WO2017192660A1 - Procédé et systèmes pour l'administration de gaz enrichi en oxygène - Google Patents
Procédé et systèmes pour l'administration de gaz enrichi en oxygène Download PDFInfo
- Publication number
- WO2017192660A1 WO2017192660A1 PCT/US2017/030748 US2017030748W WO2017192660A1 WO 2017192660 A1 WO2017192660 A1 WO 2017192660A1 US 2017030748 W US2017030748 W US 2017030748W WO 2017192660 A1 WO2017192660 A1 WO 2017192660A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- breath
- time
- oxygen
- enriched gas
- user
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/1005—Preparation of respiratory gases or vapours with O2 features or with parameter measurement
- A61M16/101—Preparation of respiratory gases or vapours with O2 features or with parameter measurement using an oxygen concentrator
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/06—Respiratory or anaesthetic masks
- A61M16/0666—Nasal cannulas or tubing
- A61M16/0672—Nasal cannula assemblies for oxygen therapy
- A61M16/0677—Gas-saving devices therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/105—Filters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/20—Valves specially adapted to medical respiratory devices
- A61M16/201—Controlled valves
- A61M16/202—Controlled valves electrically actuated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
- B01D53/047—Pressure swing adsorption
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/105—Filters
- A61M16/1055—Filters bacterial
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/105—Filters
- A61M16/106—Filters in a path
- A61M16/107—Filters in a path in the inspiratory path
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/0015—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
- A61M2016/0018—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/0015—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
- A61M2016/0018—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical
- A61M2016/0024—Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors electrical with an on-off output signal, e.g. from a switch
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/0027—Accessories therefor, e.g. sensors, vibrators, negative pressure pressure meter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/003—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
- A61M2016/0033—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
- A61M2016/0039—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the inspiratory circuit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/0003—Accessories therefor, e.g. sensors, vibrators, negative pressure
- A61M2016/003—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
- A61M2016/0033—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical
- A61M2016/0042—Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter electrical in the expiratory circuit
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. ventilators; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
- A61M16/1005—Preparation of respiratory gases or vapours with O2 features or with parameter measurement
- A61M2016/102—Measuring a parameter of the content of the delivered gas
- A61M2016/1025—Measuring a parameter of the content of the delivered gas the O2 concentration
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/18—General characteristics of the apparatus with alarm
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3306—Optical measuring means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/33—Controlling, regulating or measuring
- A61M2205/3375—Acoustical, e.g. ultrasonic, measuring means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3546—Range
- A61M2205/3569—Range sublocal, e.g. between console and disposable
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3576—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
- A61M2205/3584—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using modem, internet or bluetooth
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/35—Communication
- A61M2205/3576—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
- A61M2205/3592—Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/42—Reducing noise
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/50—General characteristics of the apparatus with microprocessors or computers
- A61M2205/502—User interfaces, e.g. screens or keyboards
- A61M2205/505—Touch-screens; Virtual keyboard or keypads; Virtual buttons; Soft keys; Mouse touches
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/58—Means for facilitating use, e.g. by people with impaired vision
- A61M2205/587—Lighting arrangements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/75—General characteristics of the apparatus with filters
- A61M2205/7545—General characteristics of the apparatus with filters for solid matter, e.g. microaggregates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2230/00—Measuring parameters of the user
- A61M2230/40—Respiratory characteristics
- A61M2230/42—Rate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2253/00—Adsorbents used in seperation treatment of gases and vapours
- B01D2253/10—Inorganic adsorbents
- B01D2253/106—Silica or silicates
- B01D2253/108—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/14—Ozone
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/10—Single element gases other than halogens
- B01D2257/102—Nitrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/06—Polluted air
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/45—Gas separation or purification devices adapted for specific applications
- B01D2259/4533—Gas separation or purification devices adapted for specific applications for medical purposes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/45—Gas separation or purification devices adapted for specific applications
- B01D2259/4541—Gas separation or purification devices adapted for specific applications for portable use, e.g. gas masks
Definitions
- TITLE METHOD AND SYSTEMS FOR THE DELIVERY OF OXYGEN ENRICHED
- the present invention relates generally to methods and system that provide oxygen enriched gas to a subject.
- LTOT Long Term Oxygen Therapy
- COPD Chronic Obstructive Pulmonary Disease
- Doctors may prescribe oxygen concentrators or portable tanks of medical oxygen for these patients.
- a specific oxygen flow rate is prescribed (e.g., 1 liter per minute (LPM), 2 LPM, 3 LPM, etc.).
- LPM liter per minute
- Experts in this field have also recognized that exercise for these patients provide long term benefits that slow the progression of the disease, improve quality of life and extend patient longevity.
- Most stationary forms of exercise like tread mills and stationary bicycles, however, are too strenuous for these patients.
- the need for mobility has long been recognized.
- this mobility has been facilitated by the use of small compressed oxygen tanks.
- the disadvantage of these tanks is that they have a finite amount of oxygen and they are heavy, weighing about 50 pounds, when mounted on a cart with dolly wheels.
- Oxygen concentrators have been in use for about 50 years to supply patients suffering from respiratory insufficiency with supplemental oxygen.
- Traditional oxygen concentrators used to provide these flow rates have been bulky and heavy making ordinary ambulatory activities with them difficult and impractical.
- companies that manufacture large stationary home oxygen concentrators began developing portable oxygen concentrators, POCs.
- POCs concentrators The advantage of POCs concentrators was that they can produce a theoretically endless supply of oxygen. In order to make these devices small for mobility, the various systems necessary for the production of oxygen enriched gas are condensed.
- a method of providing oxygen enriched gas to a user of an oxygen concentrator includes: measuring the time between at least three successive breaths, wherein a breath is determined to begin when a drop in pressure is measured using a pressure sensor coupled to an outlet of a conduit coupling the user to an oxygen enriched gas source; determining an average breathing rate based on the time between each of the successive breaths, wherein the time between the penultimate breath and the last breath is not used to determine the average breathing rate; and setting an inspiration breath pressure threshold for the pressure sensor based on the determined average breathing rate.
- the time is measured between six successive breaths. Adjusting the inspiration breath pressure threshold based on the average breathing rate, in some embodiments, is performed automatically.
- the oxygen enriched gas source may be an oxygen concentrator system or an oxygen tank.
- the threshold inspiration pressure is lowered when the determined average breathing rate changes from greater than 10 breaths per minute to less than 10 breaths per minute. In some embodiments, the threshold inspiration pressure is increased when the determined average breathing rate changes from less than 15 breaths per minute to greater than 15 breaths per minute.
- the inspiration breath pressure threshold may be maintained at a current setting when the average breathing rate is between about 10 breaths per minute and about 15 breaths per minute.
- the method further includes switching to an active mode, a sedentary mode, or remaining at the current mode based on the average breathing rate.
- an active mode may be implemented when the average breathing rate comprises at least 15 breaths per minute.
- a sedentary mode may be activated when the average breathing rate comprises less than 10 breaths per minute.
- an oxygen concentrator apparatus includes: a pressure sensor, the pressure sensor configured to detect a breath pressure of a user; and a processor operable coupled to the pressure sensor.
- the processor is capable of executing non-transitory program instructions, wherein the program instructions are operable to: automatically measure the time between at least three successive breaths, wherein a breath is determined to begin when a drop in pressure is measured using the pressure sensor; determine an average breathing rate based on the time between each of the successive breaths, wherein the time between the penultimate breath and the last breath is not used to determine the average breathing rate; and set an inspiration breath pressure threshold for the pressure sensor based on the determined average breathing rate.
- a method of providing oxygen enriched gas to a user of an oxygen concentrator includes: measuring the time between a plurality of successive breaths, wherein a breath is determined to begin when a drop in pressure is measured using a pressure sensor coupled to an outlet of a conduit coupling the user to an oxygen enriched gas source; determining an average time between each of the successive breaths, wherein the time between the penultimate breath and the last breath is not used to determine the average time; and setting an inspiration breath pressure threshold for the pressure sensor based on the determined average time, wherein the breath pressure threshold is set to an active mode breath pressure threshold if the average time is less than a predefined time, and wherein the breath pressure threshold is set to a sleep mode breath pressure threshold if the average time is greater than a predefined time, wherein the sleep mode breath pressure threshold is lower than the active mode breath pressure threshold; measuring the time since the penultimate breath and the time since the last breath when in sleep mode; and automatically providing oxygen enriched gas to the user if the sum of the time since the
- the predefined time is between about 8 seconds and about 12 seconds.
- the function of the determined average breathing time is a constant times the determined average breathing time, wherein the constant is between 1.5 and 2.5.
- the method also includes measuring the time since the penultimate breath, wherein if two breaths are not received within a predetermined time, a false breath time is added to the successive breaths and the average calculated. In one embodiment, the method includes measuring the time between at least six successive breaths, wherein the time between the 5 th breath and the 6 th breath is not used to determine the average time.
- automatically providing oxygen enriched gas comprises delivering oxygen enriched gas to the user every 3 - 4 seconds.
- the time between each automatic delivery of oxygen enriched gas is varied randomly between 3-4 seconds.
- the time between each automatic delivery of oxygen enriched gas is varied by a constant amount, cycling between 3-4 seconds.
- the automatic delivery of oxygen enriched gas to the user is discontinued if a breath is detected from the user.
- FIG. 1 depicts a schematic diagram of an embodiment of the components of an oxygen concentrator
- FIG. 2 depicts a schematic diagram of an embodiment of the outlet components of an oxygen concentrator
- FIG. 3 depicts a schematic diagram of an embodiment of an outlet conduit for an oxygen concentrator
- FIG. 4 depicts a perspective view of an embodiment of a dissembled canister system
- FIG. 5 depicts a perspective view of an embodiment of an end of a canister system
- FIG. 6 depicts the assembled end of an embodiment of the canister system end depicted in FIG. 5;
- FIG. 7 depicts a perspective view of an embodiment of an opposing end of the canister system depicted in FIG. 4 and 5;
- FIG. 8 depicts a perspective view of an embodiment of the assembled opposing end of the canister system end depicted in FIG. 7;
- FIG. 9 depicts various profiles of embodiments for providing oxygen enriched gas from an oxygen concentrator.
- FIG. 10 depicts a flowchart of a process for adjusting the inspiration breath pressure threshold.
- the term “coupled” as used herein means either a direct connection or an indirect connection (e.g., one or more intervening connections) between one or more objects or components.
- the phrase “connected” means a direct connection between objects or components such that the objects or components are connected directly to each other.
- the phrase “obtaining” a device means that the device is either purchased or constructed.
- Oxygen concentrators take advantage of pressure swing adsorption (PSA).
- PSA pressure swing adsorption
- Pressure swing adsorption involves using a compressor to increase gas pressure inside a canister that contains particles of a gas separation adsorbent. As the pressure increases, certain molecules in the gas may become adsorbed onto the gas separation adsorbent. Removal of a portion of the gas in the canister under the pressurized conditions allows separation of the non-adsorbed molecules from the adsorbed molecules. The gas separation adsorbent may be regenerated by reducing the pressure, which reverses the adsorption of molecules from the adsorbent. Further details regarding oxygen concentrators may be found, for example, in U. S. Published Patent Application No. 2009-0065007, published March 12, 2009, and entitled "Oxygen Concentrator Apparatus and Method", which is incorporated herein by reference.
- Ambient air usually includes approximately 78% nitrogen and 21% oxygen with the balance comprised of argon, carbon dioxide, water vapor and other trace elements.
- a gas mixture such as air, for example, is passed under pressure through a vessel containing a gas separation adsorbent bed that attracts nitrogen more strongly than it does oxygen, part or all of the nitrogen will stay in the bed, and the gas coming out of the vessel will be enriched in oxygen.
- the bed When the bed reaches the end of its capacity to adsorb nitrogen, it can be regenerated by reducing the pressure, thereby releasing the adsorbed nitrogen. It is then ready for another cycle of producing oxygen enriched air.
- one canister can be collecting oxygen while the other canister is being purged (resulting in a continuous separation of the oxygen from the nitrogen). In this manner, oxygen can be accumulated out of the air for a variety of uses include providing supplemental oxygen to patients.
- FIG. 1 illustrates a schematic diagram of an oxygen concentrator 100, according to an embodiment.
- Oxygen concentrator 100 may concentrate oxygen out of an air stream to provide oxygen enriched gas to a user.
- oxygen enriched gas is composed of at least about 50% oxygen, at least about 60% oxygen, at least about 70% oxygen, at least about 80% oxygen, at least about 90% oxygen, at least about 95% oxygen, at least about 98% oxygen, or at least about 99% oxygen.
- Oxygen concentrator 100 may be a portable oxygen concentrator.
- oxygen concentrator 100 may have a weight and size that allows the oxygen concentrator to be carried by hand and/or in a carrying case.
- oxygen concentrator 100 has a weight of less than about 20 lbs., less than about 15 lbs., less than about 10 lbs., or less than about 5 lbs.
- oxygen concentrator 100 has a volume of less than about 1000 cubic inches, less than about 750 cubic inches; less than about 500 cubic inches, less than about 250 cubic inches, or less than about 200 cubic inches.
- Oxygen may be collected from ambient air by pressurizing ambient air in canisters 302 and 304, which include a gas separation adsorbent.
- Gas separation adsorbents useful in an oxygen concentrator are capable of separating at least nitrogen from an air stream to produce oxygen enriched gas.
- gas separation adsorbents include molecular sieves that are capable of separation of nitrogen from an air stream.
- adsorbents that may be used in an oxygen concentrator include, but are not limited to, zeolites (natural) or synthetic crystalline aluminosilicates that separate nitrogen from oxygen in an air stream under elevated pressure.
- Examples of synthetic crystalline aluminosilicates that may be used include, but are not limited to: OXYSIV adsorbents available from UOP LLC, Des Plaines, IW; SYLOBEAD adsorbents available from W. R. Grace & Co, Columbia, MD; SILIPORITE adsorbents available from CECA S.A. of Paris, France; ZEOCHEM adsorbents available from Zeochem AG, Uetikon, Switzerland; and AgLiLSX adsorbent available from Air Products and Chemicals, Inc.,
- air may enter the oxygen concentrator through air inlet 106.
- Air may be drawn into air inlet 106 by compression system 200.
- Compression system 200 may draw in air from the surroundings of the oxygen concentrator and compress the air, forcing the compressed air into one or both canisters 302 and 304.
- an inlet muffler 108 may be coupled to air inlet 106 to reduce sound produced by air being pulled into the oxygen generator by compression system 200.
- inlet muffler 108 may be a moisture and sound absorbing muffier.
- a water absorbent material such as a polymer water absorbent material or a zeolite material
- Compression system 200 may include one or more compressors capable of compressing air.
- compression system may include one, two, three, four, or more compressors.
- Compression system 200 as depicted that includes compressor 210 and motor 220. Motor 220 is coupled to compressor 210 and provides an operating force to the compressor to operate the compression mechanism.
- Pressurized air, produced by compression system 200 may be forced into one or both of the canisters 302 and 304.
- the ambient air may be pressurized in the canisters to a pressure approximately in a range of 13-20 pounds per square inch (psi). Other pressures may also be used, depending on the type of gas separation adsorbent disposed in the canisters.
- motor 220 is coupled to a pressurizing device (e.g. piston pump or a diaphragm pump).
- the pressuring device may be a piston pump that has multiple pistons. During operation, the pistons may be selectively turned on or off.
- motor 220 may be coupled to multiple pumps. Each pump may be selectively turned on or off.
- controller 400 may determine which pumps or pistons should be operated based on predetermined operating conditions.
- inlet valves 122/124 and outlet valves 132/134 Coupled to each canister 302/304 are inlet valves 122/124 and outlet valves 132/134. As shown in FIG. 1, inlet valve 122 is coupled to canister 302 and inlet valve 124 is coupled to canister 304. Outlet valve 132 is coupled to canister 302 and outlet valve 134 is coupled to canister 304. Inlet valves 122/124 are used to control the passage of air from compression system 200 to the respective canisters. Outlet valves 132/134 are used to release gas from the respective canisters during a venting process. In some embodiments, inlet valves 122/124 and outlet valves 132/134 may be silicon plunger solenoid valves. Other types of valves, however, may be used. Plunger valves offer advantages over other kinds of valves by being quiet and having low slippage.
- a two-step valve actuation voltage may be used to control inlet valves 122/124 and outlet valves 132/134.
- a high voltage e.g., 24 V
- the voltage may then be reduced (e.g., to 7 V) to keep the inlet valve open.
- Power Voltage * Current). This reduction in voltage minimizes heat buildup and power consumption to extend run time from the battery. When the power is cut off to the valve, it closes by spring action.
- the voltage may be applied as a function of time that is not necessarily a stepped response (e.g., a curved downward voltage between an initial 24 V and a final 7 V).
- air may be pulled into the oxygen concentrator through compressors 305, 310.
- air may flow from compressors 305, 310 to canisters 302, 304.
- one of valves 122 or 124 may be closed (e.g., as signaled by controller 400) resulting in the combined output of both compressors 305, 310 lowing through the other respective valve 122 or 124 into a respective canister 302, 304.
