Llc | Helmet retention system |
Family Cites Families (17)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2814043A (en) * | 1954-11-16 | 1957-11-26 | Anthony L Alesi | Nape strap |
| US3154788A (en) * | 1963-01-14 | 1964-11-03 | Electric Storage Battery Co | Safety hat adjustable suspension |
| US3991423A (en) | 1975-09-08 | 1976-11-16 | General Aquadyne, Inc. | Helmet with actuated neck pad |
| JPH0613216Y2 (ja) * | 1991-01-29 | 1994-04-06 | 昭栄化工株式会社 | ヘルメット |
| IT1284834B1 (it) | 1996-09-30 | 1998-05-22 | Camau System Di Casale & C S N | Dispositivo per adattare e fissare un casco alla testa dell'utente. |
| US7516914B2 (en) | 2004-05-07 | 2009-04-14 | Enventys, Llc | Bi-directional device |
| WO2009048794A1 (fr) * | 2007-10-10 | 2009-04-16 | 3M Innovative Properties Company | Suspension de tête ayant des bras de transition et un support arrière |
| US8032993B2 (en) | 2009-01-08 | 2011-10-11 | Bell Sports, Inc. | Adjustment mechanism |
| US8091148B2 (en) * | 2009-05-05 | 2012-01-10 | Chang-Hsien Ho | Fixing structure for safety helmet fastening strap |
| EP2347665A1 (fr) * | 2010-01-22 | 2011-07-27 | Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO | Elément de casque |
| SE534868C2 (sv) | 2010-05-07 | 2012-01-24 | Mips Ab | Hjälm med glidningsfrämjare anordnad vid ett energiabsorberande lager |
| EP2399472B1 (fr) | 2010-06-28 | 2013-01-30 | Lazer Sport NV | Système de rétention auto-réglable pour casque |
| DE102010027014A1 (de) * | 2010-07-13 | 2012-01-19 | Anton Pfanner | Innenausstattung für einen Schutzhelm, insbesondere für Forstarbeiter |
| KR101253075B1 (ko) * | 2010-12-13 | 2013-04-10 | 주식회사 오토스윙 | 헤드 밴드 |
| US8959723B2 (en) | 2010-12-30 | 2015-02-24 | Trek Bicycle Corporation | Adjustable and vented apparel closure assembly |
| US9021616B2 (en) * | 2012-04-25 | 2015-05-05 | David Baty | Protective gear |
| US20140259572A1 (en) | 2013-03-15 | 2014-09-18 | Brad W. Maloney | Buckle connector |
-
2016
- 2016-12-27 WO PCT/US2016/000132 patent/WO2017111977A1/fr not_active Ceased
- 2016-12-27 US US15/530,343 patent/US10588374B2/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5572749A (en) * | 1994-06-28 | 1996-11-12 | The Walt Disney Company | Helmet mounting device and system |
| US20070157370A1 (en) * | 2004-01-28 | 2007-07-12 | Pascal Joubert Des Ouches | Semi-rigid protective helmet |
| US20120011639A1 (en) * | 2010-07-13 | 2012-01-19 | Sport Maska Inc. | Helmet with rigid shell and adjustable liner |
| US20130239303A1 (en) * | 2012-03-13 | 2013-09-19 | Boa Technology, Inc. | Tightening systems |
| US20140096310A1 (en) * | 2012-10-04 | 2014-04-10 | Intellectual Property Holdings, Llc | Helmet retention system |
Cited By (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| USD953648S1 (en) | 2017-03-16 | 2022-05-31 | Falcon Helmet Design & Engineering, Inc. | Protective headgear |
| RU2711562C1 (ru) * | 2019-04-29 | 2020-01-17 | Владимир Викторович Михайлов | УСТРОЙСТВО КРОВООСТАНАВЛИВАЮЩЕЕ (варианты) |
| RU2753117C1 (ru) * | 2020-09-02 | 2021-08-11 | Станислав Анатольевич Фролов | Способ выполнения кровоостанавливающего жгута |
| GB2603282A (en) * | 2020-12-08 | 2022-08-03 | Lift Airborne Tech Llc | Helmet fit system |
| GB2603282B (en) * | 2020-12-08 | 2023-05-31 | Lift Airborne Tech Llc | Helmet fit system |
Also Published As
| Publication number | Publication date |
|---|---|
| US10588374B2 (en) | 2020-03-17 |
| US20170273390A1 (en) | 2017-09-28 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2017111977A1 (fr) | Harnais de casque | |
| US11457684B2 (en) | Helmet harness | |
| US7107624B2 (en) | Headmount apparatus for attaching and supporting devices | |
| US6701535B2 (en) | Adjustment mechanism for a headmount apparatus | |
| EP2399472B1 (fr) | Système de rétention auto-réglable pour casque | |
| US4279037A (en) | Adjustable headgear suspension | |
| US9897812B2 (en) | Strap system for virtual reality head-mounted display | |
| US9927618B2 (en) | Strap systems for head-mounted displays | |
| US10219577B1 (en) | Integrated fit and retention system | |
| US8545013B2 (en) | Wearable electronic display | |
| US11740056B2 (en) | Ballistic helmet with an accessory system | |
| EP0346618A2 (fr) | Ensemble, destiné à un casque, associant jugulaire et courroie pour la nuque | |
| US20100050324A1 (en) | Height-Adjustable Fit System | |
| CN107072345B (zh) | 头盔和头盔适配系统 | |
| US20080022441A1 (en) | Support structure for head-mounted optical devices | |
| US8459254B1 (en) | Nasal dilator | |
| WO2005096857A2 (fr) | Ensemble casque protecteur possedant un systeme de suspension leger | |
| US20180049505A1 (en) | Helmet Retention System | |
| KR20170108329A (ko) | 끈 조절기구를 구비한 마스크 | |
| US6428167B1 (en) | Eyewear with ponytail holder | |
| US11700902B2 (en) | Helmet retention system | |
| US20230380535A1 (en) | Helmet harness and coupler | |
| US20210100309A1 (en) | Helmet Harness and Coupler | |
| KR102042519B1 (ko) | 유아용 캐리어 | |
| KR102042518B1 (ko) | 유아용 캐리어 |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16879502 Country of ref document: EP Kind code of ref document: A1 |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 16879502 Country of ref document: EP Kind code of ref document: A1 |