- valve 124 is closed, the air from both compressors 305, 310 may flow through valve 122.
- valve 122 is closed, the air from both compressors 305, 310 may flow through valve 124.
- valve 122 and valve 124 may alternate to alternately direct the air from the compressors 305, 310 into respective canisters 302 or 304.
- pressurized air is sent into one of canisters 302 or 304 while the other canister is being vented.
- inlet valve 122 is opened while inlet valve 124 is closed.
- Pressurized air from compression system 200 is forced into canister 302, while being inhibited from entering canister 304 by inlet valve 124.
- a controller 400 is electrically coupled to valves 122, 124, 132, and 134.
- Controller 400 includes one or more processors 410 operable to execute program instructions stored in memory 420. The program instructions are operable to perform various predefined methods that are used to operate the oxygen concentrator.
- Controller 400 may include program instructions for operating inlet valves 122 and 124 out of phase with each other, i.e., when one of inlet valves 122 or 124 is opened, the other valve is closed. During pressurization of canister 302, outlet valve 132 is closed and outlet valve 134 is opened. Similar to the inlet valves, outlet valves 132 and 134 are operated out of phase with each other. In some embodiments, the voltages and the duration of the voltages used to open the input and output valves may be controlled by controller 400.
- Check valves 142 and 144 are coupled to canisters 302 and 304, respectively.
- Check valves 142 and 144 are one way valves that are passively operated by the pressure differentials that occur as the canisters are pressurized and vented.
- Check valves 142 and 144 are coupled to canisters to allow oxygen produced during pressurization of the canister to flow out of the canister, and to inhibit back flow of oxygen or any other gases into the canister. In this manner, check valves 142 and 144 act as one way valves allowing oxygen enriched gas to exit the respective canister during pressurization.
- check valve refers to a valve that allows flow of a fluid (gas or liquid) in one direction and inhibits back flow of the fluid.
- Examples of check valves that are suitable for use include, but are not limited to: a ball check valve; a diaphragm check valve; a butterfly check valve; a swing check valve; a duckbill valve; and a lift check valve.
- the nonadsorbed gas molecules (mainly oxygen) flow out of the pressurized canister when the pressure reaches a point sufficient to overcome the resistance of the check valve coupled to the canister.
- the pressure drop of the check valve in the forward direction is less than 1 psi.
- the break pressure in the reverse direction is greater than 100 psi. It should be understood, however, that modification of one or more components would alter the operating parameters of these valves. If the forward flow pressure is increased, there is, generally, a reduction in oxygen enriched gas production. If the break pressure for reverse flow is reduced or set too low, there is, generally, a reduction in oxygen enriched gas pressure.
- canister 302 is pressurized by compressed air produced in compression system 200 and passed into canister 302.
- inlet valve 122 is open
- outlet valve 132 is closed
- inlet valve 124 is closed
- outlet valve 134 is open.
- Outlet valve 134 is opened when outlet valve 132 is closed to allow substantially simultaneous venting of canister 304 while canister 302 is pressurized.
- Canister 302 is pressurized until the pressure in canister is sufficient to open check valve 142.
- Oxygen enriched gas produced in canister 302 exits through check valve and, in one embodiment, is collected in accumulator 106.
- the gas separation adsorbent in canister 302 After some time the gas separation adsorbent will become saturated with nitrogen and will be unable to separate significant amounts of nitrogen from incoming air. This point is usually reached after a predetermined time of oxygen enriched gas production.
- the inflow of compressed air is stopped and canister 302 is vented to remove nitrogen.
- inlet valve 122 is closed, and outlet valve 132 is opened.
- canister 304 While canister 302 is being vented, canister 304 is pressurized to produce oxygen enriched gas in the same manner described above. Pressurization of canister 304 is achieved by closing outlet valve 134 and opening inlet valve 124.
- the oxygen enriched gas exits canister 304 through check valve 144.
- outlet valve 132 is opened allowing pressurized gas (mainly nitrogen) to exit the canister through concentrator outlet 130.
- the vented gases may be directed through muffler 133 to reduce the noise produced by releasing the pressurized gas from the canister.
- pressure in the canister drops. The drop in pressure may allow the nitrogen to become desorbed from the gas separation adsorbent. The released nitrogen exits the canister through outlet 130, resetting the canister to a state that allows renewed separation of oxygen from an air stream.
- Muffler 133 may include open cell foam (or another material) to muffle the sound of the gas leaving the oxygen concentrator.
- the combined muffling components/techniques for the input of air and the output of gas may provide for oxygen concentrator operation at a sound level below 50 decibels.
- a majority of the nitrogen is removed.
- at least about 50%, at least about 60%, at least about 70%, at least about 80%, at least about 90%, at least about 95%, at least about 98%, or substantially all of the nitrogen in a canister is removed before the canister is re-used to separate oxygen from air.
- a canister may be further purged of nitrogen using an oxygen enriched stream that is introduced into the canister from the other canister.
- a portion of the oxygen enriched gas may be transferred from canister 302 to canister 304 when canister 304 is being vented of nitrogen. Transfer of oxygen enriched gas from canister 302 to 304, during venting of canister 304, helps to further purge nitrogen (and other gases) from the canister.
- oxygen enriched gas may travel through flow restrictors 151, 153, and 155 between the two canisters.
- Flow restrictor 151 may be a trickle flow restrictor.
- Flow restrictor 151 for example, may be a 0.009D flow restrictor (e.g., the flow restrictor has a radius of 0.009 inches which is less than the diameter of the tube it is inside).
- Flow restrictors 153 and 155 may be 0.013D flow restrictors. Other flow restrictor types and sizes are also contemplated and may be used depending on the specific configuration and tubing used to couple the canisters.
- the flow restrictors may be press fit flow restrictors that restrict air flow by introducing a narrower diameter in their respective tube.
- the press fit flow restrictors may be made of sapphire, metal or plastic (other materials are also contemplated).
- Flow of oxygen enriched gas is also controlled by use of valve 152 and valve 154.
- Valves 152 and 154 may be opened for a short duration during the venting process (and may be closed otherwise) to prevent excessive oxygen loss out of the purging canister. Other durations are also contemplated.
- canister 302 is being vented and it is desirable to purge canister 302 by passing a portion of the oxygen enriched gas being produced in canister 304 into canister 302. A portion of oxygen enriched gas, upon pressurization of canister 304, will pass through flow restrictor 151 into canister 302 during venting of canister 302. Additional oxygen enriched air is passed into canister 302, from canister 304, through valve 154 and flow restrictor 155.
- Valve 152 may remain closed during the transfer process, or may be opened if additional oxygen enriched gas is needed.
- the selection of appropriate flow restrictors 151 and 155, coupled with controlled opening of valve 154 allows a controlled amount of oxygen enriched gas to be sent from canister 304 to 302.
- the controlled amount of oxygen enriched gas is an amount sufficient to purge canister 302 and minimize the loss of oxygen enriched gas through venting valve 132 of canister 302. While this embodiment describes venting of canister 302, it should be understood that the same process can be used to vent canister 304 using flow restrictor 151, valve 152 and flow restrictor 153.
- the pair of equalization/vent valves 152/154 work with flow restrictors 153 and 155 to optimize the air flow balance between the two canisters. This may allow for better flow control for venting the canisters with oxygen enriched gas from the other of the canisters. It may also provide better flow direction between the two canisters. It has been found that, while flow valves 152/154 may be operated as bi-directional valves, the flow rate through such valves varies depending on the direction of fluid flowing through the valve. For example, oxygen enriched gas flowing from canister 304 toward canister 302 has a flow rate faster through valve 152 than the flow rate of oxygen enriched gas flowing from canister 302 toward canister 304 through valve 152.
- the air pathway may not have restrictors but may instead have a valve with a built in resistance or the air pathway itself may have a narrow radius to provide resistance.
- oxygen concentrator may be shut down for a period of time.
- the temperature inside the canisters may drop as a result of the loss of adiabatic heat from the compression system. As the temperature drops, the volume occupied by the gases inside the canisters will drop. Cooling of the canisters may lead to a negative pressure in the canisters. Valves (e.g., valves 122, 124, 132, and 134) leading to and from the canisters are dynamically sealed rather than hermetically sealed. Thus, outside air may enter the canisters after shutdown to accommodate the pressure differential. When outside air enters the canisters, moisture from the outside air may condense inside the canister as the air cools. Condensation of water inside the canisters may lead to gradual degradation of the gas separation adsorbents, steadily reducing ability of the gas separation adsorbents to produce oxygen enriched gas.
- outside air may be inhibited from entering canisters after the oxygen concentrator is shut down by pressurizing both canisters prior to shut down.
- the valves By storing the canisters under a positive pressure, the valves may be forced into a hermetically closed position by the internal pressure of the air in the canisters.
- the pressure in the canisters, at shutdown should be at least greater than ambient pressure.
- ambient pressure refers to the pressure of the surroundings that the oxygen generator is located (e.g. the pressure inside a room, outside, in a plane, etc.).
- the pressure in the canisters, at shutdown is at least greater than standard atmospheric pressure (i.e., greater than 760 mmHg (Torr), 1 atm, 101,325 Pa). In an embodiment, the pressure in the canisters, at shutdown, is at least about 1.1 times greater than ambient pressure; is at least about 1.5 times greater than ambient pressure; or is at least about 2 times greater than ambient pressure.
- pressurization of the canisters may be achieved by directing pressurized air into each canister from the compression system and closing all valves to trap the pressurized air in the canisters.
- inlet valves 122 and 124 are opened and outlet valves 132 and 134 are closed. Because inlet valves 122 and 124 are joined together by a common conduit, both canisters 302 and 304 may become pressurized as air and or oxygen enriched gas from one canister may be transferred to the other canister. This situation may occur when the pathway between the compression system and the two inlet valves allows such transfer.
- the oxygen generator operates in an alternating pressurize/venting mode, at least one of the canisters should be in a pressurized state at any given time.
- the pressure may be increased in each canister by operation of compression system 200.
- inlet valves 122 and 124 When inlet valves 122 and 124 are opened, pressure between canisters 302 and 304 will equalize, however, the equalized pressure in either canister may not be sufficient to inhibit air from entering the canisters during shutdown.
- compression system 200 may be operated for a time sufficient to increase the pressure inside both canisters to a level at least greater than ambient pressure.
- inlet valves 122 and 124 are closed, trapping the pressurized air inside the canisters, which inhibits air from entering the canisters during the shutdown period.
- An outlet system coupled to one or more of the canisters, includes one or more conduits for providing oxygen enriched gas to a user.
- oxygen enriched gas produced in either of canisters 302 and 304 is collected in accumulator 106 through check valves 142 and 144, respectively, as depicted schematically in FIG. 1.
- the oxygen enriched gas leaving the canisters may be collected in oxygen accumulator 106 prior to being provided to a user.
- a tube may be coupled to accumulator 106 to provide the oxygen enriched gas to the user.
- Oxygen enriched gas may be provided to the user through an airway delivery device that transfer the oxygen enriched gas to the user' s mouth and/or nose.
- an outlet may include a tube that directs the oxygen toward a user's nose and/or mouth that may not be directly coupled to the user's nose.
- Supply valve 160 may be coupled to outlet tube to control the release of the oxygen enriched gas from accumulator 106 to the user.
- supply valve 160 is an electromagnetically actuated plunger valve.
- Supply valve 160 is actuated by controller 400 to control the delivery of oxygen enriched gas to a user.
- Actuation of supply valve 160 is not timed or synchronized to the pressure swing adsorption process. Instead, actuation is, in some embodiments, synchronized to the patient' s breathing. Additionally, supply valve 160 may have multiple actuations to help establish a clinically effective flow profile for providing oxygen enriched gas.
- Oxygen enriched gas in accumulator 106 passes through supply valve 160 into expansion chamber 170 as depicted in FIG. 2.
- expansion chamber may include one or more devices capable of being used to determine an oxygen concentration of gas passing through the chamber.
- Oxygen enriched gas in expansion chamber 170 builds briefly, through release of gas from accumulator by supply valve 160, and then is bled through small orifice flow restrictor 175 to flow rate sensor 185 and then to particulate filter 187.
- Flow restrictor 175 may be a 0.025 D flow restrictor. Other flow restrictor types and sizes may be used.
- the diameter of the air pathway in the housing may be restricted to create restricted air flow.
- Flow rate sensor 185 may be any sensor capable of assessing the rate of gas flowing through the conduit.
- Particulate filter 187 may be used to filter bacteria, dust, granule particles, etc. prior to delivery of the oxygen enriched gas to the user.
- the oxygen enriched gas passes through filter 187 to connector 190 which sends the oxygen enriched gas to the user via conduit 192 and to pressure sensor 194.
- the fluid dynamics of the outlet pathway results in a bolus of oxygen being provided at the correct time and with a flow profile that assures rapid delivery into the patient' s lungs without any excessive flow rates that would result in wasted retrograde flow out the nostrils and into the atmosphere.
- the total volume of the bolus required for prescriptions is equal to 11 mL for each LPM, i.e., 1 1 mL for a prescription of 1 LPM; 22 mL for a prescription of 2 LPM; 33 mL for a prescription of 3 LPM; 44 mL for a prescription of 4 LPM; 55 mL for a prescription of 5 LPM; etc.
- This is generally referred to as the LPM equivalent.
- the LPM equivalent may vary between apparatus due to differences in construction design, tubing size, chamber size, etc.
- Expansion chamber 170 may include one or more oxygen sensors capable of being used to determine an oxygen concentration of gas passing through the chamber.
- the oxygen concentration of gas passing through expansion chamber 170 is assessed using oxygen sensor 165.
- An oxygen sensor is a device capable of detecting oxygen in a gas. Examples of oxygen sensors include, but are not limited to, ultrasonic oxygen sensors, electrical oxygen sensors, and optical oxygen sensors.
- oxygen sensor 165 is an ultrasonic oxygen sensor that includes ultrasonic emitter 166 and ultrasonic receiver 168.
- ultrasonic emitter 166 may include multiple ultrasonic emitters and ultrasonic receiver 168 may include multiple ultrasonic receivers.
- the multiple ultrasonic emitters and multiple ultrasonic receivers may be axially aligned (e.g., across the gas mixture flow path which may be perpendicular to the axial alignment).
- an ultrasonic sound wave (from emitter 166) may be directed through oxygen enriched gas disposed in chamber 170 to receiver 168.
- Ultrasonic sensor assembly may be based on detecting the speed of sound through the gas mixture to determine the composition of the gas mixture (e.g., the speed of sound is different in nitrogen and oxygen). In a mixture of the two gases, the speed of sound through the mixture may be an intermediate value proportional to the relative amounts of each gas in the mixture.
- the sound at the receiver 168 is slightly out of phase with the sound sent from emitter 166. This phase shift is due to the relatively slow velocity of sound through a gas medium as compared with the relatively fast speed of the electronic pulse through wire.
- the phase shift is proportional to the distance between the emitter and the receiver and the speed of sound through the expansion chamber.
- the density of the gas in the chamber affects the speed of sound through the chamber and the density is proportional to the ratio of oxygen to nitrogen in the chamber. Therefore, the phase shift can be used to measure the concentration of oxygen in the expansion chamber. In this manner the relative concentration of oxygen in the accumulation chamber may be assessed as a function of one or more properties of a detected sound wave traveling through the accumulation chamber.
- multiple emitters 166 and receivers 168 may be used.
- the readings from the emitters 166 and receivers 168 may be averaged to cancel errors that may be inherent in turbulent flow systems.
- the presence of other gases may also be detected by measuring the transit time and comparing the measured transit time to predetermined transit times for other gases and/or mixtures of gases.
- the sensitivity of the ultrasonic sensor system may be increased by increasing the distance between emitter 166 and receiver 168, for example to allow several sound wave cycles to occur between emitter 166 and the receiver 168.
- the influence of structural changes of the transducer may be reduced by measuring the phase shift relative to a fixed reference at two points in time. If the earlier phase shift is subtracted from the later phase shift, the shift caused by thermal expansion of expansion chamber 170 may be reduced or cancelled.
- the shift caused by a change of the distance between emitter 166 and receiver 168 may be the approximately the same at the measuring intervals, whereas a change owing to a change in oxygen concentration may be cumulative.
- the shift measured at a later time may be multiplied by the number of intervening cycles and compared to the shift between two adjacent cycles. Further details regarding sensing of oxygen in the expansion chamber may be found, for example, in U.S. Published Patent Application No. 2009-0065007, published March 12, 2009, and entitled "Oxygen Concentrator Apparatus and Method, which is incorporated herein by reference.
- Flow rate sensor 185 may be used to determine the flow rate of gas flowing through the outlet system.
- Flow rate sensors that may be used include, but are not limited to: diaphragm/bellows flow meters; rotary flow meters (e.g. Hall Effect flow meters); turbine flow meters; orifice flow meters; and ultrasonic flow meters.
- Flow rate sensor 185 may be coupled to controller 400.
- the rate of gas flowing through the outlet system may be an indication of the breathing volume of the user. Changes in the flow rate of gas flowing through the outlet system may also be used to determine a breathing rate of the user.
- Controller 400 may control actuation of supply valve 160 based on the breathing rate and/or breathing volume of the user, as assessed by flow rate sensor 185
- ultrasonic sensor system 165 and, for example, flow rate sensor
- follow rate sensor 185 may measure a volume of gas (based on flow rate) provided and ultrasonic sensor system 165 may provide the concentration of oxygen of the gas provided. These two measurements together may be used by controller 400 to determine an approximation of the actual amount of oxygen provided to the user.
- Oxygen enriched gas passes through flow meter 185 to filter 187.
- Filter 187 removes bacteria, dust, granule particles, etc. prior to providing the oxygen enriched gas to the user.
- the filtered oxygen enriched gas passes through filter 187 to connector 190.
- Connector 190 may be a "Y" connector coupling the outlet of filter 187 to pressure sensor 194 and outlet conduit 192.
- Pressure sensor 194 may be used to monitor the pressure of the gas passing through conduit 192 to the user. Changes in pressure, sensed by pressure sensor 194, may be used to determine a breathing rate of a user, as well as the onset of inhalation.
- Controller 400 may control actuation of supply valve 160 based on the breathing rate and/or onset of inhalation of the user, as assessed by pressure sensor 194. In an embodiment, controller 400 may control actuation of supply valve 160 based on information provided by flow rate sensor 185 and pressure sensor 194.
- Oxygen enriched gas may be provided to a user through conduit 192.
- conduit 192 may be a silicone tube.
- Conduit 192 may be coupled to a user using an airway coupling member 196, as depicted in FIG. 3.
- Airway coupling member 196 may be any device capable of providing the oxygen enriched gas to nasal cavities or oral cavities. Examples of airway coupling members include, but are not limited to: nasal masks, nasal pillows, nasal prongs, nasal cannulas, and mouthpieces.
- a nasal cannula airway delivery device is depicted in FIG. 3.
- oxygen enriched gas from oxygen concentrator system 100 is provided to the user through conduit 192 and airway coupling member 196.
- Airway coupling member 196 is positioned proximate to a user's airway (e.g., proximate to the user's mouth and or nose) to allow delivery of the oxygen enriched gas to the user while allowing the user to breath air from the surroundings.
- a user's airway e.g., proximate to the user's mouth and or nose
- Oxygen concentrator system 100 may include at least two canisters, each canister including a gas separation adsorbent.
- the canisters of oxygen concentrator system 100 may be disposed formed from a molded housing.
- canister system 300 includes two housing components 310 and 510, as depicted in FIG. 4.
- the housing components 310 and 510 may be formed separately and then coupled together.
- housing components 310 and 510 may be injection molded or compression molded.
- Housing components 310 and 510 may be made from a thermoplastic polymer such as polycarbonate, methylene carbide, polystyrene, acrylonitrile butadiene styrene (ABS), polypropylene, polyethylene, or polyvinyl chloride.
- ABS acrylonitrile butadiene styrene
- housing components 310 and 510 may be made of a thermoset plastic or metal (such as stainless steel or a light-weight aluminum alloy). Lightweight materials may be used to reduce the weight of the oxygen concentrator 100.
- the two housings 310 and 510 may be fastened together using screws or bolts.
- housing components 310 and 510 may be solvent welded together.
- valve seats 320, 322, 324, and 326 and air pathways 330 and 332 may be integrated into the housing component 310 to reduce the number of sealed connections needed throughout the air flow of the oxygen concentrator 100.
- the housing components 310 and 410 of the oxygen concentrator 100 may form a two-part molded plastic frame that defines two canisters 302 and 304 and accumulation chamber 106.
- Air pathways/tubing between different sections in housing components 310 and 510 may take the form of molded conduits.
- Conduits in the form of molded channels for air pathways may occupy multiple planes in housing components 310 and 510.
- the molded air conduits may be formed at different depths and at different x,y,z positions in housing components 310 and 510.
- a majority or substantially all of the conduits may be integrated into the housing components 310 and 510 to reduce potential leak points.
- O- rings may be placed between various points of housing components 310 and 510 to ensure that the housing components are properly sealed.
- components may be integrated and/or coupled separately to housing components 310 and 510.
- tubing, flow restrictors (e.g., press fit flow restrictors), oxygen sensors, gas separation adsorbents 139, check valves, plugs, processors, power supplies, etc. may be coupled to housing components 510 and 410 before and/or after the housing components are coupled together.
- apertures 337 leading to the exterior of housing components 310 and 410 may be used to insert devices such as flow restrictors. Apertures may also be used for increased moldability. One or more of the apertures may be plugged after molding (e.g., with a plastic plug).
- flow restrictors may be inserted into passages prior to inserting plug to seal the passage. Press fit flow restrictors may have diameters that may allow a friction fit between the press fit flow restrictors and their respective apertures.
- an adhesive may be added to the exterior of the press fit flow restrictors to hold the press fit flow restrictors in place once inserted.
- the plugs may have a friction fit with their respective tubes (or may have an adhesive applied to their outer surface).
- the press fit flow restrictors and/or other components may be inserted and pressed into their respective apertures using a narrow tip tool or rod (e.g., with a diameter less than the diameter of the respective aperture).
- the press fit flow restrictors may be inserted into their respective tubes until they abut a feature in the tube to halt their insertion.
- the feature may include a reduction in radius.
- Other features are also contemplated (e.g., a bump in the side of the tubing, threads, etc.).
- press fit flow restrictors may be molded into the housing components (e.g., as narrow tube segments).
- spring baffle 129 may be placed into respective canister receiving portions of housing component 310 and 510 with the spring side of the baffle 129 facing the exit of the canister.
- Spring baffle 129 may apply force to gas separation adsorbent 139 in the canister while also assisting in preventing gas separation adsorbent 139 from entering the exit apertures.
- Use of a spring baffle 129 may keep the gas separation adsorbent compact while also allowing for expansion (e.g., thermal expansion). Keeping the gas separation adsorbent 139 compact may prevent the gas separation adsorbent from breaking during movement of the oxygen concentrator system 100).
- pressurized air from the compression system 200 may enter air inlet 306.
- Air inlet 306 is coupled to inlet conduit 330. Air enters housing component 310 through inlet 306 travels through conduit 330, and then to valve seats 322 and 324.
- FIG. 5 and FIG. 6 depict an end view of housing 310.
- FIG. 5, depicts an end view of housing 310 prior to fitting valves to housing 310.
- FIG. 6 depicts an end view of housing 310 with the valves fitted to the housing 310.
- Valve seats 322 and 324 are configured to receive inlet valves 122 and 124 respectively.
- Inlet valve 122 is coupled to canister 302 and inlet valve 124 is coupled to canister 304.
- Housing 310 also includes valve seats 332 and 334 configured to receive outlet valves 132 and 134 respectively.
- Outlet valve 132 is coupled to canister 302 and outlet valve 134 is coupled to canister 304.
- Inlet valves 122/124 are used to control the passage of air from conduit 330 to the respective canisters.
- pressurized air is sent into one of canisters 302 or 304 while the other canister is being vented.
- inlet valve 122 is opened while inlet valve 124 is closed.
- Pressurized air from compression system 200 is forced into canister 302, while being inhibited from entering canister 304 by inlet valve 124.
- outlet valve 132 is closed and outlet valve 134 is opened. Similar to the inlet valves, outlet valves 132 and 134 are operated out of phase with each other.
- Each inlet valve seat 322 includes an opening 375 that passes through housing 310 into canister 302.
- valve seat 324 includes an opening 325 that passes through housing 310 into canister 302. Air from conduit 330 passes through openings 323, or 325 if the respective valve (322 or 324) is open, and enters a canister.
- Check valves 142 and 144 are coupled to canisters 302 and 304, respectively.
- Check valves 142 and 144 are one way valves that are passively operated by the pressure differentials that occur as the canisters are pressurized and vented.
- Oxygen enriched gas, produced in canisters 302 and 304 pass from the canister into openings 542 and 544 of housing 410.
- a passage (not shown) links openings 542 and 544 to conduits 342 and 344, respectively.
- Oxygen enriched gas produced in canister 302 passes from the canister though opening 542 and into conduit 342 when the pressure in the canister is sufficient to open check valve 142.
- the gas separation adsorbent will become saturated with nitrogen and will be unable to separate significant amounts of nitrogen from incoming air.
- the inflow of compressed air is stopped and the canister is vented to remove nitrogen.
- Canister 302 is vented by closing inlet valve 122 and opening outlet valve 132.
- Outlet valve 132 releases the vented gas from canister 302 into the volume defined by the end of housing 310.
- Foam material may cover the end of housing 310 to reduce the sound made by release of gases from the canisters.
- canister 304 is vented by closing inlet valve 124 and opening outlet valve 134. Outlet valve 134 releases the vented gas from canister 304 into the volume defined by the end of housing 310.
- canister 304 While canister 302 is being vented, canister 304 is pressurized to produce oxygen enriched gas in the same manner described above. Pressurization of canister 304 is achieved by closing outlet valve 134 and opening inlet valve 124. The oxygen enriched gas exits canister 304 through check valve 144.
- a portion of the oxygen enriched gas may be transferred from canister 302 to canister 304 when canister 304 is being vented of nitrogen. Transfer of oxygen enriched gas from canister 302 to canister 304, during venting of canister 304, helps to further purge nitrogen (and other gases) from the canister. Flow of oxygen enriched gas between the canisters is controlled using flow restrictors and valves, as depicted in FIG. 1. Three conduits are formed in housing 510 for use in transferring oxygen enriched gas between canisters. As shown in FIG. 7, conduit 530 couples canister 302 to canister 304.
- Flow restrictor 151 (not shown) is disposed in conduit 530, between canister 302 and canister 304 to restrict flow of oxygen enriched gas during use.
- Conduit 532 also couples canister 302 to 304.
- Conduit 532 is coupled to valve seat 552 which receives valve 152, as shown in FIG. 8.
- Flow restrictor 153 (not shown) is disposed in conduit 532, between canister 302 and 304.
- Conduit 534 also couples canister 302 to 304.
- Conduit 534 is coupled to valve seat 554 which receives valve 154, as shown in FIG. 8.
- Flow restrictor 155 (not shown) is disposed in conduit 434, between canister 302 and 304.
- the pair of equalization/vent valves 152/154 work with flow restrictors 153 and 155 to optimize the air flow balance between the two canisters.
- Oxygen enriched gas in accumulator 106 passes through supply valve 160 into expansion chamber 170 which is formed in housing 510.
- An opening (not shown) in housing 510 couples accumulator 106 to supply valve 160.
- expansion chamber may include one or more devices capable of being used to determine an oxygen concentration of gas passing through the chamber. Controller System
- Controller 400 includes one or more processors 410 and internal memory 420, as depicted in FIG. 1.
- Methods used to operate and monitor oxygen concentrator system 100 may be implemented by program instructions stored in memory 420 or a carrier medium coupled to controller 400, and executed by one or more processors 410.
- a non-transitory memory medium may include any of various types of memory devices or storage devices.
- the term "memory medium” is intended to include an installation medium, e.g., a Compact Disc Read Only Memory (CD-ROM), floppy disks, or tape device; a computer system memory or random access memory such as Dynamic Random Access Memory (DRAM), Double Data Rate Random Access Memory (DDR RAM), Static Random Access Memory (SRAM), Extended Data Out Random Access Memory (EDO RAM), Rambus Random Access Memory (RAM), etc.; or a nonvolatile memory such as a magnetic media, e.g., a hard drive, or optical storage.
- the memory medium may comprise other types of memory as well, or combinations thereof.
- the memory medium may be located in a first computer in which the programs are executed, or may be located in a second different computer that connects to the first computer over a network, such as the Internet. In the latter instance, the second computer may provide program instructions to the first computer for execution.
- the term "memory medium" may include two or more memory mediums that may reside in different locations, e.g., in different computers that are connected over a network.
- controller 400 includes processor 410 that includes, for example, one or more field programmable gate arrays (FPGAs), microcontrollers, etc. included on a circuit board disposed in oxygen concentrator system 100.
- Processor 410 is capable of executing programming instructions stored in memory 420.
- programming instructions may be built into processor 410 such that a memory external to the processor may not be separately accessed (i.e., the memory 420 may be internal to the processor 410).
- Processor 410 may be coupled to various components of oxygen concentrator system 100, including, but not limited to compression system 200, one or more of the valves used to control fluid flow through the system (e.g., valves 122, 124, 132, 134, 152, 154, 160, or combinations thereof), oxygen sensor 165, pressure sensor 194, flow rate monitor 180, temperature sensors, fans, and any other component that may be electrically controlled.
- a separate processor and/or memory may be coupled to one or more of the components.
- Controller 400 is programmed to operate oxygen concentrator system 100 and is further programmed to monitor the oxygen concentrator system for malfunction states. For example, in one embodiment, controller 400 is programmed to trigger an alarm if the system is operating and no breathing is detected by the user for a predetermined amount of time. For example, if controller 400 does not detect a breath for a period of 75 seconds, an alarm LED may be lit and/or an audible alarm may be sounded. If the user has truly stopped breathing, for example, during a sleep apnea episode, the alarm may be sufficient to awaken the user, causing the user to resume breathing. The action of breathing may be sufficient for controller 400 to reset this alarm function. Alternatively, if the system is accidently left on when output conduit 192 is removed from the user, the alarm may serve as a reminder for the user to turn oxygen concentrator system 100 off.
- Controller 400 is further coupled to oxygen sensor 165, and may be programmed for continuous or periodic monitoring of the oxygen concentration of the oxygen enriched gas passing through expansion chamber 170.
- a minimum oxygen concentration threshold may be programmed into controller 400, such that the controller lights an LED visual alarm and/or an audible alarm to warn the patient of the low concentration of oxygen.
- Controller 400 is also coupled to internal power supply 180 and is capable of monitoring the level of charge of the internal power supply.
- a minimum voltage and/or current threshold may be programmed into controller 400, such that the controller lights an LED visual alarm and/or an audible alarm to warn the patient of low power condition.
- the alarms may be activated intermittently and at an increasing frequency as the battery approaches zero usable charge.
- controller 400 is described in detail in other sections of this disclosure.
- a user may have a low breathing rate or depth if relatively inactive (e.g., asleep, sitting, etc.) as assessed by comparing the detected breathing rate or depth to a threshold.
- the user may have a high breathing rate or depth if relatively active (e.g., walking, exercising, etc.).
- An active/sleep mode may be assessed automatically and/or the user may manually indicate a respective active or sleep mode by a pressing button for active mode and another button for sleep mode.
- a user may toggle a switch from active mode, normal mode, or sedentary mode. The adjustments made by the oxygen concentrator system in response to activating active mode or sleep mode are described in more detail herein.
- the main use of an oxygen concentrator system is to provide supplemental oxygen to a user.
- the amount of supplemental oxygen to be provided is assessed by a physician.
- Typical prescribed amounts of supplemental oxygen may range from about 1 LPM to up to about 10 LPM. The most commonly prescribed amounts are 1 LPM, 2 LPM, 3 LPM, and 4 LPM.
- oxygen enriched gas is provided to the use during a breathing cycle to meet the prescription requirement of the user.
- breathing cycle refers to an inhalation followed by an exhalation of a person.
- controller 400 may be programmed to time delivery of the oxygen enriched gas with the user's inhalations. Releasing the oxygen enriched gas to the user as the user inhales may prevent unnecessary oxygen generation (further reducing power requirements) by not releasing oxygen, for example, when the user is exhaling. Reducing the amount of oxygen required may effectively reduce the amount of air compressing needed for oxygen concentrator 100 (and subsequently may reduce the power demand from the compressors).
- Oxygen enriched gas, produced by oxygen concentrator system 100 is stored in an oxygen accumulator 106 and released to the user as the user inhales.
- the amount of oxygen enriched gas provided by the oxygen concentrator system is controlled, in part, by supply valve 160.
- supply valve 160 is opened for a sufficient amount of time to provide the appropriate amount of oxygen enriched gas, as assessed by controller 400, to the user.
- the oxygen enriched gas may be provided in a bolus when a user' s inhalation is first detected.
- the bolus of oxygen enriched gas may be provided in the first few milliseconds of a user's inhalation.
- pressure sensor 194 and/or flow rate sensor 185 may be used to determine the onset of inhalation by the user.
- the user's inhalation may be detected by using pressure sensor 194.
- a conduit for providing oxygen enriched gas is coupled to a user's nose and/or mouth (e.g., using a nasal cannula or a face mask).
- the user begins to draw air into their body through the nose and/or mouth.
- a negative pressure is generated at the end of the conduit, due, in part, to the venturi action of the air being drawn across the end of the delivery conduit.
- Pressure sensor 194 may be operable to create a signal when a drop in pressure is detected, to signal the onset of inhalation. Upon detection of the onset of inhalation, supply valve 160 is controlled to release a bolus of oxygen enriched gas from the accumulator 106.
- pressure sensor 194 may provide a signal that is proportional to the amount of positive or negative pressure applied to a sensing surface.
- the amount of the pressure change detected by pressure sensor 194 may be used to refine the amount of oxygen enriched gas being provided to the user. For example, if a large negative pressure change is detected by pressure sensor 194, the volume of oxygen enriched gas provided to the user may be increased to take into account the increased volume of gas being inhaled by the user. If a smaller negative pressure is detected, the volume of oxygen enriched gas provided to the user may be decreased to take into account the decreased volume of gas being inhaled by the user.
- a positive change in the pressure indicates an exhalation by the user and is generally a time that release of oxygen enriched gas is discontinued. Generally while a positive pressure change is sensed, valve 160 remains closed until the next onset of inhalation.
- the sensitivity of the pressure sensor 194 may be affected by the physical distance of the pressure sensor 194 from the user, especially if the pressure sensor is located in oxygen concentrator system 100 and the pressure difference is detected through the tubing coupling the oxygen concentrator system to the user.
- the pressure sensor may be placed in the airway delivery device used to provide the oxygen enriched gas to the user.
- a signal from the pressure sensor may be provided to controller 400 in the oxygen concentrator 100 electronically via a wire or through telemetry such as through BLUETOOTH® (Bluetooth, SIG, Inc. Kirkland, Washington) or other wireless technology.
- the user's inhalation may be detected by using flow rate sensor 185.
- a conduit for providing oxygen enriched gas is coupled to a user's nose and/or mouth (e.g., using a nasal cannula or face mask).
- the user begins to draw air into their body through the nose and/or mouth.
- Flow rate sensor 185 may be operable to create a signal when an increase in flow rate is detected, to signal the onset of inhalation.
- supply valve 160 is controlled to release a bolus of oxygen enriched gas from the accumulator 106.
- a user breathing at a rate of 30 breaths per minute (BPM) during an active state may consume two and one-half times as much oxygen as a user who is breathing at 12 BPM during a sedentary state (e.g., asleep, sitting, etc.).
- Pressure sensor 194 and/or flow rate sensor 185 may be used to determine the breathing rate of the user.
- Controller 400 may process information received from pressure sensor 194 and/or flow rate sensor 185 and determine a breathing rate based on the frequency of the onset of inhalation. The detected breathing rate of the user may be used to adjust the bolus of oxygen enriched gas.
- the volume of the bolus of oxygen enriched gas may be increased as the users breathing rate increase, and may be decreased as the users breathing rate decreases.
- Controller 400 may automatically adjust the bolus based on the detected activity state of the user. Alternatively, the user may manually indicate a respective active or sedentary mode by selecting the appropriate option on the control panel of the oxygen concentrator. Alternatively, a user may operate controller 400 from a remote electronic device. For example, a user may operate the controller using a smart phone or tablet device.
- controller 400 may implement an alarm (e.g., visual and/or audio) to warn the user that the current breathing rate is exceeding the delivery capacity of the oxygen concentrator system.
- the threshold may be set at 20 breaths per minute.
- Methods of determining the breathing rate of a user typically count the number of breathes taken by the user over a pre-determined time and calculate the breathing rate.
- all breaths measured during the pre-determined time period are typically used to calculate the breathing rate.
- Such a method can lead to significant errors due to sudden changes in the breathing rate of the user. For example, while sleeping it is know that the times between breaths may vary greatly for an individual. Breathing patterns normally change during sleep. During deep sleep, breathing slows and becomes lighter as the body rests. During light sleep and REM, breathing can resemble breathing patterns of the person when awake. Periods of heavy breathing may also occur during dreams. Changes in breathing rate can occur quickly while a user is sleeping and even during awake periods. If the delivery of oxygen enriched gas is not adapted to the breathing patterns of the user properly, oxygen enriched gas may be wasted, by providing the oxygen enriched gas for too long, or may be insufficient, if the oxygen enriched gas is provided for too short a period.
- the method of Deane relies on a blind time in which no breaths are detected. Thus, if the user starts breathing rapidly, shortly after the delivery of a bolus of oxygen enriched gas, the method of Deane may be delayed in reacting to the change in breathing. In the worst case scenario, the user may change to a breathing rate in which every other breath falls within the blind time, leading to the false indication that the user is breathing at a breathing rate that is half the actual breathing rate. Such a situation can lead to oxygen depravity in the individual due to an insufficient amount of oxygen being supplied to the user.
- Applicant has devised an improved method of determining a breathing rate, and controlling the inspiration breath pressure threshold based on the determined breathings.
- the controller determines the breathing rate based on measuring a predetermined number of breaths (at least three) and discarding information related to the last breath measured.
- the time between the penultimate breath and the last breath is not used to determine the average breathing rate.
- the breathing rate, determined using the information collected from the remaining breaths, was found to give a more accurate indication of the current breathing rate of the user.
- Such a method also provides a way to take into account erratic breathing patterns without having to resort to the extreme measure of creating artificial "blind times," as discussed in Deane.
- controller 400 may collect and store the number of breaths. Based on the number of breaths, or the average time between breaths, over the period of time a breathing rate may be calculated. In some embodiments, the period of time is divided into equal time units. The number of breaths, or the average time between breaths, is determined in each time unit for the set period of time. The number of breaths, or average time between breaths, per time unit is used to determine a breathing rate. In some embodiments, the breathing rate in the last time unit is not used to determine if the delivery parameters should be changed. For example, if a period of time is broken up into 5 equal time units, the breathing rate determined for the last time unit is not used to determine an average breathing rate (for example, average breaths per minute).
- controller 400 may collect the number of breaths over a 5 minute period of time.
- a user may have a breathing rate of 15 breaths per minute ("BPM") for the first minute of the 5 minute time period, 10 BPM during the second minute of the 5 minute time period, 25 BPM during the third minute of the 5 minute time period, 30 BPM during the fourth minute of the 5 minute time period, and 40 BPM during the fifth minute of the 5 minute time period.
- the 40 BPM may be ignored and the remaining breaths averaged (for example, to determine an average breathing rate of 20 BPM.
- the breathing rate determined during the last minute of the 5 minute time period may be used for averaging of the next 5 minute time period.
- the last minute of the 5 minute time period may be used as the first minute of the next five minute time period.
- the five minute time period analyzed may be shifted by a minute. In this case, the second minute of the five minute period just analyzed becomes the first minute of the next five minute period.
- the fifth minute (ignored in the first breathing rate analysis), becomes the fourth minute of the next breathing rate analysis. In either case the last minute is ignored in the breathing rate analysis.
- the breathing rate may be determined by monitoring the time between each breath for at least three breaths. In some embodiments, the times between each of four, five, six, seven, eight, nine, ten, fifteen, sixteen, seventeen, or twenty successive breaths are measured and used to determine an average breathing rate. In this method the time between the penultimate breath and the last breath is ignored, with the breathing rate based on the time between the breaths up to the penultimate breath. For example, if 5 successive breaths are used to determine a breathing rate, the time between the 4 th and 5 th breath is discarded when determining the breathing rate.
- the average time between breaths is determined by averaging the first three times (4.5 sec, 4.7 sec, and 4.2 sec) and ignoring the last breath (5.2 sec). In this manner the average time between breaths is 4.47, giving an average breathing rate of 13.4 breathes per minute.
- the inspiration breath pressure threshold may be adjusted relative to the current inspiration breath pressure threshold.
- Controller 400 may determine that the average breathing rate has changed from less than 15 breaths per minute to greater than 15 breaths per minute. Controller 400 may send an electronic signal to pressure sensor 194 that raises the threshold breath pressure inspiration relative to the current inspiration breath pressure threshold. When the determined average breathing rate changes from greater than 10 breaths per minute to less than 10 breaths per minute, controller 400 may send an electronic signal to the pressure sensor 194 that lowers the inspiration breath pressure threshold relative to the current inspiration breath pressure threshold. Controller 400 may determine that the average breathing rate is between 10 breaths per minute and 15 breaths per minute, and determine that no change in the current inspiration breath pressure threshold is necessary.
- controller 400 may trigger an alarm. If the average breathing rate is less than 5 breaths per minute then controller 400 may trigger an alarm. If the inspiration breath pressure threshold has been lowered relative to the current inspiration breath pressure threshold and no inspiration breath pressure is detected after a period of time (for example, 75 seconds), then controller 400 may trigger an alarm.
- the change in the inspiration breath pressure threshold may be adjusted by looking at the change in breathing rate over a predetermined period of time.
- a change in breathing rate can be monitored by creating successive groupings of three or more breaths.
- the breathing rate is determined (e.g., by calculating the breathing rate based on an average time between each breath in the grouping).
- the breathing rate from each grouping is compared to the next grouping to determine how the breathing rate is changing. If the breathing rate is increasing over three or more successive groupings (e.g., the breathing rate increases in at least two of the groupings), the controller may increase the inspiration breath pressure threshold. If the breathing rate is decreasing over three or more successive groupings (e.g., the breathing rate decreases in at least two of the groupings), the controller may lower the inspiration breath pressure threshold.
- the time between each of seventeen successive breaths is measured.
- the breaths are then divided into four groupings, with each grouping having the inhalation times for four successive breaths.
- the groupings would then look as shown below, the number in parenthesis refers to the time between the breaths:
- the last time (the time between breath 16 and 17, is not used to determine the breathing rate.
- the first grouping (breaths 1-4) exhibits a breathing rate of 12 BPM.
- the second grouping exhibits a breathing rate of 17 BPM, which shows that the subjects breathing rate is increasing.
- the controller goes into a "watch" mode. In the "watch” mode the controller is alerted that a change in the inspiration breath pressure threshold may be needed.
- the controller looks at the third grouping.
- the third grouping exhibits a breathing rate of 18 BPM. A breathing rate that is within +/- 2 of the previous breathing rate, is not considered to have changed.
- the controller Since the breathing rate has not changed (as defined above) from the second grouping to the third grouping, the controller remains in watch mode. The controller then looks at the change between the third and fourth groupings. The fourth grouping exhibits a breathing rate of 25 BPM. Since the controller has now seen a second increase among the four groupings measured, the controller increase the inspiration breath pressure threshold. The controller will continue to take additional groupings (in this example, of four successive breaths, excluding the last breath taken) and continue to evaluate whether the inspiration breath pressure threshold should be adjusted.
- the controller bases the decision to change the inspiration breath pressure threshold based on the first three groupings, ignoring the last (4 th ) grouping. Under these circumstances, the inspiration breath pressure threshold is not changed until additional groupings are taken and it is determined if the increase in breathing rate is continued.
- the controller may base decisions on the actual BPM rather than the change in BPM. For example, if the BPM changes to less than 10 breaths per minute in a grouping, the controller may go into a watch mode. If the BPM remains below 10 BPM in one of the next two groupings, the controller may send an electronic signal to the pressure sensor that lowers the inspiration breath pressure threshold relative to the current inspiration breath pressure threshold. If the BPM is between 10 breaths per minute and 15 breaths per minute, then no change is made to the inspiration breath pressure threshold. If the BPM changes to more than 15 breaths per minute in a grouping, the controller may go into a watch mode.
- the controller may send an electronic signal to the pressure sensor that increase the inspiration breath pressure threshold relative to the current inspiration breath pressure threshold.
- the last breath detected or the last grouping measured may be ignored when determining if the inspiration breath pressure threshold should be changed.
- the time between breaths may be used in a decision making process.
- a flow chart of a process of adjusting the inspiration breath pressure threshold is shown in FIG. 10. During use, the times between at least three consecutives breaths is measured. When the time between, for example, the fourth breath and the fifth breath is measured, the controller determines if a change in the inspiration breath pressure threshold is needed. The times between breaths 1 and 2; 2 and 3; and 3 and 4 are used to determine the average time between breaths. The time between breath 4 and breath 5 is not used to determine the average time between breaths. The average time between breaths 1-4 is then compared to predetermined values.
- the subject is considered to be in an active state if the average time between breaths is less than 4 seconds. It should be understood that other times can be used. Thus process therefore includes comparing the average time between breaths of the subject to the predetermined active state time. If the average time between breaths of the subject is less than the active state time, the controller sets the inspiration breath pressure threshold to a high pressure.
- the controller compares the time to an inactive state time. In one embodiment, the subject is considered to be in an inactive state if the average time between breaths is greater than 6 seconds. It should be understood that other times can be used. If the average time between breaths of the subject is greater than 6 seconds, the controller sets the inspiration breath pressure threshold to a low pressure. If the average time between breaths of the subject is between 4 and 6 seconds, the controller does not change the inspiration breath pressure threshold.
- the process is repeated, however, the average is now based on the times between breath 2 and breath 5.
- the same process as discussed above is used to determine whether the inspiration breath pressure threshold should be changed, and, if it should be changed, whether it should be set to a high pressure (active) or a low pressure (inactive). This process may be continued as long as oxygen is being provided to the user.
- controller 400 may send a signal to adjust pressure sensor 194 to adjust the threshold inspiration breath pressure based on the ratio of the change in absolute pressure with respect to time monitored over at least three breaths.
- the change in absolute pressure with respect to time between each of four, five, six, seven, eight, nine, ten, fifteen or twenty successive breaths are measured and used to determine a ratio of change in absolute pressure with respect to time.
- Controller 400 may determine a ratio of the change in absolute pressure with respect to time based during a breathing period and store the information in a non-transitory medium. Based on the determined ratio between the change in absolute pressure with respect to time, controller 400 may send an electronic signal to breath pressure sensor 194 that adjusts the inspiration breath pressure threshold. If ratio is assessed to be negative, and less than, or equal to, -0.5 controller 400 may send an electronic signal to breath pressure sensor 194 that lowers the inspiration breath pressure threshold relative to the current inspiration breath pressure threshold. For example, if the ratio is assessed to be about
- controller 400 may send an electronic signal to breath pressure sensor 194 that lowers the inspiration breath pressure threshold relative to the current inspiration breath pressure threshold. If the ratio is assessed to be slightly positive or slightly negative (e.g., between -0.5 to +0.5), controller 400 may send an electronic signal to breath pressure sensor 194 that keeps the inspiration breath pressure threshold the same as the current inspiration breath pressure threshold. If the ratio is positive, and, for example, greater than or equal to +0.5, for example, controller 400 may send an electronic signal to breath pressure sensor 194 that raises the inspiration breath pressure threshold relative to the current inspiration breath pressure threshold.
- controller 400 may operate the oxygen concentrator based on the change in the inspiration breath pressure threshold. The frequency and/or duration of the provided oxygen enriched gas to the user relative to the current frequency and/or duration may be adjusted based on the change in the inspiration breath pressure threshold. Upon determining that the inspiration breath pressure threshold has been lowered, the controller 400 may switch the oxygen concentrator to a sedentary mode. Controller 400 may switch the oxygen concentrator to an active mode, when the inspiration breath pressure threshold has been raised.
- the bolus of provided oxygen enriched gas may include two or more pulses.
- the bolus may include two pulses: a first pulse 556 at approximately 7 cubic centimeters and a second pulse 558 at approximately 3 cubic centimeters.
- Other delivery rates, pulse sizes, and number of pulses are also contemplated.
- the first pulse may be approximately 14 cubic centimeters and a second pulse may be approximately 6 cubic centimeters and at 3 LPMs, the first pulse may be approximately 21 cubic centimeters and a second pulse may be approximately 9 cubic centimeters.
- the larger pulse 556 may be provided when the onset of inhalation is detected (e.g., detected by pressure sensor 194). In some embodiments, the pulses may be provided when the onset of inhalation is detected and/or may be spread time-wise evenly through the breath. In some embodiments, the pulses may be stair-stepped through the duration of the breath. In some embodiments, the pulses may be distributed in a different pattern. Additional pulses may also be used (e.g., 3, 4, 5, etc. pulses per breath). While the first pulse 556 is shown to be approximately twice the second pulse 558, in some embodiments, the second pulse 558 may be larger than the first pulse 556.
- pulse size and length may be controlled by, for example, supply valve 160 which may open and close in a timed sequence to provide the pulses.
- a bolus with multiple pulses may have a smaller impact on a user than a bolus with a single pulse.
- the multiple pulses may also result in less drying of a user' s nasal passages and less blood oxygen desaturation.
- the multiple pulses may also result in less oxygen waste.
- the sensitivity of the oxygen concentrator 100 may be selectively attenuated to reduce false inhalation detections due to movement of air from a different source (e.g., movement of ambient air).
- the oxygen concentrator 100 may have two selectable modes - an active mode and an inactive mode.
- the user may manually select a mode (e.g., through a switch or user interface).
- the mode may be automatically selected by the oxygen concentrator 100 based on a detected breathing rate.
- the oxygen concentrator 100 may use the pressure sensor 194 to detect a breathing rate of the user. If the breathing rate is above a threshold, the oxygen concentrator 100 may operate in an active mode (otherwise, the oxygen concentrator may operate in an inactive mode).
- Other modes and thresholds are also contemplated.
- the sensitivity of the pressure sensor 194 may be mechanically, electronically, or programmatically attenuated. For example, during active mode, controller 400 may look for a greater pressure difference to indicate the start of a user breath (e.g., an elevated threshold may be compared to the detected pressure difference to determine if the bolus of oxygen should be released). In some embodiments, the pressure sensor 194 may be mechanically altered to be less sensitive to pressure differences. In some embodiments, an electronic signal from the pressure sensor may be electronically altered to ignore small pressure differences. This can be useful when in active mode. In some embodiments, during the inactive mode the sensitivity of the pressure sensor may be increased.
- the controller 400 may look for a smaller pressure difference to indicate the start of a user breath (e.g., a smaller threshold may be compared to the detected pressure difference to determine if the bolus of oxygen should be released).
- a smaller threshold may be compared to the detected pressure difference to determine if the bolus of oxygen should be released.
- the response time for providing the bolus of oxygen during the user's inhalation may be reduced.
- the increased sensitivity and smaller response time may reduce the size of the bolus necessary for a given flow rate equivalence.
- the reduced bolus size may also reduce the size and power consumption of the oxygen concentrator 100.
- the bolus profile can be designed to match the profile of a particular user.
- an inhalation profile may be generated based on information gathered from pressure sensor 194 and flow rate sensor 185.
- An inhalation profile is assessed based on, one or more of the following parameters: the breathing rate of the user; the inhalation volume of the user; the exhalation volume of the user; the inhalation flow rate of the user; and the exhalation flow rate of the user.
- the breathing rate of the user may be assessed by detecting the onset of inhalation using pressure sensor 194 or flow rate sensor 185 as previously discussed.
- Inhalation volume may be assessed by measuring the change in pressure during inhalation and calculating or empirically assessing the inhalation volume based on the change in pressure.
- inhalation volume may be assessed by measuring the flow rate during inhalation and calculating or empirically assessing the inhalation volume based on the flow rate and the length of the inhalation.
- Exhalation volume may be assessed in a similar manner using either positive pressure changes during exhalation, or flow rate and exhalation time.
- Inhalation flow rate of the user is measured from shortly after the onset of inhalation. Detection of the end of inhalation may be from the pressure sensor or the flow rate sensor.
- the pressure sensor the onset is characterized by a drop in pressure.
- the inhalation is considered complete.
- the flow rate sensor the onset is characterized by an increase in the flow rate.
- the flow rate begins to decrease, the inhalation is considered complete.
- the profile of the relative flow from onset of inhalation to the onset of exhalation may be established.
- the calculated actual flow based on breathing rate can be adjusted mathematically to a calculated actual flow profile.
- This profile can be used to adjust the opening and closing of the delivery valve to create an idealized profile for the patient based on their breathing rate.
- Inhalation profile data gathered from a population of users may be used to create an algorithm that makes the appropriate adjustments based on the detected inhalation profile.
- a look up table may be used to control valve actuation durations and pulse quantities based on a detected inhalation profile.
- Measuring the inhalation profile of the patient provides a more accurate basis for control of the bolus of oxygen enriched gas being provided to the patient. For example, basing the delivery of oxygen enriched gas on the onset of inhalation may not take into account differences between individual users. For example, people having a similar breathing rate can have different inhalation/exhalation volume, inhalation/exhalation flow rates and, thus, different bolus requirements necessary to produce the prescribed amount of oxygen.
- an inhalation profile is created based on the flow rate of air during inhalation and the duration of inhalation. The inhalation profile can then be used as a predictor of the volume of air taken in by a specific user during inhalation.
- inhalation profile information can be used to modify the amount of oxygen enriched air provided to the user to ensure that the prescribed level of oxygen is received.
- the amount of oxygen provided to a user may be adjusted by modifying the frequency and or duration of release of oxygen enriched gas from the accumulator with supply valve 160.
- By tracking the inhalation profile of the patient controller adjusts the delivery supply valve actuation to idealize the bolus profile to provide the oxygen at the maximum rate without causing wasteful retrograde flow.
- the automatic delivery of oxygen enriched gas from an oxygen concentrator is based on an average breathing rate of the patient, measured as either breath per minute ("bpm") or time between breaths.
- breath per minute bpm
- time between a plurality of successive breaths is measured.
- a breath is determined to begin when a drop in pressure is measured using a pressure sensor coupled to an outlet of a conduit coupling the user to an oxygen enriched gas source.
- the average time between each of the successive breaths is determined or the average bpm is determined.
- the time between the penultimate breath and the last breath is not used to determine the average time, for the same reasons discussed previously in the application.
- An inspiration breath pressure threshold for the pressure sensor is set based on the determined average time.
- the breath pressure threshold is set to an active mode breath pressure threshold if the average time is less than a predefined time.
- the breath pressure threshold is set to a sleep mode breath pressure threshold if the average time is greater than a predefined time.
- the predefined time is a time between about 6 sec. and about 12 sec, with 8 sec. being the preferred time for most patients.
- the sleep mode breath pressure threshold is lower than the active mode breath pressure threshold so that the pressure sensor is more likely to pick up breaths taken by the patient in sleep mode.
- Sleep mode can be also be entered be measuring the time since the penultimate breath.
- two timers are used, an even timer and an odd timer.
- an odd breath is taken (breath 1 st , 3 rd , 5 th , etc.) then the odd time is reset to a time equal to the maximum time expected for two breaths to be taken.
- the maximum time for two breaths to be taken is set in the range from about 25 sec. to about 35 sec, with 30 sec. being preferred.
- the maximum time for two breaths is continually determined as two times the average time determined from the patient's breathing pattern.
- the even timer is set to a time equal to the maximum time expected for two breaths. If either timer reaches the maximum time, the breath pressure threshold is set to a sleep mode breath pressure threshold. Setting to a sleep mode breath pressure threshold will improve the chances of detecting a breath in the case that the patient has changed from active activity to reduced activity.
- the times are continually monitored and compared to the determined average time determined between breaths.
- the time elapsed according to the odd timer and the time elapsed according to the even timer are added together and compared to a function of the determined average breathing time.
- the oxygen concentrator will automatically provide oxygen enriched gas to the user.
- the constant is between about 1.5 and 2.5, with a constant of 2.0 being preferred.
- the oxygen enriched gas is delivered every 3-4 seconds until breaths are once again detected.
- the time between each automatic delivery of a bolus of oxygen is varied randomly between 3-4 seconds. Alternately, the time is varied by a constant amount cycling between 3-4 seconds. For example, the time between each delivery of oxygen enriched gas may begin at 3 seconds, then after one or more breaths are delivered the delay time for each breath may be changed to 3.1, then 3.2, etc. until a delay time of 4 seconds is reached. Once the 4 second mark is reached, the time may be reduced in the same manner (4.0, then 3.9, then 3.8, etc.) until the 3 second mark is reached This pattern may be continued until detectable breathing is resumed by the patient.
- the above method may be implemented by a processor operably coupled to the pressure sensor.
- the processor executes non-transitory program instructions which allow the processor to implement the method.
- the method is implemented using three timers.
- Timer 1 measures the time since an odd numbered breath.
- Timer 2 measures the time since an even numbered breath.
- Timer_3 measures the time between each breath and is reset when a breath is detected or a false breath is registered.
- the method relies on a sampling routine which continually monitors the timers and adjusts the parameters based on the timers and the average breath times.
- the initialization routine is set forth below:
- Timer l MAX BREATH TIME
- Timer_2 TWO BREATH TIME
- Average_Breath_Rate [SUM (Breath_Register [2. ..5])]/4 Timer l is the odd timer;
- MAX BREATH TIME is a constant that is set at the maximum time allowed between breaths (e.g. 15 sec); Timer_2 is the even timer
- TWO BREATH TIME is a constant that is set at the maximum time allowed for two breaths (e.g. 30 sec); Breath_Index is a variable used to count the number of breaths
- Breath_Register[1 ...5] is an array of 5 memory locations used to store the time between 6 successive breaths.
- Breath_Register[5] stores the time elapsed between the 1 st breath taken in a series of 6 successive breaths to the 2 nd breath taken in the series.
- Breath_Register[4] stores the time elapsed from the 2 nd breath to the 3 rd breath.
- Breath_Register[3] stores the time elapsed from the 3 rd breath to the 4 th breath.
- Breath_Register[2] stores the time elapsed from the 4 th breath to the 5 th breath.
- Breath_Register[l] stores the time elapsed from the 5 th breath (the penultimate breath) to the 6 th breath (the last breath detected).
- Average_Breath_Rate is determined by calculating the average of the times in Breath_Registers [2-5]. Breath_Register[l] is not used to calculate the average breath time (or rate).
- the Sampling Routine After initialization, the Sampling Routine continually monitors the pressure sensor for the detection of a breath. The Sampling Routine also continually monitors the Timer l and Timer_2 looking for the timer to time out. The current implementation sets each timer to the maximum time allowed and runs the timer backward toward zero. In such an implementation, when a timer reaches zero, the timer is considered to have "timed out.” It should be understood, however that the timers can also be implemented in a forward direction with minimal changes to the programming. The Sampling Routine is set forth below:
- the action routines include: Active Breath Detection Routine; Sleep Breath Detection Routine; Active No Breath Detection Routine; and Sleep No Breath Detection Routine. Each of these routines are set forth below:
- Breath lndex Breath lndex + 1
- Breath_Register[l] (MAX BREATH TIME - Timer_2)
- Average_Breath_Rate [SUM (Breath_Register [2. ..5])]/4
- Timer l TWO BREATH TIME
- Timer_2 TWO BREATH TIME
- the Active Mode Breath Detection Routine is activated if a new breath is detected while the device is in active mode. This routine starts by shifting the Breath_Registers. This is done by overwriting each register with the value from the adjacent register. Thus, Breath_Register[5] is overwritten with the value from Breath_Register[4]; Breath_Register[4] is then overwritten by the value from Breath_register[3], etc. The time from the last breath to the newly detected breath is placed in Breath_Register[l]. After the breaths are shifted, a new Average_Breath_Rate is determined. The new Average_Breath_Rate is then compared to the constant, SLEEP BREATH TIME.
- Average Breath Rate (stored as an average time elapsed per breath) is greater than SLEEP_BREATH_TIME, the system will go into Sleep Mode by lowering the inspiration breath pressure threshold for the pressure sensor. Timer_l or Timer_2 are reset, depending on the value of the Breath lndex and the system goes back to the Sampling Routine until the next event is reached.
- Breath_Register[l] TWO BREATH TIME
- Average_Breath_Rate [SUM (Breath_Register [2...5])]/4
- Timer l TWO BREATH TIME
- Timer_2 TWO BREATH TIME
- the Breath_Registers are shifted and a "false breath" is added to Breath_Register[l].
- the false breath added to the register is the constant TWO BREATH TIME which is selected from between 10 sec to 30 sec. with 15 sec. being typical.
- TWO BREATH TIME which is selected from between 10 sec to 30 sec. with 15 sec. being typical.
- a new Average_Breath_Rate is determined.
- the new Average_Breath_Rate is then compared to the constant, SLEEP BREATH TIME.
- Average Breath Rate (stored as an average time elapsed per breath) is greater than SLEEP BREATH TIME, the system will go into Sleep Mode by lowering the inspiration breath pressure threshold for the pressure sensor. Timer_l or Timer_2 are reset, depending on the value of the Breath_Index and the system goes back to the Sampling Routine until the next event is reached.
- the Sleep Mode routines are accessed. If a breath is detected while in Sleep Mode, the Sleep Mode Breath Detection Routine is accessed.
- Breath_Register[l] (MAX BREATH TIME - Timer_2)
- Breath_Register[l] (MAX BREATH TIME - Timer l)
- Average_Breath_Rate [SUM (Breath_Register [2...5])]/4
- Timer l TWO BREATH TIME
- Timer_2 TWO BREATH TIME
- the routine When a breath is detected in sleep mode, the routine is similar to the routine above for the active mode. The primary difference is that the Sleep Mode routine looks to see if the device needs to move back to active mode. Specifically, the Average_Breath_Rate is compared to the SLEEP BREATH TIME. If the Average Breath Rate is greater than the SLEEP BREATH TEVIE, the device will be set to Active Mode, otherwise the device remains in Sleep Mode.
- Breath_Register[l] TWO BREATH TIME
- Average_Breath_Rate [SUM (Breath_Register [2. ..5])]/4
- Timer l TWO BREATH TIME
- Timer_2 TWO BREATH TIME
- the Sleep Mode routine looks to see if the device needs to initiate automatic delivery of oxygen enriched gas. Specifically, the elapsed time from Timer l and Timer_2 are added and compared to the Averge Breath Rate * K_F ACTOR K_F ACTOR is a constant usually selected from 1.5 to 2.5, with 2.0 being preferred. If the sum of Timer_l and Timer_2 is greater than the Averge Breath Rate * K_F ACTOR, the device will begin to automatically deliver oxygen enriched gas to the user, in the manner described earlier.
- the Automatic 0 2 Delivery Mode routine is set forth below:
- the changing of the operating parameters and the automatic delivery of oxygen enriched gas is controlled by the average breath rate, determined by ignoring the time between the penultimate and last breath. This method also avoids having to measure the time since the last breath to initiate changes in the system.
Landscapes
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Engineering & Computer Science (AREA)
- Pulmonology (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Chemical & Material Sciences (AREA)
- Otolaryngology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Separation Of Gases By Adsorption (AREA)
- Oxygen, Ozone, And Oxides In General (AREA)
Abstract
L'invention concerne divers modes de réalisation d'un système concentrateur d'oxygène et un procédé de distribution de gaz enrichi en oxygène à un utilisateur. Selon certains modes de réalisation, le système concentrateur d'oxygène comprend un ou plusieurs composants qui améliorent l'efficacité de la distribution de gaz enrichi en oxygène pendant le fonctionnement du système concentrateur d'oxygène. Selon certains modes de réalisation, des mesures de temps fondées sur l'avant-dernière respiration prise par l'utilisateur sont utilisées pour modifier les paramètres de distribution d'oxygène.
Priority Applications (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US16/098,703 US11458274B2 (en) | 2016-05-03 | 2017-05-03 | Method and systems for the delivery of oxygen enriched gas |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201662330970P | 2016-05-03 | 2016-05-03 | |
| US62/330,970 | 2016-05-03 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2017192660A1 true WO2017192660A1 (fr) | 2017-11-09 |
Family
ID=60203325
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2017/030748 Ceased WO2017192660A1 (fr) | 2016-05-03 | 2017-05-03 | Procédé et systèmes pour l'administration de gaz enrichi en oxygène |
Country Status (2)
| Country | Link |
|---|---|
| US (1) | US11458274B2 (fr) |
| WO (1) | WO2017192660A1 (fr) |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019191814A1 (fr) * | 2018-04-06 | 2019-10-10 | ResMed Pty Ltd | Procédés et appareil pour le traitement d'un trouble respiratoire |
| WO2020055933A1 (fr) * | 2018-09-11 | 2020-03-19 | Belluscura LLC | Systèmes et procédés permettant d'améliorer le rétablissement d'un patient après une opération |
Families Citing this family (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20170340851A1 (en) | 2016-05-24 | 2017-11-30 | Silverbow Development, Llc | Oxygen gas concentrator with outlet accumulator |
| JP6520963B2 (ja) * | 2017-01-20 | 2019-05-29 | ダイキン工業株式会社 | 酸素濃縮装置 |
| US11260338B2 (en) | 2018-08-09 | 2022-03-01 | O2 Air-Sea, Llc | Oxygen generation device |
| US11554238B2 (en) * | 2019-05-30 | 2023-01-17 | Inogen, Inc. | Concentrator with electronic handheld remote delivery device |
| US12296095B2 (en) | 2019-09-10 | 2025-05-13 | Fisher & Paykel Healthcare Limited | Methods and systems for controlling oxygen delivery in a flow therapy apparatus |
| WO2021061607A1 (fr) * | 2019-09-23 | 2021-04-01 | Incoba, Llc | Procédé et système de détection d'un écoulement d'air et d'administration d'un gaz thérapeutique à un patient |
| DE102020204596B3 (de) * | 2020-04-09 | 2021-07-22 | B/E Aerospace Systems Gmbh | Notsauerstoffsystem für Flugzeugpassagiere |
| CA3189540A1 (fr) | 2020-07-16 | 2022-01-20 | Invacare Corporation | Systeme et procede de concentration de gaz |
| CN116648278A (zh) | 2020-07-16 | 2023-08-25 | 英瓦卡尔公司 | 用于浓缩气体的系统和方法 |
| US20220016569A1 (en) | 2020-07-16 | 2022-01-20 | Invacare Corporation | System and Method for Concentrating Gas |
| EP4204055A4 (fr) | 2020-07-16 | 2024-07-31 | Ventec Life Systems, Inc. | Système et procédé pour concentrer un gaz |
| WO2022023978A1 (fr) * | 2020-07-28 | 2022-02-03 | ResMed Asia Pte. Ltd. | Système d'oxygénothérapie connecté pour la prise en charge d'une maladie respiratoire chronique |
| US12347555B2 (en) | 2021-07-15 | 2025-07-01 | Ventec Life Systems, Inc. | System and method for medical device communication |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20050274381A1 (en) * | 2004-06-04 | 2005-12-15 | Deane Geoffrey F | Systems and methods for delivering therapeutic gas to patients |
| US20060213519A1 (en) * | 1997-07-25 | 2006-09-28 | Minnesota Innovative Technologies And Instruments | Control of respiratory oxygen delivery |
| US20090145428A1 (en) * | 2007-12-05 | 2009-06-11 | Sequal Technologies, Inc. | System and Method for Controlling Supply of Oxygen Based on Breathing Rate |
| US20090199855A1 (en) * | 2004-11-01 | 2009-08-13 | Davenport James M | System and method for conserving oxygen delivery while maintaining saturation |
| US20140137859A1 (en) * | 2012-10-12 | 2014-05-22 | Inova Labs, Inc., A Delaware Corporation | Method and systems for the delivery of oxygen enriched gas |
Family Cites Families (313)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US497160A (en) | 1893-05-09 | Hay-stacker | ||
| US3409171A (en) | 1967-09-07 | 1968-11-05 | Vendo Co | Rear-hinged drop shelf mechanism for vending machine |
| US3584618A (en) | 1969-03-17 | 1971-06-15 | Beckman Instruments Inc | A system and method for monitoring a progressive sequence of physiological conditions |
| GB1338226A (en) | 1970-01-21 | 1973-11-21 | British Oxygen Co Ltd | Lung ventilators |
| US4194890A (en) | 1976-11-26 | 1980-03-25 | Greene & Kellogg, Inc. | Pressure swing adsorption process and system for gas separation |
| US4215798A (en) | 1979-01-15 | 1980-08-05 | Union Carbide Corporation | Container for cryogenic liquid |
| JPS55149620A (en) | 1979-05-11 | 1980-11-21 | Noboru Sato | Oxygen-enriching system having good rise-up characteristic |
| US4302224A (en) | 1979-10-12 | 1981-11-24 | Greene & Kellogg, Inc. | Compact oxygen concentrator |
| US4342573A (en) | 1979-10-12 | 1982-08-03 | Greene & Kellogg, Incorporated | Compact oxygen concentrator |
| US4349357A (en) | 1980-06-23 | 1982-09-14 | Stanley Aviation Corporation | Apparatus and method for fractionating air and other gaseous mixtures |
| US4550276A (en) | 1982-06-14 | 1985-10-29 | Michael Callahan | Buss structures for multiscene manual lighting consoles |
| US4627860A (en) | 1982-07-09 | 1986-12-09 | Hudson Oxygen Therapy Sales Company | Oxygen concentrator and test apparatus |
| US4576616A (en) | 1982-07-27 | 1986-03-18 | Proto-Med. Inc. | Method and apparatus for concentrating oxygen |
| US4461293A (en) | 1982-12-03 | 1984-07-24 | Kircaldie, Randall, And Mcnab | Respirating gas supply method and apparatus therefor |
| US4491459A (en) | 1983-05-04 | 1985-01-01 | Pinkerton Charles J | Portable oxygen enrichment and concentration system |
| US4612928A (en) | 1984-08-28 | 1986-09-23 | Tiep Brian L | Method and apparatus for supplying a gas to a body |
| JPS61131756A (ja) | 1984-11-30 | 1986-06-19 | 鳥取大学長 | 呼吸同調送気式濃縮酸素供給装置 |
| FI81500C (fi) | 1985-05-23 | 1990-11-12 | Etelae Haemeen Keuhkovammayhdi | Andningsbehandlingsapparat. |
| US4630482A (en) | 1985-06-17 | 1986-12-23 | John Traina | Method and apparatus for ultrasonic measurements of a medium |
| US5052400A (en) | 1986-02-20 | 1991-10-01 | Dietz Henry G | Method and apparatus for using an inhalation sensor for monitoring and for inhalation therapy |
| US4698075A (en) | 1986-06-05 | 1987-10-06 | International Oxygen Company, Inc. | Control system for fluid absorption systems and the like |
| US5378345A (en) | 1986-07-25 | 1995-01-03 | Ceramatec, Inc. | Ceramic solid electrolyte-based electrochemical oxygen concentrator cell |
| US5069688A (en) | 1986-11-06 | 1991-12-03 | The Haser Company Limited | Pressure swing gas separation |
| US5024219A (en) | 1987-01-12 | 1991-06-18 | Dietz Henry G | Apparatus for inhalation therapy using triggered dose oxygenator employing an optoelectronic inhalation sensor |
| US4859217A (en) | 1987-06-30 | 1989-08-22 | Uop | Process for separating nitrogen from mixtures thereof with less polar substances |
| US5099193A (en) | 1987-07-30 | 1992-03-24 | Lutron Electronics Co., Inc. | Remotely controllable power control system |
| US4938212A (en) | 1987-10-16 | 1990-07-03 | Puritan-Bennett Corporation | Inspiration oxygen saver |
| JPH01104327A (ja) | 1987-10-17 | 1989-04-21 | Tokico Ltd | 気体分離装置 |
| US4968329A (en) | 1987-10-26 | 1990-11-06 | Keefer Bowie | Pressure swing adsorption for concentration of a gas component |
| US5069221A (en) | 1987-12-30 | 1991-12-03 | Densa Limited | Displacement sensor and medical apparatus |
| US4938066A (en) | 1988-01-29 | 1990-07-03 | Xecutek Corporation | Ultrasonic apparatus for measuring the speed of sound in a gaseous medium |
| US4813979A (en) | 1988-02-02 | 1989-03-21 | The United States Of America As Represented By The Secretary Of The Air Force | Secondary oxygen purifier for molecular sieve oxygen concentrator |
| DE3830506A1 (de) | 1988-09-08 | 1990-03-15 | Bergwerksverband Gmbh | Verfahren zur gewinnung von stickstoff aus sauerstoff und stickstoff enthaltenden gasgemischen mittels druckwechseladsorption an kohlenstoff-molekularsieben |
| US5048515A (en) | 1988-11-15 | 1991-09-17 | Sanso David W | Respiratory gas supply apparatus and method |
| US4925464A (en) | 1988-11-17 | 1990-05-15 | Ryder International Corporation | Fluid flow switching valve assembly and system |
| US5005571A (en) | 1988-11-25 | 1991-04-09 | Dietz Henry G | Mouth nose mask for use with an inhalation therapy and/or breathing monitoring apparatus |
| US4927434A (en) | 1988-12-16 | 1990-05-22 | Pall Corporation | Gas component extraction |
| US4892566A (en) | 1989-03-22 | 1990-01-09 | Airsep Corporation | Pressure swing adsorption process and system |
| GB8907447D0 (en) | 1989-04-03 | 1989-05-17 | Normalair Garrett Ltd | Molecular sieve-type gas separation systems |
| US5275642A (en) | 1989-05-17 | 1994-01-04 | Stuart Bassine | Molecular sieve for oxygen concentrator |
| US4973339A (en) | 1989-10-18 | 1990-11-27 | Airsep Corporation | Pressure swing absorption process and system for gas separation |
| US5060506A (en) | 1989-10-23 | 1991-10-29 | Douglas David W | Method and apparatus for monitoring the content of binary gas mixtures |
| US4971049A (en) | 1989-11-06 | 1990-11-20 | Pulsair, Inc. | Pressure sensor control device for supplying oxygen |
| US5268021A (en) | 1989-11-20 | 1993-12-07 | Dynotec Corporation | Fluid fractionator |
| US5060514A (en) | 1989-11-30 | 1991-10-29 | Puritan-Bennett Corporate | Ultrasonic gas measuring device |
| US5129924A (en) | 1989-12-29 | 1992-07-14 | Jerald Schultz | Supplemental oxygen ventilator |
| US4971609A (en) | 1990-02-05 | 1990-11-20 | Pawlos Robert A | Portable oxygen concentrator |
| CA2054199A1 (fr) | 1990-03-02 | 1991-09-03 | Sylvie Eteve | Procede de production d'oxygene par separation d'air par adsorption |
| US5082473A (en) | 1990-07-23 | 1992-01-21 | Keefer Bowie | Extraction and concentration of a gas component |
| US5099837A (en) | 1990-09-28 | 1992-03-31 | Russel Sr Larry L | Inhalation-based control of medical gas |
| FR2667800B1 (fr) | 1990-10-11 | 1992-12-04 | Air Liquide | Procede de separation par adsorption, et adsorbeur. |
| DE4105672C1 (en) | 1991-02-22 | 1992-10-08 | Paul Ritzau Pari-Werk Gmbh, 8130 Starnberg, De | Oxygen distributor for inhalation therapy - has stirring chamber with agitator and apertures, with connector opening into chamber |
| US5146918A (en) | 1991-03-19 | 1992-09-15 | Medtronic, Inc. | Demand apnea control of central and obstructive sleep apnea |
| US5682877A (en) | 1991-12-30 | 1997-11-04 | Mondry; Adolph J. | System and method for automatically maintaining a blood oxygen saturation level |
| US5315990A (en) | 1991-12-30 | 1994-05-31 | Mondry Adolph J | Method for delivering incremental doses of oxygen for maximizing blood oxygen saturation levels |
| US5226933A (en) | 1992-03-31 | 1993-07-13 | Ohio State University | Pressure swing adsorption system to purify oxygen |
| AU5135593A (en) | 1992-09-22 | 1994-04-12 | Arbor Research Corporation | System for separation of oxygen from argon/oxygen mixture |
| US5340381A (en) | 1993-05-17 | 1994-08-23 | Vorih Marc L | Operating system for dual-sieve oxygen concentrators |
| US5479932A (en) | 1993-08-16 | 1996-01-02 | Higgins; Joseph | Infant health monitoring system |
| NO178121C (no) | 1993-10-05 | 1996-01-24 | Ottestad Nils T | Servo gassreguleringsventil |
| US5351522A (en) | 1993-11-02 | 1994-10-04 | Aequitron Medical, Inc. | Gas sensor |
| US5839434A (en) | 1993-11-16 | 1998-11-24 | Invacare Corporation | Method and apparatus for dispensing respiratory gases |
| JP2695747B2 (ja) | 1993-12-21 | 1998-01-14 | 甲南電機株式会社 | 吸着型酸素濃縮器 |
| US5474595A (en) | 1994-04-25 | 1995-12-12 | Airsep Corporation | Capacity control system for pressure swing adsorption apparatus and associated method |
| SE503155C2 (sv) | 1994-07-28 | 1996-04-01 | Comasec International Sa | Sätt och anordning för funktionskontroll vid andningsapparat |
| US5469372A (en) | 1994-08-29 | 1995-11-21 | Raymond A. McBrearty | Oxygen concentrator remote monitoring apparatus |
| US5593478A (en) | 1994-09-28 | 1997-01-14 | Sequal Technologies, Inc. | Fluid fractionator |
| US5764534A (en) | 1994-10-13 | 1998-06-09 | Xilinx, Inc. | Method for providing placement information during design entry |
| US5503146A (en) | 1994-10-26 | 1996-04-02 | Devilbiss Health Care, Inc. | Standby control for CPAP apparatus |
| US5549720A (en) | 1994-12-19 | 1996-08-27 | Nellcor Puritan-Bennett Incorporated | Filter |
| US5735268A (en) | 1995-06-07 | 1998-04-07 | Salter Labs | Intermitten gas-insufflation apparatus and method therefor |
| US5697364A (en) | 1995-06-07 | 1997-12-16 | Salter Labs | Intermittent gas-insufflation apparatus |
| US5578115A (en) | 1995-07-24 | 1996-11-26 | Devilbiss Health Care, Inc. | Molecular sieve container for oxygen concentrator |
| US5603315A (en) | 1995-08-14 | 1997-02-18 | Reliable Engineering | Multiple mode oxygen delivery system |
| US6463930B2 (en) | 1995-12-08 | 2002-10-15 | James W. Biondi | System for automatically weaning a patient from a ventilator, and method thereof |
| FR2743507B1 (fr) | 1996-01-16 | 1998-03-06 | Air Liquide | Procede pour la separation de melanges d'oxygene et d'azote utilisant un adsorbant a porosite amelioree |
| US5792665A (en) | 1996-05-29 | 1998-08-11 | Morrow, Iii; Donald W. | Oxygen sensing method and hand held analyzer therefore |
| US5906672A (en) | 1996-06-14 | 1999-05-25 | Invacare Corporation | Closed-loop feedback control for oxygen concentrator |
| US5917135A (en) | 1996-06-14 | 1999-06-29 | Invacare Corporation | Gas concentration sensor and control for oxygen concentrator utilizing gas concentration sensor |
| US5733359A (en) | 1996-06-19 | 1998-03-31 | The Boc Group, Inc. | Pressure swing adsorption process turndown control |
| US5944680A (en) | 1996-06-26 | 1999-08-31 | Medtronic, Inc. | Respiratory effort detection method and apparatus |
| US5861694A (en) | 1996-06-28 | 1999-01-19 | Ryobi North America Inc. | Field retaining mechanism for a permanent magnet D.C. motor |
| US5766310A (en) | 1996-07-19 | 1998-06-16 | Litton Systems Incorporated | Single stage secondary high purity oxygen concentrator |
| US5746806A (en) | 1996-08-15 | 1998-05-05 | Nellcor Puritan Bennett Incorporated | Apparatus and method for controlling output of an oxygen concentrator |
| FR2752383B1 (fr) | 1996-08-16 | 1998-11-06 | Intertechnique Sa | Equipement de protection respiratoire a indication de mode de fonctionnement |
| FR2753108B1 (fr) | 1996-09-06 | 1998-10-16 | Air Liquide | Procede pour la separation de melanges gazeux contenant de l'oxygene et de l'azote |
| US5865174A (en) | 1996-10-29 | 1999-02-02 | The Scott Fetzer Company | Supplemental oxygen delivery apparatus and method |
| US5827358A (en) | 1996-11-08 | 1998-10-27 | Impact Mst, Incorporation | Rapid cycle pressure swing adsorption oxygen concentration method and apparatus |
| US5890490A (en) | 1996-11-29 | 1999-04-06 | Aylsworth; Alonzo C. | Therapeutic gas flow monitoring system |
| US5997617A (en) | 1997-01-31 | 1999-12-07 | Healthdyne Technologies, Inc. | Pressure swing absorption system with multi-chamber canister |
| US5858062A (en) | 1997-02-10 | 1999-01-12 | Litton Systems, Inc. | Oxygen concentrator |
| US5928189A (en) | 1997-04-22 | 1999-07-27 | Phillips; Robert E. | Activity responsive therapeutic delivery system |
| US5858063A (en) | 1997-06-03 | 1999-01-12 | Litton Systems, Inc. | Oxygen concentrator with beds' duty cycle control and self-test |
| US5961694A (en) | 1997-06-09 | 1999-10-05 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Apparatus and process for the separation of gas mixtures by pressure swing adsorption |
| US5979440A (en) | 1997-06-16 | 1999-11-09 | Sequal Technologies, Inc. | Methods and apparatus to generate liquid ambulatory oxygen from an oxygen concentrator |
| US6065473A (en) | 1997-06-16 | 2000-05-23 | Airsep Corporation | Non-contact gas dispenser and apparatus for use therewith |
| US5988465A (en) | 1997-07-01 | 1999-11-23 | Vitale; Richard | Backpack assembly and method of use |
| US5957133A (en) | 1997-07-21 | 1999-09-28 | Hart; William T. | Oral appliance with negative air supply for reducing sleep apnea and snoring |
| US6011477A (en) | 1997-07-23 | 2000-01-04 | Sensitive Technologies, Llc | Respiration and movement monitoring system |
| DE69829969T2 (de) | 1997-07-25 | 2006-03-09 | Minnesota Innovative Technologies & Instruments Corp. (Miti), Lino Lakes | Steuervorrichtung zum zuführen von zusätzlichem atmungssauerstoff |
| FR2766384B1 (fr) | 1997-07-25 | 1999-09-03 | Air Liquide | Regulation d'un procede psa |
| US6532958B1 (en) | 1997-07-25 | 2003-03-18 | Minnesota Innovative Technologies & Instruments Corporation | Automated control and conservation of supplemental respiratory oxygen |
| KR19990028153A (ko) | 1997-09-30 | 1999-04-15 | 정휘동 | 포터블 피에스에이 산소발생기 |
| US7204249B1 (en) | 1997-10-01 | 2007-04-17 | Invcare Corporation | Oxygen conserving device utilizing a radial multi-stage compressor for high-pressure mobile storage |
| US5988165A (en) | 1997-10-01 | 1999-11-23 | Invacare Corporation | Apparatus and method for forming oxygen-enriched gas and compression thereof for high-pressure mobile storage utilization |
| US6099481A (en) | 1997-11-03 | 2000-08-08 | Ntc Technology, Inc. | Respiratory profile parameter determination method and apparatus |
| GB9723319D0 (en) | 1997-11-04 | 1998-01-07 | Protector Technologies Bv | Oxygen therapy apparatus |
| JPH11228107A (ja) | 1998-02-18 | 1999-08-24 | Taizo Nagahiro | 酸素ガス濃縮方法および装置 |
| US5968236A (en) | 1998-02-20 | 1999-10-19 | Bassine; Stuart | Valve free oxygen concentrator |
| US6382931B1 (en) | 1998-02-24 | 2002-05-07 | Respironics, Inc. | Compressor muffler |
| US20050121033A1 (en) | 1998-02-25 | 2005-06-09 | Ric Investments, Llc. | Respiratory monitoring during gas delivery |
| US6017315A (en) | 1998-02-25 | 2000-01-25 | Respironics, Inc. | Patient monitor and method of using same |
| CA2322197A1 (fr) | 1998-02-27 | 1999-09-02 | Praxair Technology, Inc. | Separation de gaz plus rapide |
| US7329354B2 (en) | 1998-06-09 | 2008-02-12 | Ppt Technologies, Llc | Purification of organic solvent fluids |
| SE9802123D0 (sv) | 1998-06-15 | 1998-06-15 | Siemens Elema Ab | Riktningsventil |
| US6220244B1 (en) | 1998-09-15 | 2001-04-24 | Mclaughlin Patrick L. | Conserving device for use in oxygen delivery and therapy |
| FR2783723B1 (fr) | 1998-09-25 | 2000-12-29 | Air Liquide | Procede de traitement d'un melange gazeux par adsorption a modulation de pression, a debit variable de production |
| WO2000023134A1 (fr) | 1998-10-21 | 2000-04-27 | Airsep Corporation | Regulateur d'oxygene et dispositif de conservation combines |
| US6253767B1 (en) | 1998-12-10 | 2001-07-03 | Robert F. Mantz | Gas concentrator |
| JP2000206099A (ja) | 1999-01-11 | 2000-07-28 | Ngk Spark Plug Co Ltd | ガス濃度センサ |
| JP3641151B2 (ja) | 1999-02-04 | 2005-04-20 | 帝人株式会社 | 治療用ガス投入用呼吸マスク |
| US6156101A (en) | 1999-02-09 | 2000-12-05 | Air Products And Chemicals, Inc. | Single bed pressure swing adsorption process and system |
| US6446630B1 (en) | 1999-02-11 | 2002-09-10 | Sunrise Medical Hhg Inc | Cylinder filling medical oxygen concentrator |
| US6990975B1 (en) | 1999-03-06 | 2006-01-31 | Smithkline Beecham Corporation | Medicament delivery system |
| FR2792210B1 (fr) | 1999-04-13 | 2001-09-14 | Air Liquide Sante Int | Equipement medical portable d'oxygenotherapie a domicile |
| US6536431B1 (en) | 1999-04-26 | 2003-03-25 | Oxygen Leisure Products Limited | Oxygen dispenser |
| US6186477B1 (en) | 1999-05-05 | 2001-02-13 | Airsep Corporation | Gas by-pass valve |
| US6346139B1 (en) | 1999-05-12 | 2002-02-12 | Respironics, Inc. | Total delivery oxygen concentration system |
| US6395065B1 (en) | 1999-05-14 | 2002-05-28 | Respironics, Inc. | Air flow control in a gas fractionalization system and associated method |
| CA2274390A1 (fr) | 1999-06-10 | 2000-12-10 | Questor Industries Inc. | Methode et appareil de separation chimique multietagee utilisant l'adsorption modulee en pression |
| JP2000354630A (ja) | 1999-06-15 | 2000-12-26 | Techno 21:Kk | 酸素濃縮装置 |
| US6920875B1 (en) | 1999-06-15 | 2005-07-26 | Respironics, Inc. | Average volume ventilation |
| US6192883B1 (en) | 1999-08-03 | 2001-02-27 | Richard L. Miller, Jr. | Oxygen flow control system and method |
| US7225809B1 (en) | 1999-11-01 | 2007-06-05 | Ric Investments, Llc | Method and apparatus for monitoring and controlling a medical device |
| US7516742B2 (en) | 1999-11-24 | 2009-04-14 | Cardinal Health 207, Inc. | Method and apparatus for delivery of inhaled nitric oxide to spontaneous-breathing and mechanically-ventilated patients with intermittent dosing |
| JP3655792B2 (ja) | 1999-12-21 | 2005-06-02 | 帝人株式会社 | 呼吸同調酸素供給装置 |
| US6394089B1 (en) | 2000-01-18 | 2002-05-28 | Northrop Grumman Corporation | Patient ventilator oxygen concentration system |
| US6773603B2 (en) | 2000-03-13 | 2004-08-10 | Intellectual Capital Enterprises, Inc. | Chemical removal and suspended solids separation pre-treatment system |
| US6558451B2 (en) | 2000-05-10 | 2003-05-06 | Airsep Corporation | Multiple bed pressure swing adsorption method and apparatus |
| FR2809329B1 (fr) | 2000-05-25 | 2002-08-16 | Air Liquide | Concentrateur d'oxygene portable |
| US6938619B1 (en) | 2000-06-13 | 2005-09-06 | Scott Laboratories, Inc. | Mask free delivery of oxygen and ventilatory monitoring |
| US6749405B2 (en) | 2000-06-16 | 2004-06-15 | Stuart Bassine | Reversible pivoting vane rotary compressor for a valve-free oxygen concentrator |
| ES2254458T3 (es) | 2000-08-02 | 2006-06-16 | Wearair Oxygen Inc. | Concentrador de oxigeno portatil miniaturizado. |
| US6478850B2 (en) | 2000-08-02 | 2002-11-12 | Wearair Oxygen Inc. | Miniaturized wearable oxygen concentrator |
| US6651658B1 (en) | 2000-08-03 | 2003-11-25 | Sequal Technologies, Inc. | Portable oxygen concentration system and method of using the same |
| US6691702B2 (en) | 2000-08-03 | 2004-02-17 | Sequal Technologies, Inc. | Portable oxygen concentration system and method of using the same |
| US6565624B2 (en) | 2000-09-06 | 2003-05-20 | Colorado Altitude Training Llc | Altitude simulation method and system |
| US7122073B1 (en) | 2000-09-18 | 2006-10-17 | Praxair Technology, Inc. | Low void adsorption systems and uses thereof |
| JP4246365B2 (ja) | 2000-09-21 | 2009-04-02 | 日本特殊陶業株式会社 | 酸素濃縮器及びその制御装置並びに記録媒体 |
| JP2002085568A (ja) | 2000-09-21 | 2002-03-26 | Ngk Spark Plug Co Ltd | 酸素供給装置及びその制御装置並びに記録媒体 |
| JP4293581B2 (ja) | 2000-09-21 | 2009-07-08 | 日本特殊陶業株式会社 | 酸素濃縮器及び制御装置並びに記録媒体 |
| US6626175B2 (en) | 2000-10-06 | 2003-09-30 | Respironics, Inc. | Medical ventilator triggering and cycling method and mechanism |
| CA2360717C (fr) | 2000-11-07 | 2005-12-06 | Air Products And Chemicals, Inc. | Utilisation d'adsorbants du type fau contenant du lithium dans les procedes de separation d'air combinant l'elimination d'eau et/ou de dioxyde de carbone |
| US6824590B2 (en) | 2000-11-07 | 2004-11-30 | Air Products And Chemicals, Inc. | Use of lithium-containing fau in air separation processes including water and/or carbon dioxide removal |
| WO2002045821A2 (fr) | 2000-12-08 | 2002-06-13 | Questair Technologies Inc. | Procedes et dispositifs pour la separation de gaz par adsorption modulee en pression, avec injection partielle de produit gazeux dans une source d'alimentation a pile a combustible |
| CA2329475A1 (fr) | 2000-12-11 | 2002-06-11 | Andrea Gibbs | Amp a cycle eleve avec adsorbants sensibles a l'humidite atmospherique |
| US6790260B2 (en) | 2000-12-20 | 2004-09-14 | Praxair Technology, Inc. | Enhanced rate PSA process |
| US6511526B2 (en) | 2001-01-12 | 2003-01-28 | Vbox, Incorporated | Pressure swing adsorption gas separation method and apparatus |
| JP2002253675A (ja) | 2001-02-28 | 2002-09-10 | Teijin Ltd | 医療用酸素濃縮装置 |
| US6484721B1 (en) | 2001-06-27 | 2002-11-26 | Chad Therapeutics, Inc. | Pneumatic oxygen conserving device |
| US6551384B1 (en) | 2001-07-05 | 2003-04-22 | Praxair Technology, Inc. | Medical oxygen concentrator |
| US20030006024A1 (en) | 2001-07-05 | 2003-01-09 | Ta-Chin Wang | Radiator for a motor of an air compressor |
| US6896721B1 (en) | 2001-10-03 | 2005-05-24 | Thomas Industries Inc. | Motor start-up unloading in an oxygen concentrator |
| US6527830B1 (en) | 2001-10-03 | 2003-03-04 | Praxair Technology, Inc. | Pressure swing adsorption process for co-producing nitrogen and oxygen |
| US20030140924A1 (en) | 2001-11-06 | 2003-07-31 | Aylsworth Alonzo C. | Therapeutic gas conserver and control |
| WO2003051424A2 (fr) | 2001-12-17 | 2003-06-26 | Mcfarland Joseph L Jr | Nebuliseur medical a commande pneumatique, manuel et portatif |
| US20030111081A1 (en) | 2001-12-19 | 2003-06-19 | Gupta Parshotam C. | Detachable nasal cannula assembly |
| JP4473580B2 (ja) | 2002-01-31 | 2010-06-02 | エアーセップ・コーポレーション | 可搬式酸素濃縮器 |
| WO2003074113A1 (fr) | 2002-03-05 | 2003-09-12 | Teijin Limited | Enrichisseur d'oxygene |
| US6755895B2 (en) | 2002-04-09 | 2004-06-29 | H2Gen Innovations, Inc. | Method and apparatus for pressure swing adsorption |
| DE60312837T2 (de) | 2002-04-24 | 2007-12-06 | Airsep Corp. | Sauerstoffkonzentrator mit reduziertem geräuschpegel |
| US6866041B2 (en) | 2002-05-14 | 2005-03-15 | Evolution, Inc. | Oxygen concentrating aroma mixing breathable air delivery apparatus and method |
| US6702880B2 (en) | 2002-05-17 | 2004-03-09 | Porous Media Corporation | Inlet silencer/filter for an oxygen concentrator |
| US6669758B1 (en) | 2002-06-27 | 2003-12-30 | Carleton Life Support Systems, Inc. | Variable inlet air restriction for composition control of product gas |
| US6605136B1 (en) | 2002-07-10 | 2003-08-12 | Air Products And Chemicals, Inc. | Pressure swing adsorption process operation and optimization |
| US6712876B2 (en) | 2002-08-27 | 2004-03-30 | Litton Systems, Inc. | Oxygen concentrator system with altitude compensation |
| US6712877B2 (en) | 2002-08-27 | 2004-03-30 | Litton Systems, Inc. | Oxygen concentrator system |
| US6740146B2 (en) | 2002-09-12 | 2004-05-25 | Edward L. Simonds | Oxygen concentrator |
| KR20050072435A (ko) | 2002-10-09 | 2005-07-11 | 컴퓨메딕스 리미티드 | 치료 처리중 수면 품질을 유지하고 모니터하기 위한 방법및 장치 |
| US6699307B1 (en) | 2002-10-11 | 2004-03-02 | H2Gen Innovations, Inc. | High recovery PSA cycles and apparatus with reduced complexity |
| KR200337953Y1 (ko) | 2002-10-18 | 2004-01-07 | 마츠시타 덴끼 산교 가부시키가이샤 | 산소 부화 장치 |
| US6889726B2 (en) | 2002-10-25 | 2005-05-10 | Invacare Corporation | Method and apparatus for filling portable high pressure cylinders with respiratory oxygen |
| US6802889B2 (en) | 2002-12-05 | 2004-10-12 | Air Products And Chemicals, Inc. | Pressure swing adsorption system for gas separation |
| EP3108919B1 (fr) | 2002-12-06 | 2020-09-09 | Fisher & Paykel Healthcare Limited | Systeme de fourniture d'un gaz sous pression |
| WO2004054493A2 (fr) | 2002-12-12 | 2004-07-01 | Airsep Corporation | Appareil hypoxique portable |
| US20040141874A1 (en) | 2003-01-15 | 2004-07-22 | Phillip Mullinax | System and apparatus for ozonating air and water for animal confinement houses |
| WO2004087300A1 (fr) | 2003-02-18 | 2004-10-14 | Jej Co., Ltd. | Procede et dispositif pour concentrer du gaz |
| US20040182394A1 (en) | 2003-03-21 | 2004-09-23 | Alvey Jeffrey Arthur | Powered air purifying respirator system and self contained breathing apparatus |
| FR2853257B1 (fr) | 2003-04-02 | 2006-05-26 | Air Liquide | Systeme embarque de production de flux gazeux enrichi en oxygene et procede pour alimenter les voies aeriennes d'occupants d'un aeronef |
| AU2004233273C1 (en) | 2003-04-21 | 2008-10-30 | Teijin Limited | Ultrasonic apparatus and method for measuring the concentration and flow rate of gas |
| DE10318384B4 (de) | 2003-04-23 | 2007-11-22 | Dräger Medical AG & Co. KG | Inkubator mit einer Sauerstoffdosierung |
| US6935460B2 (en) | 2003-05-21 | 2005-08-30 | Airsep Corporation | Noise muffler for oxygen concentrator |
| FR2856913B1 (fr) | 2003-07-02 | 2005-08-05 | Commissariat Energie Atomique | Detecteur portatif pour mesurer des mouvements d'une personne porteuse, et procede. |
| US6918953B2 (en) | 2003-07-09 | 2005-07-19 | H2Gen Innovations, Inc. | Modular pressure swing adsorption process and apparatus |
| WO2005014145A1 (fr) | 2003-08-12 | 2005-02-17 | Jej Co., Ltd. | Concentrateur de gaz |
| US7406966B2 (en) | 2003-08-18 | 2008-08-05 | Menlo Lifesciences, Llc | Method and device for non-invasive ventilation with nasal interface |
| CA2536888C (fr) | 2003-08-26 | 2012-04-24 | Teijin Pharma Limited | Dispositif de condensation d'oxygene |
| US7156903B2 (en) | 2003-09-02 | 2007-01-02 | Airsep Corporation | Sound enclosure for portable oxygen concentrators |
| JP4409240B2 (ja) | 2003-09-19 | 2010-02-03 | 山陽電子工業株式会社 | 樹脂構造体、psaガス分離装置及びpsaガス分離装置の組み立て方法 |
| US7135059B2 (en) | 2003-10-07 | 2006-11-14 | Inogen, Inc. | Portable gas fractionalization system |
| US20050072423A1 (en) | 2003-10-07 | 2005-04-07 | Deane Geoffrey Frank | Portable gas fractionalization system |
| US7066985B2 (en) | 2003-10-07 | 2006-06-27 | Inogen, Inc. | Portable gas fractionalization system |
| US7438745B2 (en) | 2003-10-07 | 2008-10-21 | Inogen, Inc. | Portable gas fractionalization system |
| EP2450074B1 (fr) | 2003-10-17 | 2015-12-09 | ResMed Ltd. | Appareil pour traiter une insuffisance cardiaque |
| JP4709529B2 (ja) | 2003-10-28 | 2011-06-22 | 日本特殊陶業株式会社 | 酸素濃縮装置 |
| US20090131759A1 (en) | 2003-11-04 | 2009-05-21 | Nathaniel Sims | Life sign detection and health state assessment system |
| US8584676B2 (en) | 2003-11-19 | 2013-11-19 | Immediate Response Technologies | Breath responsive filter blower respirator system |
| US7114932B1 (en) | 2004-01-22 | 2006-10-03 | Stuart Bassine | Valve-free oxygen concentrator featuring reversible compressors |
| ATE369169T1 (de) | 2004-01-22 | 2007-08-15 | Air Prod & Chem | Sauerstoffanreicherungsgerät mit zwei betriebsarten |
| US7273051B2 (en) | 2004-01-22 | 2007-09-25 | Air Products And Chemicals, Inc. | Dual mode medical oxygen concentrator |
| US20060154642A1 (en) | 2004-02-20 | 2006-07-13 | Scannell Robert F Jr | Medication & health, environmental, and security monitoring, alert, intervention, information and network system with associated and supporting apparatuses |
| US8146592B2 (en) | 2004-02-26 | 2012-04-03 | Ameriflo, Inc. | Method and apparatus for regulating fluid flow or conserving fluid flow |
| JP2005245825A (ja) | 2004-03-05 | 2005-09-15 | Teijin Pharma Ltd | 呼吸用気体供給装置 |
| US6981502B2 (en) | 2004-04-01 | 2006-01-03 | Numask, Inc. | Respiratory mask having intraoral mouthpiece with large sealing area and multiple sealing configuration |
| US7007694B2 (en) | 2004-05-21 | 2006-03-07 | Acoba, Llc | Nasal cannula |
| US7279029B2 (en) | 2004-05-21 | 2007-10-09 | Air Products And Chemicals, Inc. | Weight-optimized portable oxygen concentrator |
| US7222624B2 (en) | 2004-07-02 | 2007-05-29 | Praxair Technology, Inc. | Dual sensor oxygen therapy device |
| US7013898B2 (en) | 2004-07-09 | 2006-03-21 | Praxair Technology, Inc. | Nasal pressure sensor oxygen therapy device |
| JP4312749B2 (ja) | 2004-08-30 | 2009-08-12 | 日本特殊陶業株式会社 | 酸素濃縮装置 |
| US7970631B2 (en) | 2004-08-31 | 2011-06-28 | Ethicon Endo-Surgery, Inc. | Medical effector system |
| US20060102181A1 (en) | 2004-10-12 | 2006-05-18 | Airsep Corporation | Oxygen concentrator with variable temperature and pressure sensing control means |
| EP1812141B1 (fr) | 2004-10-12 | 2012-12-19 | Airsep Corporation | Concentrateur d'oxygene portable |
| US7455717B2 (en) | 2004-10-25 | 2008-11-25 | Invacare Corporation | Apparatus and method of providing concentrated product gas |
| WO2006053272A1 (fr) | 2004-11-12 | 2006-05-18 | Inogen, Inc. | Regulateur intelligent portable pour systemes de gaz therapeutiques |
| DE202005015106U1 (de) | 2004-12-01 | 2006-02-09 | Toussaint, Winfried, Dr. | Stufenlos verstellbare Unterkieferprotusionsschiene zur Behandlung von Schnarchen und obstruktiver Schlafapnoe |
| US7604005B2 (en) | 2005-02-09 | 2009-10-20 | Vbox Incorporated | Adsorbent cartridge for oxygen concentrator |
| US7866315B2 (en) | 2005-02-09 | 2011-01-11 | Vbox, Incorporated | Method and apparatus for controlling the purity of oxygen produced by an oxygen concentrator |
| US7766010B2 (en) | 2005-02-09 | 2010-08-03 | Vbox, Incorporated | Method of controlling the rate of oxygen produced by an oxygen concentrator |
| US7431032B2 (en) | 2005-02-09 | 2008-10-07 | Vbox Incorporated | Low power ambulatory oxygen concentrator |
| US8020553B2 (en) | 2005-02-09 | 2011-09-20 | Vbox, Incorporated | Ambulatory oxygen concentrator containing a three phase vacuum separation system |
| US7121276B2 (en) | 2005-02-09 | 2006-10-17 | Vbox, Incorporated | Personal oxygen concentrator |
| US20060174871A1 (en) | 2005-02-09 | 2006-08-10 | Vbox, Incorporated | Ambulatory oxygen concentrator with high efficiency adsorbent |
| US7954490B2 (en) | 2005-02-09 | 2011-06-07 | Vbox, Incorporated | Method of providing ambulatory oxygen |
| US20060174875A1 (en) | 2005-02-09 | 2006-08-10 | Vbox, Incorporated | Ambulatory oxygen concentrator containing a power pack |
| US7171963B2 (en) | 2005-02-09 | 2007-02-06 | Vbox, Incorporated | Product pump for an oxygen concentrator |
| US20060174877A1 (en) | 2005-02-09 | 2006-08-10 | Vbox, Incorporated | Portable oxygen concentrator with a docking station |
| US7585351B2 (en) | 2005-02-23 | 2009-09-08 | Inogen, Inc. | Systems and methods of monitoring and controlling the performance of a gas fractionalization apparatus |
| US7402193B2 (en) | 2005-04-05 | 2008-07-22 | Respironics Oxytec, Inc. | Portable oxygen concentrator |
| US7329304B2 (en) | 2005-04-05 | 2008-02-12 | Respironics Oxytec, Inc. | Portable oxygen concentrator |
| US7368005B2 (en) | 2005-04-05 | 2008-05-06 | Respironics Oxytec, Inc. | Portable oxygen concentrator |
| ITRM20050217A1 (it) | 2005-05-06 | 2006-11-07 | Ginevri S R L | Procedimento per ventilazione nasale e relativo apparato, in particolare per la ventilazione assistita flusso-sincronizzata neonatale. |
| US7708802B1 (en) | 2005-05-23 | 2010-05-04 | Inogen, Inc. | Gas fractionalization apparatus with built-in administrative and self-diagnostic functions |
| US7565907B2 (en) | 2005-06-17 | 2009-07-28 | Salter Labs | Nasal and oral cannula having two capabilities and method of producing same |
| US20070044799A1 (en) | 2005-07-08 | 2007-03-01 | Hete Bernie F | Modular oxygen regulator system and respiratory treatment system |
| US7510601B2 (en) | 2005-12-20 | 2009-03-31 | Air Products And Chemicals, Inc. | Portable medical oxygen concentrator |
| US7686870B1 (en) | 2005-12-29 | 2010-03-30 | Inogen, Inc. | Expandable product rate portable gas fractionalization system |
| KR100741307B1 (ko) | 2006-05-24 | 2007-07-23 | 주식회사 옥서스 | 산소농축 장치 |
| US7758672B2 (en) | 2006-01-26 | 2010-07-20 | Oxus Co., Ltd. | Apparatus of oxygen concentration system and method thereof |
| JP2007195820A (ja) | 2006-01-27 | 2007-08-09 | Terumo Corp | 酸素濃縮装置およびこの使用方法 |
| JP2007289660A (ja) | 2006-03-30 | 2007-11-08 | Aisin Seiki Co Ltd | 睡眠判定装置 |
| DE102007006689B4 (de) | 2006-03-31 | 2021-07-29 | Löwenstein Medical Technology S.A. | Vorrichtung und Verfahren zur Obstruktionserkennung während Apnoephasen durch eine zusätzliche Druckstufe |
| US7736132B2 (en) | 2006-04-03 | 2010-06-15 | Respironics Oxytec, Inc. | Compressors and methods for use |
| US20070283958A1 (en) | 2006-05-23 | 2007-12-13 | Ray Naghavi | Positive airway pressure device |
| DE102006031436B4 (de) | 2006-07-07 | 2012-12-06 | Airbus Operations Gmbh | Strukturelement, Verfahren zur Herstellung eines derartigen Strukturelements und Flugzeug mit einem derartigen Strukturelement |
| US7556038B2 (en) | 2006-08-11 | 2009-07-07 | Ric Investments, Llc | Systems and methods for controlling breathing rate |
| US7771511B2 (en) | 2006-08-28 | 2010-08-10 | Ric Investments, Llc | Oxygen concentration system and method |
| US8322339B2 (en) | 2006-09-01 | 2012-12-04 | Nellcor Puritan Bennett Llc | Method and system of detecting faults in a breathing assistance device |
| US20080066739A1 (en) | 2006-09-20 | 2008-03-20 | Lemahieu Edward | Methods and systems of delivering medication via inhalation |
| US20080078392A1 (en) | 2006-09-29 | 2008-04-03 | Pelletier Dana G | Breath detection system |
| US8016918B2 (en) | 2006-10-04 | 2011-09-13 | Air Products And Chemicals, Inc. | Performance stability in rapid cycle pressure swing adsorption systems |
| US7857894B2 (en) | 2006-10-10 | 2010-12-28 | Inogen, Inc. | Adsorbent bed pressure balancing for a gas concentrator |
| US7729754B2 (en) | 2006-10-30 | 2010-06-01 | Medtronic, Inc. | System and method for arrhythmia discrimination with atrial-ventricular dissociation |
| US20080110462A1 (en) | 2006-11-10 | 2008-05-15 | Chekal Michael P | Oxygen delivery system |
| US7780768B2 (en) | 2006-11-28 | 2010-08-24 | Inogen, Inc. | Gas concentrator with improved water rejection capability |
| JP5064772B2 (ja) | 2006-12-01 | 2012-10-31 | テルモ株式会社 | 酸素吸入装置 |
| US8020558B2 (en) | 2007-01-26 | 2011-09-20 | Cs Medical, Inc. | System for providing flow-targeted ventilation synchronized to a patient's breathing cycle |
| US20080223367A1 (en) | 2007-01-29 | 2008-09-18 | Cox Brian J | Method and apparatus for treating airway obstruction |
| US20080202508A1 (en) | 2007-02-27 | 2008-08-28 | Mcclain Michael S | Oxygen concentrator system |
| US8585607B2 (en) | 2007-05-02 | 2013-11-19 | Earlysense Ltd. | Monitoring, predicting and treating clinical episodes |
| US20090157219A1 (en) | 2007-05-03 | 2009-06-18 | Parker Jr Lance T | Intelligent Sleeve Container for Use in a Controlled Syringe System |
| EP2145646B1 (fr) | 2007-05-07 | 2015-09-30 | Teijin Pharma Limited | Enrichisseur d'oxygène |
| US8794235B2 (en) | 2007-06-08 | 2014-08-05 | Ric Investments, Llc | System and method for treating ventilatory instability |
| CN101821722A (zh) | 2007-06-29 | 2010-09-01 | 霍夫曼-拉罗奇有限公司 | 用于优化在医疗装置和远程电子装置之间的通信的装置和方法 |
| JP4816590B2 (ja) | 2007-08-10 | 2011-11-16 | 株式会社Ihi | 酸素濃縮器の運転停止方法および酸素濃縮器 |
| US20090065007A1 (en) | 2007-09-06 | 2009-03-12 | Wilkinson William R | Oxygen concentrator apparatus and method |
| US20090107501A1 (en) | 2007-10-24 | 2009-04-30 | Ana Krieger | System and method of monitoring respiratory airflow and oxygen concentration |
| US20090107500A1 (en) | 2007-10-25 | 2009-04-30 | Sequal Technologies, Inc. | Portable Oxygen Concentrator System and Method Including Concentrated Oxygen Flow Delivery |
| BRPI0722147A2 (pt) | 2007-12-10 | 2014-04-15 | Nokia Corp | Dispositivo de fornecimento de oxigênio portátil e método para fornecer oxigênio a um usuário móvel |
| US20090211448A1 (en) | 2008-02-21 | 2009-08-27 | Mcclain Michael S | Oxygen concentrator water separating system |
| US7722698B2 (en) | 2008-02-21 | 2010-05-25 | Delphi Technologies, Inc. | Method of determining the purity of oxygen present in an oxygen-enriched gas produced from an oxygen delivery system |
| US20090241956A1 (en) | 2008-03-27 | 2009-10-01 | Nellcor Puritan Bennett Llc | Method for controlling delivery of breathing gas to a patient using multiple ventilation parameters |
| US20090306529A1 (en) | 2008-06-06 | 2009-12-10 | Salter Labs | Adaptive temperature sensor for breath monitoring device |
| US8726902B2 (en) * | 2008-06-13 | 2014-05-20 | General Electric Company | System and method for smart delivery of backup breaths |
| US9278185B2 (en) | 2008-09-04 | 2016-03-08 | Caire Inc. | System and method for controlling bolus pulse duration based on inspiratory time in an oxygen concentation system |
| US8202223B2 (en) | 2008-09-19 | 2012-06-19 | Medtronic, Inc. | Method and apparatus for determining respiratory effort in a medical device |
| US8707954B2 (en) | 2008-10-09 | 2014-04-29 | Daniel A. McCarthy | Air/oxygen supply system and method |
| EP2355882A4 (fr) | 2008-11-10 | 2014-07-23 | Chart Sequal Technologies Inc | Système de ventilateur médical et procédé utilisant des concentrateurs d'oxygène |
| US7960857B2 (en) | 2008-12-02 | 2011-06-14 | General Electric Company | System and method for vehicle based uninterruptable power supply |
| US8608827B2 (en) | 2008-12-22 | 2013-12-17 | Koninklijke Philips N.V. | Portable and stationary oxygen concentrator system |
| BRPI1006007B1 (pt) | 2009-02-25 | 2019-11-26 | Koninl Philips Electronics Nv | sistema de suporte de pressão |
| WO2010132853A2 (fr) | 2009-05-15 | 2010-11-18 | Sequal Technologies Inc. | Appareil et méthodes de traitement des troubles du sommeil |
| NZ615010A (en) | 2009-07-16 | 2015-06-26 | Resmed Ltd | Detection of sleep onset |
| WO2011011432A2 (fr) | 2009-07-22 | 2011-01-27 | Vbox, Incorporated | Appareil destiné à séparer l'oxygène de l'air ambiant |
| EP2456977A4 (fr) | 2009-07-22 | 2017-03-15 | Vbox Incorporated | Procédé de commande d'une pompe à fluide gazeux |
| US8400290B2 (en) | 2010-01-19 | 2013-03-19 | Covidien Lp | Nuisance alarm reduction method for therapeutic parameters |
| US20110186054A1 (en) | 2010-02-01 | 2011-08-04 | Bryan Boyd | Apparatus for Facilitating Respiration During Nasal Congestion, and Related Methods |
| US9974919B2 (en) | 2010-04-07 | 2018-05-22 | Caire Inc. | Portable oxygen delivery device |
| US20110315140A1 (en) | 2010-06-29 | 2011-12-29 | Precision Medical, Inc. | Portable oxygen concentrator |
| US20120029307A1 (en) | 2010-07-27 | 2012-02-02 | Carefusion 303, Inc. | Vital-signs monitor with spaced electrodes |
| US20120055480A1 (en) | 2010-09-07 | 2012-03-08 | Wilkinson William R | Ventilator systems and methods |
| US20120055477A1 (en) | 2010-09-07 | 2012-03-08 | Wilkinson William R | Oxygen concentrator apparatus configured for high altitude use |
| US20120055483A1 (en) | 2010-09-07 | 2012-03-08 | Wilkinson William R | Shutdown system and method for an oxygen concentrator |
| US20120055478A1 (en) | 2010-09-07 | 2012-03-08 | Wilkinson William R | Positive pressure therapy systems and methods |
| US20120055474A1 (en) | 2010-09-07 | 2012-03-08 | Wilkinson William R | Methods and systems for providing oxygen enriched gas |
| US8616207B2 (en) | 2010-09-07 | 2013-12-31 | Inova Labs, Inc. | Oxygen concentrator heat management system and method |
| US8440004B2 (en) | 2010-12-30 | 2013-05-14 | Inogen, Inc. | Advanced portable oxygen concentrator |
| US20120203128A1 (en) | 2011-02-08 | 2012-08-09 | Jeffrey Alexander Levison | Respiratory rate detection device, system and method |
| JP5784334B2 (ja) | 2011-03-04 | 2015-09-24 | フクダ電子株式会社 | 酸素濃縮器 |
| US9592360B2 (en) * | 2011-04-22 | 2017-03-14 | Inogen, Inc. | Gas concentrator with removable cartridge adsorbent beds |
| US20130172759A1 (en) | 2011-08-08 | 2013-07-04 | Richard J. Melker | Systems And Methods For Using Photoplethysmography In The Administration Of Narcotic Reversal Agents |
| US20130147395A1 (en) | 2011-12-07 | 2013-06-13 | Comcast Cable Communications, Llc | Dynamic Ambient Lighting |
| JP6336991B2 (ja) | 2012-10-12 | 2018-06-06 | イノヴァ ラボ,インコーポレイテッド | 酸素濃縮器二重化システムおよび方法 |
| WO2014059409A1 (fr) | 2012-10-12 | 2014-04-17 | Inova Labs, Inc. | Systèmes de concentrateur d'oxygène et procédés associés |
-
2017
- 2017-05-03 WO PCT/US2017/030748 patent/WO2017192660A1/fr not_active Ceased
- 2017-05-03 US US16/098,703 patent/US11458274B2/en active Active
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20060213519A1 (en) * | 1997-07-25 | 2006-09-28 | Minnesota Innovative Technologies And Instruments | Control of respiratory oxygen delivery |
| US20050274381A1 (en) * | 2004-06-04 | 2005-12-15 | Deane Geoffrey F | Systems and methods for delivering therapeutic gas to patients |
| US20090199855A1 (en) * | 2004-11-01 | 2009-08-13 | Davenport James M | System and method for conserving oxygen delivery while maintaining saturation |
| US20090145428A1 (en) * | 2007-12-05 | 2009-06-11 | Sequal Technologies, Inc. | System and Method for Controlling Supply of Oxygen Based on Breathing Rate |
| US20140137859A1 (en) * | 2012-10-12 | 2014-05-22 | Inova Labs, Inc., A Delaware Corporation | Method and systems for the delivery of oxygen enriched gas |
Cited By (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019191814A1 (fr) * | 2018-04-06 | 2019-10-10 | ResMed Pty Ltd | Procédés et appareil pour le traitement d'un trouble respiratoire |
| WO2020055933A1 (fr) * | 2018-09-11 | 2020-03-19 | Belluscura LLC | Systèmes et procédés permettant d'améliorer le rétablissement d'un patient après une opération |
Also Published As
| Publication number | Publication date |
|---|---|
| US11458274B2 (en) | 2022-10-04 |
| US20190134340A1 (en) | 2019-05-09 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US11684744B2 (en) | Method and systems for the delivery of oxygen enriched gas | |
| US11458274B2 (en) | Method and systems for the delivery of oxygen enriched gas | |
| US9782557B2 (en) | Oxygen concentrator systems and methods | |
| US9717876B2 (en) | Dual oxygen concentrator systems and methods | |
| US20220161274A1 (en) | System and method of desorbing nitrogen from particles | |
| WO2017106644A1 (fr) | Cartouches de tourbillon pour particules de séparation oxygène-azote | |
| WO2017106636A1 (fr) | Utilisation d'un concentrateur d'oxygène pour thérapie ppc | |
| US20180369532A1 (en) | Water removal system for an oxygen concentrator system |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17793211 Country of ref document: EP Kind code of ref document: A1 |
|
| 122 | Ep: pct application non-entry in european phase |
Ref document number: 17793211 Country of ref document: EP Kind code of ref document: A1 